1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
22 {
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
25
26 while (*p) {
27 struct mft_inode *mi;
28
29 pr = *p;
30 mi = rb_entry(pr, struct mft_inode, node);
31 if (mi->rno > ino)
32 p = &pr->rb_left;
33 else if (mi->rno < ino)
34 p = &pr->rb_right;
35 else
36 return mi;
37 }
38
39 if (!ins)
40 return NULL;
41
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
45 }
46
47 /*
48 * ni_find_mi - Find mft_inode by record number.
49 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54
55 /*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62
63 /*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 rb_erase(&mi->node, &ni->mi_tree);
69 }
70
71 /*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 const struct ATTRIB *attr;
77
78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 NULL;
81 }
82
83 /*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 const struct ATTRIB *attr;
91
92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 NULL;
96 }
97
98 /*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 struct rb_node *node;
104
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec &&
106 is_rec_inuse(ni->mi.mrec) &&
107 !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING))
108 ni_delete_all(ni);
109
110 al_destroy(ni);
111
112 for (node = rb_first(&ni->mi_tree); node;) {
113 struct rb_node *next = rb_next(node);
114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
115
116 rb_erase(node, &ni->mi_tree);
117 mi_put(mi);
118 node = next;
119 }
120
121 /* Bad inode always has mode == S_IFREG. */
122 if (ni->ni_flags & NI_FLAG_DIR)
123 indx_clear(&ni->dir);
124 else {
125 run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 if (ni->file.offs_page) {
128 /* On-demand allocated page for offsets. */
129 put_page(ni->file.offs_page);
130 ni->file.offs_page = NULL;
131 }
132 #endif
133 }
134
135 mi_clear(&ni->mi);
136 }
137
138 /*
139 * ni_load_mi_ex - Find mft_inode by record number.
140 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
142 {
143 int err;
144 struct mft_inode *r;
145
146 r = ni_find_mi(ni, rno);
147 if (r)
148 goto out;
149
150 err = mi_get(ni->mi.sbi, rno, &r);
151 if (err)
152 return err;
153
154 ni_add_mi(ni, r);
155
156 out:
157 if (mi)
158 *mi = r;
159 return 0;
160 }
161
162 /*
163 * ni_load_mi - Load mft_inode corresponded list_entry.
164 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)165 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
166 struct mft_inode **mi)
167 {
168 CLST rno;
169
170 if (!le) {
171 *mi = &ni->mi;
172 return 0;
173 }
174
175 rno = ino_get(&le->ref);
176 if (rno == ni->mi.rno) {
177 *mi = &ni->mi;
178 return 0;
179 }
180 return ni_load_mi_ex(ni, rno, mi);
181 }
182
183 /*
184 * ni_find_attr
185 *
186 * Return: Attribute and record this attribute belongs to.
187 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)188 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
189 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
190 const __le16 *name, u8 name_len, const CLST *vcn,
191 struct mft_inode **mi)
192 {
193 struct ATTR_LIST_ENTRY *le;
194 struct mft_inode *m;
195
196 if (!ni->attr_list.size ||
197 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
198 if (le_o)
199 *le_o = NULL;
200 if (mi)
201 *mi = &ni->mi;
202
203 /* Look for required attribute in primary record. */
204 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
205 }
206
207 /* First look for list entry of required type. */
208 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
209 if (!le)
210 return NULL;
211
212 if (le_o)
213 *le_o = le;
214
215 /* Load record that contains this attribute. */
216 if (ni_load_mi(ni, le, &m))
217 return NULL;
218
219 /* Look for required attribute. */
220 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
221
222 if (!attr)
223 goto out;
224
225 if (!attr->non_res) {
226 if (vcn && *vcn)
227 goto out;
228 } else if (!vcn) {
229 if (attr->nres.svcn)
230 goto out;
231 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
232 *vcn > le64_to_cpu(attr->nres.evcn)) {
233 goto out;
234 }
235
236 if (mi)
237 *mi = m;
238 return attr;
239
240 out:
241 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
242 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
243 return NULL;
244 }
245
246 /*
247 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
248 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)249 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
250 struct ATTR_LIST_ENTRY **le,
251 struct mft_inode **mi)
252 {
253 struct mft_inode *mi2;
254 struct ATTR_LIST_ENTRY *le2;
255
256 /* Do we have an attribute list? */
257 if (!ni->attr_list.size) {
258 *le = NULL;
259 if (mi)
260 *mi = &ni->mi;
261 /* Enum attributes in primary record. */
262 return mi_enum_attr(&ni->mi, attr);
263 }
264
265 /* Get next list entry. */
266 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
267 if (!le2)
268 return NULL;
269
270 /* Load record that contains the required attribute. */
271 if (ni_load_mi(ni, le2, &mi2))
272 return NULL;
273
274 if (mi)
275 *mi = mi2;
276
277 /* Find attribute in loaded record. */
278 return rec_find_attr_le(mi2, le2);
279 }
280
281 /*
282 * ni_load_attr - Load attribute that contains given VCN.
283 */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)284 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
285 const __le16 *name, u8 name_len, CLST vcn,
286 struct mft_inode **pmi)
287 {
288 struct ATTR_LIST_ENTRY *le;
289 struct ATTRIB *attr;
290 struct mft_inode *mi;
291 struct ATTR_LIST_ENTRY *next;
292
293 if (!ni->attr_list.size) {
294 if (pmi)
295 *pmi = &ni->mi;
296 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
297 }
298
299 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
300 if (!le)
301 return NULL;
302
303 /*
304 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
305 * So to find the ATTRIB segment that contains 'vcn' we should
306 * enumerate some entries.
307 */
308 if (vcn) {
309 for (;; le = next) {
310 next = al_find_ex(ni, le, type, name, name_len, NULL);
311 if (!next || le64_to_cpu(next->vcn) > vcn)
312 break;
313 }
314 }
315
316 if (ni_load_mi(ni, le, &mi))
317 return NULL;
318
319 if (pmi)
320 *pmi = mi;
321
322 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
323 if (!attr)
324 return NULL;
325
326 if (!attr->non_res)
327 return attr;
328
329 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
330 vcn <= le64_to_cpu(attr->nres.evcn))
331 return attr;
332
333 return NULL;
334 }
335
336 /*
337 * ni_load_all_mi - Load all subrecords.
338 */
ni_load_all_mi(struct ntfs_inode * ni)339 int ni_load_all_mi(struct ntfs_inode *ni)
340 {
341 int err;
342 struct ATTR_LIST_ENTRY *le;
343
344 if (!ni->attr_list.size)
345 return 0;
346
347 le = NULL;
348
349 while ((le = al_enumerate(ni, le))) {
350 CLST rno = ino_get(&le->ref);
351
352 if (rno == ni->mi.rno)
353 continue;
354
355 err = ni_load_mi_ex(ni, rno, NULL);
356 if (err)
357 return err;
358 }
359
360 return 0;
361 }
362
363 /*
364 * ni_add_subrecord - Allocate + format + attach a new subrecord.
365 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)366 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
367 {
368 struct mft_inode *m;
369
370 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
371 if (!m)
372 return false;
373
374 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
375 mi_put(m);
376 return false;
377 }
378
379 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
380
381 ni_add_mi(ni, m);
382 *mi = m;
383 return true;
384 }
385
386 /*
387 * ni_remove_attr - Remove all attributes for the given type/name/id.
388 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)389 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
390 const __le16 *name, u8 name_len, bool base_only,
391 const __le16 *id)
392 {
393 int err;
394 struct ATTRIB *attr;
395 struct ATTR_LIST_ENTRY *le;
396 struct mft_inode *mi;
397 u32 type_in;
398 int diff;
399
400 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
401 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
402 if (!attr)
403 return -ENOENT;
404
405 mi_remove_attr(ni, &ni->mi, attr);
406 return 0;
407 }
408
409 type_in = le32_to_cpu(type);
410 le = NULL;
411
412 for (;;) {
413 le = al_enumerate(ni, le);
414 if (!le)
415 return 0;
416
417 next_le2:
418 diff = le32_to_cpu(le->type) - type_in;
419 if (diff < 0)
420 continue;
421
422 if (diff > 0)
423 return 0;
424
425 if (le->name_len != name_len)
426 continue;
427
428 if (name_len &&
429 memcmp(le_name(le), name, name_len * sizeof(short)))
430 continue;
431
432 if (id && le->id != *id)
433 continue;
434 err = ni_load_mi(ni, le, &mi);
435 if (err)
436 return err;
437
438 al_remove_le(ni, le);
439
440 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
441 if (!attr)
442 return -ENOENT;
443
444 mi_remove_attr(ni, mi, attr);
445
446 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
447 return 0;
448 goto next_le2;
449 }
450 }
451
452 /*
453 * ni_ins_new_attr - Insert the attribute into record.
454 *
455 * Return: Not full constructed attribute or NULL if not possible to create.
456 */
457 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)458 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
459 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
460 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
461 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
462 {
463 int err;
464 struct ATTRIB *attr;
465 bool le_added = false;
466 struct MFT_REF ref;
467
468 mi_get_ref(mi, &ref);
469
470 if (type != ATTR_LIST && !le && ni->attr_list.size) {
471 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
472 &ref, &le);
473 if (err) {
474 /* No memory or no space. */
475 return ERR_PTR(err);
476 }
477 le_added = true;
478
479 /*
480 * al_add_le -> attr_set_size (list) -> ni_expand_list
481 * which moves some attributes out of primary record
482 * this means that name may point into moved memory
483 * reinit 'name' from le.
484 */
485 name = le->name;
486 }
487
488 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
489 if (!attr) {
490 if (le_added)
491 al_remove_le(ni, le);
492 return NULL;
493 }
494
495 if (type == ATTR_LIST) {
496 /* Attr list is not in list entry array. */
497 goto out;
498 }
499
500 if (!le)
501 goto out;
502
503 /* Update ATTRIB Id and record reference. */
504 le->id = attr->id;
505 ni->attr_list.dirty = true;
506 le->ref = ref;
507
508 out:
509 if (ins_le)
510 *ins_le = le;
511 return attr;
512 }
513
514 /*
515 * ni_repack
516 *
517 * Random write access to sparsed or compressed file may result to
518 * not optimized packed runs.
519 * Here is the place to optimize it.
520 */
ni_repack(struct ntfs_inode * ni)521 static int ni_repack(struct ntfs_inode *ni)
522 {
523 #if 1
524 return 0;
525 #else
526 int err = 0;
527 struct ntfs_sb_info *sbi = ni->mi.sbi;
528 struct mft_inode *mi, *mi_p = NULL;
529 struct ATTRIB *attr = NULL, *attr_p;
530 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
531 CLST alloc = 0;
532 u8 cluster_bits = sbi->cluster_bits;
533 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
534 u32 roff, rs = sbi->record_size;
535 struct runs_tree run;
536
537 run_init(&run);
538
539 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
540 if (!attr->non_res)
541 continue;
542
543 svcn = le64_to_cpu(attr->nres.svcn);
544 if (svcn != le64_to_cpu(le->vcn)) {
545 err = -EINVAL;
546 break;
547 }
548
549 if (!svcn) {
550 alloc = le64_to_cpu(attr->nres.alloc_size) >>
551 cluster_bits;
552 mi_p = NULL;
553 } else if (svcn != evcn + 1) {
554 err = -EINVAL;
555 break;
556 }
557
558 evcn = le64_to_cpu(attr->nres.evcn);
559
560 if (svcn > evcn + 1) {
561 err = -EINVAL;
562 break;
563 }
564
565 if (!mi_p) {
566 /* Do not try if not enough free space. */
567 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
568 continue;
569
570 /* Do not try if last attribute segment. */
571 if (evcn + 1 == alloc)
572 continue;
573 run_close(&run);
574 }
575
576 roff = le16_to_cpu(attr->nres.run_off);
577
578 if (roff > le32_to_cpu(attr->size)) {
579 err = -EINVAL;
580 break;
581 }
582
583 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
584 Add2Ptr(attr, roff),
585 le32_to_cpu(attr->size) - roff);
586 if (err < 0)
587 break;
588
589 if (!mi_p) {
590 mi_p = mi;
591 attr_p = attr;
592 svcn_p = svcn;
593 evcn_p = evcn;
594 le_p = le;
595 err = 0;
596 continue;
597 }
598
599 /*
600 * Run contains data from two records: mi_p and mi
601 * Try to pack in one.
