xref: /openbmc/linux/mm/memblock.c (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Procedures for maintaining information about logical memory blocks.
4   *
5   * Peter Bergner, IBM Corp.	June 2001.
6   * Copyright (C) 2001 Peter Bergner.
7   */
8  
9  #include <linux/kernel.h>
10  #include <linux/slab.h>
11  #include <linux/init.h>
12  #include <linux/bitops.h>
13  #include <linux/poison.h>
14  #include <linux/pfn.h>
15  #include <linux/debugfs.h>
16  #include <linux/kmemleak.h>
17  #include <linux/seq_file.h>
18  #include <linux/memblock.h>
19  
20  #include <asm/sections.h>
21  #include <linux/io.h>
22  
23  #include "internal.h"
24  
25  #define INIT_MEMBLOCK_REGIONS			128
26  #define INIT_PHYSMEM_REGIONS			4
27  
28  #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29  # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30  #endif
31  
32  #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33  #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34  #endif
35  
36  /**
37   * DOC: memblock overview
38   *
39   * Memblock is a method of managing memory regions during the early
40   * boot period when the usual kernel memory allocators are not up and
41   * running.
42   *
43   * Memblock views the system memory as collections of contiguous
44   * regions. There are several types of these collections:
45   *
46   * * ``memory`` - describes the physical memory available to the
47   *   kernel; this may differ from the actual physical memory installed
48   *   in the system, for instance when the memory is restricted with
49   *   ``mem=`` command line parameter
50   * * ``reserved`` - describes the regions that were allocated
51   * * ``physmem`` - describes the actual physical memory available during
52   *   boot regardless of the possible restrictions and memory hot(un)plug;
53   *   the ``physmem`` type is only available on some architectures.
54   *
55   * Each region is represented by struct memblock_region that
56   * defines the region extents, its attributes and NUMA node id on NUMA
57   * systems. Every memory type is described by the struct memblock_type
58   * which contains an array of memory regions along with
59   * the allocator metadata. The "memory" and "reserved" types are nicely
60   * wrapped with struct memblock. This structure is statically
61   * initialized at build time. The region arrays are initially sized to
62   * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63   * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64   * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65   * The memblock_allow_resize() enables automatic resizing of the region
66   * arrays during addition of new regions. This feature should be used
67   * with care so that memory allocated for the region array will not
68   * overlap with areas that should be reserved, for example initrd.
69   *
70   * The early architecture setup should tell memblock what the physical
71   * memory layout is by using memblock_add() or memblock_add_node()
72   * functions. The first function does not assign the region to a NUMA
73   * node and it is appropriate for UMA systems. Yet, it is possible to
74   * use it on NUMA systems as well and assign the region to a NUMA node
75   * later in the setup process using memblock_set_node(). The
76   * memblock_add_node() performs such an assignment directly.
77   *
78   * Once memblock is setup the memory can be allocated using one of the
79   * API variants:
80   *
81   * * memblock_phys_alloc*() - these functions return the **physical**
82   *   address of the allocated memory
83   * * memblock_alloc*() - these functions return the **virtual** address
84   *   of the allocated memory.
85   *
86   * Note, that both API variants use implicit assumptions about allowed
87   * memory ranges and the fallback methods. Consult the documentation
88   * of memblock_alloc_internal() and memblock_alloc_range_nid()
89   * functions for more elaborate description.
90   *
91   * As the system boot progresses, the architecture specific mem_init()
92   * function frees all the memory to the buddy page allocator.
93   *
94   * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95   * memblock data structures (except "physmem") will be discarded after the
96   * system initialization completes.
97   */
98  
99  #ifndef CONFIG_NUMA
100  struct pglist_data __refdata contig_page_data;
101  EXPORT_SYMBOL(contig_page_data);
102  #endif
103  
104  unsigned long max_low_pfn;
105  unsigned long min_low_pfn;
106  unsigned long max_pfn;
107  unsigned long long max_possible_pfn;
108  
109  static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110  static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112  static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113  #endif
114  
115  struct memblock memblock __initdata_memblock = {
116  	.memory.regions		= memblock_memory_init_regions,
117  	.memory.cnt		= 1,	/* empty dummy entry */
118  	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119  	.memory.name		= "memory",
120  
121  	.reserved.regions	= memblock_reserved_init_regions,
122  	.reserved.cnt		= 1,	/* empty dummy entry */
123  	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124  	.reserved.name		= "reserved",
125  
126  	.bottom_up		= false,
127  	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128  };
129  
130  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131  struct memblock_type physmem = {
132  	.regions		= memblock_physmem_init_regions,
133  	.cnt			= 1,	/* empty dummy entry */
134  	.max			= INIT_PHYSMEM_REGIONS,
135  	.name			= "physmem",
136  };
137  #endif
138  
139  /*
140   * keep a pointer to &memblock.memory in the text section to use it in
141   * __next_mem_range() and its helpers.
142   *  For architectures that do not keep memblock data after init, this
143   * pointer will be reset to NULL at memblock_discard()
144   */
145  static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146  
147  #define for_each_memblock_type(i, memblock_type, rgn)			\
148  	for (i = 0, rgn = &memblock_type->regions[0];			\
149  	     i < memblock_type->cnt;					\
150  	     i++, rgn = &memblock_type->regions[i])
151  
152  #define memblock_dbg(fmt, ...)						\
153  	do {								\
154  		if (memblock_debug)					\
155  			pr_info(fmt, ##__VA_ARGS__);			\
156  	} while (0)
157  
158  static int memblock_debug __initdata_memblock;
159  static bool system_has_some_mirror __initdata_memblock;
160  static int memblock_can_resize __initdata_memblock;
161  static int memblock_memory_in_slab __initdata_memblock;
162  static int memblock_reserved_in_slab __initdata_memblock;
163  
memblock_has_mirror(void)164  bool __init_memblock memblock_has_mirror(void)
165  {
166  	return system_has_some_mirror;
167  }
168  
choose_memblock_flags(void)169  static enum memblock_flags __init_memblock choose_memblock_flags(void)
170  {
171  	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172  }
173  
174  /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)175  static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176  {
177  	return *size = min(*size, PHYS_ADDR_MAX - base);
178  }
179  
180  /*
181   * Address comparison utilities
182   */
183  unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)184  memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
185  		       phys_addr_t size2)
186  {
187  	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
188  }
189  
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)190  bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191  					phys_addr_t base, phys_addr_t size)
192  {
193  	unsigned long i;
194  
195  	memblock_cap_size(base, &size);
196  
197  	for (i = 0; i < type->cnt; i++)
198  		if (memblock_addrs_overlap(base, size, type->regions[i].base,
199  					   type->regions[i].size))
200  			break;
201  	return i < type->cnt;
202  }
203  
204  /**
205   * __memblock_find_range_bottom_up - find free area utility in bottom-up
206   * @start: start of candidate range
207   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208   *       %MEMBLOCK_ALLOC_ACCESSIBLE
209   * @size: size of free area to find
210   * @align: alignment of free area to find
211   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212   * @flags: pick from blocks based on memory attributes
213   *
214   * Utility called from memblock_find_in_range_node(), find free area bottom-up.
215   *
216   * Return:
217   * Found address on success, 0 on failure.
218   */
219  static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)220  __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221  				phys_addr_t size, phys_addr_t align, int nid,
222  				enum memblock_flags flags)
223  {
224  	phys_addr_t this_start, this_end, cand;
225  	u64 i;
226  
227  	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228  		this_start = clamp(this_start, start, end);
229  		this_end = clamp(this_end, start, end);
230  
231  		cand = round_up(this_start, align);
232  		if (cand < this_end && this_end - cand >= size)
233  			return cand;
234  	}
235  
236  	return 0;
237  }
238  
239  /**
240   * __memblock_find_range_top_down - find free area utility, in top-down
241   * @start: start of candidate range
242   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243   *       %MEMBLOCK_ALLOC_ACCESSIBLE
244   * @size: size of free area to find
245   * @align: alignment of free area to find
246   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247   * @flags: pick from blocks based on memory attributes
248   *
249   * Utility called from memblock_find_in_range_node(), find free area top-down.
250   *
251   * Return:
252   * Found address on success, 0 on failure.
253   */
254  static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)255  __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256  			       phys_addr_t size, phys_addr_t align, int nid,
257  			       enum memblock_flags flags)
258  {
259  	phys_addr_t this_start, this_end, cand;
260  	u64 i;
261  
262  	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263  					NULL) {
264  		this_start = clamp(this_start, start, end);
265  		this_end = clamp(this_end, start, end);
266  
267  		if (this_end < size)
268  			continue;
269  
270  		cand = round_down(this_end - size, align);
271  		if (cand >= this_start)
272  			return cand;
273  	}
274  
275  	return 0;
276  }
277  
278  /**
279   * memblock_find_in_range_node - find free area in given range and node
280   * @size: size of free area to find
281   * @align: alignment of free area to find
282   * @start: start of candidate range
283   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284   *       %MEMBLOCK_ALLOC_ACCESSIBLE
285   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286   * @flags: pick from blocks based on memory attributes
287   *
288   * Find @size free area aligned to @align in the specified range and node.
289   *
290   * Return:
291   * Found address on success, 0 on failure.
