xref: /openbmc/linux/kernel/sched/psi.c (revision fac59652993f075d57860769c99045b3ca18780d)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Pressure stall information for CPU, memory and IO
4   *
5   * Copyright (c) 2018 Facebook, Inc.
6   * Author: Johannes Weiner <hannes@cmpxchg.org>
7   *
8   * Polling support by Suren Baghdasaryan <surenb@google.com>
9   * Copyright (c) 2018 Google, Inc.
10   *
11   * When CPU, memory and IO are contended, tasks experience delays that
12   * reduce throughput and introduce latencies into the workload. Memory
13   * and IO contention, in addition, can cause a full loss of forward
14   * progress in which the CPU goes idle.
15   *
16   * This code aggregates individual task delays into resource pressure
17   * metrics that indicate problems with both workload health and
18   * resource utilization.
19   *
20   *			Model
21   *
22   * The time in which a task can execute on a CPU is our baseline for
23   * productivity. Pressure expresses the amount of time in which this
24   * potential cannot be realized due to resource contention.
25   *
26   * This concept of productivity has two components: the workload and
27   * the CPU. To measure the impact of pressure on both, we define two
28   * contention states for a resource: SOME and FULL.
29   *
30   * In the SOME state of a given resource, one or more tasks are
31   * delayed on that resource. This affects the workload's ability to
32   * perform work, but the CPU may still be executing other tasks.
33   *
34   * In the FULL state of a given resource, all non-idle tasks are
35   * delayed on that resource such that nobody is advancing and the CPU
36   * goes idle. This leaves both workload and CPU unproductive.
37   *
38   *	SOME = nr_delayed_tasks != 0
39   *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40   *
41   * What it means for a task to be productive is defined differently
42   * for each resource. For IO, productive means a running task. For
43   * memory, productive means a running task that isn't a reclaimer. For
44   * CPU, productive means an oncpu task.
45   *
46   * Naturally, the FULL state doesn't exist for the CPU resource at the
47   * system level, but exist at the cgroup level. At the cgroup level,
48   * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49   * resource which is being used by others outside of the cgroup or
50   * throttled by the cgroup cpu.max configuration.
51   *
52   * The percentage of wallclock time spent in those compound stall
53   * states gives pressure numbers between 0 and 100 for each resource,
54   * where the SOME percentage indicates workload slowdowns and the FULL
55   * percentage indicates reduced CPU utilization:
56   *
57   *	%SOME = time(SOME) / period
58   *	%FULL = time(FULL) / period
59   *
60   *			Multiple CPUs
61   *
62   * The more tasks and available CPUs there are, the more work can be
63   * performed concurrently. This means that the potential that can go
64   * unrealized due to resource contention *also* scales with non-idle
65   * tasks and CPUs.
66   *
67   * Consider a scenario where 257 number crunching tasks are trying to
68   * run concurrently on 256 CPUs. If we simply aggregated the task
69   * states, we would have to conclude a CPU SOME pressure number of
70   * 100%, since *somebody* is waiting on a runqueue at all
71   * times. However, that is clearly not the amount of contention the
72   * workload is experiencing: only one out of 256 possible execution
73   * threads will be contended at any given time, or about 0.4%.
74   *
75   * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76   * given time *one* of the tasks is delayed due to a lack of memory.
77   * Again, looking purely at the task state would yield a memory FULL
78   * pressure number of 0%, since *somebody* is always making forward
79   * progress. But again this wouldn't capture the amount of execution
80   * potential lost, which is 1 out of 4 CPUs, or 25%.
81   *
82   * To calculate wasted potential (pressure) with multiple processors,
83   * we have to base our calculation on the number of non-idle tasks in
84   * conjunction with the number of available CPUs, which is the number
85   * of potential execution threads. SOME becomes then the proportion of
86   * delayed tasks to possible threads, and FULL is the share of possible
87   * threads that are unproductive due to delays:
88   *
89   *	threads = min(nr_nonidle_tasks, nr_cpus)
90   *	   SOME = min(nr_delayed_tasks / threads, 1)
91   *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
92   *
93   * For the 257 number crunchers on 256 CPUs, this yields:
94   *
95   *	threads = min(257, 256)
96   *	   SOME = min(1 / 256, 1)             = 0.4%
97   *	   FULL = (256 - min(256, 256)) / 256 = 0%
98   *
99   * For the 1 out of 4 memory-delayed tasks, this yields:
100   *
101   *	threads = min(4, 4)
102   *	   SOME = min(1 / 4, 1)               = 25%
103   *	   FULL = (4 - min(3, 4)) / 4         = 25%
104   *
105   * [ Substitute nr_cpus with 1, and you can see that it's a natural
106   *   extension of the single-CPU model. ]
107   *
108   *			Implementation
109   *
110   * To assess the precise time spent in each such state, we would have
111   * to freeze the system on task changes and start/stop the state
112   * clocks accordingly. Obviously that doesn't scale in practice.
113   *
114   * Because the scheduler aims to distribute the compute load evenly
115   * among the available CPUs, we can track task state locally to each
116   * CPU and, at much lower frequency, extrapolate the global state for
117   * the cumulative stall times and the running averages.
118   *
119   * For each runqueue, we track:
120   *
121   *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122   *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123   *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124   *
125   * and then periodically aggregate:
126   *
127   *	tNONIDLE = sum(tNONIDLE[i])
128   *
129   *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130   *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131   *
132   *	   %SOME = tSOME / period
133   *	   %FULL = tFULL / period
134   *
135   * This gives us an approximation of pressure that is practical
136   * cost-wise, yet way more sensitive and accurate than periodic
137   * sampling of the aggregate task states would be.
