xref: /openbmc/qemu/target/arm/cpu.c (revision ab37d6bd8917da6130a22a11c5d6e32b31f7d5d4)
1  /*
2   * QEMU ARM CPU
3   *
4   * Copyright (c) 2012 SUSE LINUX Products GmbH
5   *
6   * This program is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU General Public License
8   * as published by the Free Software Foundation; either version 2
9   * of the License, or (at your option) any later version.
10   *
11   * This program is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   * GNU General Public License for more details.
15   *
16   * You should have received a copy of the GNU General Public License
17   * along with this program; if not, see
18   * <http://www.gnu.org/licenses/gpl-2.0.html>
19   */
20  
21  #include "qemu/osdep.h"
22  #include "qemu/qemu-print.h"
23  #include "qemu/timer.h"
24  #include "qemu/log.h"
25  #include "exec/page-vary.h"
26  #include "target/arm/idau.h"
27  #include "qemu/module.h"
28  #include "qapi/error.h"
29  #include "cpu.h"
30  #ifdef CONFIG_TCG
31  #include "hw/core/tcg-cpu-ops.h"
32  #endif /* CONFIG_TCG */
33  #include "internals.h"
34  #include "cpu-features.h"
35  #include "exec/exec-all.h"
36  #include "hw/qdev-properties.h"
37  #if !defined(CONFIG_USER_ONLY)
38  #include "hw/loader.h"
39  #include "hw/boards.h"
40  #ifdef CONFIG_TCG
41  #include "hw/intc/armv7m_nvic.h"
42  #endif /* CONFIG_TCG */
43  #endif /* !CONFIG_USER_ONLY */
44  #include "sysemu/tcg.h"
45  #include "sysemu/qtest.h"
46  #include "sysemu/hw_accel.h"
47  #include "kvm_arm.h"
48  #include "disas/capstone.h"
49  #include "fpu/softfloat.h"
50  #include "cpregs.h"
51  #include "target/arm/cpu-qom.h"
52  #include "target/arm/gtimer.h"
53  
arm_cpu_set_pc(CPUState * cs,vaddr value)54  static void arm_cpu_set_pc(CPUState *cs, vaddr value)
55  {
56      ARMCPU *cpu = ARM_CPU(cs);
57      CPUARMState *env = &cpu->env;
58  
59      if (is_a64(env)) {
60          env->pc = value;
61          env->thumb = false;
62      } else {
63          env->regs[15] = value & ~1;
64          env->thumb = value & 1;
65      }
66  }
67  
arm_cpu_get_pc(CPUState * cs)68  static vaddr arm_cpu_get_pc(CPUState *cs)
69  {
70      ARMCPU *cpu = ARM_CPU(cs);
71      CPUARMState *env = &cpu->env;
72  
73      if (is_a64(env)) {
74          return env->pc;
75      } else {
76          return env->regs[15];
77      }
78  }
79  
80  #ifdef CONFIG_TCG
arm_cpu_synchronize_from_tb(CPUState * cs,const TranslationBlock * tb)81  void arm_cpu_synchronize_from_tb(CPUState *cs,
82                                   const TranslationBlock *tb)
83  {
84      /* The program counter is always up to date with CF_PCREL. */
85      if (!(tb_cflags(tb) & CF_PCREL)) {
86          CPUARMState *env = cpu_env(cs);
87          /*
88           * It's OK to look at env for the current mode here, because it's
89           * never possible for an AArch64 TB to chain to an AArch32 TB.
90           */
91          if (is_a64(env)) {
92              env->pc = tb->pc;
93          } else {
94              env->regs[15] = tb->pc;
95          }
96      }
97  }
98  
arm_restore_state_to_opc(CPUState * cs,const TranslationBlock * tb,const uint64_t * data)99  void arm_restore_state_to_opc(CPUState *cs,
100                                const TranslationBlock *tb,
101                                const uint64_t *data)
102  {
103      CPUARMState *env = cpu_env(cs);
104  
105      if (is_a64(env)) {
106          if (tb_cflags(tb) & CF_PCREL) {
107              env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108          } else {
109              env->pc = data[0];
110          }
111          env->condexec_bits = 0;
112          env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113      } else {
114          if (tb_cflags(tb) & CF_PCREL) {
115              env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116          } else {
117              env->regs[15] = data[0];
118          }
119          env->condexec_bits = data[1];
120          env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
121      }
122  }
123  #endif /* CONFIG_TCG */
124  
125  /*
126   * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
127   * IRQ without Superpriority. Moreover, if the GIC is configured so that
128   * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
129   * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
130   * unconditionally.
131   */
arm_cpu_has_work(CPUState * cs)132  static bool arm_cpu_has_work(CPUState *cs)
133  {
134      ARMCPU *cpu = ARM_CPU(cs);
135  
136      return (cpu->power_state != PSCI_OFF)
137          && cs->interrupt_request &
138          (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
139           | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
140           | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
141           | CPU_INTERRUPT_EXITTB);
142  }
143  
arm_cpu_mmu_index(CPUState * cs,bool ifetch)144  static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
145  {
146      return arm_env_mmu_index(cpu_env(cs));
147  }
148  
arm_register_pre_el_change_hook(ARMCPU * cpu,ARMELChangeHookFn * hook,void * opaque)149  void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
150                                   void *opaque)
151  {
152      ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
153  
154      entry->hook = hook;
155      entry->opaque = opaque;
156  
157      QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
158  }
159  
arm_register_el_change_hook(ARMCPU * cpu,ARMELChangeHookFn * hook,void * opaque)160  void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
161                                   void *opaque)
162  {
163      ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
164  
165      entry->hook = hook;
166      entry->opaque = opaque;
167  
168      QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
169  }
170  
171  /*
172   * Set the float_status behaviour to match the Arm defaults:
173   *  * tininess-before-rounding
174   *  * 2-input NaN propagation prefers SNaN over QNaN, and then
175   *    operand A over operand B (see FPProcessNaNs() pseudocode)
176   */
arm_set_default_fp_behaviours(float_status * s)177  static void arm_set_default_fp_behaviours(float_status *s)
178  {
179      set_float_detect_tininess(float_tininess_before_rounding, s);
180      set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
181  }
182  
cp_reg_reset(gpointer key,gpointer value,gpointer opaque)183  static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
184  {
185      /* Reset a single ARMCPRegInfo register */
186      ARMCPRegInfo *ri = value;
187      ARMCPU *cpu = opaque;
188  
189      if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
190          return;
191      }
192  
193      if (ri->resetfn) {
194          ri->resetfn(&cpu->env, ri);
195          return;
196      }
197  
198      /* A zero offset is never possible as it would be regs[0]
199       * so we use it to indicate that reset is being handled elsewhere.
200       * This is basically only used for fields in non-core coprocessors
201       * (like the pxa2xx ones).
202       */
203      if (!ri->fieldoffset) {
204          return;
205      }
206  
207      if (cpreg_field_is_64bit(ri)) {
208          CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
209      } else {
210          CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
211      }
212  }
213  
cp_reg_check_reset(gpointer key,gpointer value,gpointer opaque)214  static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
215  {
216      /* Purely an assertion check: we've already done reset once,
217       * so now check that running the reset for the cpreg doesn't
218       * change its value. This traps bugs where two different cpregs
219       * both try to reset the same state field but to different values.
220       */
221      ARMCPRegInfo *ri = value;
222      ARMCPU *cpu = opaque;
223      uint64_t oldvalue, newvalue;
224  
225      if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
226          return;
227      }
228  
229      oldvalue = read_raw_cp_reg(&cpu->env, ri);
230      cp_reg_reset(key, value, opaque);
231      newvalue = read_raw_cp_reg(&cpu->env, ri);
232      assert(oldvalue == newvalue);
233  }
234  
arm_cpu_reset_hold(Object * obj,ResetType type)235  static void arm_cpu_reset_hold(Object *obj, ResetType type)
236  {
237      CPUState *cs = CPU(obj);
238      ARMCPU *cpu = ARM_CPU(cs);
239      ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
240      CPUARMState *env = &cpu->env;
241  
242      if (acc->parent_phases.hold) {
243          acc->parent_phases.hold(obj, type);
244      }
245  
246      memset(env, 0, offsetof(CPUARMState, end_reset_fields));
247  
248      g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
249      g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
250  
251      env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
252      env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
253      env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
254      env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
255  
256      cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
257  
258      if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
259          env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
260      }
261  
262      if (arm_feature(env, ARM_FEATURE_AARCH64)) {
263          /* 64 bit CPUs always start in 64 bit mode */
264          env->aarch64 = true;
265  #if defined(CONFIG_USER_ONLY)
266          env->pstate = PSTATE_MODE_EL0t;
267          /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
268          env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
269          /* Enable all PAC keys.  */
270          env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
271                                    SCTLR_EnDA | SCTLR_EnDB);
272          /* Trap on btype=3 for PACIxSP. */
273          env->cp15.sctlr_el[1] |= SCTLR_BT0;
274          /* Trap on implementation defined registers. */
275          if (cpu_isar_feature(aa64_tidcp1, cpu)) {
276              env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
277          }
278          /* and to the FP/Neon instructions */
279          env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
280                                           CPACR_EL1, FPEN, 3);
281          /* and to the SVE instructions, with default vector length */
282          if (cpu_isar_feature(aa64_sve, cpu)) {
283              env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
284                                               CPACR_EL1, ZEN, 3);
285              env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
286          }
287          /* and for SME instructions, with default vector length, and TPIDR2 */
288          if (cpu_isar_feature(aa64_sme, cpu)) {
289              env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
290              env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
291                                               CPACR_EL1, SMEN, 3);
292              env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
293              if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
294                  env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
295                                                   SMCR, FA64, 1);
296              }
297          }
298          /*
299           * Enable 48-bit address space (TODO: take reserved_va into account).
300           * Enable TBI0 but not TBI1.
301           * Note that this must match useronly_clean_ptr.
302           */
303          env->cp15.tcr_el[1] = 5 | (1ULL << 37);
304  
305          /* Enable MTE */
306          if (cpu_isar_feature(aa64_mte, cpu)) {
307              /* Enable tag access, but leave TCF0 as No Effect (0). */
308              env->cp15.sctlr_el[1] |= SCTLR_ATA0;
309              /*
310               * Exclude all tags, so that tag 0 is always used.
311               * This corresponds to Linux current->thread.gcr_incl = 0.
312               *
313               * Set RRND, so that helper_irg() will generate a seed later.
314               * Here in cpu_reset(), the crypto subsystem has not yet been
315               * initialized.
316               */
317              env->cp15.gcr_el1 = 0x1ffff;
318          }
319          /*
320           * Disable access to SCXTNUM_EL0 from CSV2_1p2.
321           * This is not yet exposed from the Linux kernel in any way.
