1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26
27 #include "dm_services.h"
28 #include "dc.h"
29
30 #include "dcn32_init.h"
31
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hw_sequencer.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dcn31/dcn31_apg.h"
61 #include "dcn31/dcn31_dio_link_encoder.h"
62 #include "dcn32/dcn32_dio_link_encoder.h"
63 #include "dce/dce_clock_source.h"
64 #include "dce/dce_audio.h"
65 #include "dce/dce_hwseq.h"
66 #include "clk_mgr.h"
67 #include "virtual/virtual_stream_encoder.h"
68 #include "dml/display_mode_vba.h"
69 #include "dcn32/dcn32_dccg.h"
70 #include "dcn10/dcn10_resource.h"
71 #include "link.h"
72 #include "dcn31/dcn31_panel_cntl.h"
73
74 #include "dcn30/dcn30_dwb.h"
75 #include "dcn32/dcn32_mmhubbub.h"
76
77 #include "dcn/dcn_3_2_0_offset.h"
78 #include "dcn/dcn_3_2_0_sh_mask.h"
79 #include "nbio/nbio_4_3_0_offset.h"
80
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "dml/dcn32/dcn32_fpu.h"
91
92 #define DC_LOGGER_INIT(logger)
93
94 enum dcn32_clk_src_array_id {
95 DCN32_CLK_SRC_PLL0,
96 DCN32_CLK_SRC_PLL1,
97 DCN32_CLK_SRC_PLL2,
98 DCN32_CLK_SRC_PLL3,
99 DCN32_CLK_SRC_PLL4,
100 DCN32_CLK_SRC_TOTAL
101 };
102
103 /* begin *********************
104 * macros to expend register list macro defined in HW object header file
105 */
106
107 /* DCN */
108 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
109
110 #define BASE(seg) BASE_INNER(seg)
111
112 #define SR(reg_name)\
113 REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
114 reg ## reg_name
115 #define SR_ARR(reg_name, id) \
116 REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
117
118 #define SR_ARR_INIT(reg_name, id, value) \
119 REG_STRUCT[id].reg_name = value
120
121 #define SRI(reg_name, block, id)\
122 REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
123 reg ## block ## id ## _ ## reg_name
124
125 #define SRI_ARR(reg_name, block, id)\
126 REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127 reg ## block ## id ## _ ## reg_name
128
129 #define SR_ARR_I2C(reg_name, id) \
130 REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
131
132 #define SRI_ARR_I2C(reg_name, block, id)\
133 REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
134 reg ## block ## id ## _ ## reg_name
135
136 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
137 REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138 reg ## block ## id ## _ ## reg_name
139
140 #define SRI2(reg_name, block, id)\
141 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
142 reg ## reg_name
143 #define SRI2_ARR(reg_name, block, id)\
144 REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
145 reg ## reg_name
146
147 #define SRIR(var_name, reg_name, block, id)\
148 .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
149 reg ## block ## id ## _ ## reg_name
150
151 #define SRII(reg_name, block, id)\
152 REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153 reg ## block ## id ## _ ## reg_name
154
155 #define SRII_ARR_2(reg_name, block, id, inst)\
156 REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157 reg ## block ## id ## _ ## reg_name
158
159 #define SRII_MPC_RMU(reg_name, block, id)\
160 .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161 reg ## block ## id ## _ ## reg_name
162
163 #define SRII_DWB(reg_name, temp_name, block, id)\
164 REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
165 reg ## block ## id ## _ ## temp_name
166
167 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \
168 .field_name = reg_name ## __ ## field_name ## post_fix
169
170 #define DCCG_SRII(reg_name, block, id)\
171 REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
172 reg ## block ## id ## _ ## reg_name
173
174 #define VUPDATE_SRII(reg_name, block, id)\
175 REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
176 reg ## reg_name ## _ ## block ## id
177
178 /* NBIO */
179 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
180
181 #define NBIO_BASE(seg) \
182 NBIO_BASE_INNER(seg)
183
184 #define NBIO_SR(reg_name)\
185 REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
186 regBIF_BX0_ ## reg_name
187 #define NBIO_SR_ARR(reg_name, id)\
188 REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
189 regBIF_BX0_ ## reg_name
190
191 #undef CTX
192 #define CTX ctx
193 #define REG(reg_name) \
194 (ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
195
196 static struct bios_registers bios_regs;
197
198 #define bios_regs_init() \
199 ( \
200 NBIO_SR(BIOS_SCRATCH_3),\
201 NBIO_SR(BIOS_SCRATCH_6)\
202 )
203
204 #define clk_src_regs_init(index, pllid)\
205 CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
206
207 static struct dce110_clk_src_regs clk_src_regs[5];
208
209 static const struct dce110_clk_src_shift cs_shift = {
210 CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
211 };
212
213 static const struct dce110_clk_src_mask cs_mask = {
214 CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
215 };
216
217 #define abm_regs_init(id)\
218 ABM_DCN32_REG_LIST_RI(id)
219
220 static struct dce_abm_registers abm_regs[4];
221
222 static const struct dce_abm_shift abm_shift = {
223 ABM_MASK_SH_LIST_DCN32(__SHIFT)
224 };
225
226 static const struct dce_abm_mask abm_mask = {
227 ABM_MASK_SH_LIST_DCN32(_MASK)
228 };
229
230 #define audio_regs_init(id)\
231 AUD_COMMON_REG_LIST_RI(id)
232
233 static struct dce_audio_registers audio_regs[5];
234
235 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
236 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
237 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
238 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
239
240 static const struct dce_audio_shift audio_shift = {
241 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
242 };
243
244 static const struct dce_audio_mask audio_mask = {
245 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
246 };
247
248 #define vpg_regs_init(id)\
249 VPG_DCN3_REG_LIST_RI(id)
250
251 static struct dcn30_vpg_registers vpg_regs[10];
252
253 static const struct dcn30_vpg_shift vpg_shift = {
254 DCN3_VPG_MASK_SH_LIST(__SHIFT)
255 };
256
257 static const struct dcn30_vpg_mask vpg_mask = {
258 DCN3_VPG_MASK_SH_LIST(_MASK)
259 };
260
261 #define afmt_regs_init(id)\
262 AFMT_DCN3_REG_LIST_RI(id)
263
264 static struct dcn30_afmt_registers afmt_regs[6];
265
266 static const struct dcn30_afmt_shift afmt_shift = {
267 DCN3_AFMT_MASK_SH_LIST(__SHIFT)
268 };
269
270 static const struct dcn30_afmt_mask afmt_mask = {
271 DCN3_AFMT_MASK_SH_LIST(_MASK)
272 };
273
274 #define apg_regs_init(id)\
275 APG_DCN31_REG_LIST_RI(id)
276
277 static struct dcn31_apg_registers apg_regs[4];
278
279 static const struct dcn31_apg_shift apg_shift = {
280 DCN31_APG_MASK_SH_LIST(__SHIFT)
281 };
282
283 static const struct dcn31_apg_mask apg_mask = {
284 DCN31_APG_MASK_SH_LIST(_MASK)
285 };
286
287 #define stream_enc_regs_init(id)\
288 SE_DCN32_REG_LIST_RI(id)
289
290 static struct dcn10_stream_enc_registers stream_enc_regs[5];
291
292 static const struct dcn10_stream_encoder_shift se_shift = {
293 SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
294 };
295
296 static const struct dcn10_stream_encoder_mask se_mask = {
297 SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
298 };
299
300
301 #define aux_regs_init(id)\
302 DCN2_AUX_REG_LIST_RI(id)
303
304 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
305
306 #define hpd_regs_init(id)\
307 HPD_REG_LIST_RI(id)
308
309 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
310
311 #define link_regs_init(id, phyid)\
312 ( \
313 LE_DCN31_REG_LIST_RI(id), \
314 UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
315 )
316 /*DPCS_DCN31_REG_LIST(id),*/ \
317
318 static struct dcn10_link_enc_registers link_enc_regs[5];
319
320 static const struct dcn10_link_enc_shift le_shift = {
321 LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
322 //DPCS_DCN31_MASK_SH_LIST(__SHIFT)
323 };
324
325 static const struct dcn10_link_enc_mask le_mask = {
326 LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
327 //DPCS_DCN31_MASK_SH_LIST(_MASK)
328 };
329
330 #define hpo_dp_stream_encoder_reg_init(id)\
331 DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
332
333 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
334
335 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
336 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
337 };
338
339 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
340 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
341 };
342
343
344 #define hpo_dp_link_encoder_reg_init(id)\
345 DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
346 /*DCN3_1_RDPCSTX_REG_LIST(0),*/
347 /*DCN3_1_RDPCSTX_REG_LIST(1),*/
348 /*DCN3_1_RDPCSTX_REG_LIST(2),*/
349 /*DCN3_1_RDPCSTX_REG_LIST(3),*/
350
351 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
352
353 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
354 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
355 };
356
357 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
358 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
359 };
360
361 #define dpp_regs_init(id)\
362 DPP_REG_LIST_DCN30_COMMON_RI(id)
363
364 static struct dcn3_dpp_registers dpp_regs[4];
365
366 static const struct dcn3_dpp_shift tf_shift = {
367 DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
368 };
369
370 static const struct dcn3_dpp_mask tf_mask = {
371 DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
372 };
373
374
375 #define opp_regs_init(id)\
376 OPP_REG_LIST_DCN30_RI(id)
377
378 static struct dcn20_opp_registers opp_regs[4];
379
380 static const struct dcn20_opp_shift opp_shift = {
381 OPP_MASK_SH_LIST_DCN20(__SHIFT)
382 };
383
384 static const struct dcn20_opp_mask opp_mask = {
385 OPP_MASK_SH_LIST_DCN20(_MASK)
386 };
387
388 #define aux_engine_regs_init(id)\
389 ( \
390 AUX_COMMON_REG_LIST0_RI(id), \
391 SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
392 SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
393 SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
394 SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
395 )
396
397 static struct dce110_aux_registers aux_engine_regs[5];
398
399 static const struct dce110_aux_registers_shift aux_shift = {
400 DCN_AUX_MASK_SH_LIST(__SHIFT)
401 };
402
