1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS 33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS 34 #endif 35 36 /** 37 * DOC: memblock overview 38 * 39 * Memblock is a method of managing memory regions during the early 40 * boot period when the usual kernel memory allocators are not up and 41 * running. 42 * 43 * Memblock views the system memory as collections of contiguous 44 * regions. There are several types of these collections: 45 * 46 * * ``memory`` - describes the physical memory available to the 47 * kernel; this may differ from the actual physical memory installed 48 * in the system, for instance when the memory is restricted with 49 * ``mem=`` command line parameter 50 * * ``reserved`` - describes the regions that were allocated 51 * * ``physmem`` - describes the actual physical memory available during 52 * boot regardless of the possible restrictions and memory hot(un)plug; 53 * the ``physmem`` type is only available on some architectures. 54 * 55 * Each region is represented by struct memblock_region that 56 * defines the region extents, its attributes and NUMA node id on NUMA 57 * systems. Every memory type is described by the struct memblock_type 58 * which contains an array of memory regions along with 59 * the allocator metadata. The "memory" and "reserved" types are nicely 60 * wrapped with struct memblock. This structure is statically 61 * initialized at build time. The region arrays are initially sized to 62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and 63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array 64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. 65 * The memblock_allow_resize() enables automatic resizing of the region 66 * arrays during addition of new regions. This feature should be used 67 * with care so that memory allocated for the region array will not 68 * overlap with areas that should be reserved, for example initrd. 69 * 70 * The early architecture setup should tell memblock what the physical 71 * memory layout is by using memblock_add() or memblock_add_node() 72 * functions. The first function does not assign the region to a NUMA 73 * node and it is appropriate for UMA systems. Yet, it is possible to 74 * use it on NUMA systems as well and assign the region to a NUMA node 75 * later in the setup process using memblock_set_node(). The 76 * memblock_add_node() performs such an assignment directly. 77 * 78 * Once memblock is setup the memory can be allocated using one of the 79 * API variants: 80 * 81 * * memblock_phys_alloc*() - these functions return the **physical** 82 * address of the allocated memory 83 * * memblock_alloc*() - these functions return the **virtual** address 84 * of the allocated memory. 85 * 86 * Note, that both API variants use implicit assumptions about allowed 87 * memory ranges and the fallback methods. Consult the documentation 88 * of memblock_alloc_internal() and memblock_alloc_range_nid() 89 * functions for more elaborate description. 90 * 91 * As the system boot progresses, the architecture specific mem_init() 92 * function frees all the memory to the buddy page allocator. 93 * 94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 95 * memblock data structures (except "physmem") will be discarded after the 96 * system initialization completes. 97 */ 98 99 #ifndef CONFIG_NUMA 100 struct pglist_data __refdata contig_page_data; 101 EXPORT_SYMBOL(contig_page_data); 102 #endif 103 104 unsigned long max_low_pfn; 105 unsigned long min_low_pfn; 106 unsigned long max_pfn; 107 unsigned long long max_possible_pfn; 108 109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; 110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 113 #endif 114 115 struct memblock memblock __initdata_memblock = { 116 .memory.regions = memblock_memory_init_regions, 117 .memory.cnt = 1, /* empty dummy entry */ 118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, 119 .memory.name = "memory", 120 121 .reserved.regions = memblock_reserved_init_regions, 122 .reserved.cnt = 1, /* empty dummy entry */ 123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 124 .reserved.name = "reserved", 125 126 .bottom_up = false, 127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 128 }; 129 130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 131 struct memblock_type physmem = { 132 .regions = memblock_physmem_init_regions, 133 .cnt = 1, /* empty dummy entry */ 134 .max = INIT_PHYSMEM_REGIONS, 135 .name = "physmem", 136 }; 137 #endif 138 139 /* 140 * keep a pointer to &memblock.memory in the text section to use it in 141 * __next_mem_range() and its helpers. 142 * For architectures that do not keep memblock data after init, this 143 * pointer will be reset to NULL at memblock_discard() 144 */ 145 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 146 147 #define for_each_memblock_type(i, memblock_type, rgn) \ 148 for (i = 0, rgn = &memblock_type->regions[0]; \ 149 i < memblock_type->cnt; \ 150 i++, rgn = &memblock_type->regions[i]) 151 152 #define memblock_dbg(fmt, ...) \ 153 do { \ 154 if (memblock_debug) \ 155 pr_info(fmt, ##__VA_ARGS__); \ 156 } while (0) 157 158 static int memblock_debug __initdata_memblock; 159 static bool system_has_some_mirror __initdata_memblock; 160 static int memblock_can_resize __initdata_memblock; 161 static int memblock_memory_in_slab __initdata_memblock; 162 static int memblock_reserved_in_slab __initdata_memblock; 163 memblock_has_mirror(void)164 bool __init_memblock memblock_has_mirror(void) 165 { 166 return system_has_some_mirror; 167 } 168 choose_memblock_flags(void)169 static enum memblock_flags __init_memblock choose_memblock_flags(void) 170 { 171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 172 } 173 174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ memblock_cap_size(phys_addr_t base,phys_addr_t * size)175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 176 { 177 return *size = min(*size, PHYS_ADDR_MAX - base); 178 } 179 180 /* 181 * Address comparison utilities 182 */ 183 unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)184 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, 185 phys_addr_t size2) 186 { 187 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 188 } 189 memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)190 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 191 phys_addr_t base, phys_addr_t size) 192 { 193 unsigned long i; 194 195 memblock_cap_size(base, &size); 196 197 for (i = 0; i < type->cnt; i++) 198 if (memblock_addrs_overlap(base, size, type->regions[i].base, 199 type->regions[i].size)) 200 break; 201 return i < type->cnt; 202 } 203 204 /** 205 * __memblock_find_range_bottom_up - find free area utility in bottom-up 206 * @start: start of candidate range 207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 208 * %MEMBLOCK_ALLOC_ACCESSIBLE 209 * @size: size of free area to find 210 * @align: alignment of free area to find 211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 212 * @flags: pick from blocks based on memory attributes 213 * 214 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 215 * 216 * Return: 217 * Found address on success, 0 on failure. 218 */ 219 static phys_addr_t __init_memblock __memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)220 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 221 phys_addr_t size, phys_addr_t align, int nid, 222 enum memblock_flags flags) 223 { 224 phys_addr_t this_start, this_end, cand; 225 u64 i; 226 227 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 228 this_start = clamp(this_start, start, end); 229 this_end = clamp(this_end, start, end); 230 231 cand = round_up(this_start, align); 232 if (cand < this_end && this_end - cand >= size) 233 return cand; 234 } 235 236 return 0; 237 } 238 239 /** 240 * __memblock_find_range_top_down - find free area utility, in top-down 241 * @start: start of candidate range 242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 243 * %MEMBLOCK_ALLOC_ACCESSIBLE 244 * @size: size of free area to find 245 * @align: alignment of free area to find 246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 247 * @flags: pick from blocks based on memory attributes 248 * 249 * Utility called from memblock_find_in_range_node(), find free area top-down. 250 * 251 * Return: 252 * Found address on success, 0 on failure. 253 */ 254 static phys_addr_t __init_memblock __memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)255 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 256 phys_addr_t size, phys_addr_t align, int nid, 257 enum memblock_flags flags) 258 { 259 phys_addr_t this_start, this_end, cand; 260 u64 i; 261 262 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 263 NULL) { 264 this_start = clamp(this_start, start, end); 265 this_end = clamp(this_end, start, end); 266 267 if (this_end < size) 268 continue; 269 270 cand = round_down(this_end - size, align); 271 if (cand >= this_start) 272 return cand; 273 } 274 275 return 0; 276 } 277 278 /** 279 * memblock_find_in_range_node - find free area in given range and node 280 * @size: size of free area to find 281 * @align: alignment of free area to find 282 * @start: start of candidate range 283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 284 * %MEMBLOCK_ALLOC_ACCESSIBLE 285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 286 * @flags: pick from blocks based on memory attributes 287 * 288 * Find @size free area aligned to @align in the specified range and node. 289 * 290 * Return: 291 * Found address on success, 0 on failure. 