138   */
139  
140  static int psi_bug __read_mostly;
141  
142  DEFINE_STATIC_KEY_FALSE(psi_disabled);
143  static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
144  
145  #ifdef CONFIG_PSI_DEFAULT_DISABLED
146  static bool psi_enable;
147  #else
148  static bool psi_enable = true;
149  #endif
setup_psi(char * str)150  static int __init setup_psi(char *str)
151  {
152  	return kstrtobool(str, &psi_enable) == 0;
153  }
154  __setup("psi=", setup_psi);
155  
156  /* Running averages - we need to be higher-res than loadavg */
157  #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
158  #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
159  #define EXP_60s		1981		/* 1/exp(2s/60s) */
160  #define EXP_300s	2034		/* 1/exp(2s/300s) */
161  
162  /* PSI trigger definitions */
163  #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
164  #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
165  
166  /* Sampling frequency in nanoseconds */
167  static u64 psi_period __read_mostly;
168  
169  /* System-level pressure and stall tracking */
170  static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
171  struct psi_group psi_system = {
172  	.pcpu = &system_group_pcpu,
173  };
174  
175  static void psi_avgs_work(struct work_struct *work);
176  
177  static void poll_timer_fn(struct timer_list *t);
178  
group_init(struct psi_group * group)179  static void group_init(struct psi_group *group)
180  {
181  	int cpu;
182  
183  	group->enabled = true;
184  	for_each_possible_cpu(cpu)
185  		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
186  	group->avg_last_update = sched_clock();
187  	group->avg_next_update = group->avg_last_update + psi_period;
188  	mutex_init(&group->avgs_lock);
189  
190  	/* Init avg trigger-related members */
191  	INIT_LIST_HEAD(&group->avg_triggers);
192  	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
193  	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
194  
195  	/* Init rtpoll trigger-related members */
196  	atomic_set(&group->rtpoll_scheduled, 0);
197  	mutex_init(&group->rtpoll_trigger_lock);
198  	INIT_LIST_HEAD(&group->rtpoll_triggers);
199  	group->rtpoll_min_period = U32_MAX;
200  	group->rtpoll_next_update = ULLONG_MAX;
201  	init_waitqueue_head(&group->rtpoll_wait);
202  	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
203  	rcu_assign_pointer(group->rtpoll_task, NULL);
204  }
205  
psi_init(void)206  void __init psi_init(void)
207  {
208  	if (!psi_enable) {
209  		static_branch_enable(&psi_disabled);
210  		static_branch_disable(&psi_cgroups_enabled);
211  		return;
212  	}
213  
214  	if (!cgroup_psi_enabled())
215  		static_branch_disable(&psi_cgroups_enabled);
216  
217  	psi_period = jiffies_to_nsecs(PSI_FREQ);
218  	group_init(&psi_system);
219  }
220  
test_state(unsigned int * tasks,enum psi_states state,bool oncpu)221  static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu)
222  {
223  	switch (state) {
224  	case PSI_IO_SOME:
225  		return unlikely(tasks[NR_IOWAIT]);
226  	case PSI_IO_FULL:
227  		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
228  	case PSI_MEM_SOME:
229  		return unlikely(tasks[NR_MEMSTALL]);
230  	case PSI_MEM_FULL:
231  		return unlikely(tasks[NR_MEMSTALL] &&
232  			tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
233  	case PSI_CPU_SOME:
234  		return unlikely(tasks[NR_RUNNING] > oncpu);
235  	case PSI_CPU_FULL:
236  		return unlikely(tasks[NR_RUNNING] && !oncpu);
237  	case PSI_NONIDLE:
238  		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
239  			tasks[NR_RUNNING];
240  	default:
241  		return false;
242  	}
243  }
244  
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)245  static void get_recent_times(struct psi_group *group, int cpu,
246  			     enum psi_aggregators aggregator, u32 *times,
247  			     u32 *pchanged_states)
248  {
249  	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
250  	int current_cpu = raw_smp_processor_id();
251  	unsigned int tasks[NR_PSI_TASK_COUNTS];
252  	u64 now, state_start;
253  	enum psi_states s;
254  	unsigned int seq;
255  	u32 state_mask;
256  
257  	*pchanged_states = 0;
258  
259  	/* Snapshot a coherent view of the CPU state */
260  	do {
261  		seq = read_seqcount_begin(&groupc->seq);
262  		now = cpu_clock(cpu);
263  		memcpy(times, groupc->times, sizeof(groupc->times));
264  		state_mask = groupc->state_mask;
265  		state_start = groupc->state_start;
266  		if (cpu == current_cpu)
267  			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
268  	} while (read_seqcount_retry(&groupc->seq, seq));
269  
270  	/* Calculate state time deltas against the previous snapshot */
271  	for (s = 0; s < NR_PSI_STATES; s++) {
272  		u32 delta;
273  		/*
274  		 * In addition to already concluded states, we also
275  		 * incorporate currently active states on the CPU,
276  		 * since states may last for many sampling periods.
277  		 *
278  		 * This way we keep our delta sampling buckets small
279  		 * (u32) and our reported pressure close to what's
280  		 * actually happening.
281  		 */
282  		if (state_mask & (1 << s))
283  			times[s] += now - state_start;
284  
285  		delta = times[s] - groupc->times_prev[aggregator][s];
286  		groupc->times_prev[aggregator][s] = times[s];
287  
288  		times[s] = delta;
289  		if (delta)
290  			*pchanged_states |= (1 << s);
291  	}
292  
293  	/*
294  	 * When collect_percpu_times() from the avgs_work, we don't want to
295  	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
296  	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
297  	 * So for the current CPU, we need to re-arm avgs_work only when
298  	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
299  	 * we can just check PSI_NONIDLE delta.
300  	 */
301  	if (current_work() == &group->avgs_work.work) {
302  		bool reschedule;
303  
304  		if (cpu == current_cpu)
305  			reschedule = tasks[NR_RUNNING] +
306  				     tasks[NR_IOWAIT] +
307  				     tasks[NR_MEMSTALL] > 1;
308  		else
309  			reschedule = *pchanged_states & (1 << PSI_NONIDLE);
310  
311  		if (reschedule)
312  			*pchanged_states |= PSI_STATE_RESCHEDULE;
313  	}
314  }
315  
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)316  static void calc_avgs(unsigned long avg[3], int missed_periods,
317  		      u64 time, u64 period)
318  {
319  	unsigned long pct;
320  
321  	/* Fill in zeroes for periods of no activity */
322  	if (missed_periods) {
323  		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
324  		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
325  		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
326  	}
327  
328  	/* Sample the most recent active period */
329  	pct = div_u64(time * 100, period);
330  	pct *= FIXED_1;
331  	avg[0] = calc_load(avg[0], EXP_10s, pct);
332  	avg[1] = calc_load(avg[1], EXP_60s, pct);
333  	avg[2] = calc_load(avg[2], EXP_300s, pct);
334  }
335  
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)336  static void collect_percpu_times(struct psi_group *group,
337  				 enum psi_aggregators aggregator,
338  				 u32 *pchanged_states)
339  {
340  	u64 deltas[NR_PSI_STATES - 1] = { 0, };
341  	unsigned long nonidle_total = 0;
342  	u32 changed_states = 0;
343  	int cpu;
344  	int s;
345  
346  	/*
347  	 * Collect the per-cpu time buckets and average them into a
348  	 * single time sample that is normalized to wallclock time.
349  	 *
350  	 * For averaging, each CPU is weighted by its non-idle time in
351  	 * the sampling period. This eliminates artifacts from uneven
352  	 * loading, or even entirely idle CPUs.
353  	 */
354  	for_each_possible_cpu(cpu) {
355  		u32 times[NR_PSI_STATES];
356  		u32 nonidle;
357  		u32 cpu_changed_states;
358  
359  		get_recent_times(group, cpu, aggregator, times,
360  				&cpu_changed_states);
361  		changed_states |= cpu_changed_states;
362  
363  		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
364  		nonidle_total += nonidle;
365  
366  		for (s = 0; s < PSI_NONIDLE; s++)
367  			deltas[s] += (u64)times[s] * nonidle;
368  	}
369  
370  	/*
371  	 * Integrate the sample into the running statistics that are
372  	 * reported to userspace: the cumulative stall times and the
373  	 * decaying averages.
374  	 *
375  	 * Pressure percentages are sampled at PSI_FREQ. We might be
376  	 * called more often when the user polls more frequently than
377  	 * that; we might be called less often when there is no task
378  	 * activity, thus no data, and clock ticks are sporadic. The
379  	 * below handles both.
380  	 */
381  
382  	/* total= */
383  	for (s = 0; s < NR_PSI_STATES - 1; s++)
384  		group->total[aggregator][s] +=
385  				div_u64(deltas[s], max(nonidle_total, 1UL));
386  
387  	if (pchanged_states)
388  		*pchanged_states = changed_states;
389  }
390  
391  /* Trigger tracking window manipulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)392  static void window_reset(struct psi_window *win, u64 now, u64 value,
393  			 u64 prev_growth)
394  {
395  	win->start_time = now;
396  	win->start_value = value;
397  	win->prev_growth = prev_growth;
398  }
399  
400  /*
401   * PSI growth tracking window update and growth calculation routine.
402   *
403   * This approximates a sliding tracking window by interpolating
404   * partially elapsed windows using historical growth data from the
405   * previous intervals. This minimizes memory requirements (by not storing
406   * all the intermediate values in the previous window) and simplifies
407   * the calculations. It works well because PSI signal changes only in
408   * positive direction and over relatively small window sizes the growth
409   * is close to linear.