602 */
603 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
604 if (err)
605 break;
606
607 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
608
609 if (next_svcn >= evcn + 1) {
610 /* We can remove this attribute segment. */
611 al_remove_le(ni, le);
612 mi_remove_attr(NULL, mi, attr);
613 le = le_p;
614 continue;
615 }
616
617 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
618 mi->dirty = true;
619 ni->attr_list.dirty = true;
620
621 if (evcn + 1 == alloc) {
622 err = mi_pack_runs(mi, attr, &run,
623 evcn + 1 - next_svcn);
624 if (err)
625 break;
626 mi_p = NULL;
627 } else {
628 mi_p = mi;
629 attr_p = attr;
630 svcn_p = next_svcn;
631 evcn_p = evcn;
632 le_p = le;
633 run_truncate_head(&run, next_svcn);
634 }
635 }
636
637 if (err) {
638 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
639 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
640
641 /* Pack loaded but not packed runs. */
642 if (mi_p)
643 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
644 }
645
646 run_close(&run);
647 return err;
648 #endif
649 }
650
651 /*
652 * ni_try_remove_attr_list
653 *
654 * Can we remove attribute list?
655 * Check the case when primary record contains enough space for all attributes.
656 */
ni_try_remove_attr_list(struct ntfs_inode * ni)657 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
658 {
659 int err = 0;
660 struct ntfs_sb_info *sbi = ni->mi.sbi;
661 struct ATTRIB *attr, *attr_list, *attr_ins;
662 struct ATTR_LIST_ENTRY *le;
663 struct mft_inode *mi;
664 u32 asize, free;
665 struct MFT_REF ref;
666 struct MFT_REC *mrec;
667 __le16 id;
668
669 if (!ni->attr_list.dirty)
670 return 0;
671
672 err = ni_repack(ni);
673 if (err)
674 return err;
675
676 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
677 if (!attr_list)
678 return 0;
679
680 asize = le32_to_cpu(attr_list->size);
681
682 /* Free space in primary record without attribute list. */
683 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
684 mi_get_ref(&ni->mi, &ref);
685
686 le = NULL;
687 while ((le = al_enumerate(ni, le))) {
688 if (!memcmp(&le->ref, &ref, sizeof(ref)))
689 continue;
690
691 if (le->vcn)
692 return 0;
693
694 mi = ni_find_mi(ni, ino_get(&le->ref));
695 if (!mi)
696 return 0;
697
698 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
699 le->name_len, &le->id);
700 if (!attr)
701 return 0;
702
703 asize = le32_to_cpu(attr->size);
704 if (asize > free)
705 return 0;
706
707 free -= asize;
708 }
709
710 /* Make a copy of primary record to restore if error. */
711 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
712 if (!mrec)
713 return 0; /* Not critical. */
714
715 /* It seems that attribute list can be removed from primary record. */
716 mi_remove_attr(NULL, &ni->mi, attr_list);
717
718 /*
719 * Repeat the cycle above and copy all attributes to primary record.
720 * Do not remove original attributes from subrecords!
721 * It should be success!
722 */
723 le = NULL;
724 while ((le = al_enumerate(ni, le))) {
725 if (!memcmp(&le->ref, &ref, sizeof(ref)))
726 continue;
727
728 mi = ni_find_mi(ni, ino_get(&le->ref));
729 if (!mi) {
730 /* Should never happened, 'cause already checked. */
731 goto out;
732 }
733
734 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
735 le->name_len, &le->id);
736 if (!attr) {
737 /* Should never happened, 'cause already checked. */
738 goto out;
739 }
740 asize = le32_to_cpu(attr->size);
741
742 /* Insert into primary record. */
743 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
744 le->name_len, asize,
745 le16_to_cpu(attr->name_off));
746 if (!attr_ins) {
747 /*
748 * No space in primary record (already checked).
749 */
750 goto out;
751 }
752
753 /* Copy all except id. */
754 id = attr_ins->id;
755 memcpy(attr_ins, attr, asize);
756 attr_ins->id = id;
757 }
758
759 /*
760 * Repeat the cycle above and remove all attributes from subrecords.
761 */
762 le = NULL;
763 while ((le = al_enumerate(ni, le))) {
764 if (!memcmp(&le->ref, &ref, sizeof(ref)))
765 continue;
766
767 mi = ni_find_mi(ni, ino_get(&le->ref));
768 if (!mi)
769 continue;
770
771 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
772 le->name_len, &le->id);
773 if (!attr)
774 continue;
775
776 /* Remove from original record. */
777 mi_remove_attr(NULL, mi, attr);
778 }
779
780 run_deallocate(sbi, &ni->attr_list.run, true);
781 run_close(&ni->attr_list.run);
782 ni->attr_list.size = 0;
783 kvfree(ni->attr_list.le);
784 ni->attr_list.le = NULL;
785 ni->attr_list.dirty = false;
786
787 kfree(mrec);
788 return 0;
789 out:
790 /* Restore primary record. */
791 swap(mrec, ni->mi.mrec);
792 kfree(mrec);
793 return 0;
794 }
795
796 /*
797 * ni_create_attr_list - Generates an attribute list for this primary record.
798 */
ni_create_attr_list(struct ntfs_inode * ni)799 int ni_create_attr_list(struct ntfs_inode *ni)
800 {
801 struct ntfs_sb_info *sbi = ni->mi.sbi;
802 int err;
803 u32 lsize;
804 struct ATTRIB *attr;
805 struct ATTRIB *arr_move[7];
806 struct ATTR_LIST_ENTRY *le, *le_b[7];
807 struct MFT_REC *rec;
808 bool is_mft;
809 CLST rno = 0;
810 struct mft_inode *mi;
811 u32 free_b, nb, to_free, rs;
812 u16 sz;
813
814 is_mft = ni->mi.rno == MFT_REC_MFT;
815 rec = ni->mi.mrec;
816 rs = sbi->record_size;
817
818 /*
819 * Skip estimating exact memory requirement.
820 * Looks like one record_size is always enough.
821 */
822 le = kmalloc(al_aligned(rs), GFP_NOFS);
823 if (!le)
824 return -ENOMEM;
825
826 mi_get_ref(&ni->mi, &le->ref);
827 ni->attr_list.le = le;
828
829 attr = NULL;
830 nb = 0;
831 free_b = 0;
832 attr = NULL;
833
834 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
835 sz = le_size(attr->name_len);
836 le->type = attr->type;
837 le->size = cpu_to_le16(sz);
838 le->name_len = attr->name_len;
839 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
840 le->vcn = 0;
841 if (le != ni->attr_list.le)
842 le->ref = ni->attr_list.le->ref;
843 le->id = attr->id;
844
845 if (attr->name_len)
846 memcpy(le->name, attr_name(attr),
847 sizeof(short) * attr->name_len);
848 else if (attr->type == ATTR_STD)
849 continue;
850 else if (attr->type == ATTR_LIST)
851 continue;
852 else if (is_mft && attr->type == ATTR_DATA)
853 continue;
854
855 if (!nb || nb < ARRAY_SIZE(arr_move)) {
856 le_b[nb] = le;
857 arr_move[nb++] = attr;
858 free_b += le32_to_cpu(attr->size);
859 }
860 }
861
862 lsize = PtrOffset(ni->attr_list.le, le);
863 ni->attr_list.size = lsize;
864
865 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
866 if (to_free <= rs) {
867 to_free = 0;
868 } else {
869 to_free -= rs;
870
871 if (to_free > free_b) {
872 err = -EINVAL;
873 goto out;
874 }
875 }
876
877 /* Allocate child MFT. */
878 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
879 if (err)
880 goto out;
881
882 err = -EINVAL;
883 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
884 while (to_free > 0) {
885 struct ATTRIB *b = arr_move[--nb];
886 u32 asize = le32_to_cpu(b->size);
887 u16 name_off = le16_to_cpu(b->name_off);
888
889 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
890 b->name_len, asize, name_off);
891 if (!attr)
892 goto out;
893
894 mi_get_ref(mi, &le_b[nb]->ref);
895 le_b[nb]->id = attr->id;
896
897 /* Copy all except id. */
898 memcpy(attr, b, asize);
899 attr->id = le_b[nb]->id;
900
901 /* Remove from primary record. */
902 if (!mi_remove_attr(NULL, &ni->mi, b))
903 goto out;
904
905 if (to_free <= asize)
906 break;
907 to_free -= asize;
908 if (!nb)
909 goto out;
910 }
911
912 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
913 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
914 if (!attr)
915 goto out;
916
917 attr->non_res = 0;
918 attr->flags = 0;
919 attr->res.data_size = cpu_to_le32(lsize);
920 attr->res.data_off = SIZEOF_RESIDENT_LE;
921 attr->res.flags = 0;
922 attr->res.res = 0;
923
924 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
925
926 ni->attr_list.dirty = false;
927
928 mark_inode_dirty(&ni->vfs_inode);
929 return 0;
930
931 out:
932 kvfree(ni->attr_list.le);
933 ni->attr_list.le = NULL;
934 ni->attr_list.size = 0;
935 return err;
936 }
937
938 /*
939 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
940 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)941 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
942 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
943 u32 asize, CLST svcn, u16 name_off, bool force_ext,
944 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
945 struct ATTR_LIST_ENTRY **ins_le)
946 {
947 struct ATTRIB *attr;
948 struct mft_inode *mi;
949 CLST rno;
950 u64 vbo;
951 struct rb_node *node;
952 int err;
953 bool is_mft, is_mft_data;
954 struct ntfs_sb_info *sbi = ni->mi.sbi;
955
956 is_mft = ni->mi.rno == MFT_REC_MFT;
957 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
958
959 if (asize > sbi->max_bytes_per_attr) {
960 err = -EINVAL;
961 goto out;
962 }
963
964 /*
965 * Standard information and attr_list cannot be made external.
966 * The Log File cannot have any external attributes.
967 */
968 if (type == ATTR_STD || type == ATTR_LIST ||
969 ni->mi.rno == MFT_REC_LOG) {
970 err = -EINVAL;
971 goto out;
972 }
973
974 /* Create attribute list if it is not already existed. */
975 if (!ni->attr_list.size) {
976 err = ni_create_attr_list(ni);
977 if (err)
978 goto out;
979 }
980
981 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
982
983 if (force_ext)
984 goto insert_ext;
985
986 /* Load all subrecords into memory. */
987 err = ni_load_all_mi(ni);
988 if (err)
989 goto out;
990
991 /* Check each of loaded subrecord. */
992 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
993 mi = rb_entry(node, struct mft_inode, node);
994
995 if (is_mft_data &&
996 (mi_enum_attr(mi, NULL) ||
997 vbo <= ((u64)mi->rno << sbi->record_bits))) {
998 /* We can't accept this record 'cause MFT's bootstrapping. */
999 continue;
1000 }
1001 if (is_mft &&
1002 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1003 /*
1004 * This child record already has a ATTR_DATA.
