1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55
56 static DEFINE_SPINLOCK(swap_lock);
57 static unsigned int nr_swapfiles;
58 atomic_long_t nr_swap_pages;
59 /*
60 * Some modules use swappable objects and may try to swap them out under
61 * memory pressure (via the shrinker). Before doing so, they may wish to
62 * check to see if any swap space is available.
63 */
64 EXPORT_SYMBOL_GPL(nr_swap_pages);
65 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
66 long total_swap_pages;
67 static int least_priority = -1;
68 unsigned long swapfile_maximum_size;
69 #ifdef CONFIG_MIGRATION
70 bool swap_migration_ad_supported;
71 #endif /* CONFIG_MIGRATION */
72
73 static const char Bad_file[] = "Bad swap file entry ";
74 static const char Unused_file[] = "Unused swap file entry ";
75 static const char Bad_offset[] = "Bad swap offset entry ";
76 static const char Unused_offset[] = "Unused swap offset entry ";
77
78 /*
79 * all active swap_info_structs
80 * protected with swap_lock, and ordered by priority.
81 */
82 static PLIST_HEAD(swap_active_head);
83
84 /*
85 * all available (active, not full) swap_info_structs
86 * protected with swap_avail_lock, ordered by priority.
87 * This is used by folio_alloc_swap() instead of swap_active_head
88 * because swap_active_head includes all swap_info_structs,
89 * but folio_alloc_swap() doesn't need to look at full ones.
90 * This uses its own lock instead of swap_lock because when a
91 * swap_info_struct changes between not-full/full, it needs to
92 * add/remove itself to/from this list, but the swap_info_struct->lock
93 * is held and the locking order requires swap_lock to be taken
94 * before any swap_info_struct->lock.
95 */
96 static struct plist_head *swap_avail_heads;
97 static DEFINE_SPINLOCK(swap_avail_lock);
98
99 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
100
101 static DEFINE_MUTEX(swapon_mutex);
102
103 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
104 /* Activity counter to indicate that a swapon or swapoff has occurred */
105 static atomic_t proc_poll_event = ATOMIC_INIT(0);
106
107 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
108
swap_type_to_swap_info(int type)109 static struct swap_info_struct *swap_type_to_swap_info(int type)
110 {
111 if (type >= MAX_SWAPFILES)
112 return NULL;
113
114 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
115 }
116
swap_count(unsigned char ent)117 static inline unsigned char swap_count(unsigned char ent)
118 {
119 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
120 }
121
122 /* Reclaim the swap entry anyway if possible */
123 #define TTRS_ANYWAY 0x1
124 /*
125 * Reclaim the swap entry if there are no more mappings of the
126 * corresponding page
127 */
128 #define TTRS_UNMAPPED 0x2
129 /* Reclaim the swap entry if swap is getting full*/
130 #define TTRS_FULL 0x4
131
132 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)133 static int __try_to_reclaim_swap(struct swap_info_struct *si,
134 unsigned long offset, unsigned long flags)
135 {
136 swp_entry_t entry = swp_entry(si->type, offset);
137 struct folio *folio;
138 int ret = 0;
139
140 folio = filemap_get_folio(swap_address_space(entry), offset);
141 if (IS_ERR(folio))
142 return 0;
143 /*
144 * When this function is called from scan_swap_map_slots() and it's
145 * called by vmscan.c at reclaiming folios. So we hold a folio lock
146 * here. We have to use trylock for avoiding deadlock. This is a special
147 * case and you should use folio_free_swap() with explicit folio_lock()
148 * in usual operations.
149 */
150 if (folio_trylock(folio)) {
151 if ((flags & TTRS_ANYWAY) ||
152 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
153 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
154 ret = folio_free_swap(folio);
155 folio_unlock(folio);
156 }
157 folio_put(folio);
158 return ret;
159 }
160
first_se(struct swap_info_struct * sis)161 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
162 {
163 struct rb_node *rb = rb_first(&sis->swap_extent_root);
164 return rb_entry(rb, struct swap_extent, rb_node);
165 }
166
next_se(struct swap_extent * se)167 static inline struct swap_extent *next_se(struct swap_extent *se)
168 {
169 struct rb_node *rb = rb_next(&se->rb_node);
170 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
171 }
172
173 /*
174 * swapon tell device that all the old swap contents can be discarded,
175 * to allow the swap device to optimize its wear-levelling.
176 */
discard_swap(struct swap_info_struct * si)177 static int discard_swap(struct swap_info_struct *si)
178 {
179 struct swap_extent *se;
180 sector_t start_block;
181 sector_t nr_blocks;
182 int err = 0;
183
184 /* Do not discard the swap header page! */
185 se = first_se(si);
186 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
187 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
188 if (nr_blocks) {
189 err = blkdev_issue_discard(si->bdev, start_block,
190 nr_blocks, GFP_KERNEL);
191 if (err)
192 return err;
193 cond_resched();
194 }
195
196 for (se = next_se(se); se; se = next_se(se)) {
197 start_block = se->start_block << (PAGE_SHIFT - 9);
198 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
199
200 err = blkdev_issue_discard(si->bdev, start_block,
201 nr_blocks, GFP_KERNEL);
202 if (err)
203 break;
204
205 cond_resched();
206 }
207 return err; /* That will often be -EOPNOTSUPP */
208 }
209
210 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)211 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
212 {
213 struct swap_extent *se;
214 struct rb_node *rb;
215
216 rb = sis->swap_extent_root.rb_node;
217 while (rb) {
218 se = rb_entry(rb, struct swap_extent, rb_node);
219 if (offset < se->start_page)
220 rb = rb->rb_left;
221 else if (offset >= se->start_page + se->nr_pages)
222 rb = rb->rb_right;
223 else
224 return se;
225 }
226 /* It *must* be present */
227 BUG();
228 }
229
swap_page_sector(struct page * page)230 sector_t swap_page_sector(struct page *page)
231 {
232 struct swap_info_struct *sis = page_swap_info(page);
233 struct swap_extent *se;
234 sector_t sector;
235 pgoff_t offset;
236
237 offset = __page_file_index(page);
238 se = offset_to_swap_extent(sis, offset);
239 sector = se->start_block + (offset - se->start_page);
240 return sector << (PAGE_SHIFT - 9);
241 }
242
243 /*
244 * swap allocation tell device that a cluster of swap can now be discarded,
245 * to allow the swap device to optimize its wear-levelling.
246 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)247 static void discard_swap_cluster(struct swap_info_struct *si,
248 pgoff_t start_page, pgoff_t nr_pages)
249 {
250 struct swap_extent *se = offset_to_swap_extent(si, start_page);
251
252 while (nr_pages) {
253 pgoff_t offset = start_page - se->start_page;
254 sector_t start_block = se->start_block + offset;
255 sector_t nr_blocks = se->nr_pages - offset;
256
257 if (nr_blocks > nr_pages)
258 nr_blocks = nr_pages;
259 start_page += nr_blocks;
260 nr_pages -= nr_blocks;
261
262 start_block <<= PAGE_SHIFT - 9;
263 nr_blocks <<= PAGE_SHIFT - 9;
264 if (blkdev_issue_discard(si->bdev, start_block,
265 nr_blocks, GFP_NOIO))
266 break;
267
268 se = next_se(se);
269 }
270 }
271
272 #ifdef CONFIG_THP_SWAP
273 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
274
275 #define swap_entry_size(size) (size)
276 #else
277 #define SWAPFILE_CLUSTER 256
278
279 /*
280 * Define swap_entry_size() as constant to let compiler to optimize
281 * out some code if !CONFIG_THP_SWAP
282 */
283 #define swap_entry_size(size) 1
284 #endif
285 #define LATENCY_LIMIT 256
286
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)287 static inline void cluster_set_flag(struct swap_cluster_info *info,
288 unsigned int flag)
289 {
290 info->flags = flag;
291 }
292
cluster_count(struct swap_cluster_info * info)293 static inline unsigned int cluster_count(struct swap_cluster_info *info)
294 {
295 return info->data;
296 }
297
cluster_set_count(struct swap_cluster_info * info,unsigned int c)298 static inline void cluster_set_count(struct swap_cluster_info *info,
299 unsigned int c)
300 {
301 info->data = c;
302 }
303
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)304 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
305 unsigned int c, unsigned int f)
306 {
307 info->flags = f;
308 info->data = c;
309 }
310
cluster_next(struct swap_cluster_info * info)311 static inline unsigned int cluster_next(struct swap_cluster_info *info)
312 {
313 return info->data;
314 }
315
cluster_set_next(struct swap_cluster_info * info,unsigned int n)316 static inline void cluster_set_next(struct swap_cluster_info *info,
317 unsigned int n)
318 {
319 info->data = n;
320 }
321
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)322 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
323 unsigned int n, unsigned int f)
324 {
325 info->flags = f;
326 info->data = n;
327 }
328
cluster_is_free(struct swap_cluster_info * info)329 static inline bool cluster_is_free(struct swap_cluster_info *info)
330 {
331 return info->flags & CLUSTER_FLAG_FREE;
332 }
333
cluster_is_null(struct swap_cluster_info * info)334 static inline bool cluster_is_null(struct swap_cluster_info *info)
335 {
336 return info->flags & CLUSTER_FLAG_NEXT_NULL;
337 }
338
cluster_set_null(struct swap_cluster_info * info)339 static inline void cluster_set_null(struct swap_cluster_info *info)
340 {
341 info->flags = CLUSTER_FLAG_NEXT_NULL;
342 info->data = 0;
343 }
344
cluster_is_huge(struct swap_cluster_info * info)345 static inline bool cluster_is_huge(struct swap_cluster_info *info)
346 {
347 if (IS_ENABLED(CONFIG_THP_SWAP))
348 return info->flags & CLUSTER_FLAG_HUGE;
349 return false;
350 }
351
cluster_clear_huge(struct swap_cluster_info * info)352 static inline void cluster_clear_huge(struct swap_cluster_info *info)
353 {
354 info->flags &= ~CLUSTER_FLAG_HUGE;
355 }
356
lock_cluster(struct swap_info_struct * si,unsigned long offset)357 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
358 unsigned long offset)
359 {
360 struct swap_cluster_info *ci;
361
362 ci = si->cluster_info;
363 if (ci) {
364 ci += offset / SWAPFILE_CLUSTER;
365 spin_lock(&ci->lock);
366 }
367 return ci;
368 }
369
unlock_cluster(struct swap_cluster_info * ci)370 static inline void unlock_cluster(struct swap_cluster_info *ci)
371 {
372 if (ci)
373 spin_unlock(&ci->lock);
374 }
375
376 /*
377 * Determine the locking method in use for this device. Return
378 * swap_cluster_info if SSD-style cluster-based locking is in place.
379 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)380 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
381 struct swap_info_struct *si, unsigned long offset)
382 {
383 struct swap_cluster_info *ci;
384
385 /* Try to use fine-grained SSD-style locking if available: */
386 ci = lock_cluster(si, offset);
387 /* Otherwise, fall back to traditional, coarse locking: */
388 if (!ci)
389 spin_lock(&si->lock);
390
391 return ci;
392 }
393
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)394 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
395 struct swap_cluster_info *ci)
396 {
397 if (ci)
398 unlock_cluster(ci);
399 else
400 spin_unlock(&si->lock);
401 }
402
cluster_list_empty(struct swap_cluster_list * list)403 static inline bool cluster_list_empty(struct swap_cluster_list *list)
404 {
405 return cluster_is_null(&list->head);
406 }
407
cluster_list_first(struct swap_cluster_list * list)408 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
409 {
410 return cluster_next(&list->head);
411 }
412
cluster_list_init(struct swap_cluster_list * list)413 static void cluster_list_init(struct swap_cluster_list *list)
414 {
415 cluster_set_null(&list->head);
416 cluster_set_null(&list->tail);
417 }
418
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)419 static void cluster_list_add_tail(struct swap_cluster_list *list,
420 struct swap_cluster_info *ci,
421 unsigned int idx)
422 {
423 if (cluster_list_empty(list)) {
424 cluster_set_next_flag(&list->head, idx, 0);
425 cluster_set_next_flag(&list->tail, idx, 0);
426 } else {
427 struct swap_cluster_info *ci_tail;
428 unsigned int tail = cluster_next(&list->tail);
429
430 /*
431 * Nested cluster lock, but both cluster locks are
432 * only acquired when we held swap_info_struct->lock
433 */
434 ci_tail = ci + tail;
435 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
436 cluster_set_next(ci_tail, idx);
437 spin_unlock(&ci_tail->lock);
438 cluster_set_next_flag(&list->tail, idx, 0);
439 }
440 }
441
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)442 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
443 struct swap_cluster_info *ci)
444 {
445 unsigned int idx;
446
447 idx = cluster_next(&list->head);
448 if (cluster_next(&list->tail) == idx) {
449 cluster_set_null(&list->head);
450 cluster_set_null(&list->tail);
451 } else
452 cluster_set_next_flag(&list->head,
453 cluster_next(&ci[idx]), 0);
454
455 return idx;
456 }
457
458 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)459 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
460 unsigned int idx)
461 {
462 /*
463 * If scan_swap_map_slots() can't find a free cluster, it will check
464 * si->swap_map directly. To make sure the discarding cluster isn't
465 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
466 * It will be cleared after discard
467 */
468 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
469 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
470
471 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
472
473 schedule_work(&si->discard_work);
474 }
475
__free_cluster(struct swap_info_struct * si,unsigned long idx)476 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
477 {
478 struct swap_cluster_info *ci = si->cluster_info;
479
480 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
481 cluster_list_add_tail(&si->free_clusters, ci, idx);
482 }
483
484 /*
485 * Doing discard actually. After a cluster discard is finished, the cluster
486 * will be added to free cluster list. caller should hold si->lock.
