1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN 64
41
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44
45 /* Macros to define the context of vf registration */
46 #define VF_REG_IN_PROBE 1
47 #define VF_REG_IN_NOTIFIER 2
48
49 static unsigned int ring_size __ro_after_init = 128;
50 module_param(ring_size, uint, 0444);
51 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
52 unsigned int netvsc_ring_bytes __ro_after_init;
53
54 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
55 NETIF_MSG_LINK | NETIF_MSG_IFUP |
56 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
57 NETIF_MSG_TX_ERR;
58
59 static int debug = -1;
60 module_param(debug, int, 0444);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static LIST_HEAD(netvsc_dev_list);
64
netvsc_change_rx_flags(struct net_device * net,int change)65 static void netvsc_change_rx_flags(struct net_device *net, int change)
66 {
67 struct net_device_context *ndev_ctx = netdev_priv(net);
68 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
69 int inc;
70
71 if (!vf_netdev)
72 return;
73
74 if (change & IFF_PROMISC) {
75 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
76 dev_set_promiscuity(vf_netdev, inc);
77 }
78
79 if (change & IFF_ALLMULTI) {
80 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
81 dev_set_allmulti(vf_netdev, inc);
82 }
83 }
84
netvsc_set_rx_mode(struct net_device * net)85 static void netvsc_set_rx_mode(struct net_device *net)
86 {
87 struct net_device_context *ndev_ctx = netdev_priv(net);
88 struct net_device *vf_netdev;
89 struct netvsc_device *nvdev;
90
91 rcu_read_lock();
92 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
93 if (vf_netdev) {
94 dev_uc_sync(vf_netdev, net);
95 dev_mc_sync(vf_netdev, net);
96 }
97
98 nvdev = rcu_dereference(ndev_ctx->nvdev);
99 if (nvdev)
100 rndis_filter_update(nvdev);
101 rcu_read_unlock();
102 }
103
netvsc_tx_enable(struct netvsc_device * nvscdev,struct net_device * ndev)104 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
105 struct net_device *ndev)
106 {
107 nvscdev->tx_disable = false;
108 virt_wmb(); /* ensure queue wake up mechanism is on */
109
110 netif_tx_wake_all_queues(ndev);
111 }
112
netvsc_open(struct net_device * net)113 static int netvsc_open(struct net_device *net)
114 {
115 struct net_device_context *ndev_ctx = netdev_priv(net);
116 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
117 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
118 struct rndis_device *rdev;
119 int ret = 0;
120
121 netif_carrier_off(net);
122
123 /* Open up the device */
124 ret = rndis_filter_open(nvdev);
125 if (ret != 0) {
126 netdev_err(net, "unable to open device (ret %d).\n", ret);
127 return ret;
128 }
129
130 rdev = nvdev->extension;
131 if (!rdev->link_state) {
132 netif_carrier_on(net);
133 netvsc_tx_enable(nvdev, net);
134 }
135
136 if (vf_netdev) {
137 /* Setting synthetic device up transparently sets
138 * slave as up. If open fails, then slave will be
139 * still be offline (and not used).
140 */
141 ret = dev_open(vf_netdev, NULL);
142 if (ret)
143 netdev_warn(net,
144 "unable to open slave: %s: %d\n",
145 vf_netdev->name, ret);
146 }
147 return 0;
148 }
149
netvsc_wait_until_empty(struct netvsc_device * nvdev)150 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
151 {
152 unsigned int retry = 0;
153 int i;
154
155 /* Ensure pending bytes in ring are read */
156 for (;;) {
157 u32 aread = 0;
158
159 for (i = 0; i < nvdev->num_chn; i++) {
160 struct vmbus_channel *chn
161 = nvdev->chan_table[i].channel;
162
163 if (!chn)
164 continue;
165
166 /* make sure receive not running now */
167 napi_synchronize(&nvdev->chan_table[i].napi);
168
169 aread = hv_get_bytes_to_read(&chn->inbound);
170 if (aread)
171 break;
172
173 aread = hv_get_bytes_to_read(&chn->outbound);
174 if (aread)
175 break;
176 }
177
178 if (aread == 0)
179 return 0;
180
181 if (++retry > RETRY_MAX)
182 return -ETIMEDOUT;
183
184 usleep_range(RETRY_US_LO, RETRY_US_HI);
185 }
186 }
187
netvsc_tx_disable(struct netvsc_device * nvscdev,struct net_device * ndev)188 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
189 struct net_device *ndev)
190 {
191 if (nvscdev) {
192 nvscdev->tx_disable = true;
193 virt_wmb(); /* ensure txq will not wake up after stop */
194 }
195
196 netif_tx_disable(ndev);
197 }
198
netvsc_close(struct net_device * net)199 static int netvsc_close(struct net_device *net)
200 {
201 struct net_device_context *net_device_ctx = netdev_priv(net);
202 struct net_device *vf_netdev
203 = rtnl_dereference(net_device_ctx->vf_netdev);
204 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
205 int ret;
206
207 netvsc_tx_disable(nvdev, net);
208
209 /* No need to close rndis filter if it is removed already */
210 if (!nvdev)
211 return 0;
212
213 ret = rndis_filter_close(nvdev);
214 if (ret != 0) {
215 netdev_err(net, "unable to close device (ret %d).\n", ret);
216 return ret;
217 }
218
219 ret = netvsc_wait_until_empty(nvdev);
220 if (ret)
221 netdev_err(net, "Ring buffer not empty after closing rndis\n");
222
223 if (vf_netdev)
224 dev_close(vf_netdev);
225
226 return ret;
227 }
228
init_ppi_data(struct rndis_message * msg,u32 ppi_size,u32 pkt_type)229 static inline void *init_ppi_data(struct rndis_message *msg,
230 u32 ppi_size, u32 pkt_type)
231 {
232 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
233 struct rndis_per_packet_info *ppi;
234
235 rndis_pkt->data_offset += ppi_size;
236 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
237 + rndis_pkt->per_pkt_info_len;
238
239 ppi->size = ppi_size;
240 ppi->type = pkt_type;
241 ppi->internal = 0;
242 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
243
244 rndis_pkt->per_pkt_info_len += ppi_size;
245
246 return ppi + 1;
247 }
248
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)249 static inline int netvsc_get_tx_queue(struct net_device *ndev,
250 struct sk_buff *skb, int old_idx)
251 {
252 const struct net_device_context *ndc = netdev_priv(ndev);
253 struct sock *sk = skb->sk;
254 int q_idx;
255
256 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
257 (VRSS_SEND_TAB_SIZE - 1)];
258
259 /* If queue index changed record the new value */
260 if (q_idx != old_idx &&
261 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
262 sk_tx_queue_set(sk, q_idx);
263
264 return q_idx;
265 }
266
267 /*
268 * Select queue for transmit.
269 *
270 * If a valid queue has already been assigned, then use that.
271 * Otherwise compute tx queue based on hash and the send table.
272 *
273 * This is basically similar to default (netdev_pick_tx) with the added step
274 * of using the host send_table when no other queue has been assigned.
275 *
276 * TODO support XPS - but get_xps_queue not exported
277 */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)278 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
279 {
280 int q_idx = sk_tx_queue_get(skb->sk);
281
282 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
283 /* If forwarding a packet, we use the recorded queue when
284 * available for better cache locality.
285 */
286 if (skb_rx_queue_recorded(skb))
287 q_idx = skb_get_rx_queue(skb);
288 else
289 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
290 }
291
292 return q_idx;
293 }
294
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)295 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
296 struct net_device *sb_dev)
297 {
298 struct net_device_context *ndc = netdev_priv(ndev);
299 struct net_device *vf_netdev;
300 u16 txq;
301
302 rcu_read_lock();
303 vf_netdev = rcu_dereference(ndc->vf_netdev);
304 if (vf_netdev) {
305 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
306
307 if (vf_ops->ndo_select_queue)
308 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
309 else
310 txq = netdev_pick_tx(vf_netdev, skb, NULL);
311
312 /* Record the queue selected by VF so that it can be
313 * used for common case where VF has more queues than
314 * the synthetic device.
315 */
316 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
317 } else {
318 txq = netvsc_pick_tx(ndev, skb);
319 }
320 rcu_read_unlock();
321
322 while (txq >= ndev->real_num_tx_queues)
323 txq -= ndev->real_num_tx_queues;
324
325 return txq;
326 }
327
fill_pg_buf(unsigned long hvpfn,u32 offset,u32 len,struct hv_page_buffer * pb)328 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
329 struct hv_page_buffer *pb)
330 {
331 int j = 0;
332
333 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
334 offset = offset & ~HV_HYP_PAGE_MASK;
335
336 while (len > 0) {
337 unsigned long bytes;
338
339 bytes = HV_HYP_PAGE_SIZE - offset;
340 if (bytes > len)
341 bytes = len;
342 pb[j].pfn = hvpfn;
343 pb[j].offset = offset;
344 pb[j].len = bytes;
345
346 offset += bytes;
347 len -= bytes;
348
349 if (offset == HV_HYP_PAGE_SIZE && len) {
350 hvpfn++;
351 offset = 0;
352 j++;
353 }
354 }
355
356 return j + 1;
357 }
358
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)359 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
360 struct hv_netvsc_packet *packet,
361 struct hv_page_buffer *pb)
362 {
363 u32 slots_used = 0;
364 char *data = skb->data;
365 int frags = skb_shinfo(skb)->nr_frags;
366 int i;
367
368 /* The packet is laid out thus:
369 * 1. hdr: RNDIS header and PPI
370 * 2. skb linear data
371 * 3. skb fragment data
372 */
373 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
374 offset_in_hvpage(hdr),
375 len,
376 &pb[slots_used]);
377
378 packet->rmsg_size = len;
379 packet->rmsg_pgcnt = slots_used;
380
381 slots_used += fill_pg_buf(virt_to_hvpfn(data),
382 offset_in_hvpage(data),
383 skb_headlen(skb),
384 &pb[slots_used]);
385
386 for (i = 0; i < frags; i++) {
387 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
388
389 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
390 skb_frag_off(frag),
391 skb_frag_size(frag),
392 &pb[slots_used]);
393 }
394 return slots_used;
395 }
396
count_skb_frag_slots(struct sk_buff * skb)397 static int count_skb_frag_slots(struct sk_buff *skb)
398 {
399 int i, frags = skb_shinfo(skb)->nr_frags;
400 int pages = 0;
401
402 for (i = 0; i < frags; i++) {
403 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
404 unsigned long size = skb_frag_size(frag);
405 unsigned long offset = skb_frag_off(frag);
406
407 /* Skip unused frames from start of page */
408 offset &= ~HV_HYP_PAGE_MASK;
409 pages += HVPFN_UP(offset + size);
410 }
411 return pages;
412 }
413
netvsc_get_slots(struct sk_buff * skb)414 static int netvsc_get_slots(struct sk_buff *skb)
415 {
416 char *data = skb->data;
417 unsigned int offset = offset_in_hvpage(data);
418 unsigned int len = skb_headlen(skb);
419 int slots;
420 int frag_slots;
421
422 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
423 frag_slots = count_skb_frag_slots(skb);
424 return slots + frag_slots;
425 }
426
net_checksum_info(struct sk_buff * skb)427 static u32 net_checksum_info(struct sk_buff *skb)
428 {
429 if (skb->protocol == htons(ETH_P_IP)) {
430 struct iphdr *ip = ip_hdr(skb);
431
432 if (ip->protocol == IPPROTO_TCP)
433 return TRANSPORT_INFO_IPV4_TCP;
434 else if (ip->protocol == IPPROTO_UDP)
435 return TRANSPORT_INFO_IPV4_UDP;
436 } else {
437 struct ipv6hdr *ip6 = ipv6_hdr(skb);
438
439 if (ip6->nexthdr == IPPROTO_TCP)
440 return TRANSPORT_INFO_IPV6_TCP;
441 else if (ip6->nexthdr == IPPROTO_UDP)
442 return TRANSPORT_INFO_IPV6_UDP;
443 }
444
445 return TRANSPORT_INFO_NOT_IP;
446 }
447
448 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)449 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
450 struct sk_buff *skb)
451 {
452 struct net_device_context *ndev_ctx = netdev_priv(net);
453 unsigned int len = skb->len;
454 int rc;
455
456 skb->dev = vf_netdev;
457 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
458
459 rc = dev_queue_xmit(skb);
460 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
461 struct netvsc_vf_pcpu_stats *pcpu_stats
462 = this_cpu_ptr(ndev_ctx->vf_stats);
463
464 u64_stats_update_begin(&pcpu_stats->syncp);
465 pcpu_stats->tx_packets++;
466 pcpu_stats->tx_bytes += len;
467 u64_stats_update_end(&pcpu_stats->syncp);
468 } else {
469 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
470 }
471
472 return rc;
473 }
474
netvsc_xmit(struct sk_buff * skb,struct net_device * net,bool xdp_tx)475 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
476 {
477 struct net_device_context *net_device_ctx = netdev_priv(net);
478 struct hv_netvsc_packet *packet = NULL;
479 int ret;
480 unsigned int num_data_pgs;
481 struct rndis_message *rndis_msg;
482 struct net_device *vf_netdev;
483 u32 rndis_msg_size;
484 u32 hash;
485 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
486
487 /* If VF is present and up then redirect packets to it.