1005 * So it can't accept any other records.
1006 */
1007 continue;
1008 }
1009
1010 if ((type != ATTR_NAME || name_len) &&
1011 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1012 /* Only indexed attributes can share same record. */
1013 continue;
1014 }
1015
1016 /*
1017 * Do not try to insert this attribute
1018 * if there is no room in record.
1019 */
1020 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1021 continue;
1022
1023 /* Try to insert attribute into this subrecord. */
1024 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1025 name_off, svcn, ins_le);
1026 if (!attr)
1027 continue;
1028 if (IS_ERR(attr))
1029 return PTR_ERR(attr);
1030
1031 if (ins_attr)
1032 *ins_attr = attr;
1033 if (ins_mi)
1034 *ins_mi = mi;
1035 return 0;
1036 }
1037
1038 insert_ext:
1039 /* We have to allocate a new child subrecord. */
1040 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1041 if (err)
1042 goto out;
1043
1044 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1045 err = -EINVAL;
1046 goto out1;
1047 }
1048
1049 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1050 name_off, svcn, ins_le);
1051 if (!attr) {
1052 err = -EINVAL;
1053 goto out2;
1054 }
1055
1056 if (IS_ERR(attr)) {
1057 err = PTR_ERR(attr);
1058 goto out2;
1059 }
1060
1061 if (ins_attr)
1062 *ins_attr = attr;
1063 if (ins_mi)
1064 *ins_mi = mi;
1065
1066 return 0;
1067
1068 out2:
1069 ni_remove_mi(ni, mi);
1070 mi_put(mi);
1071
1072 out1:
1073 ntfs_mark_rec_free(sbi, rno, is_mft);
1074
1075 out:
1076 return err;
1077 }
1078
1079 /*
1080 * ni_insert_attr - Insert an attribute into the file.
1081 *
1082 * If the primary record has room, it will just insert the attribute.
1083 * If not, it may make the attribute external.
1084 * For $MFT::Data it may make room for the attribute by
1085 * making other attributes external.
1086 *
1087 * NOTE:
1088 * The ATTR_LIST and ATTR_STD cannot be made external.
1089 * This function does not fill new attribute full.
1090 * It only fills 'size'/'type'/'id'/'name_len' fields.
1091 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1092 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1093 const __le16 *name, u8 name_len, u32 asize,
1094 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1095 struct mft_inode **ins_mi,
1096 struct ATTR_LIST_ENTRY **ins_le)
1097 {
1098 struct ntfs_sb_info *sbi = ni->mi.sbi;
1099 int err;
1100 struct ATTRIB *attr, *eattr;
1101 struct MFT_REC *rec;
1102 bool is_mft;
1103 struct ATTR_LIST_ENTRY *le;
1104 u32 list_reserve, max_free, free, used, t32;
1105 __le16 id;
1106 u16 t16;
1107
1108 is_mft = ni->mi.rno == MFT_REC_MFT;
1109 rec = ni->mi.mrec;
1110
1111 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1112 used = le32_to_cpu(rec->used);
1113 free = sbi->record_size - used;
1114
1115 if (is_mft && type != ATTR_LIST) {
1116 /* Reserve space for the ATTRIB list. */
1117 if (free < list_reserve)
1118 free = 0;
1119 else
1120 free -= list_reserve;
1121 }
1122
1123 if (asize <= free) {
1124 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1125 asize, name_off, svcn, ins_le);
1126 if (IS_ERR(attr)) {
1127 err = PTR_ERR(attr);
1128 goto out;
1129 }
1130
1131 if (attr) {
1132 if (ins_attr)
1133 *ins_attr = attr;
1134 if (ins_mi)
1135 *ins_mi = &ni->mi;
1136 err = 0;
1137 goto out;
1138 }
1139 }
1140
1141 if (!is_mft || type != ATTR_DATA || svcn) {
1142 /* This ATTRIB will be external. */
1143 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1144 svcn, name_off, false, ins_attr, ins_mi,
1145 ins_le);
1146 goto out;
1147 }
1148
1149 /*
1150 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1151 *
1152 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1153 * Evict as many other attributes as possible.
1154 */
1155 max_free = free;
1156
1157 /* Estimate the result of moving all possible attributes away. */
1158 attr = NULL;
1159
1160 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1161 if (attr->type == ATTR_STD)
1162 continue;
1163 if (attr->type == ATTR_LIST)
1164 continue;
1165 max_free += le32_to_cpu(attr->size);
1166 }
1167
1168 if (max_free < asize + list_reserve) {
1169 /* Impossible to insert this attribute into primary record. */
1170 err = -EINVAL;
1171 goto out;
1172 }
1173
1174 /* Start real attribute moving. */
1175 attr = NULL;
1176
1177 for (;;) {
1178 attr = mi_enum_attr(&ni->mi, attr);
1179 if (!attr) {
1180 /* We should never be here 'cause we have already check this case. */
1181 err = -EINVAL;
1182 goto out;
1183 }
1184
1185 /* Skip attributes that MUST be primary record. */
1186 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1187 continue;
1188
1189 le = NULL;
1190 if (ni->attr_list.size) {
1191 le = al_find_le(ni, NULL, attr);
1192 if (!le) {
1193 /* Really this is a serious bug. */
1194 err = -EINVAL;
1195 goto out;
1196 }
1197 }
1198
1199 t32 = le32_to_cpu(attr->size);
1200 t16 = le16_to_cpu(attr->name_off);
1201 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1202 attr->name_len, t32, attr_svcn(attr), t16,
1203 false, &eattr, NULL, NULL);
1204 if (err)
1205 return err;
1206
1207 id = eattr->id;
1208 memcpy(eattr, attr, t32);
1209 eattr->id = id;
1210
1211 /* Remove from primary record. */
1212 mi_remove_attr(NULL, &ni->mi, attr);
1213
1214 /* attr now points to next attribute. */
1215 if (attr->type == ATTR_END)
1216 goto out;
1217 }
1218 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1219 ;
1220
1221 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1222 name_off, svcn, ins_le);
1223 if (!attr) {
1224 err = -EINVAL;
1225 goto out;
1226 }
1227
1228 if (IS_ERR(attr)) {
1229 err = PTR_ERR(attr);
1230 goto out;
1231 }
1232
1233 if (ins_attr)
1234 *ins_attr = attr;
1235 if (ins_mi)
1236 *ins_mi = &ni->mi;
1237
1238 out:
1239 return err;
1240 }
1241
1242 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1243 static int ni_expand_mft_list(struct ntfs_inode *ni)
1244 {
1245 int err = 0;
1246 struct runs_tree *run = &ni->file.run;
1247 u32 asize, run_size, done = 0;
1248 struct ATTRIB *attr;
1249 struct rb_node *node;
1250 CLST mft_min, mft_new, svcn, evcn, plen;
1251 struct mft_inode *mi, *mi_min, *mi_new;
1252 struct ntfs_sb_info *sbi = ni->mi.sbi;
1253
1254 /* Find the nearest MFT. */
1255 mft_min = 0;
1256 mft_new = 0;
1257 mi_min = NULL;
1258
1259 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1260 mi = rb_entry(node, struct mft_inode, node);
1261
1262 attr = mi_enum_attr(mi, NULL);
1263
1264 if (!attr) {
1265 mft_min = mi->rno;
1266 mi_min = mi;
1267 break;
1268 }
1269 }
1270
1271 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1272 mft_new = 0;
1273 /* Really this is not critical. */
1274 } else if (mft_min > mft_new) {
1275 mft_min = mft_new;
1276 mi_min = mi_new;
1277 } else {
1278 ntfs_mark_rec_free(sbi, mft_new, true);
1279 mft_new = 0;
1280 ni_remove_mi(ni, mi_new);
1281 }
1282
1283 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1284 if (!attr) {
1285 err = -EINVAL;
1286 goto out;
1287 }
1288
1289 asize = le32_to_cpu(attr->size);
1290
1291 evcn = le64_to_cpu(attr->nres.evcn);
1292 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1293 if (evcn + 1 >= svcn) {
1294 err = -EINVAL;
1295 goto out;
1296 }
1297
1298 /*
1299 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1300 *
1301 * Update first part of ATTR_DATA in 'primary MFT.
1302 */
1303 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1304 asize - SIZEOF_NONRESIDENT, &plen);
1305 if (err < 0)
1306 goto out;
1307
1308 run_size = ALIGN(err, 8);
1309 err = 0;
1310
1311 if (plen < svcn) {
1312 err = -EINVAL;
1313 goto out;
1314 }
1315
1316 attr->nres.evcn = cpu_to_le64(svcn - 1);
1317 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1318 /* 'done' - How many bytes of primary MFT becomes free. */
1319 done = asize - run_size - SIZEOF_NONRESIDENT;
1320 le32_sub_cpu(&ni->mi.mrec->used, done);
1321
1322 /* Estimate packed size (run_buf=NULL). */
1323 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1324 &plen);
1325 if (err < 0)
1326 goto out;
1327
1328 run_size = ALIGN(err, 8);
1329 err = 0;
1330
1331 if (plen < evcn + 1 - svcn) {
1332 err = -EINVAL;
1333 goto out;
1334 }
1335
1336 /*
1337 * This function may implicitly call expand attr_list.
1338 * Insert second part of ATTR_DATA in 'mi_min'.
1339 */
1340 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1341 SIZEOF_NONRESIDENT + run_size,
1342 SIZEOF_NONRESIDENT, svcn, NULL);
1343 if (!attr) {
1344 err = -EINVAL;
1345 goto out;
1346 }
1347
1348 if (IS_ERR(attr)) {
1349 err = PTR_ERR(attr);
1350 goto out;
1351 }
1352
1353 attr->non_res = 1;
1354 attr->name_off = SIZEOF_NONRESIDENT_LE;
1355 attr->flags = 0;
1356
1357 /* This function can't fail - cause already checked above. */
1358 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1359 run_size, &plen);
1360
1361 attr->nres.svcn = cpu_to_le64(svcn);
1362 attr->nres.evcn = cpu_to_le64(evcn);
1363 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1364
1365 out:
1366 if (mft_new) {
1367 ntfs_mark_rec_free(sbi, mft_new, true);
1368 ni_remove_mi(ni, mi_new);
1369 }
1370
1371 return !err && !done ? -EOPNOTSUPP : err;
1372 }
1373
1374 /*
1375 * ni_expand_list - Move all possible attributes out of primary record.
1376 */
ni_expand_list(struct ntfs_inode * ni)1377 int ni_expand_list(struct ntfs_inode *ni)
1378 {
1379 int err = 0;
1380 u32 asize, done = 0;
1381 struct ATTRIB *attr, *ins_attr;
1382 struct ATTR_LIST_ENTRY *le;
1383 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1384 struct MFT_REF ref;
1385
1386 mi_get_ref(&ni->mi, &ref);
1387 le = NULL;
1388
1389 while ((le = al_enumerate(ni, le))) {
1390 if (le->type == ATTR_STD)
1391 continue;
1392
1393 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1394 continue;
1395
1396 if (is_mft && le->type == ATTR_DATA)
1397 continue;
1398
1399 /* Find attribute in primary record. */
1400 attr = rec_find_attr_le(&ni->mi, le);
1401 if (!attr) {
1402 err = -EINVAL;
1403 goto out;
1404 }
1405
1406 asize = le32_to_cpu(attr->size);
1407
1408 /* Always insert into new record to avoid collisions (deep recursive). */
1409 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1410 attr->name_len, asize, attr_svcn(attr),
1411 le16_to_cpu(attr->name_off), true,
1412 &ins_attr, NULL, NULL);
1413
1414 if (err)
1415 goto out;
1416
1417 memcpy(ins_attr, attr, asize);
1418 ins_attr->id = le->id;
1419 /* Remove from primary record. */
1420 mi_remove_attr(NULL, &ni->mi, attr);
1421
1422 done += asize;
1423 goto out;
1424 }
1425
1426 if (!is_mft) {
1427 err = -EFBIG; /* Attr list is too big(?) */
1428 goto out;
1429 }
1430
1431 /* Split MFT data as much as possible. */
1432 err = ni_expand_mft_list(ni);
1433
1434 out:
1435 return !err && !done ? -EOPNOTSUPP : err;
1436 }
1437
1438 /*
1439 * ni_insert_nonresident - Insert new nonresident attribute.