292 */ memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)293 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 294 phys_addr_t align, phys_addr_t start, 295 phys_addr_t end, int nid, 296 enum memblock_flags flags) 297 { 298 /* pump up @end */ 299 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 300 end == MEMBLOCK_ALLOC_NOLEAKTRACE) 301 end = memblock.current_limit; 302 303 /* avoid allocating the first page */ 304 start = max_t(phys_addr_t, start, PAGE_SIZE); 305 end = max(start, end); 306 307 if (memblock_bottom_up()) 308 return __memblock_find_range_bottom_up(start, end, size, align, 309 nid, flags); 310 else 311 return __memblock_find_range_top_down(start, end, size, align, 312 nid, flags); 313 } 314 315 /** 316 * memblock_find_in_range - find free area in given range 317 * @start: start of candidate range 318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 319 * %MEMBLOCK_ALLOC_ACCESSIBLE 320 * @size: size of free area to find 321 * @align: alignment of free area to find 322 * 323 * Find @size free area aligned to @align in the specified range. 324 * 325 * Return: 326 * Found address on success, 0 on failure. 327 */ memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)328 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 329 phys_addr_t end, phys_addr_t size, 330 phys_addr_t align) 331 { 332 phys_addr_t ret; 333 enum memblock_flags flags = choose_memblock_flags(); 334 335 again: 336 ret = memblock_find_in_range_node(size, align, start, end, 337 NUMA_NO_NODE, flags); 338 339 if (!ret && (flags & MEMBLOCK_MIRROR)) { 340 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 341 &size); 342 flags &= ~MEMBLOCK_MIRROR; 343 goto again; 344 } 345 346 return ret; 347 } 348 memblock_remove_region(struct memblock_type * type,unsigned long r)349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 350 { 351 type->total_size -= type->regions[r].size; 352 memmove(&type->regions[r], &type->regions[r + 1], 353 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 354 type->cnt--; 355 356 /* Special case for empty arrays */ 357 if (type->cnt == 0) { 358 WARN_ON(type->total_size != 0); 359 type->cnt = 1; 360 type->regions[0].base = 0; 361 type->regions[0].size = 0; 362 type->regions[0].flags = 0; 363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 364 } 365 } 366 367 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 368 /** 369 * memblock_discard - discard memory and reserved arrays if they were allocated 370 */ memblock_discard(void)371 void __init memblock_discard(void) 372 { 373 phys_addr_t addr, size; 374 375 if (memblock.reserved.regions != memblock_reserved_init_regions) { 376 addr = __pa(memblock.reserved.regions); 377 size = PAGE_ALIGN(sizeof(struct memblock_region) * 378 memblock.reserved.max); 379 if (memblock_reserved_in_slab) 380 kfree(memblock.reserved.regions); 381 else 382 memblock_free_late(addr, size); 383 } 384 385 if (memblock.memory.regions != memblock_memory_init_regions) { 386 addr = __pa(memblock.memory.regions); 387 size = PAGE_ALIGN(sizeof(struct memblock_region) * 388 memblock.memory.max); 389 if (memblock_memory_in_slab) 390 kfree(memblock.memory.regions); 391 else 392 memblock_free_late(addr, size); 393 } 394 395 memblock_memory = NULL; 396 } 397 #endif 398 399 /** 400 * memblock_double_array - double the size of the memblock regions array 401 * @type: memblock type of the regions array being doubled 402 * @new_area_start: starting address of memory range to avoid overlap with 403 * @new_area_size: size of memory range to avoid overlap with 404 * 405 * Double the size of the @type regions array. If memblock is being used to 406 * allocate memory for a new reserved regions array and there is a previously 407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 408 * waiting to be reserved, ensure the memory used by the new array does 409 * not overlap. 410 * 411 * Return: 412 * 0 on success, -1 on failure. 413 */ memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)414 static int __init_memblock memblock_double_array(struct memblock_type *type, 415 phys_addr_t new_area_start, 416 phys_addr_t new_area_size) 417 { 418 struct memblock_region *new_array, *old_array; 419 phys_addr_t old_alloc_size, new_alloc_size; 420 phys_addr_t old_size, new_size, addr, new_end; 421 int use_slab = slab_is_available(); 422 int *in_slab; 423 424 /* We don't allow resizing until we know about the reserved regions 425 * of memory that aren't suitable for allocation 426 */ 427 if (!memblock_can_resize) 428 return -1; 429 430 /* Calculate new doubled size */ 431 old_size = type->max * sizeof(struct memblock_region); 432 new_size = old_size << 1; 433 /* 434 * We need to allocated new one align to PAGE_SIZE, 435 * so we can free them completely later. 436 */ 437 old_alloc_size = PAGE_ALIGN(old_size); 438 new_alloc_size = PAGE_ALIGN(new_size); 439 440 /* Retrieve the slab flag */ 441 if (type == &memblock.memory) 442 in_slab = &memblock_memory_in_slab; 443 else 444 in_slab = &memblock_reserved_in_slab; 445 446 /* Try to find some space for it */ 447 if (use_slab) { 448 new_array = kmalloc(new_size, GFP_KERNEL); 449 addr = new_array ? __pa(new_array) : 0; 450 } else { 451 /* only exclude range when trying to double reserved.regions */ 452 if (type != &memblock.reserved) 453 new_area_start = new_area_size = 0; 454 455 addr = memblock_find_in_range(new_area_start + new_area_size, 456 memblock.current_limit, 457 new_alloc_size, PAGE_SIZE); 458 if (!addr && new_area_size) 459 addr = memblock_find_in_range(0, 460 min(new_area_start, memblock.current_limit), 461 new_alloc_size, PAGE_SIZE); 462 463 new_array = addr ? __va(addr) : NULL; 464 } 465 if (!addr) { 466 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 467 type->name, type->max, type->max * 2); 468 return -1; 469 } 470 471 new_end = addr + new_size - 1; 472 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 473 type->name, type->max * 2, &addr, &new_end); 474 475 /* 476 * Found space, we now need to move the array over before we add the 477 * reserved region since it may be our reserved array itself that is 478 * full. 479 */ 480 memcpy(new_array, type->regions, old_size); 481 memset(new_array + type->max, 0, old_size); 482 old_array = type->regions; 483 type->regions = new_array; 484 type->max <<= 1; 485 486 /* Free old array. We needn't free it if the array is the static one */ 487 if (*in_slab) 488 kfree(old_array); 489 else if (old_array != memblock_memory_init_regions && 490 old_array != memblock_reserved_init_regions) 491 memblock_free(old_array, old_alloc_size); 492 493 /* 494 * Reserve the new array if that comes from the memblock. Otherwise, we 495 * needn't do it 496 */ 497 if (!use_slab) 498 BUG_ON(memblock_reserve(addr, new_alloc_size)); 499 500 /* Update slab flag */ 501 *in_slab = use_slab; 502 503 return 0; 504 } 505 506 /** 507 * memblock_merge_regions - merge neighboring compatible regions 508 * @type: memblock type to scan 509 * @start_rgn: start scanning from (@start_rgn - 1) 510 * @end_rgn: end scanning at (@end_rgn - 1) 511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) 512 */ memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)513 static void __init_memblock memblock_merge_regions(struct memblock_type *type, 514 unsigned long start_rgn, 515 unsigned long end_rgn) 516 { 517 int i = 0; 518 if (start_rgn) 519 i = start_rgn - 1; 520 end_rgn = min(end_rgn, type->cnt - 1); 521 while (i < end_rgn) { 522 struct memblock_region *this = &type->regions[i]; 523 struct memblock_region *next = &type->regions[i + 1]; 524 525 if (this->base + this->size != next->base || 526 memblock_get_region_node(this) != 527 memblock_get_region_node(next) || 528 this->flags != next->flags) { 529 BUG_ON(this->base + this->size > next->base); 530 i++; 531 continue; 532 } 533 534 this->size += next->size; 535 /* move forward from next + 1, index of which is i + 2 */ 536 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 537 type->cnt--; 538 end_rgn--; 539 } 540 } 541 542 /** 543 * memblock_insert_region - insert new memblock region 544 * @type: memblock type to insert into 545 * @idx: index for the insertion point 546 * @base: base address of the new region 547 * @size: size of the new region 548 * @nid: node id of the new region 549 * @flags: flags of the new region 550 * 551 * Insert new memblock region [@base, @base + @size) into @type at @idx. 552 * @type must already have extra room to accommodate the new region. 