488 * Skip the VF if it is marked down or has no carrier.
489 * If netpoll is in uses, then VF can not be used either.
490 */
491 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
492 if (vf_netdev && netif_running(vf_netdev) &&
493 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
494 net_device_ctx->data_path_is_vf)
495 return netvsc_vf_xmit(net, vf_netdev, skb);
496
497 /* We will atmost need two pages to describe the rndis
498 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
499 * of pages in a single packet. If skb is scattered around
500 * more pages we try linearizing it.
501 */
502
503 num_data_pgs = netvsc_get_slots(skb) + 2;
504
505 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
506 ++net_device_ctx->eth_stats.tx_scattered;
507
508 if (skb_linearize(skb))
509 goto no_memory;
510
511 num_data_pgs = netvsc_get_slots(skb) + 2;
512 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
513 ++net_device_ctx->eth_stats.tx_too_big;
514 goto drop;
515 }
516 }
517
518 /*
519 * Place the rndis header in the skb head room and
520 * the skb->cb will be used for hv_netvsc_packet
521 * structure.
522 */
523 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
524 if (ret)
525 goto no_memory;
526
527 /* Use the skb control buffer for building up the packet */
528 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
529 sizeof_field(struct sk_buff, cb));
530 packet = (struct hv_netvsc_packet *)skb->cb;
531
532 packet->q_idx = skb_get_queue_mapping(skb);
533
534 packet->total_data_buflen = skb->len;
535 packet->total_bytes = skb->len;
536 packet->total_packets = 1;
537
538 rndis_msg = (struct rndis_message *)skb->head;
539
540 /* Add the rndis header */
541 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
542 rndis_msg->msg_len = packet->total_data_buflen;
543
544 rndis_msg->msg.pkt = (struct rndis_packet) {
545 .data_offset = sizeof(struct rndis_packet),
546 .data_len = packet->total_data_buflen,
547 .per_pkt_info_offset = sizeof(struct rndis_packet),
548 };
549
550 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
551
552 hash = skb_get_hash_raw(skb);
553 if (hash != 0 && net->real_num_tx_queues > 1) {
554 u32 *hash_info;
555
556 rndis_msg_size += NDIS_HASH_PPI_SIZE;
557 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
558 NBL_HASH_VALUE);
559 *hash_info = hash;
560 }
561
562 /* When using AF_PACKET we need to drop VLAN header from
563 * the frame and update the SKB to allow the HOST OS
564 * to transmit the 802.1Q packet
565 */
566 if (skb->protocol == htons(ETH_P_8021Q)) {
567 u16 vlan_tci;
568
569 skb_reset_mac_header(skb);
570 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
571 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
572 ++net_device_ctx->eth_stats.vlan_error;
573 goto drop;
574 }
575
576 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
577 /* Update the NDIS header pkt lengths */
578 packet->total_data_buflen -= VLAN_HLEN;
579 packet->total_bytes -= VLAN_HLEN;
580 rndis_msg->msg_len = packet->total_data_buflen;
581 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
582 }
583 }
584
585 if (skb_vlan_tag_present(skb)) {
586 struct ndis_pkt_8021q_info *vlan;
587
588 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
589 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
590 IEEE_8021Q_INFO);
591
592 vlan->value = 0;
593 vlan->vlanid = skb_vlan_tag_get_id(skb);
594 vlan->cfi = skb_vlan_tag_get_cfi(skb);
595 vlan->pri = skb_vlan_tag_get_prio(skb);
596 }
597
598 if (skb_is_gso(skb)) {
599 struct ndis_tcp_lso_info *lso_info;
600
601 rndis_msg_size += NDIS_LSO_PPI_SIZE;
602 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
603 TCP_LARGESEND_PKTINFO);
604
605 lso_info->value = 0;
606 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
607 if (skb->protocol == htons(ETH_P_IP)) {
608 lso_info->lso_v2_transmit.ip_version =
609 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
610 ip_hdr(skb)->tot_len = 0;
611 ip_hdr(skb)->check = 0;
612 tcp_hdr(skb)->check =
613 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
614 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
615 } else {
616 lso_info->lso_v2_transmit.ip_version =
617 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
618 tcp_v6_gso_csum_prep(skb);
619 }
620 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
621 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
622 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
623 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
624 struct ndis_tcp_ip_checksum_info *csum_info;
625
626 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
627 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
628 TCPIP_CHKSUM_PKTINFO);
629
630 csum_info->value = 0;
631 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
632
633 if (skb->protocol == htons(ETH_P_IP)) {
634 csum_info->transmit.is_ipv4 = 1;
635
636 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
637 csum_info->transmit.tcp_checksum = 1;
638 else
639 csum_info->transmit.udp_checksum = 1;
640 } else {
641 csum_info->transmit.is_ipv6 = 1;
642
643 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
644 csum_info->transmit.tcp_checksum = 1;
645 else
646 csum_info->transmit.udp_checksum = 1;
647 }
648 } else {
649 /* Can't do offload of this type of checksum */
650 if (skb_checksum_help(skb))
651 goto drop;
652 }
653 }
654
655 /* Start filling in the page buffers with the rndis hdr */
656 rndis_msg->msg_len += rndis_msg_size;
657 packet->total_data_buflen = rndis_msg->msg_len;
658 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
659 skb, packet, pb);
660
661 /* timestamp packet in software */
662 skb_tx_timestamp(skb);
663
664 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
665 if (likely(ret == 0))
666 return NETDEV_TX_OK;
667
668 if (ret == -EAGAIN) {
669 ++net_device_ctx->eth_stats.tx_busy;
670 return NETDEV_TX_BUSY;
671 }
672
673 if (ret == -ENOSPC)
674 ++net_device_ctx->eth_stats.tx_no_space;
675
676 drop:
677 dev_kfree_skb_any(skb);
678 net->stats.tx_dropped++;
679
680 return NETDEV_TX_OK;
681
682 no_memory:
683 ++net_device_ctx->eth_stats.tx_no_memory;
684 goto drop;
685 }
686
netvsc_start_xmit(struct sk_buff * skb,struct net_device * ndev)687 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
688 struct net_device *ndev)
689 {
690 return netvsc_xmit(skb, ndev, false);
691 }
692
693 /*
694 * netvsc_linkstatus_callback - Link up/down notification
695 */
netvsc_linkstatus_callback(struct net_device * net,struct rndis_message * resp,void * data,u32 data_buflen)696 void netvsc_linkstatus_callback(struct net_device *net,
697 struct rndis_message *resp,
698 void *data, u32 data_buflen)
699 {
700 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
701 struct net_device_context *ndev_ctx = netdev_priv(net);
702 struct netvsc_reconfig *event;
703 unsigned long flags;
704
705 /* Ensure the packet is big enough to access its fields */
706 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
707 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
708 resp->msg_len);
709 return;
710 }
711
712 /* Copy the RNDIS indicate status into nvchan->recv_buf */
713 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
714
715 /* Update the physical link speed when changing to another vSwitch */
716 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
717 u32 speed;
718
719 /* Validate status_buf_offset and status_buflen.
720 *
721 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
722 * for the status buffer field in resp->msg_len; perform the validation
723 * using data_buflen (>= resp->msg_len).
