1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * NILFS segment constructor.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 *
9 */
10
11 #include <linux/pagemap.h>
12 #include <linux/buffer_head.h>
13 #include <linux/writeback.h>
14 #include <linux/bitops.h>
15 #include <linux/bio.h>
16 #include <linux/completion.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <linux/kthread.h>
21 #include <linux/crc32.h>
22 #include <linux/pagevec.h>
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25
26 #include "nilfs.h"
27 #include "btnode.h"
28 #include "page.h"
29 #include "segment.h"
30 #include "sufile.h"
31 #include "cpfile.h"
32 #include "ifile.h"
33 #include "segbuf.h"
34
35
36 /*
37 * Segment constructor
38 */
39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
40
41 #define SC_MAX_SEGDELTA 64 /*
42 * Upper limit of the number of segments
43 * appended in collection retry loop
44 */
45
46 /* Construction mode */
47 enum {
48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */
49 SC_LSEG_DSYNC, /*
50 * Flush data blocks of a given file and make
51 * a logical segment without a super root.
52 */
53 SC_FLUSH_FILE, /*
54 * Flush data files, leads to segment writes without
55 * creating a checkpoint.
56 */
57 SC_FLUSH_DAT, /*
58 * Flush DAT file. This also creates segments
59 * without a checkpoint.
60 */
61 };
62
63 /* Stage numbers of dirty block collection */
64 enum {
65 NILFS_ST_INIT = 0,
66 NILFS_ST_GC, /* Collecting dirty blocks for GC */
67 NILFS_ST_FILE,
68 NILFS_ST_IFILE,
69 NILFS_ST_CPFILE,
70 NILFS_ST_SUFILE,
71 NILFS_ST_DAT,
72 NILFS_ST_SR, /* Super root */
73 NILFS_ST_DSYNC, /* Data sync blocks */
74 NILFS_ST_DONE,
75 };
76
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/nilfs2.h>
79
80 /*
81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
83 * the variable must use them because transition of stage count must involve
84 * trace events (trace_nilfs2_collection_stage_transition).
85 *
86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
87 * produce tracepoint events. It is provided just for making the intention
88 * clear.
89 */
nilfs_sc_cstage_inc(struct nilfs_sc_info * sci)90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
91 {
92 sci->sc_stage.scnt++;
93 trace_nilfs2_collection_stage_transition(sci);
94 }
95
nilfs_sc_cstage_set(struct nilfs_sc_info * sci,int next_scnt)96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
97 {
98 sci->sc_stage.scnt = next_scnt;
99 trace_nilfs2_collection_stage_transition(sci);
100 }
101
nilfs_sc_cstage_get(struct nilfs_sc_info * sci)102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
103 {
104 return sci->sc_stage.scnt;
105 }
106
107 /* State flags of collection */
108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
112
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations {
115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
116 struct inode *);
117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
118 struct inode *);
119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
120 struct inode *);
121 void (*write_data_binfo)(struct nilfs_sc_info *,
122 struct nilfs_segsum_pointer *,
123 union nilfs_binfo *);
124 void (*write_node_binfo)(struct nilfs_sc_info *,
125 struct nilfs_segsum_pointer *,
126 union nilfs_binfo *);
127 };
128
129 /*
130 * Other definitions
131 */
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
136
137 #define nilfs_cnt32_ge(a, b) \
138 (typecheck(__u32, a) && typecheck(__u32, b) && \
139 ((__s32)((a) - (b)) >= 0))
140
nilfs_prepare_segment_lock(struct super_block * sb,struct nilfs_transaction_info * ti)141 static int nilfs_prepare_segment_lock(struct super_block *sb,
142 struct nilfs_transaction_info *ti)
143 {
144 struct nilfs_transaction_info *cur_ti = current->journal_info;
145 void *save = NULL;
146
147 if (cur_ti) {
148 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
149 return ++cur_ti->ti_count;
150
151 /*
152 * If journal_info field is occupied by other FS,
153 * it is saved and will be restored on
154 * nilfs_transaction_commit().
155 */
156 nilfs_warn(sb, "journal info from a different FS");
157 save = current->journal_info;
158 }
159 if (!ti) {
160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
161 if (!ti)
162 return -ENOMEM;
163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
164 } else {
165 ti->ti_flags = 0;
166 }
167 ti->ti_count = 0;
168 ti->ti_save = save;
169 ti->ti_magic = NILFS_TI_MAGIC;
170 current->journal_info = ti;
171 return 0;
172 }
173
174 /**
175 * nilfs_transaction_begin - start indivisible file operations.
176 * @sb: super block
177 * @ti: nilfs_transaction_info
178 * @vacancy_check: flags for vacancy rate checks
179 *
180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181 * the segment semaphore, to make a segment construction and write tasks
182 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
183 * The region enclosed by these two functions can be nested. To avoid a
184 * deadlock, the semaphore is only acquired or released in the outermost call.
185 *
186 * This function allocates a nilfs_transaction_info struct to keep context
187 * information on it. It is initialized and hooked onto the current task in
188 * the outermost call. If a pre-allocated struct is given to @ti, it is used
189 * instead; otherwise a new struct is assigned from a slab.
190 *
191 * When @vacancy_check flag is set, this function will check the amount of
192 * free space, and will wait for the GC to reclaim disk space if low capacity.
193 *
194 * Return Value: On success, 0 is returned. On error, one of the following
195 * negative error code is returned.
196 *
197 * %-ENOMEM - Insufficient memory available.
198 *
199 * %-ENOSPC - No space left on device
200 */
nilfs_transaction_begin(struct super_block * sb,struct nilfs_transaction_info * ti,int vacancy_check)201 int nilfs_transaction_begin(struct super_block *sb,
202 struct nilfs_transaction_info *ti,
203 int vacancy_check)
204 {
205 struct the_nilfs *nilfs;
206 int ret = nilfs_prepare_segment_lock(sb, ti);
207 struct nilfs_transaction_info *trace_ti;
208
209 if (unlikely(ret < 0))
210 return ret;
211 if (ret > 0) {
212 trace_ti = current->journal_info;
213
214 trace_nilfs2_transaction_transition(sb, trace_ti,
215 trace_ti->ti_count, trace_ti->ti_flags,
216 TRACE_NILFS2_TRANSACTION_BEGIN);
217 return 0;
218 }
219
220 sb_start_intwrite(sb);
221
222 nilfs = sb->s_fs_info;
223 down_read(&nilfs->ns_segctor_sem);
224 if (vacancy_check && nilfs_near_disk_full(nilfs)) {
225 up_read(&nilfs->ns_segctor_sem);
226 ret = -ENOSPC;
227 goto failed;
228 }
229
230 trace_ti = current->journal_info;
231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
232 trace_ti->ti_flags,
233 TRACE_NILFS2_TRANSACTION_BEGIN);
234 return 0;
235
236 failed:
237 ti = current->journal_info;
238 current->journal_info = ti->ti_save;
239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
240 kmem_cache_free(nilfs_transaction_cachep, ti);
241 sb_end_intwrite(sb);
242 return ret;
243 }
244
245 /**
246 * nilfs_transaction_commit - commit indivisible file operations.
247 * @sb: super block
248 *
249 * nilfs_transaction_commit() releases the read semaphore which is
250 * acquired by nilfs_transaction_begin(). This is only performed
251 * in outermost call of this function. If a commit flag is set,
252 * nilfs_transaction_commit() sets a timer to start the segment
253 * constructor. If a sync flag is set, it starts construction
254 * directly.
255 */
nilfs_transaction_commit(struct super_block * sb)256 int nilfs_transaction_commit(struct super_block *sb)
257 {
258 struct nilfs_transaction_info *ti = current->journal_info;
259 struct the_nilfs *nilfs = sb->s_fs_info;
260 int err = 0;
261
262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
263 ti->ti_flags |= NILFS_TI_COMMIT;
264 if (ti->ti_count > 0) {
265 ti->ti_count--;
266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
268 return 0;
269 }
270 if (nilfs->ns_writer) {
271 struct nilfs_sc_info *sci = nilfs->ns_writer;
272
273 if (ti->ti_flags & NILFS_TI_COMMIT)
274 nilfs_segctor_start_timer(sci);
275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
276 nilfs_segctor_do_flush(sci, 0);
277 }
278 up_read(&nilfs->ns_segctor_sem);
279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
281
282 current->journal_info = ti->ti_save;
283
284 if (ti->ti_flags & NILFS_TI_SYNC)
285 err = nilfs_construct_segment(sb);
286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287 kmem_cache_free(nilfs_transaction_cachep, ti);
288 sb_end_intwrite(sb);
289 return err;
290 }
291
nilfs_transaction_abort(struct super_block * sb)292 void nilfs_transaction_abort(struct super_block *sb)
293 {
294 struct nilfs_transaction_info *ti = current->journal_info;
295 struct the_nilfs *nilfs = sb->s_fs_info;
296
297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
298 if (ti->ti_count > 0) {
299 ti->ti_count--;
300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
302 return;
303 }
304 up_read(&nilfs->ns_segctor_sem);
305
306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
308
309 current->journal_info = ti->ti_save;
310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
311 kmem_cache_free(nilfs_transaction_cachep, ti);
312 sb_end_intwrite(sb);
313 }
314
nilfs_relax_pressure_in_lock(struct super_block * sb)315 void nilfs_relax_pressure_in_lock(struct super_block *sb)
316 {
317 struct the_nilfs *nilfs = sb->s_fs_info;
318 struct nilfs_sc_info *sci = nilfs->ns_writer;
319
320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request)
321 return;
322
323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
324 up_read(&nilfs->ns_segctor_sem);
325
326 down_write(&nilfs->ns_segctor_sem);
327 if (sci->sc_flush_request &&
328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
329 struct nilfs_transaction_info *ti = current->journal_info;
330
331 ti->ti_flags |= NILFS_TI_WRITER;
332 nilfs_segctor_do_immediate_flush(sci);
333 ti->ti_flags &= ~NILFS_TI_WRITER;
334 }
335 downgrade_write(&nilfs->ns_segctor_sem);
336 }
337
nilfs_transaction_lock(struct super_block * sb,struct nilfs_transaction_info * ti,int gcflag)338 static void nilfs_transaction_lock(struct super_block *sb,
339 struct nilfs_transaction_info *ti,
340 int gcflag)
341 {
342 struct nilfs_transaction_info *cur_ti = current->journal_info;
343 struct the_nilfs *nilfs = sb->s_fs_info;
344 struct nilfs_sc_info *sci = nilfs->ns_writer;
345
346 WARN_ON(cur_ti);
347 ti->ti_flags = NILFS_TI_WRITER;
348 ti->ti_count = 0;
349 ti->ti_save = cur_ti;
350 ti->ti_magic = NILFS_TI_MAGIC;
351 current->journal_info = ti;
352
353 for (;;) {
354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
356
357 down_write(&nilfs->ns_segctor_sem);
358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
359 break;
360
361 nilfs_segctor_do_immediate_flush(sci);
362
363 up_write(&nilfs->ns_segctor_sem);
364 cond_resched();
365 }
366 if (gcflag)
367 ti->ti_flags |= NILFS_TI_GC;
368
369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
371 }
372
nilfs_transaction_unlock(struct super_block * sb)373 static void nilfs_transaction_unlock(struct super_block *sb)
374 {
375 struct nilfs_transaction_info *ti = current->journal_info;
376 struct the_nilfs *nilfs = sb->s_fs_info;
377
378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
379 BUG_ON(ti->ti_count > 0);
380
381 up_write(&nilfs->ns_segctor_sem);
382 current->journal_info = ti->ti_save;
383
384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
386 }
387
nilfs_segctor_map_segsum_entry(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,unsigned int bytes)388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
389 struct nilfs_segsum_pointer *ssp,
390 unsigned int bytes)
391 {
392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
393 unsigned int blocksize = sci->sc_super->s_blocksize;
394 void *p;
395
396 if (unlikely(ssp->offset + bytes > blocksize)) {
397 ssp->offset = 0;
398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
399 &segbuf->sb_segsum_buffers));
400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
401 }
402 p = ssp->bh->b_data + ssp->offset;
403 ssp->offset += bytes;
404 return p;
405 }
406
407 /**
408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409 * @sci: nilfs_sc_info
410 */
nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info * sci)411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
412 {
413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
414 struct buffer_head *sumbh;
415 unsigned int sumbytes;
416 unsigned int flags = 0;
417 int err;
418
419 if (nilfs_doing_gc())
420 flags = NILFS_SS_GC;
421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
422 if (unlikely(err))
423 return err;
424
425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
426 sumbytes = segbuf->sb_sum.sumbytes;
427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
430 return 0;
431 }
432
433 /**
434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
435 * @sci: segment constructor object
436 *
437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
438 * the current segment summary block.