487 */
swap_do_scheduled_discard(struct swap_info_struct * si)488 static void swap_do_scheduled_discard(struct swap_info_struct *si)
489 {
490 struct swap_cluster_info *info, *ci;
491 unsigned int idx;
492
493 info = si->cluster_info;
494
495 while (!cluster_list_empty(&si->discard_clusters)) {
496 idx = cluster_list_del_first(&si->discard_clusters, info);
497 spin_unlock(&si->lock);
498
499 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
500 SWAPFILE_CLUSTER);
501
502 spin_lock(&si->lock);
503 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
504 __free_cluster(si, idx);
505 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
506 0, SWAPFILE_CLUSTER);
507 unlock_cluster(ci);
508 }
509 }
510
swap_discard_work(struct work_struct * work)511 static void swap_discard_work(struct work_struct *work)
512 {
513 struct swap_info_struct *si;
514
515 si = container_of(work, struct swap_info_struct, discard_work);
516
517 spin_lock(&si->lock);
518 swap_do_scheduled_discard(si);
519 spin_unlock(&si->lock);
520 }
521
swap_users_ref_free(struct percpu_ref * ref)522 static void swap_users_ref_free(struct percpu_ref *ref)
523 {
524 struct swap_info_struct *si;
525
526 si = container_of(ref, struct swap_info_struct, users);
527 complete(&si->comp);
528 }
529
alloc_cluster(struct swap_info_struct * si,unsigned long idx)530 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
531 {
532 struct swap_cluster_info *ci = si->cluster_info;
533
534 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
535 cluster_list_del_first(&si->free_clusters, ci);
536 cluster_set_count_flag(ci + idx, 0, 0);
537 }
538
free_cluster(struct swap_info_struct * si,unsigned long idx)539 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
540 {
541 struct swap_cluster_info *ci = si->cluster_info + idx;
542
543 VM_BUG_ON(cluster_count(ci) != 0);
544 /*
545 * If the swap is discardable, prepare discard the cluster
546 * instead of free it immediately. The cluster will be freed
547 * after discard.
548 */
549 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
550 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
551 swap_cluster_schedule_discard(si, idx);
552 return;
553 }
554
555 __free_cluster(si, idx);
556 }
557
558 /*
559 * The cluster corresponding to page_nr will be used. The cluster will be
560 * removed from free cluster list and its usage counter will be increased.
561 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)562 static void inc_cluster_info_page(struct swap_info_struct *p,
563 struct swap_cluster_info *cluster_info, unsigned long page_nr)
564 {
565 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
566
567 if (!cluster_info)
568 return;
569 if (cluster_is_free(&cluster_info[idx]))
570 alloc_cluster(p, idx);
571
572 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
573 cluster_set_count(&cluster_info[idx],
574 cluster_count(&cluster_info[idx]) + 1);
575 }
576
577 /*
578 * The cluster corresponding to page_nr decreases one usage. If the usage
579 * counter becomes 0, which means no page in the cluster is in using, we can
580 * optionally discard the cluster and add it to free cluster list.
581 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)582 static void dec_cluster_info_page(struct swap_info_struct *p,
583 struct swap_cluster_info *cluster_info, unsigned long page_nr)
584 {
585 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
586
587 if (!cluster_info)
588 return;
589
590 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
591 cluster_set_count(&cluster_info[idx],
592 cluster_count(&cluster_info[idx]) - 1);
593
594 if (cluster_count(&cluster_info[idx]) == 0)
595 free_cluster(p, idx);
596 }
597
598 /*
599 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
600 * cluster list. Avoiding such abuse to avoid list corruption.
601 */
602 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)603 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
604 unsigned long offset)
605 {
606 struct percpu_cluster *percpu_cluster;
607 bool conflict;
608
609 offset /= SWAPFILE_CLUSTER;
610 conflict = !cluster_list_empty(&si->free_clusters) &&
611 offset != cluster_list_first(&si->free_clusters) &&
612 cluster_is_free(&si->cluster_info[offset]);
613
614 if (!conflict)
615 return false;
616
617 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
618 cluster_set_null(&percpu_cluster->index);
619 return true;
620 }
621
622 /*
623 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
624 * might involve allocating a new cluster for current CPU too.
625 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)626 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
627 unsigned long *offset, unsigned long *scan_base)
628 {
629 struct percpu_cluster *cluster;
630 struct swap_cluster_info *ci;
631 unsigned long tmp, max;
632
633 new_cluster:
634 cluster = this_cpu_ptr(si->percpu_cluster);
635 if (cluster_is_null(&cluster->index)) {
636 if (!cluster_list_empty(&si->free_clusters)) {
637 cluster->index = si->free_clusters.head;
638 cluster->next = cluster_next(&cluster->index) *
639 SWAPFILE_CLUSTER;
640 } else if (!cluster_list_empty(&si->discard_clusters)) {
641 /*
642 * we don't have free cluster but have some clusters in
643 * discarding, do discard now and reclaim them, then
644 * reread cluster_next_cpu since we dropped si->lock
645 */
646 swap_do_scheduled_discard(si);
647 *scan_base = this_cpu_read(*si->cluster_next_cpu);
648 *offset = *scan_base;
649 goto new_cluster;
650 } else
651 return false;
652 }
653
654 /*
655 * Other CPUs can use our cluster if they can't find a free cluster,
656 * check if there is still free entry in the cluster
657 */
658 tmp = cluster->next;
659 max = min_t(unsigned long, si->max,
660 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
661 if (tmp < max) {
662 ci = lock_cluster(si, tmp);
663 while (tmp < max) {
664 if (!si->swap_map[tmp])
665 break;
666 tmp++;
667 }
668 unlock_cluster(ci);
669 }
670 if (tmp >= max) {
671 cluster_set_null(&cluster->index);
672 goto new_cluster;
673 }
674 cluster->next = tmp + 1;
675 *offset = tmp;
676 *scan_base = tmp;
677 return true;
678 }
679
__del_from_avail_list(struct swap_info_struct * p)680 static void __del_from_avail_list(struct swap_info_struct *p)
681 {
682 int nid;
683
684 assert_spin_locked(&p->lock);
685 for_each_node(nid)
686 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
687 }
688
del_from_avail_list(struct swap_info_struct * p)689 static void del_from_avail_list(struct swap_info_struct *p)
690 {
691 spin_lock(&swap_avail_lock);
692 __del_from_avail_list(p);
693 spin_unlock(&swap_avail_lock);
694 }
695
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)696 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698 {
699 unsigned int end = offset + nr_entries - 1;
700
701 if (offset == si->lowest_bit)
702 si->lowest_bit += nr_entries;
703 if (end == si->highest_bit)
704 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
705 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
706 if (si->inuse_pages == si->pages) {
707 si->lowest_bit = si->max;
708 si->highest_bit = 0;
709 del_from_avail_list(si);
710 }
711 }
712
add_to_avail_list(struct swap_info_struct * p)713 static void add_to_avail_list(struct swap_info_struct *p)
714 {
715 int nid;
716
717 spin_lock(&swap_avail_lock);
718 for_each_node(nid)
719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720 spin_unlock(&swap_avail_lock);
721 }
722
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724 unsigned int nr_entries)
725 {
726 unsigned long begin = offset;
727 unsigned long end = offset + nr_entries - 1;
728 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729
730 if (offset < si->lowest_bit)
731 si->lowest_bit = offset;
732 if (end > si->highest_bit) {
733 bool was_full = !si->highest_bit;
734
735 WRITE_ONCE(si->highest_bit, end);
736 if (was_full && (si->flags & SWP_WRITEOK))
737 add_to_avail_list(si);
738 }
739 atomic_long_add(nr_entries, &nr_swap_pages);
740 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741 if (si->flags & SWP_BLKDEV)
742 swap_slot_free_notify =
743 si->bdev->bd_disk->fops->swap_slot_free_notify;
744 else
745 swap_slot_free_notify = NULL;
746 while (offset <= end) {
747 arch_swap_invalidate_page(si->type, offset);
748 zswap_invalidate(si->type, offset);
749 if (swap_slot_free_notify)
750 swap_slot_free_notify(si->bdev, offset);
751 offset++;
752 }
753 clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755
set_cluster_next(struct swap_info_struct * si,unsigned long next)756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758 unsigned long prev;
759
760 if (!(si->flags & SWP_SOLIDSTATE)) {
761 si->cluster_next = next;
762 return;
763 }
764
765 prev = this_cpu_read(*si->cluster_next_cpu);
766 /*
767 * Cross the swap address space size aligned trunk, choose
768 * another trunk randomly to avoid lock contention on swap
769 * address space if possible.
770 */
771 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773 /* No free swap slots available */
774 if (si->highest_bit <= si->lowest_bit)
775 return;
776 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778 next = max_t(unsigned int, next, si->lowest_bit);
779 }
780 this_cpu_write(*si->cluster_next_cpu, next);
781 }
782
swap_offset_available_and_locked(struct swap_info_struct * si,unsigned long offset)783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784 unsigned long offset)
785 {
786 if (data_race(!si->swap_map[offset])) {
787 spin_lock(&si->lock);
788 return true;
789 }
790
791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792 spin_lock(&si->lock);
793 return true;
794 }
795
796 return false;
797 }
798
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])799 static int scan_swap_map_slots(struct swap_info_struct *si,
800 unsigned char usage, int nr,
801 swp_entry_t slots[])
802 {
803 struct swap_cluster_info *ci;
804 unsigned long offset;
805 unsigned long scan_base;
806 unsigned long last_in_cluster = 0;
807 int latency_ration = LATENCY_LIMIT;
808 int n_ret = 0;
809 bool scanned_many = false;
810
811 /*
812 * We try to cluster swap pages by allocating them sequentially
813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
814 * way, however, we resort to first-free allocation, starting
815 * a new cluster. This prevents us from scattering swap pages
816 * all over the entire swap partition, so that we reduce
817 * overall disk seek times between swap pages. -- sct
818 * But we do now try to find an empty cluster. -Andrea
819 * And we let swap pages go all over an SSD partition. Hugh
820 */
821
822 si->flags += SWP_SCANNING;
823 /*
824 * Use percpu scan base for SSD to reduce lock contention on
825 * cluster and swap cache. For HDD, sequential access is more
826 * important.
827 */
828 if (si->flags & SWP_SOLIDSTATE)
829 scan_base = this_cpu_read(*si->cluster_next_cpu);
830 else
831 scan_base = si->cluster_next;
832 offset = scan_base;
833
834 /* SSD algorithm */
835 if (si->cluster_info) {
836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837 goto scan;
838 } else if (unlikely(!si->cluster_nr--)) {
839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840 si->cluster_nr = SWAPFILE_CLUSTER - 1;
841 goto checks;
842 }
843
844 spin_unlock(&si->lock);
845
846 /*
847 * If seek is expensive, start searching for new cluster from
848 * start of partition, to minimize the span of allocated swap.
849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850 * case, just handled by scan_swap_map_try_ssd_cluster() above.
851 */
852 scan_base = offset = si->lowest_bit;
853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854
855 /* Locate the first empty (unaligned) cluster */
856 for (; last_in_cluster <= si->highest_bit; offset++) {
857 if (si->swap_map[offset])
858 last_in_cluster = offset + SWAPFILE_CLUSTER;
859 else if (offset == last_in_cluster) {
860 spin_lock(&si->lock);
861 offset -= SWAPFILE_CLUSTER - 1;
862 si->cluster_next = offset;
863 si->cluster_nr = SWAPFILE_CLUSTER - 1;
864 goto checks;
865 }
866 if (unlikely(--latency_ration < 0)) {
867 cond_resched();
868 latency_ration = LATENCY_LIMIT;
869 }
870 }
871
872 offset = scan_base;
873 spin_lock(&si->lock);
874 si->cluster_nr = SWAPFILE_CLUSTER - 1;
875 }
876
877 checks:
878 if (si->cluster_info) {
879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880 /* take a break if we already got some slots */
881 if (n_ret)
882 goto done;
883 if (!scan_swap_map_try_ssd_cluster(si, &offset,
884 &scan_base))
885 goto scan;
886 }
887 }
888 if (!(si->flags & SWP_WRITEOK))
889 goto no_page;
890 if (!si->highest_bit)
891 goto no_page;
892 if (offset > si->highest_bit)
893 scan_base = offset = si->lowest_bit;
894
895 ci = lock_cluster(si, offset);
896 /* reuse swap entry of cache-only swap if not busy. */
897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 int swap_was_freed;
899 unlock_cluster(ci);
900 spin_unlock(&si->lock);
901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902 spin_lock(&si->lock);
903 /* entry was freed successfully, try to use this again */
904 if (swap_was_freed)
905 goto checks;
906 goto scan; /* check next one */
907 }
908
909 if (si->swap_map[offset]) {
910 unlock_cluster(ci);
911 if (!n_ret)
912 goto scan;
913 else
914 goto done;
915 }
916 WRITE_ONCE(si->swap_map[offset], usage);
917 inc_cluster_info_page(si, si->cluster_info, offset);
918 unlock_cluster(ci);
919
920 swap_range_alloc(si, offset, 1);
921 slots[n_ret++] = swp_entry(si->type, offset);
922
923 /* got enough slots or reach max slots? */
924 if ((n_ret == nr) || (offset >= si->highest_bit))
925 goto done;
926
927 /* search for next available slot */
928
929 /* time to take a break? */
930 if (unlikely(--latency_ration < 0)) {
931 if (n_ret)
932 goto done;
933 spin_unlock(&si->lock);
934 cond_resched();
935 spin_lock(&si->lock);
936 latency_ration = LATENCY_LIMIT;
937 }
938
939 /* try to get more slots in cluster */
940 if (si->cluster_info) {
941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942 goto checks;
943 } else if (si->cluster_nr && !si->swap_map[++offset]) {
944 /* non-ssd case, still more slots in cluster? */
945 --si->cluster_nr;
946 goto checks;
947 }
948
949 /*
950 * Even if there's no free clusters available (fragmented),
951 * try to scan a little more quickly with lock held unless we
952 * have scanned too many slots already.