292   */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)293  static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294  					phys_addr_t align, phys_addr_t start,
295  					phys_addr_t end, int nid,
296  					enum memblock_flags flags)
297  {
298  	/* pump up @end */
299  	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300  	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301  		end = memblock.current_limit;
302  
303  	/* avoid allocating the first page */
304  	start = max_t(phys_addr_t, start, PAGE_SIZE);
305  	end = max(start, end);
306  
307  	if (memblock_bottom_up())
308  		return __memblock_find_range_bottom_up(start, end, size, align,
309  						       nid, flags);
310  	else
311  		return __memblock_find_range_top_down(start, end, size, align,
312  						      nid, flags);
313  }
314  
315  /**
316   * memblock_find_in_range - find free area in given range
317   * @start: start of candidate range
318   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319   *       %MEMBLOCK_ALLOC_ACCESSIBLE
320   * @size: size of free area to find
321   * @align: alignment of free area to find
322   *
323   * Find @size free area aligned to @align in the specified range.
324   *
325   * Return:
326   * Found address on success, 0 on failure.
327   */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)328  static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329  					phys_addr_t end, phys_addr_t size,
330  					phys_addr_t align)
331  {
332  	phys_addr_t ret;
333  	enum memblock_flags flags = choose_memblock_flags();
334  
335  again:
336  	ret = memblock_find_in_range_node(size, align, start, end,
337  					    NUMA_NO_NODE, flags);
338  
339  	if (!ret && (flags & MEMBLOCK_MIRROR)) {
340  		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341  			&size);
342  		flags &= ~MEMBLOCK_MIRROR;
343  		goto again;
344  	}
345  
346  	return ret;
347  }
348  
memblock_remove_region(struct memblock_type * type,unsigned long r)349  static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350  {
351  	type->total_size -= type->regions[r].size;
352  	memmove(&type->regions[r], &type->regions[r + 1],
353  		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
354  	type->cnt--;
355  
356  	/* Special case for empty arrays */
357  	if (type->cnt == 0) {
358  		WARN_ON(type->total_size != 0);
359  		type->cnt = 1;
360  		type->regions[0].base = 0;
361  		type->regions[0].size = 0;
362  		type->regions[0].flags = 0;
363  		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364  	}
365  }
366  
367  #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368  /**
369   * memblock_discard - discard memory and reserved arrays if they were allocated
370   */
memblock_discard(void)371  void __init memblock_discard(void)
372  {
373  	phys_addr_t addr, size;
374  
375  	if (memblock.reserved.regions != memblock_reserved_init_regions) {
376  		addr = __pa(memblock.reserved.regions);
377  		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378  				  memblock.reserved.max);
379  		if (memblock_reserved_in_slab)
380  			kfree(memblock.reserved.regions);
381  		else
382  			memblock_free_late(addr, size);
383  	}
384  
385  	if (memblock.memory.regions != memblock_memory_init_regions) {
386  		addr = __pa(memblock.memory.regions);
387  		size = PAGE_ALIGN(sizeof(struct memblock_region) *
388  				  memblock.memory.max);
389  		if (memblock_memory_in_slab)
390  			kfree(memblock.memory.regions);
391  		else
392  			memblock_free_late(addr, size);
393  	}
394  
395  	memblock_memory = NULL;
396  }
397  #endif
398  
399  /**
400   * memblock_double_array - double the size of the memblock regions array
401   * @type: memblock type of the regions array being doubled
402   * @new_area_start: starting address of memory range to avoid overlap with
403   * @new_area_size: size of memory range to avoid overlap with
404   *
405   * Double the size of the @type regions array. If memblock is being used to
406   * allocate memory for a new reserved regions array and there is a previously
407   * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408   * waiting to be reserved, ensure the memory used by the new array does
409   * not overlap.
410   *
411   * Return:
412   * 0 on success, -1 on failure.
413   */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)414  static int __init_memblock memblock_double_array(struct memblock_type *type,
415  						phys_addr_t new_area_start,
416  						phys_addr_t new_area_size)
417  {
418  	struct memblock_region *new_array, *old_array;
419  	phys_addr_t old_alloc_size, new_alloc_size;
420  	phys_addr_t old_size, new_size, addr, new_end;
421  	int use_slab = slab_is_available();
422  	int *in_slab;
423  
424  	/* We don't allow resizing until we know about the reserved regions
425  	 * of memory that aren't suitable for allocation
426  	 */
427  	if (!memblock_can_resize)
428  		return -1;
429  
430  	/* Calculate new doubled size */
431  	old_size = type->max * sizeof(struct memblock_region);
432  	new_size = old_size << 1;
433  	/*
434  	 * We need to allocated new one align to PAGE_SIZE,
435  	 *   so we can free them completely later.
436  	 */
437  	old_alloc_size = PAGE_ALIGN(old_size);
438  	new_alloc_size = PAGE_ALIGN(new_size);
439  
440  	/* Retrieve the slab flag */
441  	if (type == &memblock.memory)
442  		in_slab = &memblock_memory_in_slab;
443  	else
444  		in_slab = &memblock_reserved_in_slab;
445  
446  	/* Try to find some space for it */
447  	if (use_slab) {
448  		new_array = kmalloc(new_size, GFP_KERNEL);
449  		addr = new_array ? __pa(new_array) : 0;
450  	} else {
451  		/* only exclude range when trying to double reserved.regions */
452  		if (type != &memblock.reserved)
453  			new_area_start = new_area_size = 0;
454  
455  		addr = memblock_find_in_range(new_area_start + new_area_size,
456  						memblock.current_limit,
457  						new_alloc_size, PAGE_SIZE);
458  		if (!addr && new_area_size)
459  			addr = memblock_find_in_range(0,
460  				min(new_area_start, memblock.current_limit),
461  				new_alloc_size, PAGE_SIZE);
462  
463  		new_array = addr ? __va(addr) : NULL;
464  	}
465  	if (!addr) {
466  		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
467  		       type->name, type->max, type->max * 2);
468  		return -1;
469  	}
470  
471  	new_end = addr + new_size - 1;
472  	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
473  			type->name, type->max * 2, &addr, &new_end);
474  
475  	/*
476  	 * Found space, we now need to move the array over before we add the
477  	 * reserved region since it may be our reserved array itself that is
478  	 * full.
479  	 */
480  	memcpy(new_array, type->regions, old_size);
481  	memset(new_array + type->max, 0, old_size);
482  	old_array = type->regions;
483  	type->regions = new_array;
484  	type->max <<= 1;
485  
486  	/* Free old array. We needn't free it if the array is the static one */
487  	if (*in_slab)
488  		kfree(old_array);
489  	else if (old_array != memblock_memory_init_regions &&
490  		 old_array != memblock_reserved_init_regions)
491  		memblock_free(old_array, old_alloc_size);
492  
493  	/*
494  	 * Reserve the new array if that comes from the memblock.  Otherwise, we
495  	 * needn't do it
496  	 */
497  	if (!use_slab)
498  		BUG_ON(memblock_reserve(addr, new_alloc_size));
499  
500  	/* Update slab flag */
501  	*in_slab = use_slab;
502  
503  	return 0;
504  }
505  
506  /**
507   * memblock_merge_regions - merge neighboring compatible regions
508   * @type: memblock type to scan
509   * @start_rgn: start scanning from (@start_rgn - 1)
510   * @end_rgn: end scanning at (@end_rgn - 1)
511   * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
512   */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)513  static void __init_memblock memblock_merge_regions(struct memblock_type *type,
514  						   unsigned long start_rgn,
515  						   unsigned long end_rgn)
516  {
517  	int i = 0;
518  	if (start_rgn)
519  		i = start_rgn - 1;
520  	end_rgn = min(end_rgn, type->cnt - 1);
521  	while (i < end_rgn) {
522  		struct memblock_region *this = &type->regions[i];
523  		struct memblock_region *next = &type->regions[i + 1];
524  
525  		if (this->base + this->size != next->base ||
526  		    memblock_get_region_node(this) !=
527  		    memblock_get_region_node(next) ||
528  		    this->flags != next->flags) {
529  			BUG_ON(this->base + this->size > next->base);
530  			i++;
531  			continue;
532  		}
533  
534  		this->size += next->size;
535  		/* move forward from next + 1, index of which is i + 2 */
536  		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
537  		type->cnt--;
538  		end_rgn--;
539  	}
540  }
541  
542  /**
543   * memblock_insert_region - insert new memblock region
544   * @type:	memblock type to insert into
545   * @idx:	index for the insertion point
546   * @base:	base address of the new region
547   * @size:	size of the new region
548   * @nid:	node id of the new region
549   * @flags:	flags of the new region
550   *
551   * Insert new memblock region [@base, @base + @size) into @type at @idx.
552   * @type must already have extra room to accommodate the new region.
553   */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)554  static void __init_memblock memblock_insert_region(struct memblock_type *type,
555  						   int idx, phys_addr_t base,
556  						   phys_addr_t size,
557  						   int nid,
558  						   enum memblock_flags flags)
559  {
560  	struct memblock_region *rgn = &type->regions[idx];
561  
562  	BUG_ON(type->cnt >= type->max);
563  	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
564  	rgn->base = base;
565  	rgn->size = size;
566  	rgn->flags = flags;
567  	memblock_set_region_node(rgn, nid);
568  	type->cnt++;
569  	type->total_size += size;
570  }
571  
572  /**
573   * memblock_add_range - add new memblock region
574   * @type: memblock type to add new region into
575   * @base: base address of the new region
576   * @size: size of the new region
577   * @nid: nid of the new region
578   * @flags: flags of the new region
579   *
580   * Add new memblock region [@base, @base + @size) into @type.  The new region
581   * is allowed to overlap with existing ones - overlaps don't affect already
582   * existing regions.  @type is guaranteed to be minimal (all neighbouring
583   * compatible regions are merged) after the addition.