410   */
window_update(struct psi_window * win,u64 now,u64 value)411  static u64 window_update(struct psi_window *win, u64 now, u64 value)
412  {
413  	u64 elapsed;
414  	u64 growth;
415  
416  	elapsed = now - win->start_time;
417  	growth = value - win->start_value;
418  	/*
419  	 * After each tracking window passes win->start_value and
420  	 * win->start_time get reset and win->prev_growth stores
421  	 * the average per-window growth of the previous window.
422  	 * win->prev_growth is then used to interpolate additional
423  	 * growth from the previous window assuming it was linear.
424  	 */
425  	if (elapsed > win->size)
426  		window_reset(win, now, value, growth);
427  	else {
428  		u32 remaining;
429  
430  		remaining = win->size - elapsed;
431  		growth += div64_u64(win->prev_growth * remaining, win->size);
432  	}
433  
434  	return growth;
435  }
436  
update_triggers(struct psi_group * group,u64 now,bool * update_total,enum psi_aggregators aggregator)437  static u64 update_triggers(struct psi_group *group, u64 now, bool *update_total,
438  						   enum psi_aggregators aggregator)
439  {
440  	struct psi_trigger *t;
441  	u64 *total = group->total[aggregator];
442  	struct list_head *triggers;
443  	u64 *aggregator_total;
444  	*update_total = false;
445  
446  	if (aggregator == PSI_AVGS) {
447  		triggers = &group->avg_triggers;
448  		aggregator_total = group->avg_total;
449  	} else {
450  		triggers = &group->rtpoll_triggers;
451  		aggregator_total = group->rtpoll_total;
452  	}
453  
454  	/*
455  	 * On subsequent updates, calculate growth deltas and let
456  	 * watchers know when their specified thresholds are exceeded.
457  	 */
458  	list_for_each_entry(t, triggers, node) {
459  		u64 growth;
460  		bool new_stall;
461  
462  		new_stall = aggregator_total[t->state] != total[t->state];
463  
464  		/* Check for stall activity or a previous threshold breach */
465  		if (!new_stall && !t->pending_event)
466  			continue;
467  		/*
468  		 * Check for new stall activity, as well as deferred
469  		 * events that occurred in the last window after the
470  		 * trigger had already fired (we want to ratelimit
471  		 * events without dropping any).
472  		 */
473  		if (new_stall) {
474  			/*
475  			 * Multiple triggers might be looking at the same state,
476  			 * remember to update group->polling_total[] once we've
477  			 * been through all of them. Also remember to extend the
478  			 * polling time if we see new stall activity.
479  			 */
480  			*update_total = true;
481  
482  			/* Calculate growth since last update */
483  			growth = window_update(&t->win, now, total[t->state]);
484  			if (!t->pending_event) {
485  				if (growth < t->threshold)
486  					continue;
487  
488  				t->pending_event = true;
489  			}
490  		}
491  		/* Limit event signaling to once per window */
492  		if (now < t->last_event_time + t->win.size)
493  			continue;
494  
495  		/* Generate an event */
496  		if (cmpxchg(&t->event, 0, 1) == 0) {
497  			if (t->of)
498  				kernfs_notify(t->of->kn);
499  			else
500  				wake_up_interruptible(&t->event_wait);
501  		}
502  		t->last_event_time = now;
503  		/* Reset threshold breach flag once event got generated */
504  		t->pending_event = false;
505  	}
506  
507  	return now + group->rtpoll_min_period;
508  }
509  
update_averages(struct psi_group * group,u64 now)510  static u64 update_averages(struct psi_group *group, u64 now)
511  {
512  	unsigned long missed_periods = 0;
513  	u64 expires, period;
514  	u64 avg_next_update;
515  	int s;
516  
517  	/* avgX= */
518  	expires = group->avg_next_update;
519  	if (now - expires >= psi_period)
520  		missed_periods = div_u64(now - expires, psi_period);
521  
522  	/*
523  	 * The periodic clock tick can get delayed for various
524  	 * reasons, especially on loaded systems. To avoid clock
525  	 * drift, we schedule the clock in fixed psi_period intervals.
526  	 * But the deltas we sample out of the per-cpu buckets above
527  	 * are based on the actual time elapsing between clock ticks.
528  	 */
529  	avg_next_update = expires + ((1 + missed_periods) * psi_period);
530  	period = now - (group->avg_last_update + (missed_periods * psi_period));
531  	group->avg_last_update = now;
532  
533  	for (s = 0; s < NR_PSI_STATES - 1; s++) {
534  		u32 sample;
535  
536  		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
537  		/*
538  		 * Due to the lockless sampling of the time buckets,
539  		 * recorded time deltas can slip into the next period,
540  		 * which under full pressure can result in samples in
541  		 * excess of the period length.
542  		 *
543  		 * We don't want to report non-sensical pressures in
544  		 * excess of 100%, nor do we want to drop such events
545  		 * on the floor. Instead we punt any overage into the
546  		 * future until pressure subsides. By doing this we
547  		 * don't underreport the occurring pressure curve, we
548  		 * just report it delayed by one period length.
549  		 *
550  		 * The error isn't cumulative. As soon as another
551  		 * delta slips from a period P to P+1, by definition
552  		 * it frees up its time T in P.
553  		 */
554  		if (sample > period)
555  			sample = period;
556  		group->avg_total[s] += sample;
557  		calc_avgs(group->avg[s], missed_periods, sample, period);
558  	}
559  
560  	return avg_next_update;
561  }
562  
psi_avgs_work(struct work_struct * work)563  static void psi_avgs_work(struct work_struct *work)
564  {
565  	struct delayed_work *dwork;
566  	struct psi_group *group;
567  	u32 changed_states;
568  	bool update_total;
569  	u64 now;
570  
571  	dwork = to_delayed_work(work);
572  	group = container_of(dwork, struct psi_group, avgs_work);
573  
574  	mutex_lock(&group->avgs_lock);
575  
576  	now = sched_clock();
577  
578  	collect_percpu_times(group, PSI_AVGS, &changed_states);
579  	/*
580  	 * If there is task activity, periodically fold the per-cpu
581  	 * times and feed samples into the running averages. If things
582  	 * are idle and there is no data to process, stop the clock.
583  	 * Once restarted, we'll catch up the running averages in one
584  	 * go - see calc_avgs() and missed_periods.
585  	 */
586  	if (now >= group->avg_next_update) {
587  		update_triggers(group, now, &update_total, PSI_AVGS);
588  		group->avg_next_update = update_averages(group, now);
589  	}
590  
591  	if (changed_states & PSI_STATE_RESCHEDULE) {
592  		schedule_delayed_work(dwork, nsecs_to_jiffies(
593  				group->avg_next_update - now) + 1);
594  	}
595  
596  	mutex_unlock(&group->avgs_lock);
597  }
598  
init_rtpoll_triggers(struct psi_group * group,u64 now)599  static void init_rtpoll_triggers(struct psi_group *group, u64 now)
600  {
601  	struct psi_trigger *t;
602  
603  	list_for_each_entry(t, &group->rtpoll_triggers, node)
604  		window_reset(&t->win, now,
605  				group->total[PSI_POLL][t->state], 0);
606  	memcpy(group->rtpoll_total, group->total[PSI_POLL],
607  		   sizeof(group->rtpoll_total));
608  	group->rtpoll_next_update = now + group->rtpoll_min_period;
609  }
610  
611  /* Schedule polling if it's not already scheduled or forced. */
psi_schedule_rtpoll_work(struct psi_group * group,unsigned long delay,bool force)612  static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
613  				   bool force)
614  {
615  	struct task_struct *task;
616  
617  	/*
618  	 * atomic_xchg should be called even when !force to provide a
619  	 * full memory barrier (see the comment inside psi_rtpoll_work).
