1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */
3
4 #include <linux/bpf_trace.h>
5 #include <linux/netdevice.h>
6 #include <linux/bitfield.h>
7 #include <net/xfrm.h>
8
9 #include "../nfp_app.h"
10 #include "../nfp_net.h"
11 #include "../nfp_net_dp.h"
12 #include "../nfp_net_xsk.h"
13 #include "../crypto/crypto.h"
14 #include "../crypto/fw.h"
15 #include "nfd3.h"
16
17 /* Transmit processing
18 *
19 * One queue controller peripheral queue is used for transmit. The
20 * driver en-queues packets for transmit by advancing the write
21 * pointer. The device indicates that packets have transmitted by
22 * advancing the read pointer. The driver maintains a local copy of
23 * the read and write pointer in @struct nfp_net_tx_ring. The driver
24 * keeps @wr_p in sync with the queue controller write pointer and can
25 * determine how many packets have been transmitted by comparing its
26 * copy of the read pointer @rd_p with the read pointer maintained by
27 * the queue controller peripheral.
28 */
29
30 /* Wrappers for deciding when to stop and restart TX queues */
nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring * tx_ring)31 static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
32 {
33 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
34 }
35
nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring * tx_ring)36 static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
37 {
38 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
39 }
40
41 /**
42 * nfp_nfd3_tx_ring_stop() - stop tx ring
43 * @nd_q: netdev queue
44 * @tx_ring: driver tx queue structure
45 *
46 * Safely stop TX ring. Remember that while we are running .start_xmit()
47 * someone else may be cleaning the TX ring completions so we need to be
48 * extra careful here.
49 */
50 static void
nfp_nfd3_tx_ring_stop(struct netdev_queue * nd_q,struct nfp_net_tx_ring * tx_ring)51 nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q,
52 struct nfp_net_tx_ring *tx_ring)
53 {
54 netif_tx_stop_queue(nd_q);
55
56 /* We can race with the TX completion out of NAPI so recheck */
57 smp_mb();
58 if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring)))
59 netif_tx_start_queue(nd_q);
60 }
61
62 /**
63 * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO
64 * @r_vec: per-ring structure
65 * @txbuf: Pointer to driver soft TX descriptor
66 * @txd: Pointer to HW TX descriptor
67 * @skb: Pointer to SKB
68 * @md_bytes: Prepend length
69 *
70 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
71 * Return error on packet header greater than maximum supported LSO header size.
72 */
73 static void
nfp_nfd3_tx_tso(struct nfp_net_r_vector * r_vec,struct nfp_nfd3_tx_buf * txbuf,struct nfp_nfd3_tx_desc * txd,struct sk_buff * skb,u32 md_bytes)74 nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf,
75 struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes)
76 {
77 u32 l3_offset, l4_offset, hdrlen;
78 u16 mss;
79
80 if (!skb_is_gso(skb))
81 return;
82
83 if (!skb->encapsulation) {
84 l3_offset = skb_network_offset(skb);
85 l4_offset = skb_transport_offset(skb);
86 hdrlen = skb_tcp_all_headers(skb);
87 } else {
88 l3_offset = skb_inner_network_offset(skb);
89 l4_offset = skb_inner_transport_offset(skb);
90 hdrlen = skb_inner_tcp_all_headers(skb);
91 }
92
93 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
94 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
95
96 mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK;
97 txd->l3_offset = l3_offset - md_bytes;
98 txd->l4_offset = l4_offset - md_bytes;
99 txd->lso_hdrlen = hdrlen - md_bytes;
100 txd->mss = cpu_to_le16(mss);
101 txd->flags |= NFD3_DESC_TX_LSO;
102
103 u64_stats_update_begin(&r_vec->tx_sync);
104 r_vec->tx_lso++;
105 u64_stats_update_end(&r_vec->tx_sync);
106 }
107
108 /**
109 * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor
110 * @dp: NFP Net data path struct
111 * @r_vec: per-ring structure
112 * @txbuf: Pointer to driver soft TX descriptor
113 * @txd: Pointer to TX descriptor
114 * @skb: Pointer to SKB
115 *
116 * This function sets the TX checksum flags in the TX descriptor based
117 * on the configuration and the protocol of the packet to be transmitted.
