1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
dev_base_seq_inc(struct net * net)202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 while (++net->dev_base_seq == 0)
205 ;
206 }
207
dev_name_hash(struct net * net,const char * name)208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222 {
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227 }
228
rps_lock_irq_disable(struct softnet_data * sd)229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235 }
236
rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239 {
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244 }
245
rps_unlock_irq_enable(struct softnet_data * sd)246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252 }
253
netdev_name_node_alloc(struct net_device * dev,const char * name)254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256 {
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266 }
267
268 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278 }
279
netdev_name_node_free(struct netdev_name_node * name_node)280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 kfree(name_node);
283 }
284
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287 {
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290 }
291
netdev_name_node_del(struct netdev_name_node * name_node)292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 hlist_del_rcu(&name_node->hlist);
295 }
296
netdev_name_node_lookup(struct net * net,const char * name)297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299 {
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307 }
308
netdev_name_node_lookup_rcu(struct net * net,const char * name)309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311 {
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319 }
320
netdev_name_in_use(struct net * net,const char * name)321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
netdev_name_node_alt_create(struct net_device * dev,const char * name)327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343 }
344
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350 }
351
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
366 netdev_name_node_del(name_node);
367 synchronize_rcu();
368 __netdev_name_node_alt_destroy(name_node);
369
370 return 0;
371 }
372
netdev_name_node_alt_flush(struct net_device * dev)373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 struct netdev_name_node *name_node, *tmp;
376
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
list_netdevice(struct net_device * dev)382 static void list_netdevice(struct net_device *dev)
383 {
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
386
387 ASSERT_RTNL();
388
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
395
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
398
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402 dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
407 */
unlist_netdevice(struct net_device * dev,bool lock)408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
412
413 ASSERT_RTNL();
414
415 xa_erase(&net->dev_by_index, dev->ifindex);
416
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
419
420 /* Unlink dev from the device chain */
421 if (lock)
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
426 if (lock)
427 write_unlock(&dev_base_lock);
428
429 dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433 * Our notifier list
434 */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
441 */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
450 */
451 static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
netdev_lock_pos(unsigned short dev_type)488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 int i;
491
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
494 return i;
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
501 {
502 int i;
503
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
507 }
508
netdev_set_addr_lockdep_class(struct net_device * dev)509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 int i;
512
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
517 }
518 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
521 {
522 }
523
netdev_set_addr_lockdep_class(struct net_device * dev)524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530 *
531 * Protocol management and registration routines
532 *
533 *******************************************************************************/
534
535
536 /*
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
539 * here.
540 *
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
549 * --ANK (980803)
550 */
551
ptype_head(const struct packet_type * pt)552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 else
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
564 *
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
568 *
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
572 */
573
dev_add_pack(struct packet_type * pt)574 void dev_add_pack(struct packet_type *pt)
575 {
576 struct list_head *head = ptype_head(pt);
577
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
587 *
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
591 * returns.
592 *
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
596 */
__dev_remove_pack(struct packet_type * pt)597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
601
602 spin_lock(&ptype_lock);
603
604 list_for_each_entry(pt1, head, list) {
605 if (pt == pt1) {
606 list_del_rcu(&pt->list);
607 goto out;
608 }
609 }
610
611 pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
620 *
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
624 * returns.
625 *
626 * This call sleeps to guarantee that no CPU is looking at the packet
627 * type after return.
628 */
dev_remove_pack(struct packet_type * pt)629 void dev_remove_pack(struct packet_type *pt)
630 {
631 __dev_remove_pack(pt);
632
633 synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639 *
640 * Device Interface Subroutines
641 *
642 *******************************************************************************/
643
644 /**
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
647 *
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
650 */
651
dev_get_iflink(const struct net_device * dev)652 int dev_get_iflink(const struct net_device *dev)
653 {
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
656
657 return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
664 * @skb: The packet.
665 *
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
669 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 struct ip_tunnel_info *info;
673
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
675 return -EINVAL;
676
677 info = skb_tunnel_info_unclone(skb);
678 if (!info)
679 return -ENOMEM;
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 return -EINVAL;
682
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
dev_fwd_path(struct net_device_path_stack * stack)687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 int k = stack->num_paths++;
690
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 return NULL;
693
694 return &stack->path[k];
695 }
696
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
699 {
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
702 .dev = dev,
703 };
704 struct net_device_path *path;
705 int ret = 0;
706
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 last_dev = ctx.dev;
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 if (ret < 0)
718 return -1;
719
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
721 return -1;
722 }
723
724 if (!ctx.dev)
725 return ret;
726
727 path = dev_fwd_path(stack);
728 if (!path)
729 return -1;
730 path->type = DEV_PATH_ETHERNET;
731 path->dev = ctx.dev;
732
733 return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
747 */
748
__dev_get_by_name(struct net * net,const char * name)749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 struct netdev_name_node *node_name;
752
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
762 *
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
768 */
769
dev_get_by_name_rcu(struct net * net,const char * name)770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 struct netdev_name_node *node_name;
773
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 dev_hold(dev);
787 rcu_read_unlock();
788 return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
798 *
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
804 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
807 {
808 struct net_device *dev;
809
810 dev = dev_get_by_name(net, name);
811 if (dev)
812 netdev_tracker_alloc(dev, tracker, gfp);
813 return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
821 *
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
826 * or @dev_base_lock.
827 */
828
__dev_get_by_index(struct net * net,int ifindex)829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
846 *
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
851 */
852
dev_get_by_index_rcu(struct net * net,int ifindex)853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
857
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 struct net_device *dev;
870
871 rcu_read_lock();
872 dev = dev_get_by_index_rcu(net, ifindex);
873 dev_hold(dev);
874 rcu_read_unlock();
875 return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
885 *
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
890 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
893 {
894 struct net_device *dev;
895
896 dev = dev_get_by_index(net, ifindex);
897 if (dev)
898 netdev_tracker_alloc(dev, tracker, gfp);
899 return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
dev_get_by_napi_id(unsigned int napi_id)913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 */
netdev_get_name(struct net * net,char * name,int ifindex)934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 struct net_device *dev;
937 int ret;
938
939 down_read(&devnet_rename_sem);
940 rcu_read_lock();
941
942 dev = dev_get_by_index_rcu(net, ifindex);
943 if (!dev) {
944 ret = -ENODEV;
945 goto out;
946 }
947
948 strcpy(name, dev->name);
949
950 ret = 0;
951 out:
952 rcu_read_unlock();
953 up_read(&devnet_rename_sem);
954 return ret;
955 }
956
957 /**
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
962 *
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
968 *
969 */
970
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
973 {
974 struct net_device *dev;
975
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
979 return dev;
980
981 return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
dev_getfirstbyhwtype(struct net * net,unsigned short type)985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 struct net_device *dev, *ret = NULL;
988
989 rcu_read_lock();
990 for_each_netdev_rcu(net, dev)
991 if (dev->type == type) {
992 dev_hold(dev);
993 ret = dev;
994 break;
995 }
996 rcu_read_unlock();
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002 * __dev_get_by_flags - find any device with given flags
1003 * @net: the applicable net namespace
1004 * @if_flags: IFF_* values
1005 * @mask: bitmask of bits in if_flags to check
1006 *
1007 * Search for any interface with the given flags. Returns NULL if a device
1008 * is not found or a pointer to the device. Must be called inside
1009 * rtnl_lock(), and result refcount is unchanged.
1010 */
1011
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 unsigned short mask)
1014 {
1015 struct net_device *dev, *ret;
1016
1017 ASSERT_RTNL();
1018
1019 ret = NULL;
1020 for_each_netdev(net, dev) {
1021 if (((dev->flags ^ if_flags) & mask) == 0) {
1022 ret = dev;
1023 break;
1024 }
1025 }
1026 return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031 * dev_valid_name - check if name is okay for network device
1032 * @name: name string
1033 *
1034 * Network device names need to be valid file names to
1035 * allow sysfs to work. We also disallow any kind of
1036 * whitespace.
1037 */
dev_valid_name(const char * name)1038 bool dev_valid_name(const char *name)
1039 {
1040 if (*name == '\0')
1041 return false;
1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 return false;
1044 if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 return false;
1046
1047 while (*name) {
1048 if (*name == '/' || *name == ':' || isspace(*name))
1049 return false;
1050 name++;
1051 }
1052 return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057 * __dev_alloc_name - allocate a name for a device
1058 * @net: network namespace to allocate the device name in
1059 * @name: name format string
1060 * @buf: scratch buffer and result name string
1061 *
1062 * Passed a format string - eg "lt%d" it will try and find a suitable
1063 * id. It scans list of devices to build up a free map, then chooses
1064 * the first empty slot. The caller must hold the dev_base or rtnl lock
1065 * while allocating the name and adding the device in order to avoid
1066 * duplicates.
1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068 * Returns the number of the unit assigned or a negative errno code.
1069 */
1070
__dev_alloc_name(struct net * net,const char * name,char * buf)1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 int i = 0;
1074 const char *p;
1075 const int max_netdevices = 8*PAGE_SIZE;
1076 unsigned long *inuse;
1077 struct net_device *d;
1078
1079 if (!dev_valid_name(name))
1080 return -EINVAL;
1081
1082 p = strchr(name, '%');
1083 if (p) {
1084 /*
1085 * Verify the string as this thing may have come from
1086 * the user. There must be either one "%d" and no other "%"
1087 * characters.
1088 */
1089 if (p[1] != 'd' || strchr(p + 2, '%'))
1090 return -EINVAL;
1091
1092 /* Use one page as a bit array of possible slots */
1093 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 if (!inuse)
1095 return -ENOMEM;
1096
1097 for_each_netdev(net, d) {
1098 struct netdev_name_node *name_node;
1099
1100 netdev_for_each_altname(d, name_node) {
1101 if (!sscanf(name_node->name, name, &i))
1102 continue;
1103 if (i < 0 || i >= max_netdevices)
1104 continue;
1105
1106 /* avoid cases where sscanf is not exact inverse of printf */
1107 snprintf(buf, IFNAMSIZ, name, i);
1108 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 __set_bit(i, inuse);
1110 }
1111 if (!sscanf(d->name, name, &i))
1112 continue;
1113 if (i < 0 || i >= max_netdevices)
1114 continue;
1115
1116 /* avoid cases where sscanf is not exact inverse of printf */
1117 snprintf(buf, IFNAMSIZ, name, i);
1118 if (!strncmp(buf, d->name, IFNAMSIZ))
1119 __set_bit(i, inuse);
1120 }
1121
1122 i = find_first_zero_bit(inuse, max_netdevices);
1123 bitmap_free(inuse);
1124 }
1125
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!netdev_name_in_use(net, buf))
1128 return i;
1129
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1133 */
1134 return -ENFILE;
1135 }
1136
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 const char *want_name, char *out_name)
1139 {
1140 int ret;
1141
1142 if (!dev_valid_name(want_name))
1143 return -EINVAL;
1144
1145 if (strchr(want_name, '%')) {
1146 ret = __dev_alloc_name(net, want_name, out_name);
1147 return ret < 0 ? ret : 0;
1148 } else if (netdev_name_in_use(net, want_name)) {
1149 return -EEXIST;
1150 } else if (out_name != want_name) {
1151 strscpy(out_name, want_name, IFNAMSIZ);
1152 }
1153
1154 return 0;
1155 }
1156
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1157 static int dev_alloc_name_ns(struct net *net,
1158 struct net_device *dev,
1159 const char *name)
1160 {
1161 char buf[IFNAMSIZ];
1162 int ret;
1163
1164 BUG_ON(!net);
1165 ret = __dev_alloc_name(net, name, buf);
1166 if (ret >= 0)
1167 strscpy(dev->name, buf, IFNAMSIZ);
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_alloc_name - allocate a name for a device
1173 * @dev: device
1174 * @name: name format string
1175 *
1176 * Passed a format string - eg "lt%d" it will try and find a suitable
1177 * id. It scans list of devices to build up a free map, then chooses
1178 * the first empty slot. The caller must hold the dev_base or rtnl lock
1179 * while allocating the name and adding the device in order to avoid
1180 * duplicates.
1181 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182 * Returns the number of the unit assigned or a negative errno code.
1183 */
1184
dev_alloc_name(struct net_device * dev,const char * name)1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 const char *name)
1193 {
1194 char buf[IFNAMSIZ];
1195 int ret;
1196
1197 ret = dev_prep_valid_name(net, dev, name, buf);
1198 if (ret >= 0)
1199 strscpy(dev->name, buf, IFNAMSIZ);
1200 return ret;
1201 }
1202
1203 /**
1204 * dev_change_name - change name of a device
1205 * @dev: device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1207 *
1208 * Change name of a device, can pass format strings "eth%d".
1209 * for wildcarding.
1210 */
dev_change_name(struct net_device * dev,const char * newname)1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 unsigned char old_assign_type;
1214 char oldname[IFNAMSIZ];
1215 int err = 0;
1216 int ret;
1217 struct net *net;
1218
1219 ASSERT_RTNL();
1220 BUG_ON(!dev_net(dev));
1221
1222 net = dev_net(dev);
1223
1224 down_write(&devnet_rename_sem);
1225
1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 up_write(&devnet_rename_sem);
1228 return 0;
1229 }
1230
1231 memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233 err = dev_get_valid_name(net, dev, newname);
1234 if (err < 0) {
1235 up_write(&devnet_rename_sem);
1236 return err;
1237 }
1238
1239 if (oldname[0] && !strchr(oldname, '%'))
1240 netdev_info(dev, "renamed from %s%s\n", oldname,
1241 dev->flags & IFF_UP ? " (while UP)" : "");
1242
1243 old_assign_type = dev->name_assign_type;
1244 dev->name_assign_type = NET_NAME_RENAMED;
1245
1246 rollback:
1247 ret = device_rename(&dev->dev, dev->name);
1248 if (ret) {
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 dev->name_assign_type = old_assign_type;
1251 up_write(&devnet_rename_sem);
1252 return ret;
1253 }
1254
1255 up_write(&devnet_rename_sem);
1256
1257 netdev_adjacent_rename_links(dev, oldname);
1258
1259 write_lock(&dev_base_lock);
1260 netdev_name_node_del(dev->name_node);
1261 write_unlock(&dev_base_lock);
1262
1263 synchronize_rcu();
1264
1265 write_lock(&dev_base_lock);
1266 netdev_name_node_add(net, dev->name_node);
1267 write_unlock(&dev_base_lock);
1268
1269 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 ret = notifier_to_errno(ret);
1271
1272 if (ret) {
1273 /* err >= 0 after dev_alloc_name() or stores the first errno */
1274 if (err >= 0) {
1275 err = ret;
1276 down_write(&devnet_rename_sem);
1277 memcpy(dev->name, oldname, IFNAMSIZ);
1278 memcpy(oldname, newname, IFNAMSIZ);
1279 dev->name_assign_type = old_assign_type;
1280 old_assign_type = NET_NAME_RENAMED;
1281 goto rollback;
1282 } else {
1283 netdev_err(dev, "name change rollback failed: %d\n",
1284 ret);
1285 }
1286 }
1287
1288 return err;
1289 }
1290
1291 /**
1292 * dev_set_alias - change ifalias of a device
1293 * @dev: device
1294 * @alias: name up to IFALIASZ
1295 * @len: limit of bytes to copy from info
1296 *
1297 * Set ifalias for a device,
1298 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 struct dev_ifalias *new_alias = NULL;
1302
1303 if (len >= IFALIASZ)
1304 return -EINVAL;
1305
1306 if (len) {
1307 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 if (!new_alias)
1309 return -ENOMEM;
1310
1311 memcpy(new_alias->ifalias, alias, len);
1312 new_alias->ifalias[len] = 0;
1313 }
1314
1315 mutex_lock(&ifalias_mutex);
1316 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 mutex_is_locked(&ifalias_mutex));
1318 mutex_unlock(&ifalias_mutex);
1319
1320 if (new_alias)
1321 kfree_rcu(new_alias, rcuhead);
1322
1323 return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328 * dev_get_alias - get ifalias of a device
1329 * @dev: device
1330 * @name: buffer to store name of ifalias
1331 * @len: size of buffer
1332 *
1333 * get ifalias for a device. Caller must make sure dev cannot go
1334 * away, e.g. rcu read lock or own a reference count to device.
1335 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 const struct dev_ifalias *alias;
1339 int ret = 0;
1340
1341 rcu_read_lock();
1342 alias = rcu_dereference(dev->ifalias);
1343 if (alias)
1344 ret = snprintf(name, len, "%s", alias->ifalias);
1345 rcu_read_unlock();
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * netdev_features_change - device changes features
1352 * @dev: device to cause notification
1353 *
1354 * Called to indicate a device has changed features.
1355 */
netdev_features_change(struct net_device * dev)1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363 * netdev_state_change - device changes state
1364 * @dev: device to cause notification
1365 *
1366 * Called to indicate a device has changed state. This function calls
1367 * the notifier chains for netdev_chain and sends a NEWLINK message
1368 * to the routing socket.
1369 */
netdev_state_change(struct net_device * dev)1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 if (dev->flags & IFF_UP) {
1373 struct netdev_notifier_change_info change_info = {
1374 .info.dev = dev,
1375 };
1376
1377 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 &change_info.info);
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385 * __netdev_notify_peers - notify network peers about existence of @dev,
1386 * to be called when rtnl lock is already held.
1387 * @dev: network device
1388 *
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1393 * migration.
1394 */
__netdev_notify_peers(struct net_device * dev)1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 ASSERT_RTNL();
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404 * netdev_notify_peers - notify network peers about existence of @dev
1405 * @dev: network device
1406 *
1407 * Generate traffic such that interested network peers are aware of
1408 * @dev, such as by generating a gratuitous ARP. This may be used when
1409 * a device wants to inform the rest of the network about some sort of
1410 * reconfiguration such as a failover event or virtual machine
1411 * migration.
1412 */
netdev_notify_peers(struct net_device * dev)1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 rtnl_lock();
1416 __netdev_notify_peers(dev);
1417 rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
napi_kthread_create(struct napi_struct * n)1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 int err = 0;
1426
1427 /* Create and wake up the kthread once to put it in
1428 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 * warning and work with loadavg.
1430 */
1431 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 n->dev->name, n->napi_id);
1433 if (IS_ERR(n->thread)) {
1434 err = PTR_ERR(n->thread);
1435 pr_err("kthread_run failed with err %d\n", err);
1436 n->thread = NULL;
1437 }
1438
1439 return err;
1440 }
1441
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 const struct net_device_ops *ops = dev->netdev_ops;
1445 int ret;
1446
1447 ASSERT_RTNL();
1448 dev_addr_check(dev);
1449
1450 if (!netif_device_present(dev)) {
1451 /* may be detached because parent is runtime-suspended */
1452 if (dev->dev.parent)
1453 pm_runtime_resume(dev->dev.parent);
1454 if (!netif_device_present(dev))
1455 return -ENODEV;
1456 }
1457
1458 /* Block netpoll from trying to do any rx path servicing.
1459 * If we don't do this there is a chance ndo_poll_controller
1460 * or ndo_poll may be running while we open the device
1461 */
1462 netpoll_poll_disable(dev);
1463
1464 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 ret = notifier_to_errno(ret);
1466 if (ret)
1467 return ret;
1468
1469 set_bit(__LINK_STATE_START, &dev->state);
1470
1471 if (ops->ndo_validate_addr)
1472 ret = ops->ndo_validate_addr(dev);
1473
1474 if (!ret && ops->ndo_open)
1475 ret = ops->ndo_open(dev);
1476
1477 netpoll_poll_enable(dev);
1478
1479 if (ret)
1480 clear_bit(__LINK_STATE_START, &dev->state);
1481 else {
1482 dev->flags |= IFF_UP;
1483 dev_set_rx_mode(dev);
1484 dev_activate(dev);
1485 add_device_randomness(dev->dev_addr, dev->addr_len);
1486 }
1487
1488 return ret;
1489 }
1490
1491 /**
1492 * dev_open - prepare an interface for use.
1493 * @dev: device to open
1494 * @extack: netlink extended ack
1495 *
1496 * Takes a device from down to up state. The device's private open
1497 * function is invoked and then the multicast lists are loaded. Finally
1498 * the device is moved into the up state and a %NETDEV_UP message is
1499 * sent to the netdev notifier chain.
1500 *
1501 * Calling this function on an active interface is a nop. On a failure
1502 * a negative errno code is returned.
1503 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 int ret;
1507
1508 if (dev->flags & IFF_UP)
1509 return 0;
1510
1511 ret = __dev_open(dev, extack);
1512 if (ret < 0)
1513 return ret;
1514
1515 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518 return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
__dev_close_many(struct list_head * head)1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 struct net_device *dev;
1525
1526 ASSERT_RTNL();
1527 might_sleep();
1528
1529 list_for_each_entry(dev, head, close_list) {
1530 /* Temporarily disable netpoll until the interface is down */
1531 netpoll_poll_disable(dev);
1532
1533 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538 * can be even on different cpu. So just clear netif_running().
1539 *
1540 * dev->stop() will invoke napi_disable() on all of it's
1541 * napi_struct instances on this device.
1542 */
1543 smp_mb__after_atomic(); /* Commit netif_running(). */
1544 }
1545
1546 dev_deactivate_many(head);
1547
1548 list_for_each_entry(dev, head, close_list) {
1549 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551 /*
1552 * Call the device specific close. This cannot fail.
1553 * Only if device is UP
1554 *
1555 * We allow it to be called even after a DETACH hot-plug
1556 * event.
1557 */
1558 if (ops->ndo_stop)
1559 ops->ndo_stop(dev);
1560
1561 dev->flags &= ~IFF_UP;
1562 netpoll_poll_enable(dev);
1563 }
1564 }
1565
__dev_close(struct net_device * dev)1566 static void __dev_close(struct net_device *dev)
1567 {
1568 LIST_HEAD(single);
1569
1570 list_add(&dev->close_list, &single);
1571 __dev_close_many(&single);
1572 list_del(&single);
1573 }
1574
dev_close_many(struct list_head * head,bool unlink)1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 struct net_device *dev, *tmp;
1578
1579 /* Remove the devices that don't need to be closed */
1580 list_for_each_entry_safe(dev, tmp, head, close_list)
1581 if (!(dev->flags & IFF_UP))
1582 list_del_init(&dev->close_list);
1583
1584 __dev_close_many(head);
1585
1586 list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 if (unlink)
1590 list_del_init(&dev->close_list);
1591 }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596 * dev_close - shutdown an interface.
1597 * @dev: device to shutdown
1598 *
1599 * This function moves an active device into down state. A
1600 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602 * chain.
1603 */
dev_close(struct net_device * dev)1604 void dev_close(struct net_device *dev)
1605 {
1606 if (dev->flags & IFF_UP) {
1607 LIST_HEAD(single);
1608
1609 list_add(&dev->close_list, &single);
1610 dev_close_many(&single, true);
1611 list_del(&single);
1612 }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618 * dev_disable_lro - disable Large Receive Offload on a device
1619 * @dev: device
1620 *
1621 * Disable Large Receive Offload (LRO) on a net device. Must be
1622 * called under RTNL. This is needed if received packets may be
1623 * forwarded to another interface.
1624 */
dev_disable_lro(struct net_device * dev)1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 struct net_device *lower_dev;
1628 struct list_head *iter;
1629
1630 dev->wanted_features &= ~NETIF_F_LRO;
1631 netdev_update_features(dev);
1632
1633 if (unlikely(dev->features & NETIF_F_LRO))
1634 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636 netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643 * @dev: device
1644 *
1645 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1646 * called under RTNL. This is needed if Generic XDP is installed on
1647 * the device.
1648 */
dev_disable_gro_hw(struct net_device * dev)1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 netdev_update_features(dev);
1653
1654 if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
netdev_cmd_to_name(enum netdev_cmd cmd)1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) \
1661 case NETDEV_##val: \
1662 return "NETDEV_" __stringify(val);
1663 switch (cmd) {
1664 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 N(XDP_FEAT_CHANGE)
1676 }
1677 #undef N
1678 return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 struct net_device *dev)
1684 {
1685 struct netdev_notifier_info info = {
1686 .dev = dev,
1687 };
1688
1689 return nb->notifier_call(nb, val, &info);
1690 }
1691
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 struct net_device *dev)
1694 {
1695 int err;
1696
1697 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 err = notifier_to_errno(err);
1699 if (err)
1700 return err;
1701
1702 if (!(dev->flags & IFF_UP))
1703 return 0;
1704
1705 call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 return 0;
1707 }
1708
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 struct net_device *dev)
1711 {
1712 if (dev->flags & IFF_UP) {
1713 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 dev);
1715 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 }
1717 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 struct net *net)
1722 {
1723 struct net_device *dev;
1724 int err;
1725
1726 for_each_netdev(net, dev) {
1727 err = call_netdevice_register_notifiers(nb, dev);
1728 if (err)
1729 goto rollback;
1730 }
1731 return 0;
1732
1733 rollback:
1734 for_each_netdev_continue_reverse(net, dev)
1735 call_netdevice_unregister_notifiers(nb, dev);
1736 return err;
1737 }
1738
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 struct net *net)
1741 {
1742 struct net_device *dev;
1743
1744 for_each_netdev(net, dev)
1745 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751 * register_netdevice_notifier - register a network notifier block
1752 * @nb: notifier
1753 *
1754 * Register a notifier to be called when network device events occur.
1755 * The notifier passed is linked into the kernel structures and must
1756 * not be reused until it has been unregistered. A negative errno code
1757 * is returned on a failure.
1758 *
1759 * When registered all registration and up events are replayed
1760 * to the new notifier to allow device to have a race free
1761 * view of the network device list.
1762 */
1763
register_netdevice_notifier(struct notifier_block * nb)1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 struct net *net;
1767 int err;
1768
1769 /* Close race with setup_net() and cleanup_net() */
1770 down_write(&pernet_ops_rwsem);
1771 rtnl_lock();
1772 err = raw_notifier_chain_register(&netdev_chain, nb);
1773 if (err)
1774 goto unlock;
1775 if (dev_boot_phase)
1776 goto unlock;
1777 for_each_net(net) {
1778 err = call_netdevice_register_net_notifiers(nb, net);
1779 if (err)
1780 goto rollback;
1781 }
1782
1783 unlock:
1784 rtnl_unlock();
1785 up_write(&pernet_ops_rwsem);
1786 return err;
1787
1788 rollback:
1789 for_each_net_continue_reverse(net)
1790 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792 raw_notifier_chain_unregister(&netdev_chain, nb);
1793 goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798 * unregister_netdevice_notifier - unregister a network notifier block
1799 * @nb: notifier
1800 *
1801 * Unregister a notifier previously registered by
1802 * register_netdevice_notifier(). The notifier is unlinked into the
1803 * kernel structures and may then be reused. A negative errno code
1804 * is returned on a failure.
1805 *
1806 * After unregistering unregister and down device events are synthesized
1807 * for all devices on the device list to the removed notifier to remove
1808 * the need for special case cleanup code.
1809 */
1810
unregister_netdevice_notifier(struct notifier_block * nb)1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 struct net *net;
1814 int err;
1815
1816 /* Close race with setup_net() and cleanup_net() */
1817 down_write(&pernet_ops_rwsem);
1818 rtnl_lock();
1819 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 if (err)
1821 goto unlock;
1822
1823 for_each_net(net)
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827 rtnl_unlock();
1828 up_write(&pernet_ops_rwsem);
1829 return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1833 static int __register_netdevice_notifier_net(struct net *net,
1834 struct notifier_block *nb,
1835 bool ignore_call_fail)
1836 {
1837 int err;
1838
1839 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 if (err)
1841 return err;
1842 if (dev_boot_phase)
1843 return 0;
1844
1845 err = call_netdevice_register_net_notifiers(nb, net);
1846 if (err && !ignore_call_fail)
1847 goto chain_unregister;
1848
1849 return 0;
1850
1851 chain_unregister:
1852 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 return err;
1854 }
1855
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 struct notifier_block *nb)
1858 {
1859 int err;
1860
1861 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 if (err)
1863 return err;
1864
1865 call_netdevice_unregister_net_notifiers(nb, net);
1866 return 0;
1867 }
1868
1869 /**
1870 * register_netdevice_notifier_net - register a per-netns network notifier block
1871 * @net: network namespace
1872 * @nb: notifier
1873 *
1874 * Register a notifier to be called when network device events occur.
1875 * The notifier passed is linked into the kernel structures and must
1876 * not be reused until it has been unregistered. A negative errno code
1877 * is returned on a failure.
1878 *
1879 * When registered all registration and up events are replayed
1880 * to the new notifier to allow device to have a race free
1881 * view of the network device list.
1882 */
1883
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 int err;
1887
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(net, nb, false);
1890 rtnl_unlock();
1891 return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896 * unregister_netdevice_notifier_net - unregister a per-netns
1897 * network notifier block
1898 * @net: network namespace
1899 * @nb: notifier
1900 *
1901 * Unregister a notifier previously registered by
1902 * register_netdevice_notifier_net(). The notifier is unlinked from the
1903 * kernel structures and may then be reused. A negative errno code
1904 * is returned on a failure.
1905 *
1906 * After unregistering unregister and down device events are synthesized
1907 * for all devices on the device list to the removed notifier to remove
1908 * the need for special case cleanup code.
1909 */
1910
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1911 int unregister_netdevice_notifier_net(struct net *net,
1912 struct notifier_block *nb)
1913 {
1914 int err;
1915
1916 rtnl_lock();
1917 err = __unregister_netdevice_notifier_net(net, nb);
1918 rtnl_unlock();
1919 return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 struct net *dst_net,
1925 struct notifier_block *nb)
1926 {
1927 __unregister_netdevice_notifier_net(src_net, nb);
1928 __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 struct notifier_block *nb,
1933 struct netdev_net_notifier *nn)
1934 {
1935 int err;
1936
1937 rtnl_lock();
1938 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 if (!err) {
1940 nn->nb = nb;
1941 list_add(&nn->list, &dev->net_notifier_list);
1942 }
1943 rtnl_unlock();
1944 return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 struct notifier_block *nb,
1950 struct netdev_net_notifier *nn)
1951 {
1952 int err;
1953
1954 rtnl_lock();
1955 list_del(&nn->list);
1956 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 rtnl_unlock();
1958 return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 struct net *net)
1964 {
1965 struct netdev_net_notifier *nn;
1966
1967 list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972 * call_netdevice_notifiers_info - call all network notifier blocks
1973 * @val: value passed unmodified to notifier function
1974 * @info: notifier information data
1975 *
1976 * Call all network notifier blocks. Parameters and return value
1977 * are as for raw_notifier_call_chain().
1978 */
1979
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1980 int call_netdevice_notifiers_info(unsigned long val,
1981 struct netdev_notifier_info *info)
1982 {
1983 struct net *net = dev_net(info->dev);
1984 int ret;
1985
1986 ASSERT_RTNL();
1987
1988 /* Run per-netns notifier block chain first, then run the global one.
1989 * Hopefully, one day, the global one is going to be removed after
1990 * all notifier block registrators get converted to be per-netns.
1991 */
1992 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 if (ret & NOTIFY_STOP_MASK)
1994 return ret;
1995 return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000 * for and rollback on error
2001 * @val_up: value passed unmodified to notifier function
2002 * @val_down: value passed unmodified to the notifier function when
2003 * recovering from an error on @val_up
2004 * @info: notifier information data
2005 *
2006 * Call all per-netns network notifier blocks, but not notifier blocks on
2007 * the global notifier chain. Parameters and return value are as for
2008 * raw_notifier_call_chain_robust().
