1 /*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42
43 #include <net/sock.h>
44 #include "util.h"
45
46 struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
48 bool newns; /* Set if newly created ipc namespace */
49 };
50
51 #define MQUEUE_MAGIC 0x19800202
52 #define DIRENT_SIZE 20
53 #define FILENT_SIZE 80
54
55 #define SEND 0
56 #define RECV 1
57
58 #define STATE_NONE 0
59 #define STATE_READY 1
60
61 struct posix_msg_tree_node {
62 struct rb_node rb_node;
63 struct list_head msg_list;
64 int priority;
65 };
66
67 /*
68 * Locking:
69 *
70 * Accesses to a message queue are synchronized by acquiring info->lock.
71 *
72 * There are two notable exceptions:
73 * - The actual wakeup of a sleeping task is performed using the wake_q
74 * framework. info->lock is already released when wake_up_q is called.
75 * - The exit codepaths after sleeping check ext_wait_queue->state without
76 * any locks. If it is STATE_READY, then the syscall is completed without
77 * acquiring info->lock.
78 *
79 * MQ_BARRIER:
80 * To achieve proper release/acquire memory barrier pairing, the state is set to
81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83 *
84 * This prevents the following races:
85 *
86 * 1) With the simple wake_q_add(), the task could be gone already before
87 * the increase of the reference happens
88 * Thread A
89 * Thread B
90 * WRITE_ONCE(wait.state, STATE_NONE);
91 * schedule_hrtimeout()
92 * wake_q_add(A)
93 * if (cmpxchg()) // success
94 * ->state = STATE_READY (reordered)
95 * <timeout returns>
96 * if (wait.state == STATE_READY) return;
97 * sysret to user space
98 * sys_exit()
99 * get_task_struct() // UaF
100 *
101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102 * the smp_store_release() that does ->state = STATE_READY.
103 *
104 * 2) Without proper _release/_acquire barriers, the woken up task
105 * could read stale data
106 *
107 * Thread A
108 * Thread B
109 * do_mq_timedreceive
110 * WRITE_ONCE(wait.state, STATE_NONE);
111 * schedule_hrtimeout()
112 * state = STATE_READY;
113 * <timeout returns>
114 * if (wait.state == STATE_READY) return;
115 * msg_ptr = wait.msg; // Access to stale data!
116 * receiver->msg = message; (reordered)
117 *
118 * Solution: use _release and _acquire barriers.
119 *
120 * 3) There is intentionally no barrier when setting current->state
121 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122 * release memory barrier, and the wakeup is triggered when holding
123 * info->lock, i.e. spin_lock(&info->lock) provided a pairing
124 * acquire memory barrier.
125 */
126
127 struct ext_wait_queue { /* queue of sleeping tasks */
128 struct task_struct *task;
129 struct list_head list;
130 struct msg_msg *msg; /* ptr of loaded message */
131 int state; /* one of STATE_* values */
132 };
133
134 struct mqueue_inode_info {
135 spinlock_t lock;
136 struct inode vfs_inode;
137 wait_queue_head_t wait_q;
138
139 struct rb_root msg_tree;
140 struct rb_node *msg_tree_rightmost;
141 struct posix_msg_tree_node *node_cache;
142 struct mq_attr attr;
143
144 struct sigevent notify;
145 struct pid *notify_owner;
146 u32 notify_self_exec_id;
147 struct user_namespace *notify_user_ns;
148 struct ucounts *ucounts; /* user who created, for accounting */
149 struct sock *notify_sock;
150 struct sk_buff *notify_cookie;
151
152 /* for tasks waiting for free space and messages, respectively */
153 struct ext_wait_queue e_wait_q[2];
154
155 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156 };
157
158 static struct file_system_type mqueue_fs_type;
159 static const struct inode_operations mqueue_dir_inode_operations;
160 static const struct file_operations mqueue_file_operations;
161 static const struct super_operations mqueue_super_ops;
162 static const struct fs_context_operations mqueue_fs_context_ops;
163 static void remove_notification(struct mqueue_inode_info *info);
164
165 static struct kmem_cache *mqueue_inode_cachep;
166
MQUEUE_I(struct inode * inode)167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
168 {
169 return container_of(inode, struct mqueue_inode_info, vfs_inode);
170 }
171
172 /*
173 * This routine should be called with the mq_lock held.
174 */
__get_ns_from_inode(struct inode * inode)175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
176 {
177 return get_ipc_ns(inode->i_sb->s_fs_info);
178 }
179
get_ns_from_inode(struct inode * inode)180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
181 {
182 struct ipc_namespace *ns;
183
184 spin_lock(&mq_lock);
185 ns = __get_ns_from_inode(inode);
186 spin_unlock(&mq_lock);
187 return ns;
188 }
189
190 /* Auxiliary functions to manipulate messages' list */
msg_insert(struct msg_msg * msg,struct mqueue_inode_info * info)191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
192 {
193 struct rb_node **p, *parent = NULL;
194 struct posix_msg_tree_node *leaf;
195 bool rightmost = true;
196
197 p = &info->msg_tree.rb_node;
198 while (*p) {
199 parent = *p;
200 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
201
202 if (likely(leaf->priority == msg->m_type))
203 goto insert_msg;
204 else if (msg->m_type < leaf->priority) {
205 p = &(*p)->rb_left;
206 rightmost = false;
207 } else
208 p = &(*p)->rb_right;
209 }
210 if (info->node_cache) {
211 leaf = info->node_cache;
212 info->node_cache = NULL;
213 } else {
214 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
215 if (!leaf)
216 return -ENOMEM;
217 INIT_LIST_HEAD(&leaf->msg_list);
218 }
219 leaf->priority = msg->m_type;
220
221 if (rightmost)
222 info->msg_tree_rightmost = &leaf->rb_node;
223
224 rb_link_node(&leaf->rb_node, parent, p);
225 rb_insert_color(&leaf->rb_node, &info->msg_tree);
226 insert_msg:
227 info->attr.mq_curmsgs++;
228 info->qsize += msg->m_ts;
229 list_add_tail(&msg->m_list, &leaf->msg_list);
230 return 0;
231 }
232
msg_tree_erase(struct posix_msg_tree_node * leaf,struct mqueue_inode_info * info)233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
234 struct mqueue_inode_info *info)
235 {
236 struct rb_node *node = &leaf->rb_node;
237
238 if (info->msg_tree_rightmost == node)
239 info->msg_tree_rightmost = rb_prev(node);
240
241 rb_erase(node, &info->msg_tree);
242 if (info->node_cache)
243 kfree(leaf);
244 else
245 info->node_cache = leaf;
246 }
247
msg_get(struct mqueue_inode_info * info)248 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
249 {
250 struct rb_node *parent = NULL;
251 struct posix_msg_tree_node *leaf;
252 struct msg_msg *msg;
253
254 try_again:
255 /*
256 * During insert, low priorities go to the left and high to the
257 * right. On receive, we want the highest priorities first, so
258 * walk all the way to the right.