439 */
nilfs_segctor_zeropad_segsum(struct nilfs_sc_info * sci)440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci)
441 {
442 struct nilfs_segsum_pointer *ssp;
443
444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr;
445 if (ssp->offset < ssp->bh->b_size)
446 memset(ssp->bh->b_data + ssp->offset, 0,
447 ssp->bh->b_size - ssp->offset);
448 }
449
nilfs_segctor_feed_segment(struct nilfs_sc_info * sci)450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
451 {
452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
454 return -E2BIG; /*
455 * The current segment is filled up
456 * (internal code)
457 */
458 nilfs_segctor_zeropad_segsum(sci);
459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
460 return nilfs_segctor_reset_segment_buffer(sci);
461 }
462
nilfs_segctor_add_super_root(struct nilfs_sc_info * sci)463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
464 {
465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
466 int err;
467
468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
469 err = nilfs_segctor_feed_segment(sci);
470 if (err)
471 return err;
472 segbuf = sci->sc_curseg;
473 }
474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
475 if (likely(!err))
476 segbuf->sb_sum.flags |= NILFS_SS_SR;
477 return err;
478 }
479
480 /*
481 * Functions for making segment summary and payloads
482 */
nilfs_segctor_segsum_block_required(struct nilfs_sc_info * sci,const struct nilfs_segsum_pointer * ssp,unsigned int binfo_size)483 static int nilfs_segctor_segsum_block_required(
484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
485 unsigned int binfo_size)
486 {
487 unsigned int blocksize = sci->sc_super->s_blocksize;
488 /* Size of finfo and binfo is enough small against blocksize */
489
490 return ssp->offset + binfo_size +
491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
492 blocksize;
493 }
494
nilfs_segctor_begin_finfo(struct nilfs_sc_info * sci,struct inode * inode)495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
496 struct inode *inode)
497 {
498 sci->sc_curseg->sb_sum.nfinfo++;
499 sci->sc_binfo_ptr = sci->sc_finfo_ptr;
500 nilfs_segctor_map_segsum_entry(
501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
502
503 if (NILFS_I(inode)->i_root &&
504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
506 /* skip finfo */
507 }
508
nilfs_segctor_end_finfo(struct nilfs_sc_info * sci,struct inode * inode)509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
510 struct inode *inode)
511 {
512 struct nilfs_finfo *finfo;
513 struct nilfs_inode_info *ii;
514 struct nilfs_segment_buffer *segbuf;
515 __u64 cno;
516
517 if (sci->sc_blk_cnt == 0)
518 return;
519
520 ii = NILFS_I(inode);
521
522 if (test_bit(NILFS_I_GCINODE, &ii->i_state))
523 cno = ii->i_cno;
524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
525 cno = 0;
526 else
527 cno = sci->sc_cno;
528
529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
530 sizeof(*finfo));
531 finfo->fi_ino = cpu_to_le64(inode->i_ino);
532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
534 finfo->fi_cno = cpu_to_le64(cno);
535
536 segbuf = sci->sc_curseg;
537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
539 sci->sc_finfo_ptr = sci->sc_binfo_ptr;
540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
541 }
542
nilfs_segctor_add_file_block(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode,unsigned int binfo_size)543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
544 struct buffer_head *bh,
545 struct inode *inode,
546 unsigned int binfo_size)
547 {
548 struct nilfs_segment_buffer *segbuf;
549 int required, err = 0;
550
551 retry:
552 segbuf = sci->sc_curseg;
553 required = nilfs_segctor_segsum_block_required(
554 sci, &sci->sc_binfo_ptr, binfo_size);
555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
556 nilfs_segctor_end_finfo(sci, inode);
557 err = nilfs_segctor_feed_segment(sci);
558 if (err)
559 return err;
560 goto retry;
561 }
562 if (unlikely(required)) {
563 nilfs_segctor_zeropad_segsum(sci);
564 err = nilfs_segbuf_extend_segsum(segbuf);
565 if (unlikely(err))
566 goto failed;
567 }
568 if (sci->sc_blk_cnt == 0)
569 nilfs_segctor_begin_finfo(sci, inode);
570
571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
572 /* Substitution to vblocknr is delayed until update_blocknr() */
573 nilfs_segbuf_add_file_buffer(segbuf, bh);
574 sci->sc_blk_cnt++;
575 failed:
576 return err;
577 }
578
579 /*
580 * Callback functions that enumerate, mark, and collect dirty blocks
581 */
nilfs_collect_file_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
583 struct buffer_head *bh, struct inode *inode)
584 {
585 int err;
586
587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
588 if (err < 0)
589 return err;
590
591 err = nilfs_segctor_add_file_block(sci, bh, inode,
592 sizeof(struct nilfs_binfo_v));
593 if (!err)
594 sci->sc_datablk_cnt++;
595 return err;
596 }
597
nilfs_collect_file_node(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
599 struct buffer_head *bh,
600 struct inode *inode)
601 {
602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
603 }
604
nilfs_collect_file_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
606 struct buffer_head *bh,
607 struct inode *inode)
608 {
609 WARN_ON(!buffer_dirty(bh));
610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
611 }
612
nilfs_write_file_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
614 struct nilfs_segsum_pointer *ssp,
615 union nilfs_binfo *binfo)
616 {
617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
618 sci, ssp, sizeof(*binfo_v));
619 *binfo_v = binfo->bi_v;
620 }
621
nilfs_write_file_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
623 struct nilfs_segsum_pointer *ssp,
624 union nilfs_binfo *binfo)
625 {
626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
627 sci, ssp, sizeof(*vblocknr));
628 *vblocknr = binfo->bi_v.bi_vblocknr;
629 }
630
631 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
632 .collect_data = nilfs_collect_file_data,
633 .collect_node = nilfs_collect_file_node,
634 .collect_bmap = nilfs_collect_file_bmap,
635 .write_data_binfo = nilfs_write_file_data_binfo,
636 .write_node_binfo = nilfs_write_file_node_binfo,
637 };
638
nilfs_collect_dat_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
640 struct buffer_head *bh, struct inode *inode)
641 {
642 int err;
643
644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
645 if (err < 0)
646 return err;
647
648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
649 if (!err)
650 sci->sc_datablk_cnt++;
651 return err;
652 }
653
nilfs_collect_dat_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
655 struct buffer_head *bh, struct inode *inode)
656 {
657 WARN_ON(!buffer_dirty(bh));
658 return nilfs_segctor_add_file_block(sci, bh, inode,
659 sizeof(struct nilfs_binfo_dat));
660 }
661
nilfs_write_dat_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
663 struct nilfs_segsum_pointer *ssp,
664 union nilfs_binfo *binfo)
665 {
666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
667 sizeof(*blkoff));
668 *blkoff = binfo->bi_dat.bi_blkoff;
669 }
670
nilfs_write_dat_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
672 struct nilfs_segsum_pointer *ssp,
673 union nilfs_binfo *binfo)
674 {
675 struct nilfs_binfo_dat *binfo_dat =
676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
677 *binfo_dat = binfo->bi_dat;
678 }
679
680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
681 .collect_data = nilfs_collect_dat_data,
682 .collect_node = nilfs_collect_file_node,
683 .collect_bmap = nilfs_collect_dat_bmap,
684 .write_data_binfo = nilfs_write_dat_data_binfo,
685 .write_node_binfo = nilfs_write_dat_node_binfo,
686 };
687
688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
689 .collect_data = nilfs_collect_file_data,
690 .collect_node = NULL,
691 .collect_bmap = NULL,
692 .write_data_binfo = nilfs_write_file_data_binfo,
693 .write_node_binfo = NULL,
694 };
695
nilfs_lookup_dirty_data_buffers(struct inode * inode,struct list_head * listp,size_t nlimit,loff_t start,loff_t end)696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
697 struct list_head *listp,
698 size_t nlimit,
699 loff_t start, loff_t end)
700 {
701 struct address_space *mapping = inode->i_mapping;
702 struct folio_batch fbatch;
703 pgoff_t index = 0, last = ULONG_MAX;
704 size_t ndirties = 0;
705 int i;
706
707 if (unlikely(start != 0 || end != LLONG_MAX)) {
708 /*
709 * A valid range is given for sync-ing data pages. The
710 * range is rounded to per-page; extra dirty buffers
711 * may be included if blocksize < pagesize.