118 */
119 static void
nfp_nfd3_tx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_nfd3_tx_buf * txbuf,struct nfp_nfd3_tx_desc * txd,struct sk_buff * skb)120 nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
121 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd,
122 struct sk_buff *skb)
123 {
124 struct ipv6hdr *ipv6h;
125 struct iphdr *iph;
126 u8 l4_hdr;
127
128 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
129 return;
130
131 if (skb->ip_summed != CHECKSUM_PARTIAL)
132 return;
133
134 txd->flags |= NFD3_DESC_TX_CSUM;
135 if (skb->encapsulation)
136 txd->flags |= NFD3_DESC_TX_ENCAP;
137
138 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
139 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
140
141 if (iph->version == 4) {
142 txd->flags |= NFD3_DESC_TX_IP4_CSUM;
143 l4_hdr = iph->protocol;
144 } else if (ipv6h->version == 6) {
145 l4_hdr = ipv6h->nexthdr;
146 } else {
147 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
148 return;
149 }
150
151 switch (l4_hdr) {
152 case IPPROTO_TCP:
153 txd->flags |= NFD3_DESC_TX_TCP_CSUM;
154 break;
155 case IPPROTO_UDP:
156 txd->flags |= NFD3_DESC_TX_UDP_CSUM;
157 break;
158 default:
159 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
160 return;
161 }
162
163 u64_stats_update_begin(&r_vec->tx_sync);
164 if (skb->encapsulation)
165 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
166 else
167 r_vec->hw_csum_tx += txbuf->pkt_cnt;
168 u64_stats_update_end(&r_vec->tx_sync);
169 }
170
nfp_nfd3_prep_tx_meta(struct nfp_net_dp * dp,struct sk_buff * skb,u64 tls_handle,bool * ipsec)171 static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb,
172 u64 tls_handle, bool *ipsec)
173 {
174 struct metadata_dst *md_dst = skb_metadata_dst(skb);
175 struct nfp_ipsec_offload offload_info;
176 unsigned char *data;
177 bool vlan_insert;
178 u32 meta_id = 0;
179 int md_bytes;
180
181 #ifdef CONFIG_NFP_NET_IPSEC
182 if (xfrm_offload(skb))
183 *ipsec = nfp_net_ipsec_tx_prep(dp, skb, &offload_info);
184 #endif
185
186 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX))
187 md_dst = NULL;
188
189 vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2);
190
191 if (!(md_dst || tls_handle || vlan_insert || *ipsec))
192 return 0;
193
194 md_bytes = sizeof(meta_id) +
195 (!!md_dst ? NFP_NET_META_PORTID_SIZE : 0) +
196 (!!tls_handle ? NFP_NET_META_CONN_HANDLE_SIZE : 0) +
197 (vlan_insert ? NFP_NET_META_VLAN_SIZE : 0) +
198 (*ipsec ? NFP_NET_META_IPSEC_FIELD_SIZE : 0);
199
200 if (unlikely(skb_cow_head(skb, md_bytes)))
201 return -ENOMEM;
202
203 data = skb_push(skb, md_bytes) + md_bytes;
204 if (md_dst) {
205 data -= NFP_NET_META_PORTID_SIZE;
206 put_unaligned_be32(md_dst->u.port_info.port_id, data);
207 meta_id = NFP_NET_META_PORTID;
208 }
209 if (tls_handle) {
210 /* conn handle is opaque, we just use u64 to be able to quickly
211 * compare it to zero
212 */
213 data -= NFP_NET_META_CONN_HANDLE_SIZE;
214 memcpy(data, &tls_handle, sizeof(tls_handle));
215 meta_id <<= NFP_NET_META_FIELD_SIZE;
216 meta_id |= NFP_NET_META_CONN_HANDLE;
217 }
218 if (vlan_insert) {
219 data -= NFP_NET_META_VLAN_SIZE;
220 /* data type of skb->vlan_proto is __be16
221 * so it fills metadata without calling put_unaligned_be16
222 */
223 memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto));
224 put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto));
225 meta_id <<= NFP_NET_META_FIELD_SIZE;
226 meta_id |= NFP_NET_META_VLAN;
227 }
228 if (*ipsec) {
229 data -= NFP_NET_META_IPSEC_SIZE;
230 put_unaligned_be32(offload_info.seq_hi, data);
231 data -= NFP_NET_META_IPSEC_SIZE;
232 put_unaligned_be32(offload_info.seq_low, data);
233 data -= NFP_NET_META_IPSEC_SIZE;
234 put_unaligned_be32(offload_info.handle - 1, data);
235 meta_id <<= NFP_NET_META_IPSEC_FIELD_SIZE;
236 meta_id |= NFP_NET_META_IPSEC << 8 | NFP_NET_META_IPSEC << 4 | NFP_NET_META_IPSEC;
237 }
238
239 data -= sizeof(meta_id);
240 put_unaligned_be32(meta_id, data);
241
242 return md_bytes;
243 }
244
245 /**
246 * nfp_nfd3_tx() - Main transmit entry point
247 * @skb: SKB to transmit
248 * @netdev: netdev structure
249 *
250 * Return: NETDEV_TX_OK on success.
251 */
nfp_nfd3_tx(struct sk_buff * skb,struct net_device * netdev)252 netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev)
253 {
254 struct nfp_net *nn = netdev_priv(netdev);
255 int f, nr_frags, wr_idx, md_bytes;
256 struct nfp_net_tx_ring *tx_ring;
257 struct nfp_net_r_vector *r_vec;
258 struct nfp_nfd3_tx_buf *txbuf;
259 struct nfp_nfd3_tx_desc *txd;
260 struct netdev_queue *nd_q;
261 const skb_frag_t *frag;
262 struct nfp_net_dp *dp;
263 dma_addr_t dma_addr;
264 unsigned int fsize;
265 u64 tls_handle = 0;
266 bool ipsec = false;
267 u16 qidx;
268
269 dp = &nn->dp;
270 qidx = skb_get_queue_mapping(skb);
271 tx_ring = &dp->tx_rings[qidx];
272 r_vec = tx_ring->r_vec;
273
274 nr_frags = skb_shinfo(skb)->nr_frags;
275
276 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
277 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
278 qidx, tx_ring->wr_p, tx_ring->rd_p);
279 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
280 netif_tx_stop_queue(nd_q);
281 nfp_net_tx_xmit_more_flush(tx_ring);
282 u64_stats_update_begin(&r_vec->tx_sync);
283 r_vec->tx_busy++;
284 u64_stats_update_end(&r_vec->tx_sync);
285 return NETDEV_TX_BUSY;
286 }
287
288 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
289 if (unlikely(!skb)) {
290 nfp_net_tx_xmit_more_flush(tx_ring);
291 return NETDEV_TX_OK;
292 }
293
294 md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle, &ipsec);
295 if (unlikely(md_bytes < 0))
296 goto err_flush;
297
298 /* Start with the head skbuf */
299 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
300 DMA_TO_DEVICE);
301 if (dma_mapping_error(dp->dev, dma_addr))
302 goto err_dma_err;
303
304 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
305