1440 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1441 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1442 const __le16 *name, u8 name_len,
1443 const struct runs_tree *run, CLST svcn, CLST len,
1444 __le16 flags, struct ATTRIB **new_attr,
1445 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1446 {
1447 int err;
1448 CLST plen;
1449 struct ATTRIB *attr;
1450 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1451 !svcn;
1452 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1453 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1454 u32 run_off = name_off + name_size;
1455 u32 run_size, asize;
1456 struct ntfs_sb_info *sbi = ni->mi.sbi;
1457
1458 /* Estimate packed size (run_buf=NULL). */
1459 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1460 &plen);
1461 if (err < 0)
1462 goto out;
1463
1464 run_size = ALIGN(err, 8);
1465
1466 if (plen < len) {
1467 err = -EINVAL;
1468 goto out;
1469 }
1470
1471 asize = run_off + run_size;
1472
1473 if (asize > sbi->max_bytes_per_attr) {
1474 err = -EINVAL;
1475 goto out;
1476 }
1477
1478 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1479 &attr, mi, le);
1480
1481 if (err)
1482 goto out;
1483
1484 attr->non_res = 1;
1485 attr->name_off = cpu_to_le16(name_off);
1486 attr->flags = flags;
1487
1488 /* This function can't fail - cause already checked above. */
1489 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1490
1491 attr->nres.svcn = cpu_to_le64(svcn);
1492 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1493
1494 if (new_attr)
1495 *new_attr = attr;
1496
1497 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1498
1499 attr->nres.alloc_size =
1500 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1501 attr->nres.data_size = attr->nres.alloc_size;
1502 attr->nres.valid_size = attr->nres.alloc_size;
1503
1504 if (is_ext) {
1505 if (flags & ATTR_FLAG_COMPRESSED)
1506 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1507 attr->nres.total_size = attr->nres.alloc_size;
1508 }
1509
1510 out:
1511 return err;
1512 }
1513
1514 /*
1515 * ni_insert_resident - Inserts new resident attribute.
1516 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1517 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1518 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1519 struct ATTRIB **new_attr, struct mft_inode **mi,
1520 struct ATTR_LIST_ENTRY **le)
1521 {
1522 int err;
1523 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1524 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1525 struct ATTRIB *attr;
1526
1527 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1528 0, &attr, mi, le);
1529 if (err)
1530 return err;
1531
1532 attr->non_res = 0;
1533 attr->flags = 0;
1534
1535 attr->res.data_size = cpu_to_le32(data_size);
1536 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1537 if (type == ATTR_NAME) {
1538 attr->res.flags = RESIDENT_FLAG_INDEXED;
1539
1540 /* is_attr_indexed(attr)) == true */
1541 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1542 ni->mi.dirty = true;
1543 }
1544 attr->res.res = 0;
1545
1546 if (new_attr)
1547 *new_attr = attr;
1548
1549 return 0;
1550 }
1551
1552 /*
1553 * ni_remove_attr_le - Remove attribute from record.
1554 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1555 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1556 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1557 {
1558 mi_remove_attr(ni, mi, attr);
1559
1560 if (le)
1561 al_remove_le(ni, le);
1562 }
1563
1564 /*
1565 * ni_delete_all - Remove all attributes and frees allocates space.
1566 *
1567 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1568 */
ni_delete_all(struct ntfs_inode * ni)1569 int ni_delete_all(struct ntfs_inode *ni)
1570 {
1571 int err;
1572 struct ATTR_LIST_ENTRY *le = NULL;
1573 struct ATTRIB *attr = NULL;
1574 struct rb_node *node;
1575 u16 roff;
1576 u32 asize;
1577 CLST svcn, evcn;
1578 struct ntfs_sb_info *sbi = ni->mi.sbi;
1579 bool nt3 = is_ntfs3(sbi);
1580 struct MFT_REF ref;
1581
1582 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1583 if (!nt3 || attr->name_len) {
1584 ;
1585 } else if (attr->type == ATTR_REPARSE) {
1586 mi_get_ref(&ni->mi, &ref);
1587 ntfs_remove_reparse(sbi, 0, &ref);
1588 } else if (attr->type == ATTR_ID && !attr->non_res &&
1589 le32_to_cpu(attr->res.data_size) >=
1590 sizeof(struct GUID)) {
1591 ntfs_objid_remove(sbi, resident_data(attr));
1592 }
1593
1594 if (!attr->non_res)
1595 continue;
1596
1597 svcn = le64_to_cpu(attr->nres.svcn);
1598 evcn = le64_to_cpu(attr->nres.evcn);
1599
1600 if (evcn + 1 <= svcn)
1601 continue;
1602
1603 asize = le32_to_cpu(attr->size);
1604 roff = le16_to_cpu(attr->nres.run_off);
1605
1606 if (roff > asize) {
1607 _ntfs_bad_inode(&ni->vfs_inode);
1608 return -EINVAL;
1609 }
1610
1611 /* run==1 means unpack and deallocate. */
1612 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1613 Add2Ptr(attr, roff), asize - roff);
1614 }
1615
1616 if (ni->attr_list.size) {
1617 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1618 al_destroy(ni);
1619 }
1620
1621 /* Free all subrecords. */
1622 for (node = rb_first(&ni->mi_tree); node;) {
1623 struct rb_node *next = rb_next(node);
1624 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1625
1626 clear_rec_inuse(mi->mrec);
1627 mi->dirty = true;
1628 mi_write(mi, 0);
1629
1630 ntfs_mark_rec_free(sbi, mi->rno, false);
1631 ni_remove_mi(ni, mi);
1632 mi_put(mi);
1633 node = next;
1634 }
1635
1636 /* Free base record. */
1637 clear_rec_inuse(ni->mi.mrec);
1638 ni->mi.dirty = true;
1639 err = mi_write(&ni->mi, 0);
1640
1641 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1642
1643 return err;
1644 }
1645
1646 /* ni_fname_name
1647 *
1648 * Return: File name attribute by its value.
1649 */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1650 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1651 const struct le_str *uni,
1652 const struct MFT_REF *home_dir,
1653 struct mft_inode **mi,
1654 struct ATTR_LIST_ENTRY **le)
1655 {
1656 struct ATTRIB *attr = NULL;
1657 struct ATTR_FILE_NAME *fname;
1658
1659 if (le)
1660 *le = NULL;
1661
1662 /* Enumerate all names. */
1663 next:
1664 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1665 if (!attr)
1666 return NULL;
1667
1668 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1669 if (!fname)
1670 goto next;
1671
1672 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1673 goto next;
1674
1675 if (!uni)
1676 return fname;
1677
1678 if (uni->len != fname->name_len)
1679 goto next;
1680
1681 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1682 false))
1683 goto next;
1684 return fname;
1685 }
1686
1687 /*
1688 * ni_fname_type
1689 *
1690 * Return: File name attribute with given type.
1691 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1692 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1693 struct mft_inode **mi,
1694 struct ATTR_LIST_ENTRY **le)
1695 {
1696 struct ATTRIB *attr = NULL;
1697 struct ATTR_FILE_NAME *fname;
1698
1699 *le = NULL;
1700
1701 if (name_type == FILE_NAME_POSIX)
1702 return NULL;
1703
1704 /* Enumerate all names. */
1705 for (;;) {
1706 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1707 if (!attr)
1708 return NULL;
1709
1710 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1711 if (fname && name_type == fname->type)
1712 return fname;
1713 }
1714 }
1715
1716 /*
1717 * ni_new_attr_flags
1718 *
1719 * Process compressed/sparsed in special way.
1720 * NOTE: You need to set ni->std_fa = new_fa
1721 * after this function to keep internal structures in consistency.
1722 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1723 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1724 {
1725 struct ATTRIB *attr;
1726 struct mft_inode *mi;
1727 __le16 new_aflags;
1728 u32 new_asize;
1729
1730 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1731 if (!attr)
1732 return -EINVAL;
1733
1734 new_aflags = attr->flags;
1735
1736 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1737 new_aflags |= ATTR_FLAG_SPARSED;
1738 else
1739 new_aflags &= ~ATTR_FLAG_SPARSED;
1740
1741 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1742 new_aflags |= ATTR_FLAG_COMPRESSED;
1743 else
1744 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1745
1746 if (new_aflags == attr->flags)
1747 return 0;
1748
1749 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1750 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1751 ntfs_inode_warn(&ni->vfs_inode,
1752 "file can't be sparsed and compressed");
1753 return -EOPNOTSUPP;
1754 }
1755
1756 if (!attr->non_res)
1757 goto out;
1758
1759 if (attr->nres.data_size) {
1760 ntfs_inode_warn(
1761 &ni->vfs_inode,
1762 "one can change sparsed/compressed only for empty files");
1763 return -EOPNOTSUPP;
1764 }
1765
1766 /* Resize nonresident empty attribute in-place only. */
1767 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1768 (SIZEOF_NONRESIDENT_EX + 8) :
1769 (SIZEOF_NONRESIDENT + 8);
1770
1771 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1772 return -EOPNOTSUPP;
1773
1774 if (new_aflags & ATTR_FLAG_SPARSED) {
1775 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1776 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1777 attr->nres.c_unit = 0;
1778 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1779 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1780 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1781 /* The only allowed: 16 clusters per frame. */
1782 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1783 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1784 } else {
1785 attr->name_off = SIZEOF_NONRESIDENT_LE;
1786 /* Normal files. */
1787 attr->nres.c_unit = 0;
1788 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1789 }
1790 attr->nres.run_off = attr->name_off;
1791 out:
1792 attr->flags = new_aflags;
1793 mi->dirty = true;
1794
1795 return 0;
1796 }
1797
1798 /*
1799 * ni_parse_reparse
1800 *
1801 * buffer - memory for reparse buffer header
1802 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1803 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1804 struct REPARSE_DATA_BUFFER *buffer)
1805 {
1806 const struct REPARSE_DATA_BUFFER *rp = NULL;
1807 u8 bits;
1808 u16 len;
1809 typeof(rp->CompressReparseBuffer) *cmpr;
1810
1811 /* Try to estimate reparse point. */
1812 if (!attr->non_res) {
1813 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1814 } else if (le64_to_cpu(attr->nres.data_size) >=
1815 sizeof(struct REPARSE_DATA_BUFFER)) {
1816 struct runs_tree run;
1817
1818 run_init(&run);
1819
1820 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1821 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1822 sizeof(struct REPARSE_DATA_BUFFER),
1823 NULL)) {
1824 rp = buffer;
1825 }
1826
1827 run_close(&run);
1828 }
1829
1830 if (!rp)
1831 return REPARSE_NONE;
1832
1833 len = le16_to_cpu(rp->ReparseDataLength);
1834 switch (rp->ReparseTag) {
1835 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1836 break; /* Symbolic link. */
1837 case IO_REPARSE_TAG_MOUNT_POINT:
1838 break; /* Mount points and junctions. */
1839 case IO_REPARSE_TAG_SYMLINK:
1840 break;
1841 case IO_REPARSE_TAG_COMPRESS:
1842 /*
1843 * WOF - Windows Overlay Filter - Used to compress files with
1844 * LZX/Xpress.