322           */
323          env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
324          /* Disable access to Debug Communication Channel (DCC). */
325          env->cp15.mdscr_el1 |= 1 << 12;
326          /* Enable FEAT_MOPS */
327          env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
328  #else
329          /* Reset into the highest available EL */
330          if (arm_feature(env, ARM_FEATURE_EL3)) {
331              env->pstate = PSTATE_MODE_EL3h;
332          } else if (arm_feature(env, ARM_FEATURE_EL2)) {
333              env->pstate = PSTATE_MODE_EL2h;
334          } else {
335              env->pstate = PSTATE_MODE_EL1h;
336          }
337  
338          /* Sample rvbar at reset.  */
339          env->cp15.rvbar = cpu->rvbar_prop;
340          env->pc = env->cp15.rvbar;
341  #endif
342      } else {
343  #if defined(CONFIG_USER_ONLY)
344          /* Userspace expects access to cp10 and cp11 for FP/Neon */
345          env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
346                                           CPACR, CP10, 3);
347          env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
348                                           CPACR, CP11, 3);
349  #endif
350          if (arm_feature(env, ARM_FEATURE_V8)) {
351              env->cp15.rvbar = cpu->rvbar_prop;
352              env->regs[15] = cpu->rvbar_prop;
353          }
354      }
355  
356  #if defined(CONFIG_USER_ONLY)
357      env->uncached_cpsr = ARM_CPU_MODE_USR;
358      /* For user mode we must enable access to coprocessors */
359      env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
360      if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
361          env->cp15.c15_cpar = 3;
362      } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
363          env->cp15.c15_cpar = 1;
364      }
365  #else
366  
367      /*
368       * If the highest available EL is EL2, AArch32 will start in Hyp
369       * mode; otherwise it starts in SVC. Note that if we start in
370       * AArch64 then these values in the uncached_cpsr will be ignored.
371       */
372      if (arm_feature(env, ARM_FEATURE_EL2) &&
373          !arm_feature(env, ARM_FEATURE_EL3)) {
374          env->uncached_cpsr = ARM_CPU_MODE_HYP;
375      } else {
376          env->uncached_cpsr = ARM_CPU_MODE_SVC;
377      }
378      env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
379  
380      /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
381       * executing as AArch32 then check if highvecs are enabled and
382       * adjust the PC accordingly.
383       */
384      if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
385          env->regs[15] = 0xFFFF0000;
386      }
387  
388      env->vfp.xregs[ARM_VFP_FPEXC] = 0;
389  #endif
390  
391      if (arm_feature(env, ARM_FEATURE_M)) {
392  #ifndef CONFIG_USER_ONLY
393          uint32_t initial_msp; /* Loaded from 0x0 */
394          uint32_t initial_pc; /* Loaded from 0x4 */
395          uint8_t *rom;
396          uint32_t vecbase;
397  #endif
398  
399          if (cpu_isar_feature(aa32_lob, cpu)) {
400              /*
401               * LTPSIZE is constant 4 if MVE not implemented, and resets
402               * to an UNKNOWN value if MVE is implemented. We choose to
403               * always reset to 4.
404               */
405              env->v7m.ltpsize = 4;
406              /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
407              env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
408              env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
409          }
410  
411          if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
412              env->v7m.secure = true;
413          } else {
414              /* This bit resets to 0 if security is supported, but 1 if
415               * it is not. The bit is not present in v7M, but we set it
416               * here so we can avoid having to make checks on it conditional
417               * on ARM_FEATURE_V8 (we don't let the guest see the bit).
418               */
419              env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
420              /*
421               * Set NSACR to indicate "NS access permitted to everything";
422               * this avoids having to have all the tests of it being
423               * conditional on ARM_FEATURE_M_SECURITY. Note also that from
424               * v8.1M the guest-visible value of NSACR in a CPU without the
425               * Security Extension is 0xcff.
426               */
427              env->v7m.nsacr = 0xcff;
428          }
429  
430          /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
431           * that it resets to 1, so QEMU always does that rather than making
432           * it dependent on CPU model. In v8M it is RES1.
433           */
434          env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
435          env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
436          if (arm_feature(env, ARM_FEATURE_V8)) {
437              /* in v8M the NONBASETHRDENA bit [0] is RES1 */
438              env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
439              env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
440          }
441          if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
442              env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
443              env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
444          }
445  
446          if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
447              env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
448              env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
449                  R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
450          }
451  
452  #ifndef CONFIG_USER_ONLY
453          /* Unlike A/R profile, M profile defines the reset LR value */
454          env->regs[14] = 0xffffffff;
455  
456          env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
457          env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
458  
459          /* Load the initial SP and PC from offset 0 and 4 in the vector table */
460          vecbase = env->v7m.vecbase[env->v7m.secure];
461          rom = rom_ptr_for_as(cs->as, vecbase, 8);
462          if (rom) {
463              /* Address zero is covered by ROM which hasn't yet been
464               * copied into physical memory.
465               */
466              initial_msp = ldl_p(rom);
467              initial_pc = ldl_p(rom + 4);
468          } else {
469              /* Address zero not covered by a ROM blob, or the ROM blob
470               * is in non-modifiable memory and this is a second reset after
471               * it got copied into memory. In the latter case, rom_ptr
472               * will return a NULL pointer and we should use ldl_phys instead.
473               */
474              initial_msp = ldl_phys(cs->as, vecbase);
475              initial_pc = ldl_phys(cs->as, vecbase + 4);
476          }
477  
478          qemu_log_mask(CPU_LOG_INT,
479                        "Loaded reset SP 0x%x PC 0x%x from vector table\n",
480                        initial_msp, initial_pc);
481  
482          env->regs[13] = initial_msp & 0xFFFFFFFC;
483          env->regs[15] = initial_pc & ~1;
484          env->thumb = initial_pc & 1;
485  #else
486          /*
487           * For user mode we run non-secure and with access to the FPU.
488           * The FPU context is active (ie does not need further setup)
489           * and is owned by non-secure.
490           */
491          env->v7m.secure = false;
492          env->v7m.nsacr = 0xcff;
493          env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
494          env->v7m.fpccr[M_REG_S] &=
495              ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
496          env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
497  #endif
498      }
499  
500      /* M profile requires that reset clears the exclusive monitor;
501       * A profile does not, but clearing it makes more sense than having it
502       * set with an exclusive access on address zero.
503       */
504      arm_clear_exclusive(env);
505  
506      if (arm_feature(env, ARM_FEATURE_PMSA)) {
507          if (cpu->pmsav7_dregion > 0) {
508              if (arm_feature(env, ARM_FEATURE_V8)) {
509                  memset(env->pmsav8.rbar[M_REG_NS], 0,
510                         sizeof(*env->pmsav8.rbar[M_REG_NS])
511                         * cpu->pmsav7_dregion);
512                  memset(env->pmsav8.rlar[M_REG_NS], 0,
513                         sizeof(*env->pmsav8.rlar[M_REG_NS])
514                         * cpu->pmsav7_dregion);
515                  if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
516                      memset(env->pmsav8.rbar[M_REG_S], 0,
517                             sizeof(*env->pmsav8.rbar[M_REG_S])
518                             * cpu->pmsav7_dregion);
519                      memset(env->pmsav8.rlar[M_REG_S], 0,
520                             sizeof(*env->pmsav8.rlar[M_REG_S])
521                             * cpu->pmsav7_dregion);
522                  }
523              } else if (arm_feature(env, ARM_FEATURE_V7)) {
524                  memset(env->pmsav7.drbar, 0,
525                         sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
526                  memset(env->pmsav7.drsr, 0,
527                         sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
528                  memset(env->pmsav7.dracr, 0,
529                         sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
530              }
531          }
532  
533          if (cpu->pmsav8r_hdregion > 0) {
534              memset(env->pmsav8.hprbar, 0,
535                     sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
536              memset(env->pmsav8.hprlar, 0,
537                     sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
538          }
539  
540          env->pmsav7.rnr[M_REG_NS] = 0;
541          env->pmsav7.rnr[M_REG_S] = 0;
542          env->pmsav8.mair0[M_REG_NS] = 0;
543          env->pmsav8.mair0[M_REG_S] = 0;
544          env->pmsav8.mair1[M_REG_NS] = 0;
545          env->pmsav8.mair1[M_REG_S] = 0;
546      }
547  
548      if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
549          if (cpu->sau_sregion > 0) {
550              memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
551              memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
552          }
553          env->sau.rnr = 0;
554          /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
555           * the Cortex-M33 does.
556           */
557          env->sau.ctrl = 0;
558      }
559  
560      set_flush_to_zero(1, &env->vfp.standard_fp_status);
561      set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
562      set_default_nan_mode(1, &env->vfp.standard_fp_status);
563      set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
564      arm_set_default_fp_behaviours(&env->vfp.fp_status);
565      arm_set_default_fp_behaviours(&env->vfp.standard_fp_status);
566      arm_set_default_fp_behaviours(&env->vfp.fp_status_f16);
567      arm_set_default_fp_behaviours(&env->vfp.standard_fp_status_f16);
568  
569  #ifndef CONFIG_USER_ONLY
570      if (kvm_enabled()) {
571          kvm_arm_reset_vcpu(cpu);
572      }
573  #endif
574  
575      if (tcg_enabled()) {
576          hw_breakpoint_update_all(cpu);
577          hw_watchpoint_update_all(cpu);
578  
579          arm_rebuild_hflags(env);
580      }
581  }
582  
arm_emulate_firmware_reset(CPUState * cpustate,int target_el)583  void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
584  {
585      ARMCPU *cpu = ARM_CPU(cpustate);
586      CPUARMState *env = &cpu->env;
587      bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
588      bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
589  
590      /*
591       * Check we have the EL we're aiming for. If that is the
592       * highest implemented EL, then cpu_reset has already done
593       * all the work.
594       */
595      switch (target_el) {
596      case 3:
597          assert(have_el3);
598          return;
599      case 2:
600          assert(have_el2);
601          if (!have_el3) {
602              return;
603          }
604          break;
605      case 1:
606          if (!have_el3 && !have_el2) {
607              return;
608          }
609          break;
610      default:
611          g_assert_not_reached();
612      }
613  
614      if (have_el3) {
615          /*
616           * Set the EL3 state so code can run at EL2. This should match
617           * the requirements set by Linux in its booting spec.
618           */
619          if (env->aarch64) {
620              env->cp15.scr_el3 |= SCR_RW;
621              if (cpu_isar_feature(aa64_pauth, cpu)) {
622                  env->cp15.scr_el3 |= SCR_API | SCR_APK;
623              }
624              if (cpu_isar_feature(aa64_mte, cpu)) {
625                  env->cp15.scr_el3 |= SCR_ATA;
626              }
627              if (cpu_isar_feature(aa64_sve, cpu)) {
628                  env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
629                  env->vfp.zcr_el[3] = 0xf;
630              }
631              if (cpu_isar_feature(aa64_sme, cpu)) {
632                  env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
633                  env->cp15.scr_el3 |= SCR_ENTP2;
634                  env->vfp.smcr_el[3] = 0xf;
635              }
636              if (cpu_isar_feature(aa64_hcx, cpu)) {
637                  env->cp15.scr_el3 |= SCR_HXEN;
638              }
639              if (cpu_isar_feature(aa64_fgt, cpu)) {
640                  env->cp15.scr_el3 |= SCR_FGTEN;
641              }
642          }
643  
644          if (target_el == 2) {
645              /* If the guest is at EL2 then Linux expects the HVC insn to work */
646              env->cp15.scr_el3 |= SCR_HCE;
647          }
648  
649          /* Put CPU into non-secure state */
650          env->cp15.scr_el3 |= SCR_NS;
651          /* Set NSACR.{CP11,CP10} so NS can access the FPU */
652          env->cp15.nsacr |= 3 << 10;
653      }
654  
655      if (have_el2 && target_el < 2) {
656          /* Set EL2 state so code can run at EL1. */
657          if (env->aarch64) {
658              env->cp15.hcr_el2 |= HCR_RW;
659          }
660      }
661  
662      /* Set the CPU to the desired state */
663      if (env->aarch64) {
664          env->pstate = aarch64_pstate_mode(target_el, true);
665      } else {
666          static const uint32_t mode_for_el[] = {
667              0,
668              ARM_CPU_MODE_SVC,
669              ARM_CPU_MODE_HYP,
670              ARM_CPU_MODE_SVC,
671          };
672  
673          cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
674      }
675  }
676  
677  
678  #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
679  
arm_excp_unmasked(CPUState * cs,unsigned int excp_idx,unsigned int target_el,unsigned int cur_el,bool secure,uint64_t hcr_el2)680  static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
681                                       unsigned int target_el,
682                                       unsigned int cur_el, bool secure,
683                                       uint64_t hcr_el2)
684  {
685      CPUARMState *env = cpu_env(cs);
686      bool pstate_unmasked;
687      bool unmasked = false;
688      bool allIntMask = false;
689  
690      /*
691       * Don't take exceptions if they target a lower EL.