306 /* Stash the soft descriptor of the head then initialize it */
307 txbuf = &tx_ring->txbufs[wr_idx];
308 txbuf->skb = skb;
309 txbuf->dma_addr = dma_addr;
310 txbuf->fidx = -1;
311 txbuf->pkt_cnt = 1;
312 txbuf->real_len = skb->len;
313
314 /* Build TX descriptor */
315 txd = &tx_ring->txds[wr_idx];
316 txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes;
317 txd->dma_len = cpu_to_le16(skb_headlen(skb));
318 nfp_desc_set_dma_addr_40b(txd, dma_addr);
319 txd->data_len = cpu_to_le16(skb->len);
320
321 txd->flags = 0;
322 txd->mss = 0;
323 txd->lso_hdrlen = 0;
324
325 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
326 nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
327 if (ipsec)
328 nfp_nfd3_ipsec_tx(txd, skb);
329 else
330 nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb);
331 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
332 txd->flags |= NFD3_DESC_TX_VLAN;
333 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
334 }
335
336 /* Gather DMA */
337 if (nr_frags > 0) {
338 __le64 second_half;
339
340 /* all descs must match except for in addr, length and eop */
341 second_half = txd->vals8[1];
342
343 for (f = 0; f < nr_frags; f++) {
344 frag = &skb_shinfo(skb)->frags[f];
345 fsize = skb_frag_size(frag);
346
347 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
348 fsize, DMA_TO_DEVICE);
349 if (dma_mapping_error(dp->dev, dma_addr))
350 goto err_unmap;
351
352 wr_idx = D_IDX(tx_ring, wr_idx + 1);
353 tx_ring->txbufs[wr_idx].skb = skb;
354 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
355 tx_ring->txbufs[wr_idx].fidx = f;
356
357 txd = &tx_ring->txds[wr_idx];
358 txd->dma_len = cpu_to_le16(fsize);
359 nfp_desc_set_dma_addr_40b(txd, dma_addr);
360 txd->offset_eop = md_bytes |
361 ((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0);
362 txd->vals8[1] = second_half;
363 }
364
365 u64_stats_update_begin(&r_vec->tx_sync);
366 r_vec->tx_gather++;
367 u64_stats_update_end(&r_vec->tx_sync);
368 }
369
370 skb_tx_timestamp(skb);
371
372 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
373
374 tx_ring->wr_p += nr_frags + 1;
375 if (nfp_nfd3_tx_ring_should_stop(tx_ring))
376 nfp_nfd3_tx_ring_stop(nd_q, tx_ring);
377
378 tx_ring->wr_ptr_add += nr_frags + 1;
379 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
380 nfp_net_tx_xmit_more_flush(tx_ring);
381
382 return NETDEV_TX_OK;
383
384 err_unmap:
385 while (--f >= 0) {
386 frag = &skb_shinfo(skb)->frags[f];
387 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
388 skb_frag_size(frag), DMA_TO_DEVICE);
389 tx_ring->txbufs[wr_idx].skb = NULL;
390 tx_ring->txbufs[wr_idx].dma_addr = 0;
391 tx_ring->txbufs[wr_idx].fidx = -2;
392 wr_idx = wr_idx - 1;
393 if (wr_idx < 0)
394 wr_idx += tx_ring->cnt;
395 }
396 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
397 skb_headlen(skb), DMA_TO_DEVICE);
398 tx_ring->txbufs[wr_idx].skb = NULL;
399 tx_ring->txbufs[wr_idx].dma_addr = 0;
400 tx_ring->txbufs[wr_idx].fidx = -2;
401 err_dma_err:
402 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
403 err_flush:
404 nfp_net_tx_xmit_more_flush(tx_ring);
405 u64_stats_update_begin(&r_vec->tx_sync);
406 r_vec->tx_errors++;
407 u64_stats_update_end(&r_vec->tx_sync);
408 nfp_net_tls_tx_undo(skb, tls_handle);
409 dev_kfree_skb_any(skb);
410 return NETDEV_TX_OK;
411 }
412
413 /**
414 * nfp_nfd3_tx_complete() - Handled completed TX packets
415 * @tx_ring: TX ring structure
416 * @budget: NAPI budget (only used as bool to determine if in NAPI context)
417 */
nfp_nfd3_tx_complete(struct nfp_net_tx_ring * tx_ring,int budget)418 void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
419 {
420 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
421 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
422 u32 done_pkts = 0, done_bytes = 0;
423 struct netdev_queue *nd_q;
424 u32 qcp_rd_p;
425 int todo;
426
427 if (tx_ring->wr_p == tx_ring->rd_p)
428 return;
429
430 /* Work out how many descriptors have been transmitted */
431 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
432
433 if (qcp_rd_p == tx_ring->qcp_rd_p)
434 return;
435
436 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
437
438 while (todo--) {
439 const skb_frag_t *frag;
440 struct nfp_nfd3_tx_buf *tx_buf;
441 struct sk_buff *skb;
442 int fidx, nr_frags;
443 int idx;
444
445 idx = D_IDX(tx_ring, tx_ring->rd_p++);
446 tx_buf = &tx_ring->txbufs[idx];
447
448 skb = tx_buf->skb;
449 if (!skb)
450 continue;
451
452 nr_frags = skb_shinfo(skb)->nr_frags;
453 fidx = tx_buf->fidx;
454
455 if (fidx == -1) {
456 /* unmap head */
457 dma_unmap_single(dp->dev, tx_buf->dma_addr,
458 skb_headlen(skb), DMA_TO_DEVICE);
459
460 done_pkts += tx_buf->pkt_cnt;
461 done_bytes += tx_buf->real_len;
462 } else {
463 /* unmap fragment */
464 frag = &skb_shinfo(skb)->frags[fidx];
465 dma_unmap_page(dp->dev, tx_buf->dma_addr,
466 skb_frag_size(frag), DMA_TO_DEVICE);
467 }
468
469 /* check for last gather fragment */
470 if (fidx == nr_frags - 1)
471 napi_consume_skb(skb, budget);
472
473 tx_buf->dma_addr = 0;
474 tx_buf->skb = NULL;
475 tx_buf->fidx = -2;
476 }
477
478 tx_ring->qcp_rd_p = qcp_rd_p;
479
480 u64_stats_update_begin(&r_vec->tx_sync);
481 r_vec->tx_bytes += done_bytes;
482 r_vec->tx_pkts += done_pkts;
483 u64_stats_update_end(&r_vec->tx_sync);
484
485 if (!dp->netdev)
486 return;
487
488 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
489 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
490 if (nfp_nfd3_tx_ring_should_wake(tx_ring)) {
491 /* Make sure TX thread will see updated tx_ring->rd_p */
492 smp_mb();
493
494 if (unlikely(netif_tx_queue_stopped(nd_q)))
495 netif_tx_wake_queue(nd_q);
496 }
497
498 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
499 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
500 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
501 }
502