403 static const struct dce110_aux_registers_mask aux_mask = {
404 DCN_AUX_MASK_SH_LIST(_MASK)
405 };
406
407 #define dwbc_regs_dcn3_init(id)\
408 DWBC_COMMON_REG_LIST_DCN30_RI(id)
409
410 static struct dcn30_dwbc_registers dwbc30_regs[1];
411
412 static const struct dcn30_dwbc_shift dwbc30_shift = {
413 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
414 };
415
416 static const struct dcn30_dwbc_mask dwbc30_mask = {
417 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
418 };
419
420 #define mcif_wb_regs_dcn3_init(id)\
421 MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
422
423 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
424
425 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
426 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
427 };
428
429 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
430 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
431 };
432
433 #define dsc_regsDCN20_init(id)\
434 DSC_REG_LIST_DCN20_RI(id)
435
436 static struct dcn20_dsc_registers dsc_regs[4];
437
438 static const struct dcn20_dsc_shift dsc_shift = {
439 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
440 };
441
442 static const struct dcn20_dsc_mask dsc_mask = {
443 DSC_REG_LIST_SH_MASK_DCN20(_MASK)
444 };
445
446 static struct dcn30_mpc_registers mpc_regs;
447
448 #define dcn_mpc_regs_init() \
449 MPC_REG_LIST_DCN3_2_RI(0),\
450 MPC_REG_LIST_DCN3_2_RI(1),\
451 MPC_REG_LIST_DCN3_2_RI(2),\
452 MPC_REG_LIST_DCN3_2_RI(3),\
453 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
454 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
455 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
456 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
457 MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
458
459 static const struct dcn30_mpc_shift mpc_shift = {
460 MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
461 };
462
463 static const struct dcn30_mpc_mask mpc_mask = {
464 MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
465 };
466
467 #define optc_regs_init(id)\
468 OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
469
470 static struct dcn_optc_registers optc_regs[4];
471
472 static const struct dcn_optc_shift optc_shift = {
473 OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
474 };
475
476 static const struct dcn_optc_mask optc_mask = {
477 OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
478 };
479
480 #define hubp_regs_init(id)\
481 HUBP_REG_LIST_DCN32_RI(id)
482
483 static struct dcn_hubp2_registers hubp_regs[4];
484
485
486 static const struct dcn_hubp2_shift hubp_shift = {
487 HUBP_MASK_SH_LIST_DCN32(__SHIFT)
488 };
489
490 static const struct dcn_hubp2_mask hubp_mask = {
491 HUBP_MASK_SH_LIST_DCN32(_MASK)
492 };
493
494 static struct dcn_hubbub_registers hubbub_reg;
495 #define hubbub_reg_init()\
496 HUBBUB_REG_LIST_DCN32_RI(0)
497
498 static const struct dcn_hubbub_shift hubbub_shift = {
499 HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
500 };
501
502 static const struct dcn_hubbub_mask hubbub_mask = {
503 HUBBUB_MASK_SH_LIST_DCN32(_MASK)
504 };
505
506 static struct dccg_registers dccg_regs;
507
508 #define dccg_regs_init()\
509 DCCG_REG_LIST_DCN32_RI()
510
511 static const struct dccg_shift dccg_shift = {
512 DCCG_MASK_SH_LIST_DCN32(__SHIFT)
513 };
514
515 static const struct dccg_mask dccg_mask = {
516 DCCG_MASK_SH_LIST_DCN32(_MASK)
517 };
518
519
520 #define SRII2(reg_name_pre, reg_name_post, id)\
521 .reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \
522 ## id ## _ ## reg_name_post ## _BASE_IDX) + \
523 reg ## reg_name_pre ## id ## _ ## reg_name_post
524
525
526 #define HWSEQ_DCN32_REG_LIST()\
527 SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
528 SR(DIO_MEM_PWR_CTRL), \
529 SR(ODM_MEM_PWR_CTRL3), \
530 SR(MMHUBBUB_MEM_PWR_CNTL), \
531 SR(DCCG_GATE_DISABLE_CNTL), \
532 SR(DCCG_GATE_DISABLE_CNTL2), \
533 SR(DCFCLK_CNTL),\
534 SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
535 SRII(PIXEL_RATE_CNTL, OTG, 0), \
536 SRII(PIXEL_RATE_CNTL, OTG, 1),\
537 SRII(PIXEL_RATE_CNTL, OTG, 2),\
538 SRII(PIXEL_RATE_CNTL, OTG, 3),\
539 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
540 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
541 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
542 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
543 SR(MICROSECOND_TIME_BASE_DIV), \
544 SR(MILLISECOND_TIME_BASE_DIV), \
545 SR(DISPCLK_FREQ_CHANGE_CNTL), \
546 SR(RBBMIF_TIMEOUT_DIS), \
547 SR(RBBMIF_TIMEOUT_DIS_2), \
548 SR(DCHUBBUB_CRC_CTRL), \
549 SR(DPP_TOP0_DPP_CRC_CTRL), \
550 SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
551 SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
552 SR(MPC_CRC_CTRL), \
553 SR(MPC_CRC_RESULT_GB), \
554 SR(MPC_CRC_RESULT_C), \
555 SR(MPC_CRC_RESULT_AR), \
556 SR(DOMAIN0_PG_CONFIG), \
557 SR(DOMAIN1_PG_CONFIG), \
558 SR(DOMAIN2_PG_CONFIG), \
559 SR(DOMAIN3_PG_CONFIG), \
560 SR(DOMAIN16_PG_CONFIG), \
561 SR(DOMAIN17_PG_CONFIG), \
562 SR(DOMAIN18_PG_CONFIG), \
563 SR(DOMAIN19_PG_CONFIG), \
564 SR(DOMAIN0_PG_STATUS), \
565 SR(DOMAIN1_PG_STATUS), \
566 SR(DOMAIN2_PG_STATUS), \
567 SR(DOMAIN3_PG_STATUS), \
568 SR(DOMAIN16_PG_STATUS), \
569 SR(DOMAIN17_PG_STATUS), \
570 SR(DOMAIN18_PG_STATUS), \
571 SR(DOMAIN19_PG_STATUS), \
572 SR(D1VGA_CONTROL), \
573 SR(D2VGA_CONTROL), \
574 SR(D3VGA_CONTROL), \
575 SR(D4VGA_CONTROL), \
576 SR(D5VGA_CONTROL), \
577 SR(D6VGA_CONTROL), \
578 SR(DC_IP_REQUEST_CNTL), \
579 SR(AZALIA_AUDIO_DTO), \
580 SR(AZALIA_CONTROLLER_CLOCK_GATING)
581
582 static struct dce_hwseq_registers hwseq_reg;
583
584 #define hwseq_reg_init()\
585 HWSEQ_DCN32_REG_LIST()
586
587 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
588 HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
589 HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
590 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
591 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
592 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
593 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
594 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606 HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
607 HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
608 HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
609 HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
610 HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611 HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
615 HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
616 HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
617 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
618 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
619 HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
620
621 static const struct dce_hwseq_shift hwseq_shift = {
622 HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
623 };
624
625 static const struct dce_hwseq_mask hwseq_mask = {
626 HWSEQ_DCN32_MASK_SH_LIST(_MASK)
627 };
628 #define vmid_regs_init(id)\
629 DCN20_VMID_REG_LIST_RI(id)
630
631 static struct dcn_vmid_registers vmid_regs[16];
632
633 static const struct dcn20_vmid_shift vmid_shifts = {
634 DCN20_VMID_MASK_SH_LIST(__SHIFT)
635 };
636
637 static const struct dcn20_vmid_mask vmid_masks = {
638 DCN20_VMID_MASK_SH_LIST(_MASK)
639 };
640
641 static const struct resource_caps res_cap_dcn32 = {
642 .num_timing_generator = 4,
643 .num_opp = 4,
644 .num_video_plane = 4,
645 .num_audio = 5,
646 .num_stream_encoder = 5,
647 .num_hpo_dp_stream_encoder = 4,
648 .num_hpo_dp_link_encoder = 2,
649 .num_pll = 5,
650 .num_dwb = 1,
651 .num_ddc = 5,
652 .num_vmid = 16,
653 .num_mpc_3dlut = 4,
654 .num_dsc = 4,
655 };
656
657 static const struct dc_plane_cap plane_cap = {
658 .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
659 .per_pixel_alpha = true,
660
661 .pixel_format_support = {
662 .argb8888 = true,
663 .nv12 = true,
664 .fp16 = true,
665 .p010 = true,
666 .ayuv = false,
667 },
668
669 .max_upscale_factor = {
670 .argb8888 = 16000,
671 .nv12 = 16000,
672 .fp16 = 16000
673 },
674
675 // 6:1 downscaling ratio: 1000/6 = 166.666
676 .max_downscale_factor = {
677 .argb8888 = 167,
678 .nv12 = 167,
679 .fp16 = 167
680 },
681 64,
682 64
683 };
684
685 static const struct dc_debug_options debug_defaults_drv = {
686 .disable_dmcu = true,
687 .force_abm_enable = false,
688 .timing_trace = false,
689 .clock_trace = true,
690 .disable_pplib_clock_request = false,
691 .pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
692 .force_single_disp_pipe_split = false,
693 .disable_dcc = DCC_ENABLE,
694 .vsr_support = true,
695 .performance_trace = false,
696 .max_downscale_src_width = 7680,/*upto 8K*/
697 .disable_pplib_wm_range = false,
698 .scl_reset_length10 = true,
699 .sanity_checks = false,
700 .underflow_assert_delay_us = 0xFFFFFFFF,
701 .dwb_fi_phase = -1, // -1 = disable,
702 .dmub_command_table = true,
703 .enable_mem_low_power = {
704 .bits = {
705 .vga = false,
706 .i2c = false,
707 .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
708 .dscl = false,
709 .cm = false,
710 .mpc = false,
711 .optc = true,
712 }
713 },
714 .use_max_lb = true,
715 .force_disable_subvp = false,
716 .exit_idle_opt_for_cursor_updates = true,
717 .enable_single_display_2to1_odm_policy = true,
718
719 /* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
720 .enable_double_buffered_dsc_pg_support = true,
721 .enable_dp_dig_pixel_rate_div_policy = 1,
722 .allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
723 .alloc_extra_way_for_cursor = true,
724 .min_prefetch_in_strobe_ns = 60000, // 60us
725 .disable_unbounded_requesting = false,
726 .override_dispclk_programming = true,
727 .disable_fpo_optimizations = false,
728 .fpo_vactive_margin_us = 2000, // 2000us
729 .disable_fpo_vactive = false,
730 .disable_boot_optimizations = false,
731 .disable_subvp_high_refresh = false,
732 .disable_dp_plus_plus_wa = true,
733 .fpo_vactive_min_active_margin_us = 200,
734 .fpo_vactive_max_blank_us = 1000,
735 .enable_legacy_fast_update = false,
736 };
737
dcn32_aux_engine_create(struct dc_context * ctx,uint32_t inst)738 static struct dce_aux *dcn32_aux_engine_create(
739 struct dc_context *ctx,
740 uint32_t inst)
741 {
742 struct aux_engine_dce110 *aux_engine =
743 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