953 */
954 if (!scanned_many) {
955 unsigned long scan_limit;
956
957 if (offset < scan_base)
958 scan_limit = scan_base;
959 else
960 scan_limit = si->highest_bit;
961 for (; offset <= scan_limit && --latency_ration > 0;
962 offset++) {
963 if (!si->swap_map[offset])
964 goto checks;
965 }
966 }
967
968 done:
969 set_cluster_next(si, offset + 1);
970 si->flags -= SWP_SCANNING;
971 return n_ret;
972
973 scan:
974 spin_unlock(&si->lock);
975 while (++offset <= READ_ONCE(si->highest_bit)) {
976 if (unlikely(--latency_ration < 0)) {
977 cond_resched();
978 latency_ration = LATENCY_LIMIT;
979 scanned_many = true;
980 }
981 if (swap_offset_available_and_locked(si, offset))
982 goto checks;
983 }
984 offset = si->lowest_bit;
985 while (offset < scan_base) {
986 if (unlikely(--latency_ration < 0)) {
987 cond_resched();
988 latency_ration = LATENCY_LIMIT;
989 scanned_many = true;
990 }
991 if (swap_offset_available_and_locked(si, offset))
992 goto checks;
993 offset++;
994 }
995 spin_lock(&si->lock);
996
997 no_page:
998 si->flags -= SWP_SCANNING;
999 return n_ret;
1000 }
1001
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004 unsigned long idx;
1005 struct swap_cluster_info *ci;
1006 unsigned long offset;
1007
1008 /*
1009 * Should not even be attempting cluster allocations when huge
1010 * page swap is disabled. Warn and fail the allocation.
1011 */
1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013 VM_WARN_ON_ONCE(1);
1014 return 0;
1015 }
1016
1017 if (cluster_list_empty(&si->free_clusters))
1018 return 0;
1019
1020 idx = cluster_list_first(&si->free_clusters);
1021 offset = idx * SWAPFILE_CLUSTER;
1022 ci = lock_cluster(si, offset);
1023 alloc_cluster(si, idx);
1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025
1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027 unlock_cluster(ci);
1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029 *slot = swp_entry(si->type, offset);
1030
1031 return 1;
1032 }
1033
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036 unsigned long offset = idx * SWAPFILE_CLUSTER;
1037 struct swap_cluster_info *ci;
1038
1039 ci = lock_cluster(si, offset);
1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041 cluster_set_count_flag(ci, 0, 0);
1042 free_cluster(si, idx);
1043 unlock_cluster(ci);
1044 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049 unsigned long size = swap_entry_size(entry_size);
1050 struct swap_info_struct *si, *next;
1051 long avail_pgs;
1052 int n_ret = 0;
1053 int node;
1054
1055 /* Only single cluster request supported */
1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057
1058 spin_lock(&swap_avail_lock);
1059
1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061 if (avail_pgs <= 0) {
1062 spin_unlock(&swap_avail_lock);
1063 goto noswap;
1064 }
1065
1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067
1068 atomic_long_sub(n_goal * size, &nr_swap_pages);
1069
1070 start_over:
1071 node = numa_node_id();
1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073 /* requeue si to after same-priority siblings */
1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075 spin_unlock(&swap_avail_lock);
1076 spin_lock(&si->lock);
1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078 spin_lock(&swap_avail_lock);
1079 if (plist_node_empty(&si->avail_lists[node])) {
1080 spin_unlock(&si->lock);
1081 goto nextsi;
1082 }
1083 WARN(!si->highest_bit,
1084 "swap_info %d in list but !highest_bit\n",
1085 si->type);
1086 WARN(!(si->flags & SWP_WRITEOK),
1087 "swap_info %d in list but !SWP_WRITEOK\n",
1088 si->type);
1089 __del_from_avail_list(si);
1090 spin_unlock(&si->lock);
1091 goto nextsi;
1092 }
1093 if (size == SWAPFILE_CLUSTER) {
1094 if (si->flags & SWP_BLKDEV)
1095 n_ret = swap_alloc_cluster(si, swp_entries);
1096 } else
1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 n_goal, swp_entries);
1099 spin_unlock(&si->lock);
1100 if (n_ret || size == SWAPFILE_CLUSTER)
1101 goto check_out;
1102 cond_resched();
1103
1104 spin_lock(&swap_avail_lock);
1105 nextsi:
1106 /*
1107 * if we got here, it's likely that si was almost full before,
1108 * and since scan_swap_map_slots() can drop the si->lock,
1109 * multiple callers probably all tried to get a page from the
1110 * same si and it filled up before we could get one; or, the si
1111 * filled up between us dropping swap_avail_lock and taking
1112 * si->lock. Since we dropped the swap_avail_lock, the
1113 * swap_avail_head list may have been modified; so if next is
1114 * still in the swap_avail_head list then try it, otherwise
1115 * start over if we have not gotten any slots.
1116 */
1117 if (plist_node_empty(&next->avail_lists[node]))
1118 goto start_over;
1119 }
1120
1121 spin_unlock(&swap_avail_lock);
1122
1123 check_out:
1124 if (n_ret < n_goal)
1125 atomic_long_add((long)(n_goal - n_ret) * size,
1126 &nr_swap_pages);
1127 noswap:
1128 return n_ret;
1129 }
1130
_swap_info_get(swp_entry_t entry)1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 struct swap_info_struct *p;
1134 unsigned long offset;
1135
1136 if (!entry.val)
1137 goto out;
1138 p = swp_swap_info(entry);
1139 if (!p)
1140 goto bad_nofile;
1141 if (data_race(!(p->flags & SWP_USED)))
1142 goto bad_device;
1143 offset = swp_offset(entry);
1144 if (offset >= p->max)
1145 goto bad_offset;
1146 if (data_race(!p->swap_map[swp_offset(entry)]))
1147 goto bad_free;
1148 return p;
1149
1150 bad_free:
1151 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1152 goto out;
1153 bad_offset:
1154 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1155 goto out;
1156 bad_device:
1157 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1158 goto out;
1159 bad_nofile:
1160 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1161 out:
1162 return NULL;
1163 }
1164
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1166 struct swap_info_struct *q)
1167 {
1168 struct swap_info_struct *p;
1169
1170 p = _swap_info_get(entry);
1171
1172 if (p != q) {
1173 if (q != NULL)
1174 spin_unlock(&q->lock);
1175 if (p != NULL)
1176 spin_lock(&p->lock);
1177 }
1178 return p;
1179 }
1180
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1182 unsigned long offset,
1183 unsigned char usage)
1184 {
1185 unsigned char count;
1186 unsigned char has_cache;
1187
1188 count = p->swap_map[offset];
1189
1190 has_cache = count & SWAP_HAS_CACHE;
1191 count &= ~SWAP_HAS_CACHE;
1192
1193 if (usage == SWAP_HAS_CACHE) {
1194 VM_BUG_ON(!has_cache);
1195 has_cache = 0;
1196 } else if (count == SWAP_MAP_SHMEM) {
1197 /*
1198 * Or we could insist on shmem.c using a special
1199 * swap_shmem_free() and free_shmem_swap_and_cache()...
1200 */
1201 count = 0;
1202 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1203 if (count == COUNT_CONTINUED) {
1204 if (swap_count_continued(p, offset, count))
1205 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1206 else
1207 count = SWAP_MAP_MAX;
1208 } else
1209 count--;
1210 }
1211
1212 usage = count | has_cache;
1213 if (usage)
1214 WRITE_ONCE(p->swap_map[offset], usage);
1215 else
1216 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1217
1218 return usage;
1219 }
1220
1221 /*
1222 * When we get a swap entry, if there aren't some other ways to
1223 * prevent swapoff, such as the folio in swap cache is locked, page
1224 * table lock is held, etc., the swap entry may become invalid because
1225 * of swapoff. Then, we need to enclose all swap related functions
1226 * with get_swap_device() and put_swap_device(), unless the swap
1227 * functions call get/put_swap_device() by themselves.
1228 *
1229 * Note that when only holding the PTL, swapoff might succeed immediately
1230 * after freeing a swap entry. Therefore, immediately after
1231 * __swap_entry_free(), the swap info might become stale and should not
1232 * be touched without a prior get_swap_device().
1233 *
1234 * Check whether swap entry is valid in the swap device. If so,
1235 * return pointer to swap_info_struct, and keep the swap entry valid
1236 * via preventing the swap device from being swapoff, until
1237 * put_swap_device() is called. Otherwise return NULL.
1238 *
1239 * Notice that swapoff or swapoff+swapon can still happen before the
1240 * percpu_ref_tryget_live() in get_swap_device() or after the
1241 * percpu_ref_put() in put_swap_device() if there isn't any other way
1242 * to prevent swapoff. The caller must be prepared for that. For
1243 * example, the following situation is possible.
1244 *
1245 * CPU1 CPU2
1246 * do_swap_page()
1247 * ... swapoff+swapon
1248 * __read_swap_cache_async()
1249 * swapcache_prepare()
1250 * __swap_duplicate()
1251 * // check swap_map
1252 * // verify PTE not changed
1253 *
1254 * In __swap_duplicate(), the swap_map need to be checked before
1255 * changing partly because the specified swap entry may be for another
1256 * swap device which has been swapoff. And in do_swap_page(), after
1257 * the page is read from the swap device, the PTE is verified not
1258 * changed with the page table locked to check whether the swap device
1259 * has been swapoff or swapoff+swapon.
1260 */
get_swap_device(swp_entry_t entry)1261 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1262 {
1263 struct swap_info_struct *si;
1264 unsigned long offset;
1265
1266 if (!entry.val)
1267 goto out;
1268 si = swp_swap_info(entry);
1269 if (!si)
1270 goto bad_nofile;
1271 if (!percpu_ref_tryget_live(&si->users))
1272 goto out;
1273 /*
1274 * Guarantee the si->users are checked before accessing other
1275 * fields of swap_info_struct.
1276 *
1277 * Paired with the spin_unlock() after setup_swap_info() in
1278 * enable_swap_info().
1279 */
1280 smp_rmb();
1281 offset = swp_offset(entry);
1282 if (offset >= si->max)
1283 goto put_out;
1284
1285 return si;
1286 bad_nofile:
1287 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1288 out:
1289 return NULL;
1290 put_out:
1291 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1292 percpu_ref_put(&si->users);
1293 return NULL;
1294 }
1295
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1296 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1297 swp_entry_t entry)
1298 {
1299 struct swap_cluster_info *ci;
1300 unsigned long offset = swp_offset(entry);
1301 unsigned char usage;
1302
1303 ci = lock_cluster_or_swap_info(p, offset);
1304 usage = __swap_entry_free_locked(p, offset, 1);
1305 unlock_cluster_or_swap_info(p, ci);
1306 if (!usage)
1307 free_swap_slot(entry);
1308
1309 return usage;
1310 }
1311
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1312 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1313 {
1314 struct swap_cluster_info *ci;
1315 unsigned long offset = swp_offset(entry);
1316 unsigned char count;
1317
1318 ci = lock_cluster(p, offset);
1319 count = p->swap_map[offset];
1320 VM_BUG_ON(count != SWAP_HAS_CACHE);
1321 p->swap_map[offset] = 0;
1322 dec_cluster_info_page(p, p->cluster_info, offset);
1323 unlock_cluster(ci);
1324
1325 mem_cgroup_uncharge_swap(entry, 1);
1326 swap_range_free(p, offset, 1);
1327 }
1328
1329 /*
1330 * Caller has made sure that the swap device corresponding to entry
1331 * is still around or has not been recycled.
1332 */
swap_free(swp_entry_t entry)1333 void swap_free(swp_entry_t entry)
1334 {
1335 struct swap_info_struct *p;
1336
1337 p = _swap_info_get(entry);
1338 if (p)
1339 __swap_entry_free(p, entry);
1340 }
1341
1342 /*
1343 * Called after dropping swapcache to decrease refcnt to swap entries.
1344 */
put_swap_folio(struct folio * folio,swp_entry_t entry)1345 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1346 {
1347 unsigned long offset = swp_offset(entry);
1348 unsigned long idx = offset / SWAPFILE_CLUSTER;
1349 struct swap_cluster_info *ci;
1350 struct swap_info_struct *si;
1351 unsigned char *map;
1352 unsigned int i, free_entries = 0;
1353 unsigned char val;
1354 int size = swap_entry_size(folio_nr_pages(folio));
1355
1356 si = _swap_info_get(entry);
1357 if (!si)
1358 return;
1359
1360 ci = lock_cluster_or_swap_info(si, offset);
1361 if (size == SWAPFILE_CLUSTER) {
1362 VM_BUG_ON(!cluster_is_huge(ci));
1363 map = si->swap_map + offset;
1364 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1365 val = map[i];
1366 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1367 if (val == SWAP_HAS_CACHE)
1368 free_entries++;
1369 }
1370 cluster_clear_huge(ci);
1371 if (free_entries == SWAPFILE_CLUSTER) {
1372 unlock_cluster_or_swap_info(si, ci);
1373 spin_lock(&si->lock);
1374 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1375 swap_free_cluster(si, idx);
1376 spin_unlock(&si->lock);
1377 return;
1378 }
1379 }
1380 for (i = 0; i < size; i++, entry.val++) {
1381 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1382 unlock_cluster_or_swap_info(si, ci);
1383 free_swap_slot(entry);
1384 if (i == size - 1)
1385 return;
1386 lock_cluster_or_swap_info(si, offset);
1387 }
1388 }
1389 unlock_cluster_or_swap_info(si, ci);
1390 }
1391
1392 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1393 int split_swap_cluster(swp_entry_t entry)
1394 {
1395 struct swap_info_struct *si;
1396 struct swap_cluster_info *ci;
1397 unsigned long offset = swp_offset(entry);
1398
1399 si = _swap_info_get(entry);
1400 if (!si)
1401 return -EBUSY;
1402 ci = lock_cluster(si, offset);
1403 cluster_clear_huge(ci);
1404 unlock_cluster(ci);
1405 return 0;
1406 }
1407 #endif
1408
swp_entry_cmp(const void * ent1,const void * ent2)1409 static int swp_entry_cmp(const void *ent1, const void *ent2)
1410 {
1411 const swp_entry_t *e1 = ent1, *e2 = ent2;
1412
1413 return (int)swp_type(*e1) - (int)swp_type(*e2);
1414 }
1415
swapcache_free_entries(swp_entry_t * entries,int n)1416 void swapcache_free_entries(swp_entry_t *entries, int n)
1417 {
1418 struct swap_info_struct *p, *prev;
1419 int i;
1420
1421 if (n <= 0)
1422 return;
1423
1424 prev = NULL;
1425 p = NULL;
1426
1427 /*
1428 * Sort swap entries by swap device, so each lock is only taken once.