2009 */
2010
2011 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 unsigned long val_down,
2014 struct netdev_notifier_info *info)
2015 {
2016 struct net *net = dev_net(info->dev);
2017
2018 ASSERT_RTNL();
2019
2020 return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 val_up, val_down, info);
2022 }
2023
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 struct net_device *dev,
2026 struct netlink_ext_ack *extack)
2027 {
2028 struct netdev_notifier_info info = {
2029 .dev = dev,
2030 .extack = extack,
2031 };
2032
2033 return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037 * call_netdevice_notifiers - call all network notifier blocks
2038 * @val: value passed unmodified to notifier function
2039 * @dev: net_device pointer passed unmodified to notifier function
2040 *
2041 * Call all network notifier blocks. Parameters and return value
2042 * are as for raw_notifier_call_chain().
2043 */
2044
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052 * call_netdevice_notifiers_mtu - call all network notifier blocks
2053 * @val: value passed unmodified to notifier function
2054 * @dev: net_device pointer passed unmodified to notifier function
2055 * @arg: additional u32 argument passed to the notifier function
2056 *
2057 * Call all network notifier blocks. Parameters and return value
2058 * are as for raw_notifier_call_chain().
2059 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 struct net_device *dev, u32 arg)
2062 {
2063 struct netdev_notifier_info_ext info = {
2064 .info.dev = dev,
2065 .ext.mtu = arg,
2066 };
2067
2068 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070 return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
net_inc_ingress_queue(void)2076 void net_inc_ingress_queue(void)
2077 {
2078 static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
net_dec_ingress_queue(void)2082 void net_dec_ingress_queue(void)
2083 {
2084 static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
net_inc_egress_queue(void)2092 void net_inc_egress_queue(void)
2093 {
2094 static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
net_dec_egress_queue(void)2098 void net_dec_egress_queue(void)
2099 {
2100 static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 int wanted;
2114
2115 wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 if (wanted > 0)
2117 static_branch_enable(&netstamp_needed_key);
2118 else
2119 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
net_enable_timestamp(void)2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 int wanted = atomic_read(&netstamp_wanted);
2128
2129 while (wanted > 0) {
2130 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 return;
2132 }
2133 atomic_inc(&netstamp_needed_deferred);
2134 schedule_work(&netstamp_work);
2135 #else
2136 static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140
net_disable_timestamp(void)2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 int wanted = atomic_read(&netstamp_wanted);
2145
2146 while (wanted > 1) {
2147 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 return;
2149 }
2150 atomic_dec(&netstamp_needed_deferred);
2151 schedule_work(&netstamp_work);
2152 #else
2153 static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157
net_timestamp_set(struct sk_buff * skb)2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 skb->tstamp = 0;
2161 skb->mono_delivery_time = 0;
2162 if (static_branch_unlikely(&netstamp_needed_key))
2163 skb->tstamp = ktime_get_real();
2164 }
2165
2166 #define net_timestamp_check(COND, SKB) \
2167 if (static_branch_unlikely(&netstamp_needed_key)) { \
2168 if ((COND) && !(SKB)->tstamp) \
2169 (SKB)->tstamp = ktime_get_real(); \
2170 } \
2171
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 bool check_mtu)
2180 {
2181 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182
2183 if (likely(!ret)) {
2184 skb->protocol = eth_type_trans(skb, dev);
2185 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 }
2187
2188 return ret;
2189 }
2190
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196
2197 /**
2198 * dev_forward_skb - loopback an skb to another netif
2199 *
2200 * @dev: destination network device
2201 * @skb: buffer to forward
2202 *
2203 * return values:
2204 * NET_RX_SUCCESS (no congestion)
2205 * NET_RX_DROP (packet was dropped, but freed)
2206 *
2207 * dev_forward_skb can be used for injecting an skb from the
2208 * start_xmit function of one device into the receive queue
2209 * of another device.
2210 *
2211 * The receiving device may be in another namespace, so
2212 * we have to clear all information in the skb that could
2213 * impact namespace isolation.
2214 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2226 static inline int deliver_skb(struct sk_buff *skb,
2227 struct packet_type *pt_prev,
2228 struct net_device *orig_dev)
2229 {
2230 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 return -ENOMEM;
2232 refcount_inc(&skb->users);
2233 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 struct packet_type **pt,
2238 struct net_device *orig_dev,
2239 __be16 type,
2240 struct list_head *ptype_list)
2241 {
2242 struct packet_type *ptype, *pt_prev = *pt;
2243
2244 list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 if (ptype->type != type)
2246 continue;
2247 if (pt_prev)
2248 deliver_skb(skb, pt_prev, orig_dev);
2249 pt_prev = ptype;
2250 }
2251 *pt = pt_prev;
2252 }
2253
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 if (!ptype->af_packet_priv || !skb->sk)
2257 return false;
2258
2259 if (ptype->id_match)
2260 return ptype->id_match(ptype, skb->sk);
2261 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 return true;
2263
2264 return false;
2265 }
2266
2267 /**
2268 * dev_nit_active - return true if any network interface taps are in use
2269 *
2270 * @dev: network device to check for the presence of taps
2271 */
dev_nit_active(struct net_device * dev)2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277
2278 /*
2279 * Support routine. Sends outgoing frames to any network
2280 * taps currently in use.
2281 */
2282
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 struct packet_type *ptype;
2286 struct sk_buff *skb2 = NULL;
2287 struct packet_type *pt_prev = NULL;
2288 struct list_head *ptype_list = &ptype_all;
2289
2290 rcu_read_lock();
2291 again:
2292 list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 if (READ_ONCE(ptype->ignore_outgoing))
2294 continue;
2295
2296 /* Never send packets back to the socket
2297 * they originated from - MvS (miquels@drinkel.ow.org)
2298 */
2299 if (skb_loop_sk(ptype, skb))
2300 continue;
2301
2302 if (pt_prev) {
2303 deliver_skb(skb2, pt_prev, skb->dev);
2304 pt_prev = ptype;
2305 continue;
2306 }
2307
2308 /* need to clone skb, done only once */
2309 skb2 = skb_clone(skb, GFP_ATOMIC);
2310 if (!skb2)
2311 goto out_unlock;
2312
2313 net_timestamp_set(skb2);
2314
2315 /* skb->nh should be correctly
2316 * set by sender, so that the second statement is
2317 * just protection against buggy protocols.
2318 */
2319 skb_reset_mac_header(skb2);
2320
2321 if (skb_network_header(skb2) < skb2->data ||
2322 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 ntohs(skb2->protocol),
2325 dev->name);
2326 skb_reset_network_header(skb2);
2327 }
2328
2329 skb2->transport_header = skb2->network_header;
2330 skb2->pkt_type = PACKET_OUTGOING;
2331 pt_prev = ptype;
2332 }
2333
2334 if (ptype_list == &ptype_all) {
2335 ptype_list = &dev->ptype_all;
2336 goto again;
2337 }
2338 out_unlock:
2339 if (pt_prev) {
2340 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 else
2343 kfree_skb(skb2);
2344 }
2345 rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348
2349 /**
2350 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351 * @dev: Network device
2352 * @txq: number of queues available
2353 *
2354 * If real_num_tx_queues is changed the tc mappings may no longer be
2355 * valid. To resolve this verify the tc mapping remains valid and if
2356 * not NULL the mapping. With no priorities mapping to this
2357 * offset/count pair it will no longer be used. In the worst case TC0
2358 * is invalid nothing can be done so disable priority mappings. If is
2359 * expected that drivers will fix this mapping if they can before
2360 * calling netif_set_real_num_tx_queues.
2361 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 int i;
2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366
2367 /* If TC0 is invalidated disable TC mapping */
2368 if (tc->offset + tc->count > txq) {
2369 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 dev->num_tc = 0;
2371 return;
2372 }
2373
2374 /* Invalidated prio to tc mappings set to TC0 */
2375 for (i = 1; i < TC_BITMASK + 1; i++) {
2376 int q = netdev_get_prio_tc_map(dev, i);
2377
2378 tc = &dev->tc_to_txq[q];
2379 if (tc->offset + tc->count > txq) {
2380 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 i, q);
2382 netdev_set_prio_tc_map(dev, i, 0);
2383 }
2384 }
2385 }
2386
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 if (dev->num_tc) {
2390 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 int i;
2392
2393 /* walk through the TCs and see if it falls into any of them */
2394 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 if ((txq - tc->offset) < tc->count)
2396 return i;
2397 }
2398
2399 /* didn't find it, just return -1 to indicate no match */
2400 return -1;
2401 }
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P) \
2412 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 struct xps_map *map = NULL;
2418 int pos;
2419
2420 map = xmap_dereference(dev_maps->attr_map[tci]);
2421 if (!map)
2422 return false;
2423
2424 for (pos = map->len; pos--;) {
2425 if (map->queues[pos] != index)
2426 continue;
2427
2428 if (map->len > 1) {
2429 map->queues[pos] = map->queues[--map->len];
2430 break;
2431 }
2432
2433 if (old_maps)
2434 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 kfree_rcu(map, rcu);
2437 return false;
2438 }
2439
2440 return true;
2441 }
2442
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 struct xps_dev_maps *dev_maps,
2445 int cpu, u16 offset, u16 count)
2446 {
2447 int num_tc = dev_maps->num_tc;
2448 bool active = false;
2449 int tci;
2450
2451 for (tci = cpu * num_tc; num_tc--; tci++) {
2452 int i, j;
2453
2454 for (i = count, j = offset; i--; j++) {
2455 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 break;
2457 }
2458
2459 active |= i < 0;
2460 }
2461
2462 return active;
2463 }
2464
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2465 static void reset_xps_maps(struct net_device *dev,
2466 struct xps_dev_maps *dev_maps,
2467 enum xps_map_type type)
2468 {
2469 static_key_slow_dec_cpuslocked(&xps_needed);
2470 if (type == XPS_RXQS)
2471 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472
2473 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474
2475 kfree_rcu(dev_maps, rcu);
2476 }
2477
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 u16 offset, u16 count)
2480 {
2481 struct xps_dev_maps *dev_maps;
2482 bool active = false;
2483 int i, j;
2484
2485 dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 if (!dev_maps)
2487 return;
2488
2489 for (j = 0; j < dev_maps->nr_ids; j++)
2490 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 if (!active)
2492 reset_xps_maps(dev, dev_maps, type);
2493
2494 if (type == XPS_CPUS) {
2495 for (i = offset + (count - 1); count--; i--)
2496 netdev_queue_numa_node_write(
2497 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 }
2499 }
2500
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 u16 count)
2503 {
2504 if (!static_key_false(&xps_needed))
2505 return;
2506
2507 cpus_read_lock();
2508 mutex_lock(&xps_map_mutex);
2509
2510 if (static_key_false(&xps_rxqs_needed))
2511 clean_xps_maps(dev, XPS_RXQS, offset, count);
2512
2513 clean_xps_maps(dev, XPS_CPUS, offset, count);
2514
2515 mutex_unlock(&xps_map_mutex);
2516 cpus_read_unlock();
2517 }
2518
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 u16 index, bool is_rxqs_map)
2526 {
2527 struct xps_map *new_map;
2528 int alloc_len = XPS_MIN_MAP_ALLOC;
2529 int i, pos;
2530
2531 for (pos = 0; map && pos < map->len; pos++) {
2532 if (map->queues[pos] != index)
2533 continue;
2534 return map;
2535 }
2536
2537 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 if (map) {
2539 if (pos < map->alloc_len)
2540 return map;
2541
2542 alloc_len = map->alloc_len * 2;
2543 }
2544
2545 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 * map
2547 */
2548 if (is_rxqs_map)
2549 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 else
2551 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 cpu_to_node(attr_index));
2553 if (!new_map)
2554 return NULL;
2555
2556 for (i = 0; i < pos; i++)
2557 new_map->queues[i] = map->queues[i];
2558 new_map->alloc_len = alloc_len;
2559 new_map->len = pos;
2560
2561 return new_map;
2562 }
2563
2564 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 struct xps_dev_maps *new_dev_maps, int index,
2567 int tc, bool skip_tc)
2568 {
2569 int i, tci = index * dev_maps->num_tc;
2570 struct xps_map *map;
2571
2572 /* copy maps belonging to foreign traffic classes */
2573 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 if (i == tc && skip_tc)
2575 continue;
2576
2577 /* fill in the new device map from the old device map */
2578 map = xmap_dereference(dev_maps->attr_map[tci]);
2579 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 }
2581 }
2582
2583 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 u16 index, enum xps_map_type type)
2586 {
2587 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 const unsigned long *online_mask = NULL;
2589 bool active = false, copy = false;
2590 int i, j, tci, numa_node_id = -2;
2591 int maps_sz, num_tc = 1, tc = 0;
2592 struct xps_map *map, *new_map;
2593 unsigned int nr_ids;
2594
2595 WARN_ON_ONCE(index >= dev->num_tx_queues);
2596
2597 if (dev->num_tc) {
2598 /* Do not allow XPS on subordinate device directly */
2599 num_tc = dev->num_tc;
2600 if (num_tc < 0)
2601 return -EINVAL;
2602
2603 /* If queue belongs to subordinate dev use its map */
2604 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605
2606 tc = netdev_txq_to_tc(dev, index);
2607 if (tc < 0)
2608 return -EINVAL;
2609 }
2610
2611 mutex_lock(&xps_map_mutex);
2612
2613 dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 if (type == XPS_RXQS) {
2615 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 nr_ids = dev->num_rx_queues;
2617 } else {
2618 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 if (num_possible_cpus() > 1)
2620 online_mask = cpumask_bits(cpu_online_mask);
2621 nr_ids = nr_cpu_ids;
2622 }
2623
2624 if (maps_sz < L1_CACHE_BYTES)
2625 maps_sz = L1_CACHE_BYTES;
2626
2627 /* The old dev_maps could be larger or smaller than the one we're
2628 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 * between. We could try to be smart, but let's be safe instead and only
2630 * copy foreign traffic classes if the two map sizes match.
2631 */
2632 if (dev_maps &&
2633 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 copy = true;
2635
2636 /* allocate memory for queue storage */
2637 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 j < nr_ids;) {
2639 if (!new_dev_maps) {
2640 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 if (!new_dev_maps) {
2642 mutex_unlock(&xps_map_mutex);
2643 return -ENOMEM;
2644 }
2645
2646 new_dev_maps->nr_ids = nr_ids;
2647 new_dev_maps->num_tc = num_tc;
2648 }
2649
2650 tci = j * num_tc + tc;
2651 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652
2653 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 if (!map)
2655 goto error;
2656
2657 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 }
2659
2660 if (!new_dev_maps)
2661 goto out_no_new_maps;
2662
2663 if (!dev_maps) {
2664 /* Increment static keys at most once per type */
2665 static_key_slow_inc_cpuslocked(&xps_needed);
2666 if (type == XPS_RXQS)
2667 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 }
2669
2670 for (j = 0; j < nr_ids; j++) {
2671 bool skip_tc = false;
2672
2673 tci = j * num_tc + tc;
2674 if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 netif_attr_test_online(j, online_mask, nr_ids)) {
2676 /* add tx-queue to CPU/rx-queue maps */
2677 int pos = 0;
2678
2679 skip_tc = true;
2680
2681 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 while ((pos < map->len) && (map->queues[pos] != index))
2683 pos++;
2684
2685 if (pos == map->len)
2686 map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 if (type == XPS_CPUS) {
2689 if (numa_node_id == -2)
2690 numa_node_id = cpu_to_node(j);
2691 else if (numa_node_id != cpu_to_node(j))
2692 numa_node_id = -1;
2693 }
2694 #endif
2695 }
2696
2697 if (copy)
2698 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 skip_tc);
2700 }
2701
2702 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703
2704 /* Cleanup old maps */
2705 if (!dev_maps)
2706 goto out_no_old_maps;
2707
2708 for (j = 0; j < dev_maps->nr_ids; j++) {
2709 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 map = xmap_dereference(dev_maps->attr_map[tci]);
2711 if (!map)
2712 continue;
2713
2714 if (copy) {
2715 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 if (map == new_map)
2717 continue;
2718 }
2719
2720 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 kfree_rcu(map, rcu);
2722 }
2723 }
2724
2725 old_dev_maps = dev_maps;
2726
2727 out_no_old_maps:
2728 dev_maps = new_dev_maps;
2729 active = true;
2730
2731 out_no_new_maps:
2732 if (type == XPS_CPUS)
2733 /* update Tx queue numa node */
2734 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 (numa_node_id >= 0) ?
2736 numa_node_id : NUMA_NO_NODE);
2737
2738 if (!dev_maps)
2739 goto out_no_maps;
2740
2741 /* removes tx-queue from unused CPUs/rx-queues */
2742 for (j = 0; j < dev_maps->nr_ids; j++) {
2743 tci = j * dev_maps->num_tc;
2744
2745 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 if (i == tc &&
2747 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 continue;
2750
2751 active |= remove_xps_queue(dev_maps,
2752 copy ? old_dev_maps : NULL,
2753 tci, index);
2754 }
2755 }
2756
2757 if (old_dev_maps)
2758 kfree_rcu(old_dev_maps, rcu);
2759
2760 /* free map if not active */
2761 if (!active)
2762 reset_xps_maps(dev, dev_maps, type);
2763
2764 out_no_maps:
2765 mutex_unlock(&xps_map_mutex);
2766
2767 return 0;
2768 error:
2769 /* remove any maps that we added */
2770 for (j = 0; j < nr_ids; j++) {
2771 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 map = copy ?
2774 xmap_dereference(dev_maps->attr_map[tci]) :
2775 NULL;
2776 if (new_map && new_map != map)
2777 kfree(new_map);
2778 }
2779 }
2780
2781 mutex_unlock(&xps_map_mutex);
2782
2783 kfree(new_dev_maps);
2784 return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 u16 index)
2790 {
2791 int ret;
2792
2793 cpus_read_lock();
2794 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 cpus_read_unlock();
2796
2797 return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800
2801 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805
2806 /* Unbind any subordinate channels */
2807 while (txq-- != &dev->_tx[0]) {
2808 if (txq->sb_dev)
2809 netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 }
2811 }
2812
netdev_reset_tc(struct net_device * dev)2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 netdev_unbind_all_sb_channels(dev);
2819
2820 /* Reset TC configuration of device */
2821 dev->num_tc = 0;
2822 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 if (tc >= dev->num_tc)
2830 return -EINVAL;
2831
2832 #ifdef CONFIG_XPS
2833 netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 dev->tc_to_txq[tc].count = count;
2836 dev->tc_to_txq[tc].offset = offset;
2837 return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 if (num_tc > TC_MAX_QUEUE)
2844 return -EINVAL;
2845
2846 #ifdef CONFIG_XPS
2847 netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 netdev_unbind_all_sb_channels(dev);
2850
2851 dev->num_tc = num_tc;
2852 return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 struct net_device *sb_dev)
2858 {
2859 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860
2861 #ifdef CONFIG_XPS
2862 netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866
2867 while (txq-- != &dev->_tx[0]) {
2868 if (txq->sb_dev == sb_dev)
2869 txq->sb_dev = NULL;
2870 }
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 struct net_device *sb_dev,
2876 u8 tc, u16 count, u16 offset)
2877 {
2878 /* Make certain the sb_dev and dev are already configured */
2879 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 return -EINVAL;
2881
2882 /* We cannot hand out queues we don't have */
2883 if ((offset + count) > dev->real_num_tx_queues)
2884 return -EINVAL;
2885
2886 /* Record the mapping */
2887 sb_dev->tc_to_txq[tc].count = count;
2888 sb_dev->tc_to_txq[tc].offset = offset;
2889
2890 /* Provide a way for Tx queue to find the tc_to_txq map or
2891 * XPS map for itself.
2892 */
2893 while (count--)
2894 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895
2896 return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899
netdev_set_sb_channel(struct net_device * dev,u16 channel)2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 /* Do not use a multiqueue device to represent a subordinate channel */
2903 if (netif_is_multiqueue(dev))
2904 return -ENODEV;
2905
2906 /* We allow channels 1 - 32767 to be used for subordinate channels.
2907 * Channel 0 is meant to be "native" mode and used only to represent
2908 * the main root device. We allow writing 0 to reset the device back
2909 * to normal mode after being used as a subordinate channel.
2910 */
2911 if (channel > S16_MAX)
2912 return -EINVAL;
2913
2914 dev->num_tc = -channel;
2915
2916 return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919
2920 /*
2921 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 bool disabling;
2927 int rc;
2928
2929 disabling = txq < dev->real_num_tx_queues;
2930
2931 if (txq < 1 || txq > dev->num_tx_queues)
2932 return -EINVAL;
2933
2934 if (dev->reg_state == NETREG_REGISTERED ||
2935 dev->reg_state == NETREG_UNREGISTERING) {
2936 ASSERT_RTNL();
2937
2938 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 txq);
2940 if (rc)
2941 return rc;
2942
2943 if (dev->num_tc)
2944 netif_setup_tc(dev, txq);
2945
2946 dev_qdisc_change_real_num_tx(dev, txq);
2947
2948 dev->real_num_tx_queues = txq;
2949
2950 if (disabling) {
2951 synchronize_net();
2952 qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 }
2957 } else {
2958 dev->real_num_tx_queues = txq;
2959 }
2960
2961 return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964
2965 #ifdef CONFIG_SYSFS
2966 /**
2967 * netif_set_real_num_rx_queues - set actual number of RX queues used
2968 * @dev: Network device
2969 * @rxq: Actual number of RX queues
2970 *
2971 * This must be called either with the rtnl_lock held or before
2972 * registration of the net device. Returns 0 on success, or a
2973 * negative error code. If called before registration, it always
2974 * succeeds.
2975 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 int rc;
2979
2980 if (rxq < 1 || rxq > dev->num_rx_queues)
2981 return -EINVAL;
2982
2983 if (dev->reg_state == NETREG_REGISTERED) {
2984 ASSERT_RTNL();
2985
2986 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 rxq);
2988 if (rc)
2989 return rc;
2990 }
2991
2992 dev->real_num_rx_queues = rxq;
2993 return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997
2998 /**
2999 * netif_set_real_num_queues - set actual number of RX and TX queues used
3000 * @dev: Network device
3001 * @txq: Actual number of TX queues
3002 * @rxq: Actual number of RX queues
3003 *
3004 * Set the real number of both TX and RX queues.
3005 * Does nothing if the number of queues is already correct.
3006 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3007 int netif_set_real_num_queues(struct net_device *dev,
3008 unsigned int txq, unsigned int rxq)
3009 {
3010 unsigned int old_rxq = dev->real_num_rx_queues;
3011 int err;
3012
3013 if (txq < 1 || txq > dev->num_tx_queues ||
3014 rxq < 1 || rxq > dev->num_rx_queues)
3015 return -EINVAL;
3016
3017 /* Start from increases, so the error path only does decreases -
3018 * decreases can't fail.
3019 */
3020 if (rxq > dev->real_num_rx_queues) {
3021 err = netif_set_real_num_rx_queues(dev, rxq);
3022 if (err)
3023 return err;
3024 }
3025 if (txq > dev->real_num_tx_queues) {
3026 err = netif_set_real_num_tx_queues(dev, txq);
3027 if (err)
3028 goto undo_rx;
3029 }
3030 if (rxq < dev->real_num_rx_queues)
3031 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 if (txq < dev->real_num_tx_queues)
3033 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034
3035 return 0;
3036 undo_rx:
3037 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041
3042 /**
3043 * netif_set_tso_max_size() - set the max size of TSO frames supported
3044 * @dev: netdev to update
3045 * @size: max skb->len of a TSO frame
3046 *
3047 * Set the limit on the size of TSO super-frames the device can handle.
3048 * Unless explicitly set the stack will assume the value of
3049 * %GSO_LEGACY_MAX_SIZE.
3050 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 if (size < READ_ONCE(dev->gso_max_size))
3055 netif_set_gso_max_size(dev, size);
3056 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060
3061 /**
3062 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063 * @dev: netdev to update
3064 * @segs: max number of TCP segments
3065 *
3066 * Set the limit on the number of TCP segments the device can generate from
3067 * a single TSO super-frame.
3068 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 dev->tso_max_segs = segs;
3073 if (segs < READ_ONCE(dev->gso_max_segs))
3074 netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077
3078 /**
3079 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080 * @to: netdev to update
3081 * @from: netdev from which to copy the limits
3082 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 netif_set_tso_max_size(to, from->tso_max_size);
3086 netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089
3090 /**
3091 * netif_get_num_default_rss_queues - default number of RSS queues
3092 *
3093 * Default value is the number of physical cores if there are only 1 or 2, or
3094 * divided by 2 if there are more.
3095 */
netif_get_num_default_rss_queues(void)3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 cpumask_var_t cpus;
3099 int cpu, count = 0;
3100
3101 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 return 1;
3103
3104 cpumask_copy(cpus, cpu_online_mask);
3105 for_each_cpu(cpu, cpus) {
3106 ++count;
3107 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 }
3109 free_cpumask_var(cpus);
3110
3111 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114
__netif_reschedule(struct Qdisc * q)3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 struct softnet_data *sd;
3118 unsigned long flags;
3119
3120 local_irq_save(flags);
3121 sd = this_cpu_ptr(&softnet_data);
3122 q->next_sched = NULL;
3123 *sd->output_queue_tailp = q;
3124 sd->output_queue_tailp = &q->next_sched;
3125 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 local_irq_restore(flags);
3127 }
3128
__netif_schedule(struct Qdisc * q)3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 __netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135
3136 struct dev_kfree_skb_cb {
3137 enum skb_drop_reason reason;
3138 };
3139
get_kfree_skb_cb(const struct sk_buff * skb)3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144
netif_schedule_queue(struct netdev_queue * txq)3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 rcu_read_lock();
3148 if (!netif_xmit_stopped(txq)) {
3149 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150
3151 __netif_schedule(q);
3152 }
3153 rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156
netif_tx_wake_queue(struct netdev_queue * dev_queue)3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 struct Qdisc *q;
3161
3162 rcu_read_lock();
3163 q = rcu_dereference(dev_queue->qdisc);
3164 __netif_schedule(q);
3165 rcu_read_unlock();
3166 }
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 unsigned long flags;
3173
3174 if (unlikely(!skb))
3175 return;
3176
3177 if (likely(refcount_read(&skb->users) == 1)) {
3178 smp_rmb();
3179 refcount_set(&skb->users, 0);
3180 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 return;
3182 }
3183 get_kfree_skb_cb(skb)->reason = reason;
3184 local_irq_save(flags);
3185 skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 __this_cpu_write(softnet_data.completion_queue, skb);
3187 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 if (in_hardirq() || irqs_disabled())
3195 dev_kfree_skb_irq_reason(skb, reason);
3196 else
3197 kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200
3201
3202 /**
3203 * netif_device_detach - mark device as removed
3204 * @dev: network device
3205 *
3206 * Mark device as removed from system and therefore no longer available.
3207 */
netif_device_detach(struct net_device * dev)3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 netif_running(dev)) {
3212 netif_tx_stop_all_queues(dev);
3213 }
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216
3217 /**
3218 * netif_device_attach - mark device as attached
3219 * @dev: network device
3220 *
3221 * Mark device as attached from system and restart if needed.
3222 */
netif_device_attach(struct net_device * dev)3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 netif_running(dev)) {
3227 netif_tx_wake_all_queues(dev);
3228 __netdev_watchdog_up(dev);
3229 }
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232
3233 /*
3234 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235 * to be used as a distribution range.
3236 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 const struct net_device *sb_dev,
3239 struct sk_buff *skb)
3240 {
3241 u32 hash;
3242 u16 qoffset = 0;
3243 u16 qcount = dev->real_num_tx_queues;
3244
3245 if (dev->num_tc) {
3246 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247
3248 qoffset = sb_dev->tc_to_txq[tc].offset;
3249 qcount = sb_dev->tc_to_txq[tc].count;
3250 if (unlikely(!qcount)) {
3251 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 sb_dev->name, qoffset, tc);
3253 qoffset = 0;
3254 qcount = dev->real_num_tx_queues;
3255 }
3256 }
3257
3258 if (skb_rx_queue_recorded(skb)) {
3259 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 hash = skb_get_rx_queue(skb);
3261 if (hash >= qoffset)
3262 hash -= qoffset;
3263 while (unlikely(hash >= qcount))
3264 hash -= qcount;
3265 return hash + qoffset;
3266 }
3267
3268 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270
skb_warn_bad_offload(const struct sk_buff * skb)3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 static const netdev_features_t null_features;
3274 struct net_device *dev = skb->dev;
3275 const char *name = "";
3276
3277 if (!net_ratelimit())
3278 return;
3279
3280 if (dev) {
3281 if (dev->dev.parent)
3282 name = dev_driver_string(dev->dev.parent);
3283 else
3284 name = netdev_name(dev);
3285 }
3286 skb_dump(KERN_WARNING, skb, false);
3287 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 name, dev ? &dev->features : &null_features,
3289 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291
3292 /*
3293 * Invalidate hardware checksum when packet is to be mangled, and
3294 * complete checksum manually on outgoing path.
3295 */
skb_checksum_help(struct sk_buff * skb)3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 __wsum csum;
3299 int ret = 0, offset;
3300
3301 if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 goto out_set_summed;
3303
3304 if (unlikely(skb_is_gso(skb))) {
3305 skb_warn_bad_offload(skb);
3306 return -EINVAL;
3307 }
3308
3309 /* Before computing a checksum, we should make sure no frag could
3310 * be modified by an external entity : checksum could be wrong.
3311 */
3312 if (skb_has_shared_frag(skb)) {
3313 ret = __skb_linearize(skb);
3314 if (ret)
3315 goto out;
3316 }
3317
3318 offset = skb_checksum_start_offset(skb);
3319 ret = -EINVAL;
3320 if (unlikely(offset >= skb_headlen(skb))) {
3321 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 offset, skb_headlen(skb));
3324 goto out;
3325 }
3326 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327
3328 offset += skb->csum_offset;
3329 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 offset + sizeof(__sum16), skb_headlen(skb));
3333 goto out;
3334 }
3335 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 if (ret)
3337 goto out;
3338
3339 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346
skb_crc32c_csum_help(struct sk_buff * skb)3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 __le32 crc32c_csum;
3350 int ret = 0, offset, start;
3351
3352 if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 goto out;
3354
3355 if (unlikely(skb_is_gso(skb)))
3356 goto out;
3357
3358 /* Before computing a checksum, we should make sure no frag could
3359 * be modified by an external entity : checksum could be wrong.
