1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <nvif/push006c.h>
25 
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/if0020.h>
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_dma.h"
32 #include "nouveau_bo.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 #include "nouveau_abi16.h"
36 #include "nouveau_vmm.h"
37 #include "nouveau_svm.h"
38 
39 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
40 int nouveau_vram_pushbuf;
41 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
42 
43 void
nouveau_channel_kill(struct nouveau_channel * chan)44 nouveau_channel_kill(struct nouveau_channel *chan)
45 {
46 	atomic_set(&chan->killed, 1);
47 	if (chan->fence)
48 		nouveau_fence_context_kill(chan->fence, -ENODEV);
49 }
50 
51 static int
nouveau_channel_killed(struct nvif_event * event,void * repv,u32 repc)52 nouveau_channel_killed(struct nvif_event *event, void *repv, u32 repc)
53 {
54 	struct nouveau_channel *chan = container_of(event, typeof(*chan), kill);
55 	struct nouveau_cli *cli = chan->cli;
56 
57 	NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
58 
59 	if (unlikely(!atomic_read(&chan->killed)))
60 		nouveau_channel_kill(chan);
61 
62 	return NVIF_EVENT_DROP;
63 }
64 
65 int
nouveau_channel_idle(struct nouveau_channel * chan)66 nouveau_channel_idle(struct nouveau_channel *chan)
67 {
68 	if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
69 		struct nouveau_cli *cli = chan->cli;
70 		struct nouveau_fence *fence = NULL;
71 		int ret;
72 
73 		ret = nouveau_fence_new(&fence, chan);
74 		if (!ret) {
75 			ret = nouveau_fence_wait(fence, false, false);
76 			nouveau_fence_unref(&fence);
77 		}
78 
79 		if (ret) {
80 			NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
81 				  chan->chid, nvxx_client(&cli->base)->name);
82 			return ret;
83 		}
84 	}
85 	return 0;
86 }
87 
88 void
nouveau_channel_del(struct nouveau_channel ** pchan)89 nouveau_channel_del(struct nouveau_channel **pchan)
90 {
91 	struct nouveau_channel *chan = *pchan;
92 	if (chan) {
93 		struct nouveau_cli *cli = (void *)chan->user.client;
94 
95 		if (chan->fence)
96 			nouveau_fence(chan->drm)->context_del(chan);
97 
98 		if (cli)
99 			nouveau_svmm_part(chan->vmm->svmm, chan->inst);
100 
101 		nvif_object_dtor(&chan->blit);
102 		nvif_object_dtor(&chan->nvsw);
103 		nvif_object_dtor(&chan->gart);
104 		nvif_object_dtor(&chan->vram);
105 		nvif_event_dtor(&chan->kill);
106 		nvif_object_dtor(&chan->user);
107 		nvif_mem_dtor(&chan->mem_userd);
108 		nvif_object_dtor(&chan->push.ctxdma);
109 		nouveau_vma_del(&chan->push.vma);
110 		nouveau_bo_unmap(chan->push.buffer);
111 		if (chan->push.buffer && chan->push.buffer->bo.pin_count)
112 			nouveau_bo_unpin(chan->push.buffer);
113 		nouveau_bo_ref(NULL, &chan->push.buffer);
114 		kfree(chan);
115 	}
116 	*pchan = NULL;
117 }
118 
119 static void
nouveau_channel_kick(struct nvif_push * push)120 nouveau_channel_kick(struct nvif_push *push)
121 {
122 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
123 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
124 	FIRE_RING(chan);
125 	chan->chan._push.bgn = chan->chan._push.cur;
126 }
127 
128 static int
nouveau_channel_wait(struct nvif_push * push,u32 size)129 nouveau_channel_wait(struct nvif_push *push, u32 size)
130 {
131 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
132 	int ret;
133 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
134 	ret = RING_SPACE(chan, size);
135 	if (ret == 0) {
136 		chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr;
137 		chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur;