584   *
585   * Return:
586   * 0 on success, -errno on failure.
587   */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)588  static int __init_memblock memblock_add_range(struct memblock_type *type,
589  				phys_addr_t base, phys_addr_t size,
590  				int nid, enum memblock_flags flags)
591  {
592  	bool insert = false;
593  	phys_addr_t obase = base;
594  	phys_addr_t end = base + memblock_cap_size(base, &size);
595  	int idx, nr_new, start_rgn = -1, end_rgn;
596  	struct memblock_region *rgn;
597  
598  	if (!size)
599  		return 0;
600  
601  	/* special case for empty array */
602  	if (type->regions[0].size == 0) {
603  		WARN_ON(type->cnt != 1 || type->total_size);
604  		type->regions[0].base = base;
605  		type->regions[0].size = size;
606  		type->regions[0].flags = flags;
607  		memblock_set_region_node(&type->regions[0], nid);
608  		type->total_size = size;
609  		return 0;
610  	}
611  
612  	/*
613  	 * The worst case is when new range overlaps all existing regions,
614  	 * then we'll need type->cnt + 1 empty regions in @type. So if
615  	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
616  	 * that there is enough empty regions in @type, and we can insert
617  	 * regions directly.
618  	 */
619  	if (type->cnt * 2 + 1 <= type->max)
620  		insert = true;
621  
622  repeat:
623  	/*
624  	 * The following is executed twice.  Once with %false @insert and
625  	 * then with %true.  The first counts the number of regions needed
626  	 * to accommodate the new area.  The second actually inserts them.
627  	 */
628  	base = obase;
629  	nr_new = 0;
630  
631  	for_each_memblock_type(idx, type, rgn) {
632  		phys_addr_t rbase = rgn->base;
633  		phys_addr_t rend = rbase + rgn->size;
634  
635  		if (rbase >= end)
636  			break;
637  		if (rend <= base)
638  			continue;
639  		/*
640  		 * @rgn overlaps.  If it separates the lower part of new
641  		 * area, insert that portion.
642  		 */
643  		if (rbase > base) {
644  #ifdef CONFIG_NUMA
645  			WARN_ON(nid != memblock_get_region_node(rgn));
646  #endif
647  			WARN_ON(flags != rgn->flags);
648  			nr_new++;
649  			if (insert) {
650  				if (start_rgn == -1)
651  					start_rgn = idx;
652  				end_rgn = idx + 1;
653  				memblock_insert_region(type, idx++, base,
654  						       rbase - base, nid,
655  						       flags);
656  			}
657  		}
658  		/* area below @rend is dealt with, forget about it */
659  		base = min(rend, end);
660  	}
661  
662  	/* insert the remaining portion */
663  	if (base < end) {
664  		nr_new++;
665  		if (insert) {
666  			if (start_rgn == -1)
667  				start_rgn = idx;
668  			end_rgn = idx + 1;
669  			memblock_insert_region(type, idx, base, end - base,
670  					       nid, flags);
671  		}
672  	}
673  
674  	if (!nr_new)
675  		return 0;
676  
677  	/*
678  	 * If this was the first round, resize array and repeat for actual
679  	 * insertions; otherwise, merge and return.
680  	 */
681  	if (!insert) {
682  		while (type->cnt + nr_new > type->max)
683  			if (memblock_double_array(type, obase, size) < 0)
684  				return -ENOMEM;
685  		insert = true;
686  		goto repeat;
687  	} else {
688  		memblock_merge_regions(type, start_rgn, end_rgn);
689  		return 0;
690  	}
691  }
692  
693  /**
694   * memblock_add_node - add new memblock region within a NUMA node
695   * @base: base address of the new region
696   * @size: size of the new region
697   * @nid: nid of the new region
698   * @flags: flags of the new region
699   *
700   * Add new memblock region [@base, @base + @size) to the "memory"
701   * type. See memblock_add_range() description for mode details
702   *
703   * Return:
704   * 0 on success, -errno on failure.
705   */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)706  int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
707  				      int nid, enum memblock_flags flags)
708  {
709  	phys_addr_t end = base + size - 1;
710  
711  	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
712  		     &base, &end, nid, flags, (void *)_RET_IP_);
713  
714  	return memblock_add_range(&memblock.memory, base, size, nid, flags);
715  }
716  
717  /**
718   * memblock_add - add new memblock region
719   * @base: base address of the new region
720   * @size: size of the new region
721   *
722   * Add new memblock region [@base, @base + @size) to the "memory"
723   * type. See memblock_add_range() description for mode details
724   *
725   * Return:
726   * 0 on success, -errno on failure.
727   */
memblock_add(phys_addr_t base,phys_addr_t size)728  int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
729  {
730  	phys_addr_t end = base + size - 1;
731  
732  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
733  		     &base, &end, (void *)_RET_IP_);
734  
735  	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
736  }
737  
738  /**
739   * memblock_validate_numa_coverage - check if amount of memory with
740   * no node ID assigned is less than a threshold
741   * @threshold_bytes: maximal memory size that can have unassigned node
742   * ID (in bytes).
743   *
744   * A buggy firmware may report memory that does not belong to any node.
745   * Check if amount of such memory is below @threshold_bytes.
746   *
747   * Return: true on success, false on failure.
748   */
memblock_validate_numa_coverage(unsigned long threshold_bytes)749  bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
750  {
751  	unsigned long nr_pages = 0;
752  	unsigned long start_pfn, end_pfn, mem_size_mb;
753  	int nid, i;
754  
755  	/* calculate lose page */
756  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
757  		if (!numa_valid_node(nid))
758  			nr_pages += end_pfn - start_pfn;
759  	}
760  
761  	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
762  		mem_size_mb = memblock_phys_mem_size() >> 20;
763  		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
764  		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
765  		return false;
766  	}
767  
768  	return true;
769  }
770  
771  
772  /**
773   * memblock_isolate_range - isolate given range into disjoint memblocks
774   * @type: memblock type to isolate range for
775   * @base: base of range to isolate
776   * @size: size of range to isolate
777   * @start_rgn: out parameter for the start of isolated region
778   * @end_rgn: out parameter for the end of isolated region
779   *
780   * Walk @type and ensure that regions don't cross the boundaries defined by
781   * [@base, @base + @size).  Crossing regions are split at the boundaries,
782   * which may create at most two more regions.  The index of the first
783   * region inside the range is returned in *@start_rgn and end in *@end_rgn.
784   *
785   * Return:
786   * 0 on success, -errno on failure.
787   */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)788  static int __init_memblock memblock_isolate_range(struct memblock_type *type,
789  					phys_addr_t base, phys_addr_t size,
790  					int *start_rgn, int *end_rgn)
791  {
792  	phys_addr_t end = base + memblock_cap_size(base, &size);
793  	int idx;
794  	struct memblock_region *rgn;
795  
796  	*start_rgn = *end_rgn = 0;
797  
798  	if (!size)
799  		return 0;
800  
801  	/* we'll create at most two more regions */
802  	while (type->cnt + 2 > type->max)
803  		if (memblock_double_array(type, base, size) < 0)
804  			return -ENOMEM;
805  
806  	for_each_memblock_type(idx, type, rgn) {
807  		phys_addr_t rbase = rgn->base;
808  		phys_addr_t rend = rbase + rgn->size;
809  
810  		if (rbase >= end)
811  			break;
812  		if (rend <= base)
813  			continue;
814  
815  		if (rbase < base) {
816  			/*
817  			 * @rgn intersects from below.  Split and continue
818  			 * to process the next region - the new top half.
819  			 */
820  			rgn->base = base;
821  			rgn->size -= base - rbase;
822  			type->total_size -= base - rbase;
823  			memblock_insert_region(type, idx, rbase, base - rbase,
824  					       memblock_get_region_node(rgn),
825  					       rgn->flags);
826  		} else if (rend > end) {
827  			/*
828  			 * @rgn intersects from above.  Split and redo the
829  			 * current region - the new bottom half.
830  			 */
831  			rgn->base = end;
832  			rgn->size -= end - rbase;
833  			type->total_size -= end - rbase;
834  			memblock_insert_region(type, idx--, rbase, end - rbase,
835  					       memblock_get_region_node(rgn),
836  					       rgn->flags);
837  		} else {
838  			/* @rgn is fully contained, record it */
839  			if (!*end_rgn)
840  				*start_rgn = idx;
841  			*end_rgn = idx + 1;
842  		}
843  	}
844  
845  	return 0;
846  }
847  
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)848  static int __init_memblock memblock_remove_range(struct memblock_type *type,
849  					  phys_addr_t base, phys_addr_t size)
850  {
851  	int start_rgn, end_rgn;
852  	int i, ret;
853  
854  	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855  	if (ret)
856  		return ret;
857  
858  	for (i = end_rgn - 1; i >= start_rgn; i--)
859  		memblock_remove_region(type, i);
860  	return 0;
861  }
862  
memblock_remove(phys_addr_t base,phys_addr_t size)863  int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
864  {
865  	phys_addr_t end = base + size - 1;
866  
867  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
868  		     &base, &end, (void *)_RET_IP_);
869  
870  	return memblock_remove_range(&memblock.memory, base, size);
871  }
872  
873  /**
874   * memblock_free - free boot memory allocation
875   * @ptr: starting address of the  boot memory allocation
876   * @size: size of the boot memory block in bytes
877   *
878   * Free boot memory block previously allocated by memblock_alloc_xx() API.