1845 *
1846 * Unlike native NTFS file compression, the Windows
1847 * Overlay Filter supports only read operations. This means
1848 * that it doesn't need to sector-align each compressed chunk,
1849 * so the compressed data can be packed more tightly together.
1850 * If you open the file for writing, the WOF just decompresses
1851 * the entire file, turning it back into a plain file.
1852 *
1853 * Ntfs3 driver decompresses the entire file only on write or
1854 * change size requests.
1855 */
1856
1857 cmpr = &rp->CompressReparseBuffer;
1858 if (len < sizeof(*cmpr) ||
1859 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1860 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1861 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1862 return REPARSE_NONE;
1863 }
1864
1865 switch (cmpr->CompressionFormat) {
1866 case WOF_COMPRESSION_XPRESS4K:
1867 bits = 0xc; // 4k
1868 break;
1869 case WOF_COMPRESSION_XPRESS8K:
1870 bits = 0xd; // 8k
1871 break;
1872 case WOF_COMPRESSION_XPRESS16K:
1873 bits = 0xe; // 16k
1874 break;
1875 case WOF_COMPRESSION_LZX32K:
1876 bits = 0xf; // 32k
1877 break;
1878 default:
1879 bits = 0x10; // 64k
1880 break;
1881 }
1882 ni_set_ext_compress_bits(ni, bits);
1883 return REPARSE_COMPRESSED;
1884
1885 case IO_REPARSE_TAG_DEDUP:
1886 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1887 return REPARSE_DEDUPLICATED;
1888
1889 default:
1890 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1891 break;
1892
1893 return REPARSE_NONE;
1894 }
1895
1896 if (buffer != rp)
1897 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1898
1899 /* Looks like normal symlink. */
1900 return REPARSE_LINK;
1901 }
1902
1903 /*
1904 * fiemap_fill_next_extent_k - a copy of fiemap_fill_next_extent
1905 * but it uses 'fe_k' instead of fieinfo->fi_extents_start
1906 */
fiemap_fill_next_extent_k(struct fiemap_extent_info * fieinfo,struct fiemap_extent * fe_k,u64 logical,u64 phys,u64 len,u32 flags)1907 static int fiemap_fill_next_extent_k(struct fiemap_extent_info *fieinfo,
1908 struct fiemap_extent *fe_k, u64 logical,
1909 u64 phys, u64 len, u32 flags)
1910 {
1911 struct fiemap_extent extent;
1912
1913 /* only count the extents */
1914 if (fieinfo->fi_extents_max == 0) {
1915 fieinfo->fi_extents_mapped++;
1916 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1917 }
1918
1919 if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max)
1920 return 1;
1921
1922 if (flags & FIEMAP_EXTENT_DELALLOC)
1923 flags |= FIEMAP_EXTENT_UNKNOWN;
1924 if (flags & FIEMAP_EXTENT_DATA_ENCRYPTED)
1925 flags |= FIEMAP_EXTENT_ENCODED;
1926 if (flags & (FIEMAP_EXTENT_DATA_TAIL | FIEMAP_EXTENT_DATA_INLINE))
1927 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
1928
1929 memset(&extent, 0, sizeof(extent));
1930 extent.fe_logical = logical;
1931 extent.fe_physical = phys;
1932 extent.fe_length = len;
1933 extent.fe_flags = flags;
1934
1935 memcpy(fe_k + fieinfo->fi_extents_mapped, &extent, sizeof(extent));
1936
1937 fieinfo->fi_extents_mapped++;
1938 if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max)
1939 return 1;
1940 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1941 }
1942
1943 /*
1944 * ni_fiemap - Helper for file_fiemap().
1945 *
1946 * Assumed ni_lock.
1947 * TODO: Less aggressive locks.
1948 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1949 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1950 __u64 vbo, __u64 len)
1951 {
1952 int err = 0;
1953 struct fiemap_extent *fe_k = NULL;
1954 struct ntfs_sb_info *sbi = ni->mi.sbi;
1955 u8 cluster_bits = sbi->cluster_bits;
1956 struct runs_tree *run;
1957 struct rw_semaphore *run_lock;
1958 struct ATTRIB *attr;
1959 CLST vcn = vbo >> cluster_bits;
1960 CLST lcn, clen;
1961 u64 valid = ni->i_valid;
1962 u64 lbo, bytes;
1963 u64 end, alloc_size;
1964 size_t idx = -1;
1965 u32 flags;
1966 bool ok;
1967
1968 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1969 run = &ni->dir.alloc_run;
1970 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1971 ARRAY_SIZE(I30_NAME), NULL, NULL);
1972 run_lock = &ni->dir.run_lock;
1973 } else {
1974 run = &ni->file.run;
1975 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1976 NULL);
1977 if (!attr) {
1978 err = -EINVAL;
1979 goto out;
1980 }
1981 if (is_attr_compressed(attr)) {
1982 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1983 err = -EOPNOTSUPP;
1984 ntfs_inode_warn(
1985 &ni->vfs_inode,
1986 "fiemap is not supported for compressed file (cp -r)");
1987 goto out;
1988 }
1989 run_lock = &ni->file.run_lock;
1990 }
1991
1992 if (!attr || !attr->non_res) {
1993 err = fiemap_fill_next_extent(
1994 fieinfo, 0, 0,
1995 attr ? le32_to_cpu(attr->res.data_size) : 0,
1996 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1997 FIEMAP_EXTENT_MERGED);
1998 goto out;
1999 }
2000
2001 /*
2002 * To avoid lock problems replace pointer to user memory by pointer to kernel memory.
2003 */
2004 fe_k = kmalloc_array(fieinfo->fi_extents_max,
2005 sizeof(struct fiemap_extent),
2006 GFP_NOFS | __GFP_ZERO);
2007 if (!fe_k) {
2008 err = -ENOMEM;
2009 goto out;
2010 }
2011
2012 end = vbo + len;
2013 alloc_size = le64_to_cpu(attr->nres.alloc_size);
2014 if (end > alloc_size)
2015 end = alloc_size;
2016
2017 down_read(run_lock);
2018
2019 while (vbo < end) {
2020 if (idx == -1) {
2021 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2022 } else {
2023 CLST vcn_next = vcn;
2024
2025 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
2026 vcn == vcn_next;
2027 if (!ok)
2028 vcn = vcn_next;
2029 }
2030
2031 if (!ok) {
2032 up_read(run_lock);
2033 down_write(run_lock);
2034
2035 err = attr_load_runs_vcn(ni, attr->type,
2036 attr_name(attr),
2037 attr->name_len, run, vcn);
2038
2039 up_write(run_lock);
2040 down_read(run_lock);
2041
2042 if (err)
2043 break;
2044
2045 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2046
2047 if (!ok) {
2048 err = -EINVAL;
2049 break;
2050 }
2051 }
2052
2053 if (!clen) {
2054 err = -EINVAL; // ?
2055 break;
2056 }
2057
2058 if (lcn == SPARSE_LCN) {
2059 vcn += clen;
2060 vbo = (u64)vcn << cluster_bits;
2061 continue;
2062 }
2063
2064 flags = FIEMAP_EXTENT_MERGED;
2065 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2066 ;
2067 } else if (is_attr_compressed(attr)) {
2068 CLST clst_data;
2069
2070 err = attr_is_frame_compressed(
2071 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2072 if (err)
2073 break;
2074 if (clst_data < NTFS_LZNT_CLUSTERS)
2075 flags |= FIEMAP_EXTENT_ENCODED;
2076 } else if (is_attr_encrypted(attr)) {
2077 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2078 }
2079
2080 vbo = (u64)vcn << cluster_bits;
2081 bytes = (u64)clen << cluster_bits;
2082 lbo = (u64)lcn << cluster_bits;
2083
2084 vcn += clen;
2085
2086 if (vbo + bytes >= end)
2087 bytes = end - vbo;
2088
2089 if (vbo + bytes <= valid) {
2090 ;
2091 } else if (vbo >= valid) {
2092 flags |= FIEMAP_EXTENT_UNWRITTEN;
2093 } else {
2094 /* vbo < valid && valid < vbo + bytes */
2095 u64 dlen = valid - vbo;
2096
2097 if (vbo + dlen >= end)
2098 flags |= FIEMAP_EXTENT_LAST;
2099
2100 err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo,
2101 dlen, flags);
2102
2103 if (err < 0)
2104 break;
2105 if (err == 1) {
2106 err = 0;
2107 break;
2108 }
2109
2110 vbo = valid;
2111 bytes -= dlen;
2112 if (!bytes)
2113 continue;
2114
2115 lbo += dlen;
2116 flags |= FIEMAP_EXTENT_UNWRITTEN;
2117 }
2118
2119 if (vbo + bytes >= end)
2120 flags |= FIEMAP_EXTENT_LAST;
2121
2122 err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo, bytes,
2123 flags);
2124 if (err < 0)
2125 break;
2126 if (err == 1) {
2127 err = 0;
2128 break;
2129 }
2130
2131 vbo += bytes;
2132 }
2133
2134 up_read(run_lock);
2135
2136 /*
2137 * Copy to user memory out of lock
2138 */
2139 if (copy_to_user(fieinfo->fi_extents_start, fe_k,
2140 fieinfo->fi_extents_max *
2141 sizeof(struct fiemap_extent))) {
2142 err = -EFAULT;
2143 }
2144
2145 out:
2146 kfree(fe_k);
2147 return err;
2148 }
2149
2150 /*
2151 * ni_readpage_cmpr
2152 *
2153 * When decompressing, we typically obtain more than one page per reference.
2154 * We inject the additional pages into the page cache.
2155 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2156 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2157 {
2158 int err;
2159 struct ntfs_sb_info *sbi = ni->mi.sbi;
2160 struct address_space *mapping = page->mapping;
2161 pgoff_t index = page->index;
2162 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2163 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2164 u8 frame_bits;
2165 CLST frame;
2166 u32 i, idx, frame_size, pages_per_frame;
2167 gfp_t gfp_mask;
2168 struct page *pg;
2169
2170 if (vbo >= i_size_read(&ni->vfs_inode)) {
2171 SetPageUptodate(page);
2172 err = 0;
2173 goto out;
2174 }
2175
2176 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2177 /* Xpress or LZX. */
2178 frame_bits = ni_ext_compress_bits(ni);
2179 } else {
2180 /* LZNT compression. */
2181 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2182 }
2183 frame_size = 1u << frame_bits;
2184 frame = vbo >> frame_bits;
2185 frame_vbo = (u64)frame << frame_bits;
2186 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2187
2188 pages_per_frame = frame_size >> PAGE_SHIFT;
2189 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2190 if (!pages) {
2191 err = -ENOMEM;
2192 goto out;
2193 }
2194
2195 pages[idx] = page;
2196 index = frame_vbo >> PAGE_SHIFT;
2197 gfp_mask = mapping_gfp_mask(mapping);
2198
2199 for (i = 0; i < pages_per_frame; i++, index++) {
2200 if (i == idx)
2201 continue;
2202
2203 pg = find_or_create_page(mapping, index, gfp_mask);
2204 if (!pg) {
2205 err = -ENOMEM;
2206 goto out1;
2207 }
2208 pages[i] = pg;
2209 }
2210
2211 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2212
2213 out1:
2214 if (err)
2215 SetPageError(page);
2216
2217 for (i = 0; i < pages_per_frame; i++) {
2218 pg = pages[i];
2219 if (i == idx || !pg)
2220 continue;
2221 unlock_page(pg);
2222 put_page(pg);
2223 }
2224
2225 out:
2226 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2227 kfree(pages);
2228 unlock_page(page);
2229
2230 return err;
2231 }
2232
2233 #ifdef CONFIG_NTFS3_LZX_XPRESS
2234 /*
2235 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2236 *
2237 * Remove ATTR_DATA::WofCompressedData.