138 		chan->chan._push.cur = chan->chan._push.bgn;
139 		chan->chan._push.end = chan->chan._push.bgn + size;
140 	}
141 	return ret;
142 }
143 
144 static int
nouveau_channel_prep(struct nouveau_cli * cli,u32 size,struct nouveau_channel ** pchan)145 nouveau_channel_prep(struct nouveau_cli *cli,
146 		     u32 size, struct nouveau_channel **pchan)
147 {
148 	struct nouveau_drm *drm = cli->drm;
149 	struct nvif_device *device = &cli->device;
150 	struct nv_dma_v0 args = {};
151 	struct nouveau_channel *chan;
152 	u32 target;
153 	int ret;
154 
155 	chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
156 	if (!chan)
157 		return -ENOMEM;
158 
159 	chan->cli = cli;
160 	chan->device = device;
161 	chan->drm = drm;
162 	chan->vmm = nouveau_cli_vmm(cli);
163 	atomic_set(&chan->killed, 0);
164 
165 	/* allocate memory for dma push buffer */
166 	target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
167 	if (nouveau_vram_pushbuf)
168 		target = NOUVEAU_GEM_DOMAIN_VRAM;
169 
170 	ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
171 			    &chan->push.buffer);
172 	if (ret == 0) {
173 		ret = nouveau_bo_pin(chan->push.buffer, target, false);
174 		if (ret == 0)
175 			ret = nouveau_bo_map(chan->push.buffer);
176 	}
177 
178 	if (ret) {
179 		nouveau_channel_del(pchan);
180 		return ret;
181 	}
182 
183 	chan->chan._push.mem.object.parent = cli->base.object.parent;
184 	chan->chan._push.mem.object.client = &cli->base;
185 	chan->chan._push.mem.object.name = "chanPush";
186 	chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
187 	chan->chan._push.wait = nouveau_channel_wait;
188 	chan->chan._push.kick = nouveau_channel_kick;
189 	chan->chan.push = &chan->chan._push;
190 
191 	/* create dma object covering the *entire* memory space that the
192 	 * pushbuf lives in, this is because the GEM code requires that
193 	 * we be able to call out to other (indirect) push buffers
194 	 */
195 	chan->push.addr = chan->push.buffer->offset;
196 
197 	if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
198 		ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
199 				      &chan->push.vma);
200 		if (ret) {
201 			nouveau_channel_del(pchan);
202 			return ret;
203 		}
204 
205 		chan->push.addr = chan->push.vma->addr;
206 
207 		if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
208 			return 0;
209 
210 		args.target = NV_DMA_V0_TARGET_VM;
211 		args.access = NV_DMA_V0_ACCESS_VM;
212 		args.start = 0;
213 		args.limit = chan->vmm->vmm.limit - 1;
214 	} else
215 	if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
216 		if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
217 			/* nv04 vram pushbuf hack, retarget to its location in
218 			 * the framebuffer bar rather than direct vram access..
219 			 * nfi why this exists, it came from the -nv ddx.
220 			 */
221 			args.target = NV_DMA_V0_TARGET_PCI;
222 			args.access = NV_DMA_V0_ACCESS_RDWR;
223 			args.start = nvxx_device(device)->func->
224 				resource_addr(nvxx_device(device), 1);
225 			args.limit = args.start + device->info.ram_user - 1;
226 		} else {
227 			args.target = NV_DMA_V0_TARGET_VRAM;
228 			args.access = NV_DMA_V0_ACCESS_RDWR;
229 			args.start = 0;
230 			args.limit = device->info.ram_user - 1;
231 		}
232 	} else {
233 		if (chan->drm->agp.bridge) {
234 			args.target = NV_DMA_V0_TARGET_AGP;
235 			args.access = NV_DMA_V0_ACCESS_RDWR;
236 			args.start = chan->drm->agp.base;
237 			args.limit = chan->drm->agp.base +
238 				     chan->drm->agp.size - 1;
239 		} else {
240 			args.target = NV_DMA_V0_TARGET_VM;
241 			args.access = NV_DMA_V0_ACCESS_RDWR;