nfp_nfd3_xdp_complete(struct nfp_net_tx_ring * tx_ring)503 static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring)
504 {
505 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
506 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
507 u32 done_pkts = 0, done_bytes = 0;
508 bool done_all;
509 int idx, todo;
510 u32 qcp_rd_p;
511
512 /* Work out how many descriptors have been transmitted */
513 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
514
515 if (qcp_rd_p == tx_ring->qcp_rd_p)
516 return true;
517
518 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
519
520 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
521 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
522
523 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
524
525 done_pkts = todo;
526 while (todo--) {
527 idx = D_IDX(tx_ring, tx_ring->rd_p);
528 tx_ring->rd_p++;
529
530 done_bytes += tx_ring->txbufs[idx].real_len;
531 }
532
533 u64_stats_update_begin(&r_vec->tx_sync);
534 r_vec->tx_bytes += done_bytes;
535 r_vec->tx_pkts += done_pkts;
536 u64_stats_update_end(&r_vec->tx_sync);
537
538 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
539 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
540 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
541
542 return done_all;
543 }
544
545 /* Receive processing
546 */
547
548 static void *
nfp_nfd3_napi_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)549 nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
550 {
551 void *frag;
552
553 if (!dp->xdp_prog) {
554 frag = napi_alloc_frag(dp->fl_bufsz);
555 if (unlikely(!frag))
556 return NULL;
557 } else {
558 struct page *page;
559
560 page = dev_alloc_page();
561 if (unlikely(!page))
562 return NULL;
563 frag = page_address(page);
564 }
565
566 *dma_addr = nfp_net_dma_map_rx(dp, frag);
567 if (dma_mapping_error(dp->dev, *dma_addr)) {
568 nfp_net_free_frag(frag, dp->xdp_prog);
569 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
570 return NULL;
571 }
572
573 return frag;
574 }
575
576 /**
577 * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings
578 * @dp: NFP Net data path struct
579 * @rx_ring: RX ring structure
580 * @frag: page fragment buffer
581 * @dma_addr: DMA address of skb mapping
582 */
583 static void
nfp_nfd3_rx_give_one(const struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,void * frag,dma_addr_t dma_addr)584 nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp,
585 struct nfp_net_rx_ring *rx_ring,
586 void *frag, dma_addr_t dma_addr)
587 {
588 unsigned int wr_idx;
589
590 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
591
592 nfp_net_dma_sync_dev_rx(dp, dma_addr);
593
594 /* Stash SKB and DMA address away */
595 rx_ring->rxbufs[wr_idx].frag = frag;
596 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
597
598 /* Fill freelist descriptor */
599 rx_ring->rxds[wr_idx].fld.reserved = 0;
600 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
601 /* DMA address is expanded to 48-bit width in freelist for NFP3800,
602 * so the *_48b macro is used accordingly, it's also OK to fill
603 * a 40-bit address since the top 8 bits are get set to 0.
604 */
605 nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld,
606 dma_addr + dp->rx_dma_off);
607
608 rx_ring->wr_p++;
609 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
610 /* Update write pointer of the freelist queue. Make
611 * sure all writes are flushed before telling the hardware.
612 */
613 wmb();
614 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
615 }
616 }
617
618 /**
619 * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW
620 * @dp: NFP Net data path struct
621 * @rx_ring: RX ring to fill
622 */
nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)623 void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp,
624 struct nfp_net_rx_ring *rx_ring)
625 {
626 unsigned int i;
627
628 if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
629 return nfp_net_xsk_rx_ring_fill_freelist(rx_ring);
630
631 for (i = 0; i < rx_ring->cnt - 1; i++)
632 nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
633 rx_ring->rxbufs[i].dma_addr);
634 }
635
636 /**
637 * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors
638 * @flags: RX descriptor flags field in CPU byte order
639 */
nfp_nfd3_rx_csum_has_errors(u16 flags)640 static int nfp_nfd3_rx_csum_has_errors(u16 flags)
641 {
642 u16 csum_all_checked, csum_all_ok;
643
644 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
645 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
646
647 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
648 }
649
650 /**
651 * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags
652 * @dp: NFP Net data path struct
653 * @r_vec: per-ring structure
654 * @rxd: Pointer to RX descriptor
655 * @meta: Parsed metadata prepend
656 * @skb: Pointer to SKB
657 */
658 void
nfp_nfd3_rx_csum(const struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,const struct nfp_net_rx_desc * rxd,const struct nfp_meta_parsed * meta,struct sk_buff * skb)659 nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
660 const struct nfp_net_rx_desc *rxd,
661 const struct nfp_meta_parsed *meta, struct sk_buff *skb)
662 {
663 skb_checksum_none_assert(skb);
664
665 if (!(dp->netdev->features & NETIF_F_RXCSUM))
666 return;
667
668 if (meta->csum_type) {
669 skb->ip_summed = meta->csum_type;
670 skb->csum = meta->csum;
671 u64_stats_update_begin(&r_vec->rx_sync);
672 r_vec->hw_csum_rx_complete++;
673 u64_stats_update_end(&r_vec->rx_sync);
674 return;
675 }
676
677 if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
678 u64_stats_update_begin(&r_vec->rx_sync);
679 r_vec->hw_csum_rx_error++;
680 u64_stats_update_end(&r_vec->rx_sync);
681 return;
682 }
683
684 /* Assume that the firmware will never report inner CSUM_OK unless outer
685 * L4 headers were successfully parsed. FW will always report zero UDP
686 * checksum as CSUM_OK.