724 */
725 if (indicate->status_buflen < sizeof(speed) ||
726 indicate->status_buf_offset < sizeof(*indicate) ||
727 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
728 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
729 < indicate->status_buflen) {
730 netdev_err(net, "invalid rndis_indicate_status packet\n");
731 return;
732 }
733
734 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
735 ndev_ctx->speed = speed;
736 return;
737 }
738
739 /* Handle these link change statuses below */
740 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
741 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
742 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
743 return;
744
745 if (net->reg_state != NETREG_REGISTERED)
746 return;
747
748 event = kzalloc(sizeof(*event), GFP_ATOMIC);
749 if (!event)
750 return;
751 event->event = indicate->status;
752
753 spin_lock_irqsave(&ndev_ctx->lock, flags);
754 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
755 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
756
757 schedule_delayed_work(&ndev_ctx->dwork, 0);
758 }
759
760 /* This function should only be called after skb_record_rx_queue() */
netvsc_xdp_xmit(struct sk_buff * skb,struct net_device * ndev)761 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
762 {
763 int rc;
764
765 skb->queue_mapping = skb_get_rx_queue(skb);
766 __skb_push(skb, ETH_HLEN);
767
768 rc = netvsc_xmit(skb, ndev, true);
769
770 if (dev_xmit_complete(rc))
771 return;
772
773 dev_kfree_skb_any(skb);
774 ndev->stats.tx_dropped++;
775 }
776
netvsc_comp_ipcsum(struct sk_buff * skb)777 static void netvsc_comp_ipcsum(struct sk_buff *skb)
778 {
779 struct iphdr *iph = (struct iphdr *)skb->data;
780
781 iph->check = 0;
782 iph->check = ip_fast_csum(iph, iph->ihl);
783 }
784
netvsc_alloc_recv_skb(struct net_device * net,struct netvsc_channel * nvchan,struct xdp_buff * xdp)785 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
786 struct netvsc_channel *nvchan,
787 struct xdp_buff *xdp)
788 {
789 struct napi_struct *napi = &nvchan->napi;
790 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
791 const struct ndis_tcp_ip_checksum_info *csum_info =
792 &nvchan->rsc.csum_info;
793 const u32 *hash_info = &nvchan->rsc.hash_info;
794 u8 ppi_flags = nvchan->rsc.ppi_flags;
795 struct sk_buff *skb;
796 void *xbuf = xdp->data_hard_start;
797 int i;
798
799 if (xbuf) {
800 unsigned int hdroom = xdp->data - xdp->data_hard_start;
801 unsigned int xlen = xdp->data_end - xdp->data;
802 unsigned int frag_size = xdp->frame_sz;
803
804 skb = build_skb(xbuf, frag_size);
805
806 if (!skb) {
807 __free_page(virt_to_page(xbuf));
808 return NULL;
809 }
810
811 skb_reserve(skb, hdroom);
812 skb_put(skb, xlen);
813 skb->dev = napi->dev;
814 } else {
815 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
816
817 if (!skb)
818 return NULL;
819
820 /* Copy to skb. This copy is needed here since the memory
821 * pointed by hv_netvsc_packet cannot be deallocated.
822 */
823 for (i = 0; i < nvchan->rsc.cnt; i++)
824 skb_put_data(skb, nvchan->rsc.data[i],
825 nvchan->rsc.len[i]);
826 }
827
828 skb->protocol = eth_type_trans(skb, net);
829
830 /* skb is already created with CHECKSUM_NONE */
831 skb_checksum_none_assert(skb);
832
833 /* Incoming packets may have IP header checksum verified by the host.
834 * They may not have IP header checksum computed after coalescing.
835 * We compute it here if the flags are set, because on Linux, the IP
836 * checksum is always checked.
837 */
838 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
839 csum_info->receive.ip_checksum_succeeded &&
840 skb->protocol == htons(ETH_P_IP)) {
841 /* Check that there is enough space to hold the IP header. */
842 if (skb_headlen(skb) < sizeof(struct iphdr)) {
843 kfree_skb(skb);
844 return NULL;
845 }
846 netvsc_comp_ipcsum(skb);
847 }
848
849 /* Do L4 checksum offload if enabled and present. */
850 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
851 if (csum_info->receive.tcp_checksum_succeeded ||
852 csum_info->receive.udp_checksum_succeeded)
853 skb->ip_summed = CHECKSUM_UNNECESSARY;
854 }
855
856 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
857 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
858
859 if (ppi_flags & NVSC_RSC_VLAN) {
860 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
861 (vlan->cfi ? VLAN_CFI_MASK : 0);
862
863 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
864 vlan_tci);
865 }
866
867 return skb;
868 }
869
870 /*
871 * netvsc_recv_callback - Callback when we receive a packet from the
872 * "wire" on the specified device.
873 */
netvsc_recv_callback(struct net_device * net,struct netvsc_device * net_device,struct netvsc_channel * nvchan)874 int netvsc_recv_callback(struct net_device *net,
875 struct netvsc_device *net_device,
876 struct netvsc_channel *nvchan)
877 {
878 struct net_device_context *net_device_ctx = netdev_priv(net);
879 struct vmbus_channel *channel = nvchan->channel;
880 u16 q_idx = channel->offermsg.offer.sub_channel_index;
881 struct sk_buff *skb;
882 struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
883 struct xdp_buff xdp;
884 u32 act;
885
886 if (net->reg_state != NETREG_REGISTERED)
887 return NVSP_STAT_FAIL;
888
889 act = netvsc_run_xdp(net, nvchan, &xdp);
890
891 if (act == XDP_REDIRECT)
892 return NVSP_STAT_SUCCESS;
893
894 if (act != XDP_PASS && act != XDP_TX) {
895 u64_stats_update_begin(&rx_stats->syncp);
896 rx_stats->xdp_drop++;
897 u64_stats_update_end(&rx_stats->syncp);
898
899 return NVSP_STAT_SUCCESS; /* consumed by XDP */
900 }
901
902 /* Allocate a skb - TODO direct I/O to pages? */
903 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
904
905 if (unlikely(!skb)) {
906 ++net_device_ctx->eth_stats.rx_no_memory;
907 return NVSP_STAT_FAIL;
908 }
909
910 skb_record_rx_queue(skb, q_idx);
911
912 /*
913 * Even if injecting the packet, record the statistics
914 * on the synthetic device because modifying the VF device
915 * statistics will not work correctly.
916 */
917 u64_stats_update_begin(&rx_stats->syncp);
918 if (act == XDP_TX)
919 rx_stats->xdp_tx++;
920
921 rx_stats->packets++;
922 rx_stats->bytes += nvchan->rsc.pktlen;
923
924 if (skb->pkt_type == PACKET_BROADCAST)
925 ++rx_stats->broadcast;
926 else if (skb->pkt_type == PACKET_MULTICAST)
927 ++rx_stats->multicast;
928 u64_stats_update_end(&rx_stats->syncp);
929
930 if (act == XDP_TX) {
931 netvsc_xdp_xmit(skb, net);
932 return NVSP_STAT_SUCCESS;
933 }
934
935 napi_gro_receive(&nvchan->napi, skb);
936 return NVSP_STAT_SUCCESS;
937 }
938
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)939 static void netvsc_get_drvinfo(struct net_device *net,
940 struct ethtool_drvinfo *info)
941 {
942 strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
943 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
944 }
945
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)946 static void netvsc_get_channels(struct net_device *net,
947 struct ethtool_channels *channel)
948 {
949 struct net_device_context *net_device_ctx = netdev_priv(net);
950 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
951
952 if (nvdev) {
953 channel->max_combined = nvdev->max_chn;
954 channel->combined_count = nvdev->num_chn;
955 }
956 }
957
958 /* Alloc struct netvsc_device_info, and initialize it from either existing
959 * struct netvsc_device, or from default values.
960 */
961 static
netvsc_devinfo_get(struct netvsc_device * nvdev)962 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
963 {
964 struct netvsc_device_info *dev_info;
965 struct bpf_prog *prog;
966
967 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
968
969 if (!dev_info)
970 return NULL;
971
972 if (nvdev) {
973 ASSERT_RTNL();
974
975 dev_info->num_chn = nvdev->num_chn;
976 dev_info->send_sections = nvdev->send_section_cnt;
977 dev_info->send_section_size = nvdev->send_section_size;
978 dev_info->recv_sections = nvdev->recv_section_cnt;
979 dev_info->recv_section_size = nvdev->recv_section_size;
980
981 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
982 NETVSC_HASH_KEYLEN);
983
984 prog = netvsc_xdp_get(nvdev);
985 if (prog) {
986 bpf_prog_inc(prog);
987 dev_info->bprog = prog;
988 }
989 } else {
990 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
991 dev_info->send_sections = NETVSC_DEFAULT_TX;
992 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
993 dev_info->recv_sections = NETVSC_DEFAULT_RX;
994 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
995 }
996
997 return dev_info;
998 }
999
1000 /* Free struct netvsc_device_info */
netvsc_devinfo_put(struct netvsc_device_info * dev_info)1001 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1002 {
1003 if (dev_info->bprog) {
1004 ASSERT_RTNL();
1005 bpf_prog_put(dev_info->bprog);
1006 }
1007
1008 kfree(dev_info);
1009 }
1010
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)1011 static int netvsc_detach(struct net_device *ndev,
1012 struct netvsc_device *nvdev)
1013 {
1014 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1015 struct hv_device *hdev = ndev_ctx->device_ctx;
1016 int ret;
1017
1018 /* Don't try continuing to try and setup sub channels */
1019 if (cancel_work_sync(&nvdev->subchan_work))
1020 nvdev->num_chn = 1;
1021
1022 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1023
1024 /* If device was up (receiving) then shutdown */
1025 if (netif_running(ndev)) {
1026 netvsc_tx_disable(nvdev, ndev);
1027
1028 ret = rndis_filter_close(nvdev);
1029 if (ret) {
1030 netdev_err(ndev,
1031 "unable to close device (ret %d).\n", ret);
1032 return ret;
1033 }
1034
1035 ret = netvsc_wait_until_empty(nvdev);
1036 if (ret) {
1037 netdev_err(ndev,
1038 "Ring buffer not empty after closing rndis\n");
1039 return ret;
1040 }
1041 }
1042
1043 netif_device_detach(ndev);
1044
1045 rndis_filter_device_remove(hdev, nvdev);
1046
1047 return 0;
1048 }
1049
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)1050 static int netvsc_attach(struct net_device *ndev,
1051 struct netvsc_device_info *dev_info)
1052 {
1053 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054 struct hv_device *hdev = ndev_ctx->device_ctx;
1055 struct netvsc_device *nvdev;
1056 struct rndis_device *rdev;
1057 struct bpf_prog *prog;
1058 int ret = 0;
1059
1060 nvdev = rndis_filter_device_add(hdev, dev_info);
1061 if (IS_ERR(nvdev))
1062 return PTR_ERR(nvdev);
1063
1064 if (nvdev->num_chn > 1) {
1065 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1066
1067 /* if unavailable, just proceed with one queue */
1068 if (ret) {
1069 nvdev->max_chn = 1;
1070 nvdev->num_chn = 1;
1071 }
1072 }
1073
1074 prog = dev_info->bprog;
1075 if (prog) {
1076 bpf_prog_inc(prog);
1077 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1078 if (ret) {
1079 bpf_prog_put(prog);
1080 goto err1;
1081 }
1082 }
1083