242 			args.start = 0;
243 			args.limit = chan->vmm->vmm.limit - 1;
244 		}
245 	}
246 
247 	ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
248 			       NV_DMA_FROM_MEMORY, &args, sizeof(args),
249 			       &chan->push.ctxdma);
250 	if (ret) {
251 		nouveau_channel_del(pchan);
252 		return ret;
253 	}
254 
255 	return 0;
256 }
257 
258 static int
nouveau_channel_ctor(struct nouveau_cli * cli,bool priv,u64 runm,struct nouveau_channel ** pchan)259 nouveau_channel_ctor(struct nouveau_cli *cli, bool priv, u64 runm,
260 		     struct nouveau_channel **pchan)
261 {
262 	const struct nvif_mclass hosts[] = {
263 		{  AMPERE_CHANNEL_GPFIFO_B, 0 },
264 		{  AMPERE_CHANNEL_GPFIFO_A, 0 },
265 		{  TURING_CHANNEL_GPFIFO_A, 0 },
266 		{   VOLTA_CHANNEL_GPFIFO_A, 0 },
267 		{  PASCAL_CHANNEL_GPFIFO_A, 0 },
268 		{ MAXWELL_CHANNEL_GPFIFO_A, 0 },
269 		{  KEPLER_CHANNEL_GPFIFO_B, 0 },
270 		{  KEPLER_CHANNEL_GPFIFO_A, 0 },
271 		{   FERMI_CHANNEL_GPFIFO  , 0 },
272 		{     G82_CHANNEL_GPFIFO  , 0 },
273 		{    NV50_CHANNEL_GPFIFO  , 0 },
274 		{    NV40_CHANNEL_DMA     , 0 },
275 		{    NV17_CHANNEL_DMA     , 0 },
276 		{    NV10_CHANNEL_DMA     , 0 },
277 		{    NV03_CHANNEL_DMA     , 0 },
278 		{}
279 	};
280 	struct {
281 		struct nvif_chan_v0 chan;
282 		char name[TASK_COMM_LEN+16];
283 	} args;
284 	struct nvif_device *device = &cli->device;
285 	struct nouveau_channel *chan;
286 	const u64 plength = 0x10000;
287 	const u64 ioffset = plength;
288 	const u64 ilength = 0x02000;
289 	char name[TASK_COMM_LEN];
290 	int cid, ret;
291 	u64 size;
292 
293 	cid = nvif_mclass(&device->object, hosts);
294 	if (cid < 0)
295 		return cid;
296 
297 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO)
298 		size = plength;
299 	else
300 		size = ioffset + ilength;
301 
302 	/* allocate dma push buffer */
303 	ret = nouveau_channel_prep(cli, size, &chan);
304 	*pchan = chan;
305 	if (ret)
306 		return ret;
307 
308 	/* create channel object */
309 	args.chan.version = 0;
310 	args.chan.namelen = sizeof(args.name);
311 	args.chan.runlist = __ffs64(runm);
312 	args.chan.runq = 0;
313 	args.chan.priv = priv;
314 	args.chan.devm = BIT(0);
315 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) {
316 		args.chan.vmm = 0;
317 		args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
318 		args.chan.offset = chan->push.addr;
319 		args.chan.length = 0;
320 	} else {
321 		args.chan.vmm = nvif_handle(&chan->vmm->vmm.object);
322 		if (hosts[cid].oclass < FERMI_CHANNEL_GPFIFO)
323 			args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
324 		else
325 			args.chan.ctxdma = 0;
326 		args.chan.offset = ioffset + chan->push.addr;
327 		args.chan.length = ilength;
328 	}
329 	args.chan.huserd = 0;
330 	args.chan.ouserd = 0;
331 
332 	/* allocate userd */
333 	if (hosts[cid].oclass >= VOLTA_CHANNEL_GPFIFO_A) {
334 		ret = nvif_mem_ctor(&cli->mmu, "abi16ChanUSERD", NVIF_CLASS_MEM_GF100,
335 				    NVIF_MEM_VRAM | NVIF_MEM_COHERENT | NVIF_MEM_MAPPABLE,
336 				    0, PAGE_SIZE, NULL, 0, &chan->mem_userd);
337 		if (ret)
338 			return ret;
339 
340 		args.chan.huserd = nvif_handle(&chan->mem_userd.object);
341 		args.chan.ouserd = 0;
342 
343 		chan->userd = &chan->mem_userd.object;
344 	} else {
345 		chan->userd = &chan->user;
346 	}
347 
348 	get_task_comm(name, current);
349 	snprintf(args.name, sizeof(args.name), "%s[%d]", name, task_pid_nr(current));
350 
351 	ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, hosts[cid].oclass,
352 			       &args, sizeof(args), &chan->user);
353 	if (ret) {
354 		nouveau_channel_del(pchan);