879   * The freeing memory will not be released to the buddy allocator.
880   */
memblock_free(void * ptr,size_t size)881  void __init_memblock memblock_free(void *ptr, size_t size)
882  {
883  	if (ptr)
884  		memblock_phys_free(__pa(ptr), size);
885  }
886  
887  /**
888   * memblock_phys_free - free boot memory block
889   * @base: phys starting address of the  boot memory block
890   * @size: size of the boot memory block in bytes
891   *
892   * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
893   * The freeing memory will not be released to the buddy allocator.
894   */
memblock_phys_free(phys_addr_t base,phys_addr_t size)895  int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
896  {
897  	phys_addr_t end = base + size - 1;
898  
899  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
900  		     &base, &end, (void *)_RET_IP_);
901  
902  	kmemleak_free_part_phys(base, size);
903  	return memblock_remove_range(&memblock.reserved, base, size);
904  }
905  
memblock_reserve(phys_addr_t base,phys_addr_t size)906  int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
907  {
908  	phys_addr_t end = base + size - 1;
909  
910  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
911  		     &base, &end, (void *)_RET_IP_);
912  
913  	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
914  }
915  
916  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)917  int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
918  {
919  	phys_addr_t end = base + size - 1;
920  
921  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922  		     &base, &end, (void *)_RET_IP_);
923  
924  	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
925  }
926  #endif
927  
928  /**
929   * memblock_setclr_flag - set or clear flag for a memory region
930   * @base: base address of the region
931   * @size: size of the region
932   * @set: set or clear the flag
933   * @flag: the flag to update
934   *
935   * This function isolates region [@base, @base + @size), and sets/clears flag
936   *
937   * Return: 0 on success, -errno on failure.
938   */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)939  static int __init_memblock memblock_setclr_flag(phys_addr_t base,
940  				phys_addr_t size, int set, int flag)
941  {
942  	struct memblock_type *type = &memblock.memory;
943  	int i, ret, start_rgn, end_rgn;
944  
945  	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
946  	if (ret)
947  		return ret;
948  
949  	for (i = start_rgn; i < end_rgn; i++) {
950  		struct memblock_region *r = &type->regions[i];
951  
952  		if (set)
953  			r->flags |= flag;
954  		else
955  			r->flags &= ~flag;
956  	}
957  
958  	memblock_merge_regions(type, start_rgn, end_rgn);
959  	return 0;
960  }
961  
962  /**
963   * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
964   * @base: the base phys addr of the region
965   * @size: the size of the region
966   *
967   * Return: 0 on success, -errno on failure.
968   */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)969  int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
970  {
971  	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
972  }
973  
974  /**
975   * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
976   * @base: the base phys addr of the region
977   * @size: the size of the region
978   *
979   * Return: 0 on success, -errno on failure.
980   */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)981  int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
982  {
983  	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
984  }
985  
986  /**
987   * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
988   * @base: the base phys addr of the region
989   * @size: the size of the region
990   *
991   * Return: 0 on success, -errno on failure.
992   */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)993  int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
994  {
995  	if (!mirrored_kernelcore)
996  		return 0;
997  
998  	system_has_some_mirror = true;
999  
1000  	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
1001  }
1002  
1003  /**
1004   * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005   * @base: the base phys addr of the region
1006   * @size: the size of the region
1007   *
1008   * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009   * direct mapping of the physical memory. These regions will still be
1010   * covered by the memory map. The struct page representing NOMAP memory
1011   * frames in the memory map will be PageReserved()
1012   *
1013   * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014   * memblock, the caller must inform kmemleak to ignore that memory
1015   *
1016   * Return: 0 on success, -errno on failure.
1017   */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1018  int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1019  {
1020  	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
1021  }
1022  
1023  /**
1024   * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025   * @base: the base phys addr of the region
1026   * @size: the size of the region
1027   *
1028   * Return: 0 on success, -errno on failure.
1029   */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1030  int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1031  {
1032  	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
1033  }
1034  
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1035  static bool should_skip_region(struct memblock_type *type,
1036  			       struct memblock_region *m,
1037  			       int nid, int flags)
1038  {
1039  	int m_nid = memblock_get_region_node(m);
1040  
1041  	/* we never skip regions when iterating memblock.reserved or physmem */
1042  	if (type != memblock_memory)
1043  		return false;
1044  
1045  	/* only memory regions are associated with nodes, check it */
1046  	if (numa_valid_node(nid) && nid != m_nid)
1047  		return true;
1048  
1049  	/* skip hotpluggable memory regions if needed */
1050  	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1051  	    !(flags & MEMBLOCK_HOTPLUG))
1052  		return true;
1053  
1054  	/* if we want mirror memory skip non-mirror memory regions */
1055  	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1056  		return true;
1057  
1058  	/* skip nomap memory unless we were asked for it explicitly */
1059  	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1060  		return true;
1061  
1062  	/* skip driver-managed memory unless we were asked for it explicitly */
1063  	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1064  		return true;
1065  
1066  	return false;
1067  }
1068  
1069  /**
1070   * __next_mem_range - next function for for_each_free_mem_range() etc.
1071   * @idx: pointer to u64 loop variable
1072   * @nid: node selector, %NUMA_NO_NODE for all nodes
1073   * @flags: pick from blocks based on memory attributes
1074   * @type_a: pointer to memblock_type from where the range is taken
1075   * @type_b: pointer to memblock_type which excludes memory from being taken
1076   * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1077   * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1078   * @out_nid: ptr to int for nid of the range, can be %NULL
1079   *
1080   * Find the first area from *@idx which matches @nid, fill the out
1081   * parameters, and update *@idx for the next iteration.  The lower 32bit of
1082   * *@idx contains index into type_a and the upper 32bit indexes the
1083   * areas before each region in type_b.	For example, if type_b regions
1084   * look like the following,
1085   *
1086   *	0:[0-16), 1:[32-48), 2:[128-130)
1087   *
1088   * The upper 32bit indexes the following regions.
1089   *
1090   *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1091   *
1092   * As both region arrays are sorted, the function advances the two indices
1093   * in lockstep and returns each intersection.
1094   */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1095  void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1096  		      struct memblock_type *type_a,
1097  		      struct memblock_type *type_b, phys_addr_t *out_start,
1098  		      phys_addr_t *out_end, int *out_nid)
1099  {
1100  	int idx_a = *idx & 0xffffffff;
1101  	int idx_b = *idx >> 32;
1102  
1103  	for (; idx_a < type_a->cnt; idx_a++) {
1104  		struct memblock_region *m = &type_a->regions[idx_a];
1105  
1106  		phys_addr_t m_start = m->base;
1107  		phys_addr_t m_end = m->base + m->size;
1108  		int	    m_nid = memblock_get_region_node(m);
1109  
1110  		if (should_skip_region(type_a, m, nid, flags))
1111  			continue;
1112  
1113  		if (!type_b) {
1114  			if (out_start)
1115  				*out_start = m_start;
1116  			if (out_end)
1117  				*out_end = m_end;
1118  			if (out_nid)
1119  				*out_nid = m_nid;
1120  			idx_a++;
1121  			*idx = (u32)idx_a | (u64)idx_b << 32;
1122  			return;
1123  		}
1124  
1125  		/* scan areas before each reservation */
1126  		for (; idx_b < type_b->cnt + 1; idx_b++) {
1127  			struct memblock_region *r;
1128  			phys_addr_t r_start;
1129  			phys_addr_t r_end;
1130  
1131  			r = &type_b->regions[idx_b];
1132  			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1133  			r_end = idx_b < type_b->cnt ?
1134  				r->base : PHYS_ADDR_MAX;
1135  
1136  			/*
1137  			 * if idx_b advanced past idx_a,
1138  			 * break out to advance idx_a
1139  			 */
1140  			if (r_start >= m_end)
1141  				break;
1142  			/* if the two regions intersect, we're done */
1143  			if (m_start < r_end) {
1144  				if (out_start)
1145  					*out_start =
1146  						max(m_start, r_start);
1147  				if (out_end)
1148  					*out_end = min(m_end, r_end);
1149  				if (out_nid)
1150  					*out_nid = m_nid;
1151  				/*
1152  				 * The region which ends first is
1153  				 * advanced for the next iteration.