2238 * Remove ATTR_REPARSE.
2239 */
ni_decompress_file(struct ntfs_inode * ni)2240 int ni_decompress_file(struct ntfs_inode *ni)
2241 {
2242 struct ntfs_sb_info *sbi = ni->mi.sbi;
2243 struct inode *inode = &ni->vfs_inode;
2244 loff_t i_size = i_size_read(inode);
2245 struct address_space *mapping = inode->i_mapping;
2246 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2247 struct page **pages = NULL;
2248 struct ATTR_LIST_ENTRY *le;
2249 struct ATTRIB *attr;
2250 CLST vcn, cend, lcn, clen, end;
2251 pgoff_t index;
2252 u64 vbo;
2253 u8 frame_bits;
2254 u32 i, frame_size, pages_per_frame, bytes;
2255 struct mft_inode *mi;
2256 int err;
2257
2258 /* Clusters for decompressed data. */
2259 cend = bytes_to_cluster(sbi, i_size);
2260
2261 if (!i_size)
2262 goto remove_wof;
2263
2264 /* Check in advance. */
2265 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2266 err = -ENOSPC;
2267 goto out;
2268 }
2269
2270 frame_bits = ni_ext_compress_bits(ni);
2271 frame_size = 1u << frame_bits;
2272 pages_per_frame = frame_size >> PAGE_SHIFT;
2273 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2274 if (!pages) {
2275 err = -ENOMEM;
2276 goto out;
2277 }
2278
2279 /*
2280 * Step 1: Decompress data and copy to new allocated clusters.
2281 */
2282 index = 0;
2283 for (vbo = 0; vbo < i_size; vbo += bytes) {
2284 u32 nr_pages;
2285 bool new;
2286
2287 if (vbo + frame_size > i_size) {
2288 bytes = i_size - vbo;
2289 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2290 } else {
2291 nr_pages = pages_per_frame;
2292 bytes = frame_size;
2293 }
2294
2295 end = bytes_to_cluster(sbi, vbo + bytes);
2296
2297 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2298 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2299 &clen, &new, false);
2300 if (err)
2301 goto out;
2302 }
2303
2304 for (i = 0; i < pages_per_frame; i++, index++) {
2305 struct page *pg;
2306
2307 pg = find_or_create_page(mapping, index, gfp_mask);
2308 if (!pg) {
2309 while (i--) {
2310 unlock_page(pages[i]);
2311 put_page(pages[i]);
2312 }
2313 err = -ENOMEM;
2314 goto out;
2315 }
2316 pages[i] = pg;
2317 }
2318
2319 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2320
2321 if (!err) {
2322 down_read(&ni->file.run_lock);
2323 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2324 nr_pages, vbo, bytes,
2325 REQ_OP_WRITE);
2326 up_read(&ni->file.run_lock);
2327 }
2328
2329 for (i = 0; i < pages_per_frame; i++) {
2330 unlock_page(pages[i]);
2331 put_page(pages[i]);
2332 }
2333
2334 if (err)
2335 goto out;
2336
2337 cond_resched();
2338 }
2339
2340 remove_wof:
2341 /*
2342 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2343 * and ATTR_REPARSE.
2344 */
2345 attr = NULL;
2346 le = NULL;
2347 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2348 CLST svcn, evcn;
2349 u32 asize, roff;
2350
2351 if (attr->type == ATTR_REPARSE) {
2352 struct MFT_REF ref;
2353
2354 mi_get_ref(&ni->mi, &ref);
2355 ntfs_remove_reparse(sbi, 0, &ref);
2356 }
2357
2358 if (!attr->non_res)
2359 continue;
2360
2361 if (attr->type != ATTR_REPARSE &&
2362 (attr->type != ATTR_DATA ||
2363 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2364 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2365 continue;
2366
2367 svcn = le64_to_cpu(attr->nres.svcn);
2368 evcn = le64_to_cpu(attr->nres.evcn);
2369
2370 if (evcn + 1 <= svcn)
2371 continue;
2372
2373 asize = le32_to_cpu(attr->size);
2374 roff = le16_to_cpu(attr->nres.run_off);
2375
2376 if (roff > asize) {
2377 err = -EINVAL;
2378 goto out;
2379 }
2380
2381 /*run==1 Means unpack and deallocate. */
2382 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2383 Add2Ptr(attr, roff), asize - roff);
2384 }
2385
2386 /*
2387 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2388 */
2389 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2390 false, NULL);
2391 if (err)
2392 goto out;
2393
2394 /*
2395 * Step 4: Remove ATTR_REPARSE.
2396 */
2397 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2398 if (err)
2399 goto out;
2400
2401 /*
2402 * Step 5: Remove sparse flag from data attribute.
2403 */
2404 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2405 if (!attr) {
2406 err = -EINVAL;
2407 goto out;
2408 }
2409
2410 if (attr->non_res && is_attr_sparsed(attr)) {
2411 /* Sparsed attribute header is 8 bytes bigger than normal. */
2412 struct MFT_REC *rec = mi->mrec;
2413 u32 used = le32_to_cpu(rec->used);
2414 u32 asize = le32_to_cpu(attr->size);
2415 u16 roff = le16_to_cpu(attr->nres.run_off);
2416 char *rbuf = Add2Ptr(attr, roff);
2417
2418 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2419 attr->size = cpu_to_le32(asize - 8);
2420 attr->flags &= ~ATTR_FLAG_SPARSED;
2421 attr->nres.run_off = cpu_to_le16(roff - 8);
2422 attr->nres.c_unit = 0;
2423 rec->used = cpu_to_le32(used - 8);
2424 mi->dirty = true;
2425 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2426 FILE_ATTRIBUTE_REPARSE_POINT);
2427
2428 mark_inode_dirty(inode);
2429 }
2430
2431 /* Clear cached flag. */
2432 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2433 if (ni->file.offs_page) {
2434 put_page(ni->file.offs_page);
2435 ni->file.offs_page = NULL;
2436 }
2437 mapping->a_ops = &ntfs_aops;
2438
2439 out:
2440 kfree(pages);
2441 if (err)
2442 _ntfs_bad_inode(inode);
2443
2444 return err;
2445 }
2446
2447 /*
2448 * decompress_lzx_xpress - External compression LZX/Xpress.
2449 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2450 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2451 size_t cmpr_size, void *unc, size_t unc_size,
2452 u32 frame_size)
2453 {
2454 int err;
2455 void *ctx;
2456
2457 if (cmpr_size == unc_size) {
2458 /* Frame not compressed. */
2459 memcpy(unc, cmpr, unc_size);
2460 return 0;
2461 }
2462
2463 err = 0;
2464 if (frame_size == 0x8000) {
2465 mutex_lock(&sbi->compress.mtx_lzx);
2466 /* LZX: Frame compressed. */
2467 ctx = sbi->compress.lzx;
2468 if (!ctx) {
2469 /* Lazy initialize LZX decompress context. */
2470 ctx = lzx_allocate_decompressor();
2471 if (!ctx) {
2472 err = -ENOMEM;
2473 goto out1;
2474 }
2475
2476 sbi->compress.lzx = ctx;
2477 }
2478
2479 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2480 /* Treat all errors as "invalid argument". */
2481 err = -EINVAL;
2482 }
2483 out1:
2484 mutex_unlock(&sbi->compress.mtx_lzx);
2485 } else {
2486 /* XPRESS: Frame compressed. */
2487 mutex_lock(&sbi->compress.mtx_xpress);
2488 ctx = sbi->compress.xpress;
2489 if (!ctx) {
2490 /* Lazy initialize Xpress decompress context. */
2491 ctx = xpress_allocate_decompressor();
2492 if (!ctx) {
2493 err = -ENOMEM;
2494 goto out2;
2495 }
2496
2497 sbi->compress.xpress = ctx;
2498 }
2499
2500 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2501 /* Treat all errors as "invalid argument". */
2502 err = -EINVAL;
2503 }
2504 out2:
2505 mutex_unlock(&sbi->compress.mtx_xpress);
2506 }
2507 return err;
2508 }
2509 #endif
2510
2511 /*
2512 * ni_read_frame
2513 *
2514 * Pages - Array of locked pages.
2515 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2516 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2517 u32 pages_per_frame)
2518 {
2519 int err;
2520 struct ntfs_sb_info *sbi = ni->mi.sbi;
2521 u8 cluster_bits = sbi->cluster_bits;
2522 char *frame_ondisk = NULL;
2523 char *frame_mem = NULL;
2524 struct page **pages_disk = NULL;
2525 struct ATTR_LIST_ENTRY *le = NULL;
2526 struct runs_tree *run = &ni->file.run;
2527 u64 valid_size = ni->i_valid;
2528 u64 vbo_disk;
2529 size_t unc_size;
2530 u32 frame_size, i, npages_disk, ondisk_size;
2531 struct page *pg;
2532 struct ATTRIB *attr;
2533 CLST frame, clst_data;
2534
2535 /*
2536 * To simplify decompress algorithm do vmap for source
2537 * and target pages.