3360 */
3361 if (unlikely(skb_has_shared_frag(skb))) {
3362 ret = __skb_linearize(skb);
3363 if (ret)
3364 goto out;
3365 }
3366 start = skb_checksum_start_offset(skb);
3367 offset = start + offsetof(struct sctphdr, checksum);
3368 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 ret = -EINVAL;
3370 goto out;
3371 }
3372
3373 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 if (ret)
3375 goto out;
3376
3377 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 skb->len - start, ~(__u32)0,
3379 crc32c_csum_stub));
3380 *(__le32 *)(skb->data + offset) = crc32c_csum;
3381 skb_reset_csum_not_inet(skb);
3382 out:
3383 return ret;
3384 }
3385
skb_network_protocol(struct sk_buff * skb,int * depth)3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 __be16 type = skb->protocol;
3389
3390 /* Tunnel gso handlers can set protocol to ethernet. */
3391 if (type == htons(ETH_P_TEB)) {
3392 struct ethhdr *eth;
3393
3394 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 return 0;
3396
3397 eth = (struct ethhdr *)skb->data;
3398 type = eth->h_proto;
3399 }
3400
3401 return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403
3404
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 netdev_err(dev, "hw csum failure\n");
3410 skb_dump(KERN_ERR, skb, true);
3411 dump_stack();
3412 }
3413
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 int i;
3426
3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431 if (PageHighMem(skb_frag_page(frag)))
3432 return 1;
3433 }
3434 }
3435 #endif
3436 return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3441 */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3446 {
3447 if (eth_p_mpls(type))
3448 features &= skb->dev->mpls_features;
3449
3450 return features;
3451 }
3452 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456 {
3457 return features;
3458 }
3459 #endif
3460
harmonize_features(struct sk_buff * skb,netdev_features_t features)3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 netdev_features_t features)
3463 {
3464 __be16 type;
3465
3466 type = skb_network_protocol(skb, NULL);
3467 features = net_mpls_features(skb, features, type);
3468
3469 if (skb->ip_summed != CHECKSUM_NONE &&
3470 !can_checksum_protocol(features, type)) {
3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 }
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
3475
3476 return features;
3477 }
3478
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3482 {
3483 return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490 {
3491 return vlan_features_check(skb, features);
3492 }
3493
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497 {
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 return features & ~NETIF_F_GSO_MASK;
3502
3503 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3504 return features & ~NETIF_F_GSO_MASK;
3505
3506 if (!skb_shinfo(skb)->gso_type) {
3507 skb_warn_bad_offload(skb);
3508 return features & ~NETIF_F_GSO_MASK;
3509 }
3510
3511 /* Support for GSO partial features requires software
3512 * intervention before we can actually process the packets
3513 * so we need to strip support for any partial features now
3514 * and we can pull them back in after we have partially
3515 * segmented the frame.
3516 */
3517 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518 features &= ~dev->gso_partial_features;
3519
3520 /* Make sure to clear the IPv4 ID mangling feature if the
3521 * IPv4 header has the potential to be fragmented.
3522 */
3523 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524 struct iphdr *iph = skb->encapsulation ?
3525 inner_ip_hdr(skb) : ip_hdr(skb);
3526
3527 if (!(iph->frag_off & htons(IP_DF)))
3528 features &= ~NETIF_F_TSO_MANGLEID;
3529 }
3530
3531 return features;
3532 }
3533
netif_skb_features(struct sk_buff * skb)3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536 struct net_device *dev = skb->dev;
3537 netdev_features_t features = dev->features;
3538
3539 if (skb_is_gso(skb))
3540 features = gso_features_check(skb, dev, features);
3541
3542 /* If encapsulation offload request, verify we are testing
3543 * hardware encapsulation features instead of standard
3544 * features for the netdev
3545 */
3546 if (skb->encapsulation)
3547 features &= dev->hw_enc_features;
3548
3549 if (skb_vlan_tagged(skb))
3550 features = netdev_intersect_features(features,
3551 dev->vlan_features |
3552 NETIF_F_HW_VLAN_CTAG_TX |
3553 NETIF_F_HW_VLAN_STAG_TX);
3554
3555 if (dev->netdev_ops->ndo_features_check)
3556 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557 features);
3558 else
3559 features &= dflt_features_check(skb, dev, features);
3560
3561 return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566 struct netdev_queue *txq, bool more)
3567 {
3568 unsigned int len;
3569 int rc;
3570
3571 if (dev_nit_active(dev))
3572 dev_queue_xmit_nit(skb, dev);
3573
3574 len = skb->len;
3575 trace_net_dev_start_xmit(skb, dev);
3576 rc = netdev_start_xmit(skb, dev, txq, more);
3577 trace_net_dev_xmit(skb, rc, dev, len);
3578
3579 return rc;
3580 }
3581
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 struct netdev_queue *txq, int *ret)
3584 {
3585 struct sk_buff *skb = first;
3586 int rc = NETDEV_TX_OK;
3587
3588 while (skb) {
3589 struct sk_buff *next = skb->next;
3590
3591 skb_mark_not_on_list(skb);
3592 rc = xmit_one(skb, dev, txq, next != NULL);
3593 if (unlikely(!dev_xmit_complete(rc))) {
3594 skb->next = next;
3595 goto out;
3596 }
3597
3598 skb = next;
3599 if (netif_tx_queue_stopped(txq) && skb) {
3600 rc = NETDEV_TX_BUSY;
3601 break;
3602 }
3603 }
3604
3605 out:
3606 *ret = rc;
3607 return skb;
3608 }
3609
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 netdev_features_t features)
3612 {
3613 if (skb_vlan_tag_present(skb) &&
3614 !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 skb = __vlan_hwaccel_push_inside(skb);
3616 return skb;
3617 }
3618
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 const netdev_features_t features)
3621 {
3622 if (unlikely(skb_csum_is_sctp(skb)))
3623 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 skb_crc32c_csum_help(skb);
3625
3626 if (features & NETIF_F_HW_CSUM)
3627 return 0;
3628
3629 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3631 skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3632 goto sw_checksum;
3633 switch (skb->csum_offset) {
3634 case offsetof(struct tcphdr, check):
3635 case offsetof(struct udphdr, check):
3636 return 0;
3637 }
3638 }
3639
3640 sw_checksum:
3641 return skb_checksum_help(skb);
3642 }
3643 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3644
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3645 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3646 {
3647 netdev_features_t features;
3648
3649 features = netif_skb_features(skb);
3650 skb = validate_xmit_vlan(skb, features);
3651 if (unlikely(!skb))
3652 goto out_null;
3653
3654 skb = sk_validate_xmit_skb(skb, dev);
3655 if (unlikely(!skb))
3656 goto out_null;
3657
3658 if (netif_needs_gso(skb, features)) {
3659 struct sk_buff *segs;
3660
3661 segs = skb_gso_segment(skb, features);
3662 if (IS_ERR(segs)) {
3663 goto out_kfree_skb;
3664 } else if (segs) {
3665 consume_skb(skb);
3666 skb = segs;
3667 }
3668 } else {
3669 if (skb_needs_linearize(skb, features) &&
3670 __skb_linearize(skb))
3671 goto out_kfree_skb;
3672
3673 /* If packet is not checksummed and device does not
3674 * support checksumming for this protocol, complete
3675 * checksumming here.
3676 */
3677 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3678 if (skb->encapsulation)
3679 skb_set_inner_transport_header(skb,
3680 skb_checksum_start_offset(skb));
3681 else
3682 skb_set_transport_header(skb,
3683 skb_checksum_start_offset(skb));
3684 if (skb_csum_hwoffload_help(skb, features))
3685 goto out_kfree_skb;
3686 }
3687 }
3688
3689 skb = validate_xmit_xfrm(skb, features, again);
3690
3691 return skb;
3692
3693 out_kfree_skb:
3694 kfree_skb(skb);
3695 out_null:
3696 dev_core_stats_tx_dropped_inc(dev);
3697 return NULL;
3698 }
3699
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3700 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3701 {
3702 struct sk_buff *next, *head = NULL, *tail;
3703
3704 for (; skb != NULL; skb = next) {
3705 next = skb->next;
3706 skb_mark_not_on_list(skb);
3707
3708 /* in case skb wont be segmented, point to itself */
3709 skb->prev = skb;
3710
3711 skb = validate_xmit_skb(skb, dev, again);
3712 if (!skb)
3713 continue;
3714
3715 if (!head)
3716 head = skb;
3717 else
3718 tail->next = skb;
3719 /* If skb was segmented, skb->prev points to
3720 * the last segment. If not, it still contains skb.
3721 */
3722 tail = skb->prev;
3723 }
3724 return head;
3725 }
3726 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3727
qdisc_pkt_len_init(struct sk_buff * skb)3728 static void qdisc_pkt_len_init(struct sk_buff *skb)
3729 {
3730 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3731
3732 qdisc_skb_cb(skb)->pkt_len = skb->len;
3733
3734 /* To get more precise estimation of bytes sent on wire,
3735 * we add to pkt_len the headers size of all segments
3736 */
3737 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3738 u16 gso_segs = shinfo->gso_segs;
3739 unsigned int hdr_len;
3740
3741 /* mac layer + network layer */
3742 hdr_len = skb_transport_offset(skb);
3743
3744 /* + transport layer */
3745 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3746 const struct tcphdr *th;
3747 struct tcphdr _tcphdr;
3748
3749 th = skb_header_pointer(skb, hdr_len,
3750 sizeof(_tcphdr), &_tcphdr);
3751 if (likely(th))
3752 hdr_len += __tcp_hdrlen(th);
3753 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3754 struct udphdr _udphdr;
3755
3756 if (skb_header_pointer(skb, hdr_len,
3757 sizeof(_udphdr), &_udphdr))
3758 hdr_len += sizeof(struct udphdr);
3759 }
3760
3761 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3762 int payload = skb->len - hdr_len;
3763
3764 /* Malicious packet. */
3765 if (payload <= 0)
3766 return;
3767 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3768 }
3769 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3770 }
3771 }
3772
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3773 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3774 struct sk_buff **to_free,
3775 struct netdev_queue *txq)
3776 {
3777 int rc;
3778
3779 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3780 if (rc == NET_XMIT_SUCCESS)
3781 trace_qdisc_enqueue(q, txq, skb);
3782 return rc;
3783 }
3784
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3786 struct net_device *dev,
3787 struct netdev_queue *txq)
3788 {
3789 spinlock_t *root_lock = qdisc_lock(q);
3790 struct sk_buff *to_free = NULL;
3791 bool contended;
3792 int rc;
3793
3794 qdisc_calculate_pkt_len(skb, q);
3795
3796 if (q->flags & TCQ_F_NOLOCK) {
3797 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798 qdisc_run_begin(q)) {
3799 /* Retest nolock_qdisc_is_empty() within the protection
3800 * of q->seqlock to protect from racing with requeuing.
3801 */
3802 if (unlikely(!nolock_qdisc_is_empty(q))) {
3803 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804 __qdisc_run(q);
3805 qdisc_run_end(q);
3806
3807 goto no_lock_out;
3808 }
3809
3810 qdisc_bstats_cpu_update(q, skb);
3811 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812 !nolock_qdisc_is_empty(q))
3813 __qdisc_run(q);
3814
3815 qdisc_run_end(q);
3816 return NET_XMIT_SUCCESS;
3817 }
3818
3819 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820 qdisc_run(q);
3821
3822 no_lock_out:
3823 if (unlikely(to_free))
3824 kfree_skb_list_reason(to_free,
3825 SKB_DROP_REASON_QDISC_DROP);
3826 return rc;
3827 }
3828
3829 /*
3830 * Heuristic to force contended enqueues to serialize on a
3831 * separate lock before trying to get qdisc main lock.
3832 * This permits qdisc->running owner to get the lock more
3833 * often and dequeue packets faster.
3834 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3835 * and then other tasks will only enqueue packets. The packets will be
3836 * sent after the qdisc owner is scheduled again. To prevent this
3837 * scenario the task always serialize on the lock.
3838 */
3839 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3840 if (unlikely(contended))
3841 spin_lock(&q->busylock);
3842
3843 spin_lock(root_lock);
3844 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3845 __qdisc_drop(skb, &to_free);
3846 rc = NET_XMIT_DROP;
3847 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3848 qdisc_run_begin(q)) {
3849 /*
3850 * This is a work-conserving queue; there are no old skbs
3851 * waiting to be sent out; and the qdisc is not running -
3852 * xmit the skb directly.
3853 */
3854
3855 qdisc_bstats_update(q, skb);
3856
3857 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3858 if (unlikely(contended)) {
3859 spin_unlock(&q->busylock);
3860 contended = false;
3861 }
3862 __qdisc_run(q);
3863 }
3864
3865 qdisc_run_end(q);
3866 rc = NET_XMIT_SUCCESS;
3867 } else {
3868 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3869 if (qdisc_run_begin(q)) {
3870 if (unlikely(contended)) {
3871 spin_unlock(&q->busylock);
3872 contended = false;
3873 }
3874 __qdisc_run(q);
3875 qdisc_run_end(q);
3876 }
3877 }
3878 spin_unlock(root_lock);
3879 if (unlikely(to_free))
3880 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3881 if (unlikely(contended))
3882 spin_unlock(&q->busylock);
3883 return rc;
3884 }
3885
3886 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3887 static void skb_update_prio(struct sk_buff *skb)
3888 {
3889 const struct netprio_map *map;
3890 const struct sock *sk;
3891 unsigned int prioidx;
3892
3893 if (skb->priority)
3894 return;
3895 map = rcu_dereference_bh(skb->dev->priomap);
3896 if (!map)
3897 return;
3898 sk = skb_to_full_sk(skb);
3899 if (!sk)
3900 return;
3901
3902 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3903
3904 if (prioidx < map->priomap_len)
3905 skb->priority = map->priomap[prioidx];
3906 }
3907 #else
3908 #define skb_update_prio(skb)
3909 #endif
3910
3911 /**
3912 * dev_loopback_xmit - loop back @skb
3913 * @net: network namespace this loopback is happening in
3914 * @sk: sk needed to be a netfilter okfn
3915 * @skb: buffer to transmit
3916 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3917 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3918 {
3919 skb_reset_mac_header(skb);
3920 __skb_pull(skb, skb_network_offset(skb));
3921 skb->pkt_type = PACKET_LOOPBACK;
3922 if (skb->ip_summed == CHECKSUM_NONE)
3923 skb->ip_summed = CHECKSUM_UNNECESSARY;
3924 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3925 skb_dst_force(skb);
3926 netif_rx(skb);
3927 return 0;
3928 }
3929 EXPORT_SYMBOL(dev_loopback_xmit);
3930
3931 #ifdef CONFIG_NET_EGRESS
3932 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3933 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3934 {
3935 int qm = skb_get_queue_mapping(skb);
3936
3937 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3938 }
3939
netdev_xmit_txqueue_skipped(void)3940 static bool netdev_xmit_txqueue_skipped(void)
3941 {
3942 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3943 }
3944
netdev_xmit_skip_txqueue(bool skip)3945 void netdev_xmit_skip_txqueue(bool skip)
3946 {
3947 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3948 }
3949 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3950 #endif /* CONFIG_NET_EGRESS */
3951
3952 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb)3953 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3954 {
3955 int ret = TC_ACT_UNSPEC;
3956 #ifdef CONFIG_NET_CLS_ACT
3957 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3958 struct tcf_result res;
3959
3960 if (!miniq)
3961 return ret;
3962
3963 tc_skb_cb(skb)->mru = 0;
3964 tc_skb_cb(skb)->post_ct = false;
3965
3966 mini_qdisc_bstats_cpu_update(miniq, skb);
3967 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3968 /* Only tcf related quirks below. */
3969 switch (ret) {
3970 case TC_ACT_SHOT:
3971 mini_qdisc_qstats_cpu_drop(miniq);
3972 break;
3973 case TC_ACT_OK:
3974 case TC_ACT_RECLASSIFY:
3975 skb->tc_index = TC_H_MIN(res.classid);
3976 break;
3977 }
3978 #endif /* CONFIG_NET_CLS_ACT */
3979 return ret;
3980 }
3981
3982 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3983
tcx_inc(void)3984 void tcx_inc(void)
3985 {
3986 static_branch_inc(&tcx_needed_key);
3987 }
3988
tcx_dec(void)3989 void tcx_dec(void)
3990 {
3991 static_branch_dec(&tcx_needed_key);
3992 }
3993
3994 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)3995 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3996 const bool needs_mac)
3997 {
3998 const struct bpf_mprog_fp *fp;
3999 const struct bpf_prog *prog;
4000 int ret = TCX_NEXT;
4001
4002 if (needs_mac)
4003 __skb_push(skb, skb->mac_len);
4004 bpf_mprog_foreach_prog(entry, fp, prog) {
4005 bpf_compute_data_pointers(skb);
4006 ret = bpf_prog_run(prog, skb);
4007 if (ret != TCX_NEXT)
4008 break;
4009 }
4010 if (needs_mac)
4011 __skb_pull(skb, skb->mac_len);
4012 return tcx_action_code(skb, ret);
4013 }
4014
4015 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4016 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4017 struct net_device *orig_dev, bool *another)
4018 {
4019 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4020 int sch_ret;
4021
4022 if (!entry)
4023 return skb;
4024 if (*pt_prev) {
4025 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4026 *pt_prev = NULL;
4027 }
4028
4029 qdisc_skb_cb(skb)->pkt_len = skb->len;
4030 tcx_set_ingress(skb, true);
4031
4032 if (static_branch_unlikely(&tcx_needed_key)) {
4033 sch_ret = tcx_run(entry, skb, true);
4034 if (sch_ret != TC_ACT_UNSPEC)
4035 goto ingress_verdict;
4036 }
4037 sch_ret = tc_run(tcx_entry(entry), skb);
4038 ingress_verdict:
4039 switch (sch_ret) {
4040 case TC_ACT_REDIRECT:
4041 /* skb_mac_header check was done by BPF, so we can safely
4042 * push the L2 header back before redirecting to another
4043 * netdev.
4044 */
4045 __skb_push(skb, skb->mac_len);
4046 if (skb_do_redirect(skb) == -EAGAIN) {
4047 __skb_pull(skb, skb->mac_len);
4048 *another = true;
4049 break;
4050 }
4051 *ret = NET_RX_SUCCESS;
4052 return NULL;
4053 case TC_ACT_SHOT:
4054 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4055 *ret = NET_RX_DROP;
4056 return NULL;
4057 /* used by tc_run */
4058 case TC_ACT_STOLEN:
4059 case TC_ACT_QUEUED:
4060 case TC_ACT_TRAP:
4061 consume_skb(skb);
4062 fallthrough;
4063 case TC_ACT_CONSUMED:
4064 *ret = NET_RX_SUCCESS;
4065 return NULL;
4066 }
4067
4068 return skb;
4069 }
4070
4071 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4072 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4073 {
4074 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4075 int sch_ret;
4076
4077 if (!entry)
4078 return skb;
4079
4080 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4081 * already set by the caller.
4082 */
4083 if (static_branch_unlikely(&tcx_needed_key)) {
4084 sch_ret = tcx_run(entry, skb, false);
4085 if (sch_ret != TC_ACT_UNSPEC)
4086 goto egress_verdict;
4087 }
4088 sch_ret = tc_run(tcx_entry(entry), skb);
4089 egress_verdict:
4090 switch (sch_ret) {
4091 case TC_ACT_REDIRECT:
4092 /* No need to push/pop skb's mac_header here on egress! */
4093 skb_do_redirect(skb);
4094 *ret = NET_XMIT_SUCCESS;
4095 return NULL;
4096 case TC_ACT_SHOT:
4097 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4098 *ret = NET_XMIT_DROP;
4099 return NULL;
4100 /* used by tc_run */
4101 case TC_ACT_STOLEN:
4102 case TC_ACT_QUEUED:
4103 case TC_ACT_TRAP:
4104 consume_skb(skb);
4105 fallthrough;
4106 case TC_ACT_CONSUMED:
4107 *ret = NET_XMIT_SUCCESS;
4108 return NULL;
4109 }
4110
4111 return skb;
4112 }
4113 #else
4114 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4115 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4116 struct net_device *orig_dev, bool *another)
4117 {
4118 return skb;
4119 }
4120
4121 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4122 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4123 {
4124 return skb;
4125 }
4126 #endif /* CONFIG_NET_XGRESS */
4127
4128 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4129 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4130 struct xps_dev_maps *dev_maps, unsigned int tci)
4131 {
4132 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4133 struct xps_map *map;
4134 int queue_index = -1;
4135
4136 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4137 return queue_index;
4138
4139 tci *= dev_maps->num_tc;
4140 tci += tc;
4141
4142 map = rcu_dereference(dev_maps->attr_map[tci]);
4143 if (map) {
4144 if (map->len == 1)
4145 queue_index = map->queues[0];
4146 else
4147 queue_index = map->queues[reciprocal_scale(
4148 skb_get_hash(skb), map->len)];
4149 if (unlikely(queue_index >= dev->real_num_tx_queues))
4150 queue_index = -1;
4151 }
4152 return queue_index;
4153 }
4154 #endif
4155
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4156 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4157 struct sk_buff *skb)
4158 {
4159 #ifdef CONFIG_XPS
4160 struct xps_dev_maps *dev_maps;
4161 struct sock *sk = skb->sk;
4162 int queue_index = -1;
4163
4164 if (!static_key_false(&xps_needed))
4165 return -1;
4166
4167 rcu_read_lock();
4168 if (!static_key_false(&xps_rxqs_needed))
4169 goto get_cpus_map;
4170
4171 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4172 if (dev_maps) {
4173 int tci = sk_rx_queue_get(sk);
4174
4175 if (tci >= 0)
4176 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4177 tci);
4178 }
4179
4180 get_cpus_map:
4181 if (queue_index < 0) {
4182 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4183 if (dev_maps) {
4184 unsigned int tci = skb->sender_cpu - 1;
4185
4186 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4187 tci);
4188 }
4189 }
4190 rcu_read_unlock();
4191
4192 return queue_index;
4193 #else
4194 return -1;
4195 #endif
4196 }
4197
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4198 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4199 struct net_device *sb_dev)
4200 {
4201 return 0;
4202 }
4203 EXPORT_SYMBOL(dev_pick_tx_zero);
4204
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4205 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4206 struct net_device *sb_dev)
4207 {
4208 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4209 }
4210 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4211
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4212 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4213 struct net_device *sb_dev)
4214 {
4215 struct sock *sk = skb->sk;
4216 int queue_index = sk_tx_queue_get(sk);
4217
4218 sb_dev = sb_dev ? : dev;
4219
4220 if (queue_index < 0 || skb->ooo_okay ||
4221 queue_index >= dev->real_num_tx_queues) {
4222 int new_index = get_xps_queue(dev, sb_dev, skb);
4223
4224 if (new_index < 0)
4225 new_index = skb_tx_hash(dev, sb_dev, skb);
4226
4227 if (queue_index != new_index && sk &&
4228 sk_fullsock(sk) &&
4229 rcu_access_pointer(sk->sk_dst_cache))
4230 sk_tx_queue_set(sk, new_index);
4231
4232 queue_index = new_index;
4233 }
4234
4235 return queue_index;
4236 }
4237 EXPORT_SYMBOL(netdev_pick_tx);
4238
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4239 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4240 struct sk_buff *skb,
4241 struct net_device *sb_dev)
4242 {
4243 int queue_index = 0;
4244
4245 #ifdef CONFIG_XPS
4246 u32 sender_cpu = skb->sender_cpu - 1;
4247
4248 if (sender_cpu >= (u32)NR_CPUS)
4249 skb->sender_cpu = raw_smp_processor_id() + 1;
4250 #endif
4251
4252 if (dev->real_num_tx_queues != 1) {
4253 const struct net_device_ops *ops = dev->netdev_ops;
4254
4255 if (ops->ndo_select_queue)
4256 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4257 else
4258 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4259
4260 queue_index = netdev_cap_txqueue(dev, queue_index);
4261 }
4262
4263 skb_set_queue_mapping(skb, queue_index);
4264 return netdev_get_tx_queue(dev, queue_index);
4265 }
4266
4267 /**
4268 * __dev_queue_xmit() - transmit a buffer
4269 * @skb: buffer to transmit
4270 * @sb_dev: suboordinate device used for L2 forwarding offload
4271 *
4272 * Queue a buffer for transmission to a network device. The caller must
4273 * have set the device and priority and built the buffer before calling
4274 * this function. The function can be called from an interrupt.
4275 *
4276 * When calling this method, interrupts MUST be enabled. This is because
4277 * the BH enable code must have IRQs enabled so that it will not deadlock.
4278 *
4279 * Regardless of the return value, the skb is consumed, so it is currently
4280 * difficult to retry a send to this method. (You can bump the ref count
4281 * before sending to hold a reference for retry if you are careful.)
4282 *
4283 * Return:
4284 * * 0 - buffer successfully transmitted
4285 * * positive qdisc return code - NET_XMIT_DROP etc.
4286 * * negative errno - other errors
4287 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4288 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4289 {
4290 struct net_device *dev = skb->dev;
4291 struct netdev_queue *txq = NULL;
4292 struct Qdisc *q;
4293 int rc = -ENOMEM;
4294 bool again = false;
4295
4296 skb_reset_mac_header(skb);
4297 skb_assert_len(skb);
4298
4299 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4300 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4301
4302 /* Disable soft irqs for various locks below. Also
4303 * stops preemption for RCU.
4304 */
4305 rcu_read_lock_bh();
4306
4307 skb_update_prio(skb);
4308
4309 qdisc_pkt_len_init(skb);
4310 tcx_set_ingress(skb, false);
4311 #ifdef CONFIG_NET_EGRESS
4312 if (static_branch_unlikely(&egress_needed_key)) {
4313 if (nf_hook_egress_active()) {
4314 skb = nf_hook_egress(skb, &rc, dev);
4315 if (!skb)
4316 goto out;
4317 }
4318
4319 netdev_xmit_skip_txqueue(false);
4320
4321 nf_skip_egress(skb, true);
4322 skb = sch_handle_egress(skb, &rc, dev);
4323 if (!skb)
4324 goto out;
4325 nf_skip_egress(skb, false);
4326
4327 if (netdev_xmit_txqueue_skipped())
4328 txq = netdev_tx_queue_mapping(dev, skb);
4329 }
4330 #endif
4331 /* If device/qdisc don't need skb->dst, release it right now while
4332 * its hot in this cpu cache.
4333 */
4334 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4335 skb_dst_drop(skb);
4336 else
4337 skb_dst_force(skb);
4338
4339 if (!txq)
4340 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4341
4342 q = rcu_dereference_bh(txq->qdisc);
4343
4344 trace_net_dev_queue(skb);
4345 if (q->enqueue) {
4346 rc = __dev_xmit_skb(skb, q, dev, txq);
4347 goto out;
4348 }
4349
4350 /* The device has no queue. Common case for software devices:
4351 * loopback, all the sorts of tunnels...
4352
4353 * Really, it is unlikely that netif_tx_lock protection is necessary
4354 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4355 * counters.)
4356 * However, it is possible, that they rely on protection
4357 * made by us here.
4358
4359 * Check this and shot the lock. It is not prone from deadlocks.
4360 *Either shot noqueue qdisc, it is even simpler 8)
4361 */
4362 if (dev->flags & IFF_UP) {
4363 int cpu = smp_processor_id(); /* ok because BHs are off */
4364
4365 /* Other cpus might concurrently change txq->xmit_lock_owner
4366 * to -1 or to their cpu id, but not to our id.
4367 */
4368 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4369 if (dev_xmit_recursion())
4370 goto recursion_alert;
4371
4372 skb = validate_xmit_skb(skb, dev, &again);
4373 if (!skb)
4374 goto out;
4375
4376 HARD_TX_LOCK(dev, txq, cpu);
4377
4378 if (!netif_xmit_stopped(txq)) {
4379 dev_xmit_recursion_inc();
4380 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4381 dev_xmit_recursion_dec();
4382 if (dev_xmit_complete(rc)) {
4383 HARD_TX_UNLOCK(dev, txq);
4384 goto out;
4385 }
4386 }
4387 HARD_TX_UNLOCK(dev, txq);
4388 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4389 dev->name);
4390 } else {
4391 /* Recursion is detected! It is possible,
4392 * unfortunately
4393 */
4394 recursion_alert:
4395 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4396 dev->name);
4397 }
4398 }
4399
4400 rc = -ENETDOWN;
4401 rcu_read_unlock_bh();
4402
4403 dev_core_stats_tx_dropped_inc(dev);
4404 kfree_skb_list(skb);
4405 return rc;
4406 out:
4407 rcu_read_unlock_bh();
4408 return rc;
4409 }
4410 EXPORT_SYMBOL(__dev_queue_xmit);
4411
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4412 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4413 {
4414 struct net_device *dev = skb->dev;
4415 struct sk_buff *orig_skb = skb;
4416 struct netdev_queue *txq;
4417 int ret = NETDEV_TX_BUSY;
4418 bool again = false;
4419
4420 if (unlikely(!netif_running(dev) ||
4421 !netif_carrier_ok(dev)))
4422 goto drop;
4423
4424 skb = validate_xmit_skb_list(skb, dev, &again);
4425 if (skb != orig_skb)
4426 goto drop;
4427
4428 skb_set_queue_mapping(skb, queue_id);
4429 txq = skb_get_tx_queue(dev, skb);
4430
4431 local_bh_disable();
4432
4433 dev_xmit_recursion_inc();
4434 HARD_TX_LOCK(dev, txq, smp_processor_id());
4435 if (!netif_xmit_frozen_or_drv_stopped(txq))
4436 ret = netdev_start_xmit(skb, dev, txq, false);
4437 HARD_TX_UNLOCK(dev, txq);
4438 dev_xmit_recursion_dec();
4439
4440 local_bh_enable();
4441 return ret;
4442 drop:
4443 dev_core_stats_tx_dropped_inc(dev);
4444 kfree_skb_list(skb);
4445 return NET_XMIT_DROP;
4446 }
4447 EXPORT_SYMBOL(__dev_direct_xmit);
4448
4449 /*************************************************************************
4450 * Receiver routines
4451 *************************************************************************/
4452
4453 int netdev_max_backlog __read_mostly = 1000;
4454 EXPORT_SYMBOL(netdev_max_backlog);
4455
4456 int netdev_tstamp_prequeue __read_mostly = 1;
4457 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4458 int netdev_budget __read_mostly = 300;
4459 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4460 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4461 int weight_p __read_mostly = 64; /* old backlog weight */
4462 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4463 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4464 int dev_rx_weight __read_mostly = 64;
4465 int dev_tx_weight __read_mostly = 64;
4466
4467 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4468 static inline void ____napi_schedule(struct softnet_data *sd,
4469 struct napi_struct *napi)
4470 {
4471 struct task_struct *thread;
4472
4473 lockdep_assert_irqs_disabled();
4474
4475 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4476 /* Paired with smp_mb__before_atomic() in
4477 * napi_enable()/dev_set_threaded().
4478 * Use READ_ONCE() to guarantee a complete
4479 * read on napi->thread. Only call
4480 * wake_up_process() when it's not NULL.
4481 */
4482 thread = READ_ONCE(napi->thread);
4483 if (thread) {
4484 /* Avoid doing set_bit() if the thread is in
4485 * INTERRUPTIBLE state, cause napi_thread_wait()
4486 * makes sure to proceed with napi polling
4487 * if the thread is explicitly woken from here.
4488 */
4489 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4490 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4491 wake_up_process(thread);
4492 return;
4493 }
4494 }
4495
4496 list_add_tail(&napi->poll_list, &sd->poll_list);
4497 WRITE_ONCE(napi->list_owner, smp_processor_id());
4498 /* If not called from net_rx_action()
4499 * we have to raise NET_RX_SOFTIRQ.