1154  				 */
1155  				if (m_end <= r_end)
1156  					idx_a++;
1157  				else
1158  					idx_b++;
1159  				*idx = (u32)idx_a | (u64)idx_b << 32;
1160  				return;
1161  			}
1162  		}
1163  	}
1164  
1165  	/* signal end of iteration */
1166  	*idx = ULLONG_MAX;
1167  }
1168  
1169  /**
1170   * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1171   *
1172   * @idx: pointer to u64 loop variable
1173   * @nid: node selector, %NUMA_NO_NODE for all nodes
1174   * @flags: pick from blocks based on memory attributes
1175   * @type_a: pointer to memblock_type from where the range is taken
1176   * @type_b: pointer to memblock_type which excludes memory from being taken
1177   * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1178   * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1179   * @out_nid: ptr to int for nid of the range, can be %NULL
1180   *
1181   * Finds the next range from type_a which is not marked as unsuitable
1182   * in type_b.
1183   *
1184   * Reverse of __next_mem_range().
1185   */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1186  void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1187  					  enum memblock_flags flags,
1188  					  struct memblock_type *type_a,
1189  					  struct memblock_type *type_b,
1190  					  phys_addr_t *out_start,
1191  					  phys_addr_t *out_end, int *out_nid)
1192  {
1193  	int idx_a = *idx & 0xffffffff;
1194  	int idx_b = *idx >> 32;
1195  
1196  	if (*idx == (u64)ULLONG_MAX) {
1197  		idx_a = type_a->cnt - 1;
1198  		if (type_b != NULL)
1199  			idx_b = type_b->cnt;
1200  		else
1201  			idx_b = 0;
1202  	}
1203  
1204  	for (; idx_a >= 0; idx_a--) {
1205  		struct memblock_region *m = &type_a->regions[idx_a];
1206  
1207  		phys_addr_t m_start = m->base;
1208  		phys_addr_t m_end = m->base + m->size;
1209  		int m_nid = memblock_get_region_node(m);
1210  
1211  		if (should_skip_region(type_a, m, nid, flags))
1212  			continue;
1213  
1214  		if (!type_b) {
1215  			if (out_start)
1216  				*out_start = m_start;
1217  			if (out_end)
1218  				*out_end = m_end;
1219  			if (out_nid)
1220  				*out_nid = m_nid;
1221  			idx_a--;
1222  			*idx = (u32)idx_a | (u64)idx_b << 32;
1223  			return;
1224  		}
1225  
1226  		/* scan areas before each reservation */
1227  		for (; idx_b >= 0; idx_b--) {
1228  			struct memblock_region *r;
1229  			phys_addr_t r_start;
1230  			phys_addr_t r_end;
1231  
1232  			r = &type_b->regions[idx_b];
1233  			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1234  			r_end = idx_b < type_b->cnt ?
1235  				r->base : PHYS_ADDR_MAX;
1236  			/*
1237  			 * if idx_b advanced past idx_a,
1238  			 * break out to advance idx_a
1239  			 */
1240  
1241  			if (r_end <= m_start)
1242  				break;
1243  			/* if the two regions intersect, we're done */
1244  			if (m_end > r_start) {
1245  				if (out_start)
1246  					*out_start = max(m_start, r_start);
1247  				if (out_end)
1248  					*out_end = min(m_end, r_end);
1249  				if (out_nid)
1250  					*out_nid = m_nid;
1251  				if (m_start >= r_start)
1252  					idx_a--;
1253  				else
1254  					idx_b--;
1255  				*idx = (u32)idx_a | (u64)idx_b << 32;
1256  				return;
1257  			}
1258  		}
1259  	}
1260  	/* signal end of iteration */
1261  	*idx = ULLONG_MAX;
1262  }
1263  
1264  /*
1265   * Common iterator interface used to define for_each_mem_pfn_range().
1266   */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1267  void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1268  				unsigned long *out_start_pfn,
1269  				unsigned long *out_end_pfn, int *out_nid)
1270  {
1271  	struct memblock_type *type = &memblock.memory;
1272  	struct memblock_region *r;
1273  	int r_nid;
1274  
1275  	while (++*idx < type->cnt) {
1276  		r = &type->regions[*idx];
1277  		r_nid = memblock_get_region_node(r);
1278  
1279  		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1280  			continue;
1281  		if (!numa_valid_node(nid) || nid == r_nid)
1282  			break;
1283  	}
1284  	if (*idx >= type->cnt) {
1285  		*idx = -1;
1286  		return;
1287  	}
1288  
1289  	if (out_start_pfn)
1290  		*out_start_pfn = PFN_UP(r->base);
1291  	if (out_end_pfn)
1292  		*out_end_pfn = PFN_DOWN(r->base + r->size);
1293  	if (out_nid)
1294  		*out_nid = r_nid;
1295  }
1296  
1297  /**
1298   * memblock_set_node - set node ID on memblock regions
1299   * @base: base of area to set node ID for
1300   * @size: size of area to set node ID for
1301   * @type: memblock type to set node ID for
1302   * @nid: node ID to set
1303   *
1304   * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1305   * Regions which cross the area boundaries are split as necessary.
1306   *
1307   * Return:
1308   * 0 on success, -errno on failure.
1309   */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1310  int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1311  				      struct memblock_type *type, int nid)
1312  {
1313  #ifdef CONFIG_NUMA
1314  	int start_rgn, end_rgn;
1315  	int i, ret;
1316  
1317  	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1318  	if (ret)
1319  		return ret;
1320  
1321  	for (i = start_rgn; i < end_rgn; i++)
1322  		memblock_set_region_node(&type->regions[i], nid);
1323  
1324  	memblock_merge_regions(type, start_rgn, end_rgn);
1325  #endif
1326  	return 0;
1327  }
1328  
1329  #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1330  /**
1331   * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1332   *
1333   * @idx: pointer to u64 loop variable
1334   * @zone: zone in which all of the memory blocks reside
1335   * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1336   * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1337   *
1338   * This function is meant to be a zone/pfn specific wrapper for the
1339   * for_each_mem_range type iterators. Specifically they are used in the
1340   * deferred memory init routines and as such we were duplicating much of
1341   * this logic throughout the code. So instead of having it in multiple
1342   * locations it seemed like it would make more sense to centralize this to
1343   * one new iterator that does everything they need.
1344   */
1345  void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1346  __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1347  			     unsigned long *out_spfn, unsigned long *out_epfn)
1348  {
1349  	int zone_nid = zone_to_nid(zone);
1350  	phys_addr_t spa, epa;
1351  
1352  	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1353  			 &memblock.memory, &memblock.reserved,
1354  			 &spa, &epa, NULL);
1355  
1356  	while (*idx != U64_MAX) {
1357  		unsigned long epfn = PFN_DOWN(epa);
1358  		unsigned long spfn = PFN_UP(spa);
1359  
1360  		/*
1361  		 * Verify the end is at least past the start of the zone and
1362  		 * that we have at least one PFN to initialize.
1363  		 */
1364  		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1365  			/* if we went too far just stop searching */
1366  			if (zone_end_pfn(zone) <= spfn) {
1367  				*idx = U64_MAX;
1368  				break;
1369  			}
1370  
1371  			if (out_spfn)
1372  				*out_spfn = max(zone->zone_start_pfn, spfn);
1373  			if (out_epfn)
1374  				*out_epfn = min(zone_end_pfn(zone), epfn);
1375  
1376  			return;
1377  		}
1378  
1379  		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1380  				 &memblock.memory, &memblock.reserved,
1381  				 &spa, &epa, NULL);
1382  	}
1383  
1384  	/* signal end of iteration */
1385  	if (out_spfn)
1386  		*out_spfn = ULONG_MAX;
1387  	if (out_epfn)
1388  		*out_epfn = 0;
1389  }
1390  
1391  #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1392  
1393  /**
1394   * memblock_alloc_range_nid - allocate boot memory block
1395   * @size: size of memory block to be allocated in bytes
1396   * @align: alignment of the region and block's size
1397   * @start: the lower bound of the memory region to allocate (phys address)
1398   * @end: the upper bound of the memory region to allocate (phys address)
1399   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1400   * @exact_nid: control the allocation fall back to other nodes
1401   *
1402   * The allocation is performed from memory region limited by
1403   * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1404   *
1405   * If the specified node can not hold the requested memory and @exact_nid
1406   * is false, the allocation falls back to any node in the system.
1407   *
1408   * For systems with memory mirroring, the allocation is attempted first
1409   * from the regions with mirroring enabled and then retried from any
1410   * memory region.
1411   *
1412   * In addition, function using kmemleak_alloc_phys for allocated boot
1413   * memory block, it is never reported as leaks.
1414   *
1415   * Return:
1416   * Physical address of allocated memory block on success, %0 on failure.
1417   */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1418  phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1419  					phys_addr_t align, phys_addr_t start,
1420  					phys_addr_t end, int nid,
1421  					bool exact_nid)
1422  {
1423  	enum memblock_flags flags = choose_memblock_flags();
1424  	phys_addr_t found;
1425  
1426  	if (!align) {
1427  		/* Can't use WARNs this early in boot on powerpc */
1428  		dump_stack();
1429  		align = SMP_CACHE_BYTES;
1430  	}
1431  
1432  again:
1433  	found = memblock_find_in_range_node(size, align, start, end, nid,
1434  					    flags);
1435  	if (found && !memblock_reserve(found, size))
1436  		goto done;
1437  
1438  	if (numa_valid_node(nid) && !exact_nid) {
1439  		found = memblock_find_in_range_node(size, align, start,
1440  						    end, NUMA_NO_NODE,
1441  						    flags);
1442  		if (found && !memblock_reserve(found, size))
1443  			goto done;
1444  	}
1445  
1446  	if (flags & MEMBLOCK_MIRROR) {
1447  		flags &= ~MEMBLOCK_MIRROR;
1448  		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1449  			&size);
1450  		goto again;
1451  	}
1452  
1453  	return 0;
1454  
1455  done:
1456  	/*
1457  	 * Skip kmemleak for those places like kasan_init() and
1458  	 * early_pgtable_alloc() due to high volume.