553 */ memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)554 static void __init_memblock memblock_insert_region(struct memblock_type *type, 555 int idx, phys_addr_t base, 556 phys_addr_t size, 557 int nid, 558 enum memblock_flags flags) 559 { 560 struct memblock_region *rgn = &type->regions[idx]; 561 562 BUG_ON(type->cnt >= type->max); 563 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 564 rgn->base = base; 565 rgn->size = size; 566 rgn->flags = flags; 567 memblock_set_region_node(rgn, nid); 568 type->cnt++; 569 type->total_size += size; 570 } 571 572 /** 573 * memblock_add_range - add new memblock region 574 * @type: memblock type to add new region into 575 * @base: base address of the new region 576 * @size: size of the new region 577 * @nid: nid of the new region 578 * @flags: flags of the new region 579 * 580 * Add new memblock region [@base, @base + @size) into @type. The new region 581 * is allowed to overlap with existing ones - overlaps don't affect already 582 * existing regions. @type is guaranteed to be minimal (all neighbouring 583 * compatible regions are merged) after the addition. 584 * 585 * Return: 586 * 0 on success, -errno on failure. 587 */ memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)588 static int __init_memblock memblock_add_range(struct memblock_type *type, 589 phys_addr_t base, phys_addr_t size, 590 int nid, enum memblock_flags flags) 591 { 592 bool insert = false; 593 phys_addr_t obase = base; 594 phys_addr_t end = base + memblock_cap_size(base, &size); 595 int idx, nr_new, start_rgn = -1, end_rgn; 596 struct memblock_region *rgn; 597 598 if (!size) 599 return 0; 600 601 /* special case for empty array */ 602 if (type->regions[0].size == 0) { 603 WARN_ON(type->cnt != 1 || type->total_size); 604 type->regions[0].base = base; 605 type->regions[0].size = size; 606 type->regions[0].flags = flags; 607 memblock_set_region_node(&type->regions[0], nid); 608 type->total_size = size; 609 return 0; 610 } 611 612 /* 613 * The worst case is when new range overlaps all existing regions, 614 * then we'll need type->cnt + 1 empty regions in @type. So if 615 * type->cnt * 2 + 1 is less than or equal to type->max, we know 616 * that there is enough empty regions in @type, and we can insert 617 * regions directly. 618 */ 619 if (type->cnt * 2 + 1 <= type->max) 620 insert = true; 621 622 repeat: 623 /* 624 * The following is executed twice. Once with %false @insert and 625 * then with %true. The first counts the number of regions needed 626 * to accommodate the new area. The second actually inserts them. 627 */ 628 base = obase; 629 nr_new = 0; 630 631 for_each_memblock_type(idx, type, rgn) { 632 phys_addr_t rbase = rgn->base; 633 phys_addr_t rend = rbase + rgn->size; 634 635 if (rbase >= end) 636 break; 637 if (rend <= base) 638 continue; 639 /* 640 * @rgn overlaps. If it separates the lower part of new 641 * area, insert that portion. 642 */ 643 if (rbase > base) { 644 #ifdef CONFIG_NUMA 645 WARN_ON(nid != memblock_get_region_node(rgn)); 646 #endif 647 WARN_ON(flags != rgn->flags); 648 nr_new++; 649 if (insert) { 650 if (start_rgn == -1) 651 start_rgn = idx; 652 end_rgn = idx + 1; 653 memblock_insert_region(type, idx++, base, 654 rbase - base, nid, 655 flags); 656 } 657 } 658 /* area below @rend is dealt with, forget about it */ 659 base = min(rend, end); 660 } 661 662 /* insert the remaining portion */ 663 if (base < end) { 664 nr_new++; 665 if (insert) { 666 if (start_rgn == -1) 667 start_rgn = idx; 668 end_rgn = idx + 1; 669 memblock_insert_region(type, idx, base, end - base, 670 nid, flags); 671 } 672 } 673 674 if (!nr_new) 675 return 0; 676 677 /* 678 * If this was the first round, resize array and repeat for actual 679 * insertions; otherwise, merge and return. 680 */ 681 if (!insert) { 682 while (type->cnt + nr_new > type->max) 683 if (memblock_double_array(type, obase, size) < 0) 684 return -ENOMEM; 685 insert = true; 686 goto repeat; 687 } else { 688 memblock_merge_regions(type, start_rgn, end_rgn); 689 return 0; 690 } 691 } 692 693 /** 694 * memblock_add_node - add new memblock region within a NUMA node 695 * @base: base address of the new region 696 * @size: size of the new region 697 * @nid: nid of the new region 698 * @flags: flags of the new region 699 * 700 * Add new memblock region [@base, @base + @size) to the "memory" 701 * type. See memblock_add_range() description for mode details 702 * 703 * Return: 704 * 0 on success, -errno on failure. 705 */ memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)706 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 707 int nid, enum memblock_flags flags) 708 { 709 phys_addr_t end = base + size - 1; 710 711 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, 712 &base, &end, nid, flags, (void *)_RET_IP_); 713 714 return memblock_add_range(&memblock.memory, base, size, nid, flags); 715 } 716 717 /** 718 * memblock_add - add new memblock region 719 * @base: base address of the new region 720 * @size: size of the new region 721 * 722 * Add new memblock region [@base, @base + @size) to the "memory" 723 * type. See memblock_add_range() description for mode details 724 * 725 * Return: 726 * 0 on success, -errno on failure. 727 */ memblock_add(phys_addr_t base,phys_addr_t size)728 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 729 { 730 phys_addr_t end = base + size - 1; 731 732 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 733 &base, &end, (void *)_RET_IP_); 734 735 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 736 } 737 738 /** 739 * memblock_validate_numa_coverage - check if amount of memory with 740 * no node ID assigned is less than a threshold 741 * @threshold_bytes: maximal memory size that can have unassigned node 742 * ID (in bytes). 743 * 744 * A buggy firmware may report memory that does not belong to any node. 745 * Check if amount of such memory is below @threshold_bytes. 746 * 747 * Return: true on success, false on failure. 748 */ memblock_validate_numa_coverage(unsigned long threshold_bytes)749 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes) 750 { 751 unsigned long nr_pages = 0; 752 unsigned long start_pfn, end_pfn, mem_size_mb; 753 int nid, i; 754 755 /* calculate lose page */ 756 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 757 if (!numa_valid_node(nid)) 758 nr_pages += end_pfn - start_pfn; 759 } 760 761 if ((nr_pages << PAGE_SHIFT) > threshold_bytes) { 762 mem_size_mb = memblock_phys_mem_size() >> 20; 763 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n", 764 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb); 765 return false; 766 } 767 768 return true; 769 } 770 771 772 /** 773 * memblock_isolate_range - isolate given range into disjoint memblocks 774 * @type: memblock type to isolate range for 775 * @base: base of range to isolate 776 * @size: size of range to isolate 777 * @start_rgn: out parameter for the start of isolated region 778 * @end_rgn: out parameter for the end of isolated region 779 * 780 * Walk @type and ensure that regions don't cross the boundaries defined by 781 * [@base, @base + @size). Crossing regions are split at the boundaries, 782 * which may create at most two more regions. The index of the first 783 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 784 * 785 * Return: 786 * 0 on success, -errno on failure. 787 */ memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)788 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 789 phys_addr_t base, phys_addr_t size, 790 int *start_rgn, int *end_rgn) 791 { 792 phys_addr_t end = base + memblock_cap_size(base, &size); 793 int idx; 794 struct memblock_region *rgn; 795 796 *start_rgn = *end_rgn = 0; 797 798 if (!size) 799 return 0; 800 801 /* we'll create at most two more regions */ 802 while (type->cnt + 2 > type->max) 803 if (memblock_double_array(type, base, size) < 0) 804 return -ENOMEM; 805 806 for_each_memblock_type(idx, type, rgn) { 807 phys_addr_t rbase = rgn->base; 808 phys_addr_t rend = rbase + rgn->size; 809 810 if (rbase >= end) 811 break; 812 if (rend <= base) 813 continue; 814 815 if (rbase < base) { 816 /* 817 * @rgn intersects from below. Split and continue 818 * to process the next region - the new top half. 819 */ 820 rgn->base = base; 821 rgn->size -= base - rbase; 822 type->total_size -= base - rbase; 823 memblock_insert_region(type, idx, rbase, base - rbase, 824 memblock_get_region_node(rgn), 825 rgn->flags); 826 } else if (rend > end) { 827 /* 828 * @rgn intersects from above. Split and redo the 829 * current region - the new bottom half. 830 */ 831 rgn->base = end; 832 rgn->size -= end - rbase; 833 type->total_size -= end - rbase; 834 memblock_insert_region(type, idx--, rbase, end - rbase, 835 memblock_get_region_node(rgn), 836 rgn->flags); 837 } else { 838 /* @rgn is fully contained, record it */ 839 if (!