712 */
713 index = start >> PAGE_SHIFT;
714 last = end >> PAGE_SHIFT;
715 }
716 folio_batch_init(&fbatch);
717 repeat:
718 if (unlikely(index > last) ||
719 !filemap_get_folios_tag(mapping, &index, last,
720 PAGECACHE_TAG_DIRTY, &fbatch))
721 return ndirties;
722
723 for (i = 0; i < folio_batch_count(&fbatch); i++) {
724 struct buffer_head *bh, *head;
725 struct folio *folio = fbatch.folios[i];
726
727 folio_lock(folio);
728 if (unlikely(folio->mapping != mapping)) {
729 /* Exclude folios removed from the address space */
730 folio_unlock(folio);
731 continue;
732 }
733 head = folio_buffers(folio);
734 if (!head)
735 head = folio_create_empty_buffers(folio,
736 i_blocksize(inode), 0);
737
738 bh = head;
739 do {
740 if (!buffer_dirty(bh) || buffer_async_write(bh))
741 continue;
742 get_bh(bh);
743 list_add_tail(&bh->b_assoc_buffers, listp);
744 ndirties++;
745 if (unlikely(ndirties >= nlimit)) {
746 folio_unlock(folio);
747 folio_batch_release(&fbatch);
748 cond_resched();
749 return ndirties;
750 }
751 } while (bh = bh->b_this_page, bh != head);
752
753 folio_unlock(folio);
754 }
755 folio_batch_release(&fbatch);
756 cond_resched();
757 goto repeat;
758 }
759
nilfs_lookup_dirty_node_buffers(struct inode * inode,struct list_head * listp)760 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
761 struct list_head *listp)
762 {
763 struct nilfs_inode_info *ii = NILFS_I(inode);
764 struct inode *btnc_inode = ii->i_assoc_inode;
765 struct folio_batch fbatch;
766 struct buffer_head *bh, *head;
767 unsigned int i;
768 pgoff_t index = 0;
769
770 if (!btnc_inode)
771 return;
772 folio_batch_init(&fbatch);
773
774 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index,
775 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) {
776 for (i = 0; i < folio_batch_count(&fbatch); i++) {
777 bh = head = folio_buffers(fbatch.folios[i]);
778 do {
779 if (buffer_dirty(bh) &&
780 !buffer_async_write(bh)) {
781 get_bh(bh);
782 list_add_tail(&bh->b_assoc_buffers,
783 listp);
784 }
785 bh = bh->b_this_page;
786 } while (bh != head);
787 }
788 folio_batch_release(&fbatch);
789 cond_resched();
790 }
791 }
792
nilfs_dispose_list(struct the_nilfs * nilfs,struct list_head * head,int force)793 static void nilfs_dispose_list(struct the_nilfs *nilfs,
794 struct list_head *head, int force)
795 {
796 struct nilfs_inode_info *ii, *n;
797 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
798 unsigned int nv = 0;
799
800 while (!list_empty(head)) {
801 spin_lock(&nilfs->ns_inode_lock);
802 list_for_each_entry_safe(ii, n, head, i_dirty) {
803 list_del_init(&ii->i_dirty);
804 if (force) {
805 if (unlikely(ii->i_bh)) {
806 brelse(ii->i_bh);
807 ii->i_bh = NULL;
808 }
809 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
810 set_bit(NILFS_I_QUEUED, &ii->i_state);
811 list_add_tail(&ii->i_dirty,
812 &nilfs->ns_dirty_files);
813 continue;
814 }
815 ivec[nv++] = ii;
816 if (nv == SC_N_INODEVEC)
817 break;
818 }
819 spin_unlock(&nilfs->ns_inode_lock);
820
821 for (pii = ivec; nv > 0; pii++, nv--)
822 iput(&(*pii)->vfs_inode);
823 }
824 }
825
nilfs_iput_work_func(struct work_struct * work)826 static void nilfs_iput_work_func(struct work_struct *work)
827 {
828 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
829 sc_iput_work);
830 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
831
832 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
833 }
834
nilfs_test_metadata_dirty(struct the_nilfs * nilfs,struct nilfs_root * root)835 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
836 struct nilfs_root *root)
837 {
838 int ret = 0;
839
840 if (nilfs_mdt_fetch_dirty(root->ifile))
841 ret++;
842 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
843 ret++;
844 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
845 ret++;
846 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
847 ret++;
848 return ret;
849 }
850
nilfs_segctor_clean(struct nilfs_sc_info * sci)851 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
852 {
853 return list_empty(&sci->sc_dirty_files) &&
854 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
855 sci->sc_nfreesegs == 0 &&
856 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
857 }
858
nilfs_segctor_confirm(struct nilfs_sc_info * sci)859 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
860 {
861 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
862 int ret = 0;
863
864 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
865 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
866
867 spin_lock(&nilfs->ns_inode_lock);
868 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
869 ret++;
870
871 spin_unlock(&nilfs->ns_inode_lock);
872 return ret;
873 }
874
nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info * sci)875 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
876 {
877 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
878
879 nilfs_mdt_clear_dirty(sci->sc_root->ifile);
880 nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
881 nilfs_mdt_clear_dirty(nilfs->ns_sufile);
882 nilfs_mdt_clear_dirty(nilfs->ns_dat);
883 }
884
nilfs_segctor_create_checkpoint(struct nilfs_sc_info * sci)885 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
886 {
887 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
888 struct buffer_head *bh_cp;
889 struct nilfs_checkpoint *raw_cp;
890 int err;
891
892 /* XXX: this interface will be changed */
893 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
894 &raw_cp, &bh_cp);
895 if (likely(!err)) {
896 /*
897 * The following code is duplicated with cpfile. But, it is
898 * needed to collect the checkpoint even if it was not newly
899 * created.
900 */
901 mark_buffer_dirty(bh_cp);
902 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
903 nilfs_cpfile_put_checkpoint(
904 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
905 } else if (err == -EINVAL || err == -ENOENT) {
906 nilfs_error(sci->sc_super,
907 "checkpoint creation failed due to metadata corruption.");
908 err = -EIO;
909 }
910 return err;
911 }
912
nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info * sci)913 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
914 {
915 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
916 struct buffer_head *bh_cp;
917 struct nilfs_checkpoint *raw_cp;
918 int err;
919
920 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
921 &raw_cp, &bh_cp);
922 if (unlikely(err)) {
923 if (err == -EINVAL || err == -ENOENT) {
924 nilfs_error(sci->sc_super,
925 "checkpoint finalization failed due to metadata corruption.");
926 err = -EIO;
927 }
928 goto failed_ibh;
929 }
930 raw_cp->cp_snapshot_list.ssl_next = 0;
931 raw_cp->cp_snapshot_list.ssl_prev = 0;
932 raw_cp->cp_inodes_count =
933 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
934 raw_cp->cp_blocks_count =
935 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
936 raw_cp->cp_nblk_inc =
937 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
938 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
939 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
940
941 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
942 nilfs_checkpoint_clear_minor(raw_cp);
943 else
944 nilfs_checkpoint_set_minor(raw_cp);
945
946 nilfs_write_inode_common(sci->sc_root->ifile,
947 &raw_cp->cp_ifile_inode, 1);
948 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
949 return 0;
950
951 failed_ibh:
952 return err;
953 }
954
nilfs_fill_in_file_bmap(struct inode * ifile,struct nilfs_inode_info * ii)955 static void nilfs_fill_in_file_bmap(struct inode *ifile,
956 struct nilfs_inode_info *ii)
957
958 {
959 struct buffer_head *ibh;
960 struct nilfs_inode *raw_inode;
961
962 if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
963 ibh = ii->i_bh;
964 BUG_ON(!ibh);
965 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
966 ibh);
967 nilfs_bmap_write(ii->i_bmap, raw_inode);
968 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
969 }
970 }
971
nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info * sci)972 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
973 {
974 struct nilfs_inode_info *ii;
975
976 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
977 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
978 set_bit(NILFS_I_COLLECTED, &ii->i_state);
979 }
980 }
981
nilfs_segctor_fill_in_super_root(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)982 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
983 struct the_nilfs *nilfs)
984 {
985 struct buffer_head *bh_sr;
986 struct nilfs_super_root *raw_sr;
987 unsigned int isz, srsz;
988
989 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
990
991 lock_buffer(bh_sr);
992 raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
993 isz = nilfs->ns_inode_size;
994 srsz = NILFS_SR_BYTES(isz);
995
996 raw_sr->sr_sum = 0; /* Ensure initialization within this update */
997 raw_sr->sr_bytes = cpu_to_le16(srsz);
998 raw_sr->sr_nongc_ctime
999 = cpu_to_le64(nilfs_doing_gc() ?
1000 nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
1001 raw_sr->sr_flags = 0;
1002
1003 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
1004 NILFS_SR_DAT_OFFSET(isz), 1);
1005 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
1006 NILFS_SR_CPFILE_OFFSET(isz), 1);
1007 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
1008 NILFS_SR_SUFILE_OFFSET(isz), 1);
1009 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
1010 set_buffer_uptodate(bh_sr);
1011 unlock_buffer(bh_sr);
1012 }
1013
nilfs_redirty_inodes(struct list_head * head)1014 static void nilfs_redirty_inodes(struct list_head *head)
1015 {
1016 struct nilfs_inode_info *ii;
1017
1018 list_for_each_entry(ii, head, i_dirty) {
1019 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
1020 clear_bit(NILFS_I_COLLECTED, &ii->i_state);
1021 }
1022 }
1023
nilfs_drop_collected_inodes(struct list_head * head)1024 static void nilfs_drop_collected_inodes(struct list_head *head)
1025 {
1026 struct nilfs_inode_info *ii;
1027
1028 list_for_each_entry(ii, head, i_dirty) {
1029 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1030 continue;
1031
1032 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
1033 set_bit(NILFS_I_UPDATED, &ii->i_state);
1034 }
1035 }
1036
nilfs_segctor_apply_buffers(struct nilfs_sc_info * sci,struct inode * inode,struct list_head * listp,int (* collect)(struct nilfs_sc_info *,struct buffer_head *,struct inode *))1037 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1038 struct inode *inode,
1039 struct list_head *listp,
1040 int (*collect)(struct nilfs_sc_info *,
1041 struct buffer_head *,
1042 struct inode *))
1043 {
1044 struct buffer_head *bh, *n;
1045 int err = 0;
1046
1047 if (collect) {
1048 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1049 list_del_init(&bh->b_assoc_buffers);
1050 err = collect(sci, bh, inode);
1051 brelse(bh);
1052 if (unlikely(err))
1053 goto dispose_buffers;
1054 }
1055 return 0;
1056 }
1057
1058 dispose_buffers:
1059 while (!list_empty(listp)) {
1060 bh = list_first_entry(listp, struct buffer_head,
1061 b_assoc_buffers);
1062 list_del_init(&bh->b_assoc_buffers);
1063 brelse(bh);
1064 }
1065 return err;
1066 }
1067
nilfs_segctor_buffer_rest(struct nilfs_sc_info * sci)1068 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1069 {
1070 /* Remaining number of blocks within segment buffer */
1071 return sci->sc_segbuf_nblocks -
1072 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1073 }
1074
nilfs_segctor_scan_file(struct nilfs_sc_info * sci,struct inode * inode,const struct nilfs_sc_operations * sc_ops)1075 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1076 struct inode *inode,
1077 const struct nilfs_sc_operations *sc_ops)
1078 {
1079 LIST_HEAD(data_buffers);
1080 LIST_HEAD(node_buffers);
1081 int err;
1082
1083 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1084 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1085
1086 n = nilfs_lookup_dirty_data_buffers(
1087 inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1088 if (n > rest) {
1089 err = nilfs_segctor_apply_buffers(
1090 sci, inode, &data_buffers,
1091 sc_ops->collect_data);
1092 BUG_ON(!err); /* always receive -E2BIG or true error */