1084 /* In any case device is now ready */
1085 nvdev->tx_disable = false;
1086 netif_device_attach(ndev);
1087
1088 /* Note: enable and attach happen when sub-channels setup */
1089 netif_carrier_off(ndev);
1090
1091 if (netif_running(ndev)) {
1092 ret = rndis_filter_open(nvdev);
1093 if (ret)
1094 goto err2;
1095
1096 rdev = nvdev->extension;
1097 if (!rdev->link_state)
1098 netif_carrier_on(ndev);
1099 }
1100
1101 return 0;
1102
1103 err2:
1104 netif_device_detach(ndev);
1105
1106 err1:
1107 rndis_filter_device_remove(hdev, nvdev);
1108
1109 return ret;
1110 }
1111
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)1112 static int netvsc_set_channels(struct net_device *net,
1113 struct ethtool_channels *channels)
1114 {
1115 struct net_device_context *net_device_ctx = netdev_priv(net);
1116 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1117 unsigned int orig, count = channels->combined_count;
1118 struct netvsc_device_info *device_info;
1119 int ret;
1120
1121 /* We do not support separate count for rx, tx, or other */
1122 if (count == 0 ||
1123 channels->rx_count || channels->tx_count || channels->other_count)
1124 return -EINVAL;
1125
1126 if (!nvdev || nvdev->destroy)
1127 return -ENODEV;
1128
1129 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1130 return -EINVAL;
1131
1132 if (count > nvdev->max_chn)
1133 return -EINVAL;
1134
1135 orig = nvdev->num_chn;
1136
1137 device_info = netvsc_devinfo_get(nvdev);
1138
1139 if (!device_info)
1140 return -ENOMEM;
1141
1142 device_info->num_chn = count;
1143
1144 ret = netvsc_detach(net, nvdev);
1145 if (ret)
1146 goto out;
1147
1148 ret = netvsc_attach(net, device_info);
1149 if (ret) {
1150 device_info->num_chn = orig;
1151 if (netvsc_attach(net, device_info))
1152 netdev_err(net, "restoring channel setting failed\n");
1153 }
1154
1155 out:
1156 netvsc_devinfo_put(device_info);
1157 return ret;
1158 }
1159
netvsc_init_settings(struct net_device * dev)1160 static void netvsc_init_settings(struct net_device *dev)
1161 {
1162 struct net_device_context *ndc = netdev_priv(dev);
1163
1164 ndc->l4_hash = HV_DEFAULT_L4HASH;
1165
1166 ndc->speed = SPEED_UNKNOWN;
1167 ndc->duplex = DUPLEX_FULL;
1168
1169 dev->features = NETIF_F_LRO;
1170 }
1171
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1172 static int netvsc_get_link_ksettings(struct net_device *dev,
1173 struct ethtool_link_ksettings *cmd)
1174 {
1175 struct net_device_context *ndc = netdev_priv(dev);
1176 struct net_device *vf_netdev;
1177
1178 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1179
1180 if (vf_netdev)
1181 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1182
1183 cmd->base.speed = ndc->speed;
1184 cmd->base.duplex = ndc->duplex;
1185 cmd->base.port = PORT_OTHER;
1186
1187 return 0;
1188 }
1189
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1190 static int netvsc_set_link_ksettings(struct net_device *dev,
1191 const struct ethtool_link_ksettings *cmd)
1192 {
1193 struct net_device_context *ndc = netdev_priv(dev);
1194 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1195
1196 if (vf_netdev) {
1197 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1198 return -EOPNOTSUPP;
1199
1200 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1201 cmd);
1202 }
1203
1204 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1205 &ndc->speed, &ndc->duplex);
1206 }
1207
netvsc_change_mtu(struct net_device * ndev,int mtu)1208 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1209 {
1210 struct net_device_context *ndevctx = netdev_priv(ndev);
1211 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1212 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1213 int orig_mtu = ndev->mtu;
1214 struct netvsc_device_info *device_info;
1215 int ret = 0;
1216
1217 if (!nvdev || nvdev->destroy)
1218 return -ENODEV;
1219
1220 device_info = netvsc_devinfo_get(nvdev);
1221
1222 if (!device_info)
1223 return -ENOMEM;
1224
1225 /* Change MTU of underlying VF netdev first. */
1226 if (vf_netdev) {
1227 ret = dev_set_mtu(vf_netdev, mtu);
1228 if (ret)
1229 goto out;
1230 }
1231
1232 ret = netvsc_detach(ndev, nvdev);
1233 if (ret)
1234 goto rollback_vf;
1235
1236 ndev->mtu = mtu;
1237
1238 ret = netvsc_attach(ndev, device_info);
1239 if (!ret)
1240 goto out;
1241
1242 /* Attempt rollback to original MTU */
1243 ndev->mtu = orig_mtu;
1244
1245 if (netvsc_attach(ndev, device_info))
1246 netdev_err(ndev, "restoring mtu failed\n");
1247 rollback_vf:
1248 if (vf_netdev)
1249 dev_set_mtu(vf_netdev, orig_mtu);
1250
1251 out:
1252 netvsc_devinfo_put(device_info);
1253 return ret;
1254 }
1255
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1256 static void netvsc_get_vf_stats(struct net_device *net,
1257 struct netvsc_vf_pcpu_stats *tot)
1258 {
1259 struct net_device_context *ndev_ctx = netdev_priv(net);
1260 int i;
1261
1262 memset(tot, 0, sizeof(*tot));
1263
1264 for_each_possible_cpu(i) {
1265 const struct netvsc_vf_pcpu_stats *stats
1266 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1267 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1268 unsigned int start;
1269
1270 do {
1271 start = u64_stats_fetch_begin(&stats->syncp);
1272 rx_packets = stats->rx_packets;
1273 tx_packets = stats->tx_packets;
1274 rx_bytes = stats->rx_bytes;
1275 tx_bytes = stats->tx_bytes;
1276 } while (u64_stats_fetch_retry(&stats->syncp, start));
1277
1278 tot->rx_packets += rx_packets;
1279 tot->tx_packets += tx_packets;
1280 tot->rx_bytes += rx_bytes;
1281 tot->tx_bytes += tx_bytes;
1282 tot->tx_dropped += stats->tx_dropped;
1283 }
1284 }
1285
netvsc_get_pcpu_stats(struct net_device * net,struct netvsc_ethtool_pcpu_stats * pcpu_tot)1286 static void netvsc_get_pcpu_stats(struct net_device *net,
1287 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1288 {
1289 struct net_device_context *ndev_ctx = netdev_priv(net);
1290 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1291 int i;
1292
1293 /* fetch percpu stats of vf */
1294 for_each_possible_cpu(i) {
1295 const struct netvsc_vf_pcpu_stats *stats =
1296 per_cpu_ptr(ndev_ctx->vf_stats, i);
1297 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1298 unsigned int start;
1299
1300 do {
1301 start = u64_stats_fetch_begin(&stats->syncp);
1302 this_tot->vf_rx_packets = stats->rx_packets;
1303 this_tot->vf_tx_packets = stats->tx_packets;
1304 this_tot->vf_rx_bytes = stats->rx_bytes;
1305 this_tot->vf_tx_bytes = stats->tx_bytes;
1306 } while (u64_stats_fetch_retry(&stats->syncp, start));
1307 this_tot->rx_packets = this_tot->vf_rx_packets;
1308 this_tot->tx_packets = this_tot->vf_tx_packets;
1309 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1310 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1311 }
1312
1313 /* fetch percpu stats of netvsc */
1314 for (i = 0; i < nvdev->num_chn; i++) {
1315 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1316 const struct netvsc_stats_tx *tx_stats;
1317 const struct netvsc_stats_rx *rx_stats;
1318 struct netvsc_ethtool_pcpu_stats *this_tot =
1319 &pcpu_tot[nvchan->channel->target_cpu];
1320 u64 packets, bytes;
1321 unsigned int start;
1322
1323 tx_stats = &nvchan->tx_stats;
1324 do {
1325 start = u64_stats_fetch_begin(&tx_stats->syncp);
1326 packets = tx_stats->packets;
1327 bytes = tx_stats->bytes;
1328 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1329
1330 this_tot->tx_bytes += bytes;
1331 this_tot->tx_packets += packets;
1332
1333 rx_stats = &nvchan->rx_stats;
1334 do {
1335 start = u64_stats_fetch_begin(&rx_stats->syncp);
1336 packets = rx_stats->packets;
1337 bytes = rx_stats->bytes;
1338 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1339
1340 this_tot->rx_bytes += bytes;
1341 this_tot->rx_packets += packets;
1342 }
1343 }
1344
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1345 static void netvsc_get_stats64(struct net_device *net,
1346 struct rtnl_link_stats64 *t)
1347 {
1348 struct net_device_context *ndev_ctx = netdev_priv(net);
1349 struct netvsc_device *nvdev;
1350 struct netvsc_vf_pcpu_stats vf_tot;
1351 int i;
1352
1353 rcu_read_lock();
1354
1355 nvdev = rcu_dereference(ndev_ctx->nvdev);
1356 if (!nvdev)
1357 goto out;
1358
1359 netdev_stats_to_stats64(t, &net->stats);
1360
1361 netvsc_get_vf_stats(net, &vf_tot);
1362 t->rx_packets += vf_tot.rx_packets;
1363 t->tx_packets += vf_tot.tx_packets;
1364 t->rx_bytes += vf_tot.rx_bytes;
1365 t->tx_bytes += vf_tot.tx_bytes;
1366 t->tx_dropped += vf_tot.tx_dropped;
1367
1368 for (i = 0; i < nvdev->num_chn; i++) {
1369 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1370 const struct netvsc_stats_tx *tx_stats;
1371 const struct netvsc_stats_rx *rx_stats;
1372 u64 packets, bytes, multicast;
1373 unsigned int start;
1374
1375 tx_stats = &nvchan->tx_stats;
1376 do {
1377 start = u64_stats_fetch_begin(&tx_stats->syncp);
1378 packets = tx_stats->packets;
1379 bytes = tx_stats->bytes;
1380 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1381
1382 t->tx_bytes += bytes;
1383 t->tx_packets += packets;
1384
1385 rx_stats = &nvchan->rx_stats;
1386 do {
1387 start = u64_stats_fetch_begin(&rx_stats->syncp);
1388 packets = rx_stats->packets;
1389 bytes = rx_stats->bytes;
1390 multicast = rx_stats->multicast + rx_stats->broadcast;
1391 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1392
1393 t->rx_bytes += bytes;
1394 t->rx_packets += packets;
1395 t->multicast += multicast;
1396 }
1397 out:
1398 rcu_read_unlock();
1399 }
1400
netvsc_set_mac_addr(struct net_device * ndev,void * p)1401 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1402 {
1403 struct net_device_context *ndc = netdev_priv(ndev);
1404 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1405 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1406 struct sockaddr *addr = p;
1407 int err;
1408
1409 err = eth_prepare_mac_addr_change(ndev, p);
1410 if (err)
1411 return err;
1412
1413 if (!nvdev)
1414 return -ENODEV;
1415
1416 if (vf_netdev) {
1417 err = dev_set_mac_address(vf_netdev, addr, NULL);
1418 if (err)
1419 return err;
1420 }
1421
1422 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1423 if (!err) {
1424 eth_commit_mac_addr_change(ndev, p);
1425 } else if (vf_netdev) {
1426 /* rollback change on VF */
1427 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1428 dev_set_mac_address(vf_netdev, addr, NULL);
1429 }
1430
1431 return err;
1432 }
1433
1434 static const struct {
1435 char name[ETH_GSTRING_LEN];
1436 u16 offset;
1437 } netvsc_stats[] = {
1438 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1439 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1440 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1441 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1442 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1443 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1444 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1445 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1446 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1447 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1448 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1449 }, pcpu_stats[] = {