687 */
688 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
689 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
690 __skb_incr_checksum_unnecessary(skb);
691 u64_stats_update_begin(&r_vec->rx_sync);
692 r_vec->hw_csum_rx_ok++;
693 u64_stats_update_end(&r_vec->rx_sync);
694 }
695
696 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
697 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
698 __skb_incr_checksum_unnecessary(skb);
699 u64_stats_update_begin(&r_vec->rx_sync);
700 r_vec->hw_csum_rx_inner_ok++;
701 u64_stats_update_end(&r_vec->rx_sync);
702 }
703 }
704
705 static void
nfp_nfd3_set_hash(struct net_device * netdev,struct nfp_meta_parsed * meta,unsigned int type,__be32 * hash)706 nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
707 unsigned int type, __be32 *hash)
708 {
709 if (!(netdev->features & NETIF_F_RXHASH))
710 return;
711
712 switch (type) {
713 case NFP_NET_RSS_IPV4:
714 case NFP_NET_RSS_IPV6:
715 case NFP_NET_RSS_IPV6_EX:
716 meta->hash_type = PKT_HASH_TYPE_L3;
717 break;
718 default:
719 meta->hash_type = PKT_HASH_TYPE_L4;
720 break;
721 }
722
723 meta->hash = get_unaligned_be32(hash);
724 }
725
726 static void
nfp_nfd3_set_hash_desc(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,struct nfp_net_rx_desc * rxd)727 nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
728 void *data, struct nfp_net_rx_desc *rxd)
729 {
730 struct nfp_net_rx_hash *rx_hash = data;
731
732 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
733 return;
734
735 nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
736 &rx_hash->hash);
737 }
738
739 bool
nfp_nfd3_parse_meta(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,void * pkt,unsigned int pkt_len,int meta_len)740 nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
741 void *data, void *pkt, unsigned int pkt_len, int meta_len)
742 {
743 u32 meta_info, vlan_info;
744
745 meta_info = get_unaligned_be32(data);
746 data += 4;
747
748 while (meta_info) {
749 switch (meta_info & NFP_NET_META_FIELD_MASK) {
750 case NFP_NET_META_HASH:
751 meta_info >>= NFP_NET_META_FIELD_SIZE;
752 nfp_nfd3_set_hash(netdev, meta,
753 meta_info & NFP_NET_META_FIELD_MASK,
754 (__be32 *)data);
755 data += 4;
756 break;
757 case NFP_NET_META_MARK:
758 meta->mark = get_unaligned_be32(data);
759 data += 4;
760 break;
761 case NFP_NET_META_VLAN:
762 vlan_info = get_unaligned_be32(data);
763 if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) {
764 meta->vlan.stripped = true;
765 meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK,
766 vlan_info);
767 meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK,
768 vlan_info);
769 }
770 data += 4;
771 break;
772 case NFP_NET_META_PORTID:
773 meta->portid = get_unaligned_be32(data);
774 data += 4;
775 break;
776 case NFP_NET_META_CSUM:
777 meta->csum_type = CHECKSUM_COMPLETE;
778 meta->csum =
779 (__force __wsum)__get_unaligned_cpu32(data);
780 data += 4;
781 break;
782 case NFP_NET_META_RESYNC_INFO:
783 if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
784 pkt_len))
785 return false;
786 data += sizeof(struct nfp_net_tls_resync_req);
787 break;
788 #ifdef CONFIG_NFP_NET_IPSEC
789 case NFP_NET_META_IPSEC:
790 /* Note: IPsec packet will have zero saidx, so need add 1
791 * to indicate packet is IPsec packet within driver.
792 */
793 meta->ipsec_saidx = get_unaligned_be32(data) + 1;
794 data += 4;
795 break;
796 #endif
797 default:
798 return true;
799 }
800
801 meta_info >>= NFP_NET_META_FIELD_SIZE;
802 }
803
804 return data != pkt;
805 }
806
807 static void
nfp_nfd3_rx_drop(const struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring,struct nfp_net_rx_buf * rxbuf,struct sk_buff * skb)808 nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
809 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
810 struct sk_buff *skb)
811 {
812 u64_stats_update_begin(&r_vec->rx_sync);
813 r_vec->rx_drops++;
814 /* If we have both skb and rxbuf the replacement buffer allocation
815 * must have failed, count this as an alloc failure.
816 */
817 if (skb && rxbuf)
818 r_vec->rx_replace_buf_alloc_fail++;
819 u64_stats_update_end(&r_vec->rx_sync);
820
821 /* skb is build based on the frag, free_skb() would free the frag
822 * so to be able to reuse it we need an extra ref.