2538 */
2539 for (i = 0; i < pages_per_frame; i++)
2540 kmap(pages[i]);
2541
2542 frame_size = pages_per_frame << PAGE_SHIFT;
2543 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2544 if (!frame_mem) {
2545 err = -ENOMEM;
2546 goto out;
2547 }
2548
2549 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2550 if (!attr) {
2551 err = -ENOENT;
2552 goto out1;
2553 }
2554
2555 if (!attr->non_res) {
2556 u32 data_size = le32_to_cpu(attr->res.data_size);
2557
2558 memset(frame_mem, 0, frame_size);
2559 if (frame_vbo < data_size) {
2560 ondisk_size = data_size - frame_vbo;
2561 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2562 min(ondisk_size, frame_size));
2563 }
2564 err = 0;
2565 goto out1;
2566 }
2567
2568 if (frame_vbo >= valid_size) {
2569 memset(frame_mem, 0, frame_size);
2570 err = 0;
2571 goto out1;
2572 }
2573
2574 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2575 #ifndef CONFIG_NTFS3_LZX_XPRESS
2576 err = -EOPNOTSUPP;
2577 goto out1;
2578 #else
2579 loff_t i_size = i_size_read(&ni->vfs_inode);
2580 u32 frame_bits = ni_ext_compress_bits(ni);
2581 u64 frame64 = frame_vbo >> frame_bits;
2582 u64 frames, vbo_data;
2583
2584 if (frame_size != (1u << frame_bits)) {
2585 err = -EINVAL;
2586 goto out1;
2587 }
2588 switch (frame_size) {
2589 case 0x1000:
2590 case 0x2000:
2591 case 0x4000:
2592 case 0x8000:
2593 break;
2594 default:
2595 /* Unknown compression. */
2596 err = -EOPNOTSUPP;
2597 goto out1;
2598 }
2599
2600 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2601 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2602 if (!attr) {
2603 ntfs_inode_err(
2604 &ni->vfs_inode,
2605 "external compressed file should contains data attribute \"WofCompressedData\"");
2606 err = -EINVAL;
2607 goto out1;
2608 }
2609
2610 if (!attr->non_res) {
2611 run = NULL;
2612 } else {
2613 run = run_alloc();
2614 if (!run) {
2615 err = -ENOMEM;
2616 goto out1;
2617 }
2618 }
2619
2620 frames = (i_size - 1) >> frame_bits;
2621
2622 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2623 frame_bits, &ondisk_size, &vbo_data);
2624 if (err)
2625 goto out2;
2626
2627 if (frame64 == frames) {
2628 unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2629 ondisk_size = attr_size(attr) - vbo_data;
2630 } else {
2631 unc_size = frame_size;
2632 }
2633
2634 if (ondisk_size > frame_size) {
2635 err = -EINVAL;
2636 goto out2;
2637 }
2638
2639 if (!attr->non_res) {
2640 if (vbo_data + ondisk_size >
2641 le32_to_cpu(attr->res.data_size)) {
2642 err = -EINVAL;
2643 goto out1;
2644 }
2645
2646 err = decompress_lzx_xpress(
2647 sbi, Add2Ptr(resident_data(attr), vbo_data),
2648 ondisk_size, frame_mem, unc_size, frame_size);
2649 goto out1;
2650 }
2651 vbo_disk = vbo_data;
2652 /* Load all runs to read [vbo_disk-vbo_to). */
2653 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2654 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2655 vbo_data + ondisk_size);
2656 if (err)
2657 goto out2;
2658 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2659 PAGE_SIZE - 1) >>
2660 PAGE_SHIFT;
2661 #endif
2662 } else if (is_attr_compressed(attr)) {
2663 /* LZNT compression. */
2664 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2665 err = -EOPNOTSUPP;
2666 goto out1;
2667 }
2668
2669 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2670 err = -EOPNOTSUPP;
2671 goto out1;
2672 }
2673
2674 down_write(&ni->file.run_lock);
2675 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2676 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2677 err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2678 up_write(&ni->file.run_lock);
2679 if (err)
2680 goto out1;
2681
2682 if (!clst_data) {
2683 memset(frame_mem, 0, frame_size);
2684 goto out1;
2685 }
2686
2687 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2688 ondisk_size = clst_data << cluster_bits;
2689
2690 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2691 /* Frame is not compressed. */
2692 down_read(&ni->file.run_lock);
2693 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2694 frame_vbo, ondisk_size,
2695 REQ_OP_READ);
2696 up_read(&ni->file.run_lock);
2697 goto out1;
2698 }
2699 vbo_disk = frame_vbo;
2700 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2701 } else {
2702 __builtin_unreachable();
2703 err = -EINVAL;
2704 goto out1;
2705 }
2706
2707 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2708 if (!pages_disk) {
2709 err = -ENOMEM;
2710 goto out2;
2711 }
2712
2713 for (i = 0; i < npages_disk; i++) {
2714 pg = alloc_page(GFP_KERNEL);
2715 if (!pg) {
2716 err = -ENOMEM;
2717 goto out3;
2718 }
2719 pages_disk[i] = pg;
2720 lock_page(pg);
2721 kmap(pg);
2722 }
2723
2724 /* Read 'ondisk_size' bytes from disk. */
2725 down_read(&ni->file.run_lock);
2726 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2727 ondisk_size, REQ_OP_READ);
2728 up_read(&ni->file.run_lock);
2729 if (err)
2730 goto out3;
2731
2732 /*
2733 * To simplify decompress algorithm do vmap for source and target pages.
2734 */
2735 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2736 if (!frame_ondisk) {
2737 err = -ENOMEM;
2738 goto out3;
2739 }
2740
2741 /* Decompress: Frame_ondisk -> frame_mem. */
2742 #ifdef CONFIG_NTFS3_LZX_XPRESS
2743 if (run != &ni->file.run) {
2744 /* LZX or XPRESS */
2745 err = decompress_lzx_xpress(
2746 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2747 ondisk_size, frame_mem, unc_size, frame_size);
2748 } else
2749 #endif
2750 {
2751 /* LZNT - Native NTFS compression. */
2752 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2753 frame_size);
2754 if ((ssize_t)unc_size < 0)
2755 err = unc_size;
2756 else if (!unc_size || unc_size > frame_size)
2757 err = -EINVAL;
2758 }
2759 if (!err && valid_size < frame_vbo + frame_size) {
2760 size_t ok = valid_size - frame_vbo;
2761
2762 memset(frame_mem + ok, 0, frame_size - ok);
2763 }
2764
2765 vunmap(frame_ondisk);
2766
2767 out3:
2768 for (i = 0; i < npages_disk; i++) {
2769 pg = pages_disk[i];
2770 if (pg) {
2771 kunmap(pg);
2772 unlock_page(pg);
2773 put_page(pg);
2774 }
2775 }
2776 kfree(pages_disk);
2777
2778 out2:
2779 #ifdef CONFIG_NTFS3_LZX_XPRESS
2780 if (run != &ni->file.run)
2781 run_free(run);
2782 #endif
2783 out1:
2784 vunmap(frame_mem);
2785 out:
2786 for (i = 0; i < pages_per_frame; i++) {
2787 pg = pages[i];
2788 kunmap(pg);
2789 ClearPageError(pg);
2790 SetPageUptodate(pg);
2791 }
2792
2793 return err;
2794 }
2795
2796 /*
2797 * ni_write_frame
2798 *
2799 * Pages - Array of locked pages.
2800 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2801 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2802 u32 pages_per_frame)
2803 {
2804 int err;
2805 struct ntfs_sb_info *sbi = ni->mi.sbi;
2806 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2807 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2808 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2809 CLST frame = frame_vbo >> frame_bits;
2810 char *frame_ondisk = NULL;
2811 struct page **pages_disk = NULL;
2812 struct ATTR_LIST_ENTRY *le = NULL;
2813 char *frame_mem;
2814 struct ATTRIB *attr;
2815 struct mft_inode *mi;
2816 u32 i;
2817 struct page *pg;
2818 size_t compr_size, ondisk_size;
2819 struct lznt *lznt;
2820
2821 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2822 if (!attr) {
2823 err = -ENOENT;
2824 goto out;
2825 }
2826
2827 if (WARN_ON(!is_attr_compressed(attr))) {
2828 err = -EINVAL;
2829 goto out;
2830 }
2831
2832 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2833 err = -EOPNOTSUPP;
2834 goto out;
2835 }
2836
2837 if (!attr->non_res) {
2838 down_write(&ni->file.run_lock);
2839 err = attr_make_nonresident(ni, attr, le, mi,
2840 le32_to_cpu(attr->res.data_size),
2841 &ni->file.run, &attr, pages[0]);
2842 up_write(&ni->file.run_lock);
2843 if (err)
2844 goto out;
2845 }
2846
2847 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2848 err = -EOPNOTSUPP;
2849 goto out;
2850 }
2851
2852 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2853 if (!pages_disk) {
2854 err = -ENOMEM;
2855 goto out;
2856 }
2857
2858 for (i = 0; i < pages_per_frame; i++) {
2859 pg = alloc_page(GFP_KERNEL);
2860 if (!pg) {
2861 err = -ENOMEM;
2862 goto out1;
2863 }
2864 pages_disk[i] = pg;
2865 lock_page(pg);
2866 kmap(pg);
2867 }
2868
2869 /* To simplify compress algorithm do vmap for source and target pages. */
2870 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2871 if (!frame_ondisk) {
2872 err = -ENOMEM;
2873 goto out1;
2874 }
2875
2876 for (i = 0; i < pages_per_frame; i++)
2877 kmap(pages[i]);
2878
2879 /* Map in-memory frame for read-only. */
2880 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2881 if (!frame_mem) {
2882 err = -ENOMEM;
2883 goto out2;
2884 }
2885
2886 mutex_lock(&sbi->compress.mtx_lznt);
2887 lznt = NULL;
2888 if (!sbi->compress.lznt) {
2889 /*
2890 * LZNT implements two levels of compression:
2891 * 0 - Standard compression
2892 * 1 - Best compression, requires a lot of cpu
2893 * use mount option?
2894 */
2895 lznt = get_lznt_ctx(0);
2896 if (!lznt) {
2897 mutex_unlock(&sbi->compress.mtx_lznt);
2898 err = -ENOMEM;
2899 goto out3;
2900 }
2901
2902 sbi->compress.lznt = lznt;
2903 lznt = NULL;
2904 }
2905
2906 /* Compress: frame_mem -> frame_ondisk */
2907 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2908 frame_size, sbi->compress.lznt);
2909 mutex_unlock(&sbi->compress.mtx_lznt);
2910 kfree(lznt);
2911
2912 if (compr_size + sbi->cluster_size > frame_size) {
2913 /* Frame is not compressed. */
2914 compr_size = frame_size;
2915 ondisk_size = frame_size;
2916 } else if (compr_size) {
2917 /* Frame is compressed. */
2918 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2919 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2920 } else {
2921 /* Frame is sparsed. */
2922 ondisk_size = 0;
2923 }
2924
2925 down_write(&ni->file.run_lock);
2926 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2927 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2928 up_write(&ni->file.run_lock);
2929 if (err)
2930 goto out2;
2931
2932 if (!ondisk_size)
2933 goto out2;
2934
2935 down_read(&ni->file.run_lock);
2936 err = ntfs_bio_pages(sbi, &ni->file.run,
2937 ondisk_size < frame_size ? pages_disk : pages,
2938 pages_per_frame, frame_vbo, ondisk_size,
2939 REQ_OP_WRITE);
2940 up_read(&ni->file.run_lock);
2941
2942 out3:
2943 vunmap(frame_mem);
2944
2945 out2:
2946 for (i = 0; i < pages_per_frame; i++)
2947 kunmap(pages[i]);
2948
2949 vunmap(frame_ondisk);
2950 out1:
2951 for (i = 0; i < pages_per_frame; i++) {
2952 pg = pages_disk[i];
2953 if (pg) {
2954 kunmap(pg);
2955 unlock_page(pg);
2956 put_page(pg);
2957 }
2958 }
2959 kfree(pages_disk);
2960 out:
2961 return err;
2962 }
2963
2964 /*
2965 * ni_remove_name - Removes name 'de' from MFT and from directory.
2966 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2967 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2968 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2969 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2970 {
2971 int err;
2972 struct ntfs_sb_info *sbi = ni->mi.sbi;
2973 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2974 struct ATTR_FILE_NAME *fname;
2975 struct ATTR_LIST_ENTRY *le;
2976 struct mft_inode *mi;
2977 u16 de_key_size = le16_to_cpu(de->key_size);
2978 u8 name_type;
2979
2980 *undo_step = 0;
2981
2982 /* Find name in record. */
2983 mi_get_ref(&dir_ni->mi, &de_name->home);
2984
2985 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2986 &de_name->home, &mi, &le);
2987 if (!fname)
2988 return -ENOENT;
2989
2990 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2991 name_type = paired_name(fname->type);
2992
2993 /* Mark ntfs as dirty. It will be cleared at umount. */
2994 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2995
2996 /* Step 1: Remove name from directory. */
2997 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2998 if (err)
2999 return err;
3000
3001 /* Step 2: Remove name from MFT. */
3002 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3003
3004 *undo_step = 2;
3005
3006 /* Get paired name. */
3007 fname = ni_fname_type(ni, name_type, &mi, &le);
3008 if (fname) {
3009 u16 de2_key_size = fname_full_size(fname);
3010
3011 *de2 = Add2Ptr(de, 1024);
3012 (*de2)->key_size = cpu_to_le16(de2_key_size);
3013
3014 memcpy(*de2 + 1, fname, de2_key_size);
3015
3016 /* Step 3: Remove paired name from directory. */
3017 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
3018 de2_key_size, sbi);
3019 if (err)
3020 return err;
3021
3022 /* Step 4: Remove paired name from MFT. */
3023 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3024
3025 *undo_step = 4;
3026 }
3027 return 0;
3028 }
3029
3030 /*
3031 * ni_remove_name_undo - Paired function for ni_remove_name.