1450 { "cpu%u_rx_packets",
1451 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1452 { "cpu%u_rx_bytes",
1453 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1454 { "cpu%u_tx_packets",
1455 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1456 { "cpu%u_tx_bytes",
1457 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1458 { "cpu%u_vf_rx_packets",
1459 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1460 { "cpu%u_vf_rx_bytes",
1461 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1462 { "cpu%u_vf_tx_packets",
1463 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1464 { "cpu%u_vf_tx_bytes",
1465 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1466 }, vf_stats[] = {
1467 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1468 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1469 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1470 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1471 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1472 };
1473
1474 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1475 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1476
1477 /* statistics per queue (rx/tx packets/bytes) */
1478 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1479
1480 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1481 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1482
netvsc_get_sset_count(struct net_device * dev,int string_set)1483 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1484 {
1485 struct net_device_context *ndc = netdev_priv(dev);
1486 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1487
1488 if (!nvdev)
1489 return -ENODEV;
1490
1491 switch (string_set) {
1492 case ETH_SS_STATS:
1493 return NETVSC_GLOBAL_STATS_LEN
1494 + NETVSC_VF_STATS_LEN
1495 + NETVSC_QUEUE_STATS_LEN(nvdev)
1496 + NETVSC_PCPU_STATS_LEN;
1497 default:
1498 return -EINVAL;
1499 }
1500 }
1501
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1502 static void netvsc_get_ethtool_stats(struct net_device *dev,
1503 struct ethtool_stats *stats, u64 *data)
1504 {
1505 struct net_device_context *ndc = netdev_priv(dev);
1506 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1507 const void *nds = &ndc->eth_stats;
1508 const struct netvsc_stats_tx *tx_stats;
1509 const struct netvsc_stats_rx *rx_stats;
1510 struct netvsc_vf_pcpu_stats sum;
1511 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1512 unsigned int start;
1513 u64 packets, bytes;
1514 u64 xdp_drop;
1515 u64 xdp_redirect;
1516 u64 xdp_tx;
1517 u64 xdp_xmit;
1518 int i, j, cpu;
1519
1520 if (!nvdev)
1521 return;
1522
1523 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1524 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1525
1526 netvsc_get_vf_stats(dev, &sum);
1527 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1528 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1529
1530 for (j = 0; j < nvdev->num_chn; j++) {
1531 tx_stats = &nvdev->chan_table[j].tx_stats;
1532
1533 do {
1534 start = u64_stats_fetch_begin(&tx_stats->syncp);
1535 packets = tx_stats->packets;
1536 bytes = tx_stats->bytes;
1537 xdp_xmit = tx_stats->xdp_xmit;
1538 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1539 data[i++] = packets;
1540 data[i++] = bytes;
1541 data[i++] = xdp_xmit;
1542
1543 rx_stats = &nvdev->chan_table[j].rx_stats;
1544 do {
1545 start = u64_stats_fetch_begin(&rx_stats->syncp);
1546 packets = rx_stats->packets;
1547 bytes = rx_stats->bytes;
1548 xdp_drop = rx_stats->xdp_drop;
1549 xdp_redirect = rx_stats->xdp_redirect;
1550 xdp_tx = rx_stats->xdp_tx;
1551 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1552 data[i++] = packets;
1553 data[i++] = bytes;
1554 data[i++] = xdp_drop;
1555 data[i++] = xdp_redirect;
1556 data[i++] = xdp_tx;
1557 }
1558
1559 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1560 sizeof(struct netvsc_ethtool_pcpu_stats),
1561 GFP_KERNEL);
1562 if (!pcpu_sum)
1563 return;
1564
1565 netvsc_get_pcpu_stats(dev, pcpu_sum);
1566 for_each_present_cpu(cpu) {
1567 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570 data[i++] = *(u64 *)((void *)this_sum
1571 + pcpu_stats[j].offset);
1572 }
1573 kvfree(pcpu_sum);
1574 }
1575
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1576 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577 {
1578 struct net_device_context *ndc = netdev_priv(dev);
1579 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580 u8 *p = data;
1581 int i, cpu;
1582
1583 if (!nvdev)
1584 return;
1585
1586 switch (stringset) {
1587 case ETH_SS_STATS:
1588 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1589 ethtool_sprintf(&p, netvsc_stats[i].name);
1590
1591 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1592 ethtool_sprintf(&p, vf_stats[i].name);
1593
1594 for (i = 0; i < nvdev->num_chn; i++) {
1595 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1596 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1597 ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1598 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1599 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1600 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1601 ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1602 ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1603 }
1604
1605 for_each_present_cpu(cpu) {
1606 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1607 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1608 }
1609
1610 break;
1611 }
1612 }
1613
1614 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1615 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1616 struct ethtool_rxnfc *info)
1617 {
1618 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1619
1620 info->data = RXH_IP_SRC | RXH_IP_DST;
1621
1622 switch (info->flow_type) {
1623 case TCP_V4_FLOW:
1624 if (ndc->l4_hash & HV_TCP4_L4HASH)
1625 info->data |= l4_flag;
1626
1627 break;
1628
1629 case TCP_V6_FLOW:
1630 if (ndc->l4_hash & HV_TCP6_L4HASH)
1631 info->data |= l4_flag;
1632
1633 break;
1634
1635 case UDP_V4_FLOW:
1636 if (ndc->l4_hash & HV_UDP4_L4HASH)
1637 info->data |= l4_flag;
1638
1639 break;
1640
1641 case UDP_V6_FLOW:
1642 if (ndc->l4_hash & HV_UDP6_L4HASH)
1643 info->data |= l4_flag;
1644
1645 break;
1646
1647 case IPV4_FLOW:
1648 case IPV6_FLOW:
1649 break;
1650 default:
1651 info->data = 0;
1652 break;
1653 }
1654
1655 return 0;
1656 }
1657
1658 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1659 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1660 u32 *rules)
1661 {
1662 struct net_device_context *ndc = netdev_priv(dev);
1663 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1664
1665 if (!nvdev)
1666 return -ENODEV;
1667
1668 switch (info->cmd) {
1669 case ETHTOOL_GRXRINGS:
1670 info->data = nvdev->num_chn;
1671 return 0;
1672
1673 case ETHTOOL_GRXFH:
1674 return netvsc_get_rss_hash_opts(ndc, info);
1675 }
1676 return -EOPNOTSUPP;
1677 }
1678
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1679 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1680 struct ethtool_rxnfc *info)
1681 {
1682 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1683 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1684 switch (info->flow_type) {
1685 case TCP_V4_FLOW:
1686 ndc->l4_hash |= HV_TCP4_L4HASH;
1687 break;
1688
1689 case TCP_V6_FLOW:
1690 ndc->l4_hash |= HV_TCP6_L4HASH;
1691 break;
1692
1693 case UDP_V4_FLOW:
1694 ndc->l4_hash |= HV_UDP4_L4HASH;
1695 break;
1696
1697 case UDP_V6_FLOW:
1698 ndc->l4_hash |= HV_UDP6_L4HASH;
1699 break;
1700
1701 default:
1702 return -EOPNOTSUPP;
1703 }
1704
1705 return 0;
1706 }
1707
1708 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1709 switch (info->flow_type) {
1710 case TCP_V4_FLOW:
1711 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1712 break;
1713
1714 case TCP_V6_FLOW:
1715 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1716 break;
1717
1718 case UDP_V4_FLOW:
1719 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1720 break;
1721
1722 case UDP_V6_FLOW:
1723 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1724 break;
1725
1726 default:
1727 return -EOPNOTSUPP;
1728 }
1729
1730 return 0;
1731 }
1732
1733 return -EOPNOTSUPP;
1734 }
1735
1736 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1737 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1738 {
1739 struct net_device_context *ndc = netdev_priv(ndev);
1740
1741 if (info->cmd == ETHTOOL_SRXFH)
1742 return netvsc_set_rss_hash_opts(ndc, info);
1743
1744 return -EOPNOTSUPP;
1745 }
1746
netvsc_get_rxfh_key_size(struct net_device * dev)1747 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1748 {
1749 return NETVSC_HASH_KEYLEN;
1750 }
1751
netvsc_rss_indir_size(struct net_device * dev)1752 static u32 netvsc_rss_indir_size(struct net_device *dev)
1753 {
1754 struct net_device_context *ndc = netdev_priv(dev);
1755
1756 return ndc->rx_table_sz;
1757 }
1758
netvsc_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)1759 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1760 u8 *hfunc)
1761 {
1762 struct net_device_context *ndc = netdev_priv(dev);
1763 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1764 struct rndis_device *rndis_dev;
1765 int i;
1766
1767 if (!ndev)
1768 return -ENODEV;
1769
1770 if (hfunc)
1771 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1772
1773 rndis_dev = ndev->extension;
1774 if (indir) {
1775 for (i = 0; i < ndc->rx_table_sz; i++)
1776 indir[i] = ndc->rx_table[i];
1777 }
1778
1779 if (key)
1780 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1781
1782 return 0;
1783 }
1784
netvsc_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)1785 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1786 const u8 *key, const u8 hfunc)
1787 {
1788 struct net_device_context *ndc = netdev_priv(dev);
1789 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1790 struct rndis_device *rndis_dev;
1791 int i;
1792
1793 if (!ndev)
1794 return -ENODEV;
1795
1796 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1797 return -EOPNOTSUPP;
1798
1799 rndis_dev = ndev->extension;
1800 if (indir) {
1801 for (i = 0; i < ndc->rx_table_sz; i++)
1802 if (indir[i] >= ndev->num_chn)
1803 return -EINVAL;
1804
1805 for (i = 0; i < ndc->rx_table_sz; i++)
1806 ndc->rx_table[i] = indir[i];
1807 }
1808
1809 if (!key) {
1810 if (!indir)
1811 return 0;
1812
1813 key = rndis_dev->rss_key;
1814 }
1815
1816 return rndis_filter_set_rss_param(rndis_dev, key);
1817 }
1818
1819 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1820 * It does have pre-allocated receive area which is divided into sections.