*end_rgn) 840 *start_rgn = idx; 841 *end_rgn = idx + 1; 842 } 843 } 844 845 return 0; 846 } 847 memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)848 static int __init_memblock memblock_remove_range(struct memblock_type *type, 849 phys_addr_t base, phys_addr_t size) 850 { 851 int start_rgn, end_rgn; 852 int i, ret; 853 854 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 855 if (ret) 856 return ret; 857 858 for (i = end_rgn - 1; i >= start_rgn; i--) 859 memblock_remove_region(type, i); 860 return 0; 861 } 862 memblock_remove(phys_addr_t base,phys_addr_t size)863 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 864 { 865 phys_addr_t end = base + size - 1; 866 867 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 868 &base, &end, (void *)_RET_IP_); 869 870 return memblock_remove_range(&memblock.memory, base, size); 871 } 872 873 /** 874 * memblock_free - free boot memory allocation 875 * @ptr: starting address of the boot memory allocation 876 * @size: size of the boot memory block in bytes 877 * 878 * Free boot memory block previously allocated by memblock_alloc_xx() API. 879 * The freeing memory will not be released to the buddy allocator. 880 */ memblock_free(void * ptr,size_t size)881 void __init_memblock memblock_free(void *ptr, size_t size) 882 { 883 if (ptr) 884 memblock_phys_free(__pa(ptr), size); 885 } 886 887 /** 888 * memblock_phys_free - free boot memory block 889 * @base: phys starting address of the boot memory block 890 * @size: size of the boot memory block in bytes 891 * 892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. 893 * The freeing memory will not be released to the buddy allocator. 894 */ memblock_phys_free(phys_addr_t base,phys_addr_t size)895 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) 896 { 897 phys_addr_t end = base + size - 1; 898 899 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 900 &base, &end, (void *)_RET_IP_); 901 902 kmemleak_free_part_phys(base, size); 903 return memblock_remove_range(&memblock.reserved, base, size); 904 } 905 memblock_reserve(phys_addr_t base,phys_addr_t size)906 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 907 { 908 phys_addr_t end = base + size - 1; 909 910 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 911 &base, &end, (void *)_RET_IP_); 912 913 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 914 } 915 916 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP memblock_physmem_add(phys_addr_t base,phys_addr_t size)917 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 918 { 919 phys_addr_t end = base + size - 1; 920 921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 922 &base, &end, (void *)_RET_IP_); 923 924 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 925 } 926 #endif 927 928 /** 929 * memblock_setclr_flag - set or clear flag for a memory region 930 * @base: base address of the region 931 * @size: size of the region 932 * @set: set or clear the flag 933 * @flag: the flag to update 934 * 935 * This function isolates region [@base, @base + @size), and sets/clears flag 936 * 937 * Return: 0 on success, -errno on failure. 938 */ memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)939 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 940 phys_addr_t size, int set, int flag) 941 { 942 struct memblock_type *type = &memblock.memory; 943 int i, ret, start_rgn, end_rgn; 944 945 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 946 if (ret) 947 return ret; 948 949 for (i = start_rgn; i < end_rgn; i++) { 950 struct memblock_region *r = &type->regions[i]; 951 952 if (set) 953 r->flags |= flag; 954 else 955 r->flags &= ~flag; 956 } 957 958 memblock_merge_regions(type, start_rgn, end_rgn); 959 return 0; 960 } 961 962 /** 963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 964 * @base: the base phys addr of the region 965 * @size: the size of the region 966 * 967 * Return: 0 on success, -errno on failure. 968 */ memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)969 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 970 { 971 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 972 } 973 974 /** 975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 976 * @base: the base phys addr of the region 977 * @size: the size of the region 978 * 979 * Return: 0 on success, -errno on failure. 980 */ memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)981 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 982 { 983 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 984 } 985 986 /** 987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 988 * @base: the base phys addr of the region 989 * @size: the size of the region 990 * 991 * Return: 0 on success, -errno on failure. 992 */ memblock_mark_mirror(phys_addr_t base,phys_addr_t size)993 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 994 { 995 if (!mirrored_kernelcore) 996 return 0; 997 998 system_has_some_mirror = true; 999 1000 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 1001 } 1002 1003 /** 1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 1005 * @base: the base phys addr of the region 1006 * @size: the size of the region 1007 * 1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 1009 * direct mapping of the physical memory. These regions will still be 1010 * covered by the memory map. The struct page representing NOMAP memory 1011 * frames in the memory map will be PageReserved() 1012 * 1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from 1014 * memblock, the caller must inform kmemleak to ignore that memory 1015 * 1016 * Return: 0 on success, -errno on failure. 1017 */ memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1018 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 1019 { 1020 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 1021 } 1022 1023 /** 1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 1025 * @base: the base phys addr of the region 1026 * @size: the size of the region 1027 * 1028 * Return: 0 on success, -errno on failure. 1029 */ memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1030 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 1031 { 1032 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 1033 } 1034 should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1035 static bool should_skip_region(struct memblock_type *type, 1036 struct memblock_region *m, 1037 int nid, int flags) 1038 { 1039 int m_nid = memblock_get_region_node(m); 1040 1041 /* we never skip regions when iterating memblock.reserved or physmem */ 1042 if (type != memblock_memory) 1043 return false; 1044 1045 /* only memory regions are associated with nodes, check it */ 1046 if (numa_valid_node(nid) && nid != m_nid) 1047 return true; 1048 1049 /* skip hotpluggable memory regions if needed */ 1050 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 1051 !(flags & MEMBLOCK_HOTPLUG)) 1052 return true; 1053 1054 /* if we want mirror memory skip non-mirror memory regions */ 1055 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1056 return true; 1057 1058 /* skip nomap memory unless we were asked for it explicitly */ 1059 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1060 return true; 1061 1062 /* skip driver-managed memory unless we were asked for it explicitly */ 1063 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) 1064 return true; 1065 1066 return false; 1067 } 1068 1069 /** 1070 * __next_mem_range - next function for for_each_free_mem_range() etc. 1071 * @idx: pointer to u64 loop variable 1072 * @nid: node selector, %NUMA_NO_NODE for all nodes 1073 * @flags: pick from blocks based on memory attributes 1074 * @type_a: pointer to memblock_type from where the range is taken 1075 * @type_b: pointer to memblock_type which excludes memory from being taken 1076 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1077 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1078 * @out_nid: ptr to int for nid of the range, can be %NULL 1079 * 1080 * Find the first area from *@idx which matches @nid, fill the out 1081 * parameters, and update *@idx for the next iteration. The lower 32bit of 1082 * *@idx contains index into type_a and the upper 32bit indexes the 1083 * areas before each region in type_b. For example, if type_b regions 1084 * look like the following, 1085 * 1086 * 0:[0-16), 1:[32-48), 2:[128-130) 1087 * 1088 * The upper 32bit indexes the following regions. 1089 * 1090 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1091 * 1092 * As both region arrays are sorted, the function advances the two indices 1093 * in lockstep and returns each intersection. 1094 */ __next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1095 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1096 struct memblock_type *type_a, 1097 struct memblock_type *type_b, phys_addr_t *out_start, 1098 phys_addr_t *out_end, int *out_nid) 1099 { 1100 int idx_a = *idx & 0xffffffff; 1101 int idx_b = *idx >> 32; 1102 1103 for (; idx_a < type_a->cnt; idx_a++) { 1104 struct memblock_region *m = &type_a->regions[idx_a]; 1105 1106 phys_addr_t m_start = m->base; 1107 phys_addr_t m_end = m->base + m->size; 1108 int m_nid = memblock_get_region_node(m); 1109 1110 if (should_skip_region(type_a, m, nid, flags)) 1111 continue; 1112 1113 if (!type_b) { 1114 if (out_start) 1115 *out_start = m_start; 1116 if (out_end) 1117 *out_end = m_end; 1118 if (out_nid) 1119 *out_nid = m_nid; 1120 idx_a++; 1121 *idx = (u32)idx_a | (u64)idx_b << 32; 1122 return; 1123 } 1124 1125 /* scan areas before each reservation */ 1126 for (; idx_b < type_b->cnt + 1; idx_b++) { 1127 struct memblock_region *r; 1128 phys_addr_t r_start; 1129 phys_addr_t r_end; 1130 1131 r = &type_b->regions[idx_b]; 1132 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1133 r_end = idx_b < type_b->cnt ? 