259 */
260 parent = info->msg_tree_rightmost;
261 if (!parent) {
262 if (info->attr.mq_curmsgs) {
263 pr_warn_once("Inconsistency in POSIX message queue, "
264 "no tree element, but supposedly messages "
265 "should exist!\n");
266 info->attr.mq_curmsgs = 0;
267 }
268 return NULL;
269 }
270 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
271 if (unlikely(list_empty(&leaf->msg_list))) {
272 pr_warn_once("Inconsistency in POSIX message queue, "
273 "empty leaf node but we haven't implemented "
274 "lazy leaf delete!\n");
275 msg_tree_erase(leaf, info);
276 goto try_again;
277 } else {
278 msg = list_first_entry(&leaf->msg_list,
279 struct msg_msg, m_list);
280 list_del(&msg->m_list);
281 if (list_empty(&leaf->msg_list)) {
282 msg_tree_erase(leaf, info);
283 }
284 }
285 info->attr.mq_curmsgs--;
286 info->qsize -= msg->m_ts;
287 return msg;
288 }
289
mqueue_get_inode(struct super_block * sb,struct ipc_namespace * ipc_ns,umode_t mode,struct mq_attr * attr)290 static struct inode *mqueue_get_inode(struct super_block *sb,
291 struct ipc_namespace *ipc_ns, umode_t mode,
292 struct mq_attr *attr)
293 {
294 struct inode *inode;
295 int ret = -ENOMEM;
296
297 inode = new_inode(sb);
298 if (!inode)
299 goto err;
300
301 inode->i_ino = get_next_ino();
302 inode->i_mode = mode;
303 inode->i_uid = current_fsuid();
304 inode->i_gid = current_fsgid();
305 inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode);
306
307 if (S_ISREG(mode)) {
308 struct mqueue_inode_info *info;
309 unsigned long mq_bytes, mq_treesize;
310
311 inode->i_fop = &mqueue_file_operations;
312 inode->i_size = FILENT_SIZE;
313 /* mqueue specific info */
314 info = MQUEUE_I(inode);
315 spin_lock_init(&info->lock);
316 init_waitqueue_head(&info->wait_q);
317 INIT_LIST_HEAD(&info->e_wait_q[0].list);
318 INIT_LIST_HEAD(&info->e_wait_q[1].list);
319 info->notify_owner = NULL;
320 info->notify_user_ns = NULL;
321 info->qsize = 0;
322 info->ucounts = NULL; /* set when all is ok */
323 info->msg_tree = RB_ROOT;
324 info->msg_tree_rightmost = NULL;
325 info->node_cache = NULL;
326 memset(&info->attr, 0, sizeof(info->attr));
327 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
328 ipc_ns->mq_msg_default);
329 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
330 ipc_ns->mq_msgsize_default);
331 if (attr) {
332 info->attr.mq_maxmsg = attr->mq_maxmsg;
333 info->attr.mq_msgsize = attr->mq_msgsize;
334 }
335 /*
336 * We used to allocate a static array of pointers and account
337 * the size of that array as well as one msg_msg struct per
338 * possible message into the queue size. That's no longer
339 * accurate as the queue is now an rbtree and will grow and
340 * shrink depending on usage patterns. We can, however, still
341 * account one msg_msg struct per message, but the nodes are
342 * allocated depending on priority usage, and most programs
343 * only use one, or a handful, of priorities. However, since
344 * this is pinned memory, we need to assume worst case, so
345 * that means the min(mq_maxmsg, max_priorities) * struct
346 * posix_msg_tree_node.
347 */
348
349 ret = -EINVAL;
350 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
351 goto out_inode;
352 if (capable(CAP_SYS_RESOURCE)) {
353 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
354 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
355 goto out_inode;
356 } else {
357 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
358 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
359 goto out_inode;
360 }
361 ret = -EOVERFLOW;
362 /* check for overflow */
363 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
364 goto out_inode;
365 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
366 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
367 sizeof(struct posix_msg_tree_node);
368 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
369 if (mq_bytes + mq_treesize < mq_bytes)
370 goto out_inode;
371 mq_bytes += mq_treesize;
372 info->ucounts = get_ucounts(current_ucounts());
373 if (info->ucounts) {
374 long msgqueue;
375
376 spin_lock(&mq_lock);
377 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
378 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
379 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
380 spin_unlock(&mq_lock);
381 put_ucounts(info->ucounts);
382 info->ucounts = NULL;
383 /* mqueue_evict_inode() releases info->messages */
384 ret = -EMFILE;
385 goto out_inode;
386 }
387 spin_unlock(&mq_lock);
388 }
389 } else if (S_ISDIR(mode)) {
390 inc_nlink(inode);
391 /* Some things misbehave if size == 0 on a directory */
392 inode->i_size = 2 * DIRENT_SIZE;
393 inode->i_op = &mqueue_dir_inode_operations;
394 inode->i_fop = &simple_dir_operations;
395 }
396
397 return inode;
398 out_inode:
399 iput(inode);
400 err:
401 return ERR_PTR(ret);
402 }
403
mqueue_fill_super(struct super_block * sb,struct fs_context * fc)404 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
405 {
406 struct inode *inode;
407 struct ipc_namespace *ns = sb->s_fs_info;
408
409 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
410 sb->s_blocksize = PAGE_SIZE;
411 sb->s_blocksize_bits = PAGE_SHIFT;
412 sb->s_magic = MQUEUE_MAGIC;
413 sb->s_op = &mqueue_super_ops;
414
415 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
416 if (IS_ERR(inode))
417 return PTR_ERR(inode);
418
419 sb->s_root = d_make_root(inode);
420 if (!sb->s_root)
421 return -ENOMEM;
422 return 0;
423 }
424
mqueue_get_tree(struct fs_context * fc)425 static int mqueue_get_tree(struct fs_context *fc)
426 {
427 struct mqueue_fs_context *ctx = fc->fs_private;
428
429 /*
430 * With a newly created ipc namespace, we don't need to do a search
431 * for an ipc namespace match, but we still need to set s_fs_info.
432 */
433 if (ctx->newns) {
434 fc->s_fs_info = ctx->ipc_ns;
435 return get_tree_nodev(fc, mqueue_fill_super);
436 }
437 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
438 }
439
mqueue_fs_context_free(struct fs_context * fc)440 static void mqueue_fs_context_free(struct fs_context *fc)
441 {
442 struct mqueue_fs_context *ctx = fc->fs_private;
443
444 put_ipc_ns(ctx->ipc_ns);
445 kfree(ctx);
446 }
447
mqueue_init_fs_context(struct fs_context * fc)448 static int mqueue_init_fs_context(struct fs_context *fc)
449 {
450 struct mqueue_fs_context *ctx;
451
452 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
453 if (!ctx)
454 return -ENOMEM;
455
456 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
457 put_user_ns(fc->user_ns);
458 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
459 fc->fs_private = ctx;
460 fc->ops = &mqueue_fs_context_ops;
461 return 0;
462 }
463
464 /*
465 * mq_init_ns() is currently the only caller of mq_create_mount().
466 * So the ns parameter is always a newly created ipc namespace.