1821 */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1822 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1823 struct ethtool_ringparam *ring)
1824 {
1825 u32 max_buf_size;
1826
1827 ring->rx_pending = nvdev->recv_section_cnt;
1828 ring->tx_pending = nvdev->send_section_cnt;
1829
1830 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1831 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1832 else
1833 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1834
1835 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1836 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1837 / nvdev->send_section_size;
1838 }
1839
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1840 static void netvsc_get_ringparam(struct net_device *ndev,
1841 struct ethtool_ringparam *ring,
1842 struct kernel_ethtool_ringparam *kernel_ring,
1843 struct netlink_ext_ack *extack)
1844 {
1845 struct net_device_context *ndevctx = netdev_priv(ndev);
1846 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1847
1848 if (!nvdev)
1849 return;
1850
1851 __netvsc_get_ringparam(nvdev, ring);
1852 }
1853
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1854 static int netvsc_set_ringparam(struct net_device *ndev,
1855 struct ethtool_ringparam *ring,
1856 struct kernel_ethtool_ringparam *kernel_ring,
1857 struct netlink_ext_ack *extack)
1858 {
1859 struct net_device_context *ndevctx = netdev_priv(ndev);
1860 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1861 struct netvsc_device_info *device_info;
1862 struct ethtool_ringparam orig;
1863 u32 new_tx, new_rx;
1864 int ret = 0;
1865
1866 if (!nvdev || nvdev->destroy)
1867 return -ENODEV;
1868
1869 memset(&orig, 0, sizeof(orig));
1870 __netvsc_get_ringparam(nvdev, &orig);
1871
1872 new_tx = clamp_t(u32, ring->tx_pending,
1873 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1874 new_rx = clamp_t(u32, ring->rx_pending,
1875 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1876
1877 if (new_tx == orig.tx_pending &&
1878 new_rx == orig.rx_pending)
1879 return 0; /* no change */
1880
1881 device_info = netvsc_devinfo_get(nvdev);
1882
1883 if (!device_info)
1884 return -ENOMEM;
1885
1886 device_info->send_sections = new_tx;
1887 device_info->recv_sections = new_rx;
1888
1889 ret = netvsc_detach(ndev, nvdev);
1890 if (ret)
1891 goto out;
1892
1893 ret = netvsc_attach(ndev, device_info);
1894 if (ret) {
1895 device_info->send_sections = orig.tx_pending;
1896 device_info->recv_sections = orig.rx_pending;
1897
1898 if (netvsc_attach(ndev, device_info))
1899 netdev_err(ndev, "restoring ringparam failed");
1900 }
1901
1902 out:
1903 netvsc_devinfo_put(device_info);
1904 return ret;
1905 }
1906
netvsc_fix_features(struct net_device * ndev,netdev_features_t features)1907 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1908 netdev_features_t features)
1909 {
1910 struct net_device_context *ndevctx = netdev_priv(ndev);
1911 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1912
1913 if (!nvdev || nvdev->destroy)
1914 return features;
1915
1916 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1917 features ^= NETIF_F_LRO;
1918 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1919 }
1920
1921 return features;
1922 }
1923
netvsc_set_features(struct net_device * ndev,netdev_features_t features)1924 static int netvsc_set_features(struct net_device *ndev,
1925 netdev_features_t features)
1926 {
1927 netdev_features_t change = features ^ ndev->features;
1928 struct net_device_context *ndevctx = netdev_priv(ndev);
1929 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1930 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1931 struct ndis_offload_params offloads;
1932 int ret = 0;
1933
1934 if (!nvdev || nvdev->destroy)
1935 return -ENODEV;
1936
1937 if (!(change & NETIF_F_LRO))
1938 goto syncvf;
1939
1940 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1941
1942 if (features & NETIF_F_LRO) {
1943 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1944 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1945 } else {
1946 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1947 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1948 }
1949
1950 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1951
1952 if (ret) {
1953 features ^= NETIF_F_LRO;
1954 ndev->features = features;
1955 }
1956
1957 syncvf:
1958 if (!vf_netdev)
1959 return ret;
1960
1961 vf_netdev->wanted_features = features;
1962 netdev_update_features(vf_netdev);
1963
1964 return ret;
1965 }
1966
netvsc_get_regs_len(struct net_device * netdev)1967 static int netvsc_get_regs_len(struct net_device *netdev)
1968 {
1969 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1970 }
1971
netvsc_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)1972 static void netvsc_get_regs(struct net_device *netdev,
1973 struct ethtool_regs *regs, void *p)
1974 {
1975 struct net_device_context *ndc = netdev_priv(netdev);
1976 u32 *regs_buff = p;
1977
1978 /* increase the version, if buffer format is changed. */
1979 regs->version = 1;
1980
1981 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1982 }
1983
netvsc_get_msglevel(struct net_device * ndev)1984 static u32 netvsc_get_msglevel(struct net_device *ndev)
1985 {
1986 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1987
1988 return ndev_ctx->msg_enable;
1989 }
1990
netvsc_set_msglevel(struct net_device * ndev,u32 val)1991 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1992 {
1993 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1994
1995 ndev_ctx->msg_enable = val;
1996 }
1997
1998 static const struct ethtool_ops ethtool_ops = {
1999 .get_drvinfo = netvsc_get_drvinfo,
2000 .get_regs_len = netvsc_get_regs_len,
2001 .get_regs = netvsc_get_regs,
2002 .get_msglevel = netvsc_get_msglevel,
2003 .set_msglevel = netvsc_set_msglevel,
2004 .get_link = ethtool_op_get_link,
2005 .get_ethtool_stats = netvsc_get_ethtool_stats,
2006 .get_sset_count = netvsc_get_sset_count,
2007 .get_strings = netvsc_get_strings,
2008 .get_channels = netvsc_get_channels,
2009 .set_channels = netvsc_set_channels,
2010 .get_ts_info = ethtool_op_get_ts_info,
2011 .get_rxnfc = netvsc_get_rxnfc,
2012 .set_rxnfc = netvsc_set_rxnfc,
2013 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2014 .get_rxfh_indir_size = netvsc_rss_indir_size,
2015 .get_rxfh = netvsc_get_rxfh,
2016 .set_rxfh = netvsc_set_rxfh,
2017 .get_link_ksettings = netvsc_get_link_ksettings,
2018 .set_link_ksettings = netvsc_set_link_ksettings,
2019 .get_ringparam = netvsc_get_ringparam,
2020 .set_ringparam = netvsc_set_ringparam,
2021 };
2022
2023 static const struct net_device_ops device_ops = {
2024 .ndo_open = netvsc_open,
2025 .ndo_stop = netvsc_close,
2026 .ndo_start_xmit = netvsc_start_xmit,
2027 .ndo_change_rx_flags = netvsc_change_rx_flags,
2028 .ndo_set_rx_mode = netvsc_set_rx_mode,
2029 .ndo_fix_features = netvsc_fix_features,
2030 .ndo_set_features = netvsc_set_features,
2031 .ndo_change_mtu = netvsc_change_mtu,
2032 .ndo_validate_addr = eth_validate_addr,
2033 .ndo_set_mac_address = netvsc_set_mac_addr,
2034 .ndo_select_queue = netvsc_select_queue,
2035 .ndo_get_stats64 = netvsc_get_stats64,
2036 .ndo_bpf = netvsc_bpf,
2037 .ndo_xdp_xmit = netvsc_ndoxdp_xmit,
2038 };
2039
2040 /*
2041 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2042 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2043 * present send GARP packet to network peers with netif_notify_peers().
2044 */
netvsc_link_change(struct work_struct * w)2045 static void netvsc_link_change(struct work_struct *w)
2046 {
2047 struct net_device_context *ndev_ctx =
2048 container_of(w, struct net_device_context, dwork.work);
2049 struct hv_device *device_obj = ndev_ctx->device_ctx;
2050 struct net_device *net = hv_get_drvdata(device_obj);
2051 unsigned long flags, next_reconfig, delay;
2052 struct netvsc_reconfig *event = NULL;
2053 struct netvsc_device *net_device;
2054 struct rndis_device *rdev;
2055 bool reschedule = false;
2056
2057 /* if changes are happening, comeback later */
2058 if (!rtnl_trylock()) {
2059 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2060 return;
2061 }
2062
2063 net_device = rtnl_dereference(ndev_ctx->nvdev);
2064 if (!net_device)
2065 goto out_unlock;
2066
2067 rdev = net_device->extension;
2068
2069 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2070 if (time_is_after_jiffies(next_reconfig)) {
2071 /* link_watch only sends one notification with current state
2072 * per second, avoid doing reconfig more frequently. Handle
2073 * wrap around.
2074 */
2075 delay = next_reconfig - jiffies;
2076 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2077 schedule_delayed_work(&ndev_ctx->dwork, delay);
2078 goto out_unlock;
2079 }
2080 ndev_ctx->last_reconfig = jiffies;
2081
2082 spin_lock_irqsave(&ndev_ctx->lock, flags);
2083 if (!list_empty(&ndev_ctx->reconfig_events)) {
2084 event = list_first_entry(&ndev_ctx->reconfig_events,
2085 struct netvsc_reconfig, list);
2086 list_del(&event->list);
2087 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2088 }
2089 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2090
2091 if (!event)
2092 goto out_unlock;
2093
2094 switch (event->event) {
2095 /* Only the following events are possible due to the check in
2096 * netvsc_linkstatus_callback()
2097 */
2098 case RNDIS_STATUS_MEDIA_CONNECT:
2099 if (rdev->link_state) {
2100 rdev->link_state = false;
2101 netif_carrier_on(net);
2102 netvsc_tx_enable(net_device, net);
2103 } else {
2104 __netdev_notify_peers(net);
2105 }
2106 kfree(event);
2107 break;
2108 case RNDIS_STATUS_MEDIA_DISCONNECT:
2109 if (!rdev->link_state) {
2110 rdev->link_state = true;
2111 netif_carrier_off(net);
2112 netvsc_tx_disable(net_device, net);
2113 }
2114 kfree(event);
2115 break;
2116 case RNDIS_STATUS_NETWORK_CHANGE:
2117 /* Only makes sense if carrier is present */
2118 if (!rdev->link_state) {
2119 rdev->link_state = true;
2120 netif_carrier_off(net);
2121 netvsc_tx_disable(net_device, net);
2122 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2123 spin_lock_irqsave(&ndev_ctx->lock, flags);
2124 list_add(&event->list, &ndev_ctx->reconfig_events);
2125 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2126 reschedule = true;
2127 }
2128 break;
2129 }
2130
2131 rtnl_unlock();
2132
2133 /* link_watch only sends one notification with current state per
2134 * second, handle next reconfig event in 2 seconds.
2135 */
2136 if (reschedule)
2137 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2138
2139 return;
2140
2141 out_unlock:
2142 rtnl_unlock();
2143 }
2144
get_netvsc_byref(struct net_device * vf_netdev)2145 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2146 {
2147 struct net_device_context *net_device_ctx;
2148 struct net_device *dev;
2149
2150 dev = netdev_master_upper_dev_get(vf_netdev);
2151 if (!dev || dev->netdev_ops != &device_ops)
2152 return NULL; /* not a netvsc device */
2153
2154 net_device_ctx = netdev_priv(dev);
2155 if (!rtnl_dereference(net_device_ctx->nvdev))
2156 return NULL; /* device is removed */
2157
2158 return dev;
2159 }
2160
2161 /* Called when VF is injecting data into network stack.
2162 * Change the associated network device from VF to netvsc.