1429 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1430 * so low that it isn't necessary to optimize further.
1431 */
1432 if (nr_swapfiles > 1)
1433 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1434 for (i = 0; i < n; ++i) {
1435 p = swap_info_get_cont(entries[i], prev);
1436 if (p)
1437 swap_entry_free(p, entries[i]);
1438 prev = p;
1439 }
1440 if (p)
1441 spin_unlock(&p->lock);
1442 }
1443
__swap_count(swp_entry_t entry)1444 int __swap_count(swp_entry_t entry)
1445 {
1446 struct swap_info_struct *si = swp_swap_info(entry);
1447 pgoff_t offset = swp_offset(entry);
1448
1449 return swap_count(si->swap_map[offset]);
1450 }
1451
1452 /*
1453 * How many references to @entry are currently swapped out?
1454 * This does not give an exact answer when swap count is continued,
1455 * but does include the high COUNT_CONTINUED flag to allow for that.
1456 */
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1457 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1458 {
1459 pgoff_t offset = swp_offset(entry);
1460 struct swap_cluster_info *ci;
1461 int count;
1462
1463 ci = lock_cluster_or_swap_info(si, offset);
1464 count = swap_count(si->swap_map[offset]);
1465 unlock_cluster_or_swap_info(si, ci);
1466 return count;
1467 }
1468
1469 /*
1470 * How many references to @entry are currently swapped out?
1471 * This considers COUNT_CONTINUED so it returns exact answer.
1472 */
swp_swapcount(swp_entry_t entry)1473 int swp_swapcount(swp_entry_t entry)
1474 {
1475 int count, tmp_count, n;
1476 struct swap_info_struct *p;
1477 struct swap_cluster_info *ci;
1478 struct page *page;
1479 pgoff_t offset;
1480 unsigned char *map;
1481
1482 p = _swap_info_get(entry);
1483 if (!p)
1484 return 0;
1485
1486 offset = swp_offset(entry);
1487
1488 ci = lock_cluster_or_swap_info(p, offset);
1489
1490 count = swap_count(p->swap_map[offset]);
1491 if (!(count & COUNT_CONTINUED))
1492 goto out;
1493
1494 count &= ~COUNT_CONTINUED;
1495 n = SWAP_MAP_MAX + 1;
1496
1497 page = vmalloc_to_page(p->swap_map + offset);
1498 offset &= ~PAGE_MASK;
1499 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1500
1501 do {
1502 page = list_next_entry(page, lru);
1503 map = kmap_atomic(page);
1504 tmp_count = map[offset];
1505 kunmap_atomic(map);
1506
1507 count += (tmp_count & ~COUNT_CONTINUED) * n;
1508 n *= (SWAP_CONT_MAX + 1);
1509 } while (tmp_count & COUNT_CONTINUED);
1510 out:
1511 unlock_cluster_or_swap_info(p, ci);
1512 return count;
1513 }
1514
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1515 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1516 swp_entry_t entry)
1517 {
1518 struct swap_cluster_info *ci;
1519 unsigned char *map = si->swap_map;
1520 unsigned long roffset = swp_offset(entry);
1521 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1522 int i;
1523 bool ret = false;
1524
1525 ci = lock_cluster_or_swap_info(si, offset);
1526 if (!ci || !cluster_is_huge(ci)) {
1527 if (swap_count(map[roffset]))
1528 ret = true;
1529 goto unlock_out;
1530 }
1531 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1532 if (swap_count(map[offset + i])) {
1533 ret = true;
1534 break;
1535 }
1536 }
1537 unlock_out:
1538 unlock_cluster_or_swap_info(si, ci);
1539 return ret;
1540 }
1541
folio_swapped(struct folio * folio)1542 static bool folio_swapped(struct folio *folio)
1543 {
1544 swp_entry_t entry = folio->swap;
1545 struct swap_info_struct *si = _swap_info_get(entry);
1546
1547 if (!si)
1548 return false;
1549
1550 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1551 return swap_swapcount(si, entry) != 0;
1552
1553 return swap_page_trans_huge_swapped(si, entry);
1554 }
1555
1556 /**
1557 * folio_free_swap() - Free the swap space used for this folio.
1558 * @folio: The folio to remove.
1559 *
1560 * If swap is getting full, or if there are no more mappings of this folio,
1561 * then call folio_free_swap to free its swap space.
1562 *
1563 * Return: true if we were able to release the swap space.
1564 */
folio_free_swap(struct folio * folio)1565 bool folio_free_swap(struct folio *folio)
1566 {
1567 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1568
1569 if (!folio_test_swapcache(folio))
1570 return false;
1571 if (folio_test_writeback(folio))
1572 return false;
1573 if (folio_swapped(folio))
1574 return false;
1575
1576 /*
1577 * Once hibernation has begun to create its image of memory,
1578 * there's a danger that one of the calls to folio_free_swap()
1579 * - most probably a call from __try_to_reclaim_swap() while
1580 * hibernation is allocating its own swap pages for the image,
1581 * but conceivably even a call from memory reclaim - will free
1582 * the swap from a folio which has already been recorded in the
1583 * image as a clean swapcache folio, and then reuse its swap for
1584 * another page of the image. On waking from hibernation, the
1585 * original folio might be freed under memory pressure, then
1586 * later read back in from swap, now with the wrong data.
1587 *
1588 * Hibernation suspends storage while it is writing the image
1589 * to disk so check that here.
1590 */
1591 if (pm_suspended_storage())
1592 return false;
1593
1594 delete_from_swap_cache(folio);
1595 folio_set_dirty(folio);
1596 return true;
1597 }
1598
1599 /*
1600 * Free the swap entry like above, but also try to
1601 * free the page cache entry if it is the last user.
1602 */
free_swap_and_cache(swp_entry_t entry)1603 int free_swap_and_cache(swp_entry_t entry)
1604 {
1605 struct swap_info_struct *p;
1606 unsigned char count;
1607
1608 if (non_swap_entry(entry))
1609 return 1;
1610
1611 p = get_swap_device(entry);
1612 if (p) {
1613 if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1614 put_swap_device(p);
1615 return 0;
1616 }
1617
1618 count = __swap_entry_free(p, entry);
1619 if (count == SWAP_HAS_CACHE &&
1620 !swap_page_trans_huge_swapped(p, entry))
1621 __try_to_reclaim_swap(p, swp_offset(entry),
1622 TTRS_UNMAPPED | TTRS_FULL);
1623 put_swap_device(p);
1624 }
1625 return p != NULL;
1626 }
1627
1628 #ifdef CONFIG_HIBERNATION
1629
get_swap_page_of_type(int type)1630 swp_entry_t get_swap_page_of_type(int type)
1631 {
1632 struct swap_info_struct *si = swap_type_to_swap_info(type);
1633 swp_entry_t entry = {0};
1634
1635 if (!si)
1636 goto fail;
1637
1638 /* This is called for allocating swap entry, not cache */
1639 spin_lock(&si->lock);
1640 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1641 atomic_long_dec(&nr_swap_pages);
1642 spin_unlock(&si->lock);
1643 fail:
1644 return entry;
1645 }
1646
1647 /*
1648 * Find the swap type that corresponds to given device (if any).
1649 *
1650 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1651 * from 0, in which the swap header is expected to be located.
1652 *
1653 * This is needed for the suspend to disk (aka swsusp).
1654 */
swap_type_of(dev_t device,sector_t offset)1655 int swap_type_of(dev_t device, sector_t offset)
1656 {
1657 int type;
1658
1659 if (!device)
1660 return -1;
1661
1662 spin_lock(&swap_lock);
1663 for (type = 0; type < nr_swapfiles; type++) {
1664 struct swap_info_struct *sis = swap_info[type];
1665
1666 if (!(sis->flags & SWP_WRITEOK))
1667 continue;
1668
1669 if (device == sis->bdev->bd_dev) {
1670 struct swap_extent *se = first_se(sis);
1671
1672 if (se->start_block == offset) {
1673 spin_unlock(&swap_lock);
1674 return type;
1675 }
1676 }
1677 }
1678 spin_unlock(&swap_lock);
1679 return -ENODEV;
1680 }
1681
find_first_swap(dev_t * device)1682 int find_first_swap(dev_t *device)
1683 {
1684 int type;
1685
1686 spin_lock(&swap_lock);
1687 for (type = 0; type < nr_swapfiles; type++) {
1688 struct swap_info_struct *sis = swap_info[type];
1689
1690 if (!(sis->flags & SWP_WRITEOK))
1691 continue;
1692 *device = sis->bdev->bd_dev;
1693 spin_unlock(&swap_lock);
1694 return type;
1695 }
1696 spin_unlock(&swap_lock);
1697 return -ENODEV;
1698 }
1699
1700 /*
1701 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1702 * corresponding to given index in swap_info (swap type).
1703 */
swapdev_block(int type,pgoff_t offset)1704 sector_t swapdev_block(int type, pgoff_t offset)
1705 {
1706 struct swap_info_struct *si = swap_type_to_swap_info(type);
1707 struct swap_extent *se;
1708
1709 if (!si || !(si->flags & SWP_WRITEOK))
1710 return 0;
1711 se = offset_to_swap_extent(si, offset);
1712 return se->start_block + (offset - se->start_page);
1713 }
1714
1715 /*
1716 * Return either the total number of swap pages of given type, or the number
1717 * of free pages of that type (depending on @free)
1718 *
1719 * This is needed for software suspend
1720 */
count_swap_pages(int type,int free)1721 unsigned int count_swap_pages(int type, int free)
1722 {
1723 unsigned int n = 0;
1724
1725 spin_lock(&swap_lock);
1726 if ((unsigned int)type < nr_swapfiles) {
1727 struct swap_info_struct *sis = swap_info[type];
1728
1729 spin_lock(&sis->lock);
1730 if (sis->flags & SWP_WRITEOK) {
1731 n = sis->pages;
1732 if (free)
1733 n -= sis->inuse_pages;
1734 }
1735 spin_unlock(&sis->lock);
1736 }
1737 spin_unlock(&swap_lock);
1738 return n;
1739 }
1740 #endif /* CONFIG_HIBERNATION */
1741
pte_same_as_swp(pte_t pte,pte_t swp_pte)1742 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1743 {
1744 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1745 }
1746
1747 /*
1748 * No need to decide whether this PTE shares the swap entry with others,
1749 * just let do_wp_page work it out if a write is requested later - to
1750 * force COW, vm_page_prot omits write permission from any private vma.
1751 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)1752 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1753 unsigned long addr, swp_entry_t entry, struct folio *folio)
1754 {
1755 struct page *page = folio_file_page(folio, swp_offset(entry));
1756 struct page *swapcache;
1757 spinlock_t *ptl;
1758 pte_t *pte, new_pte, old_pte;
1759 bool hwpoisoned = PageHWPoison(page);
1760 int ret = 1;
1761
1762 swapcache = page;
1763 page = ksm_might_need_to_copy(page, vma, addr);
1764 if (unlikely(!page))
1765 return -ENOMEM;
1766 else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1767 hwpoisoned = true;
1768
1769 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1770 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1771 swp_entry_to_pte(entry)))) {
1772 ret = 0;
1773 goto out;
1774 }
1775
1776 old_pte = ptep_get(pte);
1777
1778 if (unlikely(hwpoisoned || !PageUptodate(page))) {
1779 swp_entry_t swp_entry;
1780
1781 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1782 if (hwpoisoned) {
1783 swp_entry = make_hwpoison_entry(swapcache);
1784 page = swapcache;
1785 } else {
1786 swp_entry = make_poisoned_swp_entry();
1787 }
1788 new_pte = swp_entry_to_pte(swp_entry);
1789 ret = 0;
1790 goto setpte;
1791 }
1792
1793 /*
1794 * Some architectures may have to restore extra metadata to the page
1795 * when reading from swap. This metadata may be indexed by swap entry
1796 * so this must be called before swap_free().
1797 */
1798 arch_swap_restore(entry, page_folio(page));
1799
1800 /* See do_swap_page() */
1801 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1802 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1803
1804 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1805 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1806 get_page(page);
1807 if (page == swapcache) {
1808 rmap_t rmap_flags = RMAP_NONE;
1809
1810 /*
1811 * See do_swap_page(): PageWriteback() would be problematic.
1812 * However, we do a wait_on_page_writeback() just before this
1813 * call and have the page locked.