1459  	 */
1460  	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1461  		/*
1462  		 * Memblock allocated blocks are never reported as
1463  		 * leaks. This is because many of these blocks are
1464  		 * only referred via the physical address which is
1465  		 * not looked up by kmemleak.
1466  		 */
1467  		kmemleak_alloc_phys(found, size, 0);
1468  
1469  	/*
1470  	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1471  	 * require memory to be accepted before it can be used by the
1472  	 * guest.
1473  	 *
1474  	 * Accept the memory of the allocated buffer.
1475  	 */
1476  	accept_memory(found, found + size);
1477  
1478  	return found;
1479  }
1480  
1481  /**
1482   * memblock_phys_alloc_range - allocate a memory block inside specified range
1483   * @size: size of memory block to be allocated in bytes
1484   * @align: alignment of the region and block's size
1485   * @start: the lower bound of the memory region to allocate (physical address)
1486   * @end: the upper bound of the memory region to allocate (physical address)
1487   *
1488   * Allocate @size bytes in the between @start and @end.
1489   *
1490   * Return: physical address of the allocated memory block on success,
1491   * %0 on failure.
1492   */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1493  phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1494  					     phys_addr_t align,
1495  					     phys_addr_t start,
1496  					     phys_addr_t end)
1497  {
1498  	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1499  		     __func__, (u64)size, (u64)align, &start, &end,
1500  		     (void *)_RET_IP_);
1501  	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1502  					false);
1503  }
1504  
1505  /**
1506   * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1507   * @size: size of memory block to be allocated in bytes
1508   * @align: alignment of the region and block's size
1509   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1510   *
1511   * Allocates memory block from the specified NUMA node. If the node
1512   * has no available memory, attempts to allocated from any node in the
1513   * system.
1514   *
1515   * Return: physical address of the allocated memory block on success,
1516   * %0 on failure.
1517   */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1518  phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1519  {
1520  	return memblock_alloc_range_nid(size, align, 0,
1521  					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1522  }
1523  
1524  /**
1525   * memblock_alloc_internal - allocate boot memory block
1526   * @size: size of memory block to be allocated in bytes
1527   * @align: alignment of the region and block's size
1528   * @min_addr: the lower bound of the memory region to allocate (phys address)
1529   * @max_addr: the upper bound of the memory region to allocate (phys address)
1530   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1531   * @exact_nid: control the allocation fall back to other nodes
1532   *
1533   * Allocates memory block using memblock_alloc_range_nid() and
1534   * converts the returned physical address to virtual.
1535   *
1536   * The @min_addr limit is dropped if it can not be satisfied and the allocation
1537   * will fall back to memory below @min_addr. Other constraints, such
1538   * as node and mirrored memory will be handled again in
1539   * memblock_alloc_range_nid().
1540   *
1541   * Return:
1542   * Virtual address of allocated memory block on success, NULL on failure.
1543   */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1544  static void * __init memblock_alloc_internal(
1545  				phys_addr_t size, phys_addr_t align,
1546  				phys_addr_t min_addr, phys_addr_t max_addr,
1547  				int nid, bool exact_nid)
1548  {
1549  	phys_addr_t alloc;
1550  
1551  	/*
1552  	 * Detect any accidental use of these APIs after slab is ready, as at
1553  	 * this moment memblock may be deinitialized already and its
1554  	 * internal data may be destroyed (after execution of memblock_free_all)
1555  	 */
1556  	if (WARN_ON_ONCE(slab_is_available()))
1557  		return kzalloc_node(size, GFP_NOWAIT, nid);
1558  
1559  	if (max_addr > memblock.current_limit)
1560  		max_addr = memblock.current_limit;
1561  
1562  	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1563  					exact_nid);
1564  
1565  	/* retry allocation without lower limit */
1566  	if (!alloc && min_addr)
1567  		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1568  						exact_nid);
1569  
1570  	if (!alloc)
1571  		return NULL;
1572  
1573  	return phys_to_virt(alloc);
1574  }
1575  
1576  /**
1577   * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1578   * without zeroing memory
1579   * @size: size of memory block to be allocated in bytes
1580   * @align: alignment of the region and block's size
1581   * @min_addr: the lower bound of the memory region from where the allocation
1582   *	  is preferred (phys address)
1583   * @max_addr: the upper bound of the memory region from where the allocation
1584   *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585   *	      allocate only from memory limited by memblock.current_limit value
1586   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1587   *
1588   * Public function, provides additional debug information (including caller
1589   * info), if enabled. Does not zero allocated memory.
1590   *
1591   * Return:
1592   * Virtual address of allocated memory block on success, NULL on failure.
1593   */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1594  void * __init memblock_alloc_exact_nid_raw(
1595  			phys_addr_t size, phys_addr_t align,
1596  			phys_addr_t min_addr, phys_addr_t max_addr,
1597  			int nid)
1598  {
1599  	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1600  		     __func__, (u64)size, (u64)align, nid, &min_addr,
1601  		     &max_addr, (void *)_RET_IP_);
1602  
1603  	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1604  				       true);
1605  }
1606  
1607  /**
1608   * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1609   * memory and without panicking
1610   * @size: size of memory block to be allocated in bytes
1611   * @align: alignment of the region and block's size
1612   * @min_addr: the lower bound of the memory region from where the allocation
1613   *	  is preferred (phys address)
1614   * @max_addr: the upper bound of the memory region from where the allocation
1615   *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1616   *	      allocate only from memory limited by memblock.current_limit value
1617   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1618   *
1619   * Public function, provides additional debug information (including caller
1620   * info), if enabled. Does not zero allocated memory, does not panic if request
1621   * cannot be satisfied.
1622   *
1623   * Return:
1624   * Virtual address of allocated memory block on success, NULL on failure.
1625   */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1626  void * __init memblock_alloc_try_nid_raw(
1627  			phys_addr_t size, phys_addr_t align,
1628  			phys_addr_t min_addr, phys_addr_t max_addr,
1629  			int nid)
1630  {
1631  	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1632  		     __func__, (u64)size, (u64)align, nid, &min_addr,
1633  		     &max_addr, (void *)_RET_IP_);
1634  
1635  	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1636  				       false);
1637  }
1638  
1639  /**
1640   * memblock_alloc_try_nid - allocate boot memory block
1641   * @size: size of memory block to be allocated in bytes
1642   * @align: alignment of the region and block's size
1643   * @min_addr: the lower bound of the memory region from where the allocation
1644   *	  is preferred (phys address)
1645   * @max_addr: the upper bound of the memory region from where the allocation
1646   *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1647   *	      allocate only from memory limited by memblock.current_limit value
1648   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1649   *
1650   * Public function, provides additional debug information (including caller
1651   * info), if enabled. This function zeroes the allocated memory.
1652   *
1653   * Return:
1654   * Virtual address of allocated memory block on success, NULL on failure.
1655   */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1656  void * __init memblock_alloc_try_nid(
1657  			phys_addr_t size, phys_addr_t align,
1658  			phys_addr_t min_addr, phys_addr_t max_addr,
1659  			int nid)
1660  {
1661  	void *ptr;
1662  
1663  	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1664  		     __func__, (u64)size, (u64)align, nid, &min_addr,
1665  		     &max_addr, (void *)_RET_IP_);
1666  	ptr = memblock_alloc_internal(size, align,
1667  					   min_addr, max_addr, nid, false);
1668  	if (ptr)
1669  		memset(ptr, 0, size);
1670  
1671  	return ptr;
1672  }
1673  
1674  /**
1675   * memblock_free_late - free pages directly to buddy allocator
1676   * @base: phys starting address of the  boot memory block
1677   * @size: size of the boot memory block in bytes
1678   *
1679   * This is only useful when the memblock allocator has already been torn
1680   * down, but we are still initializing the system.  Pages are released directly
1681   * to the buddy allocator.