2163 * note: already called with rcu_read_lock
2164 */
netvsc_vf_handle_frame(struct sk_buff ** pskb)2165 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2166 {
2167 struct sk_buff *skb = *pskb;
2168 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2169 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2170 struct netvsc_vf_pcpu_stats *pcpu_stats
2171 = this_cpu_ptr(ndev_ctx->vf_stats);
2172
2173 skb = skb_share_check(skb, GFP_ATOMIC);
2174 if (unlikely(!skb))
2175 return RX_HANDLER_CONSUMED;
2176
2177 *pskb = skb;
2178
2179 skb->dev = ndev;
2180
2181 u64_stats_update_begin(&pcpu_stats->syncp);
2182 pcpu_stats->rx_packets++;
2183 pcpu_stats->rx_bytes += skb->len;
2184 u64_stats_update_end(&pcpu_stats->syncp);
2185
2186 return RX_HANDLER_ANOTHER;
2187 }
2188
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev,int context)2189 static int netvsc_vf_join(struct net_device *vf_netdev,
2190 struct net_device *ndev, int context)
2191 {
2192 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2193 int ret;
2194
2195 ret = netdev_rx_handler_register(vf_netdev,
2196 netvsc_vf_handle_frame, ndev);
2197 if (ret != 0) {
2198 netdev_err(vf_netdev,
2199 "can not register netvsc VF receive handler (err = %d)\n",
2200 ret);
2201 goto rx_handler_failed;
2202 }
2203
2204 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2205 NULL, NULL, NULL);
2206 if (ret != 0) {
2207 netdev_err(vf_netdev,
2208 "can not set master device %s (err = %d)\n",
2209 ndev->name, ret);
2210 goto upper_link_failed;
2211 }
2212
2213 /* If this registration is called from probe context vf_takeover
2214 * is taken care of later in probe itself.
2215 */
2216 if (context == VF_REG_IN_NOTIFIER)
2217 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2218
2219 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2220
2221 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2222 return 0;
2223
2224 upper_link_failed:
2225 netdev_rx_handler_unregister(vf_netdev);
2226 rx_handler_failed:
2227 return ret;
2228 }
2229
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)2230 static void __netvsc_vf_setup(struct net_device *ndev,
2231 struct net_device *vf_netdev)
2232 {
2233 int ret;
2234
2235 /* Align MTU of VF with master */
2236 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2237 if (ret)
2238 netdev_warn(vf_netdev,
2239 "unable to change mtu to %u\n", ndev->mtu);
2240
2241 /* set multicast etc flags on VF */
2242 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2243
2244 /* sync address list from ndev to VF */
2245 netif_addr_lock_bh(ndev);
2246 dev_uc_sync(vf_netdev, ndev);
2247 dev_mc_sync(vf_netdev, ndev);
2248 netif_addr_unlock_bh(ndev);
2249
2250 if (netif_running(ndev)) {
2251 ret = dev_open(vf_netdev, NULL);
2252 if (ret)
2253 netdev_warn(vf_netdev,
2254 "unable to open: %d\n", ret);
2255 }
2256 }
2257
2258 /* Setup VF as slave of the synthetic device.
2259 * Runs in workqueue to avoid recursion in netlink callbacks.
2260 */
netvsc_vf_setup(struct work_struct * w)2261 static void netvsc_vf_setup(struct work_struct *w)
2262 {
2263 struct net_device_context *ndev_ctx
2264 = container_of(w, struct net_device_context, vf_takeover.work);
2265 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2266 struct net_device *vf_netdev;
2267
2268 if (!rtnl_trylock()) {
2269 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2270 return;
2271 }
2272
2273 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2274 if (vf_netdev)
2275 __netvsc_vf_setup(ndev, vf_netdev);
2276
2277 rtnl_unlock();
2278 }
2279
2280 /* Find netvsc by VF serial number.
2281 * The PCI hyperv controller records the serial number as the slot kobj name.
2282 */
get_netvsc_byslot(const struct net_device * vf_netdev)2283 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2284 {
2285 struct device *parent = vf_netdev->dev.parent;
2286 struct net_device_context *ndev_ctx;
2287 struct net_device *ndev;
2288 struct pci_dev *pdev;
2289 u32 serial;
2290
2291 if (!parent || !dev_is_pci(parent))
2292 return NULL; /* not a PCI device */
2293
2294 pdev = to_pci_dev(parent);
2295 if (!pdev->slot) {
2296 netdev_notice(vf_netdev, "no PCI slot information\n");
2297 return NULL;
2298 }
2299
2300 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2301 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2302 pci_slot_name(pdev->slot));
2303 return NULL;
2304 }
2305
2306 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2307 if (!ndev_ctx->vf_alloc)
2308 continue;
2309
2310 if (ndev_ctx->vf_serial != serial)
2311 continue;
2312
2313 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2314 if (ndev->addr_len != vf_netdev->addr_len ||
2315 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2316 ndev->addr_len) != 0)
2317 continue;
2318
2319 return ndev;
2320
2321 }
2322
2323 /* Fallback path to check synthetic vf with help of mac addr.
2324 * Because this function can be called before vf_netdev is
2325 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2326 * from dev_addr, also try to match to its dev_addr.
2327 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2328 * on a VF that matches to the MAC of a unrelated NETVSC device.
2329 */
2330 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2331 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2332 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2333 ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2334 return ndev;
2335 }
2336
2337 netdev_notice(vf_netdev,
2338 "no netdev found for vf serial:%u\n", serial);
2339 return NULL;
2340 }
2341
netvsc_prepare_bonding(struct net_device * vf_netdev)2342 static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2343 {
2344 struct net_device *ndev;
2345
2346 ndev = get_netvsc_byslot(vf_netdev);
2347 if (!ndev)
2348 return NOTIFY_DONE;
2349
2350 /* set slave flag before open to prevent IPv6 addrconf */
2351 vf_netdev->flags |= IFF_SLAVE;
2352 return NOTIFY_DONE;
2353 }
2354
netvsc_register_vf(struct net_device * vf_netdev,int context)2355 static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2356 {
2357 struct net_device_context *net_device_ctx;
2358 struct netvsc_device *netvsc_dev;
2359 struct bpf_prog *prog;
2360 struct net_device *ndev;
2361 int ret;
2362
2363 if (vf_netdev->addr_len != ETH_ALEN)
2364 return NOTIFY_DONE;
2365
2366 ndev = get_netvsc_byslot(vf_netdev);
2367 if (!ndev)
2368 return NOTIFY_DONE;
2369
2370 net_device_ctx = netdev_priv(ndev);
2371 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2372 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2373 return NOTIFY_DONE;
2374
2375 /* if synthetic interface is a different namespace,
2376 * then move the VF to that namespace; join will be
2377 * done again in that context.
2378 */
2379 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2380 ret = dev_change_net_namespace(vf_netdev,
2381 dev_net(ndev), "eth%d");
2382 if (ret)
2383 netdev_err(vf_netdev,
2384 "could not move to same namespace as %s: %d\n",
2385 ndev->name, ret);
2386 else
2387 netdev_info(vf_netdev,
2388 "VF moved to namespace with: %s\n",
2389 ndev->name);
2390 return NOTIFY_DONE;
2391 }
2392
2393 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2394
2395 if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2396 return NOTIFY_DONE;
2397
2398 dev_hold(vf_netdev);
2399 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2400
2401 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2402 ndev->needed_headroom = vf_netdev->needed_headroom;
2403
2404 vf_netdev->wanted_features = ndev->features;
2405 netdev_update_features(vf_netdev);
2406
2407 prog = netvsc_xdp_get(netvsc_dev);
2408 netvsc_vf_setxdp(vf_netdev, prog);
2409
2410 return NOTIFY_OK;
2411 }
2412
2413 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2414 *
2415 * Typically a UP or DOWN event is followed by a CHANGE event, so
2416 * net_device_ctx->data_path_is_vf is used to cache the current data path
2417 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2418 * message.
2419 *
2420 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2421 * interface, there is only the CHANGE event and no UP or DOWN event.
2422 */
netvsc_vf_changed(struct net_device * vf_netdev,unsigned long event)2423 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2424 {
2425 struct net_device_context *net_device_ctx;
2426 struct netvsc_device *netvsc_dev;
2427 struct net_device *ndev;
2428 bool vf_is_up = false;
2429 int ret;
2430
2431 if (event != NETDEV_GOING_DOWN)
2432 vf_is_up = netif_running(vf_netdev);
2433
2434 ndev = get_netvsc_byref(vf_netdev);
2435 if (!ndev)
2436 return NOTIFY_DONE;
2437
2438 net_device_ctx = netdev_priv(ndev);
2439 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2440 if (!netvsc_dev)
2441 return NOTIFY_DONE;
2442
2443 if (net_device_ctx->data_path_is_vf == vf_is_up)
2444 return NOTIFY_OK;
2445
2446 if (vf_is_up && !net_device_ctx->vf_alloc) {
2447 netdev_info(ndev, "Waiting for the VF association from host\n");
2448 wait_for_completion(&net_device_ctx->vf_add);
2449 }
2450
2451 ret = netvsc_switch_datapath(ndev, vf_is_up);
2452
2453 if (ret) {
2454 netdev_err(ndev,
2455 "Data path failed to switch %s VF: %s, err: %d\n",
2456 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2457 return NOTIFY_DONE;
2458 } else {
2459 netdev_info(ndev, "Data path switched %s VF: %s\n",
2460 vf_is_up ? "to" : "from", vf_netdev->name);
2461 }
2462
2463 return NOTIFY_OK;
2464 }
2465
netvsc_unregister_vf(struct net_device * vf_netdev)2466 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2467 {
2468 struct net_device *ndev;
2469 struct net_device_context *net_device_ctx;
2470
2471 ndev = get_netvsc_byref(vf_netdev);
2472 if (!ndev)
2473 return NOTIFY_DONE;
2474
2475 net_device_ctx = netdev_priv(ndev);
2476 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2477
2478 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2479
2480 netvsc_vf_setxdp(vf_netdev, NULL);
2481
2482 reinit_completion(&net_device_ctx->vf_add);
2483 netdev_rx_handler_unregister(vf_netdev);
2484 netdev_upper_dev_unlink(vf_netdev, ndev);
2485 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2486 dev_put(vf_netdev);
2487
2488 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2489
2490 return NOTIFY_OK;
2491 }
2492
check_dev_is_matching_vf(struct net_device * event_ndev)2493 static int check_dev_is_matching_vf(struct net_device *event_ndev)
2494 {
2495 /* Skip NetVSC interfaces */
2496 if (event_ndev->netdev_ops == &device_ops)
2497 return -ENODEV;
2498
2499 /* Avoid non-Ethernet type devices */
2500 if (event_ndev->type != ARPHRD_ETHER)
2501 return -ENODEV;
2502
2503 /* Avoid Vlan dev with same MAC registering as VF */
2504 if (is_vlan_dev(event_ndev))
2505 return -ENODEV;
2506
2507 /* Avoid Bonding master dev with same MAC registering as VF */
2508 if (netif_is_bond_master(event_ndev))
2509 return -ENODEV;
2510
2511 return 0;
2512 }
2513
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2514 static int netvsc_probe(struct hv_device *dev,
2515 const struct hv_vmbus_device_id *dev_id)
2516 {
2517 struct net_device *net = NULL, *vf_netdev;
2518 struct net_device_context *net_device_ctx;
2519 struct netvsc_device_info *device_info = NULL;
2520 struct netvsc_device *nvdev;
2521 int ret = -ENOMEM;
2522
2523 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2524 VRSS_CHANNEL_MAX);
2525 if (!net)
2526 goto no_net;
2527
2528 netif_carrier_off(net);
2529
2530 netvsc_init_settings(net);
2531
2532 net_device_ctx = netdev_priv(net);
2533 net_device_ctx->device_ctx = dev;
2534 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2535 if (netif_msg_probe(net_device_ctx))
2536 netdev_dbg(net, "netvsc msg_enable: %d\n",
2537 net_device_ctx->msg_enable);
2538
2539 hv_set_drvdata(dev, net);
2540
2541 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2542
2543 init_completion(&net_device_ctx->vf_add);
2544 spin_lock_init(&net_device_ctx->lock);
2545 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2546 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2547
2548 net_device_ctx->vf_stats
2549 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2550 if (!net_device_ctx->vf_stats)
2551 goto no_stats;
2552
2553 net->netdev_ops = &device_ops;
2554 net->ethtool_ops = ðtool_ops;
2555 SET_NETDEV_DEV(net, &dev->device);
2556 dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2557
2558 /* We always need headroom for rndis header */
2559 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2560
2561 /* Initialize the number of queues to be 1, we may change it if more
2562 * channels are offered later.