1134 r->base : PHYS_ADDR_MAX; 1135 1136 /* 1137 * if idx_b advanced past idx_a, 1138 * break out to advance idx_a 1139 */ 1140 if (r_start >= m_end) 1141 break; 1142 /* if the two regions intersect, we're done */ 1143 if (m_start < r_end) { 1144 if (out_start) 1145 *out_start = 1146 max(m_start, r_start); 1147 if (out_end) 1148 *out_end = min(m_end, r_end); 1149 if (out_nid) 1150 *out_nid = m_nid; 1151 /* 1152 * The region which ends first is 1153 * advanced for the next iteration. 1154 */ 1155 if (m_end <= r_end) 1156 idx_a++; 1157 else 1158 idx_b++; 1159 *idx = (u32)idx_a | (u64)idx_b << 32; 1160 return; 1161 } 1162 } 1163 } 1164 1165 /* signal end of iteration */ 1166 *idx = ULLONG_MAX; 1167 } 1168 1169 /** 1170 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1171 * 1172 * @idx: pointer to u64 loop variable 1173 * @nid: node selector, %NUMA_NO_NODE for all nodes 1174 * @flags: pick from blocks based on memory attributes 1175 * @type_a: pointer to memblock_type from where the range is taken 1176 * @type_b: pointer to memblock_type which excludes memory from being taken 1177 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1178 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1179 * @out_nid: ptr to int for nid of the range, can be %NULL 1180 * 1181 * Finds the next range from type_a which is not marked as unsuitable 1182 * in type_b. 1183 * 1184 * Reverse of __next_mem_range(). 1185 */ __next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1186 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1187 enum memblock_flags flags, 1188 struct memblock_type *type_a, 1189 struct memblock_type *type_b, 1190 phys_addr_t *out_start, 1191 phys_addr_t *out_end, int *out_nid) 1192 { 1193 int idx_a = *idx & 0xffffffff; 1194 int idx_b = *idx >> 32; 1195 1196 if (*idx == (u64)ULLONG_MAX) { 1197 idx_a = type_a->cnt - 1; 1198 if (type_b != NULL) 1199 idx_b = type_b->cnt; 1200 else 1201 idx_b = 0; 1202 } 1203 1204 for (; idx_a >= 0; idx_a--) { 1205 struct memblock_region *m = &type_a->regions[idx_a]; 1206 1207 phys_addr_t m_start = m->base; 1208 phys_addr_t m_end = m->base + m->size; 1209 int m_nid = memblock_get_region_node(m); 1210 1211 if (should_skip_region(type_a, m, nid, flags)) 1212 continue; 1213 1214 if (!type_b) { 1215 if (out_start) 1216 *out_start = m_start; 1217 if (out_end) 1218 *out_end = m_end; 1219 if (out_nid) 1220 *out_nid = m_nid; 1221 idx_a--; 1222 *idx = (u32)idx_a | (u64)idx_b << 32; 1223 return; 1224 } 1225 1226 /* scan areas before each reservation */ 1227 for (; idx_b >= 0; idx_b--) { 1228 struct memblock_region *r; 1229 phys_addr_t r_start; 1230 phys_addr_t r_end; 1231 1232 r = &type_b->regions[idx_b]; 1233 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1234 r_end = idx_b < type_b->cnt ? 1235 r->base : PHYS_ADDR_MAX; 1236 /* 1237 * if idx_b advanced past idx_a, 1238 * break out to advance idx_a 1239 */ 1240 1241 if (r_end <= m_start) 1242 break; 1243 /* if the two regions intersect, we're done */ 1244 if (m_end > r_start) { 1245 if (out_start) 1246 *out_start = max(m_start, r_start); 1247 if (out_end) 1248 *out_end = min(m_end, r_end); 1249 if (out_nid) 1250 *out_nid = m_nid; 1251 if (m_start >= r_start) 1252 idx_a--; 1253 else 1254 idx_b--; 1255 *idx = (u32)idx_a | (u64)idx_b << 32; 1256 return; 1257 } 1258 } 1259 } 1260 /* signal end of iteration */ 1261 *idx = ULLONG_MAX; 1262 } 1263 1264 /* 1265 * Common iterator interface used to define for_each_mem_pfn_range(). 1266 */ __next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1267 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1268 unsigned long *out_start_pfn, 1269 unsigned long *out_end_pfn, int *out_nid) 1270 { 1271 struct memblock_type *type = &memblock.memory; 1272 struct memblock_region *r; 1273 int r_nid; 1274 1275 while (++*idx < type->cnt) { 1276 r = &type->regions[*idx]; 1277 r_nid = memblock_get_region_node(r); 1278 1279 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1280 continue; 1281 if (!numa_valid_node(nid) || nid == r_nid) 1282 break; 1283 } 1284 if (*idx >= type->cnt) { 1285 *idx = -1; 1286 return; 1287 } 1288 1289 if (out_start_pfn) 1290 *out_start_pfn = PFN_UP(r->base); 1291 if (out_end_pfn) 1292 *out_end_pfn = PFN_DOWN(r->base + r->size); 1293 if (out_nid) 1294 *out_nid = r_nid; 1295 } 1296 1297 /** 1298 * memblock_set_node - set node ID on memblock regions 1299 * @base: base of area to set node ID for 1300 * @size: size of area to set node ID for 1301 * @type: memblock type to set node ID for 1302 * @nid: node ID to set 1303 * 1304 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1305 * Regions which cross the area boundaries are split as necessary. 1306 * 1307 * Return: 1308 * 0 on success, -errno on failure. 1309 */ memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1310 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1311 struct memblock_type *type, int nid) 1312 { 1313 #ifdef CONFIG_NUMA 1314 int start_rgn, end_rgn; 1315 int i, ret; 1316 1317 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1318 if (ret) 1319 return ret; 1320 1321 for (i = start_rgn; i < end_rgn; i++) 1322 memblock_set_region_node(&type->regions[i], nid); 1323 1324 memblock_merge_regions(type, start_rgn, end_rgn); 1325 #endif 1326 return 0; 1327 } 1328 1329 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1330 /** 1331 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1332 * 1333 * @idx: pointer to u64 loop variable 1334 * @zone: zone in which all of the memory blocks reside 1335 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1336 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1337 * 1338 * This function is meant to be a zone/pfn specific wrapper for the 1339 * for_each_mem_range type iterators. Specifically they are used in the 1340 * deferred memory init routines and as such we were duplicating much of 1341 * this logic throughout the code. So instead of having it in multiple 1342 * locations it seemed like it would make more sense to centralize this to 1343 * one new iterator that does everything they need. 1344 */ 1345 void __init_memblock __next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1346 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1347 unsigned long *out_spfn, unsigned long *out_epfn) 1348 { 1349 int zone_nid = zone_to_nid(zone); 1350 phys_addr_t spa, epa; 1351 1352 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1353 &memblock.memory, &memblock.reserved, 1354 &spa, &epa, NULL); 1355 1356 while (*idx != U64_MAX) { 1357 unsigned long epfn = PFN_DOWN(epa); 1358 unsigned long spfn = PFN_UP(spa); 1359 1360 /* 1361 * Verify the end is at least past the start of the zone and 1362 * that we have at least one PFN to initialize. 1363 */ 1364 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1365 /* if we went too far just stop searching */ 1366 if (zone_end_pfn(zone) <= spfn) { 1367 *idx = U64_MAX; 1368 break; 1369 } 1370 1371 if (out_spfn) 1372 *out_spfn = max(zone->zone_start_pfn, spfn); 1373 if (out_epfn) 1374 *out_epfn = min(zone_end_pfn(zone), epfn); 1375 1376 return; 1377 } 1378 1379 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1380 &memblock.memory, &memblock.reserved, 1381 &spa, &epa, NULL); 1382 } 1383 1384 /* signal end of iteration */ 1385 if (out_spfn) 1386 *out_spfn = ULONG_MAX; 1387 if (out_epfn) 1388 *out_epfn = 0; 1389 } 1390 1391 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1392 1393 /** 1394 * memblock_alloc_range_nid - allocate boot memory block 1395 * @size: size of memory block to be allocated in bytes 1396 * @align: alignment of the region and block's size 1397 * @start: the lower bound of the memory region to allocate (phys address) 1398 * @end: the upper bound of the memory region to allocate (phys address) 1399 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1400 * @exact_nid: control the allocation fall back to other nodes 1401 * 1402 * The allocation is performed from memory region limited by 1403 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1404 * 1405 * If the specified node can not hold the requested memory and @exact_nid 1406 * is false, the allocation falls back to any node in the system. 1407 * 1408 * For systems with memory mirroring, the allocation is attempted first 1409 * from the regions with mirroring enabled and then retried from any 1410 * memory region. 1411 * 1412 * In addition, function using kmemleak_alloc_phys for allocated boot 1413 * memory block, it is never reported as leaks. 1414 * 1415 * Return: 1416 * Physical address of allocated memory block on success, %0 on failure. 