692       * This check should catch any exceptions that would not be taken
693       * but left pending.
694       */
695      if (cur_el > target_el) {
696          return false;
697      }
698  
699      if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
700          env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
701          allIntMask = env->pstate & PSTATE_ALLINT ||
702                       ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
703                        (env->pstate & PSTATE_SP));
704      }
705  
706      switch (excp_idx) {
707      case EXCP_NMI:
708          pstate_unmasked = !allIntMask;
709          break;
710  
711      case EXCP_VINMI:
712          if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
713              /* VINMIs are only taken when hypervized.  */
714              return false;
715          }
716          return !allIntMask;
717      case EXCP_VFNMI:
718          if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
719              /* VFNMIs are only taken when hypervized.  */
720              return false;
721          }
722          return !allIntMask;
723      case EXCP_FIQ:
724          pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
725          break;
726  
727      case EXCP_IRQ:
728          pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
729          break;
730  
731      case EXCP_VFIQ:
732          if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
733              /* VFIQs are only taken when hypervized.  */
734              return false;
735          }
736          return !(env->daif & PSTATE_F) && (!allIntMask);
737      case EXCP_VIRQ:
738          if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
739              /* VIRQs are only taken when hypervized.  */
740              return false;
741          }
742          return !(env->daif & PSTATE_I) && (!allIntMask);
743      case EXCP_VSERR:
744          if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
745              /* VIRQs are only taken when hypervized.  */
746              return false;
747          }
748          return !(env->daif & PSTATE_A);
749      default:
750          g_assert_not_reached();
751      }
752  
753      /*
754       * Use the target EL, current execution state and SCR/HCR settings to
755       * determine whether the corresponding CPSR bit is used to mask the
756       * interrupt.
757       */
758      if ((target_el > cur_el) && (target_el != 1)) {
759          /* Exceptions targeting a higher EL may not be maskable */
760          if (arm_feature(env, ARM_FEATURE_AARCH64)) {
761              switch (target_el) {
762              case 2:
763                  /*
764                   * According to ARM DDI 0487H.a, an interrupt can be masked
765                   * when HCR_E2H and HCR_TGE are both set regardless of the
766                   * current Security state. Note that we need to revisit this
767                   * part again once we need to support NMI.
768                   */
769                  if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
770                          unmasked = true;
771                  }
772                  break;
773              case 3:
774                  /* Interrupt cannot be masked when the target EL is 3 */
775                  unmasked = true;
776                  break;
777              default:
778                  g_assert_not_reached();
779              }
780          } else {
781              /*
782               * The old 32-bit-only environment has a more complicated
783               * masking setup. HCR and SCR bits not only affect interrupt
784               * routing but also change the behaviour of masking.
785               */
786              bool hcr, scr;
787  
788              switch (excp_idx) {
789              case EXCP_FIQ:
790                  /*
791                   * If FIQs are routed to EL3 or EL2 then there are cases where
792                   * we override the CPSR.F in determining if the exception is
793                   * masked or not. If neither of these are set then we fall back
794                   * to the CPSR.F setting otherwise we further assess the state
795                   * below.
796                   */
797                  hcr = hcr_el2 & HCR_FMO;
798                  scr = (env->cp15.scr_el3 & SCR_FIQ);
799  
800                  /*
801                   * When EL3 is 32-bit, the SCR.FW bit controls whether the
802                   * CPSR.F bit masks FIQ interrupts when taken in non-secure
803                   * state. If SCR.FW is set then FIQs can be masked by CPSR.F
804                   * when non-secure but only when FIQs are only routed to EL3.
805                   */
806                  scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
807                  break;
808              case EXCP_IRQ:
809                  /*
810                   * When EL3 execution state is 32-bit, if HCR.IMO is set then
811                   * we may override the CPSR.I masking when in non-secure state.
812                   * The SCR.IRQ setting has already been taken into consideration
813                   * when setting the target EL, so it does not have a further
814                   * affect here.
815                   */
816                  hcr = hcr_el2 & HCR_IMO;
817                  scr = false;
818                  break;
819              default:
820                  g_assert_not_reached();
821              }
822  
823              if ((scr || hcr) && !secure) {
824                  unmasked = true;
825              }
826          }
827      }
828  
829      /*
830       * The PSTATE bits only mask the interrupt if we have not overridden the
831       * ability above.
832       */
833      return unmasked || pstate_unmasked;
834  }
835  
arm_cpu_exec_interrupt(CPUState * cs,int interrupt_request)836  static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
837  {
838      CPUClass *cc = CPU_GET_CLASS(cs);
839      CPUARMState *env = cpu_env(cs);
840      uint32_t cur_el = arm_current_el(env);
841      bool secure = arm_is_secure(env);
842      uint64_t hcr_el2 = arm_hcr_el2_eff(env);
843      uint32_t target_el;
844      uint32_t excp_idx;
845  
846      /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
847  
848      if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
849          (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
850          if (interrupt_request & CPU_INTERRUPT_NMI) {
851              excp_idx = EXCP_NMI;
852              target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
853              if (arm_excp_unmasked(cs, excp_idx, target_el,
854                                    cur_el, secure, hcr_el2)) {
855                  goto found;
856              }
857          }
858          if (interrupt_request & CPU_INTERRUPT_VINMI) {
859              excp_idx = EXCP_VINMI;
860              target_el = 1;
861              if (arm_excp_unmasked(cs, excp_idx, target_el,
862                                    cur_el, secure, hcr_el2)) {
863                  goto found;
864              }
865          }
866          if (interrupt_request & CPU_INTERRUPT_VFNMI) {
867              excp_idx = EXCP_VFNMI;
868              target_el = 1;
869              if (arm_excp_unmasked(cs, excp_idx, target_el,
870                                    cur_el, secure, hcr_el2)) {
871                  goto found;
872              }
873          }
874      } else {
875          /*
876           * NMI disabled: interrupts with superpriority are handled
877           * as if they didn't have it
878           */
879          if (interrupt_request & CPU_INTERRUPT_NMI) {
880              interrupt_request |= CPU_INTERRUPT_HARD;
881          }
882          if (interrupt_request & CPU_INTERRUPT_VINMI) {
883              interrupt_request |= CPU_INTERRUPT_VIRQ;
884          }
885          if (interrupt_request & CPU_INTERRUPT_VFNMI) {
886              interrupt_request |= CPU_INTERRUPT_VFIQ;
887          }
888      }
889  
890      if (interrupt_request & CPU_INTERRUPT_FIQ) {
891          excp_idx = EXCP_FIQ;
892          target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
893          if (arm_excp_unmasked(cs, excp_idx, target_el,
894                                cur_el, secure, hcr_el2)) {
895              goto found;
896          }
897      }
898      if (interrupt_request & CPU_INTERRUPT_HARD) {
899          excp_idx = EXCP_IRQ;
900          target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
901          if (arm_excp_unmasked(cs, excp_idx, target_el,
902                                cur_el, secure, hcr_el2)) {
903              goto found;
904          }
905      }
906      if (interrupt_request & CPU_INTERRUPT_VIRQ) {
907          excp_idx = EXCP_VIRQ;
908          target_el = 1;
909          if (arm_excp_unmasked(cs, excp_idx, target_el,
910                                cur_el, secure, hcr_el2)) {
911              goto found;
912          }
913      }
914      if (interrupt_request & CPU_INTERRUPT_VFIQ) {
915          excp_idx = EXCP_VFIQ;
916          target_el = 1;
917          if (arm_excp_unmasked(cs, excp_idx, target_el,
918                                cur_el, secure, hcr_el2)) {
919              goto found;
920          }
921      }
922      if (interrupt_request & CPU_INTERRUPT_VSERR) {
923          excp_idx = EXCP_VSERR;
924          target_el = 1;
925          if (arm_excp_unmasked(cs, excp_idx, target_el,
926                                cur_el, secure, hcr_el2)) {
927              /* Taking a virtual abort clears HCR_EL2.VSE */
928              env->cp15.hcr_el2 &= ~HCR_VSE;
929              cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
930              goto found;
931          }
932      }
933      return false;
934  
935   found:
936      cs->exception_index = excp_idx;
937      env->exception.target_el = target_el;
938      cc->tcg_ops->do_interrupt(cs);
939      return true;
940  }
941  
942  #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
943  
arm_cpu_update_virq(ARMCPU * cpu)944  void arm_cpu_update_virq(ARMCPU *cpu)
945  {
946      /*
947       * Update the interrupt level for VIRQ, which is the logical OR of
948       * the HCR_EL2.VI bit and the input line level from the GIC.
949       */
950      CPUARMState *env = &cpu->env;
951      CPUState *cs = CPU(cpu);
952  
953      bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
954          !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
955          (env->irq_line_state & CPU_INTERRUPT_VIRQ);
956  
957      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
958          if (new_state) {
959              cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
960          } else {
961              cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
962          }
963      }
964  }
965  
arm_cpu_update_vfiq(ARMCPU * cpu)966  void arm_cpu_update_vfiq(ARMCPU *cpu)
967  {
968      /*
969       * Update the interrupt level for VFIQ, which is the logical OR of
970       * the HCR_EL2.VF bit and the input line level from the GIC.
971       */
972      CPUARMState *env = &cpu->env;
973      CPUState *cs = CPU(cpu);
974  
975      bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
976          !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
977          (env->irq_line_state & CPU_INTERRUPT_VFIQ);
978  
979      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
980          if (new_state) {
981              cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
982          } else {
983              cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
984          }
985      }
986  }
987  
arm_cpu_update_vinmi(ARMCPU * cpu)988  void arm_cpu_update_vinmi(ARMCPU *cpu)
989  {
990      /*
991       * Update the interrupt level for VINMI, which is the logical OR of
992       * the HCRX_EL2.VINMI bit and the input line level from the GIC.
993       */
994      CPUARMState *env = &cpu->env;
995      CPUState *cs = CPU(cpu);
996  
997      bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
998                        (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
999          (env->irq_line_state & CPU_INTERRUPT_VINMI);
1000  
1001      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
1002          if (new_state) {
1003              cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
1004          } else {
1005              cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1006          }
1007      }
1008  }
1009  
arm_cpu_update_vfnmi(ARMCPU * cpu)1010  void arm_cpu_update_vfnmi(ARMCPU *cpu)
1011  {
1012      /*
1013       * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1014       */
1015      CPUARMState *env = &cpu->env;
1016      CPUState *cs = CPU(cpu);
1017  
1018      bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1019                        (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1020  
1021      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1022          if (new_state) {
1023              cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1024          } else {
1025              cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1026          }
1027      }
1028  }
1029  
arm_cpu_update_vserr(ARMCPU * cpu)1030  void arm_cpu_update_vserr(ARMCPU *cpu)
1031  {
1032      /*
1033       * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1034       */
1035      CPUARMState *env = &cpu->env;
1036      CPUState *cs = CPU(cpu);
1037  
1038      bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1039  
1040      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1041          if (new_state) {
1042              cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1043          } else {
1044              cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1045          }
1046      }
1047  }
1048  
1049  #ifndef CONFIG_USER_ONLY
arm_cpu_set_irq(void * opaque,int irq,int level)1050  static void arm_cpu_set_irq(void *opaque, int irq, int level)
1051  {
1052      ARMCPU *cpu = opaque;
1053      CPUARMState *env = &cpu->env;
1054      CPUState *cs = CPU(cpu);
1055      static const int mask[] = {
1056          [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1057          [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1058          [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1059          [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1060          [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1061          [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1062      };
1063  
1064      if (!arm_feature(env, ARM_FEATURE_EL2) &&
1065          (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1066          /*
1067           * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1068           * have EL2 support we don't care. (Unless the guest is doing something
1069           * silly this will only be calls saying "level is still 0".)