1814 */
1815 VM_BUG_ON_PAGE(PageWriteback(page), page);
1816 if (pte_swp_exclusive(old_pte))
1817 rmap_flags |= RMAP_EXCLUSIVE;
1818
1819 page_add_anon_rmap(page, vma, addr, rmap_flags);
1820 } else { /* ksm created a completely new copy */
1821 page_add_new_anon_rmap(page, vma, addr);
1822 lru_cache_add_inactive_or_unevictable(page, vma);
1823 }
1824 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1825 if (pte_swp_soft_dirty(old_pte))
1826 new_pte = pte_mksoft_dirty(new_pte);
1827 if (pte_swp_uffd_wp(old_pte))
1828 new_pte = pte_mkuffd_wp(new_pte);
1829 setpte:
1830 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1831 swap_free(entry);
1832 out:
1833 if (pte)
1834 pte_unmap_unlock(pte, ptl);
1835 if (page != swapcache) {
1836 unlock_page(page);
1837 put_page(page);
1838 }
1839 return ret;
1840 }
1841
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)1842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1843 unsigned long addr, unsigned long end,
1844 unsigned int type)
1845 {
1846 pte_t *pte = NULL;
1847 struct swap_info_struct *si;
1848
1849 si = swap_info[type];
1850 do {
1851 struct folio *folio;
1852 unsigned long offset;
1853 unsigned char swp_count;
1854 swp_entry_t entry;
1855 int ret;
1856 pte_t ptent;
1857
1858 if (!pte++) {
1859 pte = pte_offset_map(pmd, addr);
1860 if (!pte)
1861 break;
1862 }
1863
1864 ptent = ptep_get_lockless(pte);
1865
1866 if (!is_swap_pte(ptent))
1867 continue;
1868
1869 entry = pte_to_swp_entry(ptent);
1870 if (swp_type(entry) != type)
1871 continue;
1872
1873 offset = swp_offset(entry);
1874 pte_unmap(pte);
1875 pte = NULL;
1876
1877 folio = swap_cache_get_folio(entry, vma, addr);
1878 if (!folio) {
1879 struct page *page;
1880 struct vm_fault vmf = {
1881 .vma = vma,
1882 .address = addr,
1883 .real_address = addr,
1884 .pmd = pmd,
1885 };
1886
1887 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1888 &vmf);
1889 if (page)
1890 folio = page_folio(page);
1891 }
1892 if (!folio) {
1893 swp_count = READ_ONCE(si->swap_map[offset]);
1894 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1895 continue;
1896 return -ENOMEM;
1897 }
1898
1899 folio_lock(folio);
1900 folio_wait_writeback(folio);
1901 ret = unuse_pte(vma, pmd, addr, entry, folio);
1902 if (ret < 0) {
1903 folio_unlock(folio);
1904 folio_put(folio);
1905 return ret;
1906 }
1907
1908 folio_free_swap(folio);
1909 folio_unlock(folio);
1910 folio_put(folio);
1911 } while (addr += PAGE_SIZE, addr != end);
1912
1913 if (pte)
1914 pte_unmap(pte);
1915 return 0;
1916 }
1917
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)1918 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1919 unsigned long addr, unsigned long end,
1920 unsigned int type)
1921 {
1922 pmd_t *pmd;
1923 unsigned long next;
1924 int ret;
1925
1926 pmd = pmd_offset(pud, addr);
1927 do {
1928 cond_resched();
1929 next = pmd_addr_end(addr, end);
1930 ret = unuse_pte_range(vma, pmd, addr, next, type);
1931 if (ret)
1932 return ret;
1933 } while (pmd++, addr = next, addr != end);
1934 return 0;
1935 }
1936
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)1937 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1938 unsigned long addr, unsigned long end,
1939 unsigned int type)
1940 {
1941 pud_t *pud;
1942 unsigned long next;
1943 int ret;
1944
1945 pud = pud_offset(p4d, addr);
1946 do {
1947 next = pud_addr_end(addr, end);
1948 if (pud_none_or_clear_bad(pud))
1949 continue;
1950 ret = unuse_pmd_range(vma, pud, addr, next, type);
1951 if (ret)
1952 return ret;
1953 } while (pud++, addr = next, addr != end);
1954 return 0;
1955 }
1956
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)1957 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1958 unsigned long addr, unsigned long end,
1959 unsigned int type)
1960 {
1961 p4d_t *p4d;
1962 unsigned long next;
1963 int ret;
1964
1965 p4d = p4d_offset(pgd, addr);
1966 do {
1967 next = p4d_addr_end(addr, end);
1968 if (p4d_none_or_clear_bad(p4d))
1969 continue;
1970 ret = unuse_pud_range(vma, p4d, addr, next, type);
1971 if (ret)
1972 return ret;
1973 } while (p4d++, addr = next, addr != end);
1974 return 0;
1975 }
1976
unuse_vma(struct vm_area_struct * vma,unsigned int type)1977 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1978 {
1979 pgd_t *pgd;
1980 unsigned long addr, end, next;
1981 int ret;
1982
1983 addr = vma->vm_start;
1984 end = vma->vm_end;
1985
1986 pgd = pgd_offset(vma->vm_mm, addr);
1987 do {
1988 next = pgd_addr_end(addr, end);
1989 if (pgd_none_or_clear_bad(pgd))
1990 continue;
1991 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1992 if (ret)
1993 return ret;
1994 } while (pgd++, addr = next, addr != end);
1995 return 0;
1996 }
1997
unuse_mm(struct mm_struct * mm,unsigned int type)1998 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1999 {
2000 struct vm_area_struct *vma;
2001 int ret = 0;
2002 VMA_ITERATOR(vmi, mm, 0);
2003
2004 mmap_read_lock(mm);
2005 for_each_vma(vmi, vma) {
2006 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2007 ret = unuse_vma(vma, type);
2008 if (ret)
2009 break;
2010 }
2011
2012 cond_resched();
2013 }
2014 mmap_read_unlock(mm);
2015 return ret;
2016 }
2017
2018 /*
2019 * Scan swap_map from current position to next entry still in use.
2020 * Return 0 if there are no inuse entries after prev till end of
2021 * the map.
2022 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2023 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2024 unsigned int prev)
2025 {
2026 unsigned int i;
2027 unsigned char count;
2028
2029 /*
2030 * No need for swap_lock here: we're just looking
2031 * for whether an entry is in use, not modifying it; false
2032 * hits are okay, and sys_swapoff() has already prevented new
2033 * allocations from this area (while holding swap_lock).
2034 */
2035 for (i = prev + 1; i < si->max; i++) {
2036 count = READ_ONCE(si->swap_map[i]);
2037 if (count && swap_count(count) != SWAP_MAP_BAD)
2038 break;
2039 if ((i % LATENCY_LIMIT) == 0)
2040 cond_resched();
2041 }
2042
2043 if (i == si->max)
2044 i = 0;
2045
2046 return i;
2047 }
2048
try_to_unuse(unsigned int type)2049 static int try_to_unuse(unsigned int type)
2050 {
2051 struct mm_struct *prev_mm;
2052 struct mm_struct *mm;
2053 struct list_head *p;
2054 int retval = 0;
2055 struct swap_info_struct *si = swap_info[type];
2056 struct folio *folio;
2057 swp_entry_t entry;
2058 unsigned int i;
2059
2060 if (!READ_ONCE(si->inuse_pages))
2061 return 0;
2062
2063 retry:
2064 retval = shmem_unuse(type);
2065 if (retval)
2066 return retval;
2067
2068 prev_mm = &init_mm;
2069 mmget(prev_mm);
2070
2071 spin_lock(&mmlist_lock);
2072 p = &init_mm.mmlist;
2073 while (READ_ONCE(si->inuse_pages) &&
2074 !signal_pending(current) &&
2075 (p = p->next) != &init_mm.mmlist) {
2076
2077 mm = list_entry(p, struct mm_struct, mmlist);
2078 if (!mmget_not_zero(mm))
2079 continue;
2080 spin_unlock(&mmlist_lock);
2081 mmput(prev_mm);
2082 prev_mm = mm;
2083 retval = unuse_mm(mm, type);
2084 if (retval) {
2085 mmput(prev_mm);
2086 return retval;
2087 }
2088
2089 /*
2090 * Make sure that we aren't completely killing
2091 * interactive performance.
2092 */
2093 cond_resched();
2094 spin_lock(&mmlist_lock);
2095 }
2096 spin_unlock(&mmlist_lock);
2097
2098 mmput(prev_mm);
2099
2100 i = 0;
2101 while (READ_ONCE(si->inuse_pages) &&
2102 !signal_pending(current) &&
2103 (i = find_next_to_unuse(si, i)) != 0) {
2104
2105 entry = swp_entry(type, i);
2106 folio = filemap_get_folio(swap_address_space(entry), i);
2107 if (IS_ERR(folio))
2108 continue;
2109
2110 /*
2111 * It is conceivable that a racing task removed this folio from
2112 * swap cache just before we acquired the page lock. The folio
2113 * might even be back in swap cache on another swap area. But
2114 * that is okay, folio_free_swap() only removes stale folios.
2115 */
2116 folio_lock(folio);
2117 folio_wait_writeback(folio);
2118 folio_free_swap(folio);
2119 folio_unlock(folio);
2120 folio_put(folio);
2121 }
2122
2123 /*
2124 * Lets check again to see if there are still swap entries in the map.
2125 * If yes, we would need to do retry the unuse logic again.
2126 * Under global memory pressure, swap entries can be reinserted back
2127 * into process space after the mmlist loop above passes over them.
2128 *
2129 * Limit the number of retries? No: when mmget_not_zero()
2130 * above fails, that mm is likely to be freeing swap from
2131 * exit_mmap(), which proceeds at its own independent pace;
2132 * and even shmem_writepage() could have been preempted after
2133 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2134 * and robust (though cpu-intensive) just to keep retrying.
2135 */
2136 if (READ_ONCE(si->inuse_pages)) {
2137 if (!signal_pending(current))
2138 goto retry;
2139 return -EINTR;
2140 }
2141
2142 return 0;
2143 }
2144
2145 /*
2146 * After a successful try_to_unuse, if no swap is now in use, we know
2147 * we can empty the mmlist. swap_lock must be held on entry and exit.
2148 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2149 * added to the mmlist just after page_duplicate - before would be racy.
2150 */
drain_mmlist(void)2151 static void drain_mmlist(void)
2152 {
2153 struct list_head *p, *next;
2154 unsigned int type;
2155
2156 for (type = 0; type < nr_swapfiles; type++)
2157 if (swap_info[type]->inuse_pages)
2158 return;
2159 spin_lock(&mmlist_lock);
2160 list_for_each_safe(p, next, &init_mm.mmlist)
2161 list_del_init(p);
2162 spin_unlock(&mmlist_lock);
2163 }
2164
2165 /*
2166 * Free all of a swapdev's extent information
2167 */
destroy_swap_extents(struct swap_info_struct * sis)2168 static void destroy_swap_extents(struct swap_info_struct *sis)
2169 {
2170 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2171 struct rb_node *rb = sis->swap_extent_root.rb_node;
2172 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2173
2174 rb_erase(rb, &sis->swap_extent_root);
2175 kfree(se);
2176 }
2177
2178 if (sis->flags & SWP_ACTIVATED) {
2179 struct file *swap_file = sis->swap_file;
2180 struct address_space *mapping = swap_file->f_mapping;
2181
2182 sis->flags &= ~SWP_ACTIVATED;
2183 if (mapping->a_ops->swap_deactivate)
2184 mapping->a_ops->swap_deactivate(swap_file);
2185 }
2186 }
2187
2188 /*
2189 * Add a block range (and the corresponding page range) into this swapdev's
2190 * extent tree.
2191 *
2192 * This function rather assumes that it is called in ascending page order.
2193 */
2194 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2195 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2196 unsigned long nr_pages, sector_t start_block)
2197 {
2198 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2199 struct swap_extent *se;
2200 struct swap_extent *new_se;
2201
2202 /*
2203 * place the new node at the right most since the
2204 * function is called in ascending page order.
2205 */
2206 while (*link) {
2207 parent = *link;
2208 link = &parent->rb_right;
2209 }
2210
2211 if (parent) {
2212 se = rb_entry(parent, struct swap_extent, rb_node);
2213 BUG_ON(se->start_page + se->nr_pages != start_page);
2214 if (se->start_block + se->nr_pages == start_block) {
2215 /* Merge it */
2216 se->nr_pages += nr_pages;
2217 return 0;
2218 }
2219 }
2220
2221 /* No merge, insert a new extent. */
2222 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2223 if (new_se == NULL)
2224 return -ENOMEM;
2225 new_se->start_page = start_page;
2226 new_se->nr_pages = nr_pages;
2227 new_se->start_block = start_block;
2228
2229 rb_link_node(&new_se->rb_node, parent, link);
2230 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2231 return 1;
2232 }
2233 EXPORT_SYMBOL_GPL(add_swap_extent);
2234
2235 /*
2236 * A `swap extent' is a simple thing which maps a contiguous range of pages
2237 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2238 * built at swapon time and is then used at swap_writepage/swap_readpage
2239 * time for locating where on disk a page belongs.
2240 *
2241 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2242 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2243 * swap files identically.
2244 *
2245 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2246 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2247 * swapfiles are handled *identically* after swapon time.
2248 *
2249 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2250 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2251 * blocks are found which do not fall within the PAGE_SIZE alignment
2252 * requirements, they are simply tossed out - we will never use those blocks
2253 * for swapping.
2254 *
2255 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2256 * prevents users from writing to the swap device, which will corrupt memory.
2257 *
2258 * The amount of disk space which a single swap extent represents varies.
2259 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2260 * extents in the rbtree. - akpm.
2261 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2262 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2263 {
2264 struct file *swap_file = sis->swap_file;
2265 struct address_space *mapping = swap_file->f_mapping;
2266 struct inode *inode = mapping->host;
2267 int ret;
2268
2269 if (S_ISBLK(inode->i_mode)) {
2270 ret = add_swap_extent(sis, 0, sis->max, 0);
2271 *span = sis->pages;
2272 return ret;
2273 }
2274
2275 if (mapping->a_ops->swap_activate) {
2276 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2277 if (ret < 0)
2278 return ret;
2279 sis->flags |= SWP_ACTIVATED;
2280 if ((sis->flags & SWP_FS_OPS) &&
2281 sio_pool_init() != 0) {
2282 destroy_swap_extents(sis);
2283 return -ENOMEM;
2284 }
2285 return ret;
2286 }
2287
2288 return generic_swapfile_activate(sis, swap_file, span);
2289 }
2290
swap_node(struct swap_info_struct * p)2291 static int swap_node(struct swap_info_struct *p)
2292 {
2293 struct block_device *bdev;
2294
2295 if (p->bdev)
2296 bdev = p->bdev;
2297 else
2298 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2299
2300 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2301 }
2302
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2303 static void setup_swap_info(struct swap_info_struct *p, int prio,
2304 unsigned char *swap_map,
2305 struct swap_cluster_info *cluster_info)
2306 {
2307 int i;
2308
2309 if (prio >= 0)
2310 p->prio = prio;
2311 else
2312 p->prio = --least_priority;
2313 /*
2314 * the plist prio is negated because plist ordering is
2315 * low-to-high, while swap ordering is high-to-low
2316 */
2317 p->list.prio = -p->prio;
2318 for_each_node(i) {
2319 if (p->prio >= 0)
2320 p->avail_lists[i].prio = -p->prio;
2321 else {
2322 if (swap_node(p) == i)
2323 p->avail_lists[i].prio = 1;
2324 else
2325 p->avail_lists[i].prio = -p->prio;
2326 }
2327 }
2328 p->swap_map = swap_map;
2329 p->cluster_info = cluster_info;
2330 }
2331
_enable_swap_info(struct swap_info_struct * p)2332 static void _enable_swap_info(struct swap_info_struct *p)
2333 {
2334 p->flags |= SWP_WRITEOK;
2335 atomic_long_add(p->pages, &nr_swap_pages);
2336 total_swap_pages += p->pages;
2337
2338 assert_spin_locked(&swap_lock);
2339 /*
2340 * both lists are plists, and thus priority ordered.