1682   */
memblock_free_late(phys_addr_t base,phys_addr_t size)1683  void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1684  {
1685  	phys_addr_t cursor, end;
1686  
1687  	end = base + size - 1;
1688  	memblock_dbg("%s: [%pa-%pa] %pS\n",
1689  		     __func__, &base, &end, (void *)_RET_IP_);
1690  	kmemleak_free_part_phys(base, size);
1691  	cursor = PFN_UP(base);
1692  	end = PFN_DOWN(base + size);
1693  
1694  	for (; cursor < end; cursor++) {
1695  		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1696  		totalram_pages_inc();
1697  	}
1698  }
1699  
1700  /*
1701   * Remaining API functions
1702   */
1703  
memblock_phys_mem_size(void)1704  phys_addr_t __init_memblock memblock_phys_mem_size(void)
1705  {
1706  	return memblock.memory.total_size;
1707  }
1708  
memblock_reserved_size(void)1709  phys_addr_t __init_memblock memblock_reserved_size(void)
1710  {
1711  	return memblock.reserved.total_size;
1712  }
1713  
1714  /* lowest address */
memblock_start_of_DRAM(void)1715  phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1716  {
1717  	return memblock.memory.regions[0].base;
1718  }
1719  
memblock_end_of_DRAM(void)1720  phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1721  {
1722  	int idx = memblock.memory.cnt - 1;
1723  
1724  	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1725  }
1726  
__find_max_addr(phys_addr_t limit)1727  static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1728  {
1729  	phys_addr_t max_addr = PHYS_ADDR_MAX;
1730  	struct memblock_region *r;
1731  
1732  	/*
1733  	 * translate the memory @limit size into the max address within one of
1734  	 * the memory memblock regions, if the @limit exceeds the total size
1735  	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1736  	 */
1737  	for_each_mem_region(r) {
1738  		if (limit <= r->size) {
1739  			max_addr = r->base + limit;
1740  			break;
1741  		}
1742  		limit -= r->size;
1743  	}
1744  
1745  	return max_addr;
1746  }
1747  
memblock_enforce_memory_limit(phys_addr_t limit)1748  void __init memblock_enforce_memory_limit(phys_addr_t limit)
1749  {
1750  	phys_addr_t max_addr;
1751  
1752  	if (!limit)
1753  		return;
1754  
1755  	max_addr = __find_max_addr(limit);
1756  
1757  	/* @limit exceeds the total size of the memory, do nothing */
1758  	if (max_addr == PHYS_ADDR_MAX)
1759  		return;
1760  
1761  	/* truncate both memory and reserved regions */
1762  	memblock_remove_range(&memblock.memory, max_addr,
1763  			      PHYS_ADDR_MAX);
1764  	memblock_remove_range(&memblock.reserved, max_addr,
1765  			      PHYS_ADDR_MAX);
1766  }
1767  
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1768  void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1769  {
1770  	int start_rgn, end_rgn;
1771  	int i, ret;
1772  
1773  	if (!size)
1774  		return;
1775  
1776  	if (!memblock_memory->total_size) {
1777  		pr_warn("%s: No memory registered yet\n", __func__);
1778  		return;
1779  	}
1780  
1781  	ret = memblock_isolate_range(&memblock.memory, base, size,
1782  						&start_rgn, &end_rgn);
1783  	if (ret)
1784  		return;
1785  
1786  	/* remove all the MAP regions */
1787  	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1788  		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1789  			memblock_remove_region(&memblock.memory, i);
1790  
1791  	for (i = start_rgn - 1; i >= 0; i--)
1792  		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1793  			memblock_remove_region(&memblock.memory, i);
1794  
1795  	/* truncate the reserved regions */
1796  	memblock_remove_range(&memblock.reserved, 0, base);
1797  	memblock_remove_range(&memblock.reserved,
1798  			base + size, PHYS_ADDR_MAX);
1799  }
1800  
memblock_mem_limit_remove_map(phys_addr_t limit)1801  void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1802  {
1803  	phys_addr_t max_addr;
1804  
1805  	if (!limit)
1806  		return;
1807  
1808  	max_addr = __find_max_addr(limit);
1809  
1810  	/* @limit exceeds the total size of the memory, do nothing */
1811  	if (max_addr == PHYS_ADDR_MAX)
1812  		return;
1813  
1814  	memblock_cap_memory_range(0, max_addr);
1815  }
1816  
memblock_search(struct memblock_type * type,phys_addr_t addr)1817  static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1818  {
1819  	unsigned int left = 0, right = type->cnt;
1820  
1821  	do {
1822  		unsigned int mid = (right + left) / 2;
1823  
1824  		if (addr < type->regions[mid].base)
1825  			right = mid;
1826  		else if (addr >= (type->regions[mid].base +
1827  				  type->regions[mid].size))
1828  			left = mid + 1;
1829  		else
1830  			return mid;
1831  	} while (left < right);
1832  	return -1;
1833  }
1834  
memblock_is_reserved(phys_addr_t addr)1835  bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1836  {
1837  	return memblock_search(&memblock.reserved, addr) != -1;
1838  }
1839  
memblock_is_memory(phys_addr_t addr)1840  bool __init_memblock memblock_is_memory(phys_addr_t addr)
1841  {
1842  	return memblock_search(&memblock.memory, addr) != -1;
1843  }
1844  
memblock_is_map_memory(phys_addr_t addr)1845  bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1846  {
1847  	int i = memblock_search(&memblock.memory, addr);
1848  
1849  	if (i == -1)
1850  		return false;
1851  	return !memblock_is_nomap(&memblock.memory.regions[i]);
1852  }
1853  
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1854  int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1855  			 unsigned long *start_pfn, unsigned long *end_pfn)
1856  {
1857  	struct memblock_type *type = &memblock.memory;
1858  	int mid = memblock_search(type, PFN_PHYS(pfn));
1859  
1860  	if (mid == -1)
1861  		return -1;
1862  
1863  	*start_pfn = PFN_DOWN(type->regions[mid].base);
1864  	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1865  
1866  	return memblock_get_region_node(&type->regions[mid]);
1867  }
1868  
1869  /**
1870   * memblock_is_region_memory - check if a region is a subset of memory
1871   * @base: base of region to check
1872   * @size: size of region to check
1873   *
1874   * Check if the region [@base, @base + @size) is a subset of a memory block.
1875   *
1876   * Return:
1877   * 0 if false, non-zero if true
1878   */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1879  bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1880  {
1881  	int idx = memblock_search(&memblock.memory, base);
1882  	phys_addr_t end = base + memblock_cap_size(base, &size);
1883  
1884  	if (idx == -1)
1885  		return false;
1886  	return (memblock.memory.regions[idx].base +
1887  		 memblock.memory.regions[idx].size) >= end;
1888  }
1889  
1890  /**
1891   * memblock_is_region_reserved - check if a region intersects reserved memory
1892   * @base: base of region to check
1893   * @size: size of region to check
1894   *
1895   * Check if the region [@base, @base + @size) intersects a reserved
1896   * memory block.
1897   *
1898   * Return:
1899   * True if they intersect, false if not.
1900   */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1901  bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1902  {
1903  	return memblock_overlaps_region(&memblock.reserved, base, size);
1904  }
1905  
memblock_trim_memory(phys_addr_t align)1906  void __init_memblock memblock_trim_memory(phys_addr_t align)
1907  {
1908  	phys_addr_t start, end, orig_start, orig_end;
1909  	struct memblock_region *r;
1910  
1911  	for_each_mem_region(r) {
1912  		orig_start = r->base;
1913  		orig_end = r->base + r->size;
1914  		start = round_up(orig_start, align);
1915  		end = round_down(orig_end, align);
1916  
1917  		if (start == orig_start && end == orig_end)
1918  			continue;
1919  
1920  		if (start < end) {
1921  			r->base = start;
1922  			r->size = end - start;
1923  		} else {
1924  			memblock_remove_region(&memblock.memory,
1925  					       r - memblock.memory.regions);
1926  			r--;
1927  		}
1928  	}
1929  }
1930  
memblock_set_current_limit(phys_addr_t limit)1931  void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1932  {
1933  	memblock.current_limit = limit;
1934  }
1935  
memblock_get_current_limit(void)1936  phys_addr_t __init_memblock memblock_get_current_limit(void)
1937  {
1938  	return memblock.current_limit;
1939  }
1940  
memblock_dump(struct memblock_type * type)1941  static void __init_memblock memblock_dump(struct memblock_type *type)
1942  {
1943  	phys_addr_t base, end, size;
1944  	enum memblock_flags flags;
1945  	int idx;
1946  	struct memblock_region *rgn;
1947  
1948  	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1949  
1950  	for_each_memblock_type(idx, type, rgn) {
1951  		char nid_buf[32] = "";
1952  
1953  		base = rgn->base;
1954  		size = rgn->size;
1955  		end = base + size - 1;
1956  		flags = rgn->flags;
1957  #ifdef CONFIG_NUMA
1958  		if (numa_valid_node(memblock_get_region_node(rgn)))
1959  			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1960  				 memblock_get_region_node(rgn));
1961  #endif
1962  		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1963  			type->name, idx, &base, &end, &size, nid_buf, flags);
1964  	}
1965  }
1966  
__memblock_dump_all(void)1967  static void __init_memblock __memblock_dump_all(void)
1968  {
1969  	pr_info("MEMBLOCK configuration:\n");
1970  	pr_info(" memory size = %pa reserved size = %pa\n",
1971  		&memblock.memory.total_size,
1972  		&memblock.reserved.total_size);
1973  
1974  	memblock_dump(&memblock.memory);
1975  	memblock_dump(&memblock.reserved);
1976  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1977  	memblock_dump(&physmem);
1978  #endif
1979  }
1980  
memblock_dump_all(void)1981  void __init_memblock memblock_dump_all(void)
1982  {
1983  	if (memblock_debug)
1984  		__memblock_dump_all();
1985  }
1986  
memblock_allow_resize(void)1987  void __init memblock_allow_resize(void)
1988  {
1989  	memblock_can_resize = 1;
1990  }
1991  
early_memblock(char * p)1992  static int __init early_memblock(char *p)
1993  {
1994  	if (p && strstr(p, "debug"))
1995  		memblock_debug = 1;
1996  	return 0;
1997  }
1998  early_param("memblock", early_memblock);
1999  
free_memmap(unsigned long start_pfn,unsigned long end_pfn)2000  static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2001  {
2002  	struct page *start_pg, *end_pg;
2003  	phys_addr_t pg, pgend;
2004  
2005  	/*
2006  	 * Convert start_pfn/end_pfn to a struct page pointer.