1417 */ memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1418 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1419 phys_addr_t align, phys_addr_t start, 1420 phys_addr_t end, int nid, 1421 bool exact_nid) 1422 { 1423 enum memblock_flags flags = choose_memblock_flags(); 1424 phys_addr_t found; 1425 1426 if (!align) { 1427 /* Can't use WARNs this early in boot on powerpc */ 1428 dump_stack(); 1429 align = SMP_CACHE_BYTES; 1430 } 1431 1432 again: 1433 found = memblock_find_in_range_node(size, align, start, end, nid, 1434 flags); 1435 if (found && !memblock_reserve(found, size)) 1436 goto done; 1437 1438 if (numa_valid_node(nid) && !exact_nid) { 1439 found = memblock_find_in_range_node(size, align, start, 1440 end, NUMA_NO_NODE, 1441 flags); 1442 if (found && !memblock_reserve(found, size)) 1443 goto done; 1444 } 1445 1446 if (flags & MEMBLOCK_MIRROR) { 1447 flags &= ~MEMBLOCK_MIRROR; 1448 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 1449 &size); 1450 goto again; 1451 } 1452 1453 return 0; 1454 1455 done: 1456 /* 1457 * Skip kmemleak for those places like kasan_init() and 1458 * early_pgtable_alloc() due to high volume. 1459 */ 1460 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) 1461 /* 1462 * Memblock allocated blocks are never reported as 1463 * leaks. This is because many of these blocks are 1464 * only referred via the physical address which is 1465 * not looked up by kmemleak. 1466 */ 1467 kmemleak_alloc_phys(found, size, 0); 1468 1469 /* 1470 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, 1471 * require memory to be accepted before it can be used by the 1472 * guest. 1473 * 1474 * Accept the memory of the allocated buffer. 1475 */ 1476 accept_memory(found, found + size); 1477 1478 return found; 1479 } 1480 1481 /** 1482 * memblock_phys_alloc_range - allocate a memory block inside specified range 1483 * @size: size of memory block to be allocated in bytes 1484 * @align: alignment of the region and block's size 1485 * @start: the lower bound of the memory region to allocate (physical address) 1486 * @end: the upper bound of the memory region to allocate (physical address) 1487 * 1488 * Allocate @size bytes in the between @start and @end. 1489 * 1490 * Return: physical address of the allocated memory block on success, 1491 * %0 on failure. 1492 */ memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1493 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1494 phys_addr_t align, 1495 phys_addr_t start, 1496 phys_addr_t end) 1497 { 1498 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1499 __func__, (u64)size, (u64)align, &start, &end, 1500 (void *)_RET_IP_); 1501 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1502 false); 1503 } 1504 1505 /** 1506 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1507 * @size: size of memory block to be allocated in bytes 1508 * @align: alignment of the region and block's size 1509 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1510 * 1511 * Allocates memory block from the specified NUMA node. If the node 1512 * has no available memory, attempts to allocated from any node in the 1513 * system. 1514 * 1515 * Return: physical address of the allocated memory block on success, 1516 * %0 on failure. 1517 */ memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1518 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1519 { 1520 return memblock_alloc_range_nid(size, align, 0, 1521 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1522 } 1523 1524 /** 1525 * memblock_alloc_internal - allocate boot memory block 1526 * @size: size of memory block to be allocated in bytes 1527 * @align: alignment of the region and block's size 1528 * @min_addr: the lower bound of the memory region to allocate (phys address) 1529 * @max_addr: the upper bound of the memory region to allocate (phys address) 1530 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1531 * @exact_nid: control the allocation fall back to other nodes 1532 * 1533 * Allocates memory block using memblock_alloc_range_nid() and 1534 * converts the returned physical address to virtual. 1535 * 1536 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1537 * will fall back to memory below @min_addr. Other constraints, such 1538 * as node and mirrored memory will be handled again in 1539 * memblock_alloc_range_nid(). 1540 * 1541 * Return: 1542 * Virtual address of allocated memory block on success, NULL on failure. 1543 */ memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1544 static void * __init memblock_alloc_internal( 1545 phys_addr_t size, phys_addr_t align, 1546 phys_addr_t min_addr, phys_addr_t max_addr, 1547 int nid, bool exact_nid) 1548 { 1549 phys_addr_t alloc; 1550 1551 /* 1552 * Detect any accidental use of these APIs after slab is ready, as at 1553 * this moment memblock may be deinitialized already and its 1554 * internal data may be destroyed (after execution of memblock_free_all) 1555 */ 1556 if (WARN_ON_ONCE(slab_is_available())) 1557 return kzalloc_node(size, GFP_NOWAIT, nid); 1558 1559 if (max_addr > memblock.current_limit) 1560 max_addr = memblock.current_limit; 1561 1562 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1563 exact_nid); 1564 1565 /* retry allocation without lower limit */ 1566 if (!alloc && min_addr) 1567 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1568 exact_nid); 1569 1570 if (!alloc) 1571 return NULL; 1572 1573 return phys_to_virt(alloc); 1574 } 1575 1576 /** 1577 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1578 * without zeroing memory 1579 * @size: size of memory block to be allocated in bytes 1580 * @align: alignment of the region and block's size 1581 * @min_addr: the lower bound of the memory region from where the allocation 1582 * is preferred (phys address) 1583 * @max_addr: the upper bound of the memory region from where the allocation 1584 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1585 * allocate only from memory limited by memblock.current_limit value 1586 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1587 * 1588 * Public function, provides additional debug information (including caller 1589 * info), if enabled. Does not zero allocated memory. 1590 * 1591 * Return: 1592 * Virtual address of allocated memory block on success, NULL on failure. 1593 */ memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1594 void * __init memblock_alloc_exact_nid_raw( 1595 phys_addr_t size, phys_addr_t align, 1596 phys_addr_t min_addr, phys_addr_t max_addr, 1597 int nid) 1598 { 1599 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1600 __func__, (u64)size, (u64)align, nid, &min_addr, 1601 &max_addr, (void *)_RET_IP_); 1602 1603 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1604 true); 1605 } 1606 1607 /** 1608 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1609 * memory and without panicking 1610 * @size: size of memory block to be allocated in bytes 1611 * @align: alignment of the region and block's size 1612 * @min_addr: the lower bound of the memory region from where the allocation 1613 * is preferred (phys address) 1614 * @max_addr: the upper bound of the memory region from where the allocation 1615 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1616 * allocate only from memory limited by memblock.current_limit value 1617 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1618 * 1619 * Public function, provides additional debug information (including caller 1620 * info), if enabled. Does not zero allocated memory, does not panic if request 1621 * cannot be satisfied. 1622 * 1623 * Return: 1624 * Virtual address of allocated memory block on success, NULL on failure. 1625 */ memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1626 void * __init memblock_alloc_try_nid_raw( 1627 phys_addr_t size, phys_addr_t align, 1628 phys_addr_t min_addr, phys_addr_t max_addr, 1629 int nid) 1630 { 1631 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1632 __func__, (u64)size, (u64)align, nid, &min_addr, 1633 &max_addr, (void *)_RET_IP_); 1634 1635 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1636 false); 1637 } 1638 1639 /** 1640 * memblock_alloc_try_nid - allocate boot memory block 1641 * @size: size of memory block to be allocated in bytes 1642 * @align: alignment of the region and block's size 1643 * @min_addr: the lower bound of the memory region from where the allocation 1644 * is preferred (phys address) 1645 * @max_addr: the upper bound of the memory region from where the allocation 1646 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1647 * allocate only from memory limited by memblock.current_limit value 1648 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1649 * 1650 * Public function, provides additional debug information (including caller 1651 * info), if enabled. This function zeroes the allocated memory. 1652 * 1653 * Return: 1654 * Virtual address of allocated memory block on success, NULL on failure. 