1070           */
1071          return;
1072      }
1073  
1074      if (level) {
1075          env->irq_line_state |= mask[irq];
1076      } else {
1077          env->irq_line_state &= ~mask[irq];
1078      }
1079  
1080      switch (irq) {
1081      case ARM_CPU_VIRQ:
1082          arm_cpu_update_virq(cpu);
1083          break;
1084      case ARM_CPU_VFIQ:
1085          arm_cpu_update_vfiq(cpu);
1086          break;
1087      case ARM_CPU_VINMI:
1088          arm_cpu_update_vinmi(cpu);
1089          break;
1090      case ARM_CPU_IRQ:
1091      case ARM_CPU_FIQ:
1092      case ARM_CPU_NMI:
1093          if (level) {
1094              cpu_interrupt(cs, mask[irq]);
1095          } else {
1096              cpu_reset_interrupt(cs, mask[irq]);
1097          }
1098          break;
1099      default:
1100          g_assert_not_reached();
1101      }
1102  }
1103  
arm_cpu_kvm_set_irq(void * opaque,int irq,int level)1104  static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1105  {
1106  #ifdef CONFIG_KVM
1107      ARMCPU *cpu = opaque;
1108      CPUARMState *env = &cpu->env;
1109      CPUState *cs = CPU(cpu);
1110      uint32_t linestate_bit;
1111      int irq_id;
1112  
1113      switch (irq) {
1114      case ARM_CPU_IRQ:
1115          irq_id = KVM_ARM_IRQ_CPU_IRQ;
1116          linestate_bit = CPU_INTERRUPT_HARD;
1117          break;
1118      case ARM_CPU_FIQ:
1119          irq_id = KVM_ARM_IRQ_CPU_FIQ;
1120          linestate_bit = CPU_INTERRUPT_FIQ;
1121          break;
1122      default:
1123          g_assert_not_reached();
1124      }
1125  
1126      if (level) {
1127          env->irq_line_state |= linestate_bit;
1128      } else {
1129          env->irq_line_state &= ~linestate_bit;
1130      }
1131      kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1132  #endif
1133  }
1134  
arm_cpu_virtio_is_big_endian(CPUState * cs)1135  static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1136  {
1137      ARMCPU *cpu = ARM_CPU(cs);
1138      CPUARMState *env = &cpu->env;
1139  
1140      cpu_synchronize_state(cs);
1141      return arm_cpu_data_is_big_endian(env);
1142  }
1143  
1144  #ifdef CONFIG_TCG
arm_cpu_exec_halt(CPUState * cs)1145  bool arm_cpu_exec_halt(CPUState *cs)
1146  {
1147      bool leave_halt = cpu_has_work(cs);
1148  
1149      if (leave_halt) {
1150          /* We're about to come out of WFI/WFE: disable the WFxT timer */
1151          ARMCPU *cpu = ARM_CPU(cs);
1152          if (cpu->wfxt_timer) {
1153              timer_del(cpu->wfxt_timer);
1154          }
1155      }
1156      return leave_halt;
1157  }
1158  #endif
1159  
arm_wfxt_timer_cb(void * opaque)1160  static void arm_wfxt_timer_cb(void *opaque)
1161  {
1162      ARMCPU *cpu = opaque;
1163      CPUState *cs = CPU(cpu);
1164  
1165      /*
1166       * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1167       * to return true (so we will come out of halt even with no other
1168       * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1169       * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1170       */
1171      cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1172  }
1173  #endif
1174  
arm_disas_set_info(CPUState * cpu,disassemble_info * info)1175  static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1176  {
1177      ARMCPU *ac = ARM_CPU(cpu);
1178      CPUARMState *env = &ac->env;
1179      bool sctlr_b;
1180  
1181      if (is_a64(env)) {
1182          info->cap_arch = CS_ARCH_ARM64;
1183          info->cap_insn_unit = 4;
1184          info->cap_insn_split = 4;
1185      } else {
1186          int cap_mode;
1187          if (env->thumb) {
1188              info->cap_insn_unit = 2;
1189              info->cap_insn_split = 4;
1190              cap_mode = CS_MODE_THUMB;
1191          } else {
1192              info->cap_insn_unit = 4;
1193              info->cap_insn_split = 4;
1194              cap_mode = CS_MODE_ARM;
1195          }
1196          if (arm_feature(env, ARM_FEATURE_V8)) {
1197              cap_mode |= CS_MODE_V8;
1198          }
1199          if (arm_feature(env, ARM_FEATURE_M)) {
1200              cap_mode |= CS_MODE_MCLASS;
1201          }
1202          info->cap_arch = CS_ARCH_ARM;
1203          info->cap_mode = cap_mode;
1204      }
1205  
1206      sctlr_b = arm_sctlr_b(env);
1207      if (bswap_code(sctlr_b)) {
1208  #if TARGET_BIG_ENDIAN
1209          info->endian = BFD_ENDIAN_LITTLE;
1210  #else
1211          info->endian = BFD_ENDIAN_BIG;
1212  #endif
1213      }
1214      info->flags &= ~INSN_ARM_BE32;
1215  #ifndef CONFIG_USER_ONLY
1216      if (sctlr_b) {
1217          info->flags |= INSN_ARM_BE32;
1218      }
1219  #endif
1220  }
1221  
1222  #ifdef TARGET_AARCH64
1223  
aarch64_cpu_dump_state(CPUState * cs,FILE * f,int flags)1224  static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1225  {
1226      ARMCPU *cpu = ARM_CPU(cs);
1227      CPUARMState *env = &cpu->env;
1228      uint32_t psr = pstate_read(env);
1229      int i, j;
1230      int el = arm_current_el(env);
1231      uint64_t hcr = arm_hcr_el2_eff(env);
1232      const char *ns_status;
1233      bool sve;
1234  
1235      qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1236      for (i = 0; i < 32; i++) {
1237          if (i == 31) {
1238              qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1239          } else {
1240              qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1241                           (i + 2) % 3 ? " " : "\n");
1242          }
1243      }
1244  
1245      if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1246          ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1247      } else {
1248          ns_status = "";
1249      }
1250      qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1251                   psr,
1252                   psr & PSTATE_N ? 'N' : '-',
1253                   psr & PSTATE_Z ? 'Z' : '-',
1254                   psr & PSTATE_C ? 'C' : '-',
1255                   psr & PSTATE_V ? 'V' : '-',
1256                   ns_status,
1257                   el,
1258                   psr & PSTATE_SP ? 'h' : 't');
1259  
1260      if (cpu_isar_feature(aa64_sme, cpu)) {
1261          qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1262                       env->svcr,
1263                       (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1264                       (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1265      }
1266      if (cpu_isar_feature(aa64_bti, cpu)) {
1267          qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1268      }
1269      qemu_fprintf(f, "%s%s%s",
1270                   (hcr & HCR_NV) ? " NV" : "",
1271                   (hcr & HCR_NV1) ? " NV1" : "",
1272                   (hcr & HCR_NV2) ? " NV2" : "");
1273      if (!(flags & CPU_DUMP_FPU)) {
1274          qemu_fprintf(f, "\n");
1275          return;
1276      }
1277      if (fp_exception_el(env, el) != 0) {
1278          qemu_fprintf(f, "    FPU disabled\n");
1279          return;
1280      }
1281      qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1282                   vfp_get_fpcr(env), vfp_get_fpsr(env));
1283  
1284      if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1285          sve = sme_exception_el(env, el) == 0;
1286      } else if (cpu_isar_feature(aa64_sve, cpu)) {
1287          sve = sve_exception_el(env, el) == 0;
1288      } else {
1289          sve = false;
1290      }
1291  
1292      if (sve) {
1293          int zcr_len = sve_vqm1_for_el(env, el);
1294  
1295          for (i = 0; i <= FFR_PRED_NUM; i++) {
1296              bool eol;
1297              if (i == FFR_PRED_NUM) {
1298                  qemu_fprintf(f, "FFR=");
1299                  /* It's last, so end the line.  */
1300                  eol = true;
1301              } else {
1302                  qemu_fprintf(f, "P%02d=", i);
1303                  switch (zcr_len) {
1304                  case 0:
1305                      eol = i % 8 == 7;
1306                      break;
1307                  case 1:
1308                      eol = i % 6 == 5;
1309                      break;
1310                  case 2:
1311                  case 3:
1312                      eol = i % 3 == 2;
1313                      break;
1314                  default:
1315                      /* More than one quadword per predicate.  */
1316                      eol = true;
1317                      break;
1318                  }
1319              }
1320              for (j = zcr_len / 4; j >= 0; j--) {
1321                  int digits;
1322                  if (j * 4 + 4 <= zcr_len + 1) {
1323                      digits = 16;
1324                  } else {
1325                      digits = (zcr_len % 4 + 1) * 4;
1326                  }
1327                  qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1328                               env->vfp.pregs[i].p[j],
1329                               j ? ":" : eol ? "\n" : " ");
1330              }
1331          }
1332  
1333          if (zcr_len == 0) {
1334              /*
1335               * With vl=16, there are only 37 columns per register,
1336               * so output two registers per line.