1093 goto break_or_fail;
1094 }
1095 }
1096 nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1097
1098 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1099 err = nilfs_segctor_apply_buffers(
1100 sci, inode, &data_buffers, sc_ops->collect_data);
1101 if (unlikely(err)) {
1102 /* dispose node list */
1103 nilfs_segctor_apply_buffers(
1104 sci, inode, &node_buffers, NULL);
1105 goto break_or_fail;
1106 }
1107 sci->sc_stage.flags |= NILFS_CF_NODE;
1108 }
1109 /* Collect node */
1110 err = nilfs_segctor_apply_buffers(
1111 sci, inode, &node_buffers, sc_ops->collect_node);
1112 if (unlikely(err))
1113 goto break_or_fail;
1114
1115 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1116 err = nilfs_segctor_apply_buffers(
1117 sci, inode, &node_buffers, sc_ops->collect_bmap);
1118 if (unlikely(err))
1119 goto break_or_fail;
1120
1121 nilfs_segctor_end_finfo(sci, inode);
1122 sci->sc_stage.flags &= ~NILFS_CF_NODE;
1123
1124 break_or_fail:
1125 return err;
1126 }
1127
nilfs_segctor_scan_file_dsync(struct nilfs_sc_info * sci,struct inode * inode)1128 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1129 struct inode *inode)
1130 {
1131 LIST_HEAD(data_buffers);
1132 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1133 int err;
1134
1135 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1136 sci->sc_dsync_start,
1137 sci->sc_dsync_end);
1138
1139 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1140 nilfs_collect_file_data);
1141 if (!err) {
1142 nilfs_segctor_end_finfo(sci, inode);
1143 BUG_ON(n > rest);
1144 /* always receive -E2BIG or true error if n > rest */
1145 }
1146 return err;
1147 }
1148
nilfs_segctor_collect_blocks(struct nilfs_sc_info * sci,int mode)1149 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1150 {
1151 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1152 struct list_head *head;
1153 struct nilfs_inode_info *ii;
1154 size_t ndone;
1155 int err = 0;
1156
1157 switch (nilfs_sc_cstage_get(sci)) {
1158 case NILFS_ST_INIT:
1159 /* Pre-processes */
1160 sci->sc_stage.flags = 0;
1161
1162 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1163 sci->sc_nblk_inc = 0;
1164 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1165 if (mode == SC_LSEG_DSYNC) {
1166 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1167 goto dsync_mode;
1168 }
1169 }
1170
1171 sci->sc_stage.dirty_file_ptr = NULL;
1172 sci->sc_stage.gc_inode_ptr = NULL;
1173 if (mode == SC_FLUSH_DAT) {
1174 nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1175 goto dat_stage;
1176 }
1177 nilfs_sc_cstage_inc(sci);
1178 fallthrough;
1179 case NILFS_ST_GC:
1180 if (nilfs_doing_gc()) {
1181 head = &sci->sc_gc_inodes;
1182 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1183 head, i_dirty);
1184 list_for_each_entry_continue(ii, head, i_dirty) {
1185 err = nilfs_segctor_scan_file(
1186 sci, &ii->vfs_inode,
1187 &nilfs_sc_file_ops);
1188 if (unlikely(err)) {
1189 sci->sc_stage.gc_inode_ptr = list_entry(
1190 ii->i_dirty.prev,
1191 struct nilfs_inode_info,
1192 i_dirty);
1193 goto break_or_fail;
1194 }
1195 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1196 }
1197 sci->sc_stage.gc_inode_ptr = NULL;
1198 }
1199 nilfs_sc_cstage_inc(sci);
1200 fallthrough;
1201 case NILFS_ST_FILE:
1202 head = &sci->sc_dirty_files;
1203 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1204 i_dirty);
1205 list_for_each_entry_continue(ii, head, i_dirty) {
1206 clear_bit(NILFS_I_DIRTY, &ii->i_state);
1207
1208 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1209 &nilfs_sc_file_ops);
1210 if (unlikely(err)) {
1211 sci->sc_stage.dirty_file_ptr =
1212 list_entry(ii->i_dirty.prev,
1213 struct nilfs_inode_info,
1214 i_dirty);
1215 goto break_or_fail;
1216 }
1217 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1218 /* XXX: required ? */
1219 }
1220 sci->sc_stage.dirty_file_ptr = NULL;
1221 if (mode == SC_FLUSH_FILE) {
1222 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1223 return 0;
1224 }
1225 nilfs_sc_cstage_inc(sci);
1226 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1227 fallthrough;
1228 case NILFS_ST_IFILE:
1229 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1230 &nilfs_sc_file_ops);
1231 if (unlikely(err))
1232 break;
1233 nilfs_sc_cstage_inc(sci);
1234 /* Creating a checkpoint */
1235 err = nilfs_segctor_create_checkpoint(sci);
1236 if (unlikely(err))
1237 break;
1238 fallthrough;
1239 case NILFS_ST_CPFILE:
1240 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1241 &nilfs_sc_file_ops);
1242 if (unlikely(err))
1243 break;
1244 nilfs_sc_cstage_inc(sci);
1245 fallthrough;
1246 case NILFS_ST_SUFILE:
1247 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1248 sci->sc_nfreesegs, &ndone);
1249 if (unlikely(err)) {
1250 nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1251 sci->sc_freesegs, ndone,
1252 NULL);
1253 break;
1254 }
1255 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1256
1257 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1258 &nilfs_sc_file_ops);
1259 if (unlikely(err))
1260 break;
1261 nilfs_sc_cstage_inc(sci);
1262 fallthrough;
1263 case NILFS_ST_DAT:
1264 dat_stage:
1265 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1266 &nilfs_sc_dat_ops);
1267 if (unlikely(err))
1268 break;
1269 if (mode == SC_FLUSH_DAT) {
1270 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1271 return 0;
1272 }
1273 nilfs_sc_cstage_inc(sci);
1274 fallthrough;
1275 case NILFS_ST_SR:
1276 if (mode == SC_LSEG_SR) {
1277 /* Appending a super root */
1278 err = nilfs_segctor_add_super_root(sci);
1279 if (unlikely(err))
1280 break;
1281 }
1282 /* End of a logical segment */
1283 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1284 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1285 return 0;
1286 case NILFS_ST_DSYNC:
1287 dsync_mode:
1288 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1289 ii = sci->sc_dsync_inode;
1290 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1291 break;
1292
1293 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1294 if (unlikely(err))
1295 break;
1296 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1297 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1298 return 0;
1299 case NILFS_ST_DONE:
1300 return 0;
1301 default:
1302 BUG();
1303 }
1304
1305 break_or_fail:
1306 return err;
1307 }
1308
1309 /**
1310 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1311 * @sci: nilfs_sc_info
1312 * @nilfs: nilfs object
1313 */
nilfs_segctor_begin_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1314 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1315 struct the_nilfs *nilfs)
1316 {
1317 struct nilfs_segment_buffer *segbuf, *prev;
1318 __u64 nextnum;
1319 int err, alloc = 0;
1320
1321 segbuf = nilfs_segbuf_new(sci->sc_super);
1322 if (unlikely(!segbuf))
1323 return -ENOMEM;
1324
1325 if (list_empty(&sci->sc_write_logs)) {
1326 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1327 nilfs->ns_pseg_offset, nilfs);
1328 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1329 nilfs_shift_to_next_segment(nilfs);
1330 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1331 }
1332
1333 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1334 nextnum = nilfs->ns_nextnum;
1335
1336 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1337 /* Start from the head of a new full segment */
1338 alloc++;
1339 } else {
1340 /* Continue logs */
1341 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1342 nilfs_segbuf_map_cont(segbuf, prev);
1343 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1344 nextnum = prev->sb_nextnum;
1345
1346 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1347 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1348 segbuf->sb_sum.seg_seq++;
1349 alloc++;
1350 }
1351 }
1352
1353 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1354 if (err)
1355 goto failed;
1356
1357 if (alloc) {
1358 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1359 if (err)
1360 goto failed;
1361 }
1362 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1363
1364 BUG_ON(!list_empty(&sci->sc_segbufs));
1365 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1366 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1367 return 0;
1368
1369 failed:
1370 nilfs_segbuf_free(segbuf);
1371 return err;
1372 }
1373
nilfs_segctor_extend_segments(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int nadd)1374 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1375 struct the_nilfs *nilfs, int nadd)
1376 {
1377 struct nilfs_segment_buffer *segbuf, *prev;
1378 struct inode *sufile = nilfs->ns_sufile;
1379 __u64 nextnextnum;
1380 LIST_HEAD(list);
1381 int err, ret, i;
1382
1383 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1384 /*
1385 * Since the segment specified with nextnum might be allocated during
1386 * the previous construction, the buffer including its segusage may
1387 * not be dirty. The following call ensures that the buffer is dirty
1388 * and will pin the buffer on memory until the sufile is written.
1389 */
1390 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1391 if (unlikely(err))
1392 return err;
1393
1394 for (i = 0; i < nadd; i++) {
1395 /* extend segment info */
1396 err = -ENOMEM;
1397 segbuf = nilfs_segbuf_new(sci->sc_super);
1398 if (unlikely(!segbuf))
1399 goto failed;
1400
1401 /* map this buffer to region of segment on-disk */
1402 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1403 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1404
1405 /* allocate the next next full segment */
1406 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1407 if (unlikely(err))
1408 goto failed_segbuf;
1409
1410 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1411 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1412
1413 list_add_tail(&segbuf->sb_list, &list);
1414 prev = segbuf;
1415 }
1416 list_splice_tail(&list, &sci->sc_segbufs);
1417 return 0;
1418
1419 failed_segbuf:
1420 nilfs_segbuf_free(segbuf);
1421 failed:
1422 list_for_each_entry(segbuf, &list, sb_list) {
1423 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1424 WARN_ON(ret); /* never fails */
1425 }
1426 nilfs_destroy_logs(&list);
1427 return err;
1428 }
1429
nilfs_free_incomplete_logs(struct list_head * logs,struct the_nilfs * nilfs)1430 static void nilfs_free_incomplete_logs(struct list_head *logs,
1431 struct the_nilfs *nilfs)
1432 {
1433 struct nilfs_segment_buffer *segbuf, *prev;
1434 struct inode *sufile = nilfs->ns_sufile;
1435 int ret;
1436
1437 segbuf = NILFS_FIRST_SEGBUF(logs);
1438 if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1439 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1440 WARN_ON(ret); /* never fails */
1441 }
1442 if (atomic_read(&segbuf->sb_err)) {
1443 /* Case 1: The first segment failed */
1444 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1445 /*
1446 * Case 1a: Partial segment appended into an existing
1447 * segment
1448 */
1449 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1450 segbuf->sb_fseg_end);
1451 else /* Case 1b: New full segment */
1452 set_nilfs_discontinued(nilfs);
1453 }
1454
1455 prev = segbuf;
1456 list_for_each_entry_continue(segbuf, logs, sb_list) {
1457 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1458 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1459 WARN_ON(ret); /* never fails */
1460 }
1461 if (atomic_read(&segbuf->sb_err) &&
1462 segbuf->sb_segnum != nilfs->ns_nextnum)
1463 /* Case 2: extended segment (!= next) failed */
1464 nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1465 prev = segbuf;
1466 }
1467 }
1468
nilfs_segctor_update_segusage(struct nilfs_sc_info * sci,struct inode * sufile)1469 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1470 struct inode *sufile)
1471 {
1472 struct nilfs_segment_buffer *segbuf;
1473 unsigned long live_blocks;
1474 int ret;
1475
1476 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1477 live_blocks = segbuf->sb_sum.nblocks +
1478 (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1479 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1480 live_blocks,
1481 sci->sc_seg_ctime);
1482 WARN_ON(ret); /* always succeed because the segusage is dirty */