3032 *
3033 * Return: True if ok
3034 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)3035 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3036 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
3037 {
3038 struct ntfs_sb_info *sbi = ni->mi.sbi;
3039 struct ATTRIB *attr;
3040 u16 de_key_size;
3041
3042 switch (undo_step) {
3043 case 4:
3044 de_key_size = le16_to_cpu(de2->key_size);
3045 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3046 &attr, NULL, NULL))
3047 return false;
3048 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
3049
3050 mi_get_ref(&ni->mi, &de2->ref);
3051 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
3052 sizeof(struct NTFS_DE));
3053 de2->flags = 0;
3054 de2->res = 0;
3055
3056 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
3057 return false;
3058 fallthrough;
3059
3060 case 2:
3061 de_key_size = le16_to_cpu(de->key_size);
3062
3063 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3064 &attr, NULL, NULL))
3065 return false;
3066
3067 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3068 mi_get_ref(&ni->mi, &de->ref);
3069
3070 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3071 return false;
3072 }
3073
3074 return true;
3075 }
3076
3077 /*
3078 * ni_add_name - Add new name into MFT and into directory.
3079 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3080 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3081 struct NTFS_DE *de)
3082 {
3083 int err;
3084 struct ntfs_sb_info *sbi = ni->mi.sbi;
3085 struct ATTRIB *attr;
3086 struct ATTR_LIST_ENTRY *le;
3087 struct mft_inode *mi;
3088 struct ATTR_FILE_NAME *fname;
3089 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3090 u16 de_key_size = le16_to_cpu(de->key_size);
3091
3092 if (sbi->options->windows_names &&
3093 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3094 return -EINVAL;
3095
3096 /* If option "hide_dot_files" then set hidden attribute for dot files. */
3097 if (ni->mi.sbi->options->hide_dot_files) {
3098 if (de_name->name_len > 0 &&
3099 le16_to_cpu(de_name->name[0]) == '.')
3100 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3101 else
3102 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3103 }
3104
3105 mi_get_ref(&ni->mi, &de->ref);
3106 mi_get_ref(&dir_ni->mi, &de_name->home);
3107
3108 /* Fill duplicate from any ATTR_NAME. */
3109 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3110 if (fname)
3111 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3112 de_name->dup.fa = ni->std_fa;
3113
3114 /* Insert new name into MFT. */
3115 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3116 &mi, &le);
3117 if (err)
3118 return err;
3119
3120 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3121
3122 /* Insert new name into directory. */
3123 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3124 if (err)
3125 ni_remove_attr_le(ni, attr, mi, le);
3126
3127 return err;
3128 }
3129
3130 /*
3131 * ni_rename - Remove one name and insert new name.
3132 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3133 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3134 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3135 bool *is_bad)
3136 {
3137 int err;
3138 struct NTFS_DE *de2 = NULL;
3139 int undo = 0;
3140
3141 /*
3142 * There are two possible ways to rename:
3143 * 1) Add new name and remove old name.
3144 * 2) Remove old name and add new name.
3145 *
3146 * In most cases (not all!) adding new name into MFT and into directory can
3147 * allocate additional cluster(s).
3148 * Second way may result to bad inode if we can't add new name
3149 * and then can't restore (add) old name.
3150 */
3151
3152 /*
3153 * Way 1 - Add new + remove old.
3154 */
3155 err = ni_add_name(new_dir_ni, ni, new_de);
3156 if (!err) {
3157 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3158 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3159 *is_bad = true;
3160 }
3161
3162 /*
3163 * Way 2 - Remove old + add new.
3164 */
3165 /*
3166 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3167 * if (!err) {
3168 * err = ni_add_name(new_dir_ni, ni, new_de);
3169 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3170 * *is_bad = true;
3171 * }
3172 */
3173
3174 return err;
3175 }
3176
3177 /*
3178 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3179 */
ni_is_dirty(struct inode * inode)3180 bool ni_is_dirty(struct inode *inode)
3181 {
3182 struct ntfs_inode *ni = ntfs_i(inode);
3183 struct rb_node *node;
3184
3185 if (ni->mi.dirty || ni->attr_list.dirty ||
3186 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3187 return true;
3188
3189 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3190 if (rb_entry(node, struct mft_inode, node)->dirty)
3191 return true;
3192 }
3193
3194 return false;
3195 }
3196
3197 /*
3198 * ni_update_parent
3199 *
3200 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3201 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3202 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3203 int sync)
3204 {
3205 struct ATTRIB *attr;
3206 struct mft_inode *mi;
3207 struct ATTR_LIST_ENTRY *le = NULL;
3208 struct ntfs_sb_info *sbi = ni->mi.sbi;
3209 struct super_block *sb = sbi->sb;
3210 bool re_dirty = false;
3211
3212 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3213 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3214 attr = NULL;
3215 dup->alloc_size = 0;
3216 dup->data_size = 0;
3217 } else {
3218 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3219
3220 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3221 &mi);
3222 if (!attr) {
3223 dup->alloc_size = dup->data_size = 0;
3224 } else if (!attr->non_res) {
3225 u32 data_size = le32_to_cpu(attr->res.data_size);
3226
3227 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3228 dup->data_size = cpu_to_le64(data_size);
3229 } else {
3230 u64 new_valid = ni->i_valid;
3231 u64 data_size = le64_to_cpu(attr->nres.data_size);
3232 __le64 valid_le;
3233
3234 dup->alloc_size = is_attr_ext(attr) ?
3235 attr->nres.total_size :
3236 attr->nres.alloc_size;
3237 dup->data_size = attr->nres.data_size;
3238
3239 if (new_valid > data_size)
3240 new_valid = data_size;
3241
3242 valid_le = cpu_to_le64(new_valid);
3243 if (valid_le != attr->nres.valid_size) {
3244 attr->nres.valid_size = valid_le;
3245 mi->dirty = true;
3246 }
3247 }
3248 }
3249
3250 /* TODO: Fill reparse info. */
3251 dup->reparse = 0;
3252 dup->ea_size = 0;
3253
3254 if (ni->ni_flags & NI_FLAG_EA) {
3255 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3256 NULL);
3257 if (attr) {
3258 const struct EA_INFO *info;
3259
3260 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3261 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3262 if (info)
3263 dup->ea_size = info->size_pack;
3264 }
3265 }
3266
3267 attr = NULL;
3268 le = NULL;
3269
3270 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3271 &mi))) {
3272 struct inode *dir;
3273 struct ATTR_FILE_NAME *fname;
3274
3275 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3276 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3277 continue;
3278
3279 /* Check simple case when parent inode equals current inode. */
3280 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3281 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3282 continue;
3283 }
3284
3285 /* ntfs_iget5 may sleep. */
3286 dir = ntfs_iget5(sb, &fname->home, NULL);
3287 if (IS_ERR(dir)) {
3288 ntfs_inode_warn(
3289 &ni->vfs_inode,
3290 "failed to open parent directory r=%lx to update",
3291 (long)ino_get(&fname->home));
3292 continue;
3293 }
3294
3295 if (!is_bad_inode(dir)) {
3296 struct ntfs_inode *dir_ni = ntfs_i(dir);
3297
3298 if (!ni_trylock(dir_ni)) {
3299 re_dirty = true;
3300 } else {
3301 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3302 ni_unlock(dir_ni);
3303 memcpy(&fname->dup, dup, sizeof(fname->dup));
3304 mi->dirty = true;
3305 }
3306 }
3307 iput(dir);
3308 }
3309
3310 return re_dirty;
3311 }
3312
3313 /*
3314 * ni_write_inode - Write MFT base record and all subrecords to disk.
3315 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3316 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3317 {
3318 int err = 0, err2;
3319 struct ntfs_inode *ni = ntfs_i(inode);
3320 struct super_block *sb = inode->i_sb;
3321 struct ntfs_sb_info *sbi = sb->s_fs_info;
3322 bool re_dirty = false;
3323 struct ATTR_STD_INFO *std;
3324 struct rb_node *node, *next;
3325 struct NTFS_DUP_INFO dup;
3326
3327 if (is_bad_inode(inode) || sb_rdonly(sb))
3328 return 0;
3329
3330 if (unlikely(ntfs3_forced_shutdown(sb)))
3331 return -EIO;
3332
3333 if (!ni_trylock(ni)) {
3334 /* 'ni' is under modification, skip for now. */
3335 mark_inode_dirty_sync(inode);
3336 return 0;
3337 }
3338
3339 if (!ni->mi.mrec)
3340 goto out;
3341
3342 if (is_rec_inuse(ni->mi.mrec) &&
3343 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3344 bool modified = false;
3345 struct timespec64 ctime = inode_get_ctime(inode);
3346
3347 /* Update times in standard attribute. */
3348 std = ni_std(ni);
3349 if (!std) {
3350 err = -EINVAL;
3351 goto out;
3352 }
3353
3354 /* Update the access times if they have changed. */
3355 dup.m_time = kernel2nt(&inode->i_mtime);
3356 if (std->m_time != dup.m_time) {
3357 std->m_time = dup.m_time;
3358 modified = true;
3359 }
3360
3361 dup.c_time = kernel2nt(&ctime);
3362 if (std->c_time != dup.c_time) {
3363 std->c_time = dup.c_time;
3364 modified = true;
3365 }
3366
3367 dup.a_time = kernel2nt(&inode->i_atime);
3368 if (std->a_time != dup.a_time) {
3369 std->a_time = dup.a_time;
3370 modified = true;
3371 }
3372
3373 dup.fa = ni->std_fa;
3374 if (std->fa != dup.fa) {
3375 std->fa = dup.fa;
3376 modified = true;
3377 }
3378
3379 /* std attribute is always in primary MFT record. */
3380 if (modified)
3381 ni->mi.dirty = true;
3382
3383 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3384 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3385 /* Avoid __wait_on_freeing_inode(inode). */
3386 && (sb->s_flags & SB_ACTIVE)) {
3387 dup.cr_time = std->cr_time;
3388 /* Not critical if this function fail. */
3389 re_dirty = ni_update_parent(ni, &dup, sync);
3390
3391 if (re_dirty)
3392 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3393 else
3394 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3395 }
3396
3397 /* Update attribute list. */
3398 if (ni->attr_list.size && ni->attr_list.dirty) {
3399 if (inode->i_ino != MFT_REC_MFT || sync) {
3400 err = ni_try_remove_attr_list(ni);
3401 if (err)
3402 goto out;
3403 }
3404
3405 err = al_update(ni, sync);
3406 if (err)
3407 goto out;
3408 }
3409 }
3410
3411 for (node = rb_first(&ni->mi_tree); node; node = next) {
3412 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3413 bool is_empty;
3414
3415 next = rb_next(node);
3416
3417 if (!mi->dirty)
3418 continue;
3419
3420 is_empty = !mi_enum_attr(mi, NULL);
3421
3422 if (is_empty)
3423 clear_rec_inuse(mi->mrec);
3424
3425 err2 = mi_write(mi, sync);
3426 if (!err && err2)
3427 err = err2;
3428
3429 if (is_empty) {
3430 ntfs_mark_rec_free(sbi, mi->rno, false);
3431 rb_erase(node, &ni->mi_tree);
3432 mi_put(mi);
3433 }
3434 }
3435
3436 if (ni->mi.dirty) {
3437 err2 = mi_write(&ni->mi, sync);
3438 if (!err && err2)
3439 err = err2;
3440 }
3441 out:
3442 ni_unlock(ni);
3443
3444 if (err) {
3445 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3446 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3447 return err;
3448 }
3449
3450 if (re_dirty)
3451 mark_inode_dirty_sync(inode);
3452
3453 return 0;
3454 }
3455