744
745 if (!aux_engine)
746 return NULL;
747
748 #undef REG_STRUCT
749 #define REG_STRUCT aux_engine_regs
750 aux_engine_regs_init(0),
751 aux_engine_regs_init(1),
752 aux_engine_regs_init(2),
753 aux_engine_regs_init(3),
754 aux_engine_regs_init(4);
755
756 dce110_aux_engine_construct(aux_engine, ctx, inst,
757 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
758 &aux_engine_regs[inst],
759 &aux_mask,
760 &aux_shift,
761 ctx->dc->caps.extended_aux_timeout_support);
762
763 return &aux_engine->base;
764 }
765 #define i2c_inst_regs_init(id)\
766 I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
767
768 static struct dce_i2c_registers i2c_hw_regs[5];
769
770 static const struct dce_i2c_shift i2c_shifts = {
771 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
772 };
773
774 static const struct dce_i2c_mask i2c_masks = {
775 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
776 };
777
dcn32_i2c_hw_create(struct dc_context * ctx,uint32_t inst)778 static struct dce_i2c_hw *dcn32_i2c_hw_create(
779 struct dc_context *ctx,
780 uint32_t inst)
781 {
782 struct dce_i2c_hw *dce_i2c_hw =
783 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
784
785 if (!dce_i2c_hw)
786 return NULL;
787
788 #undef REG_STRUCT
789 #define REG_STRUCT i2c_hw_regs
790 i2c_inst_regs_init(1),
791 i2c_inst_regs_init(2),
792 i2c_inst_regs_init(3),
793 i2c_inst_regs_init(4),
794 i2c_inst_regs_init(5);
795
796 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
797 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
798
799 return dce_i2c_hw;
800 }
801
dcn32_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)802 static struct clock_source *dcn32_clock_source_create(
803 struct dc_context *ctx,
804 struct dc_bios *bios,
805 enum clock_source_id id,
806 const struct dce110_clk_src_regs *regs,
807 bool dp_clk_src)
808 {
809 struct dce110_clk_src *clk_src =
810 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
811
812 if (!clk_src)
813 return NULL;
814
815 if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
816 regs, &cs_shift, &cs_mask)) {
817 clk_src->base.dp_clk_src = dp_clk_src;
818 return &clk_src->base;
819 }
820
821 kfree(clk_src);
822 BREAK_TO_DEBUGGER();
823 return NULL;
824 }
825
dcn32_hubbub_create(struct dc_context * ctx)826 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
827 {
828 int i;
829
830 struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
831 GFP_KERNEL);
832
833 if (!hubbub2)
834 return NULL;
835
836 #undef REG_STRUCT
837 #define REG_STRUCT hubbub_reg
838 hubbub_reg_init();
839
840 #undef REG_STRUCT
841 #define REG_STRUCT vmid_regs
842 vmid_regs_init(0),
843 vmid_regs_init(1),
844 vmid_regs_init(2),
845 vmid_regs_init(3),
846 vmid_regs_init(4),
847 vmid_regs_init(5),
848 vmid_regs_init(6),
849 vmid_regs_init(7),
850 vmid_regs_init(8),
851 vmid_regs_init(9),
852 vmid_regs_init(10),
853 vmid_regs_init(11),
854 vmid_regs_init(12),
855 vmid_regs_init(13),
856 vmid_regs_init(14),
857 vmid_regs_init(15);
858
859 hubbub32_construct(hubbub2, ctx,
860 &hubbub_reg,
861 &hubbub_shift,
862 &hubbub_mask,
863 ctx->dc->dml.ip.det_buffer_size_kbytes,
864 ctx->dc->dml.ip.pixel_chunk_size_kbytes,
865 ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
866
867
868 for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
869 struct dcn20_vmid *vmid = &hubbub2->vmid[i];
870
871 vmid->ctx = ctx;
872
873 vmid->regs = &vmid_regs[i];
874 vmid->shifts = &vmid_shifts;
875 vmid->masks = &vmid_masks;
876 }
877
878 return &hubbub2->base;
879 }
880
dcn32_hubp_create(struct dc_context * ctx,uint32_t inst)881 static struct hubp *dcn32_hubp_create(
882 struct dc_context *ctx,
883 uint32_t inst)
884 {
885 struct dcn20_hubp *hubp2 =
886 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
887
888 if (!hubp2)
889 return NULL;
890
891 #undef REG_STRUCT
892 #define REG_STRUCT hubp_regs
893 hubp_regs_init(0),
894 hubp_regs_init(1),
895 hubp_regs_init(2),
896 hubp_regs_init(3);
897
898 if (hubp32_construct(hubp2, ctx, inst,
899 &hubp_regs[inst], &hubp_shift, &hubp_mask))
900 return &hubp2->base;
901
902 BREAK_TO_DEBUGGER();
903 kfree(hubp2);
904 return NULL;
905 }
906
dcn32_dpp_destroy(struct dpp ** dpp)907 static void dcn32_dpp_destroy(struct dpp **dpp)
908 {
909 kfree(TO_DCN30_DPP(*dpp));
910 *dpp = NULL;
911 }
912
dcn32_dpp_create(struct dc_context * ctx,uint32_t inst)913 static struct dpp *dcn32_dpp_create(
914 struct dc_context *ctx,
915 uint32_t inst)
916 {
917 struct dcn3_dpp *dpp3 =
918 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
919
920 if (!dpp3)
921 return NULL;
922
923 #undef REG_STRUCT
924 #define REG_STRUCT dpp_regs
925 dpp_regs_init(0),
926 dpp_regs_init(1),
927 dpp_regs_init(2),
928 dpp_regs_init(3);
929
930 if (dpp32_construct(dpp3, ctx, inst,
931 &dpp_regs[inst], &tf_shift, &tf_mask))
932 return &dpp3->base;
933
934 BREAK_TO_DEBUGGER();
935 kfree(dpp3);
936 return NULL;
937 }
938
dcn32_mpc_create(struct dc_context * ctx,int num_mpcc,int num_rmu)939 static struct mpc *dcn32_mpc_create(
940 struct dc_context *ctx,
941 int num_mpcc,
942 int num_rmu)
943 {
944 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
945 GFP_KERNEL);
946
947 if (!mpc30)
948 return NULL;
949
950 #undef REG_STRUCT
951 #define REG_STRUCT mpc_regs
952 dcn_mpc_regs_init();
953
954 dcn32_mpc_construct(mpc30, ctx,
955 &mpc_regs,
956 &mpc_shift,
957 &mpc_mask,
958 num_mpcc,
959 num_rmu);
960
961 return &mpc30->base;
962 }
963
dcn32_opp_create(struct dc_context * ctx,uint32_t inst)964 static struct output_pixel_processor *dcn32_opp_create(
965 struct dc_context *ctx, uint32_t inst)
966 {
967 struct dcn20_opp *opp2 =
968 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
969
970 if (!opp2) {
971 BREAK_TO_DEBUGGER();
972 return NULL;
973 }
974
975 #undef REG_STRUCT
976 #define REG_STRUCT opp_regs
977 opp_regs_init(0),
978 opp_regs_init(1),
979 opp_regs_init(2),
980 opp_regs_init(3);
981
982 dcn20_opp_construct(opp2, ctx, inst,
983 &opp_regs[inst], &opp_shift, &opp_mask);
984 return &opp2->base;
985 }
986
987
dcn32_timing_generator_create(struct dc_context * ctx,uint32_t instance)988 static struct timing_generator *dcn32_timing_generator_create(
989 struct dc_context *ctx,
990 uint32_t instance)
991 {
992 struct optc *tgn10 =
993 kzalloc(sizeof(struct optc), GFP_KERNEL);
994
995 if (!tgn10)
996 return NULL;
997
998 #undef REG_STRUCT
999 #define REG_STRUCT optc_regs
1000 optc_regs_init(0),
1001 optc_regs_init(1),
1002 optc_regs_init(2),
1003 optc_regs_init(3);
1004
1005 tgn10->base.inst = instance;
1006 tgn10->base.ctx = ctx;
1007
1008 tgn10->tg_regs = &optc_regs[instance];
1009 tgn10->tg_shift = &optc_shift;
1010 tgn10->tg_mask = &optc_mask;
1011
1012 dcn32_timing_generator_init(tgn10);
1013
1014 return &tgn10->base;
1015 }
1016
1017 static const struct encoder_feature_support link_enc_feature = {
1018 .max_hdmi_deep_color = COLOR_DEPTH_121212,
1019 .max_hdmi_pixel_clock = 600000,
1020 .hdmi_ycbcr420_supported = true,
1021 .dp_ycbcr420_supported = true,
1022 .fec_supported = true,
1023 .flags.bits.IS_HBR2_CAPABLE = true,
1024 .flags.bits.IS_HBR3_CAPABLE = true,
1025 .flags.bits.IS_TPS3_CAPABLE = true,
1026 .flags.bits.IS_TPS4_CAPABLE = true
1027 };
1028
dcn32_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)1029 static struct link_encoder *dcn32_link_encoder_create(
1030 struct dc_context *ctx,
1031 const struct encoder_init_data *enc_init_data)
1032 {
1033 struct dcn20_link_encoder *enc20 =
1034 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1035
1036 if (!enc20)
1037 return NULL;
1038
1039 #undef REG_STRUCT
1040 #define REG_STRUCT link_enc_aux_regs
1041 aux_regs_init(0),
1042 aux_regs_init(1),
1043 aux_regs_init(2),
1044 aux_regs_init(3),
1045 aux_regs_init(4);
1046
1047 #undef REG_STRUCT
1048 #define REG_STRUCT link_enc_hpd_regs
1049 hpd_regs_init(0),
1050 hpd_regs_init(1),
1051 hpd_regs_init(2),
1052 hpd_regs_init(3),
1053 hpd_regs_init(4);
1054
1055 #undef REG_STRUCT
1056 #define REG_STRUCT link_enc_regs
1057 link_regs_init(0, A),
1058 link_regs_init(1, B),
1059 link_regs_init(2, C),
1060 link_regs_init(3, D),
1061 link_regs_init(4, E);
1062
1063 dcn32_link_encoder_construct(enc20,
1064 enc_init_data,
1065 &link_enc_feature,
1066 &link_enc_regs[enc_init_data->transmitter],
1067 &link_enc_aux_regs[enc_init_data->channel - 1],
1068 &link_enc_hpd_regs[enc_init_data->hpd_source],
1069 &le_shift,
1070 &le_mask);
1071
1072 return &enc20->enc10.base;
1073 }
1074
dcn32_panel_cntl_create(const struct panel_cntl_init_data * init_data)1075 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1076 {
1077 struct dcn31_panel_cntl *panel_cntl =
1078 kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1079
1080 if (!panel_cntl)
1081 return NULL;
1082
1083 dcn31_panel_cntl_construct(panel_cntl, init_data);
1084
1085 return &panel_cntl->base;
1086 }
1087
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)1088 static void read_dce_straps(
1089 struct dc_context *ctx,
1090 struct resource_straps *straps)
1091 {
1092 generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1093 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1094
1095 }
1096
dcn32_create_audio(struct dc_context * ctx,unsigned int inst)1097 static struct audio *dcn32_create_audio(
1098 struct dc_context *ctx, unsigned int inst)
1099 {
1100
1101 #undef REG_STRUCT
1102 #define REG_STRUCT audio_regs
1103 audio_regs_init(0),
1104 audio_regs_init(1),
1105 audio_regs_init(2),
1106 audio_regs_init(3),
1107 audio_regs_init(4);
1108
1109 return dce_audio_create(ctx, inst,
1110 &audio_regs[inst], &audio_shift, &audio_mask);
1111 }
1112
dcn32_vpg_create(struct dc_context * ctx,uint32_t inst)1113 static struct vpg *dcn32_vpg_create(
1114 struct dc_context *ctx,
1115 uint32_t inst)
1116 {
1117 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1118
1119 if (!vpg3)
1120 return NULL;
1121
1122 #undef REG_STRUCT
1123 #define REG_STRUCT vpg_regs
1124 vpg_regs_init(0),
1125 vpg_regs_init(1),
1126 vpg_regs_init(2),
1127 vpg_regs_init(3),
1128 vpg_regs_init(4),
1129 vpg_regs_init(5),
1130 vpg_regs_init(6),
1131 vpg_regs_init(7),
1132 vpg_regs_init(8),
1133 vpg_regs_init(9);
1134
1135 vpg3_construct(vpg3, ctx, inst,
1136 &vpg_regs[inst],
1137 &vpg_shift,
1138 &vpg_mask);
1139
1140 return &vpg3->base;
1141 }
1142