620  	 */
621  	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
622  		return;
623  
624  	rcu_read_lock();
625  
626  	task = rcu_dereference(group->rtpoll_task);
627  	/*
628  	 * kworker might be NULL in case psi_trigger_destroy races with
629  	 * psi_task_change (hotpath) which can't use locks
630  	 */
631  	if (likely(task))
632  		mod_timer(&group->rtpoll_timer, jiffies + delay);
633  	else
634  		atomic_set(&group->rtpoll_scheduled, 0);
635  
636  	rcu_read_unlock();
637  }
638  
psi_rtpoll_work(struct psi_group * group)639  static void psi_rtpoll_work(struct psi_group *group)
640  {
641  	bool force_reschedule = false;
642  	u32 changed_states;
643  	bool update_total;
644  	u64 now;
645  
646  	mutex_lock(&group->rtpoll_trigger_lock);
647  
648  	now = sched_clock();
649  
650  	if (now > group->rtpoll_until) {
651  		/*
652  		 * We are either about to start or might stop polling if no
653  		 * state change was recorded. Resetting poll_scheduled leaves
654  		 * a small window for psi_group_change to sneak in and schedule
655  		 * an immediate poll_work before we get to rescheduling. One
656  		 * potential extra wakeup at the end of the polling window
657  		 * should be negligible and polling_next_update still keeps
658  		 * updates correctly on schedule.
659  		 */
660  		atomic_set(&group->rtpoll_scheduled, 0);
661  		/*
662  		 * A task change can race with the poll worker that is supposed to
663  		 * report on it. To avoid missing events, ensure ordering between
664  		 * poll_scheduled and the task state accesses, such that if the poll
665  		 * worker misses the state update, the task change is guaranteed to
666  		 * reschedule the poll worker:
667  		 *
668  		 * poll worker:
669  		 *   atomic_set(poll_scheduled, 0)
670  		 *   smp_mb()
671  		 *   LOAD states
672  		 *
673  		 * task change:
674  		 *   STORE states
675  		 *   if atomic_xchg(poll_scheduled, 1) == 0:
676  		 *     schedule poll worker
677  		 *
678  		 * The atomic_xchg() implies a full barrier.
679  		 */
680  		smp_mb();
681  	} else {
682  		/* Polling window is not over, keep rescheduling */
683  		force_reschedule = true;
684  	}
685  
686  
687  	collect_percpu_times(group, PSI_POLL, &changed_states);
688  
689  	if (changed_states & group->rtpoll_states) {
690  		/* Initialize trigger windows when entering polling mode */
691  		if (now > group->rtpoll_until)
692  			init_rtpoll_triggers(group, now);
693  
694  		/*
695  		 * Keep the monitor active for at least the duration of the
696  		 * minimum tracking window as long as monitor states are
697  		 * changing.
698  		 */
699  		group->rtpoll_until = now +
700  			group->rtpoll_min_period * UPDATES_PER_WINDOW;
701  	}
702  
703  	if (now > group->rtpoll_until) {
704  		group->rtpoll_next_update = ULLONG_MAX;
705  		goto out;
706  	}
707  
708  	if (now >= group->rtpoll_next_update) {
709  		group->rtpoll_next_update = update_triggers(group, now, &update_total, PSI_POLL);
710  		if (update_total)
711  			memcpy(group->rtpoll_total, group->total[PSI_POLL],
712  				   sizeof(group->rtpoll_total));
713  	}
714  
715  	psi_schedule_rtpoll_work(group,
716  		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
717  		force_reschedule);
718  
719  out:
720  	mutex_unlock(&group->rtpoll_trigger_lock);
721  }
722  
psi_rtpoll_worker(void * data)723  static int psi_rtpoll_worker(void *data)
724  {
725  	struct psi_group *group = (struct psi_group *)data;
726  
727  	sched_set_fifo_low(current);
728  
729  	while (true) {
730  		wait_event_interruptible(group->rtpoll_wait,
731  				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
732  				kthread_should_stop());
733  		if (kthread_should_stop())
734  			break;
735  
736  		psi_rtpoll_work(group);
737  	}
738  	return 0;
739  }
740  
poll_timer_fn(struct timer_list * t)741  static void poll_timer_fn(struct timer_list *t)
742  {
743  	struct psi_group *group = from_timer(group, t, rtpoll_timer);
744  
745  	atomic_set(&group->rtpoll_wakeup, 1);
746  	wake_up_interruptible(&group->rtpoll_wait);
747  }
748  
record_times(struct psi_group_cpu * groupc,u64 now)749  static void record_times(struct psi_group_cpu *groupc, u64 now)
750  {
751  	u32 delta;
752  
753  	delta = now - groupc->state_start;
754  	groupc->state_start = now;
755  
756  	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
757  		groupc->times[PSI_IO_SOME] += delta;
758  		if (groupc->state_mask & (1 << PSI_IO_FULL))
759  			groupc->times[PSI_IO_FULL] += delta;
760  	}
761  
762  	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
763  		groupc->times[PSI_MEM_SOME] += delta;
764  		if (groupc->state_mask & (1 << PSI_MEM_FULL))
765  			groupc->times[PSI_MEM_FULL] += delta;
766  	}
767  
768  	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
769  		groupc->times[PSI_CPU_SOME] += delta;
770  		if (groupc->state_mask & (1 << PSI_CPU_FULL))
771  			groupc->times[PSI_CPU_FULL] += delta;
772  	}
773  
774  	if (groupc->state_mask & (1 << PSI_NONIDLE))
775  		groupc->times[PSI_NONIDLE] += delta;
776  }
777  
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,bool wake_clock)778  static void psi_group_change(struct psi_group *group, int cpu,
779  			     unsigned int clear, unsigned int set,
780  			     bool wake_clock)
781  {
782  	struct psi_group_cpu *groupc;
783  	unsigned int t, m;
784  	enum psi_states s;
785  	u32 state_mask;
786  	u64 now;
787  
788  	lockdep_assert_rq_held(cpu_rq(cpu));
789  	groupc = per_cpu_ptr(group->pcpu, cpu);
790  
791  	/*
792  	 * First we update the task counts according to the state
793  	 * change requested through the @clear and @set bits.
794  	 *
795  	 * Then if the cgroup PSI stats accounting enabled, we
796  	 * assess the aggregate resource states this CPU's tasks
797  	 * have been in since the last change, and account any
798  	 * SOME and FULL time these may have resulted in.
799  	 */
800  	write_seqcount_begin(&groupc->seq);
801  	now = cpu_clock(cpu);
802  
803  	/*
804  	 * Start with TSK_ONCPU, which doesn't have a corresponding
805  	 * task count - it's just a boolean flag directly encoded in
806  	 * the state mask. Clear, set, or carry the current state if
807  	 * no changes are requested.
808  	 */
809  	if (unlikely(clear & TSK_ONCPU)) {
810  		state_mask = 0;
811  		clear &= ~TSK_ONCPU;
812  	} else if (unlikely(set & TSK_ONCPU)) {
813  		state_mask = PSI_ONCPU;
814  		set &= ~TSK_ONCPU;
815  	} else {
816  		state_mask = groupc->state_mask & PSI_ONCPU;
817  	}
818  
819  	/*
820  	 * The rest of the state mask is calculated based on the task
821  	 * counts. Update those first, then construct the mask.