2341 * swap_active_head needs to be priority ordered for swapoff(),
2342 * which on removal of any swap_info_struct with an auto-assigned
2343 * (i.e. negative) priority increments the auto-assigned priority
2344 * of any lower-priority swap_info_structs.
2345 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2346 * which allocates swap pages from the highest available priority
2347 * swap_info_struct.
2348 */
2349 plist_add(&p->list, &swap_active_head);
2350
2351 /* add to available list iff swap device is not full */
2352 if (p->highest_bit)
2353 add_to_avail_list(p);
2354 }
2355
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2356 static void enable_swap_info(struct swap_info_struct *p, int prio,
2357 unsigned char *swap_map,
2358 struct swap_cluster_info *cluster_info)
2359 {
2360 zswap_swapon(p->type);
2361
2362 spin_lock(&swap_lock);
2363 spin_lock(&p->lock);
2364 setup_swap_info(p, prio, swap_map, cluster_info);
2365 spin_unlock(&p->lock);
2366 spin_unlock(&swap_lock);
2367 /*
2368 * Finished initializing swap device, now it's safe to reference it.
2369 */
2370 percpu_ref_resurrect(&p->users);
2371 spin_lock(&swap_lock);
2372 spin_lock(&p->lock);
2373 _enable_swap_info(p);
2374 spin_unlock(&p->lock);
2375 spin_unlock(&swap_lock);
2376 }
2377
reinsert_swap_info(struct swap_info_struct * p)2378 static void reinsert_swap_info(struct swap_info_struct *p)
2379 {
2380 spin_lock(&swap_lock);
2381 spin_lock(&p->lock);
2382 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2383 _enable_swap_info(p);
2384 spin_unlock(&p->lock);
2385 spin_unlock(&swap_lock);
2386 }
2387
has_usable_swap(void)2388 bool has_usable_swap(void)
2389 {
2390 bool ret = true;
2391
2392 spin_lock(&swap_lock);
2393 if (plist_head_empty(&swap_active_head))
2394 ret = false;
2395 spin_unlock(&swap_lock);
2396 return ret;
2397 }
2398
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2399 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2400 {
2401 struct swap_info_struct *p = NULL;
2402 unsigned char *swap_map;
2403 struct swap_cluster_info *cluster_info;
2404 struct file *swap_file, *victim;
2405 struct address_space *mapping;
2406 struct inode *inode;
2407 struct filename *pathname;
2408 int err, found = 0;
2409 unsigned int old_block_size;
2410
2411 if (!capable(CAP_SYS_ADMIN))
2412 return -EPERM;
2413
2414 BUG_ON(!current->mm);
2415
2416 pathname = getname(specialfile);
2417 if (IS_ERR(pathname))
2418 return PTR_ERR(pathname);
2419
2420 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2421 err = PTR_ERR(victim);
2422 if (IS_ERR(victim))
2423 goto out;
2424
2425 mapping = victim->f_mapping;
2426 spin_lock(&swap_lock);
2427 plist_for_each_entry(p, &swap_active_head, list) {
2428 if (p->flags & SWP_WRITEOK) {
2429 if (p->swap_file->f_mapping == mapping) {
2430 found = 1;
2431 break;
2432 }
2433 }
2434 }
2435 if (!found) {
2436 err = -EINVAL;
2437 spin_unlock(&swap_lock);
2438 goto out_dput;
2439 }
2440 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2441 vm_unacct_memory(p->pages);
2442 else {
2443 err = -ENOMEM;
2444 spin_unlock(&swap_lock);
2445 goto out_dput;
2446 }
2447 spin_lock(&p->lock);
2448 del_from_avail_list(p);
2449 if (p->prio < 0) {
2450 struct swap_info_struct *si = p;
2451 int nid;
2452
2453 plist_for_each_entry_continue(si, &swap_active_head, list) {
2454 si->prio++;
2455 si->list.prio--;
2456 for_each_node(nid) {
2457 if (si->avail_lists[nid].prio != 1)
2458 si->avail_lists[nid].prio--;
2459 }
2460 }
2461 least_priority++;
2462 }
2463 plist_del(&p->list, &swap_active_head);
2464 atomic_long_sub(p->pages, &nr_swap_pages);
2465 total_swap_pages -= p->pages;
2466 p->flags &= ~SWP_WRITEOK;
2467 spin_unlock(&p->lock);
2468 spin_unlock(&swap_lock);
2469
2470 disable_swap_slots_cache_lock();
2471
2472 set_current_oom_origin();
2473 err = try_to_unuse(p->type);
2474 clear_current_oom_origin();
2475
2476 if (err) {
2477 /* re-insert swap space back into swap_list */
2478 reinsert_swap_info(p);
2479 reenable_swap_slots_cache_unlock();
2480 goto out_dput;
2481 }
2482
2483 reenable_swap_slots_cache_unlock();
2484
2485 /*
2486 * Wait for swap operations protected by get/put_swap_device()
2487 * to complete.
2488 *
2489 * We need synchronize_rcu() here to protect the accessing to
2490 * the swap cache data structure.
2491 */
2492 percpu_ref_kill(&p->users);
2493 synchronize_rcu();
2494 wait_for_completion(&p->comp);
2495
2496 flush_work(&p->discard_work);
2497
2498 destroy_swap_extents(p);
2499 if (p->flags & SWP_CONTINUED)
2500 free_swap_count_continuations(p);
2501
2502 if (!p->bdev || !bdev_nonrot(p->bdev))
2503 atomic_dec(&nr_rotate_swap);
2504
2505 mutex_lock(&swapon_mutex);
2506 spin_lock(&swap_lock);
2507 spin_lock(&p->lock);
2508 drain_mmlist();
2509
2510 /* wait for anyone still in scan_swap_map_slots */
2511 p->highest_bit = 0; /* cuts scans short */
2512 while (p->flags >= SWP_SCANNING) {
2513 spin_unlock(&p->lock);
2514 spin_unlock(&swap_lock);
2515 schedule_timeout_uninterruptible(1);
2516 spin_lock(&swap_lock);
2517 spin_lock(&p->lock);
2518 }
2519
2520 swap_file = p->swap_file;
2521 old_block_size = p->old_block_size;
2522 p->swap_file = NULL;
2523 p->max = 0;
2524 swap_map = p->swap_map;
2525 p->swap_map = NULL;
2526 cluster_info = p->cluster_info;
2527 p->cluster_info = NULL;
2528 spin_unlock(&p->lock);
2529 spin_unlock(&swap_lock);
2530 arch_swap_invalidate_area(p->type);
2531 zswap_swapoff(p->type);
2532 mutex_unlock(&swapon_mutex);
2533 free_percpu(p->percpu_cluster);
2534 p->percpu_cluster = NULL;
2535 free_percpu(p->cluster_next_cpu);
2536 p->cluster_next_cpu = NULL;
2537 vfree(swap_map);
2538 kvfree(cluster_info);
2539 /* Destroy swap account information */
2540 swap_cgroup_swapoff(p->type);
2541 exit_swap_address_space(p->type);
2542
2543 inode = mapping->host;
2544 if (S_ISBLK(inode->i_mode)) {
2545 struct block_device *bdev = I_BDEV(inode);
2546
2547 set_blocksize(bdev, old_block_size);
2548 blkdev_put(bdev, p);
2549 }
2550
2551 inode_lock(inode);
2552 inode->i_flags &= ~S_SWAPFILE;
2553 inode_unlock(inode);
2554 filp_close(swap_file, NULL);
2555
2556 /*
2557 * Clear the SWP_USED flag after all resources are freed so that swapon
2558 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2559 * not hold p->lock after we cleared its SWP_WRITEOK.
2560 */
2561 spin_lock(&swap_lock);
2562 p->flags = 0;
2563 spin_unlock(&swap_lock);
2564
2565 err = 0;
2566 atomic_inc(&proc_poll_event);
2567 wake_up_interruptible(&proc_poll_wait);
2568
2569 out_dput:
2570 filp_close(victim, NULL);
2571 out:
2572 putname(pathname);
2573 return err;
2574 }
2575
2576 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2577 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2578 {
2579 struct seq_file *seq = file->private_data;
2580
2581 poll_wait(file, &proc_poll_wait, wait);
2582
2583 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2584 seq->poll_event = atomic_read(&proc_poll_event);
2585 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2586 }
2587
2588 return EPOLLIN | EPOLLRDNORM;
2589 }
2590
2591 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2592 static void *swap_start(struct seq_file *swap, loff_t *pos)
2593 {
2594 struct swap_info_struct *si;
2595 int type;
2596 loff_t l = *pos;
2597
2598 mutex_lock(&swapon_mutex);
2599
2600 if (!l)
2601 return SEQ_START_TOKEN;
2602
2603 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2604 if (!(si->flags & SWP_USED) || !si->swap_map)
2605 continue;
2606 if (!--l)
2607 return si;
2608 }
2609
2610 return NULL;
2611 }
2612
swap_next(struct seq_file * swap,void * v,loff_t * pos)2613 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2614 {
2615 struct swap_info_struct *si = v;
2616 int type;
2617
2618 if (v == SEQ_START_TOKEN)
2619 type = 0;
2620 else
2621 type = si->type + 1;
2622
2623 ++(*pos);
2624 for (; (si = swap_type_to_swap_info(type)); type++) {
2625 if (!(si->flags & SWP_USED) || !si->swap_map)
2626 continue;
2627 return si;
2628 }
2629
2630 return NULL;
2631 }
2632
swap_stop(struct seq_file * swap,void * v)2633 static void swap_stop(struct seq_file *swap, void *v)
2634 {
2635 mutex_unlock(&swapon_mutex);
2636 }
2637
swap_show(struct seq_file * swap,void * v)2638 static int swap_show(struct seq_file *swap, void *v)
2639 {
2640 struct swap_info_struct *si = v;
2641 struct file *file;
2642 int len;
2643 unsigned long bytes, inuse;
2644
2645 if (si == SEQ_START_TOKEN) {
2646 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2647 return 0;
2648 }
2649
2650 bytes = K(si->pages);
2651 inuse = K(READ_ONCE(si->inuse_pages));
2652
2653 file = si->swap_file;
2654 len = seq_file_path(swap, file, " \t\n\\");
2655 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2656 len < 40 ? 40 - len : 1, " ",
2657 S_ISBLK(file_inode(file)->i_mode) ?
2658 "partition" : "file\t",
2659 bytes, bytes < 10000000 ? "\t" : "",
2660 inuse, inuse < 10000000 ? "\t" : "",
2661 si->prio);
2662 return 0;
2663 }
2664
2665 static const struct seq_operations swaps_op = {
2666 .start = swap_start,
2667 .next = swap_next,
2668 .stop = swap_stop,
2669 .show = swap_show
2670 };
2671
swaps_open(struct inode * inode,struct file * file)2672 static int swaps_open(struct inode *inode, struct file *file)
2673 {
2674 struct seq_file *seq;
2675 int ret;
2676
2677 ret = seq_open(file, &swaps_op);
2678 if (ret)
2679 return ret;
2680
2681 seq = file->private_data;
2682 seq->poll_event = atomic_read(&proc_poll_event);
2683 return 0;
2684 }
2685
2686 static const struct proc_ops swaps_proc_ops = {
2687 .proc_flags = PROC_ENTRY_PERMANENT,
2688 .proc_open = swaps_open,
2689 .proc_read = seq_read,
2690 .proc_lseek = seq_lseek,
2691 .proc_release = seq_release,
2692 .proc_poll = swaps_poll,
2693 };
2694
procswaps_init(void)2695 static int __init procswaps_init(void)
2696 {
2697 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2698 return 0;
2699 }
2700 __initcall(procswaps_init);
2701 #endif /* CONFIG_PROC_FS */
2702
2703 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2704 static int __init max_swapfiles_check(void)
2705 {
2706 MAX_SWAPFILES_CHECK();
2707 return 0;
2708 }
2709 late_initcall(max_swapfiles_check);
2710 #endif
2711
alloc_swap_info(void)2712 static struct swap_info_struct *alloc_swap_info(void)
2713 {
2714 struct swap_info_struct *p;
2715 struct swap_info_struct *defer = NULL;
2716 unsigned int type;
2717 int i;
2718
2719 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2720 if (!p)
2721 return ERR_PTR(-ENOMEM);
2722
2723 if (percpu_ref_init(&p->users, swap_users_ref_free,
2724 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2725 kvfree(p);
2726 return ERR_PTR(-ENOMEM);
2727 }
2728
2729 spin_lock(&swap_lock);
2730 for (type = 0; type < nr_swapfiles; type++) {
2731 if (!(swap_info[type]->flags & SWP_USED))
2732 break;
2733 }
2734 if (type >= MAX_SWAPFILES) {
2735 spin_unlock(&swap_lock);
2736 percpu_ref_exit(&p->users);
2737 kvfree(p);
2738 return ERR_PTR(-EPERM);
2739 }
2740 if (type >= nr_swapfiles) {
2741 p->type = type;
2742 /*
2743 * Publish the swap_info_struct after initializing it.
2744 * Note that kvzalloc() above zeroes all its fields.
2745 */
2746 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2747 nr_swapfiles++;
2748 } else {
2749 defer = p;
2750 p = swap_info[type];
2751 /*
2752 * Do not memset this entry: a racing procfs swap_next()
2753 * would be relying on p->type to remain valid.