dcn32_afmt_create(struct dc_context * ctx,uint32_t inst)1143 static struct afmt *dcn32_afmt_create(
1144 struct dc_context *ctx,
1145 uint32_t inst)
1146 {
1147 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1148
1149 if (!afmt3)
1150 return NULL;
1151
1152 #undef REG_STRUCT
1153 #define REG_STRUCT afmt_regs
1154 afmt_regs_init(0),
1155 afmt_regs_init(1),
1156 afmt_regs_init(2),
1157 afmt_regs_init(3),
1158 afmt_regs_init(4),
1159 afmt_regs_init(5);
1160
1161 afmt3_construct(afmt3, ctx, inst,
1162 &afmt_regs[inst],
1163 &afmt_shift,
1164 &afmt_mask);
1165
1166 return &afmt3->base;
1167 }
1168
dcn31_apg_create(struct dc_context * ctx,uint32_t inst)1169 static struct apg *dcn31_apg_create(
1170 struct dc_context *ctx,
1171 uint32_t inst)
1172 {
1173 struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1174
1175 if (!apg31)
1176 return NULL;
1177
1178 #undef REG_STRUCT
1179 #define REG_STRUCT apg_regs
1180 apg_regs_init(0),
1181 apg_regs_init(1),
1182 apg_regs_init(2),
1183 apg_regs_init(3);
1184
1185 apg31_construct(apg31, ctx, inst,
1186 &apg_regs[inst],
1187 &apg_shift,
1188 &apg_mask);
1189
1190 return &apg31->base;
1191 }
1192
dcn32_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1193 static struct stream_encoder *dcn32_stream_encoder_create(
1194 enum engine_id eng_id,
1195 struct dc_context *ctx)
1196 {
1197 struct dcn10_stream_encoder *enc1;
1198 struct vpg *vpg;
1199 struct afmt *afmt;
1200 int vpg_inst;
1201 int afmt_inst;
1202
1203 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1204 if (eng_id <= ENGINE_ID_DIGF) {
1205 vpg_inst = eng_id;
1206 afmt_inst = eng_id;
1207 } else
1208 return NULL;
1209
1210 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1211 vpg = dcn32_vpg_create(ctx, vpg_inst);
1212 afmt = dcn32_afmt_create(ctx, afmt_inst);
1213
1214 if (!enc1 || !vpg || !afmt) {
1215 kfree(enc1);
1216 kfree(vpg);
1217 kfree(afmt);
1218 return NULL;
1219 }
1220
1221 #undef REG_STRUCT
1222 #define REG_STRUCT stream_enc_regs
1223 stream_enc_regs_init(0),
1224 stream_enc_regs_init(1),
1225 stream_enc_regs_init(2),
1226 stream_enc_regs_init(3),
1227 stream_enc_regs_init(4);
1228
1229 dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1230 eng_id, vpg, afmt,
1231 &stream_enc_regs[eng_id],
1232 &se_shift, &se_mask);
1233
1234 return &enc1->base;
1235 }
1236
dcn32_hpo_dp_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1237 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1238 enum engine_id eng_id,
1239 struct dc_context *ctx)
1240 {
1241 struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1242 struct vpg *vpg;
1243 struct apg *apg;
1244 uint32_t hpo_dp_inst;
1245 uint32_t vpg_inst;
1246 uint32_t apg_inst;
1247
1248 ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1249 hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1250
1251 /* Mapping of VPG register blocks to HPO DP block instance:
1252 * VPG[6] -> HPO_DP[0]
1253 * VPG[7] -> HPO_DP[1]
1254 * VPG[8] -> HPO_DP[2]
1255 * VPG[9] -> HPO_DP[3]
1256 */
1257 vpg_inst = hpo_dp_inst + 6;
1258
1259 /* Mapping of APG register blocks to HPO DP block instance:
1260 * APG[0] -> HPO_DP[0]
1261 * APG[1] -> HPO_DP[1]
1262 * APG[2] -> HPO_DP[2]
1263 * APG[3] -> HPO_DP[3]
1264 */
1265 apg_inst = hpo_dp_inst;
1266
1267 /* allocate HPO stream encoder and create VPG sub-block */
1268 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1269 vpg = dcn32_vpg_create(ctx, vpg_inst);
1270 apg = dcn31_apg_create(ctx, apg_inst);
1271
1272 if (!hpo_dp_enc31 || !vpg || !apg) {
1273 kfree(hpo_dp_enc31);
1274 kfree(vpg);
1275 kfree(apg);
1276 return NULL;
1277 }
1278
1279 #undef REG_STRUCT
1280 #define REG_STRUCT hpo_dp_stream_enc_regs
1281 hpo_dp_stream_encoder_reg_init(0),
1282 hpo_dp_stream_encoder_reg_init(1),
1283 hpo_dp_stream_encoder_reg_init(2),
1284 hpo_dp_stream_encoder_reg_init(3);
1285
1286 dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1287 hpo_dp_inst, eng_id, vpg, apg,
1288 &hpo_dp_stream_enc_regs[hpo_dp_inst],
1289 &hpo_dp_se_shift, &hpo_dp_se_mask);
1290
1291 return &hpo_dp_enc31->base;
1292 }
1293
dcn32_hpo_dp_link_encoder_create(uint8_t inst,struct dc_context * ctx)1294 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1295 uint8_t inst,
1296 struct dc_context *ctx)
1297 {
1298 struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1299
1300 /* allocate HPO link encoder */
1301 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1302 if (!hpo_dp_enc31)
1303 return NULL; /* out of memory */
1304
1305 #undef REG_STRUCT
1306 #define REG_STRUCT hpo_dp_link_enc_regs
1307 hpo_dp_link_encoder_reg_init(0),
1308 hpo_dp_link_encoder_reg_init(1);
1309
1310 hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1311 &hpo_dp_link_enc_regs[inst],
1312 &hpo_dp_le_shift, &hpo_dp_le_mask);
1313
1314 return &hpo_dp_enc31->base;
1315 }
1316
dcn32_hwseq_create(struct dc_context * ctx)1317 static struct dce_hwseq *dcn32_hwseq_create(
1318 struct dc_context *ctx)
1319 {
1320 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1321
1322 #undef REG_STRUCT
1323 #define REG_STRUCT hwseq_reg
1324 hwseq_reg_init();
1325
1326 if (hws) {
1327 hws->ctx = ctx;
1328 hws->regs = &hwseq_reg;
1329 hws->shifts = &hwseq_shift;
1330 hws->masks = &hwseq_mask;
1331 }
1332 return hws;
1333 }
1334 static const struct resource_create_funcs res_create_funcs = {
1335 .read_dce_straps = read_dce_straps,
1336 .create_audio = dcn32_create_audio,
1337 .create_stream_encoder = dcn32_stream_encoder_create,
1338 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1339 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1340 .create_hwseq = dcn32_hwseq_create,
1341 };
1342
dcn32_resource_destruct(struct dcn32_resource_pool * pool)1343 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1344 {
1345 unsigned int i;
1346
1347 for (i = 0; i < pool->base.stream_enc_count; i++) {
1348 if (pool->base.stream_enc[i] != NULL) {
1349 if (pool->base.stream_enc[i]->vpg != NULL) {
1350 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1351 pool->base.stream_enc[i]->vpg = NULL;
1352 }
1353 if (pool->base.stream_enc[i]->afmt != NULL) {
1354 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1355 pool->base.stream_enc[i]->afmt = NULL;
1356 }
1357 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1358 pool->base.stream_enc[i] = NULL;
1359 }
1360 }
1361
1362 for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1363 if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1364 if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1365 kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1366 pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1367 }
1368 if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1369 kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1370 pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1371 }
1372 kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1373 pool->base.hpo_dp_stream_enc[i] = NULL;
1374 }
1375 }
1376
1377 for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1378 if (pool->base.hpo_dp_link_enc[i] != NULL) {
1379 kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1380 pool->base.hpo_dp_link_enc[i] = NULL;
1381 }
1382 }
1383
1384 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1385 if (pool->base.dscs[i] != NULL)
1386 dcn20_dsc_destroy(&pool->base.dscs[i]);
1387 }
1388
1389 if (pool->base.mpc != NULL) {
1390 kfree(TO_DCN20_MPC(pool->base.mpc));
1391 pool->base.mpc = NULL;
1392 }
1393 if (pool->base.hubbub != NULL) {
1394 kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1395 pool->base.hubbub = NULL;
1396 }
1397 for (i = 0; i < pool->base.pipe_count; i++) {
1398 if (pool->base.dpps[i] != NULL)
1399 dcn32_dpp_destroy(&pool->base.dpps[i]);
1400
1401 if (pool->base.ipps[i] != NULL)
1402 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1403
1404 if (pool->base.hubps[i] != NULL) {
1405 kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1406 pool->base.hubps[i] = NULL;
1407 }
1408
1409 if (pool->base.irqs != NULL) {
1410 dal_irq_service_destroy(&pool->base.irqs);
1411 }
1412 }
1413
1414 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1415 if (pool->base.engines[i] != NULL)
1416 dce110_engine_destroy(&pool->base.engines[i]);
1417 if (pool->base.hw_i2cs[i] != NULL) {
1418 kfree(pool->base.hw_i2cs[i]);
1419 pool->base.hw_i2cs[i] = NULL;
1420 }
1421 if (pool->base.sw_i2cs[i] != NULL) {
1422 kfree(pool->base.sw_i2cs[i]);
1423 pool->base.sw_i2cs[i] = NULL;
1424 }
1425 }
1426
1427 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1428 if (pool->base.opps[i] != NULL)
1429 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1430 }
1431
1432 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1433 if (pool->base.timing_generators[i] != NULL) {
1434 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1435 pool->base.timing_generators[i] = NULL;
1436 }
1437 }
1438
1439 for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1440 if (pool->base.dwbc[i] != NULL) {
1441 kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1442 pool->base.dwbc[i] = NULL;
1443 }
1444 if (pool->base.mcif_wb[i] != NULL) {
1445 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1446 pool->base.mcif_wb[i] = NULL;
1447 }
1448 }
1449
1450 for (i = 0; i < pool->base.audio_count; i++) {
1451 if (pool->base.audios[i])
1452 dce_aud_destroy(&pool->base.audios[i]);
1453 }
1454
1455 for (i = 0; i < pool->base.clk_src_count; i++) {
1456 if (pool->base.clock_sources[i] != NULL) {
1457 dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1458 pool->base.clock_sources[i] = NULL;
1459 }
1460 }
1461
1462 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1463 if (pool->base.mpc_lut[i] != NULL) {
1464 dc_3dlut_func_release(pool->base.mpc_lut[i]);
1465 pool->base.mpc_lut[i] = NULL;
1466 }
1467 if (pool->base.mpc_shaper[i] != NULL) {
1468 dc_transfer_func_release(pool->base.mpc_shaper[i]);
1469 pool->base.mpc_shaper[i] = NULL;
1470 }
1471 }
1472
1473 if (pool->base.dp_clock_source != NULL) {
1474 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1475 pool->base.dp_clock_source = NULL;
1476 }
1477
1478 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1479 if (pool->base.multiple_abms[i] != NULL)
1480 dce_abm_destroy(&pool->base.multiple_abms[i]);
1481 }
1482
1483 if (pool->base.psr != NULL)