467 */
mq_create_mount(struct ipc_namespace * ns)468 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
469 {
470 struct mqueue_fs_context *ctx;
471 struct fs_context *fc;
472 struct vfsmount *mnt;
473
474 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
475 if (IS_ERR(fc))
476 return ERR_CAST(fc);
477
478 ctx = fc->fs_private;
479 ctx->newns = true;
480 put_ipc_ns(ctx->ipc_ns);
481 ctx->ipc_ns = get_ipc_ns(ns);
482 put_user_ns(fc->user_ns);
483 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
484
485 mnt = fc_mount(fc);
486 put_fs_context(fc);
487 return mnt;
488 }
489
init_once(void * foo)490 static void init_once(void *foo)
491 {
492 struct mqueue_inode_info *p = foo;
493
494 inode_init_once(&p->vfs_inode);
495 }
496
mqueue_alloc_inode(struct super_block * sb)497 static struct inode *mqueue_alloc_inode(struct super_block *sb)
498 {
499 struct mqueue_inode_info *ei;
500
501 ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
502 if (!ei)
503 return NULL;
504 return &ei->vfs_inode;
505 }
506
mqueue_free_inode(struct inode * inode)507 static void mqueue_free_inode(struct inode *inode)
508 {
509 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
510 }
511
mqueue_evict_inode(struct inode * inode)512 static void mqueue_evict_inode(struct inode *inode)
513 {
514 struct mqueue_inode_info *info;
515 struct ipc_namespace *ipc_ns;
516 struct msg_msg *msg, *nmsg;
517 LIST_HEAD(tmp_msg);
518
519 clear_inode(inode);
520
521 if (S_ISDIR(inode->i_mode))
522 return;
523
524 ipc_ns = get_ns_from_inode(inode);
525 info = MQUEUE_I(inode);
526 spin_lock(&info->lock);
527 while ((msg = msg_get(info)) != NULL)
528 list_add_tail(&msg->m_list, &tmp_msg);
529 kfree(info->node_cache);
530 spin_unlock(&info->lock);
531
532 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
533 list_del(&msg->m_list);
534 free_msg(msg);
535 }
536
537 if (info->ucounts) {
538 unsigned long mq_bytes, mq_treesize;
539
540 /* Total amount of bytes accounted for the mqueue */
541 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
542 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
543 sizeof(struct posix_msg_tree_node);
544
545 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
546 info->attr.mq_msgsize);
547
548 spin_lock(&mq_lock);
549 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
550 /*
551 * get_ns_from_inode() ensures that the
552 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
553 * to which we now hold a reference, or it is NULL.
554 * We can't put it here under mq_lock, though.
555 */
556 if (ipc_ns)
557 ipc_ns->mq_queues_count--;
558 spin_unlock(&mq_lock);
559 put_ucounts(info->ucounts);
560 info->ucounts = NULL;
561 }
562 if (ipc_ns)
563 put_ipc_ns(ipc_ns);
564 }
565
mqueue_create_attr(struct dentry * dentry,umode_t mode,void * arg)566 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
567 {
568 struct inode *dir = dentry->d_parent->d_inode;
569 struct inode *inode;
570 struct mq_attr *attr = arg;
571 int error;
572 struct ipc_namespace *ipc_ns;
573
574 spin_lock(&mq_lock);
575 ipc_ns = __get_ns_from_inode(dir);
576 if (!ipc_ns) {
577 error = -EACCES;
578 goto out_unlock;
579 }
580
581 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
582 !capable(CAP_SYS_RESOURCE)) {
583 error = -ENOSPC;
584 goto out_unlock;
585 }
586 ipc_ns->mq_queues_count++;
587 spin_unlock(&mq_lock);
588
589 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
590 if (IS_ERR(inode)) {
591 error = PTR_ERR(inode);
592 spin_lock(&mq_lock);
593 ipc_ns->mq_queues_count--;
594 goto out_unlock;
595 }
596
597 put_ipc_ns(ipc_ns);
598 dir->i_size += DIRENT_SIZE;
599 dir->i_mtime = dir->i_atime = inode_set_ctime_current(dir);
600
601 d_instantiate(dentry, inode);
602 dget(dentry);
603 return 0;
604 out_unlock:
605 spin_unlock(&mq_lock);
606 if (ipc_ns)
607 put_ipc_ns(ipc_ns);
608 return error;
609 }
610
mqueue_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)611 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir,
612 struct dentry *dentry, umode_t mode, bool excl)
613 {
614 return mqueue_create_attr(dentry, mode, NULL);
615 }
616
mqueue_unlink(struct inode * dir,struct dentry * dentry)617 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
618 {
619 struct inode *inode = d_inode(dentry);
620
621 dir->i_mtime = dir->i_atime = inode_set_ctime_current(dir);
622 dir->i_size -= DIRENT_SIZE;
623 drop_nlink(inode);
624 dput(dentry);
625 return 0;
626 }
627
628 /*
629 * This is routine for system read from queue file.
630 * To avoid mess with doing here some sort of mq_receive we allow
631 * to read only queue size & notification info (the only values
632 * that are interesting from user point of view and aren't accessible
633 * through std routines)
634 */
mqueue_read_file(struct file * filp,char __user * u_data,size_t count,loff_t * off)635 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
636 size_t count, loff_t *off)
637 {
638 struct inode *inode = file_inode(filp);
639 struct mqueue_inode_info *info = MQUEUE_I(inode);
640 char buffer[FILENT_SIZE];
641 ssize_t ret;
642
643 spin_lock(&info->lock);
644 snprintf(buffer, sizeof(buffer),
645 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
646 info->qsize,
647 info->notify_owner ? info->notify.sigev_notify : 0,
648 (info->notify_owner &&
649 info->notify.sigev_notify == SIGEV_SIGNAL) ?
650 info->notify.sigev_signo : 0,
651 pid_vnr(info->notify_owner));
652 spin_unlock(&info->lock);
653 buffer[sizeof(buffer)-1] = '\0';
654
655 ret = simple_read_from_buffer(u_data, count, off, buffer,
656 strlen(buffer));
657 if (ret <= 0)
658 return ret;
659
660 inode->i_atime = inode_set_ctime_current(inode);
661 return ret;
662 }
663
mqueue_flush_file(struct file * filp,fl_owner_t id)664 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
665 {
666 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
667
668 spin_lock(&info->lock);
669 if (task_tgid(current) == info->notify_owner)
670 remove_notification(info);
671
672 spin_unlock(&info->lock);
673 return 0;
674 }
675
mqueue_poll_file(struct file * filp,struct poll_table_struct * poll_tab)676 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
677 {
678 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
679 __poll_t retval = 0;
680
681 poll_wait(filp, &info->wait_q, poll_tab);
682
683 spin_lock(&info->lock);
684 if (info->attr.mq_curmsgs)
685 retval = EPOLLIN | EPOLLRDNORM;
686
687 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
688 retval |= EPOLLOUT | EPOLLWRNORM;
689 spin_unlock(&info->lock);
690
691 return retval;
692 }
693
694 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
wq_add(struct mqueue_inode_info * info,int sr,struct ext_wait_queue * ewp)695 static void wq_add(struct mqueue_inode_info *info, int sr,
696 struct ext_wait_queue *ewp)
697 {
698 struct ext_wait_queue *walk;
699
700 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
701 if (walk->task->prio <= current->prio) {
702 list_add_tail(&ewp->list, &walk->list);
703 return;
704 }
705 }
706 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
707 }
708
709 /*
710 * Puts current task to sleep. Caller must hold queue lock. After return
711 * lock isn't held.