355 		return ret;
356 	}
357 
358 	chan->runlist = args.chan.runlist;
359 	chan->chid = args.chan.chid;
360 	chan->inst = args.chan.inst;
361 	chan->token = args.chan.token;
362 	return 0;
363 }
364 
365 static int
nouveau_channel_init(struct nouveau_channel * chan,u32 vram,u32 gart)366 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
367 {
368 	struct nvif_device *device = chan->device;
369 	struct nouveau_drm *drm = chan->drm;
370 	struct nv_dma_v0 args = {};
371 	int ret, i;
372 
373 	ret = nvif_object_map(chan->userd, NULL, 0);
374 	if (ret)
375 		return ret;
376 
377 	if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
378 		struct {
379 			struct nvif_event_v0 base;
380 			struct nvif_chan_event_v0 host;
381 		} args;
382 
383 		args.host.version = 0;
384 		args.host.type = NVIF_CHAN_EVENT_V0_KILLED;
385 
386 		ret = nvif_event_ctor(&chan->user, "abi16ChanKilled", chan->chid,
387 				      nouveau_channel_killed, false,
388 				      &args.base, sizeof(args), &chan->kill);
389 		if (ret == 0)
390 			ret = nvif_event_allow(&chan->kill);
391 		if (ret) {
392 			NV_ERROR(drm, "Failed to request channel kill "
393 				      "notification: %d\n", ret);
394 			return ret;
395 		}
396 	}
397 
398 	/* allocate dma objects to cover all allowed vram, and gart */
399 	if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
400 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
401 			args.target = NV_DMA_V0_TARGET_VM;
402 			args.access = NV_DMA_V0_ACCESS_VM;
403 			args.start = 0;
404 			args.limit = chan->vmm->vmm.limit - 1;
405 		} else {
406 			args.target = NV_DMA_V0_TARGET_VRAM;
407 			args.access = NV_DMA_V0_ACCESS_RDWR;
408 			args.start = 0;
409 			args.limit = device->info.ram_user - 1;
410 		}
411 
412 		ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
413 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
414 				       &chan->vram);
415 		if (ret)
416 			return ret;
417 
418 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
419 			args.target = NV_DMA_V0_TARGET_VM;
420 			args.access = NV_DMA_V0_ACCESS_VM;
421 			args.start = 0;
422 			args.limit = chan->vmm->vmm.limit - 1;
423 		} else
424 		if (chan->drm->agp.bridge) {
425 			args.target = NV_DMA_V0_TARGET_AGP;
426 			args.access = NV_DMA_V0_ACCESS_RDWR;
427 			args.start = chan->drm->agp.base;
428 			args.limit = chan->drm->agp.base +
429 				     chan->drm->agp.size - 1;
430 		} else {
431 			args.target = NV_DMA_V0_TARGET_VM;
432 			args.access = NV_DMA_V0_ACCESS_RDWR;
433 			args.start = 0;
434 			args.limit = chan->vmm->vmm.limit - 1;
435 		}
436 
437 		ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
438 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
439 				       &chan->gart);
440 		if (ret)
441 			return ret;
442 	}
443 
444 	/* initialise dma tracking parameters */
445 	switch (chan->user.oclass) {
446 	case NV03_CHANNEL_DMA:
447 	case NV10_CHANNEL_DMA:
448 	case NV17_CHANNEL_DMA:
449 	case NV40_CHANNEL_DMA:
450 		chan->user_put = 0x40;
451 		chan->user_get = 0x44;
452 		chan->dma.max = (0x10000 / 4) - 2;
453 		break;
454 	default:
455 		chan->user_put = 0x40;
456 		chan->user_get = 0x44;
457 		chan->user_get_hi = 0x60;
458 		chan->dma.ib_base =  0x10000 / 4;
459 		chan->dma.ib_max  = NV50_DMA_IB_MAX;
460 		chan->dma.ib_put  = 0;
461 		chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
462 		chan->dma.max = chan->dma.ib_base;
463 		break;
464 	}
465 
466 	chan->dma.put = 0;
467 	chan->dma.cur = chan->dma.put;
468 	chan->dma.free = chan->dma.max - chan->dma.cur;
469 
470 	ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS);