1484 dmub_psr_destroy(&pool->base.psr);
1485
1486 if (pool->base.dccg != NULL)
1487 dcn_dccg_destroy(&pool->base.dccg);
1488
1489 if (pool->base.oem_device != NULL) {
1490 struct dc *dc = pool->base.oem_device->ctx->dc;
1491
1492 dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1493 }
1494 }
1495
1496
dcn32_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)1497 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1498 {
1499 int i;
1500 uint32_t dwb_count = pool->res_cap->num_dwb;
1501
1502 for (i = 0; i < dwb_count; i++) {
1503 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1504 GFP_KERNEL);
1505
1506 if (!dwbc30) {
1507 dm_error("DC: failed to create dwbc30!\n");
1508 return false;
1509 }
1510
1511 #undef REG_STRUCT
1512 #define REG_STRUCT dwbc30_regs
1513 dwbc_regs_dcn3_init(0);
1514
1515 dcn30_dwbc_construct(dwbc30, ctx,
1516 &dwbc30_regs[i],
1517 &dwbc30_shift,
1518 &dwbc30_mask,
1519 i);
1520
1521 pool->dwbc[i] = &dwbc30->base;
1522 }
1523 return true;
1524 }
1525
dcn32_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)1526 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1527 {
1528 int i;
1529 uint32_t dwb_count = pool->res_cap->num_dwb;
1530
1531 for (i = 0; i < dwb_count; i++) {
1532 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1533 GFP_KERNEL);
1534
1535 if (!mcif_wb30) {
1536 dm_error("DC: failed to create mcif_wb30!\n");
1537 return false;
1538 }
1539
1540 #undef REG_STRUCT
1541 #define REG_STRUCT mcif_wb30_regs
1542 mcif_wb_regs_dcn3_init(0);
1543
1544 dcn32_mmhubbub_construct(mcif_wb30, ctx,
1545 &mcif_wb30_regs[i],
1546 &mcif_wb30_shift,
1547 &mcif_wb30_mask,
1548 i);
1549
1550 pool->mcif_wb[i] = &mcif_wb30->base;
1551 }
1552 return true;
1553 }
1554
dcn32_dsc_create(struct dc_context * ctx,uint32_t inst)1555 static struct display_stream_compressor *dcn32_dsc_create(
1556 struct dc_context *ctx, uint32_t inst)
1557 {
1558 struct dcn20_dsc *dsc =
1559 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1560
1561 if (!dsc) {
1562 BREAK_TO_DEBUGGER();
1563 return NULL;
1564 }
1565
1566 #undef REG_STRUCT
1567 #define REG_STRUCT dsc_regs
1568 dsc_regsDCN20_init(0),
1569 dsc_regsDCN20_init(1),
1570 dsc_regsDCN20_init(2),
1571 dsc_regsDCN20_init(3);
1572
1573 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1574
1575 dsc->max_image_width = 6016;
1576
1577 return &dsc->base;
1578 }
1579
dcn32_destroy_resource_pool(struct resource_pool ** pool)1580 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1581 {
1582 struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1583
1584 dcn32_resource_destruct(dcn32_pool);
1585 kfree(dcn32_pool);
1586 *pool = NULL;
1587 }
1588
dcn32_acquire_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,int mpcc_id,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1589 bool dcn32_acquire_post_bldn_3dlut(
1590 struct resource_context *res_ctx,
1591 const struct resource_pool *pool,
1592 int mpcc_id,
1593 struct dc_3dlut **lut,
1594 struct dc_transfer_func **shaper)
1595 {
1596 bool ret = false;
1597
1598 ASSERT(*lut == NULL && *shaper == NULL);
1599 *lut = NULL;
1600 *shaper = NULL;
1601
1602 if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1603 *lut = pool->mpc_lut[mpcc_id];
1604 *shaper = pool->mpc_shaper[mpcc_id];
1605 res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1606 ret = true;
1607 }
1608 return ret;
1609 }
1610
dcn32_release_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1611 bool dcn32_release_post_bldn_3dlut(
1612 struct resource_context *res_ctx,
1613 const struct resource_pool *pool,
1614 struct dc_3dlut **lut,
1615 struct dc_transfer_func **shaper)
1616 {
1617 int i;
1618 bool ret = false;
1619
1620 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1621 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1622 res_ctx->is_mpc_3dlut_acquired[i] = false;
1623 pool->mpc_lut[i]->state.raw = 0;
1624 *lut = NULL;
1625 *shaper = NULL;
1626 ret = true;
1627 break;
1628 }
1629 }
1630 return ret;
1631 }
1632
dcn32_enable_phantom_plane(struct dc * dc,struct dc_state * context,struct dc_stream_state * phantom_stream,unsigned int dc_pipe_idx)1633 static void dcn32_enable_phantom_plane(struct dc *dc,
1634 struct dc_state *context,
1635 struct dc_stream_state *phantom_stream,
1636 unsigned int dc_pipe_idx)
1637 {
1638 struct dc_plane_state *phantom_plane = NULL;
1639 struct dc_plane_state *prev_phantom_plane = NULL;
1640 struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1641
1642 while (curr_pipe) {
1643 if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1644 phantom_plane = prev_phantom_plane;
1645 else
1646 phantom_plane = dc_create_plane_state(dc);
1647
1648 memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1649 memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1650 sizeof(phantom_plane->scaling_quality));
1651 memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1652 memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1653 memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1654 memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1655 sizeof(phantom_plane->plane_size));
1656 memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1657 sizeof(phantom_plane->tiling_info));
1658 memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1659 phantom_plane->format = curr_pipe->plane_state->format;
1660 phantom_plane->rotation = curr_pipe->plane_state->rotation;
1661 phantom_plane->visible = curr_pipe->plane_state->visible;
1662
1663 /* Shadow pipe has small viewport. */
1664 phantom_plane->clip_rect.y = 0;
1665 phantom_plane->clip_rect.height = phantom_stream->src.height;
1666
1667 phantom_plane->is_phantom = true;
1668
1669 dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
1670
1671 curr_pipe = curr_pipe->bottom_pipe;
1672 prev_phantom_plane = phantom_plane;
1673 }
1674 }
1675
dcn32_enable_phantom_stream(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)1676 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1677 struct dc_state *context,
1678 display_e2e_pipe_params_st *pipes,
1679 unsigned int pipe_cnt,
1680 unsigned int dc_pipe_idx)
1681 {
1682 struct dc_stream_state *phantom_stream = NULL;
1683 struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1684
1685 phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
1686 phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
1687 phantom_stream->dpms_off = true;
1688 phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
1689 phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
1690 ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
1691 ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
1692
1693 /* stream has limited viewport and small timing */
1694 memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1695 memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1696 memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1697 DC_FP_START();
1698 dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1699 DC_FP_END();
1700
1701 dc_add_stream_to_ctx(dc, context, phantom_stream);
1702 return phantom_stream;
1703 }
1704
dcn32_retain_phantom_pipes(struct dc * dc,struct dc_state * context)1705 void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context)
1706 {
1707 int i;
1708 struct dc_plane_state *phantom_plane = NULL;
1709 struct dc_stream_state *phantom_stream = NULL;
1710
1711 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1712 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1713
1714 if (resource_is_pipe_type(pipe, OTG_MASTER) &&
1715 resource_is_pipe_type(pipe, DPP_PIPE) &&
1716 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1717 phantom_plane = pipe->plane_state;
1718 phantom_stream = pipe->stream;
1719
1720 dc_plane_state_retain(phantom_plane);
1721 dc_stream_retain(phantom_stream);
1722 }
1723 }
1724 }
1725
1726 // return true if removed piped from ctx, false otherwise
dcn32_remove_phantom_pipes(struct dc * dc,struct dc_state * context,bool fast_update)1727 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update)
1728 {
1729 int i;
1730 bool removed_pipe = false;
1731 struct dc_plane_state *phantom_plane = NULL;
1732 struct dc_stream_state *phantom_stream = NULL;
1733
1734 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1735 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1736 // build scaling params for phantom pipes
1737 if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1738 phantom_plane = pipe->plane_state;
1739 phantom_stream = pipe->stream;
1740
1741 dc_rem_all_planes_for_stream(dc, pipe->stream, context);
1742 dc_remove_stream_from_ctx(dc, context, pipe->stream);
1743
1744 /* Ref count is incremented on allocation and also when added to the context.
1745 * Therefore we must call release for the the phantom plane and stream once
1746 * they are removed from the ctx to finally decrement the refcount to 0 to free.
1747 */
1748 dc_plane_state_release(phantom_plane);
1749 dc_stream_release(phantom_stream);
1750
1751 removed_pipe = true;
1752 }
1753
1754 /* For non-full updates, a shallow copy of the current state
1755 * is created. In this case we don't want to erase the current
1756 * state (there can be 2 HIRQL threads, one in flip, and one in
1757 * checkMPO) that can cause a race condition.
1758 *
1759 * This is just a workaround, needs a proper fix.
1760 */
1761 if (!fast_update) {
1762 // Clear all phantom stream info
1763 if (pipe->stream) {
1764 pipe->stream->mall_stream_config.type = SUBVP_NONE;
1765 pipe->stream->mall_stream_config.paired_stream = NULL;
1766 }
1767
1768 if (pipe->plane_state) {
1769 pipe->plane_state->is_phantom = false;
1770 }
1771 }
1772 }
1773 return removed_pipe;
1774 }
1775
1776 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1777 * require a phantom pipe / stream
1778 */
dcn32_add_phantom_pipes(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int index)1779 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1780 display_e2e_pipe_params_st *pipes,
1781 unsigned int pipe_cnt,
1782 unsigned int index)
1783 {
1784 struct dc_stream_state *phantom_stream = NULL;
1785 unsigned int i;
1786
1787 // The index of the DC pipe passed into this function is guarenteed to
1788 // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1789 // already have phantom pipe assigned, etc.) by previous checks.