1337               */
1338              for (i = 0; i < 32; i++) {
1339                  qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1340                               i, env->vfp.zregs[i].d[1],
1341                               env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1342              }
1343          } else {
1344              for (i = 0; i < 32; i++) {
1345                  qemu_fprintf(f, "Z%02d=", i);
1346                  for (j = zcr_len; j >= 0; j--) {
1347                      qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1348                                   env->vfp.zregs[i].d[j * 2 + 1],
1349                                   env->vfp.zregs[i].d[j * 2 + 0],
1350                                   j ? ":" : "\n");
1351                  }
1352              }
1353          }
1354      } else {
1355          for (i = 0; i < 32; i++) {
1356              uint64_t *q = aa64_vfp_qreg(env, i);
1357              qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1358                           i, q[1], q[0], (i & 1 ? "\n" : " "));
1359          }
1360      }
1361  
1362      if (cpu_isar_feature(aa64_sme, cpu) &&
1363          FIELD_EX64(env->svcr, SVCR, ZA) &&
1364          sme_exception_el(env, el) == 0) {
1365          int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1366          int svl = (zcr_len + 1) * 16;
1367          int svl_lg10 = svl < 100 ? 2 : 3;
1368  
1369          for (i = 0; i < svl; i++) {
1370              qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1371              for (j = zcr_len; j >= 0; --j) {
1372                  qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1373                               env->zarray[i].d[2 * j + 1],
1374                               env->zarray[i].d[2 * j],
1375                               j ? ':' : '\n');
1376              }
1377          }
1378      }
1379  }
1380  
1381  #else
1382  
aarch64_cpu_dump_state(CPUState * cs,FILE * f,int flags)1383  static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1384  {
1385      g_assert_not_reached();
1386  }
1387  
1388  #endif
1389  
arm_cpu_dump_state(CPUState * cs,FILE * f,int flags)1390  static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1391  {
1392      ARMCPU *cpu = ARM_CPU(cs);
1393      CPUARMState *env = &cpu->env;
1394      int i;
1395  
1396      if (is_a64(env)) {
1397          aarch64_cpu_dump_state(cs, f, flags);
1398          return;
1399      }
1400  
1401      for (i = 0; i < 16; i++) {
1402          qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1403          if ((i % 4) == 3) {
1404              qemu_fprintf(f, "\n");
1405          } else {
1406              qemu_fprintf(f, " ");
1407          }
1408      }
1409  
1410      if (arm_feature(env, ARM_FEATURE_M)) {
1411          uint32_t xpsr = xpsr_read(env);
1412          const char *mode;
1413          const char *ns_status = "";
1414  
1415          if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1416              ns_status = env->v7m.secure ? "S " : "NS ";
1417          }
1418  
1419          if (xpsr & XPSR_EXCP) {
1420              mode = "handler";
1421          } else {
1422              if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1423                  mode = "unpriv-thread";
1424              } else {
1425                  mode = "priv-thread";
1426              }
1427          }
1428  
1429          qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1430                       xpsr,
1431                       xpsr & XPSR_N ? 'N' : '-',
1432                       xpsr & XPSR_Z ? 'Z' : '-',
1433                       xpsr & XPSR_C ? 'C' : '-',
1434                       xpsr & XPSR_V ? 'V' : '-',
1435                       xpsr & XPSR_T ? 'T' : 'A',
1436                       ns_status,
1437                       mode);
1438      } else {
1439          uint32_t psr = cpsr_read(env);
1440          const char *ns_status = "";
1441  
1442          if (arm_feature(env, ARM_FEATURE_EL3) &&
1443              (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1444              ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1445          }
1446  
1447          qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1448                       psr,
1449                       psr & CPSR_N ? 'N' : '-',
1450                       psr & CPSR_Z ? 'Z' : '-',
1451                       psr & CPSR_C ? 'C' : '-',
1452                       psr & CPSR_V ? 'V' : '-',
1453                       psr & CPSR_T ? 'T' : 'A',
1454                       ns_status,
1455                       aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1456      }
1457  
1458      if (flags & CPU_DUMP_FPU) {
1459          int numvfpregs = 0;
1460          if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1461              numvfpregs = 32;
1462          } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1463              numvfpregs = 16;
1464          }
1465          for (i = 0; i < numvfpregs; i++) {
1466              uint64_t v = *aa32_vfp_dreg(env, i);
1467              qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1468                           i * 2, (uint32_t)v,
1469                           i * 2 + 1, (uint32_t)(v >> 32),
1470                           i, v);
1471          }
1472          qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1473          if (cpu_isar_feature(aa32_mve, cpu)) {
1474              qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1475          }
1476      }
1477  }
1478  
arm_build_mp_affinity(int idx,uint8_t clustersz)1479  uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1480  {
1481      uint32_t Aff1 = idx / clustersz;
1482      uint32_t Aff0 = idx % clustersz;
1483      return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1484  }
1485  
arm_cpu_mp_affinity(ARMCPU * cpu)1486  uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1487  {
1488      return cpu->mp_affinity;
1489  }
1490  
arm_cpu_initfn(Object * obj)1491  static void arm_cpu_initfn(Object *obj)
1492  {
1493      ARMCPU *cpu = ARM_CPU(obj);
1494  
1495      cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1496                                           NULL, g_free);
1497  
1498      QLIST_INIT(&cpu->pre_el_change_hooks);
1499      QLIST_INIT(&cpu->el_change_hooks);
1500  
1501  #ifdef CONFIG_USER_ONLY
1502  # ifdef TARGET_AARCH64
1503      /*
1504       * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1505       * These values were chosen to fit within the default signal frame.
1506       * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1507       * and our corresponding cpu property.
1508       */
1509      cpu->sve_default_vq = 4;
1510      cpu->sme_default_vq = 2;
1511  # endif
1512  #else
1513      /* Our inbound IRQ and FIQ lines */
1514      if (kvm_enabled()) {
1515          /*
1516           * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1517           * them to maintain the same interface as non-KVM CPUs.
1518           */
1519          qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1520      } else {
1521          qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1522      }
1523  
1524      qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1525                         ARRAY_SIZE(cpu->gt_timer_outputs));
1526  
1527      qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1528                               "gicv3-maintenance-interrupt", 1);
1529      qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1530                               "pmu-interrupt", 1);
1531  #endif
1532  
1533      /* DTB consumers generally don't in fact care what the 'compatible'
1534       * string is, so always provide some string and trust that a hypothetical
1535       * picky DTB consumer will also provide a helpful error message.
1536       */
1537      cpu->dtb_compatible = "qemu,unknown";
1538      cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1539      cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1540  
1541      if (tcg_enabled() || hvf_enabled()) {
1542          /* TCG and HVF implement PSCI 1.1 */
1543          cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1544      }
1545  }
1546  
1547  /*
1548   * 0 means "unset, use the default value". That default might vary depending
1549   * on the CPU type, and is set in the realize fn.
1550   */
1551  static Property arm_cpu_gt_cntfrq_property =
1552              DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1553  
1554  static Property arm_cpu_reset_cbar_property =
1555              DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1556  
1557  static Property arm_cpu_reset_hivecs_property =
1558              DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1559  
1560  #ifndef CONFIG_USER_ONLY
1561  static Property arm_cpu_has_el2_property =
1562              DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1563  
1564  static Property arm_cpu_has_el3_property =
1565              DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1566  #endif
1567  
1568  static Property arm_cpu_cfgend_property =
1569              DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1570  
1571  static Property arm_cpu_has_vfp_property =
1572              DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1573  
1574  static Property arm_cpu_has_vfp_d32_property =
1575              DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1576  
1577  static Property arm_cpu_has_neon_property =
1578              DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1579  
1580  static Property arm_cpu_has_dsp_property =
1581              DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1582  
1583  static Property arm_cpu_has_mpu_property =
1584              DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1585  
1586  /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1587   * because the CPU initfn will have already set cpu->pmsav7_dregion to
1588   * the right value for that particular CPU type, and we don't want
1589   * to override that with an incorrect constant value.
1590   */
1591  static Property arm_cpu_pmsav7_dregion_property =
1592              DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1593                                             pmsav7_dregion,
1594                                             qdev_prop_uint32, uint32_t);
1595  
arm_get_pmu(Object * obj,Error ** errp)1596  static bool arm_get_pmu(Object *obj, Error **errp)
1597  {
1598      ARMCPU *cpu = ARM_CPU(obj);
1599  
1600      return cpu->has_pmu;
1601  }
1602  
arm_set_pmu(Object * obj,bool value,Error ** errp)1603  static void arm_set_pmu(Object *obj, bool value, Error **errp)
1604  {
1605      ARMCPU *cpu = ARM_CPU(obj);
1606  
1607      if (value) {
1608          if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1609              error_setg(errp, "'pmu' feature not supported by KVM on this host");
1610              return;
1611          }
1612          set_feature(&cpu->env, ARM_FEATURE_PMU);
1613      } else {
1614          unset_feature(&cpu->env, ARM_FEATURE_PMU);
1615      }
1616      cpu->has_pmu = value;
1617  }
1618  
gt_cntfrq_period_ns(ARMCPU * cpu)1619  unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1620  {
1621      /*
1622       * The exact approach to calculating guest ticks is:
1623       *
1624       *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1625       *              NANOSECONDS_PER_SECOND);
1626       *
1627       * We don't do that. Rather we intentionally use integer division
1628       * truncation below and in the caller for the conversion of host monotonic
1629       * time to guest ticks to provide the exact inverse for the semantics of
1630       * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1631       * it loses precision when representing frequencies where
1632       * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1633       * provide an exact inverse leads to scheduling timers with negative
1634       * periods, which in turn leads to sticky behaviour in the guest.
1635       *
1636       * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1637       * cannot become zero.
1638       */
1639      return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1640        NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1641  }
1642  
arm_cpu_propagate_feature_implications(ARMCPU * cpu)1643  static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1644  {
1645      CPUARMState *env = &cpu->env;
1646      bool no_aa32 = false;
1647  
1648      /*
1649       * Some features automatically imply others: set the feature
1650       * bits explicitly for these cases.
1651       */
1652  
1653      if (arm_feature(env, ARM_FEATURE_M)) {
1654          set_feature(env, ARM_FEATURE_PMSA);
1655      }
1656  
1657      if (arm_feature(env, ARM_FEATURE_V8)) {
1658          if (arm_feature(env, ARM_FEATURE_M)) {
1659              set_feature(env, ARM_FEATURE_V7);
1660          } else {
1661              set_feature(env, ARM_FEATURE_V7VE);
1662          }
1663      }
1664  
1665      /*
1666       * There exist AArch64 cpus without AArch32 support.  When KVM
1667       * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1668       * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1669       * As a general principle, we also do not make ID register
1670       * consistency checks anywhere unless using TCG, because only
1671       * for TCG would a consistency-check failure be a QEMU bug.
1672       */
1673      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1674          no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1675      }
1676  
1677      if (arm_feature(env, ARM_FEATURE_V7VE)) {
1678          /*
1679           * v7 Virtualization Extensions. In real hardware this implies
1680           * EL2 and also the presence of the Security Extensions.
1681           * For QEMU, for backwards-compatibility we implement some
1682           * CPUs or CPU configs which have no actual EL2 or EL3 but do
1683           * include the various other features that V7VE implies.
1684           * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1685           * Security Extensions is ARM_FEATURE_EL3.
1686           */
1687          assert(!tcg_enabled() || no_aa32 ||
1688                 cpu_isar_feature(aa32_arm_div, cpu));
1689          set_feature(env, ARM_FEATURE_LPAE);
1690          set_feature(env, ARM_FEATURE_V7);
1691      }
1692      if (arm_feature(env, ARM_FEATURE_V7)) {
1693          set_feature(env, ARM_FEATURE_VAPA);
1694          set_feature(env, ARM_FEATURE_THUMB2);
1695          set_feature(env, ARM_FEATURE_MPIDR);
1696          if (!arm_feature(env, ARM_FEATURE_M)) {
1697              set_feature(env, ARM_FEATURE_V6K);
1698          } else {
1699              set_feature(env, ARM_FEATURE_V6);
1700          }
1701  
1702          /*
1703           * Always define VBAR for V7 CPUs even if it doesn't exist in
1704           * non-EL3 configs. This is needed by some legacy boards.
1705           */
1706          set_feature(env, ARM_FEATURE_VBAR);
1707      }
1708      if (arm_feature(env, ARM_FEATURE_V6K)) {
1709          set_feature(env, ARM_FEATURE_V6);
1710          set_feature(env, ARM_FEATURE_MVFR);
1711      }
1712      if (arm_feature(env, ARM_FEATURE_V6)) {
1713          set_feature(env, ARM_FEATURE_V5);
1714          if (!arm_feature(env, ARM_FEATURE_M)) {
1715              assert(!tcg_enabled() || no_aa32 ||
1716                     cpu_isar_feature(aa32_jazelle, cpu));
1717              set_feature(env, ARM_FEATURE_AUXCR);
1718          }
1719      }
1720      if (arm_feature(env, ARM_FEATURE_V5)) {
1721          set_feature(env, ARM_FEATURE_V4T);
1722      }
1723      if (arm_feature(env, ARM_FEATURE_LPAE)) {
1724          set_feature(env, ARM_FEATURE_V7MP);
1725      }
1726      if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1727          set_feature(env, ARM_FEATURE_CBAR);
1728      }
1729      if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1730          !arm_feature(env, ARM_FEATURE_M)) {
1731          set_feature(env, ARM_FEATURE_THUMB_DSP);
1732      }
1733  }
1734  
arm_cpu_post_init(Object * obj)1735  void arm_cpu_post_init(Object *obj)
1736  {
1737      ARMCPU *cpu = ARM_CPU(obj);
1738  
1739      /*
1740       * Some features imply others. Figure this out now, because we
1741       * are going to look at the feature bits in deciding which
1742       * properties to add.