1655 */ memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1656 void * __init memblock_alloc_try_nid( 1657 phys_addr_t size, phys_addr_t align, 1658 phys_addr_t min_addr, phys_addr_t max_addr, 1659 int nid) 1660 { 1661 void *ptr; 1662 1663 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1664 __func__, (u64)size, (u64)align, nid, &min_addr, 1665 &max_addr, (void *)_RET_IP_); 1666 ptr = memblock_alloc_internal(size, align, 1667 min_addr, max_addr, nid, false); 1668 if (ptr) 1669 memset(ptr, 0, size); 1670 1671 return ptr; 1672 } 1673 1674 /** 1675 * memblock_free_late - free pages directly to buddy allocator 1676 * @base: phys starting address of the boot memory block 1677 * @size: size of the boot memory block in bytes 1678 * 1679 * This is only useful when the memblock allocator has already been torn 1680 * down, but we are still initializing the system. Pages are released directly 1681 * to the buddy allocator. 1682 */ memblock_free_late(phys_addr_t base,phys_addr_t size)1683 void __init memblock_free_late(phys_addr_t base, phys_addr_t size) 1684 { 1685 phys_addr_t cursor, end; 1686 1687 end = base + size - 1; 1688 memblock_dbg("%s: [%pa-%pa] %pS\n", 1689 __func__, &base, &end, (void *)_RET_IP_); 1690 kmemleak_free_part_phys(base, size); 1691 cursor = PFN_UP(base); 1692 end = PFN_DOWN(base + size); 1693 1694 for (; cursor < end; cursor++) { 1695 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1696 totalram_pages_inc(); 1697 } 1698 } 1699 1700 /* 1701 * Remaining API functions 1702 */ 1703 memblock_phys_mem_size(void)1704 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1705 { 1706 return memblock.memory.total_size; 1707 } 1708 memblock_reserved_size(void)1709 phys_addr_t __init_memblock memblock_reserved_size(void) 1710 { 1711 return memblock.reserved.total_size; 1712 } 1713 1714 /* lowest address */ memblock_start_of_DRAM(void)1715 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1716 { 1717 return memblock.memory.regions[0].base; 1718 } 1719 memblock_end_of_DRAM(void)1720 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1721 { 1722 int idx = memblock.memory.cnt - 1; 1723 1724 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1725 } 1726 __find_max_addr(phys_addr_t limit)1727 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1728 { 1729 phys_addr_t max_addr = PHYS_ADDR_MAX; 1730 struct memblock_region *r; 1731 1732 /* 1733 * translate the memory @limit size into the max address within one of 1734 * the memory memblock regions, if the @limit exceeds the total size 1735 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1736 */ 1737 for_each_mem_region(r) { 1738 if (limit <= r->size) { 1739 max_addr = r->base + limit; 1740 break; 1741 } 1742 limit -= r->size; 1743 } 1744 1745 return max_addr; 1746 } 1747 memblock_enforce_memory_limit(phys_addr_t limit)1748 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1749 { 1750 phys_addr_t max_addr; 1751 1752 if (!limit) 1753 return; 1754 1755 max_addr = __find_max_addr(limit); 1756 1757 /* @limit exceeds the total size of the memory, do nothing */ 1758 if (max_addr == PHYS_ADDR_MAX) 1759 return; 1760 1761 /* truncate both memory and reserved regions */ 1762 memblock_remove_range(&memblock.memory, max_addr, 1763 PHYS_ADDR_MAX); 1764 memblock_remove_range(&memblock.reserved, max_addr, 1765 PHYS_ADDR_MAX); 1766 } 1767 memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1768 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1769 { 1770 int start_rgn, end_rgn; 1771 int i, ret; 1772 1773 if (!size) 1774 return; 1775 1776 if (!memblock_memory->total_size) { 1777 pr_warn("%s: No memory registered yet\n", __func__); 1778 return; 1779 } 1780 1781 ret = memblock_isolate_range(&memblock.memory, base, size, 1782 &start_rgn, &end_rgn); 1783 if (ret) 1784 return; 1785 1786 /* remove all the MAP regions */ 1787 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1788 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1789 memblock_remove_region(&memblock.memory, i); 1790 1791 for (i = start_rgn - 1; i >= 0; i--) 1792 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1793 memblock_remove_region(&memblock.memory, i); 1794 1795 /* truncate the reserved regions */ 1796 memblock_remove_range(&memblock.reserved, 0, base); 1797 memblock_remove_range(&memblock.reserved, 1798 base + size, PHYS_ADDR_MAX); 1799 } 1800 memblock_mem_limit_remove_map(phys_addr_t limit)1801 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1802 { 1803 phys_addr_t max_addr; 1804 1805 if (!limit) 1806 return; 1807 1808 max_addr = __find_max_addr(limit); 1809 1810 /* @limit exceeds the total size of the memory, do nothing */ 1811 if (max_addr == PHYS_ADDR_MAX) 1812 return; 1813 1814 memblock_cap_memory_range(0, max_addr); 1815 } 1816 memblock_search(struct memblock_type * type,phys_addr_t addr)1817 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1818 { 1819 unsigned int left = 0, right = type->cnt; 1820 1821 do { 1822 unsigned int mid = (right + left) / 2; 1823 1824 if (addr < type->regions[mid].base) 1825 right = mid; 1826 else if (addr >= (type->regions[mid].base + 1827 type->regions[mid].size)) 1828 left = mid + 1; 1829 else 1830 return mid; 1831 } while (left < right); 1832 return -1; 1833 } 1834 memblock_is_reserved(phys_addr_t addr)1835 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1836 { 1837 return memblock_search(&memblock.reserved, addr) != -1; 1838 } 1839 memblock_is_memory(phys_addr_t addr)1840 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1841 { 1842 return memblock_search(&memblock.memory, addr) != -1; 1843 } 1844 memblock_is_map_memory(phys_addr_t addr)1845 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1846 { 1847 int i = memblock_search(&memblock.memory, addr); 1848 1849 if (i == -1) 1850 return false; 1851 return !memblock_is_nomap(&memblock.memory.regions[i]); 1852 } 1853 memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1854 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1855 unsigned long *start_pfn, unsigned long *end_pfn) 1856 { 1857 struct memblock_type *type = &memblock.memory; 1858 int mid = memblock_search(type, PFN_PHYS(pfn)); 1859 1860 if (mid == -1) 1861 return -1; 1862 1863 *start_pfn = PFN_DOWN(type->regions[mid].base); 1864 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1865 1866 return memblock_get_region_node(&type->regions[mid]); 1867 } 1868 1869 /** 1870 * memblock_is_region_memory - check if a region is a subset of memory 1871 * @base: base of region to check 1872 * @size: size of region to check 1873 * 1874 * Check if the region [@base, @base + @size) is a subset of a memory block. 1875 * 1876 * Return: 1877 * 0 if false, non-zero if true 1878 */ memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1879 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1880 { 1881 int idx = memblock_search(&memblock.memory, base); 1882 phys_addr_t end = base + memblock_cap_size(base, &size); 1883 1884 if (idx == -1) 1885 return false; 1886 return (memblock.memory.regions[idx].base + 1887 memblock.memory.regions[idx].size) >= end; 1888 } 1889 1890 /** 1891 * memblock_is_region_reserved - check if a region intersects reserved memory 1892 * @base: base of region to check 1893 * @size: size of region to check 1894 * 1895 * Check if the region [@base, @base + @size) intersects a reserved 1896 * memory block. 1897 * 1898 * Return: 1899 * True if they intersect, false if not. 1900 */ memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1901 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1902 { 1903 return memblock_overlaps_region(&memblock.reserved, base, size); 1904 } 1905 memblock_trim_memory(phys_addr_t align)1906 void __init_memblock memblock_trim_memory(phys_addr_t align) 1907 { 1908 phys_addr_t start, end, orig_start, orig_end; 1909 struct memblock_region *r; 1910 1911 for_each_mem_region(r) { 1912 orig_start = r->base; 1913 orig_end = r->base + r->size; 1914 start = round_up(orig_start, align); 1915 end = round_down(orig_end, align); 1916 1917 if (start == orig_start && end == orig_end) 1918 continue; 1919 1920 if (start < end) { 1921 r->base = start; 1922 r->size = end - start; 1923 } else { 1924 memblock_remove_region(&memblock.memory, 1925 r - memblock.memory.regions); 1926 r--; 1927 } 1928 } 1929 } 1930 memblock_set_current_limit(phys_addr_t limit)1931 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1932 { 1933 memblock.current_limit = limit; 1934 } 1935 memblock_get_current_limit(void)1936 phys_addr_t __init_memblock memblock_get_current_limit(void) 1937 { 1938 return memblock.current_limit; 1939 } 1940 memblock_dump(struct memblock_type * type)1941 static void __init_memblock memblock_dump(struct memblock_type *type) 1942 { 1943 phys_addr_t base, end, size; 1944 enum memblock_flags flags; 1945 int idx; 1946 struct memblock_region *rgn; 1947 1948 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1949 1950 for_each_memblock_type(idx, type, rgn) { 1951 char nid_buf[32] = ""; 1952 1953 base = rgn->base; 1954 size = rgn->size; 1955 end = base + size - 1; 1956 flags = rgn->flags; 1957 #ifdef CONFIG_NUMA 1958 if (numa_valid_node(memblock_get_region_node(rgn))) 1959 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1960 memblock_get_region_node(rgn)); 1961 #endif 1962 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1963 type->name, idx, &base, &end, &size, nid_buf, flags); 1964 } 1965 } 1966 __memblock_dump_all(void)1967 static void __init_memblock __memblock_dump_all(void) 1968 { 1969 pr_info("MEMBLOCK configuration:\n"); 1970 pr_info(" memory size = %pa reserved size = %pa\n", 1971 &memblock.memory.total_size, 1972 &memblock.reserved.total_size); 1973 1974 memblock_dump(&memblock.memory); 1975 memblock_dump(&memblock.reserved); 1976 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1977 memblock_dump(&physmem); 1978 #endif 1979 } 1980 memblock_dump_all(void)1981 void __init_memblock memblock_dump_all(void) 1982 { 1983 if (memblock_debug) 1984 __memblock_dump_all(); 1985 } 1986 memblock_allow_resize(void)1987 void __init memblock_allow_resize(void) 1988 { 1989 memblock_can_resize = 1; 1990 } 1991 early_memblock(char * p)1992 static int __init early_memblock(char *p) 1993 { 1994 if (p && strstr(p, "debug")) 1995 memblock_debug = 1; 1996 return 0; 1997 } 1998 early_param("memblock", early_memblock); 1999 free_memmap(unsigned long start_pfn,unsigned long end_pfn)2000 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 2001 { 2002 struct page *start_pg, *end_pg; 2003 phys_addr_t pg, pgend; 2004 2005 /* 2006 * Convert start_pfn/end_pfn to a struct page pointer. 