1790 phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1791 if (!phantom_stream)
1792 return;
1793
1794 dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1795
1796 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1797 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1798
1799 // Build scaling params for phantom pipes which were newly added.
1800 // We determine which phantom pipes were added by comparing with
1801 // the phantom stream.
1802 if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1803 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1804 pipe->stream->use_dynamic_meta = false;
1805 pipe->plane_state->flip_immediate = false;
1806 if (!resource_build_scaling_params(pipe)) {
1807 // Log / remove phantom pipes since failed to build scaling params
1808 }
1809 }
1810 }
1811 }
1812
dcn32_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)1813 bool dcn32_validate_bandwidth(struct dc *dc,
1814 struct dc_state *context,
1815 bool fast_validate)
1816 {
1817 bool out = false;
1818
1819 BW_VAL_TRACE_SETUP();
1820
1821 int vlevel = 0;
1822 int pipe_cnt = 0;
1823 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1824 struct mall_temp_config mall_temp_config;
1825
1826 /* To handle Freesync properly, setting FreeSync DML parameters
1827 * to its default state for the first stage of validation
1828 */
1829 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1830 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1831
1832 DC_LOGGER_INIT(dc->ctx->logger);
1833
1834 /* For fast validation, there are situations where a shallow copy of
1835 * of the dc->current_state is created for the validation. In this case
1836 * we want to save and restore the mall config because we always
1837 * teardown subvp at the beginning of validation (and don't attempt
1838 * to add it back if it's fast validation). If we don't restore the
1839 * subvp config in cases of fast validation + shallow copy of the
1840 * dc->current_state, the dc->current_state will have a partially
1841 * removed subvp state when we did not intend to remove it.
1842 */
1843 if (fast_validate) {
1844 memset(&mall_temp_config, 0, sizeof(mall_temp_config));
1845 dcn32_save_mall_state(dc, context, &mall_temp_config);
1846 }
1847
1848 BW_VAL_TRACE_COUNT();
1849
1850 if (!pipes)
1851 goto validate_fail;
1852
1853 DC_FP_START();
1854 out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1855 DC_FP_END();
1856
1857 if (fast_validate)
1858 dcn32_restore_mall_state(dc, context, &mall_temp_config);
1859
1860 if (pipe_cnt == 0)
1861 goto validate_out;
1862
1863 if (!out)
1864 goto validate_fail;
1865
1866 BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1867
1868 if (fast_validate) {
1869 BW_VAL_TRACE_SKIP(fast);
1870 goto validate_out;
1871 }
1872
1873 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1874
1875 dcn32_override_min_req_memclk(dc, context);
1876
1877 BW_VAL_TRACE_END_WATERMARKS();
1878
1879 goto validate_out;
1880
1881 validate_fail:
1882 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1883 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1884
1885 BW_VAL_TRACE_SKIP(fail);
1886 out = false;
1887
1888 validate_out:
1889 kfree(pipes);
1890
1891 BW_VAL_TRACE_FINISH();
1892
1893 return out;
1894 }
1895
dcn32_populate_dml_pipes_from_context(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,bool fast_validate)1896 int dcn32_populate_dml_pipes_from_context(
1897 struct dc *dc, struct dc_state *context,
1898 display_e2e_pipe_params_st *pipes,
1899 bool fast_validate)
1900 {
1901 int i, pipe_cnt;
1902 struct resource_context *res_ctx = &context->res_ctx;
1903 struct pipe_ctx *pipe = NULL;
1904 bool subvp_in_use = false;
1905 struct dc_crtc_timing *timing;
1906 bool vsr_odm_support = false;
1907
1908 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1909
1910 /* Determine whether we will apply ODM 2to1 policy:
1911 * Applies to single display and where the number of planes is less than 3.
1912 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes.
1913 *
1914 * Apply pipe split policy first so we can predict the pipe split correctly
1915 * (dcn32_predict_pipe_split).
1916 */
1917 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1918 if (!res_ctx->pipe_ctx[i].stream)
1919 continue;
1920 pipe = &res_ctx->pipe_ctx[i];
1921 timing = &pipe->stream->timing;
1922
1923 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1924 vsr_odm_support = (res_ctx->pipe_ctx[i].stream->src.width >= 5120 &&
1925 res_ctx->pipe_ctx[i].stream->src.width > res_ctx->pipe_ctx[i].stream->dst.width);
1926 if (context->stream_count == 1 &&
1927 context->stream_status[0].plane_count == 1 &&
1928 !dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) &&
1929 is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) &&
1930 pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ &&
1931 dc->debug.enable_single_display_2to1_odm_policy &&
1932 !vsr_odm_support) { //excluding 2to1 ODM combine on >= 5k vsr
1933 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1934 }
1935 pipe_cnt++;
1936 }
1937
1938 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1939
1940 if (!res_ctx->pipe_ctx[i].stream)
1941 continue;
1942 pipe = &res_ctx->pipe_ctx[i];
1943 timing = &pipe->stream->timing;
1944
1945 pipes[pipe_cnt].pipe.src.gpuvm = true;
1946 DC_FP_START();
1947 dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1948 DC_FP_END();
1949 pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1950 pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1951 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1952 pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1953
1954 /* Only populate DML input with subvp info for full updates.
1955 * This is just a workaround -- needs a proper fix.
1956 */
1957 if (!fast_validate) {
1958 switch (pipe->stream->mall_stream_config.type) {
1959 case SUBVP_MAIN:
1960 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1961 subvp_in_use = true;
1962 break;
1963 case SUBVP_PHANTOM:
1964 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1965 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1966 // Disallow unbounded req for SubVP according to DCHUB programming guide
1967 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1968 break;
1969 case SUBVP_NONE:
1970 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1971 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1972 break;
1973 default:
1974 break;
1975 }
1976 }
1977
1978 pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1979 if (pipes[pipe_cnt].dout.dsc_enable) {
1980 switch (timing->display_color_depth) {
1981 case COLOR_DEPTH_888:
1982 pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1983 break;
1984 case COLOR_DEPTH_101010:
1985 pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1986 break;
1987 case COLOR_DEPTH_121212:
1988 pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1989 break;
1990 default:
1991 ASSERT(0);
1992 break;
1993 }
1994 }
1995
1996 DC_FP_START();
1997 dcn32_predict_pipe_split(context, &pipes[pipe_cnt]);
1998 DC_FP_END();
1999
2000 pipe_cnt++;
2001 }
2002
2003 /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
2004 * the DET available for each pipe). Use the DET override input to maintain our driver
2005 * policy.
2006 */
2007 dcn32_set_det_allocations(dc, context, pipes);
2008
2009 // In general cases we want to keep the dram clock change requirement
2010 // (prefer configs that support MCLK switch). Only override to false
2011 // for SubVP
2012 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
2013 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
2014 else
2015 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
2016
2017 return pipe_cnt;
2018 }
2019
2020 static struct dc_cap_funcs cap_funcs = {
2021 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2022 };
2023
dcn32_calculate_wm_and_dlg(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2024 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
2025 display_e2e_pipe_params_st *pipes,
2026 int pipe_cnt,
2027 int vlevel)
2028 {
2029 DC_FP_START();
2030 dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2031 DC_FP_END();
2032 }
2033
dcn32_update_bw_bounding_box(struct dc * dc,struct clk_bw_params * bw_params)2034 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2035 {
2036 DC_FP_START();
2037 dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2038 DC_FP_END();
2039 }
2040
2041 static struct resource_funcs dcn32_res_pool_funcs = {
2042 .destroy = dcn32_destroy_resource_pool,
2043 .link_enc_create = dcn32_link_encoder_create,
2044 .link_enc_create_minimal = NULL,
2045 .panel_cntl_create = dcn32_panel_cntl_create,
2046 .validate_bandwidth = dcn32_validate_bandwidth,
2047 .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2048 .populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2049 .acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
2050 .add_stream_to_ctx = dcn30_add_stream_to_ctx,
2051 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2052 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2053 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2054 .set_mcif_arb_params = dcn30_set_mcif_arb_params,
2055 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2056 .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2057 .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2058 .update_bw_bounding_box = dcn32_update_bw_bounding_box,
2059 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2060 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2061 .add_phantom_pipes = dcn32_add_phantom_pipes,
2062 .remove_phantom_pipes = dcn32_remove_phantom_pipes,
2063 .retain_phantom_pipes = dcn32_retain_phantom_pipes,
2064 .save_mall_state = dcn32_save_mall_state,
2065 .restore_mall_state = dcn32_restore_mall_state,
2066 };
2067
read_pipe_fuses(struct dc_context * ctx)2068 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2069 {
2070 uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2071 /* DCN32 support max 4 pipes */
2072 value = value & 0xf;
2073 return value;
2074 }
2075
2076
dcn32_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn32_resource_pool * pool)2077 static bool dcn32_resource_construct(
2078 uint8_t num_virtual_links,
2079 struct dc *dc,
2080 struct dcn32_resource_pool *pool)
2081 {
2082 int i, j;
2083 struct dc_context *ctx = dc->ctx;
2084 struct irq_service_init_data init_data;
2085 struct ddc_service_init_data ddc_init_data = {0};
2086 uint32_t pipe_fuses = 0;
2087 uint32_t num_pipes = 4;
2088
2089 #undef REG_STRUCT
2090 #define REG_STRUCT bios_regs
2091 bios_regs_init();
2092
2093 #undef REG_STRUCT
2094 #define REG_STRUCT clk_src_regs
2095 clk_src_regs_init(0, A),
2096 clk_src_regs_init(1, B),
2097 clk_src_regs_init(2, C),
2098 clk_src_regs_init(3, D),
2099 clk_src_regs_init(4, E);
2100
2101 #undef REG_STRUCT
2102 #define REG_STRUCT abm_regs
2103 abm_regs_init(0),
2104 abm_regs_init(1),
2105 abm_regs_init(2),
2106 abm_regs_init(3);
2107
2108 #undef REG_STRUCT
2109 #define REG_STRUCT dccg_regs
2110 dccg_regs_init();
2111
2112 DC_FP_START();
2113
2114 ctx->dc_bios->regs = &bios_regs;
2115
2116 pool->base.res_cap = &res_cap_dcn32;
2117 /* max number of pipes for ASIC before checking for pipe fuses */
2118 num_pipes = pool->base.res_cap->num_timing_generator;
2119 pipe_fuses = read_pipe_fuses(ctx);
2120
2121 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2122 if (pipe_fuses & 1 << i)
2123 num_pipes--;
2124
2125 if (pipe_fuses & 1)
2126 ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2127
2128 if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2129 ASSERT(0); //Entire DCN is harvested!
2130
2131 /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2132 * value will be changed, update max_num_dpp and max_num_otg for dml.