822  	 */
823  	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
824  		if (!(m & (1 << t)))
825  			continue;
826  		if (groupc->tasks[t]) {
827  			groupc->tasks[t]--;
828  		} else if (!psi_bug) {
829  			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
830  					cpu, t, groupc->tasks[0],
831  					groupc->tasks[1], groupc->tasks[2],
832  					groupc->tasks[3], clear, set);
833  			psi_bug = 1;
834  		}
835  	}
836  
837  	for (t = 0; set; set &= ~(1 << t), t++)
838  		if (set & (1 << t))
839  			groupc->tasks[t]++;
840  
841  	if (!group->enabled) {
842  		/*
843  		 * On the first group change after disabling PSI, conclude
844  		 * the current state and flush its time. This is unlikely
845  		 * to matter to the user, but aggregation (get_recent_times)
846  		 * may have already incorporated the live state into times_prev;
847  		 * avoid a delta sample underflow when PSI is later re-enabled.
848  		 */
849  		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
850  			record_times(groupc, now);
851  
852  		groupc->state_mask = state_mask;
853  
854  		write_seqcount_end(&groupc->seq);
855  		return;
856  	}
857  
858  	for (s = 0; s < NR_PSI_STATES; s++) {
859  		if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU))
860  			state_mask |= (1 << s);
861  	}
862  
863  	/*
864  	 * Since we care about lost potential, a memstall is FULL
865  	 * when there are no other working tasks, but also when
866  	 * the CPU is actively reclaiming and nothing productive
867  	 * could run even if it were runnable. So when the current
868  	 * task in a cgroup is in_memstall, the corresponding groupc
869  	 * on that cpu is in PSI_MEM_FULL state.
870  	 */
871  	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
872  		state_mask |= (1 << PSI_MEM_FULL);
873  
874  	record_times(groupc, now);
875  
876  	groupc->state_mask = state_mask;
877  
878  	write_seqcount_end(&groupc->seq);
879  
880  	if (state_mask & group->rtpoll_states)
881  		psi_schedule_rtpoll_work(group, 1, false);
882  
883  	if (wake_clock && !delayed_work_pending(&group->avgs_work))
884  		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
885  }
886  
task_psi_group(struct task_struct * task)887  static inline struct psi_group *task_psi_group(struct task_struct *task)
888  {
889  #ifdef CONFIG_CGROUPS
890  	if (static_branch_likely(&psi_cgroups_enabled))
891  		return cgroup_psi(task_dfl_cgroup(task));
892  #endif
893  	return &psi_system;
894  }
895  
psi_flags_change(struct task_struct * task,int clear,int set)896  static void psi_flags_change(struct task_struct *task, int clear, int set)
897  {
898  	if (((task->psi_flags & set) ||
899  	     (task->psi_flags & clear) != clear) &&
900  	    !psi_bug) {
901  		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
902  				task->pid, task->comm, task_cpu(task),
903  				task->psi_flags, clear, set);
904  		psi_bug = 1;
905  	}
906  
907  	task->psi_flags &= ~clear;
908  	task->psi_flags |= set;
909  }
910  
psi_task_change(struct task_struct * task,int clear,int set)911  void psi_task_change(struct task_struct *task, int clear, int set)
912  {
913  	int cpu = task_cpu(task);
914  	struct psi_group *group;
915  
916  	if (!task->pid)
917  		return;
918  
919  	psi_flags_change(task, clear, set);
920  
921  	group = task_psi_group(task);
922  	do {
923  		psi_group_change(group, cpu, clear, set, true);
924  	} while ((group = group->parent));
925  }
926  
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)927  void psi_task_switch(struct task_struct *prev, struct task_struct *next,
928  		     bool sleep)
929  {
930  	struct psi_group *group, *common = NULL;
931  	int cpu = task_cpu(prev);
932  
933  	if (next->pid) {
934  		psi_flags_change(next, 0, TSK_ONCPU);
935  		/*
936  		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
937  		 * ancestors with @prev, those will already have @prev's
938  		 * TSK_ONCPU bit set, and we can stop the iteration there.
939  		 */
940  		group = task_psi_group(next);
941  		do {
942  			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
943  			    PSI_ONCPU) {
944  				common = group;
945  				break;
946  			}
947  
948  			psi_group_change(group, cpu, 0, TSK_ONCPU, true);
949  		} while ((group = group->parent));
950  	}
951  
952  	if (prev->pid) {
953  		int clear = TSK_ONCPU, set = 0;
954  		bool wake_clock = true;
955  
956  		/*
957  		 * When we're going to sleep, psi_dequeue() lets us
958  		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
959  		 * TSK_IOWAIT here, where we can combine it with
960  		 * TSK_ONCPU and save walking common ancestors twice.
961  		 */
962  		if (sleep) {
963  			clear |= TSK_RUNNING;
964  			if (prev->in_memstall)
965  				clear |= TSK_MEMSTALL_RUNNING;
966  			if (prev->in_iowait)
967  				set |= TSK_IOWAIT;
968  
969  			/*
970  			 * Periodic aggregation shuts off if there is a period of no
971  			 * task changes, so we wake it back up if necessary. However,
972  			 * don't do this if the task change is the aggregation worker
973  			 * itself going to sleep, or we'll ping-pong forever.
974  			 */
975  			if (unlikely((prev->flags & PF_WQ_WORKER) &&
976  				     wq_worker_last_func(prev) == psi_avgs_work))
977  				wake_clock = false;
978  		}
979  
980  		psi_flags_change(prev, clear, set);
981  
982  		group = task_psi_group(prev);
983  		do {
984  			if (group == common)
985  				break;
986  			psi_group_change(group, cpu, clear, set, wake_clock);
987  		} while ((group = group->parent));
988  
989  		/*
990  		 * TSK_ONCPU is handled up to the common ancestor. If there are
991  		 * any other differences between the two tasks (e.g. prev goes
992  		 * to sleep, or only one task is memstall), finish propagating
993  		 * those differences all the way up to the root.
994  		 */
995  		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
996  			clear &= ~TSK_ONCPU;
997  			for (; group; group = group->parent)
998  				psi_group_change(group, cpu, clear, set, wake_clock);
999  		}
1000  	}
1001  }
1002  
1003  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)1004  void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
1005  {
1006  	int cpu = task_cpu(curr);
1007  	struct psi_group *group;
1008  	struct psi_group_cpu *groupc;
1009  	s64 delta;
1010  	u64 irq;
1011  
1012  	if (!curr->pid)
1013  		return;
1014  
1015  	lockdep_assert_rq_held(rq);
1016  	group = task_psi_group(curr);
1017  	if (prev && task_psi_group(prev) == group)
1018  		return;
1019  
1020  	irq = irq_time_read(cpu);
1021  	delta = (s64)(irq - rq->psi_irq_time);
1022  	if (delta < 0)
1023  		return;
1024  	rq->psi_irq_time = irq;
1025  
1026  	do {
1027  		u64 now;
1028  
1029  		if (!group->enabled)
1030  			continue;
1031  
1032  		groupc = per_cpu_ptr(group->pcpu, cpu);
1033  
1034  		write_seqcount_begin(&groupc->seq);
1035  		now = cpu_clock(cpu);
1036  
1037  		record_times(groupc, now);
1038  		groupc->times[PSI_IRQ_FULL] += delta;
1039  
1040  		write_seqcount_end(&groupc->seq);
1041  
1042  		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1043  			psi_schedule_rtpoll_work(group, 1, false);
1044  	} while ((group = group->parent));
1045  }
1046  #endif
1047  
1048  /**
1049   * psi_memstall_enter - mark the beginning of a memory stall section
1050   * @flags: flags to handle nested sections
1051   *
1052   * Marks the calling task as being stalled due to a lack of memory,
1053   * such as waiting for a refault or performing reclaim.