4500 */
4501 if (!sd->in_net_rx_action)
4502 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4503 }
4504
4505 #ifdef CONFIG_RPS
4506
4507 /* One global table that all flow-based protocols share. */
4508 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4509 EXPORT_SYMBOL(rps_sock_flow_table);
4510 u32 rps_cpu_mask __read_mostly;
4511 EXPORT_SYMBOL(rps_cpu_mask);
4512
4513 struct static_key_false rps_needed __read_mostly;
4514 EXPORT_SYMBOL(rps_needed);
4515 struct static_key_false rfs_needed __read_mostly;
4516 EXPORT_SYMBOL(rfs_needed);
4517
4518 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4519 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4520 struct rps_dev_flow *rflow, u16 next_cpu)
4521 {
4522 if (next_cpu < nr_cpu_ids) {
4523 #ifdef CONFIG_RFS_ACCEL
4524 struct netdev_rx_queue *rxqueue;
4525 struct rps_dev_flow_table *flow_table;
4526 struct rps_dev_flow *old_rflow;
4527 u32 flow_id;
4528 u16 rxq_index;
4529 int rc;
4530
4531 /* Should we steer this flow to a different hardware queue? */
4532 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4533 !(dev->features & NETIF_F_NTUPLE))
4534 goto out;
4535 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4536 if (rxq_index == skb_get_rx_queue(skb))
4537 goto out;
4538
4539 rxqueue = dev->_rx + rxq_index;
4540 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4541 if (!flow_table)
4542 goto out;
4543 flow_id = skb_get_hash(skb) & flow_table->mask;
4544 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4545 rxq_index, flow_id);
4546 if (rc < 0)
4547 goto out;
4548 old_rflow = rflow;
4549 rflow = &flow_table->flows[flow_id];
4550 rflow->filter = rc;
4551 if (old_rflow->filter == rflow->filter)
4552 old_rflow->filter = RPS_NO_FILTER;
4553 out:
4554 #endif
4555 rflow->last_qtail =
4556 per_cpu(softnet_data, next_cpu).input_queue_head;
4557 }
4558
4559 rflow->cpu = next_cpu;
4560 return rflow;
4561 }
4562
4563 /*
4564 * get_rps_cpu is called from netif_receive_skb and returns the target
4565 * CPU from the RPS map of the receiving queue for a given skb.
4566 * rcu_read_lock must be held on entry.
4567 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4568 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4569 struct rps_dev_flow **rflowp)
4570 {
4571 const struct rps_sock_flow_table *sock_flow_table;
4572 struct netdev_rx_queue *rxqueue = dev->_rx;
4573 struct rps_dev_flow_table *flow_table;
4574 struct rps_map *map;
4575 int cpu = -1;
4576 u32 tcpu;
4577 u32 hash;
4578
4579 if (skb_rx_queue_recorded(skb)) {
4580 u16 index = skb_get_rx_queue(skb);
4581
4582 if (unlikely(index >= dev->real_num_rx_queues)) {
4583 WARN_ONCE(dev->real_num_rx_queues > 1,
4584 "%s received packet on queue %u, but number "
4585 "of RX queues is %u\n",
4586 dev->name, index, dev->real_num_rx_queues);
4587 goto done;
4588 }
4589 rxqueue += index;
4590 }
4591
4592 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4593
4594 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4595 map = rcu_dereference(rxqueue->rps_map);
4596 if (!flow_table && !map)
4597 goto done;
4598
4599 skb_reset_network_header(skb);
4600 hash = skb_get_hash(skb);
4601 if (!hash)
4602 goto done;
4603
4604 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4605 if (flow_table && sock_flow_table) {
4606 struct rps_dev_flow *rflow;
4607 u32 next_cpu;
4608 u32 ident;
4609
4610 /* First check into global flow table if there is a match.
4611 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4612 */
4613 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4614 if ((ident ^ hash) & ~rps_cpu_mask)
4615 goto try_rps;
4616
4617 next_cpu = ident & rps_cpu_mask;
4618
4619 /* OK, now we know there is a match,
4620 * we can look at the local (per receive queue) flow table
4621 */
4622 rflow = &flow_table->flows[hash & flow_table->mask];
4623 tcpu = rflow->cpu;
4624
4625 /*
4626 * If the desired CPU (where last recvmsg was done) is
4627 * different from current CPU (one in the rx-queue flow
4628 * table entry), switch if one of the following holds:
4629 * - Current CPU is unset (>= nr_cpu_ids).
4630 * - Current CPU is offline.
4631 * - The current CPU's queue tail has advanced beyond the
4632 * last packet that was enqueued using this table entry.
4633 * This guarantees that all previous packets for the flow
4634 * have been dequeued, thus preserving in order delivery.
4635 */
4636 if (unlikely(tcpu != next_cpu) &&
4637 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4638 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4639 rflow->last_qtail)) >= 0)) {
4640 tcpu = next_cpu;
4641 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4642 }
4643
4644 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4645 *rflowp = rflow;
4646 cpu = tcpu;
4647 goto done;
4648 }
4649 }
4650
4651 try_rps:
4652
4653 if (map) {
4654 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4655 if (cpu_online(tcpu)) {
4656 cpu = tcpu;
4657 goto done;
4658 }
4659 }
4660
4661 done:
4662 return cpu;
4663 }
4664
4665 #ifdef CONFIG_RFS_ACCEL
4666
4667 /**
4668 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4669 * @dev: Device on which the filter was set
4670 * @rxq_index: RX queue index
4671 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4672 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4673 *
4674 * Drivers that implement ndo_rx_flow_steer() should periodically call
4675 * this function for each installed filter and remove the filters for
4676 * which it returns %true.
4677 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4678 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4679 u32 flow_id, u16 filter_id)
4680 {
4681 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4682 struct rps_dev_flow_table *flow_table;
4683 struct rps_dev_flow *rflow;
4684 bool expire = true;
4685 unsigned int cpu;
4686
4687 rcu_read_lock();
4688 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4689 if (flow_table && flow_id <= flow_table->mask) {
4690 rflow = &flow_table->flows[flow_id];
4691 cpu = READ_ONCE(rflow->cpu);
4692 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4693 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4694 rflow->last_qtail) <
4695 (int)(10 * flow_table->mask)))
4696 expire = false;
4697 }
4698 rcu_read_unlock();
4699 return expire;
4700 }
4701 EXPORT_SYMBOL(rps_may_expire_flow);
4702
4703 #endif /* CONFIG_RFS_ACCEL */
4704
4705 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4706 static void rps_trigger_softirq(void *data)
4707 {
4708 struct softnet_data *sd = data;
4709
4710 ____napi_schedule(sd, &sd->backlog);
4711 sd->received_rps++;
4712 }
4713
4714 #endif /* CONFIG_RPS */
4715
4716 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4717 static void trigger_rx_softirq(void *data)
4718 {
4719 struct softnet_data *sd = data;
4720
4721 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4722 smp_store_release(&sd->defer_ipi_scheduled, 0);
4723 }
4724
4725 /*
4726 * After we queued a packet into sd->input_pkt_queue,
4727 * we need to make sure this queue is serviced soon.
4728 *
4729 * - If this is another cpu queue, link it to our rps_ipi_list,
4730 * and make sure we will process rps_ipi_list from net_rx_action().
4731 *
4732 * - If this is our own queue, NAPI schedule our backlog.
4733 * Note that this also raises NET_RX_SOFTIRQ.
4734 */
napi_schedule_rps(struct softnet_data * sd)4735 static void napi_schedule_rps(struct softnet_data *sd)
4736 {
4737 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4738
4739 #ifdef CONFIG_RPS
4740 if (sd != mysd) {
4741 sd->rps_ipi_next = mysd->rps_ipi_list;
4742 mysd->rps_ipi_list = sd;
4743
4744 /* If not called from net_rx_action() or napi_threaded_poll()
4745 * we have to raise NET_RX_SOFTIRQ.
4746 */
4747 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4748 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4749 return;
4750 }
4751 #endif /* CONFIG_RPS */
4752 __napi_schedule_irqoff(&mysd->backlog);
4753 }
4754
4755 #ifdef CONFIG_NET_FLOW_LIMIT
4756 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4757 #endif
4758
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4759 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4760 {
4761 #ifdef CONFIG_NET_FLOW_LIMIT
4762 struct sd_flow_limit *fl;
4763 struct softnet_data *sd;
4764 unsigned int old_flow, new_flow;
4765
4766 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4767 return false;
4768
4769 sd = this_cpu_ptr(&softnet_data);
4770
4771 rcu_read_lock();
4772 fl = rcu_dereference(sd->flow_limit);
4773 if (fl) {
4774 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4775 old_flow = fl->history[fl->history_head];
4776 fl->history[fl->history_head] = new_flow;
4777
4778 fl->history_head++;
4779 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4780
4781 if (likely(fl->buckets[old_flow]))
4782 fl->buckets[old_flow]--;
4783
4784 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4785 fl->count++;
4786 rcu_read_unlock();
4787 return true;
4788 }
4789 }
4790 rcu_read_unlock();
4791 #endif
4792 return false;
4793 }
4794
4795 /*
4796 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4797 * queue (may be a remote CPU queue).
4798 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4799 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4800 unsigned int *qtail)
4801 {
4802 enum skb_drop_reason reason;
4803 struct softnet_data *sd;
4804 unsigned long flags;
4805 unsigned int qlen;
4806
4807 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4808 sd = &per_cpu(softnet_data, cpu);
4809
4810 rps_lock_irqsave(sd, &flags);
4811 if (!netif_running(skb->dev))
4812 goto drop;
4813 qlen = skb_queue_len(&sd->input_pkt_queue);
4814 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4815 if (qlen) {
4816 enqueue:
4817 __skb_queue_tail(&sd->input_pkt_queue, skb);
4818 input_queue_tail_incr_save(sd, qtail);
4819 rps_unlock_irq_restore(sd, &flags);
4820 return NET_RX_SUCCESS;
4821 }
4822
4823 /* Schedule NAPI for backlog device
4824 * We can use non atomic operation since we own the queue lock
4825 */
4826 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4827 napi_schedule_rps(sd);
4828 goto enqueue;
4829 }
4830 reason = SKB_DROP_REASON_CPU_BACKLOG;
4831
4832 drop:
4833 sd->dropped++;
4834 rps_unlock_irq_restore(sd, &flags);
4835
4836 dev_core_stats_rx_dropped_inc(skb->dev);
4837 kfree_skb_reason(skb, reason);
4838 return NET_RX_DROP;
4839 }
4840
netif_get_rxqueue(struct sk_buff * skb)4841 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4842 {
4843 struct net_device *dev = skb->dev;
4844 struct netdev_rx_queue *rxqueue;
4845
4846 rxqueue = dev->_rx;
4847
4848 if (skb_rx_queue_recorded(skb)) {
4849 u16 index = skb_get_rx_queue(skb);
4850
4851 if (unlikely(index >= dev->real_num_rx_queues)) {
4852 WARN_ONCE(dev->real_num_rx_queues > 1,
4853 "%s received packet on queue %u, but number "
4854 "of RX queues is %u\n",
4855 dev->name, index, dev->real_num_rx_queues);
4856
4857 return rxqueue; /* Return first rxqueue */
4858 }
4859 rxqueue += index;
4860 }
4861 return rxqueue;
4862 }
4863
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4864 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4865 struct bpf_prog *xdp_prog)
4866 {
4867 void *orig_data, *orig_data_end, *hard_start;
4868 struct netdev_rx_queue *rxqueue;
4869 bool orig_bcast, orig_host;
4870 u32 mac_len, frame_sz;
4871 __be16 orig_eth_type;
4872 struct ethhdr *eth;
4873 u32 metalen, act;
4874 int off;
4875
4876 /* The XDP program wants to see the packet starting at the MAC
4877 * header.
4878 */
4879 mac_len = skb->data - skb_mac_header(skb);
4880 hard_start = skb->data - skb_headroom(skb);
4881
4882 /* SKB "head" area always have tailroom for skb_shared_info */
4883 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4884 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4885
4886 rxqueue = netif_get_rxqueue(skb);
4887 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4888 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4889 skb_headlen(skb) + mac_len, true);
4890
4891 orig_data_end = xdp->data_end;
4892 orig_data = xdp->data;
4893 eth = (struct ethhdr *)xdp->data;
4894 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4895 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4896 orig_eth_type = eth->h_proto;
4897
4898 act = bpf_prog_run_xdp(xdp_prog, xdp);
4899
4900 /* check if bpf_xdp_adjust_head was used */
4901 off = xdp->data - orig_data;
4902 if (off) {
4903 if (off > 0)
4904 __skb_pull(skb, off);
4905 else if (off < 0)
4906 __skb_push(skb, -off);
4907
4908 skb->mac_header += off;
4909 skb_reset_network_header(skb);
4910 }
4911
4912 /* check if bpf_xdp_adjust_tail was used */
4913 off = xdp->data_end - orig_data_end;
4914 if (off != 0) {
4915 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4916 skb->len += off; /* positive on grow, negative on shrink */
4917 }
4918
4919 /* check if XDP changed eth hdr such SKB needs update */
4920 eth = (struct ethhdr *)xdp->data;
4921 if ((orig_eth_type != eth->h_proto) ||
4922 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4923 skb->dev->dev_addr)) ||
4924 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4925 __skb_push(skb, ETH_HLEN);
4926 skb->pkt_type = PACKET_HOST;
4927 skb->protocol = eth_type_trans(skb, skb->dev);
4928 }
4929
4930 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4931 * before calling us again on redirect path. We do not call do_redirect
4932 * as we leave that up to the caller.
4933 *
4934 * Caller is responsible for managing lifetime of skb (i.e. calling
4935 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4936 */
4937 switch (act) {
4938 case XDP_REDIRECT:
4939 case XDP_TX:
4940 __skb_push(skb, mac_len);
4941 break;
4942 case XDP_PASS:
4943 metalen = xdp->data - xdp->data_meta;
4944 if (metalen)
4945 skb_metadata_set(skb, metalen);
4946 break;
4947 }
4948
4949 return act;
4950 }
4951
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4952 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4953 struct xdp_buff *xdp,
4954 struct bpf_prog *xdp_prog)
4955 {
4956 u32 act = XDP_DROP;
4957
4958 /* Reinjected packets coming from act_mirred or similar should
4959 * not get XDP generic processing.
4960 */
4961 if (skb_is_redirected(skb))
4962 return XDP_PASS;
4963
4964 /* XDP packets must be linear and must have sufficient headroom
4965 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4966 * native XDP provides, thus we need to do it here as well.
4967 */
4968 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4969 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4970 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4971 int troom = skb->tail + skb->data_len - skb->end;
4972
4973 /* In case we have to go down the path and also linearize,
4974 * then lets do the pskb_expand_head() work just once here.
4975 */
4976 if (pskb_expand_head(skb,
4977 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4978 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4979 goto do_drop;
4980 if (skb_linearize(skb))
4981 goto do_drop;
4982 }
4983
4984 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4985 switch (act) {
4986 case XDP_REDIRECT:
4987 case XDP_TX:
4988 case XDP_PASS:
4989 break;
4990 default:
4991 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4992 fallthrough;
4993 case XDP_ABORTED:
4994 trace_xdp_exception(skb->dev, xdp_prog, act);
4995 fallthrough;
4996 case XDP_DROP:
4997 do_drop:
4998 kfree_skb(skb);
4999 break;
5000 }
5001
5002 return act;
5003 }
5004
5005 /* When doing generic XDP we have to bypass the qdisc layer and the
5006 * network taps in order to match in-driver-XDP behavior. This also means
5007 * that XDP packets are able to starve other packets going through a qdisc,
5008 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5009 * queues, so they do not have this starvation issue.
5010 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5011 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5012 {
5013 struct net_device *dev = skb->dev;
5014 struct netdev_queue *txq;
5015 bool free_skb = true;
5016 int cpu, rc;
5017
5018 txq = netdev_core_pick_tx(dev, skb, NULL);
5019 cpu = smp_processor_id();
5020 HARD_TX_LOCK(dev, txq, cpu);
5021 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5022 rc = netdev_start_xmit(skb, dev, txq, 0);
5023 if (dev_xmit_complete(rc))
5024 free_skb = false;
5025 }
5026 HARD_TX_UNLOCK(dev, txq);
5027 if (free_skb) {
5028 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5029 dev_core_stats_tx_dropped_inc(dev);
5030 kfree_skb(skb);
5031 }
5032 }
5033
5034 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5035
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)5036 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5037 {
5038 if (xdp_prog) {
5039 struct xdp_buff xdp;
5040 u32 act;
5041 int err;
5042
5043 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5044 if (act != XDP_PASS) {
5045 switch (act) {
5046 case XDP_REDIRECT:
5047 err = xdp_do_generic_redirect(skb->dev, skb,
5048 &xdp, xdp_prog);
5049 if (err)
5050 goto out_redir;
5051 break;
5052 case XDP_TX:
5053 generic_xdp_tx(skb, xdp_prog);
5054 break;
5055 }
5056 return XDP_DROP;
5057 }
5058 }
5059 return XDP_PASS;
5060 out_redir:
5061 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5062 return XDP_DROP;
5063 }
5064 EXPORT_SYMBOL_GPL(do_xdp_generic);
5065
netif_rx_internal(struct sk_buff * skb)5066 static int netif_rx_internal(struct sk_buff *skb)
5067 {
5068 int ret;
5069
5070 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5071
5072 trace_netif_rx(skb);
5073
5074 #ifdef CONFIG_RPS
5075 if (static_branch_unlikely(&rps_needed)) {
5076 struct rps_dev_flow voidflow, *rflow = &voidflow;
5077 int cpu;
5078
5079 rcu_read_lock();
5080
5081 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5082 if (cpu < 0)
5083 cpu = smp_processor_id();
5084
5085 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5086
5087 rcu_read_unlock();
5088 } else
5089 #endif
5090 {
5091 unsigned int qtail;
5092
5093 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5094 }
5095 return ret;
5096 }
5097
5098 /**
5099 * __netif_rx - Slightly optimized version of netif_rx
5100 * @skb: buffer to post
5101 *
5102 * This behaves as netif_rx except that it does not disable bottom halves.
5103 * As a result this function may only be invoked from the interrupt context
5104 * (either hard or soft interrupt).
5105 */
__netif_rx(struct sk_buff * skb)5106 int __netif_rx(struct sk_buff *skb)
5107 {
5108 int ret;
5109
5110 lockdep_assert_once(hardirq_count() | softirq_count());
5111
5112 trace_netif_rx_entry(skb);
5113 ret = netif_rx_internal(skb);
5114 trace_netif_rx_exit(ret);
5115 return ret;
5116 }
5117 EXPORT_SYMBOL(__netif_rx);
5118
5119 /**
5120 * netif_rx - post buffer to the network code
5121 * @skb: buffer to post
5122 *
5123 * This function receives a packet from a device driver and queues it for
5124 * the upper (protocol) levels to process via the backlog NAPI device. It
5125 * always succeeds. The buffer may be dropped during processing for
5126 * congestion control or by the protocol layers.
5127 * The network buffer is passed via the backlog NAPI device. Modern NIC
5128 * driver should use NAPI and GRO.
5129 * This function can used from interrupt and from process context. The
5130 * caller from process context must not disable interrupts before invoking
5131 * this function.
5132 *
5133 * return values:
5134 * NET_RX_SUCCESS (no congestion)
5135 * NET_RX_DROP (packet was dropped)
5136 *
5137 */
netif_rx(struct sk_buff * skb)5138 int netif_rx(struct sk_buff *skb)
5139 {
5140 bool need_bh_off = !(hardirq_count() | softirq_count());
5141 int ret;
5142
5143 if (need_bh_off)
5144 local_bh_disable();
5145 trace_netif_rx_entry(skb);
5146 ret = netif_rx_internal(skb);
5147 trace_netif_rx_exit(ret);
5148 if (need_bh_off)
5149 local_bh_enable();
5150 return ret;
5151 }
5152 EXPORT_SYMBOL(netif_rx);
5153
net_tx_action(struct softirq_action * h)5154 static __latent_entropy void net_tx_action(struct softirq_action *h)
5155 {
5156 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5157
5158 if (sd->completion_queue) {
5159 struct sk_buff *clist;
5160
5161 local_irq_disable();
5162 clist = sd->completion_queue;
5163 sd->completion_queue = NULL;
5164 local_irq_enable();
5165
5166 while (clist) {
5167 struct sk_buff *skb = clist;
5168
5169 clist = clist->next;
5170
5171 WARN_ON(refcount_read(&skb->users));
5172 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5173 trace_consume_skb(skb, net_tx_action);
5174 else
5175 trace_kfree_skb(skb, net_tx_action,
5176 get_kfree_skb_cb(skb)->reason);
5177
5178 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5179 __kfree_skb(skb);
5180 else
5181 __napi_kfree_skb(skb,
5182 get_kfree_skb_cb(skb)->reason);
5183 }
5184 }
5185
5186 if (sd->output_queue) {
5187 struct Qdisc *head;
5188
5189 local_irq_disable();
5190 head = sd->output_queue;
5191 sd->output_queue = NULL;
5192 sd->output_queue_tailp = &sd->output_queue;
5193 local_irq_enable();
5194
5195 rcu_read_lock();
5196
5197 while (head) {
5198 struct Qdisc *q = head;
5199 spinlock_t *root_lock = NULL;
5200
5201 head = head->next_sched;
5202
5203 /* We need to make sure head->next_sched is read
5204 * before clearing __QDISC_STATE_SCHED
5205 */
5206 smp_mb__before_atomic();
5207
5208 if (!(q->flags & TCQ_F_NOLOCK)) {
5209 root_lock = qdisc_lock(q);
5210 spin_lock(root_lock);
5211 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5212 &q->state))) {
5213 /* There is a synchronize_net() between
5214 * STATE_DEACTIVATED flag being set and
5215 * qdisc_reset()/some_qdisc_is_busy() in
5216 * dev_deactivate(), so we can safely bail out
5217 * early here to avoid data race between
5218 * qdisc_deactivate() and some_qdisc_is_busy()
5219 * for lockless qdisc.
5220 */
5221 clear_bit(__QDISC_STATE_SCHED, &q->state);
5222 continue;
5223 }
5224
5225 clear_bit(__QDISC_STATE_SCHED, &q->state);
5226 qdisc_run(q);
5227 if (root_lock)
5228 spin_unlock(root_lock);
5229 }
5230
5231 rcu_read_unlock();
5232 }
5233
5234 xfrm_dev_backlog(sd);
5235 }
5236
5237 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5238 /* This hook is defined here for ATM LANE */
5239 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5240 unsigned char *addr) __read_mostly;
5241 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5242 #endif
5243
5244 /**
5245 * netdev_is_rx_handler_busy - check if receive handler is registered
5246 * @dev: device to check
5247 *
5248 * Check if a receive handler is already registered for a given device.
5249 * Return true if there one.
5250 *
5251 * The caller must hold the rtnl_mutex.
5252 */
netdev_is_rx_handler_busy(struct net_device * dev)5253 bool netdev_is_rx_handler_busy(struct net_device *dev)
5254 {
5255 ASSERT_RTNL();
5256 return dev && rtnl_dereference(dev->rx_handler);
5257 }
5258 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5259
5260 /**
5261 * netdev_rx_handler_register - register receive handler
5262 * @dev: device to register a handler for
5263 * @rx_handler: receive handler to register
5264 * @rx_handler_data: data pointer that is used by rx handler
5265 *
5266 * Register a receive handler for a device. This handler will then be
5267 * called from __netif_receive_skb. A negative errno code is returned
5268 * on a failure.
5269 *
5270 * The caller must hold the rtnl_mutex.
5271 *
5272 * For a general description of rx_handler, see enum rx_handler_result.
5273 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5274 int netdev_rx_handler_register(struct net_device *dev,
5275 rx_handler_func_t *rx_handler,
5276 void *rx_handler_data)
5277 {
5278 if (netdev_is_rx_handler_busy(dev))
5279 return -EBUSY;
5280
5281 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5282 return -EINVAL;
5283
5284 /* Note: rx_handler_data must be set before rx_handler */
5285 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5286 rcu_assign_pointer(dev->rx_handler, rx_handler);
5287
5288 return 0;
5289 }
5290 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5291
5292 /**
5293 * netdev_rx_handler_unregister - unregister receive handler
5294 * @dev: device to unregister a handler from
5295 *
5296 * Unregister a receive handler from a device.
5297 *
5298 * The caller must hold the rtnl_mutex.
5299 */
netdev_rx_handler_unregister(struct net_device * dev)5300 void netdev_rx_handler_unregister(struct net_device *dev)
5301 {
5302
5303 ASSERT_RTNL();
5304 RCU_INIT_POINTER(dev->rx_handler, NULL);
5305 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5306 * section has a guarantee to see a non NULL rx_handler_data
5307 * as well.
5308 */
5309 synchronize_net();
5310 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5311 }
5312 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5313
5314 /*
5315 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5316 * the special handling of PFMEMALLOC skbs.
5317 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5318 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5319 {
5320 switch (skb->protocol) {
5321 case htons(ETH_P_ARP):
5322 case htons(ETH_P_IP):
5323 case htons(ETH_P_IPV6):
5324 case htons(ETH_P_8021Q):
5325 case htons(ETH_P_8021AD):
5326 return true;
5327 default:
5328 return false;
5329 }
5330 }
5331
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5332 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5333 int *ret, struct net_device *orig_dev)
5334 {
5335 if (nf_hook_ingress_active(skb)) {
5336 int ingress_retval;
5337
5338 if (*pt_prev) {
5339 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5340 *pt_prev = NULL;
5341 }
5342
5343 rcu_read_lock();
5344 ingress_retval = nf_hook_ingress(skb);
5345 rcu_read_unlock();
5346 return ingress_retval;
5347 }
5348 return 0;
5349 }
5350
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5351 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5352 struct packet_type **ppt_prev)
5353 {
5354 struct packet_type *ptype, *pt_prev;
5355 rx_handler_func_t *rx_handler;
5356 struct sk_buff *skb = *pskb;
5357 struct net_device *orig_dev;
5358 bool deliver_exact = false;
5359 int ret = NET_RX_DROP;
5360 __be16 type;
5361
5362 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5363
5364 trace_netif_receive_skb(skb);
5365
5366 orig_dev = skb->dev;
5367
5368 skb_reset_network_header(skb);
5369 if (!skb_transport_header_was_set(skb))
5370 skb_reset_transport_header(skb);
5371 skb_reset_mac_len(skb);
5372
5373 pt_prev = NULL;
5374
5375 another_round:
5376 skb->skb_iif = skb->dev->ifindex;
5377
5378 __this_cpu_inc(softnet_data.processed);
5379
5380 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5381 int ret2;
5382
5383 migrate_disable();
5384 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5385 migrate_enable();
5386
5387 if (ret2 != XDP_PASS) {
5388 ret = NET_RX_DROP;
5389 goto out;
5390 }
5391 }
5392
5393 if (eth_type_vlan(skb->protocol)) {
5394 skb = skb_vlan_untag(skb);
5395 if (unlikely(!skb))
5396 goto out;
5397 }
5398
5399 if (skb_skip_tc_classify(skb))
5400 goto skip_classify;
5401
5402 if (pfmemalloc)
5403 goto skip_taps;
5404
5405 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5406 if (pt_prev)
5407 ret = deliver_skb(skb, pt_prev, orig_dev);
5408 pt_prev = ptype;
5409 }
5410
5411 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5412 if (pt_prev)
5413 ret = deliver_skb(skb, pt_prev, orig_dev);
5414 pt_prev = ptype;
5415 }
5416
5417 skip_taps:
5418 #ifdef CONFIG_NET_INGRESS
5419 if (static_branch_unlikely(&ingress_needed_key)) {
5420 bool another = false;
5421
5422 nf_skip_egress(skb, true);
5423 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5424 &another);
5425 if (another)
5426 goto another_round;
5427 if (!skb)
5428 goto out;
5429
5430 nf_skip_egress(skb, false);
5431 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5432 goto out;
5433 }
5434 #endif
5435 skb_reset_redirect(skb);
5436 skip_classify:
5437 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5438 goto drop;
5439
5440 if (skb_vlan_tag_present(skb)) {
5441 if (pt_prev) {
5442 ret = deliver_skb(skb, pt_prev, orig_dev);
5443 pt_prev = NULL;
5444 }
5445 if (vlan_do_receive(&skb))
5446 goto another_round;
5447 else if (unlikely(!skb))
5448 goto out;
5449 }
5450
5451 rx_handler = rcu_dereference(skb->dev->rx_handler);
5452 if (rx_handler) {
5453 if (pt_prev) {
5454 ret = deliver_skb(skb, pt_prev, orig_dev);
5455 pt_prev = NULL;
5456 }
5457 switch (rx_handler(&skb)) {
5458 case RX_HANDLER_CONSUMED:
5459 ret = NET_RX_SUCCESS;
5460 goto out;
5461 case RX_HANDLER_ANOTHER:
5462 goto another_round;
5463 case RX_HANDLER_EXACT:
5464 deliver_exact = true;
5465 break;
5466 case RX_HANDLER_PASS:
5467 break;
5468 default:
5469 BUG();
5470 }
5471 }
5472
5473 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5474 check_vlan_id:
5475 if (skb_vlan_tag_get_id(skb)) {
5476 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5477 * find vlan device.
5478 */
5479 skb->pkt_type = PACKET_OTHERHOST;
5480 } else if (eth_type_vlan(skb->protocol)) {
5481 /* Outer header is 802.1P with vlan 0, inner header is
5482 * 802.1Q or 802.1AD and vlan_do_receive() above could
5483 * not find vlan dev for vlan id 0.
5484 */
5485 __vlan_hwaccel_clear_tag(skb);
5486 skb = skb_vlan_untag(skb);
5487 if (unlikely(!skb))
5488 goto out;
5489 if (vlan_do_receive(&skb))
5490 /* After stripping off 802.1P header with vlan 0
5491 * vlan dev is found for inner header.
5492 */
5493 goto another_round;
5494 else if (unlikely(!skb))
5495 goto out;
5496 else
5497 /* We have stripped outer 802.1P vlan 0 header.
5498 * But could not find vlan dev.
5499 * check again for vlan id to set OTHERHOST.
5500 */
5501 goto check_vlan_id;
5502 }
5503 /* Note: we might in the future use prio bits
5504 * and set skb->priority like in vlan_do_receive()
5505 * For the time being, just ignore Priority Code Point
5506 */
5507 __vlan_hwaccel_clear_tag(skb);
5508 }
5509
5510 type = skb->protocol;
5511
5512 /* deliver only exact match when indicated */
5513 if (likely(!deliver_exact)) {
5514 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5515 &ptype_base[ntohs(type) &
5516 PTYPE_HASH_MASK]);
5517 }
5518
5519 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5520 &orig_dev->ptype_specific);
5521
5522 if (unlikely(skb->dev != orig_dev)) {
5523 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5524 &skb->dev->ptype_specific);
5525 }
5526
5527 if (pt_prev) {
5528 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5529 goto drop;
5530 *ppt_prev = pt_prev;
5531 } else {
5532 drop:
5533 if (!deliver_exact)
5534 dev_core_stats_rx_dropped_inc(skb->dev);
5535 else
5536 dev_core_stats_rx_nohandler_inc(skb->dev);
5537 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5538 /* Jamal, now you will not able to escape explaining
5539 * me how you were going to use this. :-)
5540 */
5541 ret = NET_RX_DROP;
5542 }
5543
5544 out:
5545 /* The invariant here is that if *ppt_prev is not NULL
5546 * then skb should also be non-NULL.
5547 *
5548 * Apparently *ppt_prev assignment above holds this invariant due to
5549 * skb dereferencing near it.
5550 */
5551 *pskb = skb;
5552 return ret;
5553 }
5554
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5555 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5556 {
5557 struct net_device *orig_dev = skb->dev;
5558 struct packet_type *pt_prev = NULL;
5559 int ret;
5560
5561 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5562 if (pt_prev)
5563 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5564 skb->dev, pt_prev, orig_dev);
5565 return ret;
5566 }
5567
5568 /**
5569 * netif_receive_skb_core - special purpose version of netif_receive_skb
5570 * @skb: buffer to process
5571 *
5572 * More direct receive version of netif_receive_skb(). It should
5573 * only be used by callers that have a need to skip RPS and Generic XDP.
5574 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5575 *
5576 * This function may only be called from softirq context and interrupts
5577 * should be enabled.