823 */
824 if (skb && rxbuf && skb->head == rxbuf->frag)
825 page_ref_inc(virt_to_head_page(rxbuf->frag));
826 if (rxbuf)
827 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
828 if (skb)
829 dev_kfree_skb_any(skb);
830 }
831
832 static bool
nfp_nfd3_tx_xdp_buf(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,struct nfp_net_tx_ring * tx_ring,struct nfp_net_rx_buf * rxbuf,unsigned int dma_off,unsigned int pkt_len,bool * completed)833 nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
834 struct nfp_net_tx_ring *tx_ring,
835 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
836 unsigned int pkt_len, bool *completed)
837 {
838 unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
839 struct nfp_nfd3_tx_buf *txbuf;
840 struct nfp_nfd3_tx_desc *txd;
841 int wr_idx;
842
843 /* Reject if xdp_adjust_tail grow packet beyond DMA area */
844 if (pkt_len + dma_off > dma_map_sz)
845 return false;
846
847 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
848 if (!*completed) {
849 nfp_nfd3_xdp_complete(tx_ring);
850 *completed = true;
851 }
852
853 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
854 nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
855 NULL);
856 return false;
857 }
858 }
859
860 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
861
862 /* Stash the soft descriptor of the head then initialize it */
863 txbuf = &tx_ring->txbufs[wr_idx];
864
865 nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
866
867 txbuf->frag = rxbuf->frag;
868 txbuf->dma_addr = rxbuf->dma_addr;
869 txbuf->fidx = -1;
870 txbuf->pkt_cnt = 1;
871 txbuf->real_len = pkt_len;
872
873 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
874 pkt_len, DMA_BIDIRECTIONAL);
875
876 /* Build TX descriptor */
877 txd = &tx_ring->txds[wr_idx];
878 txd->offset_eop = NFD3_DESC_TX_EOP;
879 txd->dma_len = cpu_to_le16(pkt_len);
880 nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off);
881 txd->data_len = cpu_to_le16(pkt_len);
882
883 txd->flags = 0;
884 txd->mss = 0;
885 txd->lso_hdrlen = 0;
886
887 tx_ring->wr_p++;
888 tx_ring->wr_ptr_add++;
889 return true;
890 }
891
892 /**
893 * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring
894 * @rx_ring: RX ring to receive from
895 * @budget: NAPI budget
896 *
897 * Note, this function is separated out from the napi poll function to
898 * more cleanly separate packet receive code from other bookkeeping
899 * functions performed in the napi poll function.
900 *
901 * Return: Number of packets received.
902 */
nfp_nfd3_rx(struct nfp_net_rx_ring * rx_ring,int budget)903 static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget)
904 {
905 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
906 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
907 struct nfp_net_tx_ring *tx_ring;
908 struct bpf_prog *xdp_prog;
909 int idx, pkts_polled = 0;
910 bool xdp_tx_cmpl = false;
911 unsigned int true_bufsz;
912 struct sk_buff *skb;
913 struct xdp_buff xdp;
914
915 xdp_prog = READ_ONCE(dp->xdp_prog);
916 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
917 xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
918 &rx_ring->xdp_rxq);
919 tx_ring = r_vec->xdp_ring;
920
921 while (pkts_polled < budget) {
922 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
923 struct nfp_net_rx_buf *rxbuf;
924 struct nfp_net_rx_desc *rxd;
925 struct nfp_meta_parsed meta;
926 bool redir_egress = false;
927 struct net_device *netdev;
928 dma_addr_t new_dma_addr;
929 u32 meta_len_xdp = 0;
930 void *new_frag;
931
932 idx = D_IDX(rx_ring, rx_ring->rd_p);
933
934 rxd = &rx_ring->rxds[idx];
935 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
936 break;
937
938 /* Memory barrier to ensure that we won't do other reads
939 * before the DD bit.
940 */
941 dma_rmb();
942
943 memset(&meta, 0, sizeof(meta));
944
945 rx_ring->rd_p++;
946 pkts_polled++;
947
948 rxbuf = &rx_ring->rxbufs[idx];
949 /* < meta_len >
950 * <-- [rx_offset] -->
951 * ---------------------------------------------------------
952 * | [XX] | metadata | packet | XXXX |
953 * ---------------------------------------------------------
954 * <---------------- data_len --------------->
955 *
956 * The rx_offset is fixed for all packets, the meta_len can vary
957 * on a packet by packet basis. If rx_offset is set to zero
958 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
959 * buffer and is immediately followed by the packet (no [XX]).
960 */
961 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
962 data_len = le16_to_cpu(rxd->rxd.data_len);
963 pkt_len = data_len - meta_len;
964
965 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
966 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
967 pkt_off += meta_len;
968 else
969 pkt_off += dp->rx_offset;
970 meta_off = pkt_off - meta_len;
971
972 /* Stats update */
973 u64_stats_update_begin(&r_vec->rx_sync);
974 r_vec->rx_pkts++;
975 r_vec->rx_bytes += pkt_len;
976 u64_stats_update_end(&r_vec->rx_sync);
977
978 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
979 (dp->rx_offset && meta_len > dp->rx_offset))) {
980 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
981 meta_len);
982 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
983 continue;
984 }
985
986 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
987 data_len);
988
989 if (!dp->chained_metadata_format) {
990 nfp_nfd3_set_hash_desc(dp->netdev, &meta,
991 rxbuf->frag + meta_off, rxd);
992 } else if (meta_len) {
993 if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta,
994 rxbuf->frag + meta_off,
995 rxbuf->frag + pkt_off,
996 pkt_len, meta_len))) {
997 nn_dp_warn(dp, "invalid RX packet metadata\n");
998 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
999 NULL);
1000 continue;
1001 }
1002 }
1003
1004 if (xdp_prog && !meta.portid) {
1005 void *orig_data = rxbuf->frag + pkt_off;
1006 unsigned int dma_off;
1007 int act;
1008
1009 xdp_prepare_buff(&xdp,
1010 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