2563 */
2564 netif_set_real_num_tx_queues(net, 1);
2565 netif_set_real_num_rx_queues(net, 1);
2566
2567 /* Notify the netvsc driver of the new device */
2568 device_info = netvsc_devinfo_get(NULL);
2569
2570 if (!device_info) {
2571 ret = -ENOMEM;
2572 goto devinfo_failed;
2573 }
2574
2575 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2576 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2577 * all subchannels to show up, but that may not happen because
2578 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2579 * -> ... -> device_add() -> ... -> __device_attach() can't get
2580 * the device lock, so all the subchannels can't be processed --
2581 * finally netvsc_subchan_work() hangs forever.
2582 *
2583 * The rtnl lock also needs to be held before rndis_filter_device_add()
2584 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2585 * VF NIC offering and registering. If VF NIC finished register_netdev()
2586 * earlier it may cause name based config failure.
2587 */
2588 rtnl_lock();
2589
2590 nvdev = rndis_filter_device_add(dev, device_info);
2591 if (IS_ERR(nvdev)) {
2592 ret = PTR_ERR(nvdev);
2593 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2594 goto rndis_failed;
2595 }
2596
2597 eth_hw_addr_set(net, device_info->mac_adr);
2598
2599 if (nvdev->num_chn > 1)
2600 schedule_work(&nvdev->subchan_work);
2601
2602 /* hw_features computed in rndis_netdev_set_hwcaps() */
2603 net->features = net->hw_features |
2604 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2605 NETIF_F_HW_VLAN_CTAG_RX;
2606 net->vlan_features = net->features;
2607
2608 netdev_lockdep_set_classes(net);
2609
2610 net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2611 NETDEV_XDP_ACT_NDO_XMIT;
2612
2613 /* MTU range: 68 - 1500 or 65521 */
2614 net->min_mtu = NETVSC_MTU_MIN;
2615 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2616 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2617 else
2618 net->max_mtu = ETH_DATA_LEN;
2619
2620 nvdev->tx_disable = false;
2621
2622 ret = register_netdevice(net);
2623 if (ret != 0) {
2624 pr_err("Unable to register netdev.\n");
2625 goto register_failed;
2626 }
2627
2628 list_add(&net_device_ctx->list, &netvsc_dev_list);
2629
2630 /* When the hv_netvsc driver is unloaded and reloaded, the
2631 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2632 * is complete. This is because register_netdevice_notifier() gets
2633 * registered before vmbus_driver_register() so that callback func
2634 * is set before probe and we don't miss events like NETDEV_POST_INIT
2635 * So, in this section we try to register the matching vf device that
2636 * is present as a netdevice, knowing that its register call is not
2637 * processed in the netvsc_netdev_notifier(as probing is progress and
2638 * get_netvsc_byslot fails).
2639 */
2640 for_each_netdev(dev_net(net), vf_netdev) {
2641 ret = check_dev_is_matching_vf(vf_netdev);
2642 if (ret != 0)
2643 continue;
2644
2645 if (net != get_netvsc_byslot(vf_netdev))
2646 continue;
2647
2648 netvsc_prepare_bonding(vf_netdev);
2649 netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2650 __netvsc_vf_setup(net, vf_netdev);
2651 break;
2652 }
2653 rtnl_unlock();
2654
2655 netvsc_devinfo_put(device_info);
2656 return 0;
2657
2658 register_failed:
2659 rndis_filter_device_remove(dev, nvdev);
2660 rndis_failed:
2661 rtnl_unlock();
2662 netvsc_devinfo_put(device_info);
2663 devinfo_failed:
2664 free_percpu(net_device_ctx->vf_stats);
2665 no_stats:
2666 hv_set_drvdata(dev, NULL);
2667 free_netdev(net);
2668 no_net:
2669 return ret;
2670 }
2671
netvsc_remove(struct hv_device * dev)2672 static void netvsc_remove(struct hv_device *dev)
2673 {
2674 struct net_device_context *ndev_ctx;
2675 struct net_device *vf_netdev, *net;
2676 struct netvsc_device *nvdev;
2677
2678 net = hv_get_drvdata(dev);
2679 if (net == NULL) {
2680 dev_err(&dev->device, "No net device to remove\n");
2681 return;
2682 }
2683
2684 ndev_ctx = netdev_priv(net);
2685
2686 cancel_delayed_work_sync(&ndev_ctx->dwork);
2687
2688 rtnl_lock();
2689 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2690 if (nvdev) {
2691 cancel_work_sync(&nvdev->subchan_work);
2692 netvsc_xdp_set(net, NULL, NULL, nvdev);
2693 }
2694
2695 /*
2696 * Call to the vsc driver to let it know that the device is being
2697 * removed. Also blocks mtu and channel changes.
2698 */
2699 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2700 if (vf_netdev)
2701 netvsc_unregister_vf(vf_netdev);
2702
2703 if (nvdev)
2704 rndis_filter_device_remove(dev, nvdev);
2705
2706 unregister_netdevice(net);
2707 list_del(&ndev_ctx->list);
2708
2709 rtnl_unlock();
2710
2711 hv_set_drvdata(dev, NULL);
2712
2713 free_percpu(ndev_ctx->vf_stats);
2714 free_netdev(net);
2715 }
2716
netvsc_suspend(struct hv_device * dev)2717 static int netvsc_suspend(struct hv_device *dev)
2718 {
2719 struct net_device_context *ndev_ctx;
2720 struct netvsc_device *nvdev;
2721 struct net_device *net;
2722 int ret;
2723
2724 net = hv_get_drvdata(dev);
2725
2726 ndev_ctx = netdev_priv(net);
2727 cancel_delayed_work_sync(&ndev_ctx->dwork);
2728
2729 rtnl_lock();
2730
2731 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2732 if (nvdev == NULL) {
2733 ret = -ENODEV;
2734 goto out;
2735 }
2736
2737 /* Save the current config info */
2738 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2739 if (!ndev_ctx->saved_netvsc_dev_info) {
2740 ret = -ENOMEM;
2741 goto out;
2742 }
2743 ret = netvsc_detach(net, nvdev);
2744 out:
2745 rtnl_unlock();
2746
2747 return ret;
2748 }
2749
netvsc_resume(struct hv_device * dev)2750 static int netvsc_resume(struct hv_device *dev)
2751 {
2752 struct net_device *net = hv_get_drvdata(dev);
2753 struct net_device_context *net_device_ctx;
2754 struct netvsc_device_info *device_info;
2755 int ret;
2756
2757 rtnl_lock();
2758
2759 net_device_ctx = netdev_priv(net);
2760
2761 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2762 * channel. Later netvsc_netdev_event() will switch the data path to
2763 * the VF upon the UP or CHANGE event.
2764 */
2765 net_device_ctx->data_path_is_vf = false;
2766 device_info = net_device_ctx->saved_netvsc_dev_info;
2767
2768 ret = netvsc_attach(net, device_info);
2769
2770 netvsc_devinfo_put(device_info);
2771 net_device_ctx->saved_netvsc_dev_info = NULL;
2772
2773 rtnl_unlock();
2774
2775 return ret;
2776 }
2777 static const struct hv_vmbus_device_id id_table[] = {
2778 /* Network guid */
2779 { HV_NIC_GUID, },
2780 { },
2781 };
2782
2783 MODULE_DEVICE_TABLE(vmbus, id_table);
2784
2785 /* The one and only one */
2786 static struct hv_driver netvsc_drv = {
2787 .name = KBUILD_MODNAME,
2788 .id_table = id_table,
2789 .probe = netvsc_probe,
2790 .remove = netvsc_remove,
2791 .suspend = netvsc_suspend,
2792 .resume = netvsc_resume,
2793 .driver = {
2794 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2795 },
2796 };
2797
2798 /*
2799 * On Hyper-V, every VF interface is matched with a corresponding
2800 * synthetic interface. The synthetic interface is presented first
2801 * to the guest. When the corresponding VF instance is registered,
2802 * we will take care of switching the data path.
2803 */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2804 static int netvsc_netdev_event(struct notifier_block *this,
2805 unsigned long event, void *ptr)
2806 {
2807 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2808 int ret = 0;
2809
2810 ret = check_dev_is_matching_vf(event_dev);
2811 if (ret != 0)
2812 return NOTIFY_DONE;
2813
2814 switch (event) {
2815 case NETDEV_POST_INIT:
2816 return netvsc_prepare_bonding(event_dev);
2817 case NETDEV_REGISTER:
2818 return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2819 case NETDEV_UNREGISTER:
2820 return netvsc_unregister_vf(event_dev);
2821 case NETDEV_UP:
2822 case NETDEV_DOWN:
2823 case NETDEV_CHANGE:
2824 case NETDEV_GOING_DOWN:
2825 return netvsc_vf_changed(event_dev, event);
2826 default:
2827 return NOTIFY_DONE;
2828 }
2829 }
2830
2831 static struct notifier_block netvsc_netdev_notifier = {
2832 .notifier_call = netvsc_netdev_event,
2833 };
2834
netvsc_drv_exit(void)2835 static void __exit netvsc_drv_exit(void)
2836 {
2837 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2838 vmbus_driver_unregister(&netvsc_drv);
2839 }
2840
netvsc_drv_init(void)2841 static int __init netvsc_drv_init(void)
2842 {
2843 int ret;
2844
2845 if (ring_size < RING_SIZE_MIN) {
2846 ring_size = RING_SIZE_MIN;
2847 pr_info("Increased ring_size to %u (min allowed)\n",
2848 ring_size);
2849 }
2850 netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2851
2852 register_netdevice_notifier(&netvsc_netdev_notifier);
2853
2854 ret = vmbus_driver_register(&netvsc_drv);
2855 if (ret)
2856 goto err_vmbus_reg;
2857
2858 return 0;
2859
2860 err_vmbus_reg:
2861 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2862 return ret;
2863 }
2864
2865 MODULE_LICENSE("GPL");
2866 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2867
2868 module_init(netvsc_drv_init);
2869 module_exit(netvsc_drv_exit);
2870