2007  	 */
2008  	start_pg = pfn_to_page(start_pfn - 1) + 1;
2009  	end_pg = pfn_to_page(end_pfn - 1) + 1;
2010  
2011  	/*
2012  	 * Convert to physical addresses, and round start upwards and end
2013  	 * downwards.
2014  	 */
2015  	pg = PAGE_ALIGN(__pa(start_pg));
2016  	pgend = __pa(end_pg) & PAGE_MASK;
2017  
2018  	/*
2019  	 * If there are free pages between these, free the section of the
2020  	 * memmap array.
2021  	 */
2022  	if (pg < pgend)
2023  		memblock_phys_free(pg, pgend - pg);
2024  }
2025  
2026  /*
2027   * The mem_map array can get very big.  Free the unused area of the memory map.
2028   */
free_unused_memmap(void)2029  static void __init free_unused_memmap(void)
2030  {
2031  	unsigned long start, end, prev_end = 0;
2032  	int i;
2033  
2034  	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2035  	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2036  		return;
2037  
2038  	/*
2039  	 * This relies on each bank being in address order.
2040  	 * The banks are sorted previously in bootmem_init().
2041  	 */
2042  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2043  #ifdef CONFIG_SPARSEMEM
2044  		/*
2045  		 * Take care not to free memmap entries that don't exist
2046  		 * due to SPARSEMEM sections which aren't present.
2047  		 */
2048  		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2049  #endif
2050  		/*
2051  		 * Align down here since many operations in VM subsystem
2052  		 * presume that there are no holes in the memory map inside
2053  		 * a pageblock
2054  		 */
2055  		start = pageblock_start_pfn(start);
2056  
2057  		/*
2058  		 * If we had a previous bank, and there is a space
2059  		 * between the current bank and the previous, free it.
2060  		 */
2061  		if (prev_end && prev_end < start)
2062  			free_memmap(prev_end, start);
2063  
2064  		/*
2065  		 * Align up here since many operations in VM subsystem
2066  		 * presume that there are no holes in the memory map inside
2067  		 * a pageblock
2068  		 */
2069  		prev_end = pageblock_align(end);
2070  	}
2071  
2072  #ifdef CONFIG_SPARSEMEM
2073  	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2074  		prev_end = pageblock_align(end);
2075  		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2076  	}
2077  #endif
2078  }
2079  
__free_pages_memory(unsigned long start,unsigned long end)2080  static void __init __free_pages_memory(unsigned long start, unsigned long end)
2081  {
2082  	int order;
2083  
2084  	while (start < end) {
2085  		/*
2086  		 * Free the pages in the largest chunks alignment allows.
2087  		 *
2088  		 * __ffs() behaviour is undefined for 0. start == 0 is
2089  		 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2090  		 */
2091  		if (start)
2092  			order = min_t(int, MAX_ORDER, __ffs(start));
2093  		else
2094  			order = MAX_ORDER;
2095  
2096  		while (start + (1UL << order) > end)
2097  			order--;
2098  
2099  		memblock_free_pages(pfn_to_page(start), start, order);
2100  
2101  		start += (1UL << order);
2102  	}
2103  }
2104  
__free_memory_core(phys_addr_t start,phys_addr_t end)2105  static unsigned long __init __free_memory_core(phys_addr_t start,
2106  				 phys_addr_t end)
2107  {
2108  	unsigned long start_pfn = PFN_UP(start);
2109  	unsigned long end_pfn = min_t(unsigned long,
2110  				      PFN_DOWN(end), max_low_pfn);
2111  
2112  	if (start_pfn >= end_pfn)
2113  		return 0;
2114  
2115  	__free_pages_memory(start_pfn, end_pfn);
2116  
2117  	return end_pfn - start_pfn;
2118  }
2119  
memmap_init_reserved_pages(void)2120  static void __init memmap_init_reserved_pages(void)
2121  {
2122  	struct memblock_region *region;
2123  	phys_addr_t start, end;
2124  	int nid;
2125  
2126  	/*
2127  	 * set nid on all reserved pages and also treat struct
2128  	 * pages for the NOMAP regions as PageReserved
2129  	 */
2130  	for_each_mem_region(region) {
2131  		nid = memblock_get_region_node(region);
2132  		start = region->base;
2133  		end = start + region->size;
2134  
2135  		if (memblock_is_nomap(region))
2136  			reserve_bootmem_region(start, end, nid);
2137  
2138  		memblock_set_node(start, end, &memblock.reserved, nid);
2139  	}
2140  
2141  	/* initialize struct pages for the reserved regions */
2142  	for_each_reserved_mem_region(region) {
2143  		nid = memblock_get_region_node(region);
2144  		start = region->base;
2145  		end = start + region->size;
2146  
2147  		if (!numa_valid_node(nid))
2148  			nid = early_pfn_to_nid(PFN_DOWN(start));
2149  
2150  		reserve_bootmem_region(start, end, nid);
2151  	}
2152  }
2153  
free_low_memory_core_early(void)2154  static unsigned long __init free_low_memory_core_early(void)
2155  {
2156  	unsigned long count = 0;
2157  	phys_addr_t start, end;
2158  	u64 i;
2159  
2160  	memblock_clear_hotplug(0, -1);
2161  
2162  	memmap_init_reserved_pages();
2163  
2164  	/*
2165  	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2166  	 *  because in some case like Node0 doesn't have RAM installed
2167  	 *  low ram will be on Node1
2168  	 */
2169  	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2170  				NULL)
2171  		count += __free_memory_core(start, end);
2172  
2173  	return count;
2174  }
2175  
2176  static int reset_managed_pages_done __initdata;
2177  
reset_node_managed_pages(pg_data_t * pgdat)2178  static void __init reset_node_managed_pages(pg_data_t *pgdat)
2179  {
2180  	struct zone *z;
2181  
2182  	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2183  		atomic_long_set(&z->managed_pages, 0);
2184  }
2185  
reset_all_zones_managed_pages(void)2186  void __init reset_all_zones_managed_pages(void)
2187  {
2188  	struct pglist_data *pgdat;
2189  
2190  	if (reset_managed_pages_done)
2191  		return;
2192  
2193  	for_each_online_pgdat(pgdat)
2194  		reset_node_managed_pages(pgdat);
2195  
2196  	reset_managed_pages_done = 1;
2197  }
2198  
2199  /**
2200   * memblock_free_all - release free pages to the buddy allocator
2201   */
memblock_free_all(void)2202  void __init memblock_free_all(void)
2203  {
2204  	unsigned long pages;
2205  
2206  	free_unused_memmap();
2207  	reset_all_zones_managed_pages();
2208  
2209  	pages = free_low_memory_core_early();
2210  	totalram_pages_add(pages);
2211  }
2212  
2213  #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2214  static const char * const flagname[] = {
2215  	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2216  	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2217  	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2218  	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2219  };
2220  
memblock_debug_show(struct seq_file * m,void * private)2221  static int memblock_debug_show(struct seq_file *m, void *private)
2222  {
2223  	struct memblock_type *type = m->private;
2224  	struct memblock_region *reg;
2225  	int i, j, nid;
2226  	unsigned int count = ARRAY_SIZE(flagname);
2227  	phys_addr_t end;
2228  
2229  	for (i = 0; i < type->cnt; i++) {
2230  		reg = &type->regions[i];
2231  		end = reg->base + reg->size - 1;
2232  		nid = memblock_get_region_node(reg);
2233  
2234  		seq_printf(m, "%4d: ", i);
2235  		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2236  		if (numa_valid_node(nid))
2237  			seq_printf(m, "%4d ", nid);
2238  		else
2239  			seq_printf(m, "%4c ", 'x');
2240  		if (reg->flags) {
2241  			for (j = 0; j < count; j++) {
2242  				if (reg->flags & (1U << j)) {
2243  					seq_printf(m, "%s\n", flagname[j]);
2244  					break;
2245  				}
2246  			}
2247  			if (j == count)
2248  				seq_printf(m, "%s\n", "UNKNOWN");
2249  		} else {
2250  			seq_printf(m, "%s\n", "NONE");
2251  		}
2252  	}
2253  	return 0;
2254  }
2255  DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2256  
memblock_init_debugfs(void)2257  static int __init memblock_init_debugfs(void)
2258  {
2259  	struct dentry *root = debugfs_create_dir("memblock", NULL);
2260  
2261  	debugfs_create_file("memory", 0444, root,
2262  			    &memblock.memory, &memblock_debug_fops);
2263  	debugfs_create_file("reserved", 0444, root,
2264  			    &memblock.reserved, &memblock_debug_fops);
2265  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2266  	debugfs_create_file("physmem", 0444, root, &physmem,
2267  			    &memblock_debug_fops);
2268  #endif
2269  
2270  	return 0;
2271  }
2272  __initcall(memblock_init_debugfs);
2273  
2274  #endif /* CONFIG_DEBUG_FS */
2275