2133 */
2134 dcn3_2_ip.max_num_dpp = num_pipes;
2135 dcn3_2_ip.max_num_otg = num_pipes;
2136
2137 pool->base.funcs = &dcn32_res_pool_funcs;
2138
2139 /*************************************************
2140 * Resource + asic cap harcoding *
2141 *************************************************/
2142 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2143 pool->base.timing_generator_count = num_pipes;
2144 pool->base.pipe_count = num_pipes;
2145 pool->base.mpcc_count = num_pipes;
2146 dc->caps.max_downscale_ratio = 600;
2147 dc->caps.i2c_speed_in_khz = 100;
2148 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2149 /* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2150 dc->caps.max_cursor_size = 64;
2151 dc->caps.min_horizontal_blanking_period = 80;
2152 dc->caps.dmdata_alloc_size = 2048;
2153 dc->caps.mall_size_per_mem_channel = 4;
2154 dc->caps.mall_size_total = 0;
2155 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2156
2157 dc->caps.cache_line_size = 64;
2158 dc->caps.cache_num_ways = 16;
2159
2160 /* Calculate the available MALL space */
2161 dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2162 dc, dc->ctx->dc_bios->vram_info.num_chans) *
2163 dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2164 dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2165
2166 dc->caps.subvp_fw_processing_delay_us = 15;
2167 dc->caps.subvp_drr_max_vblank_margin_us = 40;
2168 dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2169 dc->caps.subvp_swath_height_margin_lines = 16;
2170 dc->caps.subvp_pstate_allow_width_us = 20;
2171 dc->caps.subvp_vertical_int_margin_us = 30;
2172 dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2173
2174 dc->caps.max_slave_planes = 2;
2175 dc->caps.max_slave_yuv_planes = 2;
2176 dc->caps.max_slave_rgb_planes = 2;
2177 dc->caps.post_blend_color_processing = true;
2178 dc->caps.force_dp_tps4_for_cp2520 = true;
2179 if (dc->config.forceHBR2CP2520)
2180 dc->caps.force_dp_tps4_for_cp2520 = false;
2181 dc->caps.dp_hpo = true;
2182 dc->caps.dp_hdmi21_pcon_support = true;
2183 dc->caps.edp_dsc_support = true;
2184 dc->caps.extended_aux_timeout_support = true;
2185 dc->caps.dmcub_support = true;
2186 dc->caps.seamless_odm = true;
2187 dc->caps.max_v_total = (1 << 15) - 1;
2188
2189 /* Color pipeline capabilities */
2190 dc->caps.color.dpp.dcn_arch = 1;
2191 dc->caps.color.dpp.input_lut_shared = 0;
2192 dc->caps.color.dpp.icsc = 1;
2193 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2194 dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2195 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2196 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2197 dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2198 dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2199 dc->caps.color.dpp.post_csc = 1;
2200 dc->caps.color.dpp.gamma_corr = 1;
2201 dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2202
2203 dc->caps.color.dpp.hw_3d_lut = 1;
2204 dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1
2205 // no OGAM ROM on DCN2 and later ASICs
2206 dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2207 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2208 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2209 dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2210 dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2211 dc->caps.color.dpp.ocsc = 0;
2212
2213 dc->caps.color.mpc.gamut_remap = 1;
2214 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2215 dc->caps.color.mpc.ogam_ram = 1;
2216 dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2217 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2218 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2219 dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2220 dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2221 dc->caps.color.mpc.ocsc = 1;
2222
2223 /* Use pipe context based otg sync logic */
2224 dc->config.use_pipe_ctx_sync_logic = true;
2225
2226 dc->config.dc_mode_clk_limit_support = true;
2227 /* read VBIOS LTTPR caps */
2228 {
2229 if (ctx->dc_bios->funcs->get_lttpr_caps) {
2230 enum bp_result bp_query_result;
2231 uint8_t is_vbios_lttpr_enable = 0;
2232
2233 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2234 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2235 }
2236
2237 /* interop bit is implicit */
2238 {
2239 dc->caps.vbios_lttpr_aware = true;
2240 }
2241 }
2242
2243 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2244 dc->debug = debug_defaults_drv;
2245
2246 // Init the vm_helper
2247 if (dc->vm_helper)
2248 vm_helper_init(dc->vm_helper, 16);
2249
2250 /*************************************************
2251 * Create resources *
2252 *************************************************/
2253
2254 /* Clock Sources for Pixel Clock*/
2255 pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2256 dcn32_clock_source_create(ctx, ctx->dc_bios,
2257 CLOCK_SOURCE_COMBO_PHY_PLL0,
2258 &clk_src_regs[0], false);
2259 pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2260 dcn32_clock_source_create(ctx, ctx->dc_bios,
2261 CLOCK_SOURCE_COMBO_PHY_PLL1,
2262 &clk_src_regs[1], false);
2263 pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2264 dcn32_clock_source_create(ctx, ctx->dc_bios,
2265 CLOCK_SOURCE_COMBO_PHY_PLL2,
2266 &clk_src_regs[2], false);
2267 pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2268 dcn32_clock_source_create(ctx, ctx->dc_bios,
2269 CLOCK_SOURCE_COMBO_PHY_PLL3,
2270 &clk_src_regs[3], false);
2271 pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2272 dcn32_clock_source_create(ctx, ctx->dc_bios,
2273 CLOCK_SOURCE_COMBO_PHY_PLL4,
2274 &clk_src_regs[4], false);
2275
2276 pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2277
2278 /* todo: not reuse phy_pll registers */
2279 pool->base.dp_clock_source =
2280 dcn32_clock_source_create(ctx, ctx->dc_bios,
2281 CLOCK_SOURCE_ID_DP_DTO,
2282 &clk_src_regs[0], true);
2283
2284 for (i = 0; i < pool->base.clk_src_count; i++) {
2285 if (pool->base.clock_sources[i] == NULL) {
2286 dm_error("DC: failed to create clock sources!\n");
2287 BREAK_TO_DEBUGGER();
2288 goto create_fail;
2289 }
2290 }
2291
2292 /* DCCG */
2293 pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2294 if (pool->base.dccg == NULL) {
2295 dm_error("DC: failed to create dccg!\n");
2296 BREAK_TO_DEBUGGER();
2297 goto create_fail;
2298 }
2299
2300 /* DML */
2301 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2302
2303 /* IRQ Service */
2304 init_data.ctx = dc->ctx;
2305 pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2306 if (!pool->base.irqs)
2307 goto create_fail;
2308
2309 /* HUBBUB */
2310 pool->base.hubbub = dcn32_hubbub_create(ctx);
2311 if (pool->base.hubbub == NULL) {
2312 BREAK_TO_DEBUGGER();
2313 dm_error("DC: failed to create hubbub!\n");
2314 goto create_fail;
2315 }
2316
2317 /* HUBPs, DPPs, OPPs, TGs, ABMs */
2318 for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2319
2320 /* if pipe is disabled, skip instance of HW pipe,
2321 * i.e, skip ASIC register instance
2322 */
2323 if (pipe_fuses & 1 << i)
2324 continue;
2325
2326 /* HUBPs */
2327 pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2328 if (pool->base.hubps[j] == NULL) {
2329 BREAK_TO_DEBUGGER();
2330 dm_error(
2331 "DC: failed to create hubps!\n");
2332 goto create_fail;
2333 }
2334
2335 /* DPPs */
2336 pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2337 if (pool->base.dpps[j] == NULL) {
2338 BREAK_TO_DEBUGGER();
2339 dm_error(
2340 "DC: failed to create dpps!\n");
2341 goto create_fail;
2342 }
2343
2344 /* OPPs */
2345 pool->base.opps[j] = dcn32_opp_create(ctx, i);
2346 if (pool->base.opps[j] == NULL) {
2347 BREAK_TO_DEBUGGER();
2348 dm_error(
2349 "DC: failed to create output pixel processor!\n");
2350 goto create_fail;
2351 }
2352
2353 /* TGs */
2354 pool->base.timing_generators[j] = dcn32_timing_generator_create(
2355 ctx, i);
2356 if (pool->base.timing_generators[j] == NULL) {
2357 BREAK_TO_DEBUGGER();
2358 dm_error("DC: failed to create tg!\n");
2359 goto create_fail;
2360 }
2361
2362 /* ABMs */
2363 pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2364 &abm_regs[i],
2365 &abm_shift,
2366 &abm_mask);
2367 if (pool->base.multiple_abms[j] == NULL) {
2368 dm_error("DC: failed to create abm for pipe %d!\n", i);
2369 BREAK_TO_DEBUGGER();
2370 goto create_fail;
2371 }
2372
2373 /* index for resource pool arrays for next valid pipe */
2374 j++;
2375 }
2376
2377 /* PSR */
2378 pool->base.psr = dmub_psr_create(ctx);
2379 if (pool->base.psr == NULL) {
2380 dm_error("DC: failed to create psr obj!\n");
2381 BREAK_TO_DEBUGGER();
2382 goto create_fail;
2383 }
2384
2385 /* MPCCs */
2386 pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2387 if (pool->base.mpc == NULL) {
2388 BREAK_TO_DEBUGGER();
2389 dm_error("DC: failed to create mpc!\n");
2390 goto create_fail;
2391 }
2392
2393 /* DSCs */
2394 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2395 pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2396 if (pool->base.dscs[i] == NULL) {
2397 BREAK_TO_DEBUGGER();
2398 dm_error("DC: failed to create display stream compressor %d!\n", i);
2399 goto create_fail;
2400 }
2401 }
2402
2403 /* DWB */
2404 if (!dcn32_dwbc_create(ctx, &pool->base)) {
2405 BREAK_TO_DEBUGGER();
2406 dm_error("DC: failed to create dwbc!\n");
2407 goto create_fail;
2408 }
2409
2410 /* MMHUBBUB */
2411 if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2412 BREAK_TO_DEBUGGER();
2413 dm_error("DC: failed to create mcif_wb!\n");
2414 goto create_fail;
2415 }
2416
2417 /* AUX and I2C */
2418 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2419 pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2420 if (pool->base.engines[i] == NULL) {
2421 BREAK_TO_DEBUGGER();
2422 dm_error(
2423 "DC:failed to create aux engine!!\n");
2424 goto create_fail;
2425 }
2426 pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2427 if (pool->base.hw_i2cs[i] == NULL) {
2428 BREAK_TO_DEBUGGER();
2429 dm_error(
2430 "DC:failed to create hw i2c!!\n");
2431 goto create_fail;
2432 }
2433 pool->base.sw_i2cs[i] = NULL;
2434 }
2435
2436 /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2437 if (!resource_construct(num_virtual_links, dc, &pool->base,
2438 &res_create_funcs))
2439 goto create_fail;
2440
2441 /* HW Sequencer init functions and Plane caps */
2442 dcn32_hw_sequencer_init_functions(dc);
2443
2444 dc->caps.max_planes = pool->base.pipe_count;
2445
2446 for (i = 0; i < dc->caps.max_planes; ++i)
2447 dc->caps.planes[i] = plane_cap;
2448
2449 dc->cap_funcs = cap_funcs;
2450
2451 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2452 ddc_init_data.ctx = dc->ctx;
2453 ddc_init_data.link = NULL;
2454 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2455 ddc_init_data.id.enum_id = 0;
2456 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2457 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2458 } else {
2459 pool->base.oem_device = NULL;
2460 }
2461
2462 if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2463 dc->config.sdpif_request_limit_words_per_umc = 16;
2464
2465 DC_FP_END();
2466
2467 return true;
2468
2469 create_fail:
2470
2471 DC_FP_END();
2472
2473 dcn32_resource_destruct(pool);
2474
2475 return false;
2476 }
2477
dcn32_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2478 struct resource_pool *dcn32_create_resource_pool(
2479 const struct dc_init_data *init_data,
2480 struct dc *dc)
2481 {
2482 struct dcn32_resource_pool *pool =
2483 kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2484
2485 if (!pool)
2486 return NULL;
2487
2488 if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2489 return &pool->base;
2490
2491 BREAK_TO_DEBUGGER();
2492 kfree(pool);
2493 return NULL;
2494 }
2495
2496 /*
2497 * Find the most optimal free pipe from res_ctx, which could be used as a
2498 * secondary dpp pipe for input opp head pipe.