1743       */
1744      arm_cpu_propagate_feature_implications(cpu);
1745  
1746      if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1747          arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1748          qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1749      }
1750  
1751      if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1752          qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1753      }
1754  
1755      if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1756          object_property_add_uint64_ptr(obj, "rvbar",
1757                                         &cpu->rvbar_prop,
1758                                         OBJ_PROP_FLAG_READWRITE);
1759      }
1760  
1761  #ifndef CONFIG_USER_ONLY
1762      if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1763          /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1764           * prevent "has_el3" from existing on CPUs which cannot support EL3.
1765           */
1766          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1767  
1768          object_property_add_link(obj, "secure-memory",
1769                                   TYPE_MEMORY_REGION,
1770                                   (Object **)&cpu->secure_memory,
1771                                   qdev_prop_allow_set_link_before_realize,
1772                                   OBJ_PROP_LINK_STRONG);
1773      }
1774  
1775      if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1776          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1777      }
1778  #endif
1779  
1780      if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1781          cpu->has_pmu = true;
1782          object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1783      }
1784  
1785      /*
1786       * Allow user to turn off VFP and Neon support, but only for TCG --
1787       * KVM does not currently allow us to lie to the guest about its
1788       * ID/feature registers, so the guest always sees what the host has.
1789       */
1790      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1791          if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1792              cpu->has_vfp = true;
1793              cpu->has_vfp_d32 = true;
1794              if (tcg_enabled() || qtest_enabled()) {
1795                  qdev_property_add_static(DEVICE(obj),
1796                                           &arm_cpu_has_vfp_property);
1797              }
1798          }
1799      } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1800          cpu->has_vfp = true;
1801          if (tcg_enabled() || qtest_enabled()) {
1802              qdev_property_add_static(DEVICE(obj),
1803                                       &arm_cpu_has_vfp_property);
1804          }
1805          if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1806              cpu->has_vfp_d32 = true;
1807              /*
1808               * The permitted values of the SIMDReg bits [3:0] on
1809               * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1810               * make sure that has_vfp_d32 can not be set to false.
1811               */
1812              if ((tcg_enabled() || qtest_enabled())
1813                  && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1814                       && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1815                  qdev_property_add_static(DEVICE(obj),
1816                                           &arm_cpu_has_vfp_d32_property);
1817              }
1818          }
1819      }
1820  
1821      if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1822          cpu->has_neon = true;
1823          if (!kvm_enabled()) {
1824              qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1825          }
1826      }
1827  
1828      if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1829          arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1830          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1831      }
1832  
1833      if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1834          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1835          if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1836              qdev_property_add_static(DEVICE(obj),
1837                                       &arm_cpu_pmsav7_dregion_property);
1838          }
1839      }
1840  
1841      if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1842          object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1843                                   qdev_prop_allow_set_link_before_realize,
1844                                   OBJ_PROP_LINK_STRONG);
1845          /*
1846           * M profile: initial value of the Secure VTOR. We can't just use
1847           * a simple DEFINE_PROP_UINT32 for this because we want to permit
1848           * the property to be set after realize.
1849           */
1850          object_property_add_uint32_ptr(obj, "init-svtor",
1851                                         &cpu->init_svtor,
1852                                         OBJ_PROP_FLAG_READWRITE);
1853      }
1854      if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1855          /*
1856           * Initial value of the NS VTOR (for cores without the Security
1857           * extension, this is the only VTOR)
1858           */
1859          object_property_add_uint32_ptr(obj, "init-nsvtor",
1860                                         &cpu->init_nsvtor,
1861                                         OBJ_PROP_FLAG_READWRITE);
1862      }
1863  
1864      /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1865      object_property_add_uint32_ptr(obj, "psci-conduit",
1866                                     &cpu->psci_conduit,
1867                                     OBJ_PROP_FLAG_READWRITE);
1868  
1869      qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1870  
1871      if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1872          qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1873      }
1874  
1875      if (kvm_enabled()) {
1876          kvm_arm_add_vcpu_properties(cpu);
1877      }
1878  
1879  #ifndef CONFIG_USER_ONLY
1880      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1881          cpu_isar_feature(aa64_mte, cpu)) {
1882          object_property_add_link(obj, "tag-memory",
1883                                   TYPE_MEMORY_REGION,
1884                                   (Object **)&cpu->tag_memory,
1885                                   qdev_prop_allow_set_link_before_realize,
1886                                   OBJ_PROP_LINK_STRONG);
1887  
1888          if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1889              object_property_add_link(obj, "secure-tag-memory",
1890                                       TYPE_MEMORY_REGION,
1891                                       (Object **)&cpu->secure_tag_memory,
1892                                       qdev_prop_allow_set_link_before_realize,
1893                                       OBJ_PROP_LINK_STRONG);
1894          }
1895      }
1896  #endif
1897  }
1898  
arm_cpu_finalizefn(Object * obj)1899  static void arm_cpu_finalizefn(Object *obj)
1900  {
1901      ARMCPU *cpu = ARM_CPU(obj);
1902      ARMELChangeHook *hook, *next;
1903  
1904      g_hash_table_destroy(cpu->cp_regs);
1905  
1906      QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1907          QLIST_REMOVE(hook, node);
1908          g_free(hook);
1909      }
1910      QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1911          QLIST_REMOVE(hook, node);
1912          g_free(hook);
1913      }
1914  #ifndef CONFIG_USER_ONLY
1915      if (cpu->pmu_timer) {
1916          timer_free(cpu->pmu_timer);
1917      }
1918      if (cpu->wfxt_timer) {
1919          timer_free(cpu->wfxt_timer);
1920      }
1921  #endif
1922  }
1923  
arm_cpu_finalize_features(ARMCPU * cpu,Error ** errp)1924  void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1925  {
1926      Error *local_err = NULL;
1927  
1928  #ifdef TARGET_AARCH64
1929      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1930          arm_cpu_sve_finalize(cpu, &local_err);
1931          if (local_err != NULL) {
1932              error_propagate(errp, local_err);
1933              return;
1934          }
1935  
1936          /*
1937           * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1938           * FEAT_SME_FA64 is present). However our implementation currently
1939           * assumes it, so if the user asked for sve=off then turn off SME also.
1940           * (KVM doesn't currently support SME at all.)
1941           */
1942          if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1943              object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1944          }
1945  
1946          arm_cpu_sme_finalize(cpu, &local_err);
1947          if (local_err != NULL) {
1948              error_propagate(errp, local_err);
1949              return;
1950          }
1951  
1952          arm_cpu_pauth_finalize(cpu, &local_err);
1953          if (local_err != NULL) {
1954              error_propagate(errp, local_err);
1955              return;
1956          }
1957  
1958          arm_cpu_lpa2_finalize(cpu, &local_err);
1959          if (local_err != NULL) {
1960              error_propagate(errp, local_err);
1961              return;
1962          }
1963      }
1964  #endif
1965  
1966      if (kvm_enabled()) {
1967          kvm_arm_steal_time_finalize(cpu, &local_err);
1968          if (local_err != NULL) {
1969              error_propagate(errp, local_err);
1970              return;
1971          }
1972      }
1973  }
1974  
arm_cpu_realizefn(DeviceState * dev,Error ** errp)1975  static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1976  {
1977      CPUState *cs = CPU(dev);
1978      ARMCPU *cpu = ARM_CPU(dev);
1979      ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1980      CPUARMState *env = &cpu->env;
1981      Error *local_err = NULL;
1982  
1983  #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1984      /* Use pc-relative instructions in system-mode */
1985      tcg_cflags_set(cs, CF_PCREL);
1986  #endif
1987  
1988      /* If we needed to query the host kernel for the CPU features
1989       * then it's possible that might have failed in the initfn, but
1990       * this is the first point where we can report it.
1991       */
1992      if (cpu->host_cpu_probe_failed) {
1993          if (!kvm_enabled() && !hvf_enabled()) {
1994              error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1995          } else {
1996              error_setg(errp, "Failed to retrieve host CPU features");
1997          }
1998          return;
1999      }
2000  
2001      if (!cpu->gt_cntfrq_hz) {
2002          /*
2003           * 0 means "the board didn't set a value, use the default". (We also
2004           * get here for the CONFIG_USER_ONLY case.)
2005           * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
2006           * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
2007           * which gives a 16ns tick period.
2008           *
2009           * We will use the back-compat value:
2010           *  - for QEMU CPU types added before we standardized on 1GHz
2011           *  - for versioned machine types with a version of 9.0 or earlier
2012           */
2013          if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2014              cpu->backcompat_cntfrq) {
2015              cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2016          } else {
2017              cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2018          }
2019      }
2020  
2021  #ifndef CONFIG_USER_ONLY
2022      /* The NVIC and M-profile CPU are two halves of a single piece of
2023       * hardware; trying to use one without the other is a command line
2024       * error and will result in segfaults if not caught here.
2025       */
2026      if (arm_feature(env, ARM_FEATURE_M)) {
2027          if (!env->nvic) {
2028              error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2029              return;
2030          }
2031      } else {
2032          if (env->nvic) {
2033              error_setg(errp, "This board can only be used with Cortex-M CPUs");
2034              return;
2035          }
2036      }
2037  
2038      if (!tcg_enabled() && !qtest_enabled()) {
2039          /*
2040           * We assume that no accelerator except TCG (and the "not really an
2041           * accelerator" qtest) can handle these features, because Arm hardware
2042           * virtualization can't virtualize them.
2043           *
2044           * Catch all the cases which might cause us to create more than one
2045           * address space for the CPU (otherwise we will assert() later in
2046           * cpu_address_space_init()).
2047           */
2048          if (arm_feature(env, ARM_FEATURE_M)) {
2049              error_setg(errp,
2050                         "Cannot enable %s when using an M-profile guest CPU",
2051                         current_accel_name());
2052              return;
2053          }
2054          if (cpu->has_el3) {
2055              error_setg(errp,
2056                         "Cannot enable %s when guest CPU has EL3 enabled",
2057                         current_accel_name());
2058              return;
2059          }
2060          if (cpu->tag_memory) {
2061              error_setg(errp,
2062                         "Cannot enable %s when guest CPUs has MTE enabled",
2063                         current_accel_name());
2064              return;
2065          }
2066      }
2067  
2068      {
2069          uint64_t scale = gt_cntfrq_period_ns(cpu);
2070  
2071          cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2072                                                 arm_gt_ptimer_cb, cpu);
2073          cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2074                                                 arm_gt_vtimer_cb, cpu);
2075          cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2076                                                arm_gt_htimer_cb, cpu);
2077          cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2078                                                arm_gt_stimer_cb, cpu);
2079          cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2080                                                    arm_gt_hvtimer_cb, cpu);
2081          cpu->gt_timer[GTIMER_S_EL2_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2082                                                       arm_gt_sel2timer_cb, cpu);
2083          cpu->gt_timer[GTIMER_S_EL2_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2084                                                       arm_gt_sel2vtimer_cb, cpu);
2085      }
2086  #endif
2087  
2088      cpu_exec_realizefn(cs, &local_err);
2089      if (local_err != NULL) {
2090          error_propagate(errp, local_err);
2091          return;
2092      }
2093  
2094      arm_cpu_finalize_features(cpu, &local_err);
2095      if (local_err != NULL) {
2096          error_propagate(errp, local_err);
2097          return;
2098      }
2099  
2100  #ifdef CONFIG_USER_ONLY
2101      /*
2102       * User mode relies on IC IVAU instructions to catch modification of
2103       * dual-mapped code.