5578 *
5579 * Return values (usually ignored):
5580 * NET_RX_SUCCESS: no congestion
5581 * NET_RX_DROP: packet was dropped
5582 */
netif_receive_skb_core(struct sk_buff * skb)5583 int netif_receive_skb_core(struct sk_buff *skb)
5584 {
5585 int ret;
5586
5587 rcu_read_lock();
5588 ret = __netif_receive_skb_one_core(skb, false);
5589 rcu_read_unlock();
5590
5591 return ret;
5592 }
5593 EXPORT_SYMBOL(netif_receive_skb_core);
5594
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5595 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5596 struct packet_type *pt_prev,
5597 struct net_device *orig_dev)
5598 {
5599 struct sk_buff *skb, *next;
5600
5601 if (!pt_prev)
5602 return;
5603 if (list_empty(head))
5604 return;
5605 if (pt_prev->list_func != NULL)
5606 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5607 ip_list_rcv, head, pt_prev, orig_dev);
5608 else
5609 list_for_each_entry_safe(skb, next, head, list) {
5610 skb_list_del_init(skb);
5611 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5612 }
5613 }
5614
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5615 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5616 {
5617 /* Fast-path assumptions:
5618 * - There is no RX handler.
5619 * - Only one packet_type matches.
5620 * If either of these fails, we will end up doing some per-packet
5621 * processing in-line, then handling the 'last ptype' for the whole
5622 * sublist. This can't cause out-of-order delivery to any single ptype,
5623 * because the 'last ptype' must be constant across the sublist, and all
5624 * other ptypes are handled per-packet.
5625 */
5626 /* Current (common) ptype of sublist */
5627 struct packet_type *pt_curr = NULL;
5628 /* Current (common) orig_dev of sublist */
5629 struct net_device *od_curr = NULL;
5630 struct list_head sublist;
5631 struct sk_buff *skb, *next;
5632
5633 INIT_LIST_HEAD(&sublist);
5634 list_for_each_entry_safe(skb, next, head, list) {
5635 struct net_device *orig_dev = skb->dev;
5636 struct packet_type *pt_prev = NULL;
5637
5638 skb_list_del_init(skb);
5639 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5640 if (!pt_prev)
5641 continue;
5642 if (pt_curr != pt_prev || od_curr != orig_dev) {
5643 /* dispatch old sublist */
5644 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5645 /* start new sublist */
5646 INIT_LIST_HEAD(&sublist);
5647 pt_curr = pt_prev;
5648 od_curr = orig_dev;
5649 }
5650 list_add_tail(&skb->list, &sublist);
5651 }
5652
5653 /* dispatch final sublist */
5654 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5655 }
5656
__netif_receive_skb(struct sk_buff * skb)5657 static int __netif_receive_skb(struct sk_buff *skb)
5658 {
5659 int ret;
5660
5661 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5662 unsigned int noreclaim_flag;
5663
5664 /*
5665 * PFMEMALLOC skbs are special, they should
5666 * - be delivered to SOCK_MEMALLOC sockets only
5667 * - stay away from userspace
5668 * - have bounded memory usage
5669 *
5670 * Use PF_MEMALLOC as this saves us from propagating the allocation
5671 * context down to all allocation sites.
5672 */
5673 noreclaim_flag = memalloc_noreclaim_save();
5674 ret = __netif_receive_skb_one_core(skb, true);
5675 memalloc_noreclaim_restore(noreclaim_flag);
5676 } else
5677 ret = __netif_receive_skb_one_core(skb, false);
5678
5679 return ret;
5680 }
5681
__netif_receive_skb_list(struct list_head * head)5682 static void __netif_receive_skb_list(struct list_head *head)
5683 {
5684 unsigned long noreclaim_flag = 0;
5685 struct sk_buff *skb, *next;
5686 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5687
5688 list_for_each_entry_safe(skb, next, head, list) {
5689 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5690 struct list_head sublist;
5691
5692 /* Handle the previous sublist */
5693 list_cut_before(&sublist, head, &skb->list);
5694 if (!list_empty(&sublist))
5695 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5696 pfmemalloc = !pfmemalloc;
5697 /* See comments in __netif_receive_skb */
5698 if (pfmemalloc)
5699 noreclaim_flag = memalloc_noreclaim_save();
5700 else
5701 memalloc_noreclaim_restore(noreclaim_flag);
5702 }
5703 }
5704 /* Handle the remaining sublist */
5705 if (!list_empty(head))
5706 __netif_receive_skb_list_core(head, pfmemalloc);
5707 /* Restore pflags */
5708 if (pfmemalloc)
5709 memalloc_noreclaim_restore(noreclaim_flag);
5710 }
5711
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5712 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5713 {
5714 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5715 struct bpf_prog *new = xdp->prog;
5716 int ret = 0;
5717
5718 switch (xdp->command) {
5719 case XDP_SETUP_PROG:
5720 rcu_assign_pointer(dev->xdp_prog, new);
5721 if (old)
5722 bpf_prog_put(old);
5723
5724 if (old && !new) {
5725 static_branch_dec(&generic_xdp_needed_key);
5726 } else if (new && !old) {
5727 static_branch_inc(&generic_xdp_needed_key);
5728 dev_disable_lro(dev);
5729 dev_disable_gro_hw(dev);
5730 }
5731 break;
5732
5733 default:
5734 ret = -EINVAL;
5735 break;
5736 }
5737
5738 return ret;
5739 }
5740
netif_receive_skb_internal(struct sk_buff * skb)5741 static int netif_receive_skb_internal(struct sk_buff *skb)
5742 {
5743 int ret;
5744
5745 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5746
5747 if (skb_defer_rx_timestamp(skb))
5748 return NET_RX_SUCCESS;
5749
5750 rcu_read_lock();
5751 #ifdef CONFIG_RPS
5752 if (static_branch_unlikely(&rps_needed)) {
5753 struct rps_dev_flow voidflow, *rflow = &voidflow;
5754 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5755
5756 if (cpu >= 0) {
5757 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5758 rcu_read_unlock();
5759 return ret;
5760 }
5761 }
5762 #endif
5763 ret = __netif_receive_skb(skb);
5764 rcu_read_unlock();
5765 return ret;
5766 }
5767
netif_receive_skb_list_internal(struct list_head * head)5768 void netif_receive_skb_list_internal(struct list_head *head)
5769 {
5770 struct sk_buff *skb, *next;
5771 struct list_head sublist;
5772
5773 INIT_LIST_HEAD(&sublist);
5774 list_for_each_entry_safe(skb, next, head, list) {
5775 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5776 skb_list_del_init(skb);
5777 if (!skb_defer_rx_timestamp(skb))
5778 list_add_tail(&skb->list, &sublist);
5779 }
5780 list_splice_init(&sublist, head);
5781
5782 rcu_read_lock();
5783 #ifdef CONFIG_RPS
5784 if (static_branch_unlikely(&rps_needed)) {
5785 list_for_each_entry_safe(skb, next, head, list) {
5786 struct rps_dev_flow voidflow, *rflow = &voidflow;
5787 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5788
5789 if (cpu >= 0) {
5790 /* Will be handled, remove from list */
5791 skb_list_del_init(skb);
5792 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5793 }
5794 }
5795 }
5796 #endif
5797 __netif_receive_skb_list(head);
5798 rcu_read_unlock();
5799 }
5800
5801 /**
5802 * netif_receive_skb - process receive buffer from network
5803 * @skb: buffer to process
5804 *
5805 * netif_receive_skb() is the main receive data processing function.
5806 * It always succeeds. The buffer may be dropped during processing
5807 * for congestion control or by the protocol layers.
5808 *
5809 * This function may only be called from softirq context and interrupts
5810 * should be enabled.
5811 *
5812 * Return values (usually ignored):
5813 * NET_RX_SUCCESS: no congestion
5814 * NET_RX_DROP: packet was dropped
5815 */
netif_receive_skb(struct sk_buff * skb)5816 int netif_receive_skb(struct sk_buff *skb)
5817 {
5818 int ret;
5819
5820 trace_netif_receive_skb_entry(skb);
5821
5822 ret = netif_receive_skb_internal(skb);
5823 trace_netif_receive_skb_exit(ret);
5824
5825 return ret;
5826 }
5827 EXPORT_SYMBOL(netif_receive_skb);
5828
5829 /**
5830 * netif_receive_skb_list - process many receive buffers from network
5831 * @head: list of skbs to process.
5832 *
5833 * Since return value of netif_receive_skb() is normally ignored, and
5834 * wouldn't be meaningful for a list, this function returns void.
5835 *
5836 * This function may only be called from softirq context and interrupts
5837 * should be enabled.
5838 */
netif_receive_skb_list(struct list_head * head)5839 void netif_receive_skb_list(struct list_head *head)
5840 {
5841 struct sk_buff *skb;
5842
5843 if (list_empty(head))
5844 return;
5845 if (trace_netif_receive_skb_list_entry_enabled()) {
5846 list_for_each_entry(skb, head, list)
5847 trace_netif_receive_skb_list_entry(skb);
5848 }
5849 netif_receive_skb_list_internal(head);
5850 trace_netif_receive_skb_list_exit(0);
5851 }
5852 EXPORT_SYMBOL(netif_receive_skb_list);
5853
5854 static DEFINE_PER_CPU(struct work_struct, flush_works);
5855
5856 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5857 static void flush_backlog(struct work_struct *work)
5858 {
5859 struct sk_buff *skb, *tmp;
5860 struct softnet_data *sd;
5861
5862 local_bh_disable();
5863 sd = this_cpu_ptr(&softnet_data);
5864
5865 rps_lock_irq_disable(sd);
5866 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5867 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5868 __skb_unlink(skb, &sd->input_pkt_queue);
5869 dev_kfree_skb_irq(skb);
5870 input_queue_head_incr(sd);
5871 }
5872 }
5873 rps_unlock_irq_enable(sd);
5874
5875 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5876 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5877 __skb_unlink(skb, &sd->process_queue);
5878 kfree_skb(skb);
5879 input_queue_head_incr(sd);
5880 }
5881 }
5882 local_bh_enable();
5883 }
5884
flush_required(int cpu)5885 static bool flush_required(int cpu)
5886 {
5887 #if IS_ENABLED(CONFIG_RPS)
5888 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5889 bool do_flush;
5890
5891 rps_lock_irq_disable(sd);
5892
5893 /* as insertion into process_queue happens with the rps lock held,
5894 * process_queue access may race only with dequeue
5895 */
5896 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5897 !skb_queue_empty_lockless(&sd->process_queue);
5898 rps_unlock_irq_enable(sd);
5899
5900 return do_flush;
5901 #endif
5902 /* without RPS we can't safely check input_pkt_queue: during a
5903 * concurrent remote skb_queue_splice() we can detect as empty both
5904 * input_pkt_queue and process_queue even if the latter could end-up
5905 * containing a lot of packets.
5906 */
5907 return true;
5908 }
5909
flush_all_backlogs(void)5910 static void flush_all_backlogs(void)
5911 {
5912 static cpumask_t flush_cpus;
5913 unsigned int cpu;
5914
5915 /* since we are under rtnl lock protection we can use static data
5916 * for the cpumask and avoid allocating on stack the possibly
5917 * large mask
5918 */
5919 ASSERT_RTNL();
5920
5921 cpus_read_lock();
5922
5923 cpumask_clear(&flush_cpus);
5924 for_each_online_cpu(cpu) {
5925 if (flush_required(cpu)) {
5926 queue_work_on(cpu, system_highpri_wq,
5927 per_cpu_ptr(&flush_works, cpu));
5928 cpumask_set_cpu(cpu, &flush_cpus);
5929 }
5930 }
5931
5932 /* we can have in flight packet[s] on the cpus we are not flushing,
5933 * synchronize_net() in unregister_netdevice_many() will take care of
5934 * them
5935 */
5936 for_each_cpu(cpu, &flush_cpus)
5937 flush_work(per_cpu_ptr(&flush_works, cpu));
5938
5939 cpus_read_unlock();
5940 }
5941
net_rps_send_ipi(struct softnet_data * remsd)5942 static void net_rps_send_ipi(struct softnet_data *remsd)
5943 {
5944 #ifdef CONFIG_RPS
5945 while (remsd) {
5946 struct softnet_data *next = remsd->rps_ipi_next;
5947
5948 if (cpu_online(remsd->cpu))
5949 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5950 remsd = next;
5951 }
5952 #endif
5953 }
5954
5955 /*
5956 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5957 * Note: called with local irq disabled, but exits with local irq enabled.
5958 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5959 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5960 {
5961 #ifdef CONFIG_RPS
5962 struct softnet_data *remsd = sd->rps_ipi_list;
5963
5964 if (remsd) {
5965 sd->rps_ipi_list = NULL;
5966
5967 local_irq_enable();
5968
5969 /* Send pending IPI's to kick RPS processing on remote cpus. */
5970 net_rps_send_ipi(remsd);
5971 } else
5972 #endif
5973 local_irq_enable();
5974 }
5975
sd_has_rps_ipi_waiting(struct softnet_data * sd)5976 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5977 {
5978 #ifdef CONFIG_RPS
5979 return sd->rps_ipi_list != NULL;
5980 #else
5981 return false;
5982 #endif
5983 }
5984
process_backlog(struct napi_struct * napi,int quota)5985 static int process_backlog(struct napi_struct *napi, int quota)
5986 {
5987 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5988 bool again = true;
5989 int work = 0;
5990
5991 /* Check if we have pending ipi, its better to send them now,
5992 * not waiting net_rx_action() end.
5993 */
5994 if (sd_has_rps_ipi_waiting(sd)) {
5995 local_irq_disable();
5996 net_rps_action_and_irq_enable(sd);
5997 }
5998
5999 napi->weight = READ_ONCE(dev_rx_weight);
6000 while (again) {
6001 struct sk_buff *skb;
6002
6003 while ((skb = __skb_dequeue(&sd->process_queue))) {
6004 rcu_read_lock();
6005 __netif_receive_skb(skb);
6006 rcu_read_unlock();
6007 input_queue_head_incr(sd);
6008 if (++work >= quota)
6009 return work;
6010
6011 }
6012
6013 rps_lock_irq_disable(sd);
6014 if (skb_queue_empty(&sd->input_pkt_queue)) {
6015 /*
6016 * Inline a custom version of __napi_complete().
6017 * only current cpu owns and manipulates this napi,
6018 * and NAPI_STATE_SCHED is the only possible flag set
6019 * on backlog.
6020 * We can use a plain write instead of clear_bit(),
6021 * and we dont need an smp_mb() memory barrier.
6022 */
6023 napi->state = 0;
6024 again = false;
6025 } else {
6026 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6027 &sd->process_queue);
6028 }
6029 rps_unlock_irq_enable(sd);
6030 }
6031
6032 return work;
6033 }
6034
6035 /**
6036 * __napi_schedule - schedule for receive
6037 * @n: entry to schedule
6038 *
6039 * The entry's receive function will be scheduled to run.
6040 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6041 */
__napi_schedule(struct napi_struct * n)6042 void __napi_schedule(struct napi_struct *n)
6043 {
6044 unsigned long flags;
6045
6046 local_irq_save(flags);
6047 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6048 local_irq_restore(flags);
6049 }
6050 EXPORT_SYMBOL(__napi_schedule);
6051
6052 /**
6053 * napi_schedule_prep - check if napi can be scheduled
6054 * @n: napi context
6055 *
6056 * Test if NAPI routine is already running, and if not mark
6057 * it as running. This is used as a condition variable to
6058 * insure only one NAPI poll instance runs. We also make
6059 * sure there is no pending NAPI disable.
6060 */
napi_schedule_prep(struct napi_struct * n)6061 bool napi_schedule_prep(struct napi_struct *n)
6062 {
6063 unsigned long new, val = READ_ONCE(n->state);
6064
6065 do {
6066 if (unlikely(val & NAPIF_STATE_DISABLE))
6067 return false;
6068 new = val | NAPIF_STATE_SCHED;
6069
6070 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6071 * This was suggested by Alexander Duyck, as compiler
6072 * emits better code than :
6073 * if (val & NAPIF_STATE_SCHED)
6074 * new |= NAPIF_STATE_MISSED;
6075 */
6076 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6077 NAPIF_STATE_MISSED;
6078 } while (!try_cmpxchg(&n->state, &val, new));
6079
6080 return !(val & NAPIF_STATE_SCHED);
6081 }
6082 EXPORT_SYMBOL(napi_schedule_prep);
6083
6084 /**
6085 * __napi_schedule_irqoff - schedule for receive
6086 * @n: entry to schedule
6087 *
6088 * Variant of __napi_schedule() assuming hard irqs are masked.
6089 *
6090 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6091 * because the interrupt disabled assumption might not be true
6092 * due to force-threaded interrupts and spinlock substitution.
6093 */
__napi_schedule_irqoff(struct napi_struct * n)6094 void __napi_schedule_irqoff(struct napi_struct *n)
6095 {
6096 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6097 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6098 else
6099 __napi_schedule(n);
6100 }
6101 EXPORT_SYMBOL(__napi_schedule_irqoff);
6102
napi_complete_done(struct napi_struct * n,int work_done)6103 bool napi_complete_done(struct napi_struct *n, int work_done)
6104 {
6105 unsigned long flags, val, new, timeout = 0;
6106 bool ret = true;
6107
6108 /*
6109 * 1) Don't let napi dequeue from the cpu poll list
6110 * just in case its running on a different cpu.
6111 * 2) If we are busy polling, do nothing here, we have
6112 * the guarantee we will be called later.
6113 */
6114 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6115 NAPIF_STATE_IN_BUSY_POLL)))
6116 return false;
6117
6118 if (work_done) {
6119 if (n->gro_bitmask)
6120 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6121 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6122 }
6123 if (n->defer_hard_irqs_count > 0) {
6124 n->defer_hard_irqs_count--;
6125 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6126 if (timeout)
6127 ret = false;
6128 }
6129 if (n->gro_bitmask) {
6130 /* When the NAPI instance uses a timeout and keeps postponing
6131 * it, we need to bound somehow the time packets are kept in
6132 * the GRO layer
6133 */
6134 napi_gro_flush(n, !!timeout);
6135 }
6136
6137 gro_normal_list(n);
6138
6139 if (unlikely(!list_empty(&n->poll_list))) {
6140 /* If n->poll_list is not empty, we need to mask irqs */
6141 local_irq_save(flags);
6142 list_del_init(&n->poll_list);
6143 local_irq_restore(flags);
6144 }
6145 WRITE_ONCE(n->list_owner, -1);
6146
6147 val = READ_ONCE(n->state);
6148 do {
6149 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6150
6151 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6152 NAPIF_STATE_SCHED_THREADED |
6153 NAPIF_STATE_PREFER_BUSY_POLL);
6154
6155 /* If STATE_MISSED was set, leave STATE_SCHED set,
6156 * because we will call napi->poll() one more time.
6157 * This C code was suggested by Alexander Duyck to help gcc.
6158 */
6159 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6160 NAPIF_STATE_SCHED;
6161 } while (!try_cmpxchg(&n->state, &val, new));
6162
6163 if (unlikely(val & NAPIF_STATE_MISSED)) {
6164 __napi_schedule(n);
6165 return false;
6166 }
6167
6168 if (timeout)
6169 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6170 HRTIMER_MODE_REL_PINNED);
6171 return ret;
6172 }
6173 EXPORT_SYMBOL(napi_complete_done);
6174
6175 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6176 static struct napi_struct *napi_by_id(unsigned int napi_id)
6177 {
6178 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6179 struct napi_struct *napi;
6180
6181 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6182 if (napi->napi_id == napi_id)
6183 return napi;
6184
6185 return NULL;
6186 }
6187
6188 #if defined(CONFIG_NET_RX_BUSY_POLL)
6189
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6190 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6191 {
6192 if (!skip_schedule) {
6193 gro_normal_list(napi);
6194 __napi_schedule(napi);
6195 return;
6196 }
6197
6198 if (napi->gro_bitmask) {
6199 /* flush too old packets
6200 * If HZ < 1000, flush all packets.
6201 */
6202 napi_gro_flush(napi, HZ >= 1000);
6203 }
6204
6205 gro_normal_list(napi);
6206 clear_bit(NAPI_STATE_SCHED, &napi->state);
6207 }
6208
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6209 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6210 u16 budget)
6211 {
6212 bool skip_schedule = false;
6213 unsigned long timeout;
6214 int rc;
6215
6216 /* Busy polling means there is a high chance device driver hard irq
6217 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6218 * set in napi_schedule_prep().
6219 * Since we are about to call napi->poll() once more, we can safely
6220 * clear NAPI_STATE_MISSED.
6221 *
6222 * Note: x86 could use a single "lock and ..." instruction
6223 * to perform these two clear_bit()
6224 */
6225 clear_bit(NAPI_STATE_MISSED, &napi->state);
6226 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6227
6228 local_bh_disable();
6229
6230 if (prefer_busy_poll) {
6231 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6232 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6233 if (napi->defer_hard_irqs_count && timeout) {
6234 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6235 skip_schedule = true;
6236 }
6237 }
6238
6239 /* All we really want here is to re-enable device interrupts.
6240 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6241 */
6242 rc = napi->poll(napi, budget);
6243 /* We can't gro_normal_list() here, because napi->poll() might have
6244 * rearmed the napi (napi_complete_done()) in which case it could
6245 * already be running on another CPU.
6246 */
6247 trace_napi_poll(napi, rc, budget);
6248 netpoll_poll_unlock(have_poll_lock);
6249 if (rc == budget)
6250 __busy_poll_stop(napi, skip_schedule);
6251 local_bh_enable();
6252 }
6253
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6254 void napi_busy_loop(unsigned int napi_id,
6255 bool (*loop_end)(void *, unsigned long),
6256 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6257 {
6258 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6259 int (*napi_poll)(struct napi_struct *napi, int budget);
6260 void *have_poll_lock = NULL;
6261 struct napi_struct *napi;
6262
6263 restart:
6264 napi_poll = NULL;
6265
6266 rcu_read_lock();
6267
6268 napi = napi_by_id(napi_id);
6269 if (!napi)
6270 goto out;
6271
6272 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6273 preempt_disable();
6274 for (;;) {
6275 int work = 0;
6276
6277 local_bh_disable();
6278 if (!napi_poll) {
6279 unsigned long val = READ_ONCE(napi->state);
6280
6281 /* If multiple threads are competing for this napi,
6282 * we avoid dirtying napi->state as much as we can.
6283 */
6284 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6285 NAPIF_STATE_IN_BUSY_POLL)) {
6286 if (prefer_busy_poll)
6287 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6288 goto count;
6289 }
6290 if (cmpxchg(&napi->state, val,
6291 val | NAPIF_STATE_IN_BUSY_POLL |
6292 NAPIF_STATE_SCHED) != val) {
6293 if (prefer_busy_poll)
6294 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6295 goto count;
6296 }
6297 have_poll_lock = netpoll_poll_lock(napi);
6298 napi_poll = napi->poll;
6299 }
6300 work = napi_poll(napi, budget);
6301 trace_napi_poll(napi, work, budget);
6302 gro_normal_list(napi);
6303 count:
6304 if (work > 0)
6305 __NET_ADD_STATS(dev_net(napi->dev),
6306 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6307 local_bh_enable();
6308
6309 if (!loop_end || loop_end(loop_end_arg, start_time))
6310 break;
6311
6312 if (unlikely(need_resched())) {
6313 if (napi_poll)
6314 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6315 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6316 preempt_enable();
6317 rcu_read_unlock();
6318 cond_resched();
6319 if (loop_end(loop_end_arg, start_time))
6320 return;
6321 goto restart;
6322 }
6323 cpu_relax();
6324 }
6325 if (napi_poll)
6326 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6327 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6328 preempt_enable();
6329 out:
6330 rcu_read_unlock();
6331 }
6332 EXPORT_SYMBOL(napi_busy_loop);
6333
6334 #endif /* CONFIG_NET_RX_BUSY_POLL */
6335
napi_hash_add(struct napi_struct * napi)6336 static void napi_hash_add(struct napi_struct *napi)
6337 {
6338 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6339 return;
6340
6341 spin_lock(&napi_hash_lock);
6342
6343 /* 0..NR_CPUS range is reserved for sender_cpu use */
6344 do {
6345 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6346 napi_gen_id = MIN_NAPI_ID;
6347 } while (napi_by_id(napi_gen_id));
6348 napi->napi_id = napi_gen_id;
6349
6350 hlist_add_head_rcu(&napi->napi_hash_node,
6351 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6352
6353 spin_unlock(&napi_hash_lock);
6354 }
6355
6356 /* Warning : caller is responsible to make sure rcu grace period
6357 * is respected before freeing memory containing @napi
6358 */
napi_hash_del(struct napi_struct * napi)6359 static void napi_hash_del(struct napi_struct *napi)
6360 {
6361 spin_lock(&napi_hash_lock);
6362
6363 hlist_del_init_rcu(&napi->napi_hash_node);
6364
6365 spin_unlock(&napi_hash_lock);
6366 }
6367
napi_watchdog(struct hrtimer * timer)6368 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6369 {
6370 struct napi_struct *napi;
6371
6372 napi = container_of(timer, struct napi_struct, timer);
6373
6374 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6375 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6376 */
6377 if (!napi_disable_pending(napi) &&
6378 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6379 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6380 __napi_schedule_irqoff(napi);
6381 }
6382
6383 return HRTIMER_NORESTART;
6384 }
6385
init_gro_hash(struct napi_struct * napi)6386 static void init_gro_hash(struct napi_struct *napi)
6387 {
6388 int i;
6389
6390 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6391 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6392 napi->gro_hash[i].count = 0;
6393 }
6394 napi->gro_bitmask = 0;
6395 }
6396
dev_set_threaded(struct net_device * dev,bool threaded)6397 int dev_set_threaded(struct net_device *dev, bool threaded)
6398 {
6399 struct napi_struct *napi;
6400 int err = 0;
6401
6402 if (dev->threaded == threaded)
6403 return 0;
6404
6405 if (threaded) {
6406 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6407 if (!napi->thread) {
6408 err = napi_kthread_create(napi);
6409 if (err) {
6410 threaded = false;
6411 break;
6412 }
6413 }
6414 }
6415 }
6416
6417 dev->threaded = threaded;
6418
6419 /* Make sure kthread is created before THREADED bit
6420 * is set.
6421 */
6422 smp_mb__before_atomic();
6423
6424 /* Setting/unsetting threaded mode on a napi might not immediately
6425 * take effect, if the current napi instance is actively being
6426 * polled. In this case, the switch between threaded mode and
6427 * softirq mode will happen in the next round of napi_schedule().
6428 * This should not cause hiccups/stalls to the live traffic.
6429 */
6430 list_for_each_entry(napi, &dev->napi_list, dev_list)
6431 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6432
6433 return err;
6434 }
6435 EXPORT_SYMBOL(dev_set_threaded);
6436
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6437 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6438 int (*poll)(struct napi_struct *, int), int weight)
6439 {
6440 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6441 return;
6442
6443 INIT_LIST_HEAD(&napi->poll_list);
6444 INIT_HLIST_NODE(&napi->napi_hash_node);
6445 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6446 napi->timer.function = napi_watchdog;
6447 init_gro_hash(napi);
6448 napi->skb = NULL;
6449 INIT_LIST_HEAD(&napi->rx_list);
6450 napi->rx_count = 0;
6451 napi->poll = poll;
6452 if (weight > NAPI_POLL_WEIGHT)
6453 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6454 weight);
6455 napi->weight = weight;
6456 napi->dev = dev;
6457 #ifdef CONFIG_NETPOLL
6458 napi->poll_owner = -1;
6459 #endif
6460 napi->list_owner = -1;
6461 set_bit(NAPI_STATE_SCHED, &napi->state);
6462 set_bit(NAPI_STATE_NPSVC, &napi->state);
6463 list_add_rcu(&napi->dev_list, &dev->napi_list);
6464 napi_hash_add(napi);
6465 napi_get_frags_check(napi);
6466 /* Create kthread for this napi if dev->threaded is set.
6467 * Clear dev->threaded if kthread creation failed so that
6468 * threaded mode will not be enabled in napi_enable().
6469 */
6470 if (dev->threaded && napi_kthread_create(napi))
6471 dev->threaded = 0;
6472 }
6473 EXPORT_SYMBOL(netif_napi_add_weight);
6474
napi_disable(struct napi_struct * n)6475 void napi_disable(struct napi_struct *n)
6476 {
6477 unsigned long val, new;
6478
6479 might_sleep();
6480 set_bit(NAPI_STATE_DISABLE, &n->state);
6481
6482 val = READ_ONCE(n->state);
6483 do {
6484 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6485 usleep_range(20, 200);
6486 val = READ_ONCE(n->state);
6487 }
6488
6489 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6490 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6491 } while (!try_cmpxchg(&n->state, &val, new));
6492
6493 hrtimer_cancel(&n->timer);
6494
6495 clear_bit(NAPI_STATE_DISABLE, &n->state);
6496 }
6497 EXPORT_SYMBOL(napi_disable);
6498
6499 /**
6500 * napi_enable - enable NAPI scheduling
6501 * @n: NAPI context
6502 *
6503 * Resume NAPI from being scheduled on this context.
6504 * Must be paired with napi_disable.
6505 */
napi_enable(struct napi_struct * n)6506 void napi_enable(struct napi_struct *n)
6507 {
6508 unsigned long new, val = READ_ONCE(n->state);
6509
6510 do {
6511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6512
6513 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6514 if (n->dev->threaded && n->thread)
6515 new |= NAPIF_STATE_THREADED;
6516 } while (!try_cmpxchg(&n->state, &val, new));
6517 }
6518 EXPORT_SYMBOL(napi_enable);
6519
flush_gro_hash(struct napi_struct * napi)6520 static void flush_gro_hash(struct napi_struct *napi)
6521 {
6522 int i;
6523
6524 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6525 struct sk_buff *skb, *n;
6526
6527 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6528 kfree_skb(skb);
6529 napi->gro_hash[i].count = 0;
6530 }
6531 }
6532
6533 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6534 void __netif_napi_del(struct napi_struct *napi)
6535 {
6536 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6537 return;
6538
6539 napi_hash_del(napi);
6540 list_del_rcu(&napi->dev_list);
6541 napi_free_frags(napi);
6542
6543 flush_gro_hash(napi);
6544 napi->gro_bitmask = 0;
6545
6546 if (napi->thread) {
6547 kthread_stop(napi->thread);
6548 napi->thread = NULL;
6549 }
6550 }
6551 EXPORT_SYMBOL(__netif_napi_del);
6552
__napi_poll(struct napi_struct * n,bool * repoll)6553 static int __napi_poll(struct napi_struct *n, bool *repoll)
6554 {
6555 int work, weight;
6556
6557 weight = n->weight;
6558
6559 /* This NAPI_STATE_SCHED test is for avoiding a race
6560 * with netpoll's poll_napi(). Only the entity which
6561 * obtains the lock and sees NAPI_STATE_SCHED set will
6562 * actually make the ->poll() call. Therefore we avoid
6563 * accidentally calling ->poll() when NAPI is not scheduled.
6564 */
6565 work = 0;
6566 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6567 work = n->poll(n, weight);
6568 trace_napi_poll(n, work, weight);
6569 }
6570
6571 if (unlikely(work > weight))
6572 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6573 n->poll, work, weight);
6574
6575 if (likely(work < weight))
6576 return work;
6577
6578 /* Drivers must not modify the NAPI state if they
6579 * consume the entire weight. In such cases this code
6580 * still "owns" the NAPI instance and therefore can
6581 * move the instance around on the list at-will.