471 	if (ret)
472 		return ret;
473 
474 	for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
475 		PUSH_DATA(chan->chan.push, 0x00000000);
476 
477 	/* allocate software object class (used for fences on <= nv05) */
478 	if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
479 		ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
480 				       NVIF_CLASS_SW_NV04,
481 				       NULL, 0, &chan->nvsw);
482 		if (ret)
483 			return ret;
484 
485 		ret = PUSH_WAIT(chan->chan.push, 2);
486 		if (ret)
487 			return ret;
488 
489 		PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
490 		PUSH_KICK(chan->chan.push);
491 	}
492 
493 	/* initialise synchronisation */
494 	return nouveau_fence(chan->drm)->context_new(chan);
495 }
496 
497 int
nouveau_channel_new(struct nouveau_cli * cli,bool priv,u64 runm,u32 vram,u32 gart,struct nouveau_channel ** pchan)498 nouveau_channel_new(struct nouveau_cli *cli,
499 		    bool priv, u64 runm, u32 vram, u32 gart, struct nouveau_channel **pchan)
500 {
501 	int ret;
502 
503 	ret = nouveau_channel_ctor(cli, priv, runm, pchan);
504 	if (ret) {
505 		NV_PRINTK(dbg, cli, "channel create, %d\n", ret);
506 		return ret;
507 	}
508 
509 	ret = nouveau_channel_init(*pchan, vram, gart);
510 	if (ret) {
511 		NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
512 		nouveau_channel_del(pchan);
513 		return ret;
514 	}
515 
516 	ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
517 	if (ret)
518 		nouveau_channel_del(pchan);
519 
520 	return ret;
521 }
522 
523 void
nouveau_channels_fini(struct nouveau_drm * drm)524 nouveau_channels_fini(struct nouveau_drm *drm)
525 {
526 	kfree(drm->runl);
527 }
528 
529 int
nouveau_channels_init(struct nouveau_drm * drm)530 nouveau_channels_init(struct nouveau_drm *drm)
531 {
532 	struct {
533 		struct nv_device_info_v1 m;
534 		struct {
535 			struct nv_device_info_v1_data channels;
536 			struct nv_device_info_v1_data runlists;
537 		} v;
538 	} args = {
539 		.m.version = 1,
540 		.m.count = sizeof(args.v) / sizeof(args.v.channels),
541 		.v.channels.mthd = NV_DEVICE_HOST_CHANNELS,
542 		.v.runlists.mthd = NV_DEVICE_HOST_RUNLISTS,
543 	};
544 	struct nvif_object *device = &drm->client.device.object;
545 	int ret, i;
546 
547 	ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
548 	if (ret ||
549 	    args.v.runlists.mthd == NV_DEVICE_INFO_INVALID || !args.v.runlists.data ||
550 	    args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
551 		return -ENODEV;
552 
553 	drm->chan_nr = drm->chan_total = args.v.channels.data;
554 	drm->runl_nr = fls64(args.v.runlists.data);
555 	drm->runl = kcalloc(drm->runl_nr, sizeof(*drm->runl), GFP_KERNEL);
556 	if (!drm->runl)
557 		return -ENOMEM;
558 
559 	if (drm->chan_nr == 0) {
560 		for (i = 0; i < drm->runl_nr; i++) {
561 			if (!(args.v.runlists.data & BIT(i)))
562 				continue;
563 
564 			args.v.channels.mthd = NV_DEVICE_HOST_RUNLIST_CHANNELS;
565 			args.v.channels.data = i;
566 
567 			ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
568 			if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
569 				return -ENODEV;
570 
571 			drm->runl[i].chan_nr = args.v.channels.data;
572 			drm->runl[i].chan_id_base = drm->chan_total;
573 			drm->runl[i].context_base = dma_fence_context_alloc(drm->runl[i].chan_nr);
574 
575 			drm->chan_total += drm->runl[i].chan_nr;
576 		}
577 	} else {
578 		drm->runl[0].context_base = dma_fence_context_alloc(drm->chan_nr);
579 		for (i = 1; i < drm->runl_nr; i++)
580 			drm->runl[i].context_base = drm->runl[0].context_base;
581 
582 	}
583 
584 	return 0;
585 }
586