1483 }
1484 }
1485
nilfs_cancel_segusage(struct list_head * logs,struct inode * sufile)1486 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1487 {
1488 struct nilfs_segment_buffer *segbuf;
1489 int ret;
1490
1491 segbuf = NILFS_FIRST_SEGBUF(logs);
1492 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1493 segbuf->sb_pseg_start -
1494 segbuf->sb_fseg_start, 0);
1495 WARN_ON(ret); /* always succeed because the segusage is dirty */
1496
1497 list_for_each_entry_continue(segbuf, logs, sb_list) {
1498 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1499 0, 0);
1500 WARN_ON(ret); /* always succeed */
1501 }
1502 }
1503
nilfs_segctor_truncate_segments(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * last,struct inode * sufile)1504 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1505 struct nilfs_segment_buffer *last,
1506 struct inode *sufile)
1507 {
1508 struct nilfs_segment_buffer *segbuf = last;
1509 int ret;
1510
1511 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1512 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1513 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1514 WARN_ON(ret);
1515 }
1516 nilfs_truncate_logs(&sci->sc_segbufs, last);
1517 }
1518
1519
nilfs_segctor_collect(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int mode)1520 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1521 struct the_nilfs *nilfs, int mode)
1522 {
1523 struct nilfs_cstage prev_stage = sci->sc_stage;
1524 int err, nadd = 1;
1525
1526 /* Collection retry loop */
1527 for (;;) {
1528 sci->sc_nblk_this_inc = 0;
1529 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1530
1531 err = nilfs_segctor_reset_segment_buffer(sci);
1532 if (unlikely(err))
1533 goto failed;
1534
1535 err = nilfs_segctor_collect_blocks(sci, mode);
1536 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1537 if (!err)
1538 break;
1539
1540 if (unlikely(err != -E2BIG))
1541 goto failed;
1542
1543 /* The current segment is filled up */
1544 if (mode != SC_LSEG_SR ||
1545 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1546 break;
1547
1548 nilfs_clear_logs(&sci->sc_segbufs);
1549
1550 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1551 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1552 sci->sc_freesegs,
1553 sci->sc_nfreesegs,
1554 NULL);
1555 WARN_ON(err); /* do not happen */
1556 sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1557 }
1558
1559 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1560 if (unlikely(err))
1561 return err;
1562
1563 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1564 sci->sc_stage = prev_stage;
1565 }
1566 nilfs_segctor_zeropad_segsum(sci);
1567 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1568 return 0;
1569
1570 failed:
1571 return err;
1572 }
1573
nilfs_list_replace_buffer(struct buffer_head * old_bh,struct buffer_head * new_bh)1574 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1575 struct buffer_head *new_bh)
1576 {
1577 BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1578
1579 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1580 /* The caller must release old_bh */
1581 }
1582
1583 static int
nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * segbuf,int mode)1584 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1585 struct nilfs_segment_buffer *segbuf,
1586 int mode)
1587 {
1588 struct inode *inode = NULL;
1589 sector_t blocknr;
1590 unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1591 unsigned long nblocks = 0, ndatablk = 0;
1592 const struct nilfs_sc_operations *sc_op = NULL;
1593 struct nilfs_segsum_pointer ssp;
1594 struct nilfs_finfo *finfo = NULL;
1595 union nilfs_binfo binfo;
1596 struct buffer_head *bh, *bh_org;
1597 ino_t ino = 0;
1598 int err = 0;
1599
1600 if (!nfinfo)
1601 goto out;
1602
1603 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1604 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1605 ssp.offset = sizeof(struct nilfs_segment_summary);
1606
1607 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1608 if (bh == segbuf->sb_super_root)
1609 break;
1610 if (!finfo) {
1611 finfo = nilfs_segctor_map_segsum_entry(
1612 sci, &ssp, sizeof(*finfo));
1613 ino = le64_to_cpu(finfo->fi_ino);
1614 nblocks = le32_to_cpu(finfo->fi_nblocks);
1615 ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1616
1617 inode = bh->b_folio->mapping->host;
1618
1619 if (mode == SC_LSEG_DSYNC)
1620 sc_op = &nilfs_sc_dsync_ops;
1621 else if (ino == NILFS_DAT_INO)
1622 sc_op = &nilfs_sc_dat_ops;
1623 else /* file blocks */
1624 sc_op = &nilfs_sc_file_ops;
1625 }
1626 bh_org = bh;
1627 get_bh(bh_org);
1628 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1629 &binfo);
1630 if (bh != bh_org)
1631 nilfs_list_replace_buffer(bh_org, bh);
1632 brelse(bh_org);
1633 if (unlikely(err))
1634 goto failed_bmap;
1635
1636 if (ndatablk > 0)
1637 sc_op->write_data_binfo(sci, &ssp, &binfo);
1638 else
1639 sc_op->write_node_binfo(sci, &ssp, &binfo);
1640
1641 blocknr++;
1642 if (--nblocks == 0) {
1643 finfo = NULL;
1644 if (--nfinfo == 0)
1645 break;
1646 } else if (ndatablk > 0)
1647 ndatablk--;
1648 }
1649 out:
1650 return 0;
1651
1652 failed_bmap:
1653 return err;
1654 }
1655
nilfs_segctor_assign(struct nilfs_sc_info * sci,int mode)1656 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1657 {
1658 struct nilfs_segment_buffer *segbuf;
1659 int err;
1660
1661 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1662 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1663 if (unlikely(err))
1664 return err;
1665 nilfs_segbuf_fill_in_segsum(segbuf);
1666 }
1667 return 0;
1668 }
1669
nilfs_begin_page_io(struct page * page)1670 static void nilfs_begin_page_io(struct page *page)
1671 {
1672 if (!page || PageWriteback(page))
1673 /*
1674 * For split b-tree node pages, this function may be called
1675 * twice. We ignore the 2nd or later calls by this check.
1676 */
1677 return;
1678
1679 lock_page(page);
1680 clear_page_dirty_for_io(page);
1681 set_page_writeback(page);
1682 unlock_page(page);
1683 }
1684
nilfs_segctor_prepare_write(struct nilfs_sc_info * sci)1685 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1686 {
1687 struct nilfs_segment_buffer *segbuf;
1688 struct page *bd_page = NULL, *fs_page = NULL;
1689
1690 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1691 struct buffer_head *bh;
1692
1693 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1694 b_assoc_buffers) {
1695 if (bh->b_page != bd_page) {
1696 if (bd_page) {
1697 lock_page(bd_page);
1698 wait_on_page_writeback(bd_page);
1699 clear_page_dirty_for_io(bd_page);
1700 set_page_writeback(bd_page);
1701 unlock_page(bd_page);
1702 }
1703 bd_page = bh->b_page;
1704 }
1705 }
1706
1707 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1708 b_assoc_buffers) {
1709 if (bh == segbuf->sb_super_root) {
1710 if (bh->b_page != bd_page) {
1711 lock_page(bd_page);
1712 wait_on_page_writeback(bd_page);
1713 clear_page_dirty_for_io(bd_page);
1714 set_page_writeback(bd_page);
1715 unlock_page(bd_page);
1716 bd_page = bh->b_page;
1717 }
1718 break;
1719 }
1720 set_buffer_async_write(bh);
1721 if (bh->b_page != fs_page) {
1722 nilfs_begin_page_io(fs_page);
1723 fs_page = bh->b_page;
1724 }
1725 }
1726 }
1727 if (bd_page) {
1728 lock_page(bd_page);
1729 wait_on_page_writeback(bd_page);
1730 clear_page_dirty_for_io(bd_page);
1731 set_page_writeback(bd_page);
1732 unlock_page(bd_page);
1733 }
1734 nilfs_begin_page_io(fs_page);
1735 }
1736
nilfs_segctor_write(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1737 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1738 struct the_nilfs *nilfs)
1739 {
1740 int ret;
1741
1742 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1743 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1744 return ret;
1745 }
1746
nilfs_end_page_io(struct page * page,int err)1747 static void nilfs_end_page_io(struct page *page, int err)
1748 {
1749 if (!page)
1750 return;
1751
1752 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1753 /*
1754 * For b-tree node pages, this function may be called twice
1755 * or more because they might be split in a segment.
1756 */
1757 if (PageDirty(page)) {
1758 /*
1759 * For pages holding split b-tree node buffers, dirty
1760 * flag on the buffers may be cleared discretely.
1761 * In that case, the page is once redirtied for
1762 * remaining buffers, and it must be cancelled if
1763 * all the buffers get cleaned later.
1764 */
1765 lock_page(page);
1766 if (nilfs_page_buffers_clean(page))
1767 __nilfs_clear_page_dirty(page);
1768 unlock_page(page);
1769 }
1770 return;
1771 }
1772
1773 if (!err) {
1774 if (!nilfs_page_buffers_clean(page))
1775 __set_page_dirty_nobuffers(page);
1776 ClearPageError(page);
1777 } else {
1778 __set_page_dirty_nobuffers(page);
1779 SetPageError(page);
1780 }
1781
1782 end_page_writeback(page);
1783 }
1784
nilfs_abort_logs(struct list_head * logs,int err)1785 static void nilfs_abort_logs(struct list_head *logs, int err)
1786 {
1787 struct nilfs_segment_buffer *segbuf;
1788 struct page *bd_page = NULL, *fs_page = NULL;
1789 struct buffer_head *bh;
1790
1791 if (list_empty(logs))
1792 return;
1793
1794 list_for_each_entry(segbuf, logs, sb_list) {
1795 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1796 b_assoc_buffers) {
1797 clear_buffer_uptodate(bh);
1798 if (bh->b_page != bd_page) {
1799 if (bd_page)
1800 end_page_writeback(bd_page);
1801 bd_page = bh->b_page;
1802 }
1803 }
1804
1805 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1806 b_assoc_buffers) {
1807 if (bh == segbuf->sb_super_root) {
1808 clear_buffer_uptodate(bh);
1809 if (bh->b_page != bd_page) {
1810 end_page_writeback(bd_page);
1811 bd_page = bh->b_page;
1812 }
1813 break;
1814 }
1815 clear_buffer_async_write(bh);
1816 if (bh->b_page != fs_page) {
1817 nilfs_end_page_io(fs_page, err);
1818 fs_page = bh->b_page;
1819 }
1820 }
1821 }
1822 if (bd_page)
1823 end_page_writeback(bd_page);
1824
1825 nilfs_end_page_io(fs_page, err);
1826 }
1827
nilfs_segctor_abort_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int err)1828 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1829 struct the_nilfs *nilfs, int err)
1830 {
1831 LIST_HEAD(logs);
1832 int ret;
1833
1834 list_splice_tail_init(&sci->sc_write_logs, &logs);
1835 ret = nilfs_wait_on_logs(&logs);
1836 nilfs_abort_logs(&logs, ret ? : err);
1837
1838 list_splice_tail_init(&sci->sc_segbufs, &logs);
1839 if (list_empty(&logs))
1840 return; /* if the first segment buffer preparation failed */
1841
1842 nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1843 nilfs_free_incomplete_logs(&logs, nilfs);
1844
1845 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1846 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1847 sci->sc_freesegs,
1848 sci->sc_nfreesegs,
1849 NULL);
1850 WARN_ON(ret); /* do not happen */
1851 }
1852
1853 nilfs_destroy_logs(&logs);
1854 }
1855
nilfs_set_next_segment(struct the_nilfs * nilfs,struct nilfs_segment_buffer * segbuf)1856 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1857 struct nilfs_segment_buffer *segbuf)
1858 {
1859 nilfs->ns_segnum = segbuf->sb_segnum;
1860 nilfs->ns_nextnum = segbuf->sb_nextnum;
1861 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1862 + segbuf->sb_sum.nblocks;
1863 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1864 nilfs->ns_ctime = segbuf->sb_sum.ctime;
1865 }
1866
nilfs_segctor_complete_write(struct nilfs_sc_info * sci)1867 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1868 {
1869 struct nilfs_segment_buffer *segbuf;
1870 struct page *bd_page = NULL, *fs_page = NULL;
1871 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1872 int update_sr = false;
1873
1874 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1875 struct buffer_head *bh;
1876
1877 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1878 b_assoc_buffers) {
1879 set_buffer_uptodate(bh);
1880 clear_buffer_dirty(bh);
1881 if (bh->b_page != bd_page) {
1882 if (bd_page)
1883 end_page_writeback(bd_page);
1884 bd_page = bh->b_page;
1885 }
1886 }
1887 /*
1888 * We assume that the buffers which belong to the same page
1889 * continue over the buffer list.