6582 */
6583 if (unlikely(napi_disable_pending(n))) {
6584 napi_complete(n);
6585 return work;
6586 }
6587
6588 /* The NAPI context has more processing work, but busy-polling
6589 * is preferred. Exit early.
6590 */
6591 if (napi_prefer_busy_poll(n)) {
6592 if (napi_complete_done(n, work)) {
6593 /* If timeout is not set, we need to make sure
6594 * that the NAPI is re-scheduled.
6595 */
6596 napi_schedule(n);
6597 }
6598 return work;
6599 }
6600
6601 if (n->gro_bitmask) {
6602 /* flush too old packets
6603 * If HZ < 1000, flush all packets.
6604 */
6605 napi_gro_flush(n, HZ >= 1000);
6606 }
6607
6608 gro_normal_list(n);
6609
6610 /* Some drivers may have called napi_schedule
6611 * prior to exhausting their budget.
6612 */
6613 if (unlikely(!list_empty(&n->poll_list))) {
6614 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6615 n->dev ? n->dev->name : "backlog");
6616 return work;
6617 }
6618
6619 *repoll = true;
6620
6621 return work;
6622 }
6623
napi_poll(struct napi_struct * n,struct list_head * repoll)6624 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6625 {
6626 bool do_repoll = false;
6627 void *have;
6628 int work;
6629
6630 list_del_init(&n->poll_list);
6631
6632 have = netpoll_poll_lock(n);
6633
6634 work = __napi_poll(n, &do_repoll);
6635
6636 if (do_repoll)
6637 list_add_tail(&n->poll_list, repoll);
6638
6639 netpoll_poll_unlock(have);
6640
6641 return work;
6642 }
6643
napi_thread_wait(struct napi_struct * napi)6644 static int napi_thread_wait(struct napi_struct *napi)
6645 {
6646 bool woken = false;
6647
6648 set_current_state(TASK_INTERRUPTIBLE);
6649
6650 while (!kthread_should_stop()) {
6651 /* Testing SCHED_THREADED bit here to make sure the current
6652 * kthread owns this napi and could poll on this napi.
6653 * Testing SCHED bit is not enough because SCHED bit might be
6654 * set by some other busy poll thread or by napi_disable().
6655 */
6656 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6657 WARN_ON(!list_empty(&napi->poll_list));
6658 __set_current_state(TASK_RUNNING);
6659 return 0;
6660 }
6661
6662 schedule();
6663 /* woken being true indicates this thread owns this napi. */
6664 woken = true;
6665 set_current_state(TASK_INTERRUPTIBLE);
6666 }
6667 __set_current_state(TASK_RUNNING);
6668
6669 return -1;
6670 }
6671
skb_defer_free_flush(struct softnet_data * sd)6672 static void skb_defer_free_flush(struct softnet_data *sd)
6673 {
6674 struct sk_buff *skb, *next;
6675
6676 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6677 if (!READ_ONCE(sd->defer_list))
6678 return;
6679
6680 spin_lock(&sd->defer_lock);
6681 skb = sd->defer_list;
6682 sd->defer_list = NULL;
6683 sd->defer_count = 0;
6684 spin_unlock(&sd->defer_lock);
6685
6686 while (skb != NULL) {
6687 next = skb->next;
6688 napi_consume_skb(skb, 1);
6689 skb = next;
6690 }
6691 }
6692
napi_threaded_poll(void * data)6693 static int napi_threaded_poll(void *data)
6694 {
6695 struct napi_struct *napi = data;
6696 struct softnet_data *sd;
6697 void *have;
6698
6699 while (!napi_thread_wait(napi)) {
6700 unsigned long last_qs = jiffies;
6701
6702 for (;;) {
6703 bool repoll = false;
6704
6705 local_bh_disable();
6706 sd = this_cpu_ptr(&softnet_data);
6707 sd->in_napi_threaded_poll = true;
6708
6709 have = netpoll_poll_lock(napi);
6710 __napi_poll(napi, &repoll);
6711 netpoll_poll_unlock(have);
6712
6713 sd->in_napi_threaded_poll = false;
6714 barrier();
6715
6716 if (sd_has_rps_ipi_waiting(sd)) {
6717 local_irq_disable();
6718 net_rps_action_and_irq_enable(sd);
6719 }
6720 skb_defer_free_flush(sd);
6721 local_bh_enable();
6722
6723 if (!repoll)
6724 break;
6725
6726 rcu_softirq_qs_periodic(last_qs);
6727 cond_resched();
6728 }
6729 }
6730 return 0;
6731 }
6732
net_rx_action(struct softirq_action * h)6733 static __latent_entropy void net_rx_action(struct softirq_action *h)
6734 {
6735 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6736 unsigned long time_limit = jiffies +
6737 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6738 int budget = READ_ONCE(netdev_budget);
6739 LIST_HEAD(list);
6740 LIST_HEAD(repoll);
6741
6742 start:
6743 sd->in_net_rx_action = true;
6744 local_irq_disable();
6745 list_splice_init(&sd->poll_list, &list);
6746 local_irq_enable();
6747
6748 for (;;) {
6749 struct napi_struct *n;
6750
6751 skb_defer_free_flush(sd);
6752
6753 if (list_empty(&list)) {
6754 if (list_empty(&repoll)) {
6755 sd->in_net_rx_action = false;
6756 barrier();
6757 /* We need to check if ____napi_schedule()
6758 * had refilled poll_list while
6759 * sd->in_net_rx_action was true.
6760 */
6761 if (!list_empty(&sd->poll_list))
6762 goto start;
6763 if (!sd_has_rps_ipi_waiting(sd))
6764 goto end;
6765 }
6766 break;
6767 }
6768
6769 n = list_first_entry(&list, struct napi_struct, poll_list);
6770 budget -= napi_poll(n, &repoll);
6771
6772 /* If softirq window is exhausted then punt.
6773 * Allow this to run for 2 jiffies since which will allow
6774 * an average latency of 1.5/HZ.
6775 */
6776 if (unlikely(budget <= 0 ||
6777 time_after_eq(jiffies, time_limit))) {
6778 sd->time_squeeze++;
6779 break;
6780 }
6781 }
6782
6783 local_irq_disable();
6784
6785 list_splice_tail_init(&sd->poll_list, &list);
6786 list_splice_tail(&repoll, &list);
6787 list_splice(&list, &sd->poll_list);
6788 if (!list_empty(&sd->poll_list))
6789 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6790 else
6791 sd->in_net_rx_action = false;
6792
6793 net_rps_action_and_irq_enable(sd);
6794 end:;
6795 }
6796
6797 struct netdev_adjacent {
6798 struct net_device *dev;
6799 netdevice_tracker dev_tracker;
6800
6801 /* upper master flag, there can only be one master device per list */
6802 bool master;
6803
6804 /* lookup ignore flag */
6805 bool ignore;
6806
6807 /* counter for the number of times this device was added to us */
6808 u16 ref_nr;
6809
6810 /* private field for the users */
6811 void *private;
6812
6813 struct list_head list;
6814 struct rcu_head rcu;
6815 };
6816
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6817 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6818 struct list_head *adj_list)
6819 {
6820 struct netdev_adjacent *adj;
6821
6822 list_for_each_entry(adj, adj_list, list) {
6823 if (adj->dev == adj_dev)
6824 return adj;
6825 }
6826 return NULL;
6827 }
6828
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6829 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6830 struct netdev_nested_priv *priv)
6831 {
6832 struct net_device *dev = (struct net_device *)priv->data;
6833
6834 return upper_dev == dev;
6835 }
6836
6837 /**
6838 * netdev_has_upper_dev - Check if device is linked to an upper device
6839 * @dev: device
6840 * @upper_dev: upper device to check
6841 *
6842 * Find out if a device is linked to specified upper device and return true
6843 * in case it is. Note that this checks only immediate upper device,
6844 * not through a complete stack of devices. The caller must hold the RTNL lock.
6845 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6846 bool netdev_has_upper_dev(struct net_device *dev,
6847 struct net_device *upper_dev)
6848 {
6849 struct netdev_nested_priv priv = {
6850 .data = (void *)upper_dev,
6851 };
6852
6853 ASSERT_RTNL();
6854
6855 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6856 &priv);
6857 }
6858 EXPORT_SYMBOL(netdev_has_upper_dev);
6859
6860 /**
6861 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6862 * @dev: device
6863 * @upper_dev: upper device to check
6864 *
6865 * Find out if a device is linked to specified upper device and return true
6866 * in case it is. Note that this checks the entire upper device chain.
6867 * The caller must hold rcu lock.
6868 */
6869
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6870 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6871 struct net_device *upper_dev)
6872 {
6873 struct netdev_nested_priv priv = {
6874 .data = (void *)upper_dev,
6875 };
6876
6877 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6878 &priv);
6879 }
6880 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6881
6882 /**
6883 * netdev_has_any_upper_dev - Check if device is linked to some device
6884 * @dev: device
6885 *
6886 * Find out if a device is linked to an upper device and return true in case
6887 * it is. The caller must hold the RTNL lock.
6888 */
netdev_has_any_upper_dev(struct net_device * dev)6889 bool netdev_has_any_upper_dev(struct net_device *dev)
6890 {
6891 ASSERT_RTNL();
6892
6893 return !list_empty(&dev->adj_list.upper);
6894 }
6895 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6896
6897 /**
6898 * netdev_master_upper_dev_get - Get master upper device
6899 * @dev: device
6900 *
6901 * Find a master upper device and return pointer to it or NULL in case
6902 * it's not there. The caller must hold the RTNL lock.
6903 */
netdev_master_upper_dev_get(struct net_device * dev)6904 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6905 {
6906 struct netdev_adjacent *upper;
6907
6908 ASSERT_RTNL();
6909
6910 if (list_empty(&dev->adj_list.upper))
6911 return NULL;
6912
6913 upper = list_first_entry(&dev->adj_list.upper,
6914 struct netdev_adjacent, list);
6915 if (likely(upper->master))
6916 return upper->dev;
6917 return NULL;
6918 }
6919 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6920
__netdev_master_upper_dev_get(struct net_device * dev)6921 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6922 {
6923 struct netdev_adjacent *upper;
6924
6925 ASSERT_RTNL();
6926
6927 if (list_empty(&dev->adj_list.upper))
6928 return NULL;
6929
6930 upper = list_first_entry(&dev->adj_list.upper,
6931 struct netdev_adjacent, list);
6932 if (likely(upper->master) && !upper->ignore)
6933 return upper->dev;
6934 return NULL;
6935 }
6936
6937 /**
6938 * netdev_has_any_lower_dev - Check if device is linked to some device
6939 * @dev: device
6940 *
6941 * Find out if a device is linked to a lower device and return true in case
6942 * it is. The caller must hold the RTNL lock.
6943 */
netdev_has_any_lower_dev(struct net_device * dev)6944 static bool netdev_has_any_lower_dev(struct net_device *dev)
6945 {
6946 ASSERT_RTNL();
6947
6948 return !list_empty(&dev->adj_list.lower);
6949 }
6950
netdev_adjacent_get_private(struct list_head * adj_list)6951 void *netdev_adjacent_get_private(struct list_head *adj_list)
6952 {
6953 struct netdev_adjacent *adj;
6954
6955 adj = list_entry(adj_list, struct netdev_adjacent, list);
6956
6957 return adj->private;
6958 }
6959 EXPORT_SYMBOL(netdev_adjacent_get_private);
6960
6961 /**
6962 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6963 * @dev: device
6964 * @iter: list_head ** of the current position
6965 *
6966 * Gets the next device from the dev's upper list, starting from iter
6967 * position. The caller must hold RCU read lock.
6968 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6969 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6970 struct list_head **iter)
6971 {
6972 struct netdev_adjacent *upper;
6973
6974 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6975
6976 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6977
6978 if (&upper->list == &dev->adj_list.upper)
6979 return NULL;
6980
6981 *iter = &upper->list;
6982
6983 return upper->dev;
6984 }
6985 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6986
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6987 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6988 struct list_head **iter,
6989 bool *ignore)
6990 {
6991 struct netdev_adjacent *upper;
6992
6993 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6994
6995 if (&upper->list == &dev->adj_list.upper)
6996 return NULL;
6997
6998 *iter = &upper->list;
6999 *ignore = upper->ignore;
7000
7001 return upper->dev;
7002 }
7003
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7004 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7005 struct list_head **iter)
7006 {
7007 struct netdev_adjacent *upper;
7008
7009 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7010
7011 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7012
7013 if (&upper->list == &dev->adj_list.upper)
7014 return NULL;
7015
7016 *iter = &upper->list;
7017
7018 return upper->dev;
7019 }
7020
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7021 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7022 int (*fn)(struct net_device *dev,
7023 struct netdev_nested_priv *priv),
7024 struct netdev_nested_priv *priv)
7025 {
7026 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7027 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7028 int ret, cur = 0;
7029 bool ignore;
7030
7031 now = dev;
7032 iter = &dev->adj_list.upper;
7033
7034 while (1) {
7035 if (now != dev) {
7036 ret = fn(now, priv);
7037 if (ret)
7038 return ret;
7039 }
7040
7041 next = NULL;
7042 while (1) {
7043 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7044 if (!udev)
7045 break;
7046 if (ignore)
7047 continue;
7048
7049 next = udev;
7050 niter = &udev->adj_list.upper;
7051 dev_stack[cur] = now;
7052 iter_stack[cur++] = iter;
7053 break;
7054 }
7055
7056 if (!next) {
7057 if (!cur)
7058 return 0;
7059 next = dev_stack[--cur];
7060 niter = iter_stack[cur];
7061 }
7062
7063 now = next;
7064 iter = niter;
7065 }
7066
7067 return 0;
7068 }
7069
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7070 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7071 int (*fn)(struct net_device *dev,
7072 struct netdev_nested_priv *priv),
7073 struct netdev_nested_priv *priv)
7074 {
7075 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7076 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7077 int ret, cur = 0;
7078
7079 now = dev;
7080 iter = &dev->adj_list.upper;
7081
7082 while (1) {
7083 if (now != dev) {
7084 ret = fn(now, priv);
7085 if (ret)
7086 return ret;
7087 }
7088
7089 next = NULL;
7090 while (1) {
7091 udev = netdev_next_upper_dev_rcu(now, &iter);
7092 if (!udev)
7093 break;
7094
7095 next = udev;
7096 niter = &udev->adj_list.upper;
7097 dev_stack[cur] = now;
7098 iter_stack[cur++] = iter;
7099 break;
7100 }
7101
7102 if (!next) {
7103 if (!cur)
7104 return 0;
7105 next = dev_stack[--cur];
7106 niter = iter_stack[cur];
7107 }
7108
7109 now = next;
7110 iter = niter;
7111 }
7112
7113 return 0;
7114 }
7115 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7116
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7117 static bool __netdev_has_upper_dev(struct net_device *dev,
7118 struct net_device *upper_dev)
7119 {
7120 struct netdev_nested_priv priv = {
7121 .flags = 0,
7122 .data = (void *)upper_dev,
7123 };
7124
7125 ASSERT_RTNL();
7126
7127 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7128 &priv);
7129 }
7130
7131 /**
7132 * netdev_lower_get_next_private - Get the next ->private from the
7133 * lower neighbour list
7134 * @dev: device
7135 * @iter: list_head ** of the current position
7136 *
7137 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7138 * list, starting from iter position. The caller must hold either hold the
7139 * RTNL lock or its own locking that guarantees that the neighbour lower
7140 * list will remain unchanged.
7141 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7142 void *netdev_lower_get_next_private(struct net_device *dev,
7143 struct list_head **iter)
7144 {
7145 struct netdev_adjacent *lower;
7146
7147 lower = list_entry(*iter, struct netdev_adjacent, list);
7148
7149 if (&lower->list == &dev->adj_list.lower)
7150 return NULL;
7151
7152 *iter = lower->list.next;
7153
7154 return lower->private;
7155 }
7156 EXPORT_SYMBOL(netdev_lower_get_next_private);
7157
7158 /**
7159 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7160 * lower neighbour list, RCU
7161 * variant
7162 * @dev: device
7163 * @iter: list_head ** of the current position
7164 *
7165 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7166 * list, starting from iter position. The caller must hold RCU read lock.
7167 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7168 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7169 struct list_head **iter)
7170 {
7171 struct netdev_adjacent *lower;
7172
7173 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7174
7175 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7176
7177 if (&lower->list == &dev->adj_list.lower)
7178 return NULL;
7179
7180 *iter = &lower->list;
7181
7182 return lower->private;
7183 }
7184 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7185
7186 /**
7187 * netdev_lower_get_next - Get the next device from the lower neighbour
7188 * list
7189 * @dev: device
7190 * @iter: list_head ** of the current position
7191 *
7192 * Gets the next netdev_adjacent from the dev's lower neighbour
7193 * list, starting from iter position. The caller must hold RTNL lock or
7194 * its own locking that guarantees that the neighbour lower
7195 * list will remain unchanged.
7196 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7197 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7198 {
7199 struct netdev_adjacent *lower;
7200
7201 lower = list_entry(*iter, struct netdev_adjacent, list);
7202
7203 if (&lower->list == &dev->adj_list.lower)
7204 return NULL;
7205
7206 *iter = lower->list.next;
7207
7208 return lower->dev;
7209 }
7210 EXPORT_SYMBOL(netdev_lower_get_next);
7211
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7212 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7213 struct list_head **iter)
7214 {
7215 struct netdev_adjacent *lower;
7216
7217 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7218
7219 if (&lower->list == &dev->adj_list.lower)
7220 return NULL;
7221
7222 *iter = &lower->list;
7223
7224 return lower->dev;
7225 }
7226
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7227 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7228 struct list_head **iter,
7229 bool *ignore)
7230 {
7231 struct netdev_adjacent *lower;
7232
7233 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7234
7235 if (&lower->list == &dev->adj_list.lower)
7236 return NULL;
7237
7238 *iter = &lower->list;
7239 *ignore = lower->ignore;
7240
7241 return lower->dev;
7242 }
7243
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7244 int netdev_walk_all_lower_dev(struct net_device *dev,
7245 int (*fn)(struct net_device *dev,
7246 struct netdev_nested_priv *priv),
7247 struct netdev_nested_priv *priv)
7248 {
7249 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7250 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7251 int ret, cur = 0;
7252
7253 now = dev;
7254 iter = &dev->adj_list.lower;
7255
7256 while (1) {
7257 if (now != dev) {
7258 ret = fn(now, priv);
7259 if (ret)
7260 return ret;
7261 }
7262
7263 next = NULL;
7264 while (1) {
7265 ldev = netdev_next_lower_dev(now, &iter);
7266 if (!ldev)
7267 break;
7268
7269 next = ldev;
7270 niter = &ldev->adj_list.lower;
7271 dev_stack[cur] = now;
7272 iter_stack[cur++] = iter;
7273 break;
7274 }
7275
7276 if (!next) {
7277 if (!cur)
7278 return 0;
7279 next = dev_stack[--cur];
7280 niter = iter_stack[cur];
7281 }
7282
7283 now = next;
7284 iter = niter;
7285 }
7286
7287 return 0;
7288 }
7289 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7290
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7291 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7292 int (*fn)(struct net_device *dev,
7293 struct netdev_nested_priv *priv),
7294 struct netdev_nested_priv *priv)
7295 {
7296 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7297 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7298 int ret, cur = 0;
7299 bool ignore;
7300
7301 now = dev;
7302 iter = &dev->adj_list.lower;
7303
7304 while (1) {
7305 if (now != dev) {
7306 ret = fn(now, priv);
7307 if (ret)
7308 return ret;
7309 }
7310
7311 next = NULL;
7312 while (1) {
7313 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7314 if (!ldev)
7315 break;
7316 if (ignore)
7317 continue;
7318
7319 next = ldev;
7320 niter = &ldev->adj_list.lower;
7321 dev_stack[cur] = now;
7322 iter_stack[cur++] = iter;
7323 break;
7324 }
7325
7326 if (!next) {
7327 if (!cur)
7328 return 0;
7329 next = dev_stack[--cur];
7330 niter = iter_stack[cur];
7331 }
7332
7333 now = next;
7334 iter = niter;
7335 }
7336
7337 return 0;
7338 }
7339
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7340 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7341 struct list_head **iter)
7342 {
7343 struct netdev_adjacent *lower;
7344
7345 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7346 if (&lower->list == &dev->adj_list.lower)
7347 return NULL;
7348
7349 *iter = &lower->list;
7350
7351 return lower->dev;
7352 }
7353 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7354
__netdev_upper_depth(struct net_device * dev)7355 static u8 __netdev_upper_depth(struct net_device *dev)
7356 {
7357 struct net_device *udev;
7358 struct list_head *iter;
7359 u8 max_depth = 0;
7360 bool ignore;
7361
7362 for (iter = &dev->adj_list.upper,
7363 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7364 udev;
7365 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7366 if (ignore)
7367 continue;
7368 if (max_depth < udev->upper_level)
7369 max_depth = udev->upper_level;
7370 }
7371
7372 return max_depth;
7373 }
7374
__netdev_lower_depth(struct net_device * dev)7375 static u8 __netdev_lower_depth(struct net_device *dev)
7376 {
7377 struct net_device *ldev;
7378 struct list_head *iter;
7379 u8 max_depth = 0;
7380 bool ignore;
7381
7382 for (iter = &dev->adj_list.lower,
7383 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7384 ldev;
7385 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7386 if (ignore)
7387 continue;
7388 if (max_depth < ldev->lower_level)
7389 max_depth = ldev->lower_level;
7390 }
7391
7392 return max_depth;
7393 }
7394
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7395 static int __netdev_update_upper_level(struct net_device *dev,
7396 struct netdev_nested_priv *__unused)
7397 {
7398 dev->upper_level = __netdev_upper_depth(dev) + 1;
7399 return 0;
7400 }
7401
7402 #ifdef CONFIG_LOCKDEP
7403 static LIST_HEAD(net_unlink_list);
7404
net_unlink_todo(struct net_device * dev)7405 static void net_unlink_todo(struct net_device *dev)
7406 {
7407 if (list_empty(&dev->unlink_list))
7408 list_add_tail(&dev->unlink_list, &net_unlink_list);
7409 }
7410 #endif
7411
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7412 static int __netdev_update_lower_level(struct net_device *dev,
7413 struct netdev_nested_priv *priv)
7414 {
7415 dev->lower_level = __netdev_lower_depth(dev) + 1;
7416
7417 #ifdef CONFIG_LOCKDEP
7418 if (!priv)
7419 return 0;
7420
7421 if (priv->flags & NESTED_SYNC_IMM)
7422 dev->nested_level = dev->lower_level - 1;
7423 if (priv->flags & NESTED_SYNC_TODO)
7424 net_unlink_todo(dev);
7425 #endif
7426 return 0;
7427 }
7428
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7429 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7430 int (*fn)(struct net_device *dev,
7431 struct netdev_nested_priv *priv),
7432 struct netdev_nested_priv *priv)
7433 {
7434 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7435 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7436 int ret, cur = 0;
7437
7438 now = dev;
7439 iter = &dev->adj_list.lower;
7440
7441 while (1) {
7442 if (now != dev) {
7443 ret = fn(now, priv);
7444 if (ret)
7445 return ret;
7446 }
7447
7448 next = NULL;
7449 while (1) {
7450 ldev = netdev_next_lower_dev_rcu(now, &iter);
7451 if (!ldev)
7452 break;
7453
7454 next = ldev;
7455 niter = &ldev->adj_list.lower;
7456 dev_stack[cur] = now;
7457 iter_stack[cur++] = iter;
7458 break;
7459 }
7460
7461 if (!next) {
7462 if (!cur)
7463 return 0;
7464 next = dev_stack[--cur];
7465 niter = iter_stack[cur];
7466 }
7467
7468 now = next;
7469 iter = niter;
7470 }
7471
7472 return 0;
7473 }
7474 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7475
7476 /**
7477 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7478 * lower neighbour list, RCU
7479 * variant
7480 * @dev: device
7481 *
7482 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7483 * list. The caller must hold RCU read lock.
7484 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7485 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7486 {
7487 struct netdev_adjacent *lower;
7488
7489 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7490 struct netdev_adjacent, list);
7491 if (lower)
7492 return lower->private;
7493 return NULL;
7494 }
7495 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7496
7497 /**
7498 * netdev_master_upper_dev_get_rcu - Get master upper device
7499 * @dev: device
7500 *
7501 * Find a master upper device and return pointer to it or NULL in case
7502 * it's not there. The caller must hold the RCU read lock.
7503 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7504 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7505 {
7506 struct netdev_adjacent *upper;
7507
7508 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7509 struct netdev_adjacent, list);
7510 if (upper && likely(upper->master))
7511 return upper->dev;
7512 return NULL;
7513 }
7514 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7515
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7516 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7517 struct net_device *adj_dev,
7518 struct list_head *dev_list)
7519 {
7520 char linkname[IFNAMSIZ+7];
7521
7522 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7523 "upper_%s" : "lower_%s", adj_dev->name);
7524 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7525 linkname);
7526 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7527 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7528 char *name,
7529 struct list_head *dev_list)
7530 {
7531 char linkname[IFNAMSIZ+7];
7532
7533 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7534 "upper_%s" : "lower_%s", name);
7535 sysfs_remove_link(&(dev->dev.kobj), linkname);
7536 }
7537
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7538 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7539 struct net_device *adj_dev,
7540 struct list_head *dev_list)
7541 {
7542 return (dev_list == &dev->adj_list.upper ||
7543 dev_list == &dev->adj_list.lower) &&
7544 net_eq(dev_net(dev), dev_net(adj_dev));
7545 }
7546
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7547 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7548 struct net_device *adj_dev,
7549 struct list_head *dev_list,
7550 void *private, bool master)
7551 {
7552 struct netdev_adjacent *adj;
7553 int ret;
7554
7555 adj = __netdev_find_adj(adj_dev, dev_list);
7556
7557 if (adj) {
7558 adj->ref_nr += 1;
7559 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7560 dev->name, adj_dev->name, adj->ref_nr);
7561
7562 return 0;
7563 }
7564
7565 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7566 if (!adj)
7567 return -ENOMEM;
7568
7569 adj->dev = adj_dev;
7570 adj->master = master;
7571 adj->ref_nr = 1;
7572 adj->private = private;
7573 adj->ignore = false;
7574 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7575
7576 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7577 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7578
7579 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7580 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7581 if (ret)
7582 goto free_adj;
7583 }
7584
7585 /* Ensure that master link is always the first item in list. */
7586 if (master) {
7587 ret = sysfs_create_link(&(dev->dev.kobj),
7588 &(adj_dev->dev.kobj), "master");
7589 if (ret)
7590 goto remove_symlinks;
7591
7592 list_add_rcu(&adj->list, dev_list);
7593 } else {
7594 list_add_tail_rcu(&adj->list, dev_list);
7595 }
7596
7597 return 0;
7598
7599 remove_symlinks:
7600 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7601 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7602 free_adj:
7603 netdev_put(adj_dev, &adj->dev_tracker);
7604 kfree(adj);
7605
7606 return ret;
7607 }
7608
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7609 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7610 struct net_device *adj_dev,
7611 u16 ref_nr,
7612 struct list_head *dev_list)
7613 {
7614 struct netdev_adjacent *adj;
7615
7616 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7617 dev->name, adj_dev->name, ref_nr);
7618
7619 adj = __netdev_find_adj(adj_dev, dev_list);
7620
7621 if (!adj) {
7622 pr_err("Adjacency does not exist for device %s from %s\n",
7623 dev->name, adj_dev->name);
7624 WARN_ON(1);
7625 return;
7626 }
7627
7628 if (adj->ref_nr > ref_nr) {
7629 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7630 dev->name, adj_dev->name, ref_nr,
7631 adj->ref_nr - ref_nr);
7632 adj->ref_nr -= ref_nr;
7633 return;
7634 }
7635
7636 if (adj->master)
7637 sysfs_remove_link(&(dev->dev.kobj), "master");
7638
7639 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7640 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7641
7642 list_del_rcu(&adj->list);
7643 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7644 adj_dev->name, dev->name, adj_dev->name);
7645 netdev_put(adj_dev, &adj->dev_tracker);
7646 kfree_rcu(adj, rcu);
7647 }
7648
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7649 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7650 struct net_device *upper_dev,
7651 struct list_head *up_list,
7652 struct list_head *down_list,
7653 void *private, bool master)
7654 {
7655 int ret;
7656
7657 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7658 private, master);
7659 if (ret)
7660 return ret;
7661
7662 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7663 private, false);
7664 if (ret) {
7665 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7666 return ret;
7667 }
7668
7669 return 0;
7670 }
7671
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7672 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7673 struct net_device *upper_dev,
7674 u16 ref_nr,
7675 struct list_head *up_list,
7676 struct list_head *down_list)
7677 {
7678 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7679 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7680 }
7681
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7682 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7683 struct net_device *upper_dev,
7684 void *private, bool master)
7685 {
7686 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7687 &dev->adj_list.upper,
7688 &upper_dev->adj_list.lower,
7689 private, master);
7690 }
7691
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7692 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7693 struct net_device *upper_dev)
7694 {
7695 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7696 &dev->adj_list.upper,
7697 &upper_dev->adj_list.lower);
7698 }
7699
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7700 static int __netdev_upper_dev_link(struct net_device *dev,
7701 struct net_device *upper_dev, bool master,
7702 void *upper_priv, void *upper_info,
7703 struct netdev_nested_priv *priv,
7704 struct netlink_ext_ack *extack)
7705 {
7706 struct netdev_notifier_changeupper_info changeupper_info = {
7707 .info = {
7708 .dev = dev,
7709 .extack = extack,
7710 },
7711 .upper_dev = upper_dev,
7712 .master = master,
7713 .linking = true,
7714 .upper_info = upper_info,
7715 };
7716 struct net_device *master_dev;
7717 int ret = 0;
7718
7719 ASSERT_RTNL();
7720
7721 if (dev == upper_dev)
7722 return -EBUSY;
7723
7724 /* To prevent loops, check if dev is not upper device to upper_dev. */
7725 if (__netdev_has_upper_dev(upper_dev, dev))
7726 return -EBUSY;
7727
7728 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7729 return -EMLINK;
7730
7731 if (!master) {
7732 if (__netdev_has_upper_dev(dev, upper_dev))
7733 return -EEXIST;
7734 } else {
7735 master_dev = __netdev_master_upper_dev_get(dev);
7736 if (master_dev)
7737 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7738 }
7739
7740 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7741 &changeupper_info.info);
7742 ret = notifier_to_errno(ret);
7743 if (ret)
7744 return ret;
7745
7746 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7747 master);
7748 if (ret)
7749 return ret;
7750
7751 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7752 &changeupper_info.info);
7753 ret = notifier_to_errno(ret);
7754 if (ret)
7755 goto rollback;
7756
7757 __netdev_update_upper_level(dev, NULL);
7758 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7759
7760 __netdev_update_lower_level(upper_dev, priv);
7761 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7762 priv);
7763
7764 return 0;
7765
7766 rollback:
7767 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7768
7769 return ret;
7770 }
7771
7772 /**
7773 * netdev_upper_dev_link - Add a link to the upper device
7774 * @dev: device
7775 * @upper_dev: new upper device
7776 * @extack: netlink extended ack
7777 *
7778 * Adds a link to device which is upper to this one. The caller must hold
7779 * the RTNL lock. On a failure a negative errno code is returned.
7780 * On success the reference counts are adjusted and the function
7781 * returns zero.