2104       *
2105       * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2106       * IC IVAU even if the emulated processor does not normally require it.
2107       */
2108      cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2109  #endif
2110  
2111      if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2112          cpu->has_vfp != cpu->has_neon) {
2113          /*
2114           * This is an architectural requirement for AArch64; AArch32 is
2115           * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2116           */
2117          error_setg(errp,
2118                     "AArch64 CPUs must have both VFP and Neon or neither");
2119          return;
2120      }
2121  
2122      if (cpu->has_vfp_d32 != cpu->has_neon) {
2123          error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2124          return;
2125      }
2126  
2127     if (!cpu->has_vfp_d32) {
2128          uint32_t u;
2129  
2130          u = cpu->isar.mvfr0;
2131          u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2132          cpu->isar.mvfr0 = u;
2133      }
2134  
2135      if (!cpu->has_vfp) {
2136          uint64_t t;
2137          uint32_t u;
2138  
2139          t = cpu->isar.id_aa64isar1;
2140          t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2141          cpu->isar.id_aa64isar1 = t;
2142  
2143          t = cpu->isar.id_aa64pfr0;
2144          t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2145          cpu->isar.id_aa64pfr0 = t;
2146  
2147          u = cpu->isar.id_isar6;
2148          u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2149          u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2150          cpu->isar.id_isar6 = u;
2151  
2152          u = cpu->isar.mvfr0;
2153          u = FIELD_DP32(u, MVFR0, FPSP, 0);
2154          u = FIELD_DP32(u, MVFR0, FPDP, 0);
2155          u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2156          u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2157          u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2158          if (!arm_feature(env, ARM_FEATURE_M)) {
2159              u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2160              u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2161          }
2162          cpu->isar.mvfr0 = u;
2163  
2164          u = cpu->isar.mvfr1;
2165          u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2166          u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2167          u = FIELD_DP32(u, MVFR1, FPHP, 0);
2168          if (arm_feature(env, ARM_FEATURE_M)) {
2169              u = FIELD_DP32(u, MVFR1, FP16, 0);
2170          }
2171          cpu->isar.mvfr1 = u;
2172  
2173          u = cpu->isar.mvfr2;
2174          u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2175          cpu->isar.mvfr2 = u;
2176      }
2177  
2178      if (!cpu->has_neon) {
2179          uint64_t t;
2180          uint32_t u;
2181  
2182          unset_feature(env, ARM_FEATURE_NEON);
2183  
2184          t = cpu->isar.id_aa64isar0;
2185          t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2186          t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2187          t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2188          t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2189          t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2190          t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2191          t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2192          cpu->isar.id_aa64isar0 = t;
2193  
2194          t = cpu->isar.id_aa64isar1;
2195          t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2196          t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2197          t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2198          cpu->isar.id_aa64isar1 = t;
2199  
2200          t = cpu->isar.id_aa64pfr0;
2201          t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2202          cpu->isar.id_aa64pfr0 = t;
2203  
2204          u = cpu->isar.id_isar5;
2205          u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2206          u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2207          u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2208          u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2209          u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2210          cpu->isar.id_isar5 = u;
2211  
2212          u = cpu->isar.id_isar6;
2213          u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2214          u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2215          u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2216          u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2217          cpu->isar.id_isar6 = u;
2218  
2219          if (!arm_feature(env, ARM_FEATURE_M)) {
2220              u = cpu->isar.mvfr1;
2221              u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2222              u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2223              u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2224              u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2225              cpu->isar.mvfr1 = u;
2226  
2227              u = cpu->isar.mvfr2;
2228              u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2229              cpu->isar.mvfr2 = u;
2230          }
2231      }
2232  
2233      if (!cpu->has_neon && !cpu->has_vfp) {
2234          uint64_t t;
2235          uint32_t u;
2236  
2237          t = cpu->isar.id_aa64isar0;
2238          t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2239          cpu->isar.id_aa64isar0 = t;
2240  
2241          t = cpu->isar.id_aa64isar1;
2242          t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2243          cpu->isar.id_aa64isar1 = t;
2244  
2245          u = cpu->isar.mvfr0;
2246          u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2247          cpu->isar.mvfr0 = u;
2248  
2249          /* Despite the name, this field covers both VFP and Neon */
2250          u = cpu->isar.mvfr1;
2251          u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2252          cpu->isar.mvfr1 = u;
2253      }
2254  
2255      if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2256          uint32_t u;
2257  
2258          unset_feature(env, ARM_FEATURE_THUMB_DSP);
2259  
2260          u = cpu->isar.id_isar1;
2261          u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2262          cpu->isar.id_isar1 = u;
2263  
2264          u = cpu->isar.id_isar2;
2265          u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2266          u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2267          cpu->isar.id_isar2 = u;
2268  
2269          u = cpu->isar.id_isar3;
2270          u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2271          u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2272          cpu->isar.id_isar3 = u;
2273      }
2274  
2275  
2276      /*
2277       * We rely on no XScale CPU having VFP so we can use the same bits in the
2278       * TB flags field for VECSTRIDE and XSCALE_CPAR.
2279       */
2280      assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2281             !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2282             !arm_feature(env, ARM_FEATURE_XSCALE));
2283  
2284  #ifndef CONFIG_USER_ONLY
2285      {
2286          int pagebits;
2287          if (arm_feature(env, ARM_FEATURE_V7) &&
2288              !arm_feature(env, ARM_FEATURE_M) &&
2289              !arm_feature(env, ARM_FEATURE_PMSA)) {
2290              /*
2291               * v7VMSA drops support for the old ARMv5 tiny pages,
2292               * so we can use 4K pages.
2293               */
2294              pagebits = 12;
2295          } else {
2296              /*
2297               * For CPUs which might have tiny 1K pages, or which have an
2298               * MPU and might have small region sizes, stick with 1K pages.
2299               */
2300              pagebits = 10;
2301          }
2302          if (!set_preferred_target_page_bits(pagebits)) {
2303              /*
2304               * This can only ever happen for hotplugging a CPU, or if
2305               * the board code incorrectly creates a CPU which it has
2306               * promised via minimum_page_size that it will not.
2307               */
2308              error_setg(errp, "This CPU requires a smaller page size "
2309                         "than the system is using");
2310              return;
2311          }
2312      }
2313  #endif
2314  
2315      /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2316       * We don't support setting cluster ID ([16..23]) (known as Aff2
2317       * in later ARM ARM versions), or any of the higher affinity level fields,
2318       * so these bits always RAZ.
2319       */
2320      if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2321          cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2322                                                   ARM_DEFAULT_CPUS_PER_CLUSTER);
2323      }
2324  
2325      if (cpu->reset_hivecs) {
2326              cpu->reset_sctlr |= (1 << 13);
2327      }
2328  
2329      if (cpu->cfgend) {
2330          if (arm_feature(env, ARM_FEATURE_V7)) {
2331              cpu->reset_sctlr |= SCTLR_EE;
2332          } else {
2333              cpu->reset_sctlr |= SCTLR_B;
2334          }
2335      }
2336  
2337      if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2338          /* If the has_el3 CPU property is disabled then we need to disable the
2339           * feature.
2340           */
2341          unset_feature(env, ARM_FEATURE_EL3);
2342  
2343          /*
2344           * Disable the security extension feature bits in the processor
2345           * feature registers as well.
2346           */
2347          cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2348          cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2349          cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2350                                             ID_AA64PFR0, EL3, 0);
2351  
2352          /* Disable the realm management extension, which requires EL3. */
2353          cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2354                                             ID_AA64PFR0, RME, 0);
2355      }
2356  
2357      if (!cpu->has_el2) {
2358          unset_feature(env, ARM_FEATURE_EL2);
2359      }
2360  
2361      if (!cpu->has_pmu) {
2362          unset_feature(env, ARM_FEATURE_PMU);
2363      }
2364      if (arm_feature(env, ARM_FEATURE_PMU)) {
2365          pmu_init(cpu);
2366  
2367          if (!kvm_enabled()) {
2368              arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2369              arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2370          }
2371  
2372  #ifndef CONFIG_USER_ONLY
2373          cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2374                  cpu);
2375  #endif
2376      } else {
2377          cpu->isar.id_aa64dfr0 =
2378              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2379          cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2380          cpu->pmceid0 = 0;
2381          cpu->pmceid1 = 0;
2382      }
2383  
2384      if (!arm_feature(env, ARM_FEATURE_EL2)) {
2385          /*
2386           * Disable the hypervisor feature bits in the processor feature
2387           * registers if we don't have EL2.
2388           */
2389          cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2390                                             ID_AA64PFR0, EL2, 0);
2391          cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2392                                         ID_PFR1, VIRTUALIZATION, 0);
2393      }
2394  
2395      if (cpu_isar_feature(aa64_mte, cpu)) {
2396          /*
2397           * The architectural range of GM blocksize is 2-6, however qemu
2398           * doesn't support blocksize of 2 (see HELPER(ldgm)).
2399           */
2400          if (tcg_enabled()) {
2401              assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2402          }
2403  
2404  #ifndef CONFIG_USER_ONLY
2405          /*
2406           * If we run with TCG and do not have tag-memory provided by
2407           * the machine, then reduce MTE support to instructions enabled at EL0.
2408           * This matches Cortex-A710 BROADCASTMTE input being LOW.
2409           */
2410          if (tcg_enabled() && cpu->tag_memory == NULL) {
2411              cpu->isar.id_aa64pfr1 =
2412                  FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2413          }
2414  
2415          /*
2416           * If MTE is supported by the host, however it should not be
2417           * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2418           */
2419          if (kvm_enabled() && !cpu->kvm_mte) {
2420                  FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2421          }
2422  #endif
2423      }
2424  
2425  #ifndef CONFIG_USER_ONLY
2426      if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2427          cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2428                                         arm_wfxt_timer_cb, cpu);
2429      }
2430  #endif
2431  
2432      if (tcg_enabled()) {
2433          /*
2434           * Don't report some architectural features in the ID registers
2435           * where TCG does not yet implement it (not even a minimal
2436           * stub version). This avoids guests falling over when they
2437           * try to access the non-existent system registers for them.
2438           */
2439          /* FEAT_SPE (Statistical Profiling Extension) */
2440          cpu->isar.id_aa64dfr0 =
2441              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2442          /* FEAT_TRBE (Trace Buffer Extension) */
2443          cpu->isar.id_aa64dfr0 =
2444              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2445          /* FEAT_TRF (Self-hosted Trace Extension) */
2446          cpu->isar.id_aa64dfr0 =
2447              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2448          cpu->isar.id_dfr0 =
2449              FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2450          /* Trace Macrocell system register access */
2451          cpu->isar.id_aa64dfr0 =
2452              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2453          cpu->isar.id_dfr0 =
2454              FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2455          /* Memory mapped trace */
2456          cpu->isar.id_dfr0 =
2457              FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2458          /* FEAT_AMU (Activity Monitors Extension) */
2459          cpu->isar.id_aa64pfr0 =
2460              FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2461          cpu->isar.id_pfr0 =
2462              FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2463          /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2464          cpu->isar.id_aa64pfr0 =
2465              FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2466      }
2467  
2468      /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2469       * to false or by setting pmsav7-dregion to 0.