712 * sr: SEND or RECV
713 */
wq_sleep(struct mqueue_inode_info * info,int sr,ktime_t * timeout,struct ext_wait_queue * ewp)714 static int wq_sleep(struct mqueue_inode_info *info, int sr,
715 ktime_t *timeout, struct ext_wait_queue *ewp)
716 __releases(&info->lock)
717 {
718 int retval;
719 signed long time;
720
721 wq_add(info, sr, ewp);
722
723 for (;;) {
724 /* memory barrier not required, we hold info->lock */
725 __set_current_state(TASK_INTERRUPTIBLE);
726
727 spin_unlock(&info->lock);
728 time = schedule_hrtimeout_range_clock(timeout, 0,
729 HRTIMER_MODE_ABS, CLOCK_REALTIME);
730
731 if (READ_ONCE(ewp->state) == STATE_READY) {
732 /* see MQ_BARRIER for purpose/pairing */
733 smp_acquire__after_ctrl_dep();
734 retval = 0;
735 goto out;
736 }
737 spin_lock(&info->lock);
738
739 /* we hold info->lock, so no memory barrier required */
740 if (READ_ONCE(ewp->state) == STATE_READY) {
741 retval = 0;
742 goto out_unlock;
743 }
744 if (signal_pending(current)) {
745 retval = -ERESTARTSYS;
746 break;
747 }
748 if (time == 0) {
749 retval = -ETIMEDOUT;
750 break;
751 }
752 }
753 list_del(&ewp->list);
754 out_unlock:
755 spin_unlock(&info->lock);
756 out:
757 return retval;
758 }
759
760 /*
761 * Returns waiting task that should be serviced first or NULL if none exists
762 */
wq_get_first_waiter(struct mqueue_inode_info * info,int sr)763 static struct ext_wait_queue *wq_get_first_waiter(
764 struct mqueue_inode_info *info, int sr)
765 {
766 struct list_head *ptr;
767
768 ptr = info->e_wait_q[sr].list.prev;
769 if (ptr == &info->e_wait_q[sr].list)
770 return NULL;
771 return list_entry(ptr, struct ext_wait_queue, list);
772 }
773
774
set_cookie(struct sk_buff * skb,char code)775 static inline void set_cookie(struct sk_buff *skb, char code)
776 {
777 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
778 }
779
780 /*
781 * The next function is only to split too long sys_mq_timedsend
782 */
__do_notify(struct mqueue_inode_info * info)783 static void __do_notify(struct mqueue_inode_info *info)
784 {
785 /* notification
786 * invoked when there is registered process and there isn't process
787 * waiting synchronously for message AND state of queue changed from
788 * empty to not empty. Here we are sure that no one is waiting
789 * synchronously. */
790 if (info->notify_owner &&
791 info->attr.mq_curmsgs == 1) {
792 switch (info->notify.sigev_notify) {
793 case SIGEV_NONE:
794 break;
795 case SIGEV_SIGNAL: {
796 struct kernel_siginfo sig_i;
797 struct task_struct *task;
798
799 /* do_mq_notify() accepts sigev_signo == 0, why?? */
800 if (!info->notify.sigev_signo)
801 break;
802
803 clear_siginfo(&sig_i);
804 sig_i.si_signo = info->notify.sigev_signo;
805 sig_i.si_errno = 0;
806 sig_i.si_code = SI_MESGQ;
807 sig_i.si_value = info->notify.sigev_value;
808 rcu_read_lock();
809 /* map current pid/uid into info->owner's namespaces */
810 sig_i.si_pid = task_tgid_nr_ns(current,
811 ns_of_pid(info->notify_owner));
812 sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
813 current_uid());
814 /*
815 * We can't use kill_pid_info(), this signal should
816 * bypass check_kill_permission(). It is from kernel
817 * but si_fromuser() can't know this.
818 * We do check the self_exec_id, to avoid sending
819 * signals to programs that don't expect them.
820 */
821 task = pid_task(info->notify_owner, PIDTYPE_TGID);
822 if (task && task->self_exec_id ==
823 info->notify_self_exec_id) {
824 do_send_sig_info(info->notify.sigev_signo,
825 &sig_i, task, PIDTYPE_TGID);
826 }
827 rcu_read_unlock();
828 break;
829 }
830 case SIGEV_THREAD:
831 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
832 netlink_sendskb(info->notify_sock, info->notify_cookie);
833 break;
834 }
835 /* after notification unregisters process */
836 put_pid(info->notify_owner);
837 put_user_ns(info->notify_user_ns);
838 info->notify_owner = NULL;
839 info->notify_user_ns = NULL;
840 }
841 wake_up(&info->wait_q);
842 }
843
prepare_timeout(const struct __kernel_timespec __user * u_abs_timeout,struct timespec64 * ts)844 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
845 struct timespec64 *ts)
846 {
847 if (get_timespec64(ts, u_abs_timeout))
848 return -EFAULT;
849 if (!timespec64_valid(ts))
850 return -EINVAL;
851 return 0;
852 }
853
remove_notification(struct mqueue_inode_info * info)854 static void remove_notification(struct mqueue_inode_info *info)
855 {
856 if (info->notify_owner != NULL &&
857 info->notify.sigev_notify == SIGEV_THREAD) {
858 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
859 netlink_sendskb(info->notify_sock, info->notify_cookie);
860 }
861 put_pid(info->notify_owner);
862 put_user_ns(info->notify_user_ns);
863 info->notify_owner = NULL;
864 info->notify_user_ns = NULL;
865 }
866
prepare_open(struct dentry * dentry,int oflag,int ro,umode_t mode,struct filename * name,struct mq_attr * attr)867 static int prepare_open(struct dentry *dentry, int oflag, int ro,
868 umode_t mode, struct filename *name,
869 struct mq_attr *attr)
870 {
871 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
872 MAY_READ | MAY_WRITE };
873 int acc;
874
875 if (d_really_is_negative(dentry)) {
876 if (!(oflag & O_CREAT))
877 return -ENOENT;
878 if (ro)
879 return ro;
880 audit_inode_parent_hidden(name, dentry->d_parent);
881 return vfs_mkobj(dentry, mode & ~current_umask(),
882 mqueue_create_attr, attr);
883 }
884 /* it already existed */
885 audit_inode(name, dentry, 0);
886 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
887 return -EEXIST;
888 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
889 return -EINVAL;
890 acc = oflag2acc[oflag & O_ACCMODE];
891 return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc);
892 }
893
do_mq_open(const char __user * u_name,int oflag,umode_t mode,struct mq_attr * attr)894 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
895 struct mq_attr *attr)
896 {
897 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
898 struct dentry *root = mnt->mnt_root;
899 struct filename *name;
900 struct path path;
901 int fd, error;
902 int ro;
903
904 audit_mq_open(oflag, mode, attr);
905
906 if (IS_ERR(name = getname(u_name)))
907 return PTR_ERR(name);
908
909 fd = get_unused_fd_flags(O_CLOEXEC);
910 if (fd < 0)
911 goto out_putname;
912
913 ro = mnt_want_write(mnt); /* we'll drop it in any case */
914 inode_lock(d_inode(root));
915 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
916 if (IS_ERR(path.dentry)) {