7782 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7783 int netdev_upper_dev_link(struct net_device *dev,
7784 struct net_device *upper_dev,
7785 struct netlink_ext_ack *extack)
7786 {
7787 struct netdev_nested_priv priv = {
7788 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7789 .data = NULL,
7790 };
7791
7792 return __netdev_upper_dev_link(dev, upper_dev, false,
7793 NULL, NULL, &priv, extack);
7794 }
7795 EXPORT_SYMBOL(netdev_upper_dev_link);
7796
7797 /**
7798 * netdev_master_upper_dev_link - Add a master link to the upper device
7799 * @dev: device
7800 * @upper_dev: new upper device
7801 * @upper_priv: upper device private
7802 * @upper_info: upper info to be passed down via notifier
7803 * @extack: netlink extended ack
7804 *
7805 * Adds a link to device which is upper to this one. In this case, only
7806 * one master upper device can be linked, although other non-master devices
7807 * might be linked as well. The caller must hold the RTNL lock.
7808 * On a failure a negative errno code is returned. On success the reference
7809 * counts are adjusted and the function returns zero.
7810 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7811 int netdev_master_upper_dev_link(struct net_device *dev,
7812 struct net_device *upper_dev,
7813 void *upper_priv, void *upper_info,
7814 struct netlink_ext_ack *extack)
7815 {
7816 struct netdev_nested_priv priv = {
7817 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7818 .data = NULL,
7819 };
7820
7821 return __netdev_upper_dev_link(dev, upper_dev, true,
7822 upper_priv, upper_info, &priv, extack);
7823 }
7824 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7825
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7826 static void __netdev_upper_dev_unlink(struct net_device *dev,
7827 struct net_device *upper_dev,
7828 struct netdev_nested_priv *priv)
7829 {
7830 struct netdev_notifier_changeupper_info changeupper_info = {
7831 .info = {
7832 .dev = dev,
7833 },
7834 .upper_dev = upper_dev,
7835 .linking = false,
7836 };
7837
7838 ASSERT_RTNL();
7839
7840 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7841
7842 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7843 &changeupper_info.info);
7844
7845 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7846
7847 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7848 &changeupper_info.info);
7849
7850 __netdev_update_upper_level(dev, NULL);
7851 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7852
7853 __netdev_update_lower_level(upper_dev, priv);
7854 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7855 priv);
7856 }
7857
7858 /**
7859 * netdev_upper_dev_unlink - Removes a link to upper device
7860 * @dev: device
7861 * @upper_dev: new upper device
7862 *
7863 * Removes a link to device which is upper to this one. The caller must hold
7864 * the RTNL lock.
7865 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7866 void netdev_upper_dev_unlink(struct net_device *dev,
7867 struct net_device *upper_dev)
7868 {
7869 struct netdev_nested_priv priv = {
7870 .flags = NESTED_SYNC_TODO,
7871 .data = NULL,
7872 };
7873
7874 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7875 }
7876 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7877
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7878 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7879 struct net_device *lower_dev,
7880 bool val)
7881 {
7882 struct netdev_adjacent *adj;
7883
7884 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7885 if (adj)
7886 adj->ignore = val;
7887
7888 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7889 if (adj)
7890 adj->ignore = val;
7891 }
7892
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7893 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7894 struct net_device *lower_dev)
7895 {
7896 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7897 }
7898
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7899 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7900 struct net_device *lower_dev)
7901 {
7902 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7903 }
7904
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7905 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7906 struct net_device *new_dev,
7907 struct net_device *dev,
7908 struct netlink_ext_ack *extack)
7909 {
7910 struct netdev_nested_priv priv = {
7911 .flags = 0,
7912 .data = NULL,
7913 };
7914 int err;
7915
7916 if (!new_dev)
7917 return 0;
7918
7919 if (old_dev && new_dev != old_dev)
7920 netdev_adjacent_dev_disable(dev, old_dev);
7921 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7922 extack);
7923 if (err) {
7924 if (old_dev && new_dev != old_dev)
7925 netdev_adjacent_dev_enable(dev, old_dev);
7926 return err;
7927 }
7928
7929 return 0;
7930 }
7931 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7932
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7933 void netdev_adjacent_change_commit(struct net_device *old_dev,
7934 struct net_device *new_dev,
7935 struct net_device *dev)
7936 {
7937 struct netdev_nested_priv priv = {
7938 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7939 .data = NULL,
7940 };
7941
7942 if (!new_dev || !old_dev)
7943 return;
7944
7945 if (new_dev == old_dev)
7946 return;
7947
7948 netdev_adjacent_dev_enable(dev, old_dev);
7949 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7950 }
7951 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7952
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7953 void netdev_adjacent_change_abort(struct net_device *old_dev,
7954 struct net_device *new_dev,
7955 struct net_device *dev)
7956 {
7957 struct netdev_nested_priv priv = {
7958 .flags = 0,
7959 .data = NULL,
7960 };
7961
7962 if (!new_dev)
7963 return;
7964
7965 if (old_dev && new_dev != old_dev)
7966 netdev_adjacent_dev_enable(dev, old_dev);
7967
7968 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7969 }
7970 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7971
7972 /**
7973 * netdev_bonding_info_change - Dispatch event about slave change
7974 * @dev: device
7975 * @bonding_info: info to dispatch
7976 *
7977 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7978 * The caller must hold the RTNL lock.
7979 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7980 void netdev_bonding_info_change(struct net_device *dev,
7981 struct netdev_bonding_info *bonding_info)
7982 {
7983 struct netdev_notifier_bonding_info info = {
7984 .info.dev = dev,
7985 };
7986
7987 memcpy(&info.bonding_info, bonding_info,
7988 sizeof(struct netdev_bonding_info));
7989 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7990 &info.info);
7991 }
7992 EXPORT_SYMBOL(netdev_bonding_info_change);
7993
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)7994 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7995 struct netlink_ext_ack *extack)
7996 {
7997 struct netdev_notifier_offload_xstats_info info = {
7998 .info.dev = dev,
7999 .info.extack = extack,
8000 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8001 };
8002 int err;
8003 int rc;
8004
8005 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8006 GFP_KERNEL);
8007 if (!dev->offload_xstats_l3)
8008 return -ENOMEM;
8009
8010 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8011 NETDEV_OFFLOAD_XSTATS_DISABLE,
8012 &info.info);
8013 err = notifier_to_errno(rc);
8014 if (err)
8015 goto free_stats;
8016
8017 return 0;
8018
8019 free_stats:
8020 kfree(dev->offload_xstats_l3);
8021 dev->offload_xstats_l3 = NULL;
8022 return err;
8023 }
8024
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8025 int netdev_offload_xstats_enable(struct net_device *dev,
8026 enum netdev_offload_xstats_type type,
8027 struct netlink_ext_ack *extack)
8028 {
8029 ASSERT_RTNL();
8030
8031 if (netdev_offload_xstats_enabled(dev, type))
8032 return -EALREADY;
8033
8034 switch (type) {
8035 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8036 return netdev_offload_xstats_enable_l3(dev, extack);
8037 }
8038
8039 WARN_ON(1);
8040 return -EINVAL;
8041 }
8042 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8043
netdev_offload_xstats_disable_l3(struct net_device * dev)8044 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8045 {
8046 struct netdev_notifier_offload_xstats_info info = {
8047 .info.dev = dev,
8048 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8049 };
8050
8051 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8052 &info.info);
8053 kfree(dev->offload_xstats_l3);
8054 dev->offload_xstats_l3 = NULL;
8055 }
8056
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8057 int netdev_offload_xstats_disable(struct net_device *dev,
8058 enum netdev_offload_xstats_type type)
8059 {
8060 ASSERT_RTNL();
8061
8062 if (!netdev_offload_xstats_enabled(dev, type))
8063 return -EALREADY;
8064
8065 switch (type) {
8066 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8067 netdev_offload_xstats_disable_l3(dev);
8068 return 0;
8069 }
8070
8071 WARN_ON(1);
8072 return -EINVAL;
8073 }
8074 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8075
netdev_offload_xstats_disable_all(struct net_device * dev)8076 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8077 {
8078 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8079 }
8080
8081 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8082 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8083 enum netdev_offload_xstats_type type)
8084 {
8085 switch (type) {
8086 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8087 return dev->offload_xstats_l3;
8088 }
8089
8090 WARN_ON(1);
8091 return NULL;
8092 }
8093
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8094 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8095 enum netdev_offload_xstats_type type)
8096 {
8097 ASSERT_RTNL();
8098
8099 return netdev_offload_xstats_get_ptr(dev, type);
8100 }
8101 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8102
8103 struct netdev_notifier_offload_xstats_ru {
8104 bool used;
8105 };
8106
8107 struct netdev_notifier_offload_xstats_rd {
8108 struct rtnl_hw_stats64 stats;
8109 bool used;
8110 };
8111
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8112 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8113 const struct rtnl_hw_stats64 *src)
8114 {
8115 dest->rx_packets += src->rx_packets;
8116 dest->tx_packets += src->tx_packets;
8117 dest->rx_bytes += src->rx_bytes;
8118 dest->tx_bytes += src->tx_bytes;
8119 dest->rx_errors += src->rx_errors;
8120 dest->tx_errors += src->tx_errors;
8121 dest->rx_dropped += src->rx_dropped;
8122 dest->tx_dropped += src->tx_dropped;
8123 dest->multicast += src->multicast;
8124 }
8125
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8126 static int netdev_offload_xstats_get_used(struct net_device *dev,
8127 enum netdev_offload_xstats_type type,
8128 bool *p_used,
8129 struct netlink_ext_ack *extack)
8130 {
8131 struct netdev_notifier_offload_xstats_ru report_used = {};
8132 struct netdev_notifier_offload_xstats_info info = {
8133 .info.dev = dev,
8134 .info.extack = extack,
8135 .type = type,
8136 .report_used = &report_used,
8137 };
8138 int rc;
8139
8140 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8141 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8142 &info.info);
8143 *p_used = report_used.used;
8144 return notifier_to_errno(rc);
8145 }
8146
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8147 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8148 enum netdev_offload_xstats_type type,
8149 struct rtnl_hw_stats64 *p_stats,
8150 bool *p_used,
8151 struct netlink_ext_ack *extack)
8152 {
8153 struct netdev_notifier_offload_xstats_rd report_delta = {};
8154 struct netdev_notifier_offload_xstats_info info = {
8155 .info.dev = dev,
8156 .info.extack = extack,
8157 .type = type,
8158 .report_delta = &report_delta,
8159 };
8160 struct rtnl_hw_stats64 *stats;
8161 int rc;
8162
8163 stats = netdev_offload_xstats_get_ptr(dev, type);
8164 if (WARN_ON(!stats))
8165 return -EINVAL;
8166
8167 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8168 &info.info);
8169
8170 /* Cache whatever we got, even if there was an error, otherwise the
8171 * successful stats retrievals would get lost.
8172 */
8173 netdev_hw_stats64_add(stats, &report_delta.stats);
8174
8175 if (p_stats)
8176 *p_stats = *stats;
8177 *p_used = report_delta.used;
8178
8179 return notifier_to_errno(rc);
8180 }
8181
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8182 int netdev_offload_xstats_get(struct net_device *dev,
8183 enum netdev_offload_xstats_type type,
8184 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8185 struct netlink_ext_ack *extack)
8186 {
8187 ASSERT_RTNL();
8188
8189 if (p_stats)
8190 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8191 p_used, extack);
8192 else
8193 return netdev_offload_xstats_get_used(dev, type, p_used,
8194 extack);
8195 }
8196 EXPORT_SYMBOL(netdev_offload_xstats_get);
8197
8198 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8199 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8200 const struct rtnl_hw_stats64 *stats)
8201 {
8202 report_delta->used = true;
8203 netdev_hw_stats64_add(&report_delta->stats, stats);
8204 }
8205 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8206
8207 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8208 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8209 {
8210 report_used->used = true;
8211 }
8212 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8213
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8214 void netdev_offload_xstats_push_delta(struct net_device *dev,
8215 enum netdev_offload_xstats_type type,
8216 const struct rtnl_hw_stats64 *p_stats)
8217 {
8218 struct rtnl_hw_stats64 *stats;
8219
8220 ASSERT_RTNL();
8221
8222 stats = netdev_offload_xstats_get_ptr(dev, type);
8223 if (WARN_ON(!stats))
8224 return;
8225
8226 netdev_hw_stats64_add(stats, p_stats);
8227 }
8228 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8229
8230 /**
8231 * netdev_get_xmit_slave - Get the xmit slave of master device
8232 * @dev: device
8233 * @skb: The packet
8234 * @all_slaves: assume all the slaves are active
8235 *
8236 * The reference counters are not incremented so the caller must be
8237 * careful with locks. The caller must hold RCU lock.
8238 * %NULL is returned if no slave is found.
8239 */
8240
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8241 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8242 struct sk_buff *skb,
8243 bool all_slaves)
8244 {
8245 const struct net_device_ops *ops = dev->netdev_ops;
8246
8247 if (!ops->ndo_get_xmit_slave)
8248 return NULL;
8249 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8250 }
8251 EXPORT_SYMBOL(netdev_get_xmit_slave);
8252
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8253 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8254 struct sock *sk)
8255 {
8256 const struct net_device_ops *ops = dev->netdev_ops;
8257
8258 if (!ops->ndo_sk_get_lower_dev)
8259 return NULL;
8260 return ops->ndo_sk_get_lower_dev(dev, sk);
8261 }
8262
8263 /**
8264 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8265 * @dev: device
8266 * @sk: the socket
8267 *
8268 * %NULL is returned if no lower device is found.
8269 */
8270
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8271 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8272 struct sock *sk)
8273 {
8274 struct net_device *lower;
8275
8276 lower = netdev_sk_get_lower_dev(dev, sk);
8277 while (lower) {
8278 dev = lower;
8279 lower = netdev_sk_get_lower_dev(dev, sk);
8280 }
8281
8282 return dev;
8283 }
8284 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8285
netdev_adjacent_add_links(struct net_device * dev)8286 static void netdev_adjacent_add_links(struct net_device *dev)
8287 {
8288 struct netdev_adjacent *iter;
8289
8290 struct net *net = dev_net(dev);
8291
8292 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8293 if (!net_eq(net, dev_net(iter->dev)))
8294 continue;
8295 netdev_adjacent_sysfs_add(iter->dev, dev,
8296 &iter->dev->adj_list.lower);
8297 netdev_adjacent_sysfs_add(dev, iter->dev,
8298 &dev->adj_list.upper);
8299 }
8300
8301 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8302 if (!net_eq(net, dev_net(iter->dev)))
8303 continue;
8304 netdev_adjacent_sysfs_add(iter->dev, dev,
8305 &iter->dev->adj_list.upper);
8306 netdev_adjacent_sysfs_add(dev, iter->dev,
8307 &dev->adj_list.lower);
8308 }
8309 }
8310
netdev_adjacent_del_links(struct net_device * dev)8311 static void netdev_adjacent_del_links(struct net_device *dev)
8312 {
8313 struct netdev_adjacent *iter;
8314
8315 struct net *net = dev_net(dev);
8316
8317 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8318 if (!net_eq(net, dev_net(iter->dev)))
8319 continue;
8320 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8321 &iter->dev->adj_list.lower);
8322 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8323 &dev->adj_list.upper);
8324 }
8325
8326 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8327 if (!net_eq(net, dev_net(iter->dev)))
8328 continue;
8329 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8330 &iter->dev->adj_list.upper);
8331 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8332 &dev->adj_list.lower);
8333 }
8334 }
8335
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8336 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8337 {
8338 struct netdev_adjacent *iter;
8339
8340 struct net *net = dev_net(dev);
8341
8342 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8343 if (!net_eq(net, dev_net(iter->dev)))
8344 continue;
8345 netdev_adjacent_sysfs_del(iter->dev, oldname,
8346 &iter->dev->adj_list.lower);
8347 netdev_adjacent_sysfs_add(iter->dev, dev,
8348 &iter->dev->adj_list.lower);
8349 }
8350
8351 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8352 if (!net_eq(net, dev_net(iter->dev)))
8353 continue;
8354 netdev_adjacent_sysfs_del(iter->dev, oldname,
8355 &iter->dev->adj_list.upper);
8356 netdev_adjacent_sysfs_add(iter->dev, dev,
8357 &iter->dev->adj_list.upper);
8358 }
8359 }
8360
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8361 void *netdev_lower_dev_get_private(struct net_device *dev,
8362 struct net_device *lower_dev)
8363 {
8364 struct netdev_adjacent *lower;
8365
8366 if (!lower_dev)
8367 return NULL;
8368 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8369 if (!lower)
8370 return NULL;
8371
8372 return lower->private;
8373 }
8374 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8375
8376
8377 /**
8378 * netdev_lower_state_changed - Dispatch event about lower device state change
8379 * @lower_dev: device
8380 * @lower_state_info: state to dispatch
8381 *
8382 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8383 * The caller must hold the RTNL lock.
8384 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8385 void netdev_lower_state_changed(struct net_device *lower_dev,
8386 void *lower_state_info)
8387 {
8388 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8389 .info.dev = lower_dev,
8390 };
8391
8392 ASSERT_RTNL();
8393 changelowerstate_info.lower_state_info = lower_state_info;
8394 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8395 &changelowerstate_info.info);
8396 }
8397 EXPORT_SYMBOL(netdev_lower_state_changed);
8398
dev_change_rx_flags(struct net_device * dev,int flags)8399 static void dev_change_rx_flags(struct net_device *dev, int flags)
8400 {
8401 const struct net_device_ops *ops = dev->netdev_ops;
8402
8403 if (ops->ndo_change_rx_flags)
8404 ops->ndo_change_rx_flags(dev, flags);
8405 }
8406
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8407 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8408 {
8409 unsigned int old_flags = dev->flags;
8410 kuid_t uid;
8411 kgid_t gid;
8412
8413 ASSERT_RTNL();
8414
8415 dev->flags |= IFF_PROMISC;
8416 dev->promiscuity += inc;
8417 if (dev->promiscuity == 0) {
8418 /*
8419 * Avoid overflow.
8420 * If inc causes overflow, untouch promisc and return error.
8421 */
8422 if (inc < 0)
8423 dev->flags &= ~IFF_PROMISC;
8424 else {
8425 dev->promiscuity -= inc;
8426 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8427 return -EOVERFLOW;
8428 }
8429 }
8430 if (dev->flags != old_flags) {
8431 netdev_info(dev, "%s promiscuous mode\n",
8432 dev->flags & IFF_PROMISC ? "entered" : "left");
8433 if (audit_enabled) {
8434 current_uid_gid(&uid, &gid);
8435 audit_log(audit_context(), GFP_ATOMIC,
8436 AUDIT_ANOM_PROMISCUOUS,
8437 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8438 dev->name, (dev->flags & IFF_PROMISC),
8439 (old_flags & IFF_PROMISC),
8440 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8441 from_kuid(&init_user_ns, uid),
8442 from_kgid(&init_user_ns, gid),
8443 audit_get_sessionid(current));
8444 }
8445
8446 dev_change_rx_flags(dev, IFF_PROMISC);
8447 }
8448 if (notify)
8449 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8450 return 0;
8451 }
8452
8453 /**
8454 * dev_set_promiscuity - update promiscuity count on a device
8455 * @dev: device
8456 * @inc: modifier
8457 *
8458 * Add or remove promiscuity from a device. While the count in the device
8459 * remains above zero the interface remains promiscuous. Once it hits zero
8460 * the device reverts back to normal filtering operation. A negative inc
8461 * value is used to drop promiscuity on the device.
8462 * Return 0 if successful or a negative errno code on error.
8463 */
dev_set_promiscuity(struct net_device * dev,int inc)8464 int dev_set_promiscuity(struct net_device *dev, int inc)
8465 {
8466 unsigned int old_flags = dev->flags;
8467 int err;
8468
8469 err = __dev_set_promiscuity(dev, inc, true);
8470 if (err < 0)
8471 return err;
8472 if (dev->flags != old_flags)
8473 dev_set_rx_mode(dev);
8474 return err;
8475 }
8476 EXPORT_SYMBOL(dev_set_promiscuity);
8477
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8478 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8479 {
8480 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8481
8482 ASSERT_RTNL();
8483
8484 dev->flags |= IFF_ALLMULTI;
8485 dev->allmulti += inc;
8486 if (dev->allmulti == 0) {
8487 /*
8488 * Avoid overflow.
8489 * If inc causes overflow, untouch allmulti and return error.
8490 */
8491 if (inc < 0)
8492 dev->flags &= ~IFF_ALLMULTI;
8493 else {
8494 dev->allmulti -= inc;
8495 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8496 return -EOVERFLOW;
8497 }
8498 }
8499 if (dev->flags ^ old_flags) {
8500 netdev_info(dev, "%s allmulticast mode\n",
8501 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8502 dev_change_rx_flags(dev, IFF_ALLMULTI);
8503 dev_set_rx_mode(dev);
8504 if (notify)
8505 __dev_notify_flags(dev, old_flags,
8506 dev->gflags ^ old_gflags, 0, NULL);
8507 }
8508 return 0;
8509 }
8510
8511 /**
8512 * dev_set_allmulti - update allmulti count on a device
8513 * @dev: device
8514 * @inc: modifier
8515 *
8516 * Add or remove reception of all multicast frames to a device. While the
8517 * count in the device remains above zero the interface remains listening
8518 * to all interfaces. Once it hits zero the device reverts back to normal
8519 * filtering operation. A negative @inc value is used to drop the counter
8520 * when releasing a resource needing all multicasts.
8521 * Return 0 if successful or a negative errno code on error.
8522 */
8523
dev_set_allmulti(struct net_device * dev,int inc)8524 int dev_set_allmulti(struct net_device *dev, int inc)
8525 {
8526 return __dev_set_allmulti(dev, inc, true);
8527 }
8528 EXPORT_SYMBOL(dev_set_allmulti);
8529
8530 /*
8531 * Upload unicast and multicast address lists to device and
8532 * configure RX filtering. When the device doesn't support unicast
8533 * filtering it is put in promiscuous mode while unicast addresses
8534 * are present.
8535 */
__dev_set_rx_mode(struct net_device * dev)8536 void __dev_set_rx_mode(struct net_device *dev)
8537 {
8538 const struct net_device_ops *ops = dev->netdev_ops;
8539
8540 /* dev_open will call this function so the list will stay sane. */
8541 if (!(dev->flags&IFF_UP))
8542 return;
8543
8544 if (!netif_device_present(dev))
8545 return;
8546
8547 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8548 /* Unicast addresses changes may only happen under the rtnl,
8549 * therefore calling __dev_set_promiscuity here is safe.
8550 */
8551 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8552 __dev_set_promiscuity(dev, 1, false);
8553 dev->uc_promisc = true;
8554 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8555 __dev_set_promiscuity(dev, -1, false);
8556 dev->uc_promisc = false;
8557 }
8558 }
8559
8560 if (ops->ndo_set_rx_mode)
8561 ops->ndo_set_rx_mode(dev);
8562 }
8563
dev_set_rx_mode(struct net_device * dev)8564 void dev_set_rx_mode(struct net_device *dev)
8565 {
8566 netif_addr_lock_bh(dev);
8567 __dev_set_rx_mode(dev);
8568 netif_addr_unlock_bh(dev);
8569 }
8570
8571 /**
8572 * dev_get_flags - get flags reported to userspace
8573 * @dev: device
8574 *
8575 * Get the combination of flag bits exported through APIs to userspace.
8576 */
dev_get_flags(const struct net_device * dev)8577 unsigned int dev_get_flags(const struct net_device *dev)
8578 {
8579 unsigned int flags;
8580
8581 flags = (dev->flags & ~(IFF_PROMISC |
8582 IFF_ALLMULTI |
8583 IFF_RUNNING |
8584 IFF_LOWER_UP |
8585 IFF_DORMANT)) |
8586 (dev->gflags & (IFF_PROMISC |
8587 IFF_ALLMULTI));
8588
8589 if (netif_running(dev)) {
8590 if (netif_oper_up(dev))
8591 flags |= IFF_RUNNING;
8592 if (netif_carrier_ok(dev))
8593 flags |= IFF_LOWER_UP;
8594 if (netif_dormant(dev))
8595 flags |= IFF_DORMANT;
8596 }
8597
8598 return flags;
8599 }
8600 EXPORT_SYMBOL(dev_get_flags);
8601
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8602 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8603 struct netlink_ext_ack *extack)
8604 {
8605 unsigned int old_flags = dev->flags;
8606 int ret;
8607
8608 ASSERT_RTNL();
8609
8610 /*
8611 * Set the flags on our device.
8612 */
8613
8614 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8615 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8616 IFF_AUTOMEDIA)) |
8617 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8618 IFF_ALLMULTI));
8619
8620 /*
8621 * Load in the correct multicast list now the flags have changed.
8622 */
8623
8624 if ((old_flags ^ flags) & IFF_MULTICAST)
8625 dev_change_rx_flags(dev, IFF_MULTICAST);
8626
8627 dev_set_rx_mode(dev);
8628
8629 /*
8630 * Have we downed the interface. We handle IFF_UP ourselves
8631 * according to user attempts to set it, rather than blindly
8632 * setting it.
8633 */
8634
8635 ret = 0;
8636 if ((old_flags ^ flags) & IFF_UP) {
8637 if (old_flags & IFF_UP)
8638 __dev_close(dev);
8639 else
8640 ret = __dev_open(dev, extack);
8641 }
8642
8643 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8644 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8645 unsigned int old_flags = dev->flags;
8646
8647 dev->gflags ^= IFF_PROMISC;
8648
8649 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8650 if (dev->flags != old_flags)
8651 dev_set_rx_mode(dev);
8652 }
8653
8654 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8655 * is important. Some (broken) drivers set IFF_PROMISC, when
8656 * IFF_ALLMULTI is requested not asking us and not reporting.
8657 */
8658 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8659 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8660
8661 dev->gflags ^= IFF_ALLMULTI;
8662 __dev_set_allmulti(dev, inc, false);
8663 }
8664
8665 return ret;
8666 }
8667
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8668 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8669 unsigned int gchanges, u32 portid,
8670 const struct nlmsghdr *nlh)
8671 {
8672 unsigned int changes = dev->flags ^ old_flags;
8673
8674 if (gchanges)
8675 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8676
8677 if (changes & IFF_UP) {
8678 if (dev->flags & IFF_UP)
8679 call_netdevice_notifiers(NETDEV_UP, dev);
8680 else
8681 call_netdevice_notifiers(NETDEV_DOWN, dev);
8682 }
8683
8684 if (dev->flags & IFF_UP &&
8685 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8686 struct netdev_notifier_change_info change_info = {
8687 .info = {
8688 .dev = dev,
8689 },
8690 .flags_changed = changes,
8691 };
8692
8693 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8694 }
8695 }
8696
8697 /**
8698 * dev_change_flags - change device settings
8699 * @dev: device
8700 * @flags: device state flags
8701 * @extack: netlink extended ack
8702 *
8703 * Change settings on device based state flags. The flags are
8704 * in the userspace exported format.
8705 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8706 int dev_change_flags(struct net_device *dev, unsigned int flags,
8707 struct netlink_ext_ack *extack)
8708 {
8709 int ret;
8710 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8711
8712 ret = __dev_change_flags(dev, flags, extack);
8713 if (ret < 0)
8714 return ret;
8715
8716 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8717 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8718 return ret;
8719 }
8720 EXPORT_SYMBOL(dev_change_flags);
8721
__dev_set_mtu(struct net_device * dev,int new_mtu)8722 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8723 {
8724 const struct net_device_ops *ops = dev->netdev_ops;
8725
8726 if (ops->ndo_change_mtu)
8727 return ops->ndo_change_mtu(dev, new_mtu);
8728
8729 /* Pairs with all the lockless reads of dev->mtu in the stack */
8730 WRITE_ONCE(dev->mtu, new_mtu);
8731 return 0;
8732 }
8733 EXPORT_SYMBOL(__dev_set_mtu);
8734
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8735 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8736 struct netlink_ext_ack *extack)
8737 {
8738 /* MTU must be positive, and in range */
8739 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8740 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8741 return -EINVAL;
8742 }
8743
8744 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8745 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8746 return -EINVAL;
8747 }
8748 return 0;
8749 }
8750
8751 /**
8752 * dev_set_mtu_ext - Change maximum transfer unit
8753 * @dev: device
8754 * @new_mtu: new transfer unit
8755 * @extack: netlink extended ack
8756 *
8757 * Change the maximum transfer size of the network device.
8758 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8759 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8760 struct netlink_ext_ack *extack)
8761 {
8762 int err, orig_mtu;
8763
8764 if (new_mtu == dev->mtu)
8765 return 0;
8766
8767 err = dev_validate_mtu(dev, new_mtu, extack);
8768 if (err)
8769 return err;
8770
8771 if (!netif_device_present(dev))
8772 return -ENODEV;
8773
8774 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8775 err = notifier_to_errno(err);
8776 if (err)
8777 return err;
8778
8779 orig_mtu = dev->mtu;
8780 err = __dev_set_mtu(dev, new_mtu);
8781
8782 if (!err) {
8783 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8784 orig_mtu);
8785 err = notifier_to_errno(err);
8786 if (err) {
8787 /* setting mtu back and notifying everyone again,
8788 * so that they have a chance to revert changes.