1890 * Under this assumption, the last BHs of pages is
1891 * identifiable by the discontinuity of bh->b_page
1892 * (page != fs_page).
1893 *
1894 * For B-tree node blocks, however, this assumption is not
1895 * guaranteed. The cleanup code of B-tree node pages needs
1896 * special care.
1897 */
1898 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1899 b_assoc_buffers) {
1900 const unsigned long set_bits = BIT(BH_Uptodate);
1901 const unsigned long clear_bits =
1902 (BIT(BH_Dirty) | BIT(BH_Async_Write) |
1903 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1904 BIT(BH_NILFS_Redirected));
1905
1906 if (bh == segbuf->sb_super_root) {
1907 set_buffer_uptodate(bh);
1908 clear_buffer_dirty(bh);
1909 if (bh->b_page != bd_page) {
1910 end_page_writeback(bd_page);
1911 bd_page = bh->b_page;
1912 }
1913 update_sr = true;
1914 break;
1915 }
1916 set_mask_bits(&bh->b_state, clear_bits, set_bits);
1917 if (bh->b_page != fs_page) {
1918 nilfs_end_page_io(fs_page, 0);
1919 fs_page = bh->b_page;
1920 }
1921 }
1922
1923 if (!nilfs_segbuf_simplex(segbuf)) {
1924 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1925 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1926 sci->sc_lseg_stime = jiffies;
1927 }
1928 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1929 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1930 }
1931 }
1932 /*
1933 * Since pages may continue over multiple segment buffers,
1934 * end of the last page must be checked outside of the loop.
1935 */
1936 if (bd_page)
1937 end_page_writeback(bd_page);
1938
1939 nilfs_end_page_io(fs_page, 0);
1940
1941 nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1942
1943 if (nilfs_doing_gc())
1944 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1945 else
1946 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1947
1948 sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1949
1950 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1951 nilfs_set_next_segment(nilfs, segbuf);
1952
1953 if (update_sr) {
1954 nilfs->ns_flushed_device = 0;
1955 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1956 segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1957
1958 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1959 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1960 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1961 nilfs_segctor_clear_metadata_dirty(sci);
1962 } else
1963 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1964 }
1965
nilfs_segctor_wait(struct nilfs_sc_info * sci)1966 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1967 {
1968 int ret;
1969
1970 ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1971 if (!ret) {
1972 nilfs_segctor_complete_write(sci);
1973 nilfs_destroy_logs(&sci->sc_write_logs);
1974 }
1975 return ret;
1976 }
1977
nilfs_segctor_collect_dirty_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1978 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1979 struct the_nilfs *nilfs)
1980 {
1981 struct nilfs_inode_info *ii, *n;
1982 struct inode *ifile = sci->sc_root->ifile;
1983
1984 spin_lock(&nilfs->ns_inode_lock);
1985 retry:
1986 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1987 if (!ii->i_bh) {
1988 struct buffer_head *ibh;
1989 int err;
1990
1991 spin_unlock(&nilfs->ns_inode_lock);
1992 err = nilfs_ifile_get_inode_block(
1993 ifile, ii->vfs_inode.i_ino, &ibh);
1994 if (unlikely(err)) {
1995 nilfs_warn(sci->sc_super,
1996 "log writer: error %d getting inode block (ino=%lu)",
1997 err, ii->vfs_inode.i_ino);
1998 return err;
1999 }
2000 spin_lock(&nilfs->ns_inode_lock);
2001 if (likely(!ii->i_bh))
2002 ii->i_bh = ibh;
2003 else
2004 brelse(ibh);
2005 goto retry;
2006 }
2007
2008 // Always redirty the buffer to avoid race condition
2009 mark_buffer_dirty(ii->i_bh);
2010 nilfs_mdt_mark_dirty(ifile);
2011
2012 clear_bit(NILFS_I_QUEUED, &ii->i_state);
2013 set_bit(NILFS_I_BUSY, &ii->i_state);
2014 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
2015 }
2016 spin_unlock(&nilfs->ns_inode_lock);
2017
2018 return 0;
2019 }
2020
nilfs_segctor_drop_written_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)2021 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
2022 struct the_nilfs *nilfs)
2023 {
2024 struct nilfs_inode_info *ii, *n;
2025 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
2026 int defer_iput = false;
2027
2028 spin_lock(&nilfs->ns_inode_lock);
2029 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2030 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2031 test_bit(NILFS_I_DIRTY, &ii->i_state))
2032 continue;
2033
2034 clear_bit(NILFS_I_BUSY, &ii->i_state);
2035 brelse(ii->i_bh);
2036 ii->i_bh = NULL;
2037 list_del_init(&ii->i_dirty);
2038 if (!ii->vfs_inode.i_nlink || during_mount) {
2039 /*
2040 * Defer calling iput() to avoid deadlocks if
2041 * i_nlink == 0 or mount is not yet finished.
2042 */
2043 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2044 defer_iput = true;
2045 } else {
2046 spin_unlock(&nilfs->ns_inode_lock);
2047 iput(&ii->vfs_inode);
2048 spin_lock(&nilfs->ns_inode_lock);
2049 }
2050 }
2051 spin_unlock(&nilfs->ns_inode_lock);
2052
2053 if (defer_iput)
2054 schedule_work(&sci->sc_iput_work);
2055 }
2056
2057 /*
2058 * Main procedure of segment constructor
2059 */
nilfs_segctor_do_construct(struct nilfs_sc_info * sci,int mode)2060 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2061 {
2062 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2063 int err;
2064
2065 if (sb_rdonly(sci->sc_super))
2066 return -EROFS;
2067
2068 nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2069 sci->sc_cno = nilfs->ns_cno;
2070
2071 err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2072 if (unlikely(err))
2073 goto out;
2074
2075 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2076 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2077
2078 if (nilfs_segctor_clean(sci))
2079 goto out;
2080
2081 do {
2082 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2083
2084 err = nilfs_segctor_begin_construction(sci, nilfs);
2085 if (unlikely(err))
2086 goto failed;
2087
2088 /* Update time stamp */
2089 sci->sc_seg_ctime = ktime_get_real_seconds();
2090
2091 err = nilfs_segctor_collect(sci, nilfs, mode);
2092 if (unlikely(err))
2093 goto failed;
2094
2095 /* Avoid empty segment */
2096 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2097 nilfs_segbuf_empty(sci->sc_curseg)) {
2098 nilfs_segctor_abort_construction(sci, nilfs, 1);
2099 goto out;
2100 }
2101
2102 err = nilfs_segctor_assign(sci, mode);
2103 if (unlikely(err))
2104 goto failed;
2105
2106 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2107 nilfs_segctor_fill_in_file_bmap(sci);
2108
2109 if (mode == SC_LSEG_SR &&
2110 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2111 err = nilfs_segctor_fill_in_checkpoint(sci);
2112 if (unlikely(err))
2113 goto failed_to_write;
2114
2115 nilfs_segctor_fill_in_super_root(sci, nilfs);
2116 }
2117 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2118
2119 /* Write partial segments */
2120 nilfs_segctor_prepare_write(sci);
2121
2122 nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2123 nilfs->ns_crc_seed);
2124
2125 err = nilfs_segctor_write(sci, nilfs);
2126 if (unlikely(err))
2127 goto failed_to_write;
2128
2129 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2130 nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2131 /*
2132 * At this point, we avoid double buffering
2133 * for blocksize < pagesize because page dirty
2134 * flag is turned off during write and dirty
2135 * buffers are not properly collected for
2136 * pages crossing over segments.
2137 */
2138 err = nilfs_segctor_wait(sci);
2139 if (err)
2140 goto failed_to_write;
2141 }
2142 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2143
2144 out:
2145 nilfs_segctor_drop_written_files(sci, nilfs);
2146 return err;
2147
2148 failed_to_write:
2149 failed:
2150 if (mode == SC_LSEG_SR && nilfs_sc_cstage_get(sci) >= NILFS_ST_IFILE)
2151 nilfs_redirty_inodes(&sci->sc_dirty_files);
2152 if (nilfs_doing_gc())
2153 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2154 nilfs_segctor_abort_construction(sci, nilfs, err);
2155 goto out;
2156 }
2157
2158 /**
2159 * nilfs_segctor_start_timer - set timer of background write
2160 * @sci: nilfs_sc_info
2161 *
2162 * If the timer has already been set, it ignores the new request.
2163 * This function MUST be called within a section locking the segment
2164 * semaphore.
2165 */
nilfs_segctor_start_timer(struct nilfs_sc_info * sci)2166 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2167 {
2168 spin_lock(&sci->sc_state_lock);
2169 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2170 if (sci->sc_task) {
2171 sci->sc_timer.expires = jiffies + sci->sc_interval;
2172 add_timer(&sci->sc_timer);
2173 }
2174 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2175 }
2176 spin_unlock(&sci->sc_state_lock);
2177 }
2178
nilfs_segctor_do_flush(struct nilfs_sc_info * sci,int bn)2179 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2180 {
2181 spin_lock(&sci->sc_state_lock);
2182 if (!(sci->sc_flush_request & BIT(bn))) {
2183 unsigned long prev_req = sci->sc_flush_request;
2184
2185 sci->sc_flush_request |= BIT(bn);
2186 if (!prev_req)
2187 wake_up(&sci->sc_wait_daemon);
2188 }
2189 spin_unlock(&sci->sc_state_lock);
2190 }
2191
2192 /**
2193 * nilfs_flush_segment - trigger a segment construction for resource control
2194 * @sb: super block
2195 * @ino: inode number of the file to be flushed out.
2196 */
nilfs_flush_segment(struct super_block * sb,ino_t ino)2197 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2198 {
2199 struct the_nilfs *nilfs = sb->s_fs_info;
2200 struct nilfs_sc_info *sci = nilfs->ns_writer;
2201
2202 if (!sci || nilfs_doing_construction())
2203 return;
2204 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2205 /* assign bit 0 to data files */
2206 }
2207
2208 struct nilfs_segctor_wait_request {
2209 wait_queue_entry_t wq;
2210 __u32 seq;
2211 int err;
2212 atomic_t done;
2213 };
2214
nilfs_segctor_sync(struct nilfs_sc_info * sci)2215 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2216 {
2217 struct nilfs_segctor_wait_request wait_req;
2218 int err = 0;
2219
2220 init_wait(&wait_req.wq);
2221 wait_req.err = 0;
2222 atomic_set(&wait_req.done, 0);
2223 init_waitqueue_entry(&wait_req.wq, current);
2224
2225 /*
2226 * To prevent a race issue where completion notifications from the
2227 * log writer thread are missed, increment the request sequence count
2228 * "sc_seq_request" and insert a wait queue entry using the current
2229 * sequence number into the "sc_wait_request" queue at the same time
2230 * within the lock section of "sc_state_lock".