917 error = PTR_ERR(path.dentry);
918 goto out_putfd;
919 }
920 path.mnt = mntget(mnt);
921 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
922 if (!error) {
923 struct file *file = dentry_open(&path, oflag, current_cred());
924 if (!IS_ERR(file))
925 fd_install(fd, file);
926 else
927 error = PTR_ERR(file);
928 }
929 path_put(&path);
930 out_putfd:
931 if (error) {
932 put_unused_fd(fd);
933 fd = error;
934 }
935 inode_unlock(d_inode(root));
936 if (!ro)
937 mnt_drop_write(mnt);
938 out_putname:
939 putname(name);
940 return fd;
941 }
942
SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,umode_t,mode,struct mq_attr __user *,u_attr)943 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
944 struct mq_attr __user *, u_attr)
945 {
946 struct mq_attr attr;
947 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
948 return -EFAULT;
949
950 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
951 }
952
SYSCALL_DEFINE1(mq_unlink,const char __user *,u_name)953 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
954 {
955 int err;
956 struct filename *name;
957 struct dentry *dentry;
958 struct inode *inode = NULL;
959 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
960 struct vfsmount *mnt = ipc_ns->mq_mnt;
961
962 name = getname(u_name);
963 if (IS_ERR(name))
964 return PTR_ERR(name);
965
966 audit_inode_parent_hidden(name, mnt->mnt_root);
967 err = mnt_want_write(mnt);
968 if (err)
969 goto out_name;
970 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
971 dentry = lookup_one_len(name->name, mnt->mnt_root,
972 strlen(name->name));
973 if (IS_ERR(dentry)) {
974 err = PTR_ERR(dentry);
975 goto out_unlock;
976 }
977
978 inode = d_inode(dentry);
979 if (!inode) {
980 err = -ENOENT;
981 } else {
982 ihold(inode);
983 err = vfs_unlink(&nop_mnt_idmap, d_inode(dentry->d_parent),
984 dentry, NULL);
985 }
986 dput(dentry);
987
988 out_unlock:
989 inode_unlock(d_inode(mnt->mnt_root));
990 iput(inode);
991 mnt_drop_write(mnt);
992 out_name:
993 putname(name);
994
995 return err;
996 }
997
998 /* Pipelined send and receive functions.
999 *
1000 * If a receiver finds no waiting message, then it registers itself in the
1001 * list of waiting receivers. A sender checks that list before adding the new
1002 * message into the message array. If there is a waiting receiver, then it
1003 * bypasses the message array and directly hands the message over to the
1004 * receiver. The receiver accepts the message and returns without grabbing the
1005 * queue spinlock:
1006 *
1007 * - Set pointer to message.
1008 * - Queue the receiver task for later wakeup (without the info->lock).
1009 * - Update its state to STATE_READY. Now the receiver can continue.
1010 * - Wake up the process after the lock is dropped. Should the process wake up
1011 * before this wakeup (due to a timeout or a signal) it will either see
1012 * STATE_READY and continue or acquire the lock to check the state again.
1013 *
1014 * The same algorithm is used for senders.
1015 */
1016
__pipelined_op(struct wake_q_head * wake_q,struct mqueue_inode_info * info,struct ext_wait_queue * this)1017 static inline void __pipelined_op(struct wake_q_head *wake_q,
1018 struct mqueue_inode_info *info,
1019 struct ext_wait_queue *this)
1020 {
1021 struct task_struct *task;
1022
1023 list_del(&this->list);
1024 task = get_task_struct(this->task);
1025
1026 /* see MQ_BARRIER for purpose/pairing */
1027 smp_store_release(&this->state, STATE_READY);
1028 wake_q_add_safe(wake_q, task);
1029 }
1030
1031 /* pipelined_send() - send a message directly to the task waiting in
1032 * sys_mq_timedreceive() (without inserting message into a queue).
1033 */
pipelined_send(struct wake_q_head * wake_q,struct mqueue_inode_info * info,struct msg_msg * message,struct ext_wait_queue * receiver)1034 static inline void pipelined_send(struct wake_q_head *wake_q,
1035 struct mqueue_inode_info *info,
1036 struct msg_msg *message,
1037 struct ext_wait_queue *receiver)
1038 {
1039 receiver->msg = message;
1040 __pipelined_op(wake_q, info, receiver);
1041 }
1042
1043 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1044 * gets its message and put to the queue (we have one free place for sure). */
pipelined_receive(struct wake_q_head * wake_q,struct mqueue_inode_info * info)1045 static inline void pipelined_receive(struct wake_q_head *wake_q,
1046 struct mqueue_inode_info *info)
1047 {
1048 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1049
1050 if (!sender) {
1051 /* for poll */
1052 wake_up_interruptible(&info->wait_q);
1053 return;
1054 }
1055 if (msg_insert(sender->msg, info))
1056 return;
1057
1058 __pipelined_op(wake_q, info, sender);
1059 }
1060
do_mq_timedsend(mqd_t mqdes,const char __user * u_msg_ptr,size_t msg_len,unsigned int msg_prio,struct timespec64 * ts)1061 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1062 size_t msg_len, unsigned int msg_prio,
1063 struct timespec64 *ts)
1064 {
1065 struct fd f;
1066 struct inode *inode;
1067 struct ext_wait_queue wait;
1068 struct ext_wait_queue *receiver;
1069 struct msg_msg *msg_ptr;
1070 struct mqueue_inode_info *info;
1071 ktime_t expires, *timeout = NULL;
1072 struct posix_msg_tree_node *new_leaf = NULL;
1073 int ret = 0;
1074 DEFINE_WAKE_Q(wake_q);
1075
1076 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1077 return -EINVAL;
1078
1079 if (ts) {
1080 expires = timespec64_to_ktime(*ts);
1081 timeout = &expires;
1082 }
1083
1084 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1085
1086 f = fdget(mqdes);
1087 if (unlikely(!f.file)) {
1088 ret = -EBADF;
1089 goto out;
1090 }
1091
1092 inode = file_inode(f.file);
1093 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1094 ret = -EBADF;
1095 goto out_fput;
1096 }
1097 info = MQUEUE_I(inode);
1098 audit_file(f.file);
1099
1100 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1101 ret = -EBADF;
1102 goto out_fput;
1103 }
1104
1105 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1106 ret = -EMSGSIZE;
1107 goto out_fput;
1108 }
1109
1110 /* First try to allocate memory, before doing anything with
1111 * existing queues. */
1112 msg_ptr = load_msg(u_msg_ptr, msg_len);
1113 if (IS_ERR(msg_ptr)) {
1114 ret = PTR_ERR(msg_ptr);
1115 goto out_fput;
1116 }
1117 msg_ptr->m_ts = msg_len;
1118 msg_ptr->m_type = msg_prio;
1119
1120 /*
1121 * msg_insert really wants us to have a valid, spare node struct so
1122 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1123 * fall back to that if necessary.