2470       */
2471      if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2472          cpu->has_mpu = false;
2473          cpu->pmsav7_dregion = 0;
2474          cpu->pmsav8r_hdregion = 0;
2475      }
2476  
2477      if (arm_feature(env, ARM_FEATURE_PMSA) &&
2478          arm_feature(env, ARM_FEATURE_V7)) {
2479          uint32_t nr = cpu->pmsav7_dregion;
2480  
2481          if (nr > 0xff) {
2482              error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2483              return;
2484          }
2485  
2486          if (nr) {
2487              if (arm_feature(env, ARM_FEATURE_V8)) {
2488                  /* PMSAv8 */
2489                  env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2490                  env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2491                  if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2492                      env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2493                      env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2494                  }
2495              } else {
2496                  env->pmsav7.drbar = g_new0(uint32_t, nr);
2497                  env->pmsav7.drsr = g_new0(uint32_t, nr);
2498                  env->pmsav7.dracr = g_new0(uint32_t, nr);
2499              }
2500          }
2501  
2502          if (cpu->pmsav8r_hdregion > 0xff) {
2503              error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2504                                cpu->pmsav8r_hdregion);
2505              return;
2506          }
2507  
2508          if (cpu->pmsav8r_hdregion) {
2509              env->pmsav8.hprbar = g_new0(uint32_t,
2510                                          cpu->pmsav8r_hdregion);
2511              env->pmsav8.hprlar = g_new0(uint32_t,
2512                                          cpu->pmsav8r_hdregion);
2513          }
2514      }
2515  
2516      if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2517          uint32_t nr = cpu->sau_sregion;
2518  
2519          if (nr > 0xff) {
2520              error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2521              return;
2522          }
2523  
2524          if (nr) {
2525              env->sau.rbar = g_new0(uint32_t, nr);
2526              env->sau.rlar = g_new0(uint32_t, nr);
2527          }
2528      }
2529  
2530      if (arm_feature(env, ARM_FEATURE_EL3)) {
2531          set_feature(env, ARM_FEATURE_VBAR);
2532      }
2533  
2534  #ifndef CONFIG_USER_ONLY
2535      if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2536          arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2537      }
2538  #endif
2539  
2540      register_cp_regs_for_features(cpu);
2541      arm_cpu_register_gdb_regs_for_features(cpu);
2542      arm_cpu_register_gdb_commands(cpu);
2543  
2544      init_cpreg_list(cpu);
2545  
2546  #ifndef CONFIG_USER_ONLY
2547      MachineState *ms = MACHINE(qdev_get_machine());
2548      unsigned int smp_cpus = ms->smp.cpus;
2549      bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2550  
2551      /*
2552       * We must set cs->num_ases to the final value before
2553       * the first call to cpu_address_space_init.
2554       */
2555      if (cpu->tag_memory != NULL) {
2556          cs->num_ases = 3 + has_secure;
2557      } else {
2558          cs->num_ases = 1 + has_secure;
2559      }
2560  
2561      if (has_secure) {
2562          if (!cpu->secure_memory) {
2563              cpu->secure_memory = cs->memory;
2564          }
2565          cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2566                                 cpu->secure_memory);
2567      }
2568  
2569      if (cpu->tag_memory != NULL) {
2570          cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2571                                 cpu->tag_memory);
2572          if (has_secure) {
2573              cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2574                                     cpu->secure_tag_memory);
2575          }
2576      }
2577  
2578      cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2579  
2580      /* No core_count specified, default to smp_cpus. */
2581      if (cpu->core_count == -1) {
2582          cpu->core_count = smp_cpus;
2583      }
2584  #endif
2585  
2586      if (tcg_enabled()) {
2587          int dcz_blocklen = 4 << cpu->dcz_blocksize;
2588  
2589          /*
2590           * We only support DCZ blocklen that fits on one page.
2591           *
2592           * Architectually this is always true.  However TARGET_PAGE_SIZE
2593           * is variable and, for compatibility with -machine virt-2.7,
2594           * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2595           * But even then, while the largest architectural DCZ blocklen
2596           * is 2KiB, no cpu actually uses such a large blocklen.
2597           */
2598          assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2599  
2600          /*
2601           * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2602           * both nibbles of each byte storing tag data may be written at once.
2603           * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2604           */
2605          if (cpu_isar_feature(aa64_mte, cpu)) {
2606              assert(dcz_blocklen >= 2 * TAG_GRANULE);
2607          }
2608      }
2609  
2610      qemu_init_vcpu(cs);
2611      cpu_reset(cs);
2612  
2613      acc->parent_realize(dev, errp);
2614  }
2615  
arm_cpu_class_by_name(const char * cpu_model)2616  static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2617  {
2618      ObjectClass *oc;
2619      char *typename;
2620      char **cpuname;
2621      const char *cpunamestr;
2622  
2623      cpuname = g_strsplit(cpu_model, ",", 1);
2624      cpunamestr = cpuname[0];
2625  #ifdef CONFIG_USER_ONLY
2626      /* For backwards compatibility usermode emulation allows "-cpu any",
2627       * which has the same semantics as "-cpu max".
2628       */
2629      if (!strcmp(cpunamestr, "any")) {
2630          cpunamestr = "max";
2631      }
2632  #endif
2633      typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2634      oc = object_class_by_name(typename);
2635      g_strfreev(cpuname);
2636      g_free(typename);
2637  
2638      return oc;
2639  }
2640  
2641  static Property arm_cpu_properties[] = {
2642      DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2643      DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2644                          mp_affinity, ARM64_AFFINITY_INVALID),
2645      DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2646      DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2647      /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2648      DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2649      DEFINE_PROP_END_OF_LIST()
2650  };
2651  
arm_gdb_arch_name(CPUState * cs)2652  static const gchar *arm_gdb_arch_name(CPUState *cs)
2653  {
2654      ARMCPU *cpu = ARM_CPU(cs);
2655      CPUARMState *env = &cpu->env;
2656  
2657      if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2658          return "iwmmxt";
2659      }
2660      return "arm";
2661  }
2662  
2663  #ifndef CONFIG_USER_ONLY
2664  #include "hw/core/sysemu-cpu-ops.h"
2665  
2666  static const struct SysemuCPUOps arm_sysemu_ops = {
2667      .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2668      .asidx_from_attrs = arm_asidx_from_attrs,
2669      .write_elf32_note = arm_cpu_write_elf32_note,
2670      .write_elf64_note = arm_cpu_write_elf64_note,
2671      .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2672      .legacy_vmsd = &vmstate_arm_cpu,
2673  };
2674  #endif
2675  
2676  #ifdef CONFIG_TCG
2677  static const TCGCPUOps arm_tcg_ops = {
2678      .initialize = arm_translate_init,
2679      .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2680      .debug_excp_handler = arm_debug_excp_handler,
2681      .restore_state_to_opc = arm_restore_state_to_opc,
2682  
2683  #ifdef CONFIG_USER_ONLY
2684      .record_sigsegv = arm_cpu_record_sigsegv,
2685      .record_sigbus = arm_cpu_record_sigbus,
2686  #else
2687      .tlb_fill_align = arm_cpu_tlb_fill_align,
2688      .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2689      .cpu_exec_halt = arm_cpu_exec_halt,
2690      .do_interrupt = arm_cpu_do_interrupt,
2691      .do_transaction_failed = arm_cpu_do_transaction_failed,
2692      .do_unaligned_access = arm_cpu_do_unaligned_access,
2693      .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2694      .debug_check_watchpoint = arm_debug_check_watchpoint,
2695      .debug_check_breakpoint = arm_debug_check_breakpoint,
2696  #endif /* !CONFIG_USER_ONLY */
2697  };
2698  #endif /* CONFIG_TCG */
2699  
arm_cpu_class_init(ObjectClass * oc,void * data)2700  static void arm_cpu_class_init(ObjectClass *oc, void *data)
2701  {
2702      ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2703      CPUClass *cc = CPU_CLASS(acc);
2704      DeviceClass *dc = DEVICE_CLASS(oc);
2705      ResettableClass *rc = RESETTABLE_CLASS(oc);
2706  
2707      device_class_set_parent_realize(dc, arm_cpu_realizefn,
2708                                      &acc->parent_realize);
2709  
2710      device_class_set_props(dc, arm_cpu_properties);
2711  
2712      resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2713                                         &acc->parent_phases);
2714  
2715      cc->class_by_name = arm_cpu_class_by_name;
2716      cc->has_work = arm_cpu_has_work;
2717      cc->mmu_index = arm_cpu_mmu_index;
2718      cc->dump_state = arm_cpu_dump_state;
2719      cc->set_pc = arm_cpu_set_pc;
2720      cc->get_pc = arm_cpu_get_pc;
2721      cc->gdb_read_register = arm_cpu_gdb_read_register;
2722      cc->gdb_write_register = arm_cpu_gdb_write_register;
2723  #ifndef CONFIG_USER_ONLY
2724      cc->sysemu_ops = &arm_sysemu_ops;
2725  #endif
2726      cc->gdb_arch_name = arm_gdb_arch_name;
2727      cc->gdb_stop_before_watchpoint = true;
2728      cc->disas_set_info = arm_disas_set_info;
2729  
2730  #ifdef CONFIG_TCG
2731      cc->tcg_ops = &arm_tcg_ops;
2732  #endif /* CONFIG_TCG */
2733  }
2734  
arm_cpu_instance_init(Object * obj)2735  static void arm_cpu_instance_init(Object *obj)
2736  {
2737      ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2738  
2739      acc->info->initfn(obj);
2740      arm_cpu_post_init(obj);
2741  }
2742  
cpu_register_class_init(ObjectClass * oc,void * data)2743  static void cpu_register_class_init(ObjectClass *oc, void *data)
2744  {
2745      ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2746      CPUClass *cc = CPU_CLASS(acc);
2747  
2748      acc->info = data;
2749      cc->gdb_core_xml_file = "arm-core.xml";
2750  }
2751  
arm_cpu_register(const ARMCPUInfo * info)2752  void arm_cpu_register(const ARMCPUInfo *info)
2753  {
2754      TypeInfo type_info = {
2755          .parent = TYPE_ARM_CPU,
2756          .instance_init = arm_cpu_instance_init,
2757          .class_init = info->class_init ?: cpu_register_class_init,
2758          .class_data = (void *)info,
2759      };
2760  
2761      type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2762      type_register(&type_info);
2763      g_free((void *)type_info.name);
2764  }
2765  
2766  static const TypeInfo arm_cpu_type_info = {
2767      .name = TYPE_ARM_CPU,
2768      .parent = TYPE_CPU,
2769      .instance_size = sizeof(ARMCPU),
2770      .instance_align = __alignof__(ARMCPU),
2771      .instance_init = arm_cpu_initfn,
2772      .instance_finalize = arm_cpu_finalizefn,
2773      .abstract = true,
2774      .class_size = sizeof(ARMCPUClass),
2775      .class_init = arm_cpu_class_init,
2776  };
2777  
arm_cpu_register_types(void)2778  static void arm_cpu_register_types(void)
2779  {
2780      type_register_static(&arm_cpu_type_info);
2781  }
2782  
2783  type_init(arm_cpu_register_types)
2784