1011 pkt_off - NFP_NET_RX_BUF_HEADROOM,
1012 pkt_len, true);
1013
1014 act = bpf_prog_run_xdp(xdp_prog, &xdp);
1015
1016 pkt_len = xdp.data_end - xdp.data;
1017 pkt_off += xdp.data - orig_data;
1018
1019 switch (act) {
1020 case XDP_PASS:
1021 meta_len_xdp = xdp.data - xdp.data_meta;
1022 break;
1023 case XDP_TX:
1024 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1025 if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring,
1026 tx_ring,
1027 rxbuf,
1028 dma_off,
1029 pkt_len,
1030 &xdp_tx_cmpl)))
1031 trace_xdp_exception(dp->netdev,
1032 xdp_prog, act);
1033 continue;
1034 default:
1035 bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act);
1036 fallthrough;
1037 case XDP_ABORTED:
1038 trace_xdp_exception(dp->netdev, xdp_prog, act);
1039 fallthrough;
1040 case XDP_DROP:
1041 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1042 rxbuf->dma_addr);
1043 continue;
1044 }
1045 }
1046
1047 if (likely(!meta.portid)) {
1048 netdev = dp->netdev;
1049 } else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1050 struct nfp_net *nn = netdev_priv(dp->netdev);
1051
1052 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1053 pkt_len);
1054 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1055 rxbuf->dma_addr);
1056 continue;
1057 } else {
1058 struct nfp_net *nn;
1059
1060 nn = netdev_priv(dp->netdev);
1061 netdev = nfp_app_dev_get(nn->app, meta.portid,
1062 &redir_egress);
1063 if (unlikely(!netdev)) {
1064 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1065 NULL);
1066 continue;
1067 }
1068
1069 if (nfp_netdev_is_nfp_repr(netdev))
1070 nfp_repr_inc_rx_stats(netdev, pkt_len);
1071 }
1072
1073 skb = build_skb(rxbuf->frag, true_bufsz);
1074 if (unlikely(!skb)) {
1075 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1076 continue;
1077 }
1078 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1079 if (unlikely(!new_frag)) {
1080 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1081 continue;
1082 }
1083
1084 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1085
1086 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1087
1088 skb_reserve(skb, pkt_off);
1089 skb_put(skb, pkt_len);
1090
1091 skb->mark = meta.mark;
1092 skb_set_hash(skb, meta.hash, meta.hash_type);
1093
1094 skb_record_rx_queue(skb, rx_ring->idx);
1095 skb->protocol = eth_type_trans(skb, netdev);
1096
1097 nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb);
1098
1099 #ifdef CONFIG_TLS_DEVICE
1100 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1101 skb->decrypted = true;
1102 u64_stats_update_begin(&r_vec->rx_sync);
1103 r_vec->hw_tls_rx++;
1104 u64_stats_update_end(&r_vec->rx_sync);
1105 }
1106 #endif
1107
1108 if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) {
1109 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1110 continue;
1111 }
1112
1113 #ifdef CONFIG_NFP_NET_IPSEC
1114 if (meta.ipsec_saidx != 0 && unlikely(nfp_net_ipsec_rx(&meta, skb))) {
1115 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1116 continue;
1117 }
1118 #endif
1119
1120 if (meta_len_xdp)
1121 skb_metadata_set(skb, meta_len_xdp);
1122
1123 if (likely(!redir_egress)) {
1124 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1125 } else {
1126 skb->dev = netdev;
1127 skb_reset_network_header(skb);
1128 __skb_push(skb, ETH_HLEN);
1129 dev_queue_xmit(skb);
1130 }
1131 }
1132
1133 if (xdp_prog) {
1134 if (tx_ring->wr_ptr_add)
1135 nfp_net_tx_xmit_more_flush(tx_ring);
1136 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1137 !xdp_tx_cmpl)
1138 if (!nfp_nfd3_xdp_complete(tx_ring))
1139 pkts_polled = budget;
1140 }
1141
1142 return pkts_polled;
1143 }
1144
1145 /**
1146 * nfp_nfd3_poll() - napi poll function
1147 * @napi: NAPI structure
1148 * @budget: NAPI budget
1149 *
1150 * Return: number of packets polled.
1151 */
nfp_nfd3_poll(struct napi_struct * napi,int budget)1152 int nfp_nfd3_poll(struct napi_struct *napi, int budget)
1153 {
1154 struct nfp_net_r_vector *r_vec =
1155 container_of(napi, struct nfp_net_r_vector, napi);
1156 unsigned int pkts_polled = 0;
1157
1158 if (r_vec->tx_ring)
1159 nfp_nfd3_tx_complete(r_vec->tx_ring, budget);
1160 if (r_vec->rx_ring)
1161 pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget);
1162
1163 if (pkts_polled < budget)
1164 if (napi_complete_done(napi, pkts_polled))
1165 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1166
1167 if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) {
1168 struct dim_sample dim_sample = {};
1169 unsigned int start;
1170 u64 pkts, bytes;
1171
1172 do {
1173 start = u64_stats_fetch_begin(&r_vec->rx_sync);
1174 pkts = r_vec->rx_pkts;
1175 bytes = r_vec->rx_bytes;
1176 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
1177
1178 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1179 net_dim(&r_vec->rx_dim, dim_sample);
1180 }
1181
1182 if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) {
1183 struct dim_sample dim_sample = {};
1184 unsigned int start;
1185 u64 pkts, bytes;
1186
1187 do {
1188 start = u64_stats_fetch_begin(&r_vec->tx_sync);
1189 pkts = r_vec->tx_pkts;
1190 bytes = r_vec->tx_bytes;
1191 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
1192
1193 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1194 net_dim(&r_vec->tx_dim, dim_sample);
1195 }
1196
1197 return pkts_polled;
1198 }
1199
1200 /* Control device data path
1201 */
1202
1203 bool
nfp_nfd3_ctrl_tx_one(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,bool old)1204 nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1205 struct sk_buff *skb, bool old)
1206 {
1207 unsigned int real_len = skb->len, meta_len = 0;
1208 struct nfp_net_tx_ring *tx_ring;
1209 struct nfp_nfd3_tx_buf *txbuf;
1210 struct nfp_nfd3_tx_desc *txd;
1211 struct nfp_net_dp *dp;
1212 dma_addr_t dma_addr;
1213 int wr_idx;
1214
1215 dp = &r_vec->nfp_net->dp;
1216 tx_ring = r_vec->tx_ring;
1217