1054   */
psi_memstall_enter(unsigned long * flags)1055  void psi_memstall_enter(unsigned long *flags)
1056  {
1057  	struct rq_flags rf;
1058  	struct rq *rq;
1059  
1060  	if (static_branch_likely(&psi_disabled))
1061  		return;
1062  
1063  	*flags = current->in_memstall;
1064  	if (*flags)
1065  		return;
1066  	/*
1067  	 * in_memstall setting & accounting needs to be atomic wrt
1068  	 * changes to the task's scheduling state, otherwise we can
1069  	 * race with CPU migration.
1070  	 */
1071  	rq = this_rq_lock_irq(&rf);
1072  
1073  	current->in_memstall = 1;
1074  	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1075  
1076  	rq_unlock_irq(rq, &rf);
1077  }
1078  EXPORT_SYMBOL_GPL(psi_memstall_enter);
1079  
1080  /**
1081   * psi_memstall_leave - mark the end of an memory stall section
1082   * @flags: flags to handle nested memdelay sections
1083   *
1084   * Marks the calling task as no longer stalled due to lack of memory.
1085   */
psi_memstall_leave(unsigned long * flags)1086  void psi_memstall_leave(unsigned long *flags)
1087  {
1088  	struct rq_flags rf;
1089  	struct rq *rq;
1090  
1091  	if (static_branch_likely(&psi_disabled))
1092  		return;
1093  
1094  	if (*flags)
1095  		return;
1096  	/*
1097  	 * in_memstall clearing & accounting needs to be atomic wrt
1098  	 * changes to the task's scheduling state, otherwise we could
1099  	 * race with CPU migration.
1100  	 */
1101  	rq = this_rq_lock_irq(&rf);
1102  
1103  	current->in_memstall = 0;
1104  	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1105  
1106  	rq_unlock_irq(rq, &rf);
1107  }
1108  EXPORT_SYMBOL_GPL(psi_memstall_leave);
1109  
1110  #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)1111  int psi_cgroup_alloc(struct cgroup *cgroup)
1112  {
1113  	if (!static_branch_likely(&psi_cgroups_enabled))
1114  		return 0;
1115  
1116  	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1117  	if (!cgroup->psi)
1118  		return -ENOMEM;
1119  
1120  	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1121  	if (!cgroup->psi->pcpu) {
1122  		kfree(cgroup->psi);
1123  		return -ENOMEM;
1124  	}
1125  	group_init(cgroup->psi);
1126  	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1127  	return 0;
1128  }
1129  
psi_cgroup_free(struct cgroup * cgroup)1130  void psi_cgroup_free(struct cgroup *cgroup)
1131  {
1132  	if (!static_branch_likely(&psi_cgroups_enabled))
1133  		return;
1134  
1135  	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1136  	free_percpu(cgroup->psi->pcpu);
1137  	/* All triggers must be removed by now */
1138  	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1139  	kfree(cgroup->psi);
1140  }
1141  
1142  /**
1143   * cgroup_move_task - move task to a different cgroup
1144   * @task: the task
1145   * @to: the target css_set
1146   *
1147   * Move task to a new cgroup and safely migrate its associated stall
1148   * state between the different groups.
1149   *
1150   * This function acquires the task's rq lock to lock out concurrent
1151   * changes to the task's scheduling state and - in case the task is
1152   * running - concurrent changes to its stall state.
1153   */
cgroup_move_task(struct task_struct * task,struct css_set * to)1154  void cgroup_move_task(struct task_struct *task, struct css_set *to)
1155  {
1156  	unsigned int task_flags;
1157  	struct rq_flags rf;
1158  	struct rq *rq;
1159  
1160  	if (!static_branch_likely(&psi_cgroups_enabled)) {
1161  		/*
1162  		 * Lame to do this here, but the scheduler cannot be locked
1163  		 * from the outside, so we move cgroups from inside sched/.
1164  		 */
1165  		rcu_assign_pointer(task->cgroups, to);
1166  		return;
1167  	}
1168  
1169  	rq = task_rq_lock(task, &rf);
1170  
1171  	/*
1172  	 * We may race with schedule() dropping the rq lock between
1173  	 * deactivating prev and switching to next. Because the psi
1174  	 * updates from the deactivation are deferred to the switch
1175  	 * callback to save cgroup tree updates, the task's scheduling
1176  	 * state here is not coherent with its psi state:
1177  	 *
1178  	 * schedule()                   cgroup_move_task()
1179  	 *   rq_lock()
1180  	 *   deactivate_task()
1181  	 *     p->on_rq = 0
1182  	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1183  	 *   pick_next_task()
1184  	 *     rq_unlock()
1185  	 *                                rq_lock()
1186  	 *                                psi_task_change() // old cgroup
1187  	 *                                task->cgroups = to
1188  	 *                                psi_task_change() // new cgroup
1189  	 *                                rq_unlock()
1190  	 *     rq_lock()
1191  	 *   psi_sched_switch() // does deferred updates in new cgroup
1192  	 *
1193  	 * Don't rely on the scheduling state. Use psi_flags instead.
1194  	 */
1195  	task_flags = task->psi_flags;
1196  
1197  	if (task_flags)
1198  		psi_task_change(task, task_flags, 0);
1199  
1200  	/* See comment above */
1201  	rcu_assign_pointer(task->cgroups, to);
1202  
1203  	if (task_flags)
1204  		psi_task_change(task, 0, task_flags);
1205  
1206  	task_rq_unlock(rq, task, &rf);
1207  }
1208  
psi_cgroup_restart(struct psi_group * group)1209  void psi_cgroup_restart(struct psi_group *group)
1210  {
1211  	int cpu;
1212  
1213  	/*
1214  	 * After we disable psi_group->enabled, we don't actually
1215  	 * stop percpu tasks accounting in each psi_group_cpu,
1216  	 * instead only stop test_state() loop, record_times()
1217  	 * and averaging worker, see psi_group_change() for details.
1218  	 *
1219  	 * When disable cgroup PSI, this function has nothing to sync
1220  	 * since cgroup pressure files are hidden and percpu psi_group_cpu
1221  	 * would see !psi_group->enabled and only do task accounting.
1222  	 *
1223  	 * When re-enable cgroup PSI, this function use psi_group_change()
1224  	 * to get correct state mask from test_state() loop on tasks[],
1225  	 * and restart groupc->state_start from now, use .clear = .set = 0
1226  	 * here since no task status really changed.