2754 */
2755 }
2756 p->swap_extent_root = RB_ROOT;
2757 plist_node_init(&p->list, 0);
2758 for_each_node(i)
2759 plist_node_init(&p->avail_lists[i], 0);
2760 p->flags = SWP_USED;
2761 spin_unlock(&swap_lock);
2762 if (defer) {
2763 percpu_ref_exit(&defer->users);
2764 kvfree(defer);
2765 }
2766 spin_lock_init(&p->lock);
2767 spin_lock_init(&p->cont_lock);
2768 init_completion(&p->comp);
2769
2770 return p;
2771 }
2772
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2773 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2774 {
2775 int error;
2776
2777 if (S_ISBLK(inode->i_mode)) {
2778 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2779 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2780 if (IS_ERR(p->bdev)) {
2781 error = PTR_ERR(p->bdev);
2782 p->bdev = NULL;
2783 return error;
2784 }
2785 p->old_block_size = block_size(p->bdev);
2786 error = set_blocksize(p->bdev, PAGE_SIZE);
2787 if (error < 0)
2788 return error;
2789 /*
2790 * Zoned block devices contain zones that have a sequential
2791 * write only restriction. Hence zoned block devices are not
2792 * suitable for swapping. Disallow them here.
2793 */
2794 if (bdev_is_zoned(p->bdev))
2795 return -EINVAL;
2796 p->flags |= SWP_BLKDEV;
2797 } else if (S_ISREG(inode->i_mode)) {
2798 p->bdev = inode->i_sb->s_bdev;
2799 }
2800
2801 return 0;
2802 }
2803
2804
2805 /*
2806 * Find out how many pages are allowed for a single swap device. There
2807 * are two limiting factors:
2808 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2809 * 2) the number of bits in the swap pte, as defined by the different
2810 * architectures.
2811 *
2812 * In order to find the largest possible bit mask, a swap entry with
2813 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2814 * decoded to a swp_entry_t again, and finally the swap offset is
2815 * extracted.
2816 *
2817 * This will mask all the bits from the initial ~0UL mask that can't
2818 * be encoded in either the swp_entry_t or the architecture definition
2819 * of a swap pte.
2820 */
generic_max_swapfile_size(void)2821 unsigned long generic_max_swapfile_size(void)
2822 {
2823 return swp_offset(pte_to_swp_entry(
2824 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2825 }
2826
2827 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)2828 __weak unsigned long arch_max_swapfile_size(void)
2829 {
2830 return generic_max_swapfile_size();
2831 }
2832
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2833 static unsigned long read_swap_header(struct swap_info_struct *p,
2834 union swap_header *swap_header,
2835 struct inode *inode)
2836 {
2837 int i;
2838 unsigned long maxpages;
2839 unsigned long swapfilepages;
2840 unsigned long last_page;
2841
2842 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2843 pr_err("Unable to find swap-space signature\n");
2844 return 0;
2845 }
2846
2847 /* swap partition endianness hack... */
2848 if (swab32(swap_header->info.version) == 1) {
2849 swab32s(&swap_header->info.version);
2850 swab32s(&swap_header->info.last_page);
2851 swab32s(&swap_header->info.nr_badpages);
2852 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2853 return 0;
2854 for (i = 0; i < swap_header->info.nr_badpages; i++)
2855 swab32s(&swap_header->info.badpages[i]);
2856 }
2857 /* Check the swap header's sub-version */
2858 if (swap_header->info.version != 1) {
2859 pr_warn("Unable to handle swap header version %d\n",
2860 swap_header->info.version);
2861 return 0;
2862 }
2863
2864 p->lowest_bit = 1;
2865 p->cluster_next = 1;
2866 p->cluster_nr = 0;
2867
2868 maxpages = swapfile_maximum_size;
2869 last_page = swap_header->info.last_page;
2870 if (!last_page) {
2871 pr_warn("Empty swap-file\n");
2872 return 0;
2873 }
2874 if (last_page > maxpages) {
2875 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2876 K(maxpages), K(last_page));
2877 }
2878 if (maxpages > last_page) {
2879 maxpages = last_page + 1;
2880 /* p->max is an unsigned int: don't overflow it */
2881 if ((unsigned int)maxpages == 0)
2882 maxpages = UINT_MAX;
2883 }
2884 p->highest_bit = maxpages - 1;
2885
2886 if (!maxpages)
2887 return 0;
2888 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2889 if (swapfilepages && maxpages > swapfilepages) {
2890 pr_warn("Swap area shorter than signature indicates\n");
2891 return 0;
2892 }
2893 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2894 return 0;
2895 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2896 return 0;
2897
2898 return maxpages;
2899 }
2900
2901 #define SWAP_CLUSTER_INFO_COLS \
2902 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2903 #define SWAP_CLUSTER_SPACE_COLS \
2904 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2905 #define SWAP_CLUSTER_COLS \
2906 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2907
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)2908 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2909 union swap_header *swap_header,
2910 unsigned char *swap_map,
2911 struct swap_cluster_info *cluster_info,
2912 unsigned long maxpages,
2913 sector_t *span)
2914 {
2915 unsigned int j, k;
2916 unsigned int nr_good_pages;
2917 int nr_extents;
2918 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2919 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2920 unsigned long i, idx;
2921
2922 nr_good_pages = maxpages - 1; /* omit header page */
2923
2924 cluster_list_init(&p->free_clusters);
2925 cluster_list_init(&p->discard_clusters);
2926
2927 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2928 unsigned int page_nr = swap_header->info.badpages[i];
2929 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2930 return -EINVAL;
2931 if (page_nr < maxpages) {
2932 swap_map[page_nr] = SWAP_MAP_BAD;
2933 nr_good_pages--;
2934 /*
2935 * Haven't marked the cluster free yet, no list
2936 * operation involved
2937 */
2938 inc_cluster_info_page(p, cluster_info, page_nr);
2939 }
2940 }
2941
2942 /* Haven't marked the cluster free yet, no list operation involved */
2943 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2944 inc_cluster_info_page(p, cluster_info, i);
2945
2946 if (nr_good_pages) {
2947 swap_map[0] = SWAP_MAP_BAD;
2948 /*
2949 * Not mark the cluster free yet, no list
2950 * operation involved
2951 */
2952 inc_cluster_info_page(p, cluster_info, 0);
2953 p->max = maxpages;
2954 p->pages = nr_good_pages;
2955 nr_extents = setup_swap_extents(p, span);
2956 if (nr_extents < 0)
2957 return nr_extents;
2958 nr_good_pages = p->pages;
2959 }
2960 if (!nr_good_pages) {
2961 pr_warn("Empty swap-file\n");
2962 return -EINVAL;
2963 }
2964
2965 if (!cluster_info)
2966 return nr_extents;
2967
2968
2969 /*
2970 * Reduce false cache line sharing between cluster_info and
2971 * sharing same address space.
2972 */
2973 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2974 j = (k + col) % SWAP_CLUSTER_COLS;
2975 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2976 idx = i * SWAP_CLUSTER_COLS + j;
2977 if (idx >= nr_clusters)
2978 continue;
2979 if (cluster_count(&cluster_info[idx]))
2980 continue;
2981 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2982 cluster_list_add_tail(&p->free_clusters, cluster_info,
2983 idx);
2984 }
2985 }
2986 return nr_extents;
2987 }
2988
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)2989 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2990 {
2991 struct swap_info_struct *p;
2992 struct filename *name;
2993 struct file *swap_file = NULL;
2994 struct address_space *mapping;
2995 struct dentry *dentry;
2996 int prio;
2997 int error;
2998 union swap_header *swap_header;
2999 int nr_extents;
3000 sector_t span;
3001 unsigned long maxpages;
3002 unsigned char *swap_map = NULL;
3003 struct swap_cluster_info *cluster_info = NULL;
3004 struct page *page = NULL;
3005 struct inode *inode = NULL;
3006 bool inced_nr_rotate_swap = false;
3007
3008 if (swap_flags & ~SWAP_FLAGS_VALID)
3009 return -EINVAL;
3010
3011 if (!capable(CAP_SYS_ADMIN))
3012 return -EPERM;
3013
3014 if (!swap_avail_heads)
3015 return -ENOMEM;
3016
3017 p = alloc_swap_info();
3018 if (IS_ERR(p))
3019 return PTR_ERR(p);
3020
3021 INIT_WORK(&p->discard_work, swap_discard_work);
3022
3023 name = getname(specialfile);
3024 if (IS_ERR(name)) {
3025 error = PTR_ERR(name);
3026 name = NULL;
3027 goto bad_swap;
3028 }
3029 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3030 if (IS_ERR(swap_file)) {
3031 error = PTR_ERR(swap_file);
3032 swap_file = NULL;
3033 goto bad_swap;
3034 }
3035
3036 p->swap_file = swap_file;
3037 mapping = swap_file->f_mapping;
3038 dentry = swap_file->f_path.dentry;
3039 inode = mapping->host;
3040
3041 error = claim_swapfile(p, inode);
3042 if (unlikely(error))
3043 goto bad_swap;
3044
3045 inode_lock(inode);
3046 if (d_unlinked(dentry) || cant_mount(dentry)) {
3047 error = -ENOENT;
3048 goto bad_swap_unlock_inode;
3049 }
3050 if (IS_SWAPFILE(inode)) {
3051 error = -EBUSY;
3052 goto bad_swap_unlock_inode;
3053 }
3054
3055 /*
3056 * Read the swap header.
3057 */
3058 if (!mapping->a_ops->read_folio) {
3059 error = -EINVAL;
3060 goto bad_swap_unlock_inode;
3061 }
3062 page = read_mapping_page(mapping, 0, swap_file);
3063 if (IS_ERR(page)) {
3064 error = PTR_ERR(page);
3065 goto bad_swap_unlock_inode;
3066 }
3067 swap_header = kmap(page);
3068
3069 maxpages = read_swap_header(p, swap_header, inode);
3070 if (unlikely(!maxpages)) {
3071 error = -EINVAL;
3072 goto bad_swap_unlock_inode;
3073 }
3074
3075 /* OK, set up the swap map and apply the bad block list */
3076 swap_map = vzalloc(maxpages);
3077 if (!swap_map) {
3078 error = -ENOMEM;
3079 goto bad_swap_unlock_inode;
3080 }
3081
3082 if (p->bdev && bdev_stable_writes(p->bdev))
3083 p->flags |= SWP_STABLE_WRITES;
3084
3085 if (p->bdev && bdev_synchronous(p->bdev))
3086 p->flags |= SWP_SYNCHRONOUS_IO;
3087
3088 if (p->bdev && bdev_nonrot(p->bdev)) {
3089 int cpu;
3090 unsigned long ci, nr_cluster;
3091
3092 p->flags |= SWP_SOLIDSTATE;
3093 p->cluster_next_cpu = alloc_percpu(unsigned int);
3094 if (!p->cluster_next_cpu) {
3095 error = -ENOMEM;
3096 goto bad_swap_unlock_inode;
3097 }
3098 /*
3099 * select a random position to start with to help wear leveling
3100 * SSD
3101 */
3102 for_each_possible_cpu(cpu) {
3103 per_cpu(*p->cluster_next_cpu, cpu) =
3104 get_random_u32_inclusive(1, p->highest_bit);
3105 }
3106 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3107
3108 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3109 GFP_KERNEL);
3110 if (!cluster_info) {
3111 error = -ENOMEM;
3112 goto bad_swap_unlock_inode;
3113 }
3114
3115 for (ci = 0; ci < nr_cluster; ci++)
3116 spin_lock_init(&((cluster_info + ci)->lock));
3117
3118 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3119 if (!p->percpu_cluster) {
3120 error = -ENOMEM;
3121 goto bad_swap_unlock_inode;
3122 }
3123 for_each_possible_cpu(cpu) {
3124 struct percpu_cluster *cluster;
3125 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3126 cluster_set_null(&cluster->index);
3127 }
3128 } else {
3129 atomic_inc(&nr_rotate_swap);
3130 inced_nr_rotate_swap = true;
3131 }
3132
3133 error = swap_cgroup_swapon(p->type, maxpages);
3134 if (error)
3135 goto bad_swap_unlock_inode;
3136
3137 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3138 cluster_info, maxpages, &span);
3139 if (unlikely(nr_extents < 0)) {
3140 error = nr_extents;
3141 goto bad_swap_unlock_inode;
3142 }
3143
3144 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3145 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3146 /*
3147 * When discard is enabled for swap with no particular
3148 * policy flagged, we set all swap discard flags here in
3149 * order to sustain backward compatibility with older
3150 * swapon(8) releases.
3151 */
3152 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3153 SWP_PAGE_DISCARD);
3154
3155 /*
3156 * By flagging sys_swapon, a sysadmin can tell us to
3157 * either do single-time area discards only, or to just
3158 * perform discards for released swap page-clusters.
3159 * Now it's time to adjust the p->flags accordingly.
3160 */
3161 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3162 p->flags &= ~SWP_PAGE_DISCARD;
3163 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3164 p->flags &= ~SWP_AREA_DISCARD;
3165
3166 /* issue a swapon-time discard if it's still required */
3167 if (p->flags & SWP_AREA_DISCARD) {
3168 int err = discard_swap(p);
3169 if (unlikely(err))
3170 pr_err("swapon: discard_swap(%p): %d\n",
3171 p, err);
3172 }
3173 }
3174
3175 error = init_swap_address_space(p->type, maxpages);
3176 if (error)
3177 goto bad_swap_unlock_inode;
3178
3179 /*
3180 * Flush any pending IO and dirty mappings before we start using this
3181 * swap device.