2231 */
2232 spin_lock(&sci->sc_state_lock);
2233 wait_req.seq = ++sci->sc_seq_request;
2234 add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2235 spin_unlock(&sci->sc_state_lock);
2236
2237 wake_up(&sci->sc_wait_daemon);
2238
2239 for (;;) {
2240 set_current_state(TASK_INTERRUPTIBLE);
2241
2242 /*
2243 * Synchronize only while the log writer thread is alive.
2244 * Leave flushing out after the log writer thread exits to
2245 * the cleanup work in nilfs_segctor_destroy().
2246 */
2247 if (!sci->sc_task)
2248 break;
2249
2250 if (atomic_read(&wait_req.done)) {
2251 err = wait_req.err;
2252 break;
2253 }
2254 if (!signal_pending(current)) {
2255 schedule();
2256 continue;
2257 }
2258 err = -ERESTARTSYS;
2259 break;
2260 }
2261 finish_wait(&sci->sc_wait_request, &wait_req.wq);
2262 return err;
2263 }
2264
nilfs_segctor_wakeup(struct nilfs_sc_info * sci,int err,bool force)2265 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force)
2266 {
2267 struct nilfs_segctor_wait_request *wrq, *n;
2268 unsigned long flags;
2269
2270 spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2271 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2272 if (!atomic_read(&wrq->done) &&
2273 (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) {
2274 wrq->err = err;
2275 atomic_set(&wrq->done, 1);
2276 }
2277 if (atomic_read(&wrq->done)) {
2278 wrq->wq.func(&wrq->wq,
2279 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2280 0, NULL);
2281 }
2282 }
2283 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2284 }
2285
2286 /**
2287 * nilfs_construct_segment - construct a logical segment
2288 * @sb: super block
2289 *
2290 * Return Value: On success, 0 is returned. On errors, one of the following
2291 * negative error code is returned.
2292 *
2293 * %-EROFS - Read only filesystem.
2294 *
2295 * %-EIO - I/O error
2296 *
2297 * %-ENOSPC - No space left on device (only in a panic state).
2298 *
2299 * %-ERESTARTSYS - Interrupted.
2300 *
2301 * %-ENOMEM - Insufficient memory available.
2302 */
nilfs_construct_segment(struct super_block * sb)2303 int nilfs_construct_segment(struct super_block *sb)
2304 {
2305 struct the_nilfs *nilfs = sb->s_fs_info;
2306 struct nilfs_sc_info *sci = nilfs->ns_writer;
2307 struct nilfs_transaction_info *ti;
2308
2309 if (sb_rdonly(sb) || unlikely(!sci))
2310 return -EROFS;
2311
2312 /* A call inside transactions causes a deadlock. */
2313 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2314
2315 return nilfs_segctor_sync(sci);
2316 }
2317
2318 /**
2319 * nilfs_construct_dsync_segment - construct a data-only logical segment
2320 * @sb: super block
2321 * @inode: inode whose data blocks should be written out
2322 * @start: start byte offset
2323 * @end: end byte offset (inclusive)
2324 *
2325 * Return Value: On success, 0 is returned. On errors, one of the following
2326 * negative error code is returned.
2327 *
2328 * %-EROFS - Read only filesystem.
2329 *
2330 * %-EIO - I/O error
2331 *
2332 * %-ENOSPC - No space left on device (only in a panic state).
2333 *
2334 * %-ERESTARTSYS - Interrupted.
2335 *
2336 * %-ENOMEM - Insufficient memory available.
2337 */
nilfs_construct_dsync_segment(struct super_block * sb,struct inode * inode,loff_t start,loff_t end)2338 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2339 loff_t start, loff_t end)
2340 {
2341 struct the_nilfs *nilfs = sb->s_fs_info;
2342 struct nilfs_sc_info *sci = nilfs->ns_writer;
2343 struct nilfs_inode_info *ii;
2344 struct nilfs_transaction_info ti;
2345 int err = 0;
2346
2347 if (sb_rdonly(sb) || unlikely(!sci))
2348 return -EROFS;
2349
2350 nilfs_transaction_lock(sb, &ti, 0);
2351
2352 ii = NILFS_I(inode);
2353 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2354 nilfs_test_opt(nilfs, STRICT_ORDER) ||
2355 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2356 nilfs_discontinued(nilfs)) {
2357 nilfs_transaction_unlock(sb);
2358 err = nilfs_segctor_sync(sci);
2359 return err;
2360 }
2361
2362 spin_lock(&nilfs->ns_inode_lock);
2363 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2364 !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2365 spin_unlock(&nilfs->ns_inode_lock);
2366 nilfs_transaction_unlock(sb);
2367 return 0;
2368 }
2369 spin_unlock(&nilfs->ns_inode_lock);
2370 sci->sc_dsync_inode = ii;
2371 sci->sc_dsync_start = start;
2372 sci->sc_dsync_end = end;
2373
2374 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2375 if (!err)
2376 nilfs->ns_flushed_device = 0;
2377
2378 nilfs_transaction_unlock(sb);
2379 return err;
2380 }
2381
2382 #define FLUSH_FILE_BIT (0x1) /* data file only */
2383 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
2384
2385 /**
2386 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2387 * @sci: segment constructor object
2388 */
nilfs_segctor_accept(struct nilfs_sc_info * sci)2389 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2390 {
2391 bool thread_is_alive;
2392
2393 spin_lock(&sci->sc_state_lock);
2394 sci->sc_seq_accepted = sci->sc_seq_request;
2395 thread_is_alive = (bool)sci->sc_task;
2396 spin_unlock(&sci->sc_state_lock);
2397
2398 /*
2399 * This function does not race with the log writer thread's
2400 * termination. Therefore, deleting sc_timer, which should not be
2401 * done after the log writer thread exits, can be done safely outside
2402 * the area protected by sc_state_lock.
2403 */
2404 if (thread_is_alive)
2405 del_timer_sync(&sci->sc_timer);
2406 }
2407
2408 /**
2409 * nilfs_segctor_notify - notify the result of request to caller threads
2410 * @sci: segment constructor object
2411 * @mode: mode of log forming
2412 * @err: error code to be notified
2413 */
nilfs_segctor_notify(struct nilfs_sc_info * sci,int mode,int err)2414 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2415 {
2416 /* Clear requests (even when the construction failed) */
2417 spin_lock(&sci->sc_state_lock);
2418
2419 if (mode == SC_LSEG_SR) {
2420 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2421 sci->sc_seq_done = sci->sc_seq_accepted;
2422 nilfs_segctor_wakeup(sci, err, false);
2423 sci->sc_flush_request = 0;
2424 } else {
2425 if (mode == SC_FLUSH_FILE)
2426 sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2427 else if (mode == SC_FLUSH_DAT)
2428 sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2429
2430 /* re-enable timer if checkpoint creation was not done */
2431 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task &&
2432 time_before(jiffies, sci->sc_timer.expires))
2433 add_timer(&sci->sc_timer);
2434 }
2435 spin_unlock(&sci->sc_state_lock);
2436 }
2437
2438 /**
2439 * nilfs_segctor_construct - form logs and write them to disk
2440 * @sci: segment constructor object
2441 * @mode: mode of log forming
2442 */
nilfs_segctor_construct(struct nilfs_sc_info * sci,int mode)2443 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2444 {
2445 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2446 struct nilfs_super_block **sbp;
2447 int err = 0;
2448
2449 nilfs_segctor_accept(sci);
2450
2451 if (nilfs_discontinued(nilfs))
2452 mode = SC_LSEG_SR;
2453 if (!nilfs_segctor_confirm(sci))
2454 err = nilfs_segctor_do_construct(sci, mode);
2455
2456 if (likely(!err)) {
2457 if (mode != SC_FLUSH_DAT)
2458 atomic_set(&nilfs->ns_ndirtyblks, 0);
2459 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2460 nilfs_discontinued(nilfs)) {
2461 down_write(&nilfs->ns_sem);
2462 err = -EIO;
2463 sbp = nilfs_prepare_super(sci->sc_super,
2464 nilfs_sb_will_flip(nilfs));
2465 if (likely(sbp)) {
2466 nilfs_set_log_cursor(sbp[0], nilfs);
2467 err = nilfs_commit_super(sci->sc_super,
2468 NILFS_SB_COMMIT);
2469 }
2470 up_write(&nilfs->ns_sem);
2471 }
2472 }
2473
2474 nilfs_segctor_notify(sci, mode, err);
2475 return err;
2476 }
2477
nilfs_construction_timeout(struct timer_list * t)2478 static void nilfs_construction_timeout(struct timer_list *t)
2479 {
2480 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
2481
2482 wake_up_process(sci->sc_timer_task);
2483 }
2484
2485 static void
nilfs_remove_written_gcinodes(struct the_nilfs * nilfs,struct list_head * head)2486 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2487 {
2488 struct nilfs_inode_info *ii, *n;
2489
2490 list_for_each_entry_safe(ii, n, head, i_dirty) {
2491 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2492 continue;
2493 list_del_init(&ii->i_dirty);
2494 truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2495 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
2496 iput(&ii->vfs_inode);
2497 }
2498 }
2499
nilfs_clean_segments(struct super_block * sb,struct nilfs_argv * argv,void ** kbufs)2500 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2501 void **kbufs)
2502 {
2503 struct the_nilfs *nilfs = sb->s_fs_info;
2504 struct nilfs_sc_info *sci = nilfs->ns_writer;
2505 struct nilfs_transaction_info ti;
2506 int err;
2507
2508 if (unlikely(!sci))
2509 return -EROFS;
2510
2511 nilfs_transaction_lock(sb, &ti, 1);
2512
2513 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2514 if (unlikely(err))
2515 goto out_unlock;
2516
2517 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2518 if (unlikely(err)) {
2519 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2520 goto out_unlock;
2521 }
2522
2523 sci->sc_freesegs = kbufs[4];
2524 sci->sc_nfreesegs = argv[4].v_nmembs;
2525 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2526
2527 for (;;) {
2528 err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2529 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2530
2531 if (likely(!err))
2532 break;
2533
2534 nilfs_warn(sb, "error %d cleaning segments", err);
2535 set_current_state(TASK_INTERRUPTIBLE);
2536 schedule_timeout(sci->sc_interval);
2537 }
2538 if (nilfs_test_opt(nilfs, DISCARD)) {
2539 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2540 sci->sc_nfreesegs);
2541 if (ret) {
2542 nilfs_warn(sb,
2543 "error %d on discard request, turning discards off for the device",
2544 ret);
2545 nilfs_clear_opt(nilfs, DISCARD);
2546 }
2547 }
2548
2549 out_unlock:
2550 sci->sc_freesegs = NULL;
2551 sci->sc_nfreesegs = 0;
2552 nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2553 nilfs_transaction_unlock(sb);
2554 return err;
2555 }
2556
nilfs_segctor_thread_construct(struct nilfs_sc_info * sci,int mode)2557 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2558 {
2559 struct nilfs_transaction_info ti;
2560
2561 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2562 nilfs_segctor_construct(sci, mode);
2563
2564 /*
2565 * Unclosed segment should be retried. We do this using sc_timer.