1227  	 */
1228  	if (!group->enabled)
1229  		return;
1230  
1231  	for_each_possible_cpu(cpu) {
1232  		struct rq *rq = cpu_rq(cpu);
1233  		struct rq_flags rf;
1234  
1235  		rq_lock_irq(rq, &rf);
1236  		psi_group_change(group, cpu, 0, 0, true);
1237  		rq_unlock_irq(rq, &rf);
1238  	}
1239  }
1240  #endif /* CONFIG_CGROUPS */
1241  
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1242  int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1243  {
1244  	bool only_full = false;
1245  	int full;
1246  	u64 now;
1247  
1248  	if (static_branch_likely(&psi_disabled))
1249  		return -EOPNOTSUPP;
1250  
1251  	/* Update averages before reporting them */
1252  	mutex_lock(&group->avgs_lock);
1253  	now = sched_clock();
1254  	collect_percpu_times(group, PSI_AVGS, NULL);
1255  	if (now >= group->avg_next_update)
1256  		group->avg_next_update = update_averages(group, now);
1257  	mutex_unlock(&group->avgs_lock);
1258  
1259  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1260  	only_full = res == PSI_IRQ;
1261  #endif
1262  
1263  	for (full = 0; full < 2 - only_full; full++) {
1264  		unsigned long avg[3] = { 0, };
1265  		u64 total = 0;
1266  		int w;
1267  
1268  		/* CPU FULL is undefined at the system level */
1269  		if (!(group == &psi_system && res == PSI_CPU && full)) {
1270  			for (w = 0; w < 3; w++)
1271  				avg[w] = group->avg[res * 2 + full][w];
1272  			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1273  					NSEC_PER_USEC);
1274  		}
1275  
1276  		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1277  			   full || only_full ? "full" : "some",
1278  			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1279  			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1280  			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1281  			   total);
1282  	}
1283  
1284  	return 0;
1285  }
1286  
psi_trigger_create(struct psi_group * group,char * buf,enum psi_res res,struct file * file,struct kernfs_open_file * of)1287  struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1288  				       enum psi_res res, struct file *file,
1289  				       struct kernfs_open_file *of)
1290  {
1291  	struct psi_trigger *t;
1292  	enum psi_states state;
1293  	u32 threshold_us;
1294  	bool privileged;
1295  	u32 window_us;
1296  
1297  	if (static_branch_likely(&psi_disabled))
1298  		return ERR_PTR(-EOPNOTSUPP);
1299  
1300  	/*
1301  	 * Checking the privilege here on file->f_cred implies that a privileged user
1302  	 * could open the file and delegate the write to an unprivileged one.
1303  	 */
1304  	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1305  
1306  	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1307  		state = PSI_IO_SOME + res * 2;
1308  	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1309  		state = PSI_IO_FULL + res * 2;
1310  	else
1311  		return ERR_PTR(-EINVAL);
1312  
1313  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1314  	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1315  		return ERR_PTR(-EINVAL);
1316  #endif
1317  
1318  	if (state >= PSI_NONIDLE)
1319  		return ERR_PTR(-EINVAL);
1320  
1321  	if (window_us == 0 || window_us > WINDOW_MAX_US)
1322  		return ERR_PTR(-EINVAL);
1323  
1324  	/*
1325  	 * Unprivileged users can only use 2s windows so that averages aggregation
1326  	 * work is used, and no RT threads need to be spawned.
1327  	 */
1328  	if (!privileged && window_us % 2000000)
1329  		return ERR_PTR(-EINVAL);
1330  
1331  	/* Check threshold */
1332  	if (threshold_us == 0 || threshold_us > window_us)
1333  		return ERR_PTR(-EINVAL);
1334  
1335  	t = kmalloc(sizeof(*t), GFP_KERNEL);
1336  	if (!t)
1337  		return ERR_PTR(-ENOMEM);
1338  
1339  	t->group = group;
1340  	t->state = state;
1341  	t->threshold = threshold_us * NSEC_PER_USEC;
1342  	t->win.size = window_us * NSEC_PER_USEC;
1343  	window_reset(&t->win, sched_clock(),
1344  			group->total[PSI_POLL][t->state], 0);
1345  
1346  	t->event = 0;
1347  	t->last_event_time = 0;
1348  	t->of = of;
1349  	if (!of)
1350  		init_waitqueue_head(&t->event_wait);
1351  	t->pending_event = false;
1352  	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1353  
1354  	if (privileged) {
1355  		mutex_lock(&group->rtpoll_trigger_lock);
1356  
1357  		if (!rcu_access_pointer(group->rtpoll_task)) {
1358  			struct task_struct *task;
1359  
1360  			task = kthread_create(psi_rtpoll_worker, group, "psimon");
1361  			if (IS_ERR(task)) {
1362  				kfree(t);
1363  				mutex_unlock(&group->rtpoll_trigger_lock);
1364  				return ERR_CAST(task);
1365  			}
1366  			atomic_set(&group->rtpoll_wakeup, 0);
1367  			wake_up_process(task);
1368  			rcu_assign_pointer(group->rtpoll_task, task);
1369  		}
1370  
1371  		list_add(&t->node, &group->rtpoll_triggers);
1372  		group->rtpoll_min_period = min(group->rtpoll_min_period,
1373  			div_u64(t->win.size, UPDATES_PER_WINDOW));
1374  		group->rtpoll_nr_triggers[t->state]++;
1375  		group->rtpoll_states |= (1 << t->state);
1376  
1377  		mutex_unlock(&group->rtpoll_trigger_lock);
1378  	} else {
1379  		mutex_lock(&group->avgs_lock);
1380  
1381  		list_add(&t->node, &group->avg_triggers);
1382  		group->avg_nr_triggers[t->state]++;
1383  
1384  		mutex_unlock(&group->avgs_lock);
1385  	}
1386  	return t;
1387  }
1388  
psi_trigger_destroy(struct psi_trigger * t)1389  void psi_trigger_destroy(struct psi_trigger *t)
1390  {
1391  	struct psi_group *group;
1392  	struct task_struct *task_to_destroy = NULL;
1393  
1394  	/*
1395  	 * We do not check psi_disabled since it might have been disabled after
1396  	 * the trigger got created.
1397  	 */
1398  	if (!t)
1399  		return;
1400  
1401  	group = t->group;
1402  	/*
1403  	 * Wakeup waiters to stop polling and clear the queue to prevent it from
1404  	 * being accessed later. Can happen if cgroup is deleted from under a
1405  	 * polling process.
1406  	 */
1407  	if (t->of)
1408  		kernfs_notify(t->of->kn);
1409  	else
1410  		wake_up_interruptible(&t->event_wait);
1411  
1412  	if (t->aggregator == PSI_AVGS) {
1413  		mutex_lock(&group->avgs_lock);
1414  		if (!list_empty(&t->node)) {
1415  			list_del(&t->node);
1416  			group->avg_nr_triggers[t->state]--;
1417  		}
1418  		mutex_unlock(&group->avgs_lock);
1419  	} else {
1420  		mutex_lock(&group->rtpoll_trigger_lock);
1421  		if (!list_empty(&t->node)) {
1422  			struct psi_trigger *tmp;
1423  			u64 period = ULLONG_MAX;
1424  
1425  			list_del(&t->node);
1426  			group->rtpoll_nr_triggers[t->state]--;
1427  			if (!group->rtpoll_nr_triggers[t->state])
1428  				group->rtpoll_states &= ~(1 << t->state);
1429  			/*
1430  			 * Reset min update period for the remaining triggers
1431  			 * iff the destroying trigger had the min window size.
1432  			 */
1433  			if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1434  				list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1435  					period = min(period, div_u64(tmp->win.size,
1436  							UPDATES_PER_WINDOW));
1437  				group->rtpoll_min_period = period;
1438  			}
1439  			/* Destroy rtpoll_task when the last trigger is destroyed */
1440  			if (group->rtpoll_states == 0) {
1441  				group->rtpoll_until = 0;
1442  				task_to_destroy = rcu_dereference_protected(
1443  						group->rtpoll_task,
1444  						lockdep_is_held(&group->rtpoll_trigger_lock));
1445  				rcu_assign_pointer(group->rtpoll_task, NULL);
1446  				del_timer(&group->rtpoll_timer);
1447  			}
1448  		}
1449  		mutex_unlock(&group->rtpoll_trigger_lock);
1450  	}
1451  
1452  	/*
1453  	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1454  	 * critical section before destroying the trigger and optionally the
1455  	 * rtpoll_task.
1456  	 */
1457  	synchronize_rcu();
1458  	/*
1459  	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1460  	 * a deadlock while waiting for psi_rtpoll_work to acquire
1461  	 * rtpoll_trigger_lock
1462  	 */
1463  	if (task_to_destroy) {
1464  		/*
1465  		 * After the RCU grace period has expired, the worker
1466  		 * can no longer be found through group->rtpoll_task.