2499 *
2500 * a free pipe - a pipe in input res_ctx not yet used for any streams or
2501 * planes.
2502 * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
2503 * tree. This is typical used for rendering MPO planes or additional offset
2504 * areas in MPCC combine.
2505 *
2506 * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
2507 * -------------------------------------------------------------------------
2508 *
2509 * PROBLEM:
2510 *
2511 * 1. There is a hardware limitation that a secondary DPP pipe cannot be
2512 * transferred from one MPC blending tree to the other in a single frame.
2513 * Otherwise it could cause glitches on the screen.
2514 *
2515 * For instance, we cannot transition from state 1 to state 2 in one frame. This
2516 * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
2517 * PIPE2's MPC blending tree, which is not supported by hardware.
2518 * To support this transition we need to first remove PIPE1 from PIPE0's MPC
2519 * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
2520 * in the next frame. This is not optimal as it will delay the flip for two
2521 * frames.
2522 *
2523 * State 1:
2524 * PIPE0 -- secondary DPP pipe --> (PIPE1)
2525 * PIPE2 -- secondary DPP pipe --> NONE
2526 *
2527 * State 2:
2528 * PIPE0 -- secondary DPP pipe --> NONE
2529 * PIPE2 -- secondary DPP pipe --> (PIPE1)
2530 *
2531 * 2. We want to in general minimize the unnecessary changes in pipe topology.
2532 * If a pipe is already added in current blending tree and there are no changes
2533 * to plane topology, we don't want to swap it with another free pipe
2534 * unnecessarily in every update. Powering up and down a pipe would require a
2535 * full update which delays the flip for 1 frame. If we use the original pipe
2536 * we don't have to toggle its power. So we can flip faster.
2537 */
find_optimal_free_pipe_as_secondary_dpp_pipe(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool,const struct pipe_ctx * new_opp_head)2538 static int find_optimal_free_pipe_as_secondary_dpp_pipe(
2539 const struct resource_context *cur_res_ctx,
2540 struct resource_context *new_res_ctx,
2541 const struct resource_pool *pool,
2542 const struct pipe_ctx *new_opp_head)
2543 {
2544 const struct pipe_ctx *cur_opp_head;
2545 int free_pipe_idx;
2546
2547 cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
2548 free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
2549 cur_res_ctx, new_res_ctx, cur_opp_head);
2550
2551 /* Up until here if we have not found a free secondary pipe, we will
2552 * need to wait for at least one frame to complete the transition
2553 * sequence.
2554 */
2555 if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2556 free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2557 cur_res_ctx, new_res_ctx, pool);
2558
2559 /* Up until here if we have not found a free secondary pipe, we will
2560 * need to wait for at least two frames to complete the transition
2561 * sequence. It really doesn't matter which pipe we decide take from
2562 * current enabled pipes. It won't save our frame time when we swap only
2563 * one pipe or more pipes.
2564 */
2565 if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2566 free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
2567 cur_res_ctx, new_res_ctx, pool);
2568
2569 if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2570 free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2571
2572 return free_pipe_idx;
2573 }
2574
find_idle_secondary_pipe_check_mpo(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)2575 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2576 struct resource_context *res_ctx,
2577 const struct resource_pool *pool,
2578 const struct pipe_ctx *primary_pipe)
2579 {
2580 int i;
2581 struct pipe_ctx *secondary_pipe = NULL;
2582 struct pipe_ctx *next_odm_mpo_pipe = NULL;
2583 int primary_index, preferred_pipe_idx;
2584 struct pipe_ctx *old_primary_pipe = NULL;
2585
2586 /*
2587 * Modified from find_idle_secondary_pipe
2588 * With windowed MPO and ODM, we want to avoid the case where we want a
2589 * free pipe for the left side but the free pipe is being used on the
2590 * right side.
2591 * Add check on current_state if the primary_pipe is the left side,
2592 * to check the right side ( primary_pipe->next_odm_pipe ) to see if
2593 * it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2594 * - If so, then don't use this pipe
2595 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2596 * - in this case, the primary pipe has already gotten a free pipe for the
2597 * MPO window in the left
2598 * - when it tries to get a free pipe for the MPO window on the right,
2599 * it will see that it is already assigned to the right side
2600 * ( primary_pipe->next_odm_pipe ). But in this case, we want this
2601 * free pipe, since it will be for the right side. So add an
2602 * additional condition, that skipping the free pipe on the right only
2603 * applies if the primary pipe has no bottom pipe currently assigned
2604 */
2605 if (primary_pipe) {
2606 primary_index = primary_pipe->pipe_idx;
2607 old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2608 if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2609 && (!primary_pipe->bottom_pipe))
2610 next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2611
2612 preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2613 if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2614 !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2615 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2616 secondary_pipe->pipe_idx = preferred_pipe_idx;
2617 }
2618 }
2619
2620 /*
2621 * search backwards for the second pipe to keep pipe
2622 * assignment more consistent
2623 */
2624 if (!secondary_pipe)
2625 for (i = pool->pipe_count - 1; i >= 0; i--) {
2626 if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2627 !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2628 secondary_pipe = &res_ctx->pipe_ctx[i];
2629 secondary_pipe->pipe_idx = i;
2630 break;
2631 }
2632 }
2633
2634 return secondary_pipe;
2635 }
2636
dcn32_acquire_idle_pipe_for_head_pipe_in_layer(struct dc_state * state,const struct resource_pool * pool,struct dc_stream_state * stream,const struct pipe_ctx * head_pipe)2637 static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2638 struct dc_state *state,
2639 const struct resource_pool *pool,
2640 struct dc_stream_state *stream,
2641 const struct pipe_ctx *head_pipe)
2642 {
2643 struct resource_context *res_ctx = &state->res_ctx;
2644 struct pipe_ctx *idle_pipe, *pipe;
2645 struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2646 int head_index;
2647
2648 if (!head_pipe)
2649 ASSERT(0);
2650
2651 /*
2652 * Modified from dcn20_acquire_idle_pipe_for_layer
2653 * Check if head_pipe in old_context already has bottom_pipe allocated.
2654 * - If so, check if that pipe is available in the current context.
2655 * -- If so, reuse pipe from old_context
2656 */
2657 head_index = head_pipe->pipe_idx;
2658 pipe = &old_ctx->pipe_ctx[head_index];
2659 if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2660 idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2661 idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2662 } else {
2663 idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2664 if (!idle_pipe)
2665 return NULL;
2666 }
2667
2668 idle_pipe->stream = head_pipe->stream;
2669 idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2670 idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2671
2672 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2673 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2674 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2675 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2676
2677 return idle_pipe;
2678 }
2679
dcn32_acquire_free_pipe_as_secondary_dpp_pipe(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,const struct pipe_ctx * opp_head_pipe)2680 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
2681 const struct dc_state *cur_ctx,
2682 struct dc_state *new_ctx,
2683 const struct resource_pool *pool,
2684 const struct pipe_ctx *opp_head_pipe)
2685 {
2686
2687 int free_pipe_idx;
2688 struct pipe_ctx *free_pipe;
2689
2690 if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
2691 return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2692 new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
2693
2694 free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe(
2695 &cur_ctx->res_ctx, &new_ctx->res_ctx,
2696 pool, opp_head_pipe);
2697 if (free_pipe_idx >= 0) {
2698 free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2699 free_pipe->pipe_idx = free_pipe_idx;
2700 free_pipe->stream = opp_head_pipe->stream;
2701 free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
2702 free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
2703
2704 free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
2705 free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
2706 free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
2707 free_pipe->plane_res.mpcc_inst =
2708 pool->dpps[free_pipe->pipe_idx]->inst;
2709 } else {
2710 ASSERT(opp_head_pipe);
2711 free_pipe = NULL;
2712 }
2713
2714 return free_pipe;
2715 }
2716
dcn32_calc_num_avail_chans_for_mall(struct dc * dc,int num_chans)2717 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2718 {
2719 /*
2720 * DCN32 and DCN321 SKUs may have different sizes for MALL
2721 * but we may not be able to access all the MALL space.
2722 * If the num_chans is power of 2, then we can access all
2723 * of the available MALL space. Otherwise, we can only
2724 * access:
2725 *
2726 * max_cab_size_in_bytes = total_cache_size_in_bytes *
2727 * ((2^floor(log2(num_chans)))/num_chans)
2728 *
2729 * Calculating the MALL sizes for all available SKUs, we
2730 * have come up with the follow simplified check.
2731 * - we have max_chans which provides the max MALL size.
2732 * Each chans supports 4MB of MALL so:
2733 *
2734 * total_cache_size_in_bytes = max_chans * 4 MB
2735 *
2736 * - we have avail_chans which shows the number of channels
2737 * we can use if we can't access the entire MALL space.
2738 * It is generally half of max_chans
2739 * - so we use the following checks:
2740 *
2741 * if (num_chans == max_chans), return max_chans
2742 * if (num_chans < max_chans), return avail_chans
2743 *
2744 * - exception is GC_11_0_0 where we can't access max_chans,
2745 * so we define max_avail_chans as the maximum available
2746 * MALL space
2747 *
2748 */
2749 int gc_11_0_0_max_chans = 48;
2750 int gc_11_0_0_max_avail_chans = 32;
2751 int gc_11_0_0_avail_chans = 16;
2752 int gc_11_0_3_max_chans = 16;
2753 int gc_11_0_3_avail_chans = 8;
2754 int gc_11_0_2_max_chans = 8;
2755 int gc_11_0_2_avail_chans = 4;
2756
2757 if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2758 return (num_chans == gc_11_0_0_max_chans) ?
2759 gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2760 } else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2761 return (num_chans == gc_11_0_2_max_chans) ?
2762 gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2763 } else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2764 return (num_chans == gc_11_0_3_max_chans) ?
2765 gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2766 }
2767 }
2768