2566 * Timeout of sc_timer will invoke complete construction which leads
2567 * to close the current logical segment.
2568 */
2569 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2570 nilfs_segctor_start_timer(sci);
2571
2572 nilfs_transaction_unlock(sci->sc_super);
2573 }
2574
nilfs_segctor_do_immediate_flush(struct nilfs_sc_info * sci)2575 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2576 {
2577 int mode = 0;
2578
2579 spin_lock(&sci->sc_state_lock);
2580 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2581 SC_FLUSH_DAT : SC_FLUSH_FILE;
2582 spin_unlock(&sci->sc_state_lock);
2583
2584 if (mode) {
2585 nilfs_segctor_do_construct(sci, mode);
2586
2587 spin_lock(&sci->sc_state_lock);
2588 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2589 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2590 spin_unlock(&sci->sc_state_lock);
2591 }
2592 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2593 }
2594
nilfs_segctor_flush_mode(struct nilfs_sc_info * sci)2595 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2596 {
2597 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2598 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2599 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2600 return SC_FLUSH_FILE;
2601 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2602 return SC_FLUSH_DAT;
2603 }
2604 return SC_LSEG_SR;
2605 }
2606
2607 /**
2608 * nilfs_segctor_thread - main loop of the segment constructor thread.
2609 * @arg: pointer to a struct nilfs_sc_info.
2610 *
2611 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2612 * to execute segment constructions.
2613 */
nilfs_segctor_thread(void * arg)2614 static int nilfs_segctor_thread(void *arg)
2615 {
2616 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2617 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2618 int timeout = 0;
2619
2620 sci->sc_timer_task = current;
2621 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
2622
2623 /* start sync. */
2624 sci->sc_task = current;
2625 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2626 nilfs_info(sci->sc_super,
2627 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2628 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2629
2630 spin_lock(&sci->sc_state_lock);
2631 loop:
2632 for (;;) {
2633 int mode;
2634
2635 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2636 goto end_thread;
2637
2638 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2639 mode = SC_LSEG_SR;
2640 else if (sci->sc_flush_request)
2641 mode = nilfs_segctor_flush_mode(sci);
2642 else
2643 break;
2644
2645 spin_unlock(&sci->sc_state_lock);
2646 nilfs_segctor_thread_construct(sci, mode);
2647 spin_lock(&sci->sc_state_lock);
2648 timeout = 0;
2649 }
2650
2651
2652 if (freezing(current)) {
2653 spin_unlock(&sci->sc_state_lock);
2654 try_to_freeze();
2655 spin_lock(&sci->sc_state_lock);
2656 } else {
2657 DEFINE_WAIT(wait);
2658 int should_sleep = 1;
2659
2660 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2661 TASK_INTERRUPTIBLE);
2662
2663 if (sci->sc_seq_request != sci->sc_seq_done)
2664 should_sleep = 0;
2665 else if (sci->sc_flush_request)
2666 should_sleep = 0;
2667 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2668 should_sleep = time_before(jiffies,
2669 sci->sc_timer.expires);
2670
2671 if (should_sleep) {
2672 spin_unlock(&sci->sc_state_lock);
2673 schedule();
2674 spin_lock(&sci->sc_state_lock);
2675 }
2676 finish_wait(&sci->sc_wait_daemon, &wait);
2677 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2678 time_after_eq(jiffies, sci->sc_timer.expires));
2679
2680 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2681 set_nilfs_discontinued(nilfs);
2682 }
2683 goto loop;
2684
2685 end_thread:
2686 /* end sync. */
2687 sci->sc_task = NULL;
2688 timer_shutdown_sync(&sci->sc_timer);
2689 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2690 spin_unlock(&sci->sc_state_lock);
2691 return 0;
2692 }
2693
nilfs_segctor_start_thread(struct nilfs_sc_info * sci)2694 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2695 {
2696 struct task_struct *t;
2697
2698 t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2699 if (IS_ERR(t)) {
2700 int err = PTR_ERR(t);
2701
2702 nilfs_err(sci->sc_super, "error %d creating segctord thread",
2703 err);
2704 return err;
2705 }
2706 wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2707 return 0;
2708 }
2709
nilfs_segctor_kill_thread(struct nilfs_sc_info * sci)2710 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2711 __acquires(&sci->sc_state_lock)
2712 __releases(&sci->sc_state_lock)
2713 {
2714 sci->sc_state |= NILFS_SEGCTOR_QUIT;
2715
2716 while (sci->sc_task) {
2717 wake_up(&sci->sc_wait_daemon);
2718 spin_unlock(&sci->sc_state_lock);
2719 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2720 spin_lock(&sci->sc_state_lock);
2721 }
2722 }
2723
2724 /*
2725 * Setup & clean-up functions
2726 */
nilfs_segctor_new(struct super_block * sb,struct nilfs_root * root)2727 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2728 struct nilfs_root *root)
2729 {
2730 struct the_nilfs *nilfs = sb->s_fs_info;
2731 struct nilfs_sc_info *sci;
2732
2733 sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2734 if (!sci)
2735 return NULL;
2736
2737 sci->sc_super = sb;
2738
2739 nilfs_get_root(root);
2740 sci->sc_root = root;
2741
2742 init_waitqueue_head(&sci->sc_wait_request);
2743 init_waitqueue_head(&sci->sc_wait_daemon);
2744 init_waitqueue_head(&sci->sc_wait_task);
2745 spin_lock_init(&sci->sc_state_lock);
2746 INIT_LIST_HEAD(&sci->sc_dirty_files);
2747 INIT_LIST_HEAD(&sci->sc_segbufs);
2748 INIT_LIST_HEAD(&sci->sc_write_logs);
2749 INIT_LIST_HEAD(&sci->sc_gc_inodes);
2750 INIT_LIST_HEAD(&sci->sc_iput_queue);
2751 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2752
2753 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2754 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2755 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2756
2757 if (nilfs->ns_interval)
2758 sci->sc_interval = HZ * nilfs->ns_interval;
2759 if (nilfs->ns_watermark)
2760 sci->sc_watermark = nilfs->ns_watermark;
2761 return sci;
2762 }
2763
nilfs_segctor_write_out(struct nilfs_sc_info * sci)2764 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2765 {
2766 int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2767
2768 /*
2769 * The segctord thread was stopped and its timer was removed.
2770 * But some tasks remain.
2771 */
2772 do {
2773 struct nilfs_transaction_info ti;
2774
2775 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2776 ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2777 nilfs_transaction_unlock(sci->sc_super);
2778
2779 flush_work(&sci->sc_iput_work);
2780
2781 } while (ret && ret != -EROFS && retrycount-- > 0);
2782 }
2783
2784 /**
2785 * nilfs_segctor_destroy - destroy the segment constructor.
2786 * @sci: nilfs_sc_info
2787 *
2788 * nilfs_segctor_destroy() kills the segctord thread and frees
2789 * the nilfs_sc_info struct.
2790 * Caller must hold the segment semaphore.
2791 */
nilfs_segctor_destroy(struct nilfs_sc_info * sci)2792 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2793 {
2794 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2795 int flag;
2796
2797 up_write(&nilfs->ns_segctor_sem);
2798
2799 spin_lock(&sci->sc_state_lock);
2800 nilfs_segctor_kill_thread(sci);
2801 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2802 || sci->sc_seq_request != sci->sc_seq_done);
2803 spin_unlock(&sci->sc_state_lock);
2804
2805 /*
2806 * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can
2807 * be called from delayed iput() via nilfs_evict_inode() and can race
2808 * with the above log writer thread termination.
2809 */
2810 nilfs_segctor_wakeup(sci, 0, true);
2811
2812 if (flush_work(&sci->sc_iput_work))
2813 flag = true;
2814
2815 if (flag || !nilfs_segctor_confirm(sci))
2816 nilfs_segctor_write_out(sci);
2817
2818 if (!list_empty(&sci->sc_dirty_files)) {
2819 nilfs_warn(sci->sc_super,
2820 "disposed unprocessed dirty file(s) when stopping log writer");
2821 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2822 }
2823
2824 if (!list_empty(&sci->sc_iput_queue)) {
2825 nilfs_warn(sci->sc_super,
2826 "disposed unprocessed inode(s) in iput queue when stopping log writer");
2827 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2828 }
2829
2830 WARN_ON(!list_empty(&sci->sc_segbufs));
2831 WARN_ON(!list_empty(&sci->sc_write_logs));
2832
2833 nilfs_put_root(sci->sc_root);
2834
2835 down_write(&nilfs->ns_segctor_sem);
2836
2837 kfree(sci);
2838 }
2839
2840 /**
2841 * nilfs_attach_log_writer - attach log writer
2842 * @sb: super block instance
2843 * @root: root object of the current filesystem tree
2844 *
2845 * This allocates a log writer object, initializes it, and starts the
2846 * log writer.
2847 *
2848 * Return Value: On success, 0 is returned. On error, one of the following
2849 * negative error code is returned.
2850 *
2851 * %-ENOMEM - Insufficient memory available.
2852 */
nilfs_attach_log_writer(struct super_block * sb,struct nilfs_root * root)2853 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2854 {
2855 struct the_nilfs *nilfs = sb->s_fs_info;
2856 int err;
2857
2858 if (nilfs->ns_writer) {
2859 /*
2860 * This happens if the filesystem is made read-only by
2861 * __nilfs_error or nilfs_remount and then remounted
2862 * read/write. In these cases, reuse the existing
2863 * writer.
2864 */
2865 return 0;
2866 }
2867
2868 nilfs->ns_writer = nilfs_segctor_new(sb, root);
2869 if (!nilfs->ns_writer)
2870 return -ENOMEM;
2871
2872 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL);
2873
2874 err = nilfs_segctor_start_thread(nilfs->ns_writer);
2875 if (unlikely(err))
2876 nilfs_detach_log_writer(sb);
2877
2878 return err;
2879 }
2880
2881 /**
2882 * nilfs_detach_log_writer - destroy log writer
2883 * @sb: super block instance
2884 *
2885 * This kills log writer daemon, frees the log writer object, and
2886 * destroys list of dirty files.
2887 */
nilfs_detach_log_writer(struct super_block * sb)2888 void nilfs_detach_log_writer(struct super_block *sb)
2889 {
2890 struct the_nilfs *nilfs = sb->s_fs_info;
2891 LIST_HEAD(garbage_list);
2892
2893 down_write(&nilfs->ns_segctor_sem);
2894 if (nilfs->ns_writer) {
2895 nilfs_segctor_destroy(nilfs->ns_writer);
2896 nilfs->ns_writer = NULL;
2897 }
2898 set_nilfs_purging(nilfs);
2899
2900 /* Force to free the list of dirty files */
2901 spin_lock(&nilfs->ns_inode_lock);
2902 if (!list_empty(&nilfs->ns_dirty_files)) {
2903 list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2904 nilfs_warn(sb,
2905 "disposed unprocessed dirty file(s) when detaching log writer");
2906 }
2907 spin_unlock(&nilfs->ns_inode_lock);
2908 up_write(&nilfs->ns_segctor_sem);
2909
2910 nilfs_dispose_list(nilfs, &garbage_list, 1);
2911 clear_nilfs_purging(nilfs);
2912 }
2913