2007 */ 2008 start_pg = pfn_to_page(start_pfn - 1) + 1; 2009 end_pg = pfn_to_page(end_pfn - 1) + 1; 2010 2011 /* 2012 * Convert to physical addresses, and round start upwards and end 2013 * downwards. 2014 */ 2015 pg = PAGE_ALIGN(__pa(start_pg)); 2016 pgend = __pa(end_pg) & PAGE_MASK; 2017 2018 /* 2019 * If there are free pages between these, free the section of the 2020 * memmap array. 2021 */ 2022 if (pg < pgend) 2023 memblock_phys_free(pg, pgend - pg); 2024 } 2025 2026 /* 2027 * The mem_map array can get very big. Free the unused area of the memory map. 2028 */ free_unused_memmap(void)2029 static void __init free_unused_memmap(void) 2030 { 2031 unsigned long start, end, prev_end = 0; 2032 int i; 2033 2034 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 2035 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 2036 return; 2037 2038 /* 2039 * This relies on each bank being in address order. 2040 * The banks are sorted previously in bootmem_init(). 2041 */ 2042 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 2043 #ifdef CONFIG_SPARSEMEM 2044 /* 2045 * Take care not to free memmap entries that don't exist 2046 * due to SPARSEMEM sections which aren't present. 2047 */ 2048 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 2049 #endif 2050 /* 2051 * Align down here since many operations in VM subsystem 2052 * presume that there are no holes in the memory map inside 2053 * a pageblock 2054 */ 2055 start = pageblock_start_pfn(start); 2056 2057 /* 2058 * If we had a previous bank, and there is a space 2059 * between the current bank and the previous, free it. 2060 */ 2061 if (prev_end && prev_end < start) 2062 free_memmap(prev_end, start); 2063 2064 /* 2065 * Align up here since many operations in VM subsystem 2066 * presume that there are no holes in the memory map inside 2067 * a pageblock 2068 */ 2069 prev_end = pageblock_align(end); 2070 } 2071 2072 #ifdef CONFIG_SPARSEMEM 2073 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 2074 prev_end = pageblock_align(end); 2075 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 2076 } 2077 #endif 2078 } 2079 __free_pages_memory(unsigned long start,unsigned long end)2080 static void __init __free_pages_memory(unsigned long start, unsigned long end) 2081 { 2082 int order; 2083 2084 while (start < end) { 2085 /* 2086 * Free the pages in the largest chunks alignment allows. 2087 * 2088 * __ffs() behaviour is undefined for 0. start == 0 is 2089 * MAX_ORDER-aligned, set order to MAX_ORDER for the case. 2090 */ 2091 if (start) 2092 order = min_t(int, MAX_ORDER, __ffs(start)); 2093 else 2094 order = MAX_ORDER; 2095 2096 while (start + (1UL << order) > end) 2097 order--; 2098 2099 memblock_free_pages(pfn_to_page(start), start, order); 2100 2101 start += (1UL << order); 2102 } 2103 } 2104 __free_memory_core(phys_addr_t start,phys_addr_t end)2105 static unsigned long __init __free_memory_core(phys_addr_t start, 2106 phys_addr_t end) 2107 { 2108 unsigned long start_pfn = PFN_UP(start); 2109 unsigned long end_pfn = min_t(unsigned long, 2110 PFN_DOWN(end), max_low_pfn); 2111 2112 if (start_pfn >= end_pfn) 2113 return 0; 2114 2115 __free_pages_memory(start_pfn, end_pfn); 2116 2117 return end_pfn - start_pfn; 2118 } 2119 memmap_init_reserved_pages(void)2120 static void __init memmap_init_reserved_pages(void) 2121 { 2122 struct memblock_region *region; 2123 phys_addr_t start, end; 2124 int nid; 2125 2126 /* 2127 * set nid on all reserved pages and also treat struct 2128 * pages for the NOMAP regions as PageReserved 2129 */ 2130 for_each_mem_region(region) { 2131 nid = memblock_get_region_node(region); 2132 start = region->base; 2133 end = start + region->size; 2134 2135 if (memblock_is_nomap(region)) 2136 reserve_bootmem_region(start, end, nid); 2137 2138 memblock_set_node(start, end, &memblock.reserved, nid); 2139 } 2140 2141 /* initialize struct pages for the reserved regions */ 2142 for_each_reserved_mem_region(region) { 2143 nid = memblock_get_region_node(region); 2144 start = region->base; 2145 end = start + region->size; 2146 2147 if (!numa_valid_node(nid)) 2148 nid = early_pfn_to_nid(PFN_DOWN(start)); 2149 2150 reserve_bootmem_region(start, end, nid); 2151 } 2152 } 2153 free_low_memory_core_early(void)2154 static unsigned long __init free_low_memory_core_early(void) 2155 { 2156 unsigned long count = 0; 2157 phys_addr_t start, end; 2158 u64 i; 2159 2160 memblock_clear_hotplug(0, -1); 2161 2162 memmap_init_reserved_pages(); 2163 2164 /* 2165 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2166 * because in some case like Node0 doesn't have RAM installed 2167 * low ram will be on Node1 2168 */ 2169 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2170 NULL) 2171 count += __free_memory_core(start, end); 2172 2173 return count; 2174 } 2175 2176 static int reset_managed_pages_done __initdata; 2177 reset_node_managed_pages(pg_data_t * pgdat)2178 static void __init reset_node_managed_pages(pg_data_t *pgdat) 2179 { 2180 struct zone *z; 2181 2182 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2183 atomic_long_set(&z->managed_pages, 0); 2184 } 2185 reset_all_zones_managed_pages(void)2186 void __init reset_all_zones_managed_pages(void) 2187 { 2188 struct pglist_data *pgdat; 2189 2190 if (reset_managed_pages_done) 2191 return; 2192 2193 for_each_online_pgdat(pgdat) 2194 reset_node_managed_pages(pgdat); 2195 2196 reset_managed_pages_done = 1; 2197 } 2198 2199 /** 2200 * memblock_free_all - release free pages to the buddy allocator 2201 */ memblock_free_all(void)2202 void __init memblock_free_all(void) 2203 { 2204 unsigned long pages; 2205 2206 free_unused_memmap(); 2207 reset_all_zones_managed_pages(); 2208 2209 pages = free_low_memory_core_early(); 2210 totalram_pages_add(pages); 2211 } 2212 2213 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2214 static const char * const flagname[] = { 2215 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", 2216 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR", 2217 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP", 2218 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", 2219 }; 2220 memblock_debug_show(struct seq_file * m,void * private)2221 static int memblock_debug_show(struct seq_file *m, void *private) 2222 { 2223 struct memblock_type *type = m->private; 2224 struct memblock_region *reg; 2225 int i, j, nid; 2226 unsigned int count = ARRAY_SIZE(flagname); 2227 phys_addr_t end; 2228 2229 for (i = 0; i < type->cnt; i++) { 2230 reg = &type->regions[i]; 2231 end = reg->base + reg->size - 1; 2232 nid = memblock_get_region_node(reg); 2233 2234 seq_printf(m, "%4d: ", i); 2235 seq_printf(m, "%pa..%pa ", ®->base, &end); 2236 if (numa_valid_node(nid)) 2237 seq_printf(m, "%4d ", nid); 2238 else 2239 seq_printf(m, "%4c ", 'x'); 2240 if (reg->flags) { 2241 for (j = 0; j < count; j++) { 2242 if (reg->flags & (1U << j)) { 2243 seq_printf(m, "%s\n", flagname[j]); 2244 break; 2245 } 2246 } 2247 if (j == count) 2248 seq_printf(m, "%s\n", "UNKNOWN"); 2249 } else { 2250 seq_printf(m, "%s\n", "NONE"); 2251 } 2252 } 2253 return 0; 2254 } 2255 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2256 memblock_init_debugfs(void)2257 static int __init memblock_init_debugfs(void) 2258 { 2259 struct dentry *root = debugfs_create_dir("memblock", NULL); 2260 2261 debugfs_create_file("memory", 0444, root, 2262 &memblock.memory, &memblock_debug_fops); 2263 debugfs_create_file("reserved", 0444, root, 2264 &memblock.reserved, &memblock_debug_fops); 2265 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2266 debugfs_create_file("physmem", 0444, root, &physmem, 2267 &memblock_debug_fops); 2268 #endif 2269 2270 return 0; 2271 } 2272 __initcall(memblock_init_debugfs); 2273 2274 #endif /* CONFIG_DEBUG_FS */ 2275