1124 */
1125 if (!info->node_cache)
1126 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1127
1128 spin_lock(&info->lock);
1129
1130 if (!info->node_cache && new_leaf) {
1131 /* Save our speculative allocation into the cache */
1132 INIT_LIST_HEAD(&new_leaf->msg_list);
1133 info->node_cache = new_leaf;
1134 new_leaf = NULL;
1135 } else {
1136 kfree(new_leaf);
1137 }
1138
1139 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1140 if (f.file->f_flags & O_NONBLOCK) {
1141 ret = -EAGAIN;
1142 } else {
1143 wait.task = current;
1144 wait.msg = (void *) msg_ptr;
1145
1146 /* memory barrier not required, we hold info->lock */
1147 WRITE_ONCE(wait.state, STATE_NONE);
1148 ret = wq_sleep(info, SEND, timeout, &wait);
1149 /*
1150 * wq_sleep must be called with info->lock held, and
1151 * returns with the lock released
1152 */
1153 goto out_free;
1154 }
1155 } else {
1156 receiver = wq_get_first_waiter(info, RECV);
1157 if (receiver) {
1158 pipelined_send(&wake_q, info, msg_ptr, receiver);
1159 } else {
1160 /* adds message to the queue */
1161 ret = msg_insert(msg_ptr, info);
1162 if (ret)
1163 goto out_unlock;
1164 __do_notify(info);
1165 }
1166 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1167 }
1168 out_unlock:
1169 spin_unlock(&info->lock);
1170 wake_up_q(&wake_q);
1171 out_free:
1172 if (ret)
1173 free_msg(msg_ptr);
1174 out_fput:
1175 fdput(f);
1176 out:
1177 return ret;
1178 }
1179
do_mq_timedreceive(mqd_t mqdes,char __user * u_msg_ptr,size_t msg_len,unsigned int __user * u_msg_prio,struct timespec64 * ts)1180 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1181 size_t msg_len, unsigned int __user *u_msg_prio,
1182 struct timespec64 *ts)
1183 {
1184 ssize_t ret;
1185 struct msg_msg *msg_ptr;
1186 struct fd f;
1187 struct inode *inode;
1188 struct mqueue_inode_info *info;
1189 struct ext_wait_queue wait;
1190 ktime_t expires, *timeout = NULL;
1191 struct posix_msg_tree_node *new_leaf = NULL;
1192
1193 if (ts) {
1194 expires = timespec64_to_ktime(*ts);
1195 timeout = &expires;
1196 }
1197
1198 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1199
1200 f = fdget(mqdes);
1201 if (unlikely(!f.file)) {
1202 ret = -EBADF;
1203 goto out;
1204 }
1205
1206 inode = file_inode(f.file);
1207 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1208 ret = -EBADF;
1209 goto out_fput;
1210 }
1211 info = MQUEUE_I(inode);
1212 audit_file(f.file);
1213
1214 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1215 ret = -EBADF;
1216 goto out_fput;
1217 }
1218
1219 /* checks if buffer is big enough */
1220 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1221 ret = -EMSGSIZE;
1222 goto out_fput;
1223 }
1224
1225 /*
1226 * msg_insert really wants us to have a valid, spare node struct so
1227 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1228 * fall back to that if necessary.
1229 */
1230 if (!info->node_cache)
1231 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1232
1233 spin_lock(&info->lock);
1234
1235 if (!info->node_cache && new_leaf) {
1236 /* Save our speculative allocation into the cache */
1237 INIT_LIST_HEAD(&new_leaf->msg_list);
1238 info->node_cache = new_leaf;
1239 } else {
1240 kfree(new_leaf);
1241 }
1242
1243 if (info->attr.mq_curmsgs == 0) {
1244 if (f.file->f_flags & O_NONBLOCK) {
1245 spin_unlock(&info->lock);
1246 ret = -EAGAIN;
1247 } else {
1248 wait.task = current;
1249
1250 /* memory barrier not required, we hold info->lock */
1251 WRITE_ONCE(wait.state, STATE_NONE);
1252 ret = wq_sleep(info, RECV, timeout, &wait);
1253 msg_ptr = wait.msg;
1254 }
1255 } else {
1256 DEFINE_WAKE_Q(wake_q);
1257
1258 msg_ptr = msg_get(info);
1259
1260 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1261
1262 /* There is now free space in queue. */
1263 pipelined_receive(&wake_q, info);
1264 spin_unlock(&info->lock);
1265 wake_up_q(&wake_q);
1266 ret = 0;
1267 }
1268 if (ret == 0) {
1269 ret = msg_ptr->m_ts;
1270
1271 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1272 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1273 ret = -EFAULT;
1274 }
1275 free_msg(msg_ptr);
1276 }
1277 out_fput:
1278 fdput(f);
1279 out:
1280 return ret;
1281 }
1282
SYSCALL_DEFINE5(mq_timedsend,mqd_t,mqdes,const char __user *,u_msg_ptr,size_t,msg_len,unsigned int,msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1283 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1284 size_t, msg_len, unsigned int, msg_prio,
1285 const struct __kernel_timespec __user *, u_abs_timeout)
1286 {
1287 struct timespec64 ts, *p = NULL;
1288 if (u_abs_timeout) {
1289 int res = prepare_timeout(u_abs_timeout, &ts);
1290 if (res)
1291 return res;
1292 p = &ts;
1293 }
1294 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1295 }
1296
SYSCALL_DEFINE5(mq_timedreceive,mqd_t,mqdes,char __user *,u_msg_ptr,size_t,msg_len,unsigned int __user *,u_msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1297 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1298 size_t, msg_len, unsigned int __user *, u_msg_prio,
1299 const struct __kernel_timespec __user *, u_abs_timeout)
1300 {
1301 struct timespec64 ts, *p = NULL;
1302 if (u_abs_timeout) {
1303 int res = prepare_timeout(u_abs_timeout, &ts);
1304 if (res)
1305 return res;
1306 p = &ts;
1307 }
1308 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1309 }
1310
1311 /*
1312 * Notes: the case when user wants us to deregister (with NULL as pointer)
1313 * and he isn't currently owner of notification, will be silently discarded.
1314 * It isn't explicitly defined in the POSIX.