3182 */
3183 inode->i_flags |= S_SWAPFILE;
3184 error = inode_drain_writes(inode);
3185 if (error) {
3186 inode->i_flags &= ~S_SWAPFILE;
3187 goto free_swap_address_space;
3188 }
3189
3190 mutex_lock(&swapon_mutex);
3191 prio = -1;
3192 if (swap_flags & SWAP_FLAG_PREFER)
3193 prio =
3194 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3195 enable_swap_info(p, prio, swap_map, cluster_info);
3196
3197 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3198 K(p->pages), name->name, p->prio, nr_extents,
3199 K((unsigned long long)span),
3200 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3201 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3202 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3203 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3204
3205 mutex_unlock(&swapon_mutex);
3206 atomic_inc(&proc_poll_event);
3207 wake_up_interruptible(&proc_poll_wait);
3208
3209 error = 0;
3210 goto out;
3211 free_swap_address_space:
3212 exit_swap_address_space(p->type);
3213 bad_swap_unlock_inode:
3214 inode_unlock(inode);
3215 bad_swap:
3216 free_percpu(p->percpu_cluster);
3217 p->percpu_cluster = NULL;
3218 free_percpu(p->cluster_next_cpu);
3219 p->cluster_next_cpu = NULL;
3220 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3221 set_blocksize(p->bdev, p->old_block_size);
3222 blkdev_put(p->bdev, p);
3223 }
3224 inode = NULL;
3225 destroy_swap_extents(p);
3226 swap_cgroup_swapoff(p->type);
3227 spin_lock(&swap_lock);
3228 p->swap_file = NULL;
3229 p->flags = 0;
3230 spin_unlock(&swap_lock);
3231 vfree(swap_map);
3232 kvfree(cluster_info);
3233 if (inced_nr_rotate_swap)
3234 atomic_dec(&nr_rotate_swap);
3235 if (swap_file)
3236 filp_close(swap_file, NULL);
3237 out:
3238 if (page && !IS_ERR(page)) {
3239 kunmap(page);
3240 put_page(page);
3241 }
3242 if (name)
3243 putname(name);
3244 if (inode)
3245 inode_unlock(inode);
3246 if (!error)
3247 enable_swap_slots_cache();
3248 return error;
3249 }
3250
si_swapinfo(struct sysinfo * val)3251 void si_swapinfo(struct sysinfo *val)
3252 {
3253 unsigned int type;
3254 unsigned long nr_to_be_unused = 0;
3255
3256 spin_lock(&swap_lock);
3257 for (type = 0; type < nr_swapfiles; type++) {
3258 struct swap_info_struct *si = swap_info[type];
3259
3260 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3261 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3262 }
3263 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3264 val->totalswap = total_swap_pages + nr_to_be_unused;
3265 spin_unlock(&swap_lock);
3266 }
3267
3268 /*
3269 * Verify that a swap entry is valid and increment its swap map count.
3270 *
3271 * Returns error code in following case.
3272 * - success -> 0
3273 * - swp_entry is invalid -> EINVAL
3274 * - swp_entry is migration entry -> EINVAL
3275 * - swap-cache reference is requested but there is already one. -> EEXIST
3276 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3277 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3278 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3279 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3280 {
3281 struct swap_info_struct *p;
3282 struct swap_cluster_info *ci;
3283 unsigned long offset;
3284 unsigned char count;
3285 unsigned char has_cache;
3286 int err;
3287
3288 p = swp_swap_info(entry);
3289
3290 offset = swp_offset(entry);
3291 ci = lock_cluster_or_swap_info(p, offset);
3292
3293 count = p->swap_map[offset];
3294
3295 /*
3296 * swapin_readahead() doesn't check if a swap entry is valid, so the
3297 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3298 */
3299 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3300 err = -ENOENT;
3301 goto unlock_out;
3302 }
3303
3304 has_cache = count & SWAP_HAS_CACHE;
3305 count &= ~SWAP_HAS_CACHE;
3306 err = 0;
3307
3308 if (usage == SWAP_HAS_CACHE) {
3309
3310 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3311 if (!has_cache && count)
3312 has_cache = SWAP_HAS_CACHE;
3313 else if (has_cache) /* someone else added cache */
3314 err = -EEXIST;
3315 else /* no users remaining */
3316 err = -ENOENT;
3317
3318 } else if (count || has_cache) {
3319
3320 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3321 count += usage;
3322 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3323 err = -EINVAL;
3324 else if (swap_count_continued(p, offset, count))
3325 count = COUNT_CONTINUED;
3326 else
3327 err = -ENOMEM;
3328 } else
3329 err = -ENOENT; /* unused swap entry */
3330
3331 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3332
3333 unlock_out:
3334 unlock_cluster_or_swap_info(p, ci);
3335 return err;
3336 }
3337
3338 /*
3339 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3340 * (in which case its reference count is never incremented).
3341 */
swap_shmem_alloc(swp_entry_t entry)3342 void swap_shmem_alloc(swp_entry_t entry)
3343 {
3344 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3345 }
3346
3347 /*
3348 * Increase reference count of swap entry by 1.
3349 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3350 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3351 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3352 * might occur if a page table entry has got corrupted.
3353 */
swap_duplicate(swp_entry_t entry)3354 int swap_duplicate(swp_entry_t entry)
3355 {
3356 int err = 0;
3357
3358 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3359 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3360 return err;
3361 }
3362
3363 /*
3364 * @entry: swap entry for which we allocate swap cache.
3365 *
3366 * Called when allocating swap cache for existing swap entry,
3367 * This can return error codes. Returns 0 at success.
3368 * -EEXIST means there is a swap cache.
3369 * Note: return code is different from swap_duplicate().
3370 */
swapcache_prepare(swp_entry_t entry)3371 int swapcache_prepare(swp_entry_t entry)
3372 {
3373 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3374 }
3375
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry)3376 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3377 {
3378 struct swap_cluster_info *ci;
3379 unsigned long offset = swp_offset(entry);
3380 unsigned char usage;
3381
3382 ci = lock_cluster_or_swap_info(si, offset);
3383 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3384 unlock_cluster_or_swap_info(si, ci);
3385 if (!usage)
3386 free_swap_slot(entry);
3387 }
3388
swp_swap_info(swp_entry_t entry)3389 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3390 {
3391 return swap_type_to_swap_info(swp_type(entry));
3392 }
3393
page_swap_info(struct page * page)3394 struct swap_info_struct *page_swap_info(struct page *page)
3395 {
3396 swp_entry_t entry = page_swap_entry(page);
3397 return swp_swap_info(entry);
3398 }
3399
3400 /*
3401 * out-of-line methods to avoid include hell.
3402 */
swapcache_mapping(struct folio * folio)3403 struct address_space *swapcache_mapping(struct folio *folio)
3404 {
3405 return page_swap_info(&folio->page)->swap_file->f_mapping;
3406 }
3407 EXPORT_SYMBOL_GPL(swapcache_mapping);
3408
__page_file_index(struct page * page)3409 pgoff_t __page_file_index(struct page *page)
3410 {
3411 swp_entry_t swap = page_swap_entry(page);
3412 return swp_offset(swap);
3413 }
3414 EXPORT_SYMBOL_GPL(__page_file_index);
3415
3416 /*
3417 * add_swap_count_continuation - called when a swap count is duplicated
3418 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3419 * page of the original vmalloc'ed swap_map, to hold the continuation count
3420 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3421 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3422 *
3423 * These continuation pages are seldom referenced: the common paths all work
3424 * on the original swap_map, only referring to a continuation page when the
3425 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3426 *
3427 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3428 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3429 * can be called after dropping locks.
3430 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3431 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3432 {
3433 struct swap_info_struct *si;
3434 struct swap_cluster_info *ci;
3435 struct page *head;
3436 struct page *page;
3437 struct page *list_page;
3438 pgoff_t offset;
3439 unsigned char count;
3440 int ret = 0;
3441
3442 /*
3443 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3444 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3445 */
3446 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3447
3448 si = get_swap_device(entry);
3449 if (!si) {
3450 /*
3451 * An acceptable race has occurred since the failing
3452 * __swap_duplicate(): the swap device may be swapoff
3453 */
3454 goto outer;
3455 }
3456 spin_lock(&si->lock);
3457
3458 offset = swp_offset(entry);
3459
3460 ci = lock_cluster(si, offset);
3461
3462 count = swap_count(si->swap_map[offset]);
3463
3464 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3465 /*
3466 * The higher the swap count, the more likely it is that tasks
3467 * will race to add swap count continuation: we need to avoid
3468 * over-provisioning.
3469 */
3470 goto out;
3471 }
3472
3473 if (!page) {
3474 ret = -ENOMEM;
3475 goto out;
3476 }
3477
3478 head = vmalloc_to_page(si->swap_map + offset);
3479 offset &= ~PAGE_MASK;
3480
3481 spin_lock(&si->cont_lock);
3482 /*
3483 * Page allocation does not initialize the page's lru field,
3484 * but it does always reset its private field.
3485 */
3486 if (!page_private(head)) {
3487 BUG_ON(count & COUNT_CONTINUED);
3488 INIT_LIST_HEAD(&head->lru);
3489 set_page_private(head, SWP_CONTINUED);
3490 si->flags |= SWP_CONTINUED;
3491 }
3492
3493 list_for_each_entry(list_page, &head->lru, lru) {
3494 unsigned char *map;
3495
3496 /*
3497 * If the previous map said no continuation, but we've found
3498 * a continuation page, free our allocation and use this one.
3499 */
3500 if (!(count & COUNT_CONTINUED))
3501 goto out_unlock_cont;
3502
3503 map = kmap_atomic(list_page) + offset;
3504 count = *map;
3505 kunmap_atomic(map);
3506
3507 /*
3508 * If this continuation count now has some space in it,
3509 * free our allocation and use this one.
3510 */
3511 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3512 goto out_unlock_cont;
3513 }
3514
3515 list_add_tail(&page->lru, &head->lru);
3516 page = NULL; /* now it's attached, don't free it */
3517 out_unlock_cont:
3518 spin_unlock(&si->cont_lock);
3519 out:
3520 unlock_cluster(ci);
3521 spin_unlock(&si->lock);
3522 put_swap_device(si);
3523 outer:
3524 if (page)
3525 __free_page(page);
3526 return ret;
3527 }
3528
3529 /*
3530 * swap_count_continued - when the original swap_map count is incremented
3531 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3532 * into, carry if so, or else fail until a new continuation page is allocated;
3533 * when the original swap_map count is decremented from 0 with continuation,
3534 * borrow from the continuation and report whether it still holds more.
3535 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3536 * lock.
3537 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3538 static bool swap_count_continued(struct swap_info_struct *si,
3539 pgoff_t offset, unsigned char count)
3540 {
3541 struct page *head;
3542 struct page *page;
3543 unsigned char *map;
3544 bool ret;
3545
3546 head = vmalloc_to_page(si->swap_map + offset);
3547 if (page_private(head) != SWP_CONTINUED) {
3548 BUG_ON(count & COUNT_CONTINUED);
3549 return false; /* need to add count continuation */
3550 }
3551
3552 spin_lock(&si->cont_lock);
3553 offset &= ~PAGE_MASK;
3554 page = list_next_entry(head, lru);
3555 map = kmap_atomic(page) + offset;
3556
3557 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3558 goto init_map; /* jump over SWAP_CONT_MAX checks */
3559
3560 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3561 /*
3562 * Think of how you add 1 to 999
3563 */
3564 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3565 kunmap_atomic(map);
3566 page = list_next_entry(page, lru);
3567 BUG_ON(page == head);
3568 map = kmap_atomic(page) + offset;
3569 }
3570 if (*map == SWAP_CONT_MAX) {
3571 kunmap_atomic(map);
3572 page = list_next_entry(page, lru);
3573 if (page == head) {
3574 ret = false; /* add count continuation */
3575 goto out;
3576 }
3577 map = kmap_atomic(page) + offset;
3578 init_map: *map = 0; /* we didn't zero the page */
3579 }
3580 *map += 1;
3581 kunmap_atomic(map);
3582 while ((page = list_prev_entry(page, lru)) != head) {
3583 map = kmap_atomic(page) + offset;
3584 *map = COUNT_CONTINUED;
3585 kunmap_atomic(map);
3586 }
3587 ret = true; /* incremented */
3588
3589 } else { /* decrementing */
3590 /*
3591 * Think of how you subtract 1 from 1000
3592 */
3593 BUG_ON(count != COUNT_CONTINUED);
3594 while (*map == COUNT_CONTINUED) {
3595 kunmap_atomic(map);
3596 page = list_next_entry(page, lru);
3597 BUG_ON(page == head);
3598 map = kmap_atomic(page) + offset;
3599 }
3600 BUG_ON(*map == 0);
3601 *map -= 1;
3602 if (*map == 0)
3603 count = 0;
3604 kunmap_atomic(map);
3605 while ((page = list_prev_entry(page, lru)) != head) {
3606 map = kmap_atomic(page) + offset;
3607 *map = SWAP_CONT_MAX | count;
3608 count = COUNT_CONTINUED;
3609 kunmap_atomic(map);
3610 }
3611 ret = count == COUNT_CONTINUED;
3612 }
3613 out:
3614 spin_unlock(&si->cont_lock);
3615 return ret;
3616 }
3617
3618 /*
3619 * free_swap_count_continuations - swapoff free all the continuation pages
3620 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3621 */
free_swap_count_continuations(struct swap_info_struct * si)3622 static void free_swap_count_continuations(struct swap_info_struct *si)
3623 {
3624 pgoff_t offset;
3625
3626 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3627 struct page *head;
3628 head = vmalloc_to_page(si->swap_map + offset);
3629 if (page_private(head)) {
3630 struct page *page, *next;
3631
3632 list_for_each_entry_safe(page, next, &head->lru, lru) {
3633 list_del(&page->lru);
3634 __free_page(page);
3635 }
3636 }
3637 }
3638 }
3639
3640 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)3641 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3642 {
3643 struct swap_info_struct *si, *next;
3644 int nid = folio_nid(folio);
3645
3646 if (!(gfp & __GFP_IO))
3647 return;
3648
3649 if (!blk_cgroup_congested())
3650 return;
3651
3652 /*
3653 * We've already scheduled a throttle, avoid taking the global swap
3654 * lock.
3655 */
3656 if (current->throttle_disk)
3657 return;
3658
3659 spin_lock(&swap_avail_lock);
3660 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3661 avail_lists[nid]) {
3662 if (si->bdev) {
3663 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3664 break;
3665 }
3666 }
3667 spin_unlock(&swap_avail_lock);
3668 }
3669 #endif
3670
swapfile_init(void)3671 static int __init swapfile_init(void)
3672 {
3673 int nid;
3674
3675 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3676 GFP_KERNEL);
3677 if (!swap_avail_heads) {
3678 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3679 return -ENOMEM;
3680 }
3681
3682 for_each_node(nid)
3683 plist_head_init(&swap_avail_heads[nid]);
3684
3685 swapfile_maximum_size = arch_max_swapfile_size();
3686
3687 #ifdef CONFIG_MIGRATION
3688 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3689 swap_migration_ad_supported = true;
3690 #endif /* CONFIG_MIGRATION */
3691
3692 return 0;
3693 }
3694 subsys_initcall(swapfile_init);
3695