1467  		 */
1468  		kthread_stop(task_to_destroy);
1469  		atomic_set(&group->rtpoll_scheduled, 0);
1470  	}
1471  	kfree(t);
1472  }
1473  
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1474  __poll_t psi_trigger_poll(void **trigger_ptr,
1475  				struct file *file, poll_table *wait)
1476  {
1477  	__poll_t ret = DEFAULT_POLLMASK;
1478  	struct psi_trigger *t;
1479  
1480  	if (static_branch_likely(&psi_disabled))
1481  		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1482  
1483  	t = smp_load_acquire(trigger_ptr);
1484  	if (!t)
1485  		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1486  
1487  	if (t->of)
1488  		kernfs_generic_poll(t->of, wait);
1489  	else
1490  		poll_wait(file, &t->event_wait, wait);
1491  
1492  	if (cmpxchg(&t->event, 1, 0) == 1)
1493  		ret |= EPOLLPRI;
1494  
1495  	return ret;
1496  }
1497  
1498  #ifdef CONFIG_PROC_FS
psi_io_show(struct seq_file * m,void * v)1499  static int psi_io_show(struct seq_file *m, void *v)
1500  {
1501  	return psi_show(m, &psi_system, PSI_IO);
1502  }
1503  
psi_memory_show(struct seq_file * m,void * v)1504  static int psi_memory_show(struct seq_file *m, void *v)
1505  {
1506  	return psi_show(m, &psi_system, PSI_MEM);
1507  }
1508  
psi_cpu_show(struct seq_file * m,void * v)1509  static int psi_cpu_show(struct seq_file *m, void *v)
1510  {
1511  	return psi_show(m, &psi_system, PSI_CPU);
1512  }
1513  
psi_io_open(struct inode * inode,struct file * file)1514  static int psi_io_open(struct inode *inode, struct file *file)
1515  {
1516  	return single_open(file, psi_io_show, NULL);
1517  }
1518  
psi_memory_open(struct inode * inode,struct file * file)1519  static int psi_memory_open(struct inode *inode, struct file *file)
1520  {
1521  	return single_open(file, psi_memory_show, NULL);
1522  }
1523  
psi_cpu_open(struct inode * inode,struct file * file)1524  static int psi_cpu_open(struct inode *inode, struct file *file)
1525  {
1526  	return single_open(file, psi_cpu_show, NULL);
1527  }
1528  
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1529  static ssize_t psi_write(struct file *file, const char __user *user_buf,
1530  			 size_t nbytes, enum psi_res res)
1531  {
1532  	char buf[32];
1533  	size_t buf_size;
1534  	struct seq_file *seq;
1535  	struct psi_trigger *new;
1536  
1537  	if (static_branch_likely(&psi_disabled))
1538  		return -EOPNOTSUPP;
1539  
1540  	if (!nbytes)
1541  		return -EINVAL;
1542  
1543  	buf_size = min(nbytes, sizeof(buf));
1544  	if (copy_from_user(buf, user_buf, buf_size))
1545  		return -EFAULT;
1546  
1547  	buf[buf_size - 1] = '\0';
1548  
1549  	seq = file->private_data;
1550  
1551  	/* Take seq->lock to protect seq->private from concurrent writes */
1552  	mutex_lock(&seq->lock);
1553  
1554  	/* Allow only one trigger per file descriptor */
1555  	if (seq->private) {
1556  		mutex_unlock(&seq->lock);
1557  		return -EBUSY;
1558  	}
1559  
1560  	new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1561  	if (IS_ERR(new)) {
1562  		mutex_unlock(&seq->lock);
1563  		return PTR_ERR(new);
1564  	}
1565  
1566  	smp_store_release(&seq->private, new);
1567  	mutex_unlock(&seq->lock);
1568  
1569  	return nbytes;
1570  }
1571  
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1572  static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1573  			    size_t nbytes, loff_t *ppos)
1574  {
1575  	return psi_write(file, user_buf, nbytes, PSI_IO);
1576  }
1577  
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1578  static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1579  				size_t nbytes, loff_t *ppos)
1580  {
1581  	return psi_write(file, user_buf, nbytes, PSI_MEM);
1582  }
1583  
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1584  static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1585  			     size_t nbytes, loff_t *ppos)
1586  {
1587  	return psi_write(file, user_buf, nbytes, PSI_CPU);
1588  }
1589  
psi_fop_poll(struct file * file,poll_table * wait)1590  static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1591  {
1592  	struct seq_file *seq = file->private_data;
1593  
1594  	return psi_trigger_poll(&seq->private, file, wait);
1595  }
1596  
psi_fop_release(struct inode * inode,struct file * file)1597  static int psi_fop_release(struct inode *inode, struct file *file)
1598  {
1599  	struct seq_file *seq = file->private_data;
1600  
1601  	psi_trigger_destroy(seq->private);
1602  	return single_release(inode, file);
1603  }
1604  
1605  static const struct proc_ops psi_io_proc_ops = {
1606  	.proc_open	= psi_io_open,
1607  	.proc_read	= seq_read,
1608  	.proc_lseek	= seq_lseek,
1609  	.proc_write	= psi_io_write,
1610  	.proc_poll	= psi_fop_poll,
1611  	.proc_release	= psi_fop_release,
1612  };
1613  
1614  static const struct proc_ops psi_memory_proc_ops = {
1615  	.proc_open	= psi_memory_open,
1616  	.proc_read	= seq_read,
1617  	.proc_lseek	= seq_lseek,
1618  	.proc_write	= psi_memory_write,
1619  	.proc_poll	= psi_fop_poll,
1620  	.proc_release	= psi_fop_release,
1621  };
1622  
1623  static const struct proc_ops psi_cpu_proc_ops = {
1624  	.proc_open	= psi_cpu_open,
1625  	.proc_read	= seq_read,
1626  	.proc_lseek	= seq_lseek,
1627  	.proc_write	= psi_cpu_write,
1628  	.proc_poll	= psi_fop_poll,
1629  	.proc_release	= psi_fop_release,
1630  };
1631  
1632  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_irq_show(struct seq_file * m,void * v)1633  static int psi_irq_show(struct seq_file *m, void *v)
1634  {
1635  	return psi_show(m, &psi_system, PSI_IRQ);
1636  }
1637  
psi_irq_open(struct inode * inode,struct file * file)1638  static int psi_irq_open(struct inode *inode, struct file *file)
1639  {
1640  	return single_open(file, psi_irq_show, NULL);
1641  }
1642  
psi_irq_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1643  static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1644  			     size_t nbytes, loff_t *ppos)
1645  {
1646  	return psi_write(file, user_buf, nbytes, PSI_IRQ);
1647  }
1648  
1649  static const struct proc_ops psi_irq_proc_ops = {
1650  	.proc_open	= psi_irq_open,
1651  	.proc_read	= seq_read,
1652  	.proc_lseek	= seq_lseek,
1653  	.proc_write	= psi_irq_write,
1654  	.proc_poll	= psi_fop_poll,
1655  	.proc_release	= psi_fop_release,
1656  };
1657  #endif
1658  
psi_proc_init(void)1659  static int __init psi_proc_init(void)
1660  {
1661  	if (psi_enable) {
1662  		proc_mkdir("pressure", NULL);
1663  		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1664  		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1665  		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1666  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1667  		proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1668  #endif
1669  	}
1670  	return 0;
1671  }
1672  module_init(psi_proc_init);
1673  
1674  #endif /* CONFIG_PROC_FS */
1675