1315 */
do_mq_notify(mqd_t mqdes,const struct sigevent * notification)1316 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1317 {
1318 int ret;
1319 struct fd f;
1320 struct sock *sock;
1321 struct inode *inode;
1322 struct mqueue_inode_info *info;
1323 struct sk_buff *nc;
1324
1325 audit_mq_notify(mqdes, notification);
1326
1327 nc = NULL;
1328 sock = NULL;
1329 if (notification != NULL) {
1330 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1331 notification->sigev_notify != SIGEV_SIGNAL &&
1332 notification->sigev_notify != SIGEV_THREAD))
1333 return -EINVAL;
1334 if (notification->sigev_notify == SIGEV_SIGNAL &&
1335 !valid_signal(notification->sigev_signo)) {
1336 return -EINVAL;
1337 }
1338 if (notification->sigev_notify == SIGEV_THREAD) {
1339 long timeo;
1340
1341 /* create the notify skb */
1342 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1343 if (!nc)
1344 return -ENOMEM;
1345
1346 if (copy_from_user(nc->data,
1347 notification->sigev_value.sival_ptr,
1348 NOTIFY_COOKIE_LEN)) {
1349 ret = -EFAULT;
1350 goto free_skb;
1351 }
1352
1353 /* TODO: add a header? */
1354 skb_put(nc, NOTIFY_COOKIE_LEN);
1355 /* and attach it to the socket */
1356 retry:
1357 f = fdget(notification->sigev_signo);
1358 if (!f.file) {
1359 ret = -EBADF;
1360 goto out;
1361 }
1362 sock = netlink_getsockbyfilp(f.file);
1363 fdput(f);
1364 if (IS_ERR(sock)) {
1365 ret = PTR_ERR(sock);
1366 goto free_skb;
1367 }
1368
1369 timeo = MAX_SCHEDULE_TIMEOUT;
1370 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1371 if (ret == 1) {
1372 sock = NULL;
1373 goto retry;
1374 }
1375 if (ret)
1376 return ret;
1377 }
1378 }
1379
1380 f = fdget(mqdes);
1381 if (!f.file) {
1382 ret = -EBADF;
1383 goto out;
1384 }
1385
1386 inode = file_inode(f.file);
1387 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1388 ret = -EBADF;
1389 goto out_fput;
1390 }
1391 info = MQUEUE_I(inode);
1392
1393 ret = 0;
1394 spin_lock(&info->lock);
1395 if (notification == NULL) {
1396 if (info->notify_owner == task_tgid(current)) {
1397 remove_notification(info);
1398 inode->i_atime = inode_set_ctime_current(inode);
1399 }
1400 } else if (info->notify_owner != NULL) {
1401 ret = -EBUSY;
1402 } else {
1403 switch (notification->sigev_notify) {
1404 case SIGEV_NONE:
1405 info->notify.sigev_notify = SIGEV_NONE;
1406 break;
1407 case SIGEV_THREAD:
1408 info->notify_sock = sock;
1409 info->notify_cookie = nc;
1410 sock = NULL;
1411 nc = NULL;
1412 info->notify.sigev_notify = SIGEV_THREAD;
1413 break;
1414 case SIGEV_SIGNAL:
1415 info->notify.sigev_signo = notification->sigev_signo;
1416 info->notify.sigev_value = notification->sigev_value;
1417 info->notify.sigev_notify = SIGEV_SIGNAL;
1418 info->notify_self_exec_id = current->self_exec_id;
1419 break;
1420 }
1421
1422 info->notify_owner = get_pid(task_tgid(current));
1423 info->notify_user_ns = get_user_ns(current_user_ns());
1424 inode->i_atime = inode_set_ctime_current(inode);
1425 }
1426 spin_unlock(&info->lock);
1427 out_fput:
1428 fdput(f);
1429 out:
1430 if (sock)
1431 netlink_detachskb(sock, nc);
1432 else
1433 free_skb:
1434 dev_kfree_skb(nc);
1435
1436 return ret;
1437 }
1438
SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct sigevent __user *,u_notification)1439 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1440 const struct sigevent __user *, u_notification)
1441 {
1442 struct sigevent n, *p = NULL;
1443 if (u_notification) {
1444 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1445 return -EFAULT;
1446 p = &n;
1447 }
1448 return do_mq_notify(mqdes, p);
1449 }
1450
do_mq_getsetattr(int mqdes,struct mq_attr * new,struct mq_attr * old)1451 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1452 {
1453 struct fd f;
1454 struct inode *inode;
1455 struct mqueue_inode_info *info;
1456
1457 if (new && (new->mq_flags & (~O_NONBLOCK)))
1458 return -EINVAL;
1459
1460 f = fdget(mqdes);
1461 if (!f.file)
1462 return -EBADF;
1463
1464 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1465 fdput(f);
1466 return -EBADF;
1467 }
1468
1469 inode = file_inode(f.file);
1470 info = MQUEUE_I(inode);
1471
1472 spin_lock(&info->lock);
1473
1474 if (old) {
1475 *old = info->attr;
1476 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1477 }
1478 if (new) {
1479 audit_mq_getsetattr(mqdes, new);
1480 spin_lock(&f.file->f_lock);
1481 if (new->mq_flags & O_NONBLOCK)
1482 f.file->f_flags |= O_NONBLOCK;
1483 else
1484 f.file->f_flags &= ~O_NONBLOCK;
1485 spin_unlock(&f.file->f_lock);
1486
1487 inode->i_atime = inode_set_ctime_current(inode);
1488 }
1489
1490 spin_unlock(&info->lock);
1491 fdput(f);
1492 return 0;
1493 }
1494
SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct mq_attr __user *,u_mqstat,struct mq_attr __user *,u_omqstat)1495 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1496 const struct mq_attr __user *, u_mqstat,
1497 struct mq_attr __user *, u_omqstat)
1498 {
1499 int ret;
1500 struct mq_attr mqstat, omqstat;
1501 struct mq_attr *new = NULL, *old = NULL;
1502
1503 if (u_mqstat) {
1504 new = &mqstat;
1505 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1506 return -EFAULT;
1507 }
1508 if (u_omqstat)
1509 old = &omqstat;
1510
1511 ret = do_mq_getsetattr(mqdes, new, old);
1512 if (ret || !old)
1513 return ret;
1514
1515 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1516 return -EFAULT;
1517 return 0;
1518 }
1519
1520 #ifdef CONFIG_COMPAT
1521
1522 struct compat_mq_attr {
1523 compat_long_t mq_flags; /* message queue flags */
1524 compat_long_t mq_maxmsg; /* maximum number of messages */
1525 compat_long_t mq_msgsize; /* maximum message size */
1526 compat_long_t mq_curmsgs; /* number of messages currently queued */
1527 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1528 };
1529
get_compat_mq_attr(struct mq_attr * attr,const struct compat_mq_attr __user * uattr)1530 static inline int get_compat_mq_attr(struct mq_attr *attr,
1531 const struct compat_mq_attr __user *uattr)
1532 {
1533 struct compat_mq_attr v;
1534
1535 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1536 return -EFAULT;
1537
1538 memset(attr, 0, sizeof(*attr));
1539 attr->mq_flags = v.mq_flags;
1540 attr->mq_maxmsg = v.mq_maxmsg;
1541 attr->mq_msgsize = v.mq_msgsize;
1542 attr->mq_curmsgs = v.mq_curmsgs;
1543 return 0;
1544 }
1545
put_compat_mq_attr(const struct mq_attr * attr,struct compat_mq_attr __user * uattr)1546 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1547 struct compat_mq_attr __user *uattr)