1218 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1219 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1220 goto err_free;
1221 }
1222
1223 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1224 u64_stats_update_begin(&r_vec->tx_sync);
1225 r_vec->tx_busy++;
1226 u64_stats_update_end(&r_vec->tx_sync);
1227 if (!old)
1228 __skb_queue_tail(&r_vec->queue, skb);
1229 else
1230 __skb_queue_head(&r_vec->queue, skb);
1231 return true;
1232 }
1233
1234 if (nfp_app_ctrl_has_meta(nn->app)) {
1235 if (unlikely(skb_headroom(skb) < 8)) {
1236 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1237 goto err_free;
1238 }
1239 meta_len = 8;
1240 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1241 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1242 }
1243
1244 /* Start with the head skbuf */
1245 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1246 DMA_TO_DEVICE);
1247 if (dma_mapping_error(dp->dev, dma_addr))
1248 goto err_dma_warn;
1249
1250 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1251
1252 /* Stash the soft descriptor of the head then initialize it */
1253 txbuf = &tx_ring->txbufs[wr_idx];
1254 txbuf->skb = skb;
1255 txbuf->dma_addr = dma_addr;
1256 txbuf->fidx = -1;
1257 txbuf->pkt_cnt = 1;
1258 txbuf->real_len = real_len;
1259
1260 /* Build TX descriptor */
1261 txd = &tx_ring->txds[wr_idx];
1262 txd->offset_eop = meta_len | NFD3_DESC_TX_EOP;
1263 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1264 nfp_desc_set_dma_addr_40b(txd, dma_addr);
1265 txd->data_len = cpu_to_le16(skb->len);
1266
1267 txd->flags = 0;
1268 txd->mss = 0;
1269 txd->lso_hdrlen = 0;
1270
1271 tx_ring->wr_p++;
1272 tx_ring->wr_ptr_add++;
1273 nfp_net_tx_xmit_more_flush(tx_ring);
1274
1275 return false;
1276
1277 err_dma_warn:
1278 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1279 err_free:
1280 u64_stats_update_begin(&r_vec->tx_sync);
1281 r_vec->tx_errors++;
1282 u64_stats_update_end(&r_vec->tx_sync);
1283 dev_kfree_skb_any(skb);
1284 return false;
1285 }
1286
__nfp_ctrl_tx_queued(struct nfp_net_r_vector * r_vec)1287 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1288 {
1289 struct sk_buff *skb;
1290
1291 while ((skb = __skb_dequeue(&r_vec->queue)))
1292 if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1293 return;
1294 }
1295
1296 static bool
nfp_ctrl_meta_ok(struct nfp_net * nn,void * data,unsigned int meta_len)1297 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1298 {
1299 u32 meta_type, meta_tag;
1300
1301 if (!nfp_app_ctrl_has_meta(nn->app))
1302 return !meta_len;
1303
1304 if (meta_len != 8)
1305 return false;
1306
1307 meta_type = get_unaligned_be32(data);
1308 meta_tag = get_unaligned_be32(data + 4);
1309
1310 return (meta_type == NFP_NET_META_PORTID &&
1311 meta_tag == NFP_META_PORT_ID_CTRL);
1312 }
1313
1314 static bool
nfp_ctrl_rx_one(struct nfp_net * nn,struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring)1315 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1316 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1317 {
1318 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1319 struct nfp_net_rx_buf *rxbuf;
1320 struct nfp_net_rx_desc *rxd;
1321 dma_addr_t new_dma_addr;
1322 struct sk_buff *skb;
1323 void *new_frag;
1324 int idx;
1325
1326 idx = D_IDX(rx_ring, rx_ring->rd_p);
1327
1328 rxd = &rx_ring->rxds[idx];
1329 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1330 return false;
1331
1332 /* Memory barrier to ensure that we won't do other reads
1333 * before the DD bit.
1334 */
1335 dma_rmb();
1336
1337 rx_ring->rd_p++;
1338
1339 rxbuf = &rx_ring->rxbufs[idx];
1340 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1341 data_len = le16_to_cpu(rxd->rxd.data_len);
1342 pkt_len = data_len - meta_len;
1343
1344 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1345 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1346 pkt_off += meta_len;
1347 else
1348 pkt_off += dp->rx_offset;
1349 meta_off = pkt_off - meta_len;
1350
1351 /* Stats update */
1352 u64_stats_update_begin(&r_vec->rx_sync);
1353 r_vec->rx_pkts++;
1354 r_vec->rx_bytes += pkt_len;
1355 u64_stats_update_end(&r_vec->rx_sync);
1356
1357 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
1358
1359 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
1360 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
1361 meta_len);
1362 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1363 return true;
1364 }
1365
1366 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
1367 if (unlikely(!skb)) {
1368 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1369 return true;
1370 }
1371 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1372 if (unlikely(!new_frag)) {
1373 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1374 return true;
1375 }
1376
1377 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1378
1379 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1380
1381 skb_reserve(skb, pkt_off);
1382 skb_put(skb, pkt_len);
1383
1384 nfp_app_ctrl_rx(nn->app, skb);
1385
1386 return true;
1387 }
1388
nfp_ctrl_rx(struct nfp_net_r_vector * r_vec)1389 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
1390 {
1391 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1392 struct nfp_net *nn = r_vec->nfp_net;
1393 struct nfp_net_dp *dp = &nn->dp;
1394 unsigned int budget = 512;
1395
1396 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
1397 continue;
1398
1399 return budget;
1400 }
1401
nfp_nfd3_ctrl_poll(struct tasklet_struct * t)1402 void nfp_nfd3_ctrl_poll(struct tasklet_struct *t)
1403 {
1404 struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
1405
1406 spin_lock(&r_vec->lock);
1407 nfp_nfd3_tx_complete(r_vec->tx_ring, 0);
1408 __nfp_ctrl_tx_queued(r_vec);
1409 spin_unlock(&r_vec->lock);
1410
1411 if (nfp_ctrl_rx(r_vec)) {
1412 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1413 } else {
1414 tasklet_schedule(&r_vec->tasklet);
1415 nn_dp_warn(&r_vec->nfp_net->dp,
1416 "control message budget exceeded!\n");
1417 }
1418 }
1419