1548 {
1549 struct compat_mq_attr v;
1550
1551 memset(&v, 0, sizeof(v));
1552 v.mq_flags = attr->mq_flags;
1553 v.mq_maxmsg = attr->mq_maxmsg;
1554 v.mq_msgsize = attr->mq_msgsize;
1555 v.mq_curmsgs = attr->mq_curmsgs;
1556 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1557 return -EFAULT;
1558 return 0;
1559 }
1560
COMPAT_SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,compat_mode_t,mode,struct compat_mq_attr __user *,u_attr)1561 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1562 int, oflag, compat_mode_t, mode,
1563 struct compat_mq_attr __user *, u_attr)
1564 {
1565 struct mq_attr attr, *p = NULL;
1566 if (u_attr && oflag & O_CREAT) {
1567 p = &attr;
1568 if (get_compat_mq_attr(&attr, u_attr))
1569 return -EFAULT;
1570 }
1571 return do_mq_open(u_name, oflag, mode, p);
1572 }
1573
COMPAT_SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct compat_sigevent __user *,u_notification)1574 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1575 const struct compat_sigevent __user *, u_notification)
1576 {
1577 struct sigevent n, *p = NULL;
1578 if (u_notification) {
1579 if (get_compat_sigevent(&n, u_notification))
1580 return -EFAULT;
1581 if (n.sigev_notify == SIGEV_THREAD)
1582 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1583 p = &n;
1584 }
1585 return do_mq_notify(mqdes, p);
1586 }
1587
COMPAT_SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct compat_mq_attr __user *,u_mqstat,struct compat_mq_attr __user *,u_omqstat)1588 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1589 const struct compat_mq_attr __user *, u_mqstat,
1590 struct compat_mq_attr __user *, u_omqstat)
1591 {
1592 int ret;
1593 struct mq_attr mqstat, omqstat;
1594 struct mq_attr *new = NULL, *old = NULL;
1595
1596 if (u_mqstat) {
1597 new = &mqstat;
1598 if (get_compat_mq_attr(new, u_mqstat))
1599 return -EFAULT;
1600 }
1601 if (u_omqstat)
1602 old = &omqstat;
1603
1604 ret = do_mq_getsetattr(mqdes, new, old);
1605 if (ret || !old)
1606 return ret;
1607
1608 if (put_compat_mq_attr(old, u_omqstat))
1609 return -EFAULT;
1610 return 0;
1611 }
1612 #endif
1613
1614 #ifdef CONFIG_COMPAT_32BIT_TIME
compat_prepare_timeout(const struct old_timespec32 __user * p,struct timespec64 * ts)1615 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1616 struct timespec64 *ts)
1617 {
1618 if (get_old_timespec32(ts, p))
1619 return -EFAULT;
1620 if (!timespec64_valid(ts))
1621 return -EINVAL;
1622 return 0;
1623 }
1624
SYSCALL_DEFINE5(mq_timedsend_time32,mqd_t,mqdes,const char __user *,u_msg_ptr,unsigned int,msg_len,unsigned int,msg_prio,const struct old_timespec32 __user *,u_abs_timeout)1625 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1626 const char __user *, u_msg_ptr,
1627 unsigned int, msg_len, unsigned int, msg_prio,
1628 const struct old_timespec32 __user *, u_abs_timeout)
1629 {
1630 struct timespec64 ts, *p = NULL;
1631 if (u_abs_timeout) {
1632 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1633 if (res)
1634 return res;
1635 p = &ts;
1636 }
1637 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1638 }
1639
SYSCALL_DEFINE5(mq_timedreceive_time32,mqd_t,mqdes,char __user *,u_msg_ptr,unsigned int,msg_len,unsigned int __user *,u_msg_prio,const struct old_timespec32 __user *,u_abs_timeout)1640 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1641 char __user *, u_msg_ptr,
1642 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1643 const struct old_timespec32 __user *, u_abs_timeout)
1644 {
1645 struct timespec64 ts, *p = NULL;
1646 if (u_abs_timeout) {
1647 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1648 if (res)
1649 return res;
1650 p = &ts;
1651 }
1652 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1653 }
1654 #endif
1655
1656 static const struct inode_operations mqueue_dir_inode_operations = {
1657 .lookup = simple_lookup,
1658 .create = mqueue_create,
1659 .unlink = mqueue_unlink,
1660 };
1661
1662 static const struct file_operations mqueue_file_operations = {
1663 .flush = mqueue_flush_file,
1664 .poll = mqueue_poll_file,
1665 .read = mqueue_read_file,
1666 .llseek = default_llseek,
1667 };
1668
1669 static const struct super_operations mqueue_super_ops = {
1670 .alloc_inode = mqueue_alloc_inode,
1671 .free_inode = mqueue_free_inode,
1672 .evict_inode = mqueue_evict_inode,
1673 .statfs = simple_statfs,
1674 };
1675
1676 static const struct fs_context_operations mqueue_fs_context_ops = {
1677 .free = mqueue_fs_context_free,
1678 .get_tree = mqueue_get_tree,
1679 };
1680
1681 static struct file_system_type mqueue_fs_type = {
1682 .name = "mqueue",
1683 .init_fs_context = mqueue_init_fs_context,
1684 .kill_sb = kill_litter_super,
1685 .fs_flags = FS_USERNS_MOUNT,
1686 };
1687
mq_init_ns(struct ipc_namespace * ns)1688 int mq_init_ns(struct ipc_namespace *ns)
1689 {
1690 struct vfsmount *m;
1691
1692 ns->mq_queues_count = 0;
1693 ns->mq_queues_max = DFLT_QUEUESMAX;
1694 ns->mq_msg_max = DFLT_MSGMAX;
1695 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1696 ns->mq_msg_default = DFLT_MSG;
1697 ns->mq_msgsize_default = DFLT_MSGSIZE;
1698
1699 m = mq_create_mount(ns);
1700 if (IS_ERR(m))
1701 return PTR_ERR(m);
1702 ns->mq_mnt = m;
1703 return 0;
1704 }
1705
mq_clear_sbinfo(struct ipc_namespace * ns)1706 void mq_clear_sbinfo(struct ipc_namespace *ns)
1707 {
1708 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1709 }
1710
init_mqueue_fs(void)1711 static int __init init_mqueue_fs(void)
1712 {
1713 int error;
1714
1715 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1716 sizeof(struct mqueue_inode_info), 0,
1717 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1718 if (mqueue_inode_cachep == NULL)
1719 return -ENOMEM;
1720
1721 if (!setup_mq_sysctls(&init_ipc_ns)) {
1722 pr_warn("sysctl registration failed\n");
1723 error = -ENOMEM;
1724 goto out_kmem;
1725 }
1726
1727 error = register_filesystem(&mqueue_fs_type);
1728 if (error)
1729 goto out_sysctl;
1730
1731 spin_lock_init(&mq_lock);
1732
1733 error = mq_init_ns(&init_ipc_ns);
1734 if (error)
1735 goto out_filesystem;
1736
1737 return 0;
1738
1739 out_filesystem:
1740 unregister_filesystem(&mqueue_fs_type);
1741 out_sysctl:
1742 retire_mq_sysctls(&init_ipc_ns);
1743 out_kmem:
1744 kmem_cache_destroy(mqueue_inode_cachep);
1745 return error;
1746 }
1747
1748 device_initcall(init_mqueue_fs);
1749