8789 */
8790 __dev_set_mtu(dev, orig_mtu);
8791 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8792 new_mtu);
8793 }
8794 }
8795 return err;
8796 }
8797
dev_set_mtu(struct net_device * dev,int new_mtu)8798 int dev_set_mtu(struct net_device *dev, int new_mtu)
8799 {
8800 struct netlink_ext_ack extack;
8801 int err;
8802
8803 memset(&extack, 0, sizeof(extack));
8804 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8805 if (err && extack._msg)
8806 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8807 return err;
8808 }
8809 EXPORT_SYMBOL(dev_set_mtu);
8810
8811 /**
8812 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8813 * @dev: device
8814 * @new_len: new tx queue length
8815 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8816 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8817 {
8818 unsigned int orig_len = dev->tx_queue_len;
8819 int res;
8820
8821 if (new_len != (unsigned int)new_len)
8822 return -ERANGE;
8823
8824 if (new_len != orig_len) {
8825 dev->tx_queue_len = new_len;
8826 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8827 res = notifier_to_errno(res);
8828 if (res)
8829 goto err_rollback;
8830 res = dev_qdisc_change_tx_queue_len(dev);
8831 if (res)
8832 goto err_rollback;
8833 }
8834
8835 return 0;
8836
8837 err_rollback:
8838 netdev_err(dev, "refused to change device tx_queue_len\n");
8839 dev->tx_queue_len = orig_len;
8840 return res;
8841 }
8842
8843 /**
8844 * dev_set_group - Change group this device belongs to
8845 * @dev: device
8846 * @new_group: group this device should belong to
8847 */
dev_set_group(struct net_device * dev,int new_group)8848 void dev_set_group(struct net_device *dev, int new_group)
8849 {
8850 dev->group = new_group;
8851 }
8852
8853 /**
8854 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8855 * @dev: device
8856 * @addr: new address
8857 * @extack: netlink extended ack
8858 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8859 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8860 struct netlink_ext_ack *extack)
8861 {
8862 struct netdev_notifier_pre_changeaddr_info info = {
8863 .info.dev = dev,
8864 .info.extack = extack,
8865 .dev_addr = addr,
8866 };
8867 int rc;
8868
8869 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8870 return notifier_to_errno(rc);
8871 }
8872 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8873
8874 /**
8875 * dev_set_mac_address - Change Media Access Control Address
8876 * @dev: device
8877 * @sa: new address
8878 * @extack: netlink extended ack
8879 *
8880 * Change the hardware (MAC) address of the device
8881 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8882 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8883 struct netlink_ext_ack *extack)
8884 {
8885 const struct net_device_ops *ops = dev->netdev_ops;
8886 int err;
8887
8888 if (!ops->ndo_set_mac_address)
8889 return -EOPNOTSUPP;
8890 if (sa->sa_family != dev->type)
8891 return -EINVAL;
8892 if (!netif_device_present(dev))
8893 return -ENODEV;
8894 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8895 if (err)
8896 return err;
8897 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8898 err = ops->ndo_set_mac_address(dev, sa);
8899 if (err)
8900 return err;
8901 }
8902 dev->addr_assign_type = NET_ADDR_SET;
8903 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8904 add_device_randomness(dev->dev_addr, dev->addr_len);
8905 return 0;
8906 }
8907 EXPORT_SYMBOL(dev_set_mac_address);
8908
8909 static DECLARE_RWSEM(dev_addr_sem);
8910
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8911 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8912 struct netlink_ext_ack *extack)
8913 {
8914 int ret;
8915
8916 down_write(&dev_addr_sem);
8917 ret = dev_set_mac_address(dev, sa, extack);
8918 up_write(&dev_addr_sem);
8919 return ret;
8920 }
8921 EXPORT_SYMBOL(dev_set_mac_address_user);
8922
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8923 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8924 {
8925 size_t size = sizeof(sa->sa_data_min);
8926 struct net_device *dev;
8927 int ret = 0;
8928
8929 down_read(&dev_addr_sem);
8930 rcu_read_lock();
8931
8932 dev = dev_get_by_name_rcu(net, dev_name);
8933 if (!dev) {
8934 ret = -ENODEV;
8935 goto unlock;
8936 }
8937 if (!dev->addr_len)
8938 memset(sa->sa_data, 0, size);
8939 else
8940 memcpy(sa->sa_data, dev->dev_addr,
8941 min_t(size_t, size, dev->addr_len));
8942 sa->sa_family = dev->type;
8943
8944 unlock:
8945 rcu_read_unlock();
8946 up_read(&dev_addr_sem);
8947 return ret;
8948 }
8949 EXPORT_SYMBOL(dev_get_mac_address);
8950
8951 /**
8952 * dev_change_carrier - Change device carrier
8953 * @dev: device
8954 * @new_carrier: new value
8955 *
8956 * Change device carrier
8957 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8958 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8959 {
8960 const struct net_device_ops *ops = dev->netdev_ops;
8961
8962 if (!ops->ndo_change_carrier)
8963 return -EOPNOTSUPP;
8964 if (!netif_device_present(dev))
8965 return -ENODEV;
8966 return ops->ndo_change_carrier(dev, new_carrier);
8967 }
8968
8969 /**
8970 * dev_get_phys_port_id - Get device physical port ID
8971 * @dev: device
8972 * @ppid: port ID
8973 *
8974 * Get device physical port ID
8975 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8976 int dev_get_phys_port_id(struct net_device *dev,
8977 struct netdev_phys_item_id *ppid)
8978 {
8979 const struct net_device_ops *ops = dev->netdev_ops;
8980
8981 if (!ops->ndo_get_phys_port_id)
8982 return -EOPNOTSUPP;
8983 return ops->ndo_get_phys_port_id(dev, ppid);
8984 }
8985
8986 /**
8987 * dev_get_phys_port_name - Get device physical port name
8988 * @dev: device
8989 * @name: port name
8990 * @len: limit of bytes to copy to name
8991 *
8992 * Get device physical port name
8993 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8994 int dev_get_phys_port_name(struct net_device *dev,
8995 char *name, size_t len)
8996 {
8997 const struct net_device_ops *ops = dev->netdev_ops;
8998 int err;
8999
9000 if (ops->ndo_get_phys_port_name) {
9001 err = ops->ndo_get_phys_port_name(dev, name, len);
9002 if (err != -EOPNOTSUPP)
9003 return err;
9004 }
9005 return devlink_compat_phys_port_name_get(dev, name, len);
9006 }
9007
9008 /**
9009 * dev_get_port_parent_id - Get the device's port parent identifier
9010 * @dev: network device
9011 * @ppid: pointer to a storage for the port's parent identifier
9012 * @recurse: allow/disallow recursion to lower devices
9013 *
9014 * Get the devices's port parent identifier
9015 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9016 int dev_get_port_parent_id(struct net_device *dev,
9017 struct netdev_phys_item_id *ppid,
9018 bool recurse)
9019 {
9020 const struct net_device_ops *ops = dev->netdev_ops;
9021 struct netdev_phys_item_id first = { };
9022 struct net_device *lower_dev;
9023 struct list_head *iter;
9024 int err;
9025
9026 if (ops->ndo_get_port_parent_id) {
9027 err = ops->ndo_get_port_parent_id(dev, ppid);
9028 if (err != -EOPNOTSUPP)
9029 return err;
9030 }
9031
9032 err = devlink_compat_switch_id_get(dev, ppid);
9033 if (!recurse || err != -EOPNOTSUPP)
9034 return err;
9035
9036 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9037 err = dev_get_port_parent_id(lower_dev, ppid, true);
9038 if (err)
9039 break;
9040 if (!first.id_len)
9041 first = *ppid;
9042 else if (memcmp(&first, ppid, sizeof(*ppid)))
9043 return -EOPNOTSUPP;
9044 }
9045
9046 return err;
9047 }
9048 EXPORT_SYMBOL(dev_get_port_parent_id);
9049
9050 /**
9051 * netdev_port_same_parent_id - Indicate if two network devices have
9052 * the same port parent identifier
9053 * @a: first network device
9054 * @b: second network device
9055 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9056 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9057 {
9058 struct netdev_phys_item_id a_id = { };
9059 struct netdev_phys_item_id b_id = { };
9060
9061 if (dev_get_port_parent_id(a, &a_id, true) ||
9062 dev_get_port_parent_id(b, &b_id, true))
9063 return false;
9064
9065 return netdev_phys_item_id_same(&a_id, &b_id);
9066 }
9067 EXPORT_SYMBOL(netdev_port_same_parent_id);
9068
9069 /**
9070 * dev_change_proto_down - set carrier according to proto_down.
9071 *
9072 * @dev: device
9073 * @proto_down: new value
9074 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9075 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9076 {
9077 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9078 return -EOPNOTSUPP;
9079 if (!netif_device_present(dev))
9080 return -ENODEV;
9081 if (proto_down)
9082 netif_carrier_off(dev);
9083 else
9084 netif_carrier_on(dev);
9085 dev->proto_down = proto_down;
9086 return 0;
9087 }
9088
9089 /**
9090 * dev_change_proto_down_reason - proto down reason
9091 *
9092 * @dev: device
9093 * @mask: proto down mask
9094 * @value: proto down value
9095 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9096 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9097 u32 value)
9098 {
9099 int b;
9100
9101 if (!mask) {
9102 dev->proto_down_reason = value;
9103 } else {
9104 for_each_set_bit(b, &mask, 32) {
9105 if (value & (1 << b))
9106 dev->proto_down_reason |= BIT(b);
9107 else
9108 dev->proto_down_reason &= ~BIT(b);
9109 }
9110 }
9111 }
9112
9113 struct bpf_xdp_link {
9114 struct bpf_link link;
9115 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9116 int flags;
9117 };
9118
dev_xdp_mode(struct net_device * dev,u32 flags)9119 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9120 {
9121 if (flags & XDP_FLAGS_HW_MODE)
9122 return XDP_MODE_HW;
9123 if (flags & XDP_FLAGS_DRV_MODE)
9124 return XDP_MODE_DRV;
9125 if (flags & XDP_FLAGS_SKB_MODE)
9126 return XDP_MODE_SKB;
9127 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9128 }
9129
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9130 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9131 {
9132 switch (mode) {
9133 case XDP_MODE_SKB:
9134 return generic_xdp_install;
9135 case XDP_MODE_DRV:
9136 case XDP_MODE_HW:
9137 return dev->netdev_ops->ndo_bpf;
9138 default:
9139 return NULL;
9140 }
9141 }
9142
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9143 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9144 enum bpf_xdp_mode mode)
9145 {
9146 return dev->xdp_state[mode].link;
9147 }
9148
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9149 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9150 enum bpf_xdp_mode mode)
9151 {
9152 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9153
9154 if (link)
9155 return link->link.prog;
9156 return dev->xdp_state[mode].prog;
9157 }
9158
dev_xdp_prog_count(struct net_device * dev)9159 u8 dev_xdp_prog_count(struct net_device *dev)
9160 {
9161 u8 count = 0;
9162 int i;
9163
9164 for (i = 0; i < __MAX_XDP_MODE; i++)
9165 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9166 count++;
9167 return count;
9168 }
9169 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9170
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9171 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9172 {
9173 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9174
9175 return prog ? prog->aux->id : 0;
9176 }
9177
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9178 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9179 struct bpf_xdp_link *link)
9180 {
9181 dev->xdp_state[mode].link = link;
9182 dev->xdp_state[mode].prog = NULL;
9183 }
9184
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9185 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9186 struct bpf_prog *prog)
9187 {
9188 dev->xdp_state[mode].link = NULL;
9189 dev->xdp_state[mode].prog = prog;
9190 }
9191
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9192 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9193 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9194 u32 flags, struct bpf_prog *prog)
9195 {
9196 struct netdev_bpf xdp;
9197 int err;
9198
9199 memset(&xdp, 0, sizeof(xdp));
9200 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9201 xdp.extack = extack;
9202 xdp.flags = flags;
9203 xdp.prog = prog;
9204
9205 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9206 * "moved" into driver), so they don't increment it on their own, but
9207 * they do decrement refcnt when program is detached or replaced.
9208 * Given net_device also owns link/prog, we need to bump refcnt here
9209 * to prevent drivers from underflowing it.
9210 */
9211 if (prog)
9212 bpf_prog_inc(prog);
9213 err = bpf_op(dev, &xdp);
9214 if (err) {
9215 if (prog)
9216 bpf_prog_put(prog);
9217 return err;
9218 }
9219
9220 if (mode != XDP_MODE_HW)
9221 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9222
9223 return 0;
9224 }
9225
dev_xdp_uninstall(struct net_device * dev)9226 static void dev_xdp_uninstall(struct net_device *dev)
9227 {
9228 struct bpf_xdp_link *link;
9229 struct bpf_prog *prog;
9230 enum bpf_xdp_mode mode;
9231 bpf_op_t bpf_op;
9232
9233 ASSERT_RTNL();
9234
9235 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9236 prog = dev_xdp_prog(dev, mode);
9237 if (!prog)
9238 continue;
9239
9240 bpf_op = dev_xdp_bpf_op(dev, mode);
9241 if (!bpf_op)
9242 continue;
9243
9244 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9245
9246 /* auto-detach link from net device */
9247 link = dev_xdp_link(dev, mode);
9248 if (link)
9249 link->dev = NULL;
9250 else
9251 bpf_prog_put(prog);
9252
9253 dev_xdp_set_link(dev, mode, NULL);
9254 }
9255 }
9256
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9257 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9258 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9259 struct bpf_prog *old_prog, u32 flags)
9260 {
9261 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9262 struct bpf_prog *cur_prog;
9263 struct net_device *upper;
9264 struct list_head *iter;
9265 enum bpf_xdp_mode mode;
9266 bpf_op_t bpf_op;
9267 int err;
9268
9269 ASSERT_RTNL();
9270
9271 /* either link or prog attachment, never both */
9272 if (link && (new_prog || old_prog))
9273 return -EINVAL;
9274 /* link supports only XDP mode flags */
9275 if (link && (flags & ~XDP_FLAGS_MODES)) {
9276 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9277 return -EINVAL;
9278 }
9279 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9280 if (num_modes > 1) {
9281 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9282 return -EINVAL;
9283 }
9284 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9285 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9286 NL_SET_ERR_MSG(extack,
9287 "More than one program loaded, unset mode is ambiguous");
9288 return -EINVAL;
9289 }
9290 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9291 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9292 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9293 return -EINVAL;
9294 }
9295
9296 mode = dev_xdp_mode(dev, flags);
9297 /* can't replace attached link */
9298 if (dev_xdp_link(dev, mode)) {
9299 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9300 return -EBUSY;
9301 }
9302
9303 /* don't allow if an upper device already has a program */
9304 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9305 if (dev_xdp_prog_count(upper) > 0) {
9306 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9307 return -EEXIST;
9308 }
9309 }
9310
9311 cur_prog = dev_xdp_prog(dev, mode);
9312 /* can't replace attached prog with link */
9313 if (link && cur_prog) {
9314 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9315 return -EBUSY;
9316 }
9317 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9318 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9319 return -EEXIST;
9320 }
9321
9322 /* put effective new program into new_prog */
9323 if (link)
9324 new_prog = link->link.prog;
9325
9326 if (new_prog) {
9327 bool offload = mode == XDP_MODE_HW;
9328 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9329 ? XDP_MODE_DRV : XDP_MODE_SKB;
9330
9331 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9332 NL_SET_ERR_MSG(extack, "XDP program already attached");
9333 return -EBUSY;
9334 }
9335 if (!offload && dev_xdp_prog(dev, other_mode)) {
9336 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9337 return -EEXIST;
9338 }
9339 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9340 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9341 return -EINVAL;
9342 }
9343 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9344 NL_SET_ERR_MSG(extack, "Program bound to different device");
9345 return -EINVAL;
9346 }
9347 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9348 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9349 return -EINVAL;
9350 }
9351 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9352 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9353 return -EINVAL;
9354 }
9355 }
9356
9357 /* don't call drivers if the effective program didn't change */
9358 if (new_prog != cur_prog) {
9359 bpf_op = dev_xdp_bpf_op(dev, mode);
9360 if (!bpf_op) {
9361 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9362 return -EOPNOTSUPP;
9363 }
9364
9365 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9366 if (err)
9367 return err;
9368 }
9369
9370 if (link)
9371 dev_xdp_set_link(dev, mode, link);
9372 else
9373 dev_xdp_set_prog(dev, mode, new_prog);
9374 if (cur_prog)
9375 bpf_prog_put(cur_prog);
9376
9377 return 0;
9378 }
9379
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9380 static int dev_xdp_attach_link(struct net_device *dev,
9381 struct netlink_ext_ack *extack,
9382 struct bpf_xdp_link *link)
9383 {
9384 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9385 }
9386
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9387 static int dev_xdp_detach_link(struct net_device *dev,
9388 struct netlink_ext_ack *extack,
9389 struct bpf_xdp_link *link)
9390 {
9391 enum bpf_xdp_mode mode;
9392 bpf_op_t bpf_op;
9393
9394 ASSERT_RTNL();
9395
9396 mode = dev_xdp_mode(dev, link->flags);
9397 if (dev_xdp_link(dev, mode) != link)
9398 return -EINVAL;
9399
9400 bpf_op = dev_xdp_bpf_op(dev, mode);
9401 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9402 dev_xdp_set_link(dev, mode, NULL);
9403 return 0;
9404 }
9405
bpf_xdp_link_release(struct bpf_link * link)9406 static void bpf_xdp_link_release(struct bpf_link *link)
9407 {
9408 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9409
9410 rtnl_lock();
9411
9412 /* if racing with net_device's tear down, xdp_link->dev might be
9413 * already NULL, in which case link was already auto-detached
9414 */
9415 if (xdp_link->dev) {
9416 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9417 xdp_link->dev = NULL;
9418 }
9419
9420 rtnl_unlock();
9421 }
9422
bpf_xdp_link_detach(struct bpf_link * link)9423 static int bpf_xdp_link_detach(struct bpf_link *link)
9424 {
9425 bpf_xdp_link_release(link);
9426 return 0;
9427 }
9428
bpf_xdp_link_dealloc(struct bpf_link * link)9429 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9430 {
9431 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9432
9433 kfree(xdp_link);
9434 }
9435
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9436 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9437 struct seq_file *seq)
9438 {
9439 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440 u32 ifindex = 0;
9441
9442 rtnl_lock();
9443 if (xdp_link->dev)
9444 ifindex = xdp_link->dev->ifindex;
9445 rtnl_unlock();
9446
9447 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9448 }
9449
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9450 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9451 struct bpf_link_info *info)
9452 {
9453 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9454 u32 ifindex = 0;
9455
9456 rtnl_lock();
9457 if (xdp_link->dev)
9458 ifindex = xdp_link->dev->ifindex;
9459 rtnl_unlock();
9460
9461 info->xdp.ifindex = ifindex;
9462 return 0;
9463 }
9464
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9465 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9466 struct bpf_prog *old_prog)
9467 {
9468 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9469 enum bpf_xdp_mode mode;
9470 bpf_op_t bpf_op;
9471 int err = 0;
9472
9473 rtnl_lock();
9474
9475 /* link might have been auto-released already, so fail */
9476 if (!xdp_link->dev) {
9477 err = -ENOLINK;
9478 goto out_unlock;
9479 }
9480
9481 if (old_prog && link->prog != old_prog) {
9482 err = -EPERM;
9483 goto out_unlock;
9484 }
9485 old_prog = link->prog;
9486 if (old_prog->type != new_prog->type ||
9487 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9488 err = -EINVAL;
9489 goto out_unlock;
9490 }
9491
9492 if (old_prog == new_prog) {
9493 /* no-op, don't disturb drivers */
9494 bpf_prog_put(new_prog);
9495 goto out_unlock;
9496 }
9497
9498 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9499 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9500 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9501 xdp_link->flags, new_prog);
9502 if (err)
9503 goto out_unlock;
9504
9505 old_prog = xchg(&link->prog, new_prog);
9506 bpf_prog_put(old_prog);
9507
9508 out_unlock:
9509 rtnl_unlock();
9510 return err;
9511 }
9512
9513 static const struct bpf_link_ops bpf_xdp_link_lops = {
9514 .release = bpf_xdp_link_release,
9515 .dealloc = bpf_xdp_link_dealloc,
9516 .detach = bpf_xdp_link_detach,
9517 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9518 .fill_link_info = bpf_xdp_link_fill_link_info,
9519 .update_prog = bpf_xdp_link_update,
9520 };
9521
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9522 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9523 {
9524 struct net *net = current->nsproxy->net_ns;
9525 struct bpf_link_primer link_primer;
9526 struct netlink_ext_ack extack = {};
9527 struct bpf_xdp_link *link;
9528 struct net_device *dev;
9529 int err, fd;
9530
9531 rtnl_lock();
9532 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9533 if (!dev) {
9534 rtnl_unlock();
9535 return -EINVAL;
9536 }
9537
9538 link = kzalloc(sizeof(*link), GFP_USER);
9539 if (!link) {
9540 err = -ENOMEM;
9541 goto unlock;
9542 }
9543
9544 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9545 link->dev = dev;
9546 link->flags = attr->link_create.flags;
9547
9548 err = bpf_link_prime(&link->link, &link_primer);
9549 if (err) {
9550 kfree(link);
9551 goto unlock;
9552 }
9553
9554 err = dev_xdp_attach_link(dev, &extack, link);
9555 rtnl_unlock();
9556
9557 if (err) {
9558 link->dev = NULL;
9559 bpf_link_cleanup(&link_primer);
9560 trace_bpf_xdp_link_attach_failed(extack._msg);
9561 goto out_put_dev;
9562 }
9563
9564 fd = bpf_link_settle(&link_primer);
9565 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9566 dev_put(dev);
9567 return fd;
9568
9569 unlock:
9570 rtnl_unlock();
9571
9572 out_put_dev:
9573 dev_put(dev);
9574 return err;
9575 }
9576
9577 /**
9578 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9579 * @dev: device
9580 * @extack: netlink extended ack
9581 * @fd: new program fd or negative value to clear
9582 * @expected_fd: old program fd that userspace expects to replace or clear
9583 * @flags: xdp-related flags
9584 *
9585 * Set or clear a bpf program for a device
9586 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9587 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9588 int fd, int expected_fd, u32 flags)
9589 {
9590 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9591 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9592 int err;
9593
9594 ASSERT_RTNL();
9595
9596 if (fd >= 0) {
9597 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9598 mode != XDP_MODE_SKB);
9599 if (IS_ERR(new_prog))
9600 return PTR_ERR(new_prog);
9601 }
9602
9603 if (expected_fd >= 0) {
9604 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9605 mode != XDP_MODE_SKB);
9606 if (IS_ERR(old_prog)) {
9607 err = PTR_ERR(old_prog);
9608 old_prog = NULL;
9609 goto err_out;
9610 }
9611 }
9612
9613 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9614
9615 err_out:
9616 if (err && new_prog)
9617 bpf_prog_put(new_prog);
9618 if (old_prog)
9619 bpf_prog_put(old_prog);
9620 return err;
9621 }
9622
9623 /**
9624 * dev_index_reserve() - allocate an ifindex in a namespace
9625 * @net: the applicable net namespace
9626 * @ifindex: requested ifindex, pass %0 to get one allocated
9627 *
9628 * Allocate a ifindex for a new device. Caller must either use the ifindex
9629 * to store the device (via list_netdevice()) or call dev_index_release()
9630 * to give the index up.
9631 *
9632 * Return: a suitable unique value for a new device interface number or -errno.
9633 */
dev_index_reserve(struct net * net,u32 ifindex)9634 static int dev_index_reserve(struct net *net, u32 ifindex)
9635 {
9636 int err;
9637
9638 if (ifindex > INT_MAX) {
9639 DEBUG_NET_WARN_ON_ONCE(1);
9640 return -EINVAL;
9641 }
9642
9643 if (!ifindex)
9644 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9645 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9646 else
9647 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9648 if (err < 0)
9649 return err;
9650
9651 return ifindex;
9652 }
9653
dev_index_release(struct net * net,int ifindex)9654 static void dev_index_release(struct net *net, int ifindex)
9655 {
9656 /* Expect only unused indexes, unlist_netdevice() removes the used */
9657 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9658 }
9659
9660 /* Delayed registration/unregisteration */
9661 LIST_HEAD(net_todo_list);
9662 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9663
net_set_todo(struct net_device * dev)9664 static void net_set_todo(struct net_device *dev)
9665 {
9666 list_add_tail(&dev->todo_list, &net_todo_list);
9667 atomic_inc(&dev_net(dev)->dev_unreg_count);
9668 }
9669
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9670 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9671 struct net_device *upper, netdev_features_t features)
9672 {
9673 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9674 netdev_features_t feature;
9675 int feature_bit;
9676
9677 for_each_netdev_feature(upper_disables, feature_bit) {
9678 feature = __NETIF_F_BIT(feature_bit);
9679 if (!(upper->wanted_features & feature)
9680 && (features & feature)) {
9681 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9682 &feature, upper->name);
9683 features &= ~feature;
9684 }
9685 }
9686
9687 return features;
9688 }
9689
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9690 static void netdev_sync_lower_features(struct net_device *upper,
9691 struct net_device *lower, netdev_features_t features)
9692 {
9693 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9694 netdev_features_t feature;
9695 int feature_bit;
9696
9697 for_each_netdev_feature(upper_disables, feature_bit) {
9698 feature = __NETIF_F_BIT(feature_bit);
9699 if (!(features & feature) && (lower->features & feature)) {
9700 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9701 &feature, lower->name);
9702 lower->wanted_features &= ~feature;
9703 __netdev_update_features(lower);
9704
9705 if (unlikely(lower->features & feature))
9706 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9707 &feature, lower->name);
9708 else
9709 netdev_features_change(lower);
9710 }
9711 }
9712 }
9713
netdev_fix_features(struct net_device * dev,netdev_features_t features)9714 static netdev_features_t netdev_fix_features(struct net_device *dev,
9715 netdev_features_t features)
9716 {
9717 /* Fix illegal checksum combinations */
9718 if ((features & NETIF_F_HW_CSUM) &&
9719 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9720 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9721 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9722 }
9723
9724 /* TSO requires that SG is present as well. */
9725 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9726 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9727 features &= ~NETIF_F_ALL_TSO;
9728 }
9729
9730 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9731 !(features & NETIF_F_IP_CSUM)) {
9732 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9733 features &= ~NETIF_F_TSO;
9734 features &= ~NETIF_F_TSO_ECN;
9735 }
9736
9737 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9738 !(features & NETIF_F_IPV6_CSUM)) {
9739 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9740 features &= ~NETIF_F_TSO6;
9741 }
9742
9743 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9744 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9745 features &= ~NETIF_F_TSO_MANGLEID;
9746
9747 /* TSO ECN requires that TSO is present as well. */
9748 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9749 features &= ~NETIF_F_TSO_ECN;
9750
9751 /* Software GSO depends on SG. */
9752 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9753 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9754 features &= ~NETIF_F_GSO;
9755 }
9756
9757 /* GSO partial features require GSO partial be set */
9758 if ((features & dev->gso_partial_features) &&
9759 !(features & NETIF_F_GSO_PARTIAL)) {
9760 netdev_dbg(dev,
9761 "Dropping partially supported GSO features since no GSO partial.\n");
9762 features &= ~dev->gso_partial_features;
9763 }
9764
9765 if (!(features & NETIF_F_RXCSUM)) {
9766 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9767 * successfully merged by hardware must also have the
9768 * checksum verified by hardware. If the user does not
9769 * want to enable RXCSUM, logically, we should disable GRO_HW.
9770 */
9771 if (features & NETIF_F_GRO_HW) {
9772 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9773 features &= ~NETIF_F_GRO_HW;
9774 }
9775 }
9776
9777 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9778 if (features & NETIF_F_RXFCS) {
9779 if (features & NETIF_F_LRO) {
9780 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9781 features &= ~NETIF_F_LRO;
9782 }
9783
9784 if (features & NETIF_F_GRO_HW) {
9785 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9786 features &= ~NETIF_F_GRO_HW;
9787 }
9788 }
9789
9790 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9791 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9792 features &= ~NETIF_F_LRO;
9793 }
9794
9795 if (features & NETIF_F_HW_TLS_TX) {
9796 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9797 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9798 bool hw_csum = features & NETIF_F_HW_CSUM;
9799
9800 if (!ip_csum && !hw_csum) {
9801 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9802 features &= ~NETIF_F_HW_TLS_TX;
9803 }
9804 }
9805
9806 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9807 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9808 features &= ~NETIF_F_HW_TLS_RX;
9809 }
9810
9811 return features;
9812 }
9813
__netdev_update_features(struct net_device * dev)9814 int __netdev_update_features(struct net_device *dev)
9815 {
9816 struct net_device *upper, *lower;
9817 netdev_features_t features;
9818 struct list_head *iter;
9819 int err = -1;
9820
9821 ASSERT_RTNL();
9822
9823 features = netdev_get_wanted_features(dev);
9824
9825 if (dev->netdev_ops->ndo_fix_features)
9826 features = dev->netdev_ops->ndo_fix_features(dev, features);
9827
9828 /* driver might be less strict about feature dependencies */
9829 features = netdev_fix_features(dev, features);
9830
9831 /* some features can't be enabled if they're off on an upper device */
9832 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9833 features = netdev_sync_upper_features(dev, upper, features);
9834
9835 if (dev->features == features)
9836 goto sync_lower;
9837
9838 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9839 &dev->features, &features);
9840
9841 if (dev->netdev_ops->ndo_set_features)
9842 err = dev->netdev_ops->ndo_set_features(dev, features);
9843 else
9844 err = 0;
9845
9846 if (unlikely(err < 0)) {
9847 netdev_err(dev,
9848 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9849 err, &features, &dev->features);
9850 /* return non-0 since some features might have changed and
9851 * it's better to fire a spurious notification than miss it
9852 */
9853 return -1;
9854 }
9855
9856 sync_lower:
9857 /* some features must be disabled on lower devices when disabled
9858 * on an upper device (think: bonding master or bridge)
9859 */
9860 netdev_for_each_lower_dev(dev, lower, iter)
9861 netdev_sync_lower_features(dev, lower, features);
9862
9863 if (!err) {
9864 netdev_features_t diff = features ^ dev->features;
9865
9866 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9867 /* udp_tunnel_{get,drop}_rx_info both need
9868 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9869 * device, or they won't do anything.
9870 * Thus we need to update dev->features
9871 * *before* calling udp_tunnel_get_rx_info,
9872 * but *after* calling udp_tunnel_drop_rx_info.
9873 */
9874 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9875 dev->features = features;
9876 udp_tunnel_get_rx_info(dev);
9877 } else {
9878 udp_tunnel_drop_rx_info(dev);
9879 }
9880 }
9881
9882 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9883 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9884 dev->features = features;
9885 err |= vlan_get_rx_ctag_filter_info(dev);
9886 } else {
9887 vlan_drop_rx_ctag_filter_info(dev);
9888 }
9889 }
9890
9891 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9892 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9893 dev->features = features;
9894 err |= vlan_get_rx_stag_filter_info(dev);
9895 } else {
9896 vlan_drop_rx_stag_filter_info(dev);
9897 }
9898 }
9899
9900 dev->features = features;
9901 }
9902
9903 return err < 0 ? 0 : 1;
9904 }
9905
9906 /**
9907 * netdev_update_features - recalculate device features
9908 * @dev: the device to check
9909 *
9910 * Recalculate dev->features set and send notifications if it
9911 * has changed. Should be called after driver or hardware dependent
9912 * conditions might have changed that influence the features.
9913 */
netdev_update_features(struct net_device * dev)9914 void netdev_update_features(struct net_device *dev)
9915 {
9916 if (__netdev_update_features(dev))
9917 netdev_features_change(dev);
9918 }
9919 EXPORT_SYMBOL(netdev_update_features);
9920
9921 /**
9922 * netdev_change_features - recalculate device features
9923 * @dev: the device to check
9924 *
9925 * Recalculate dev->features set and send notifications even
9926 * if they have not changed. Should be called instead of
9927 * netdev_update_features() if also dev->vlan_features might
9928 * have changed to allow the changes to be propagated to stacked
9929 * VLAN devices.
9930 */
netdev_change_features(struct net_device * dev)9931 void netdev_change_features(struct net_device *dev)
9932 {
9933 __netdev_update_features(dev);
9934 netdev_features_change(dev);
9935 }
9936 EXPORT_SYMBOL(netdev_change_features);
9937
9938 /**
9939 * netif_stacked_transfer_operstate - transfer operstate
9940 * @rootdev: the root or lower level device to transfer state from
9941 * @dev: the device to transfer operstate to
9942 *
9943 * Transfer operational state from root to device. This is normally
9944 * called when a stacking relationship exists between the root
9945 * device and the device(a leaf device).
9946 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9947 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9948 struct net_device *dev)
9949 {
9950 if (rootdev->operstate == IF_OPER_DORMANT)
9951 netif_dormant_on(dev);
9952 else
9953 netif_dormant_off(dev);
9954
9955 if (rootdev->operstate == IF_OPER_TESTING)
9956 netif_testing_on(dev);
9957 else
9958 netif_testing_off(dev);
9959
9960 if (netif_carrier_ok(rootdev))
9961 netif_carrier_on(dev);
9962 else
9963 netif_carrier_off(dev);
9964 }
9965 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9966
netif_alloc_rx_queues(struct net_device * dev)9967 static int netif_alloc_rx_queues(struct net_device *dev)
9968 {
9969 unsigned int i, count = dev->num_rx_queues;
9970 struct netdev_rx_queue *rx;
9971 size_t sz = count * sizeof(*rx);
9972 int err = 0;
9973
9974 BUG_ON(count < 1);
9975
9976 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9977 if (!rx)
9978 return -ENOMEM;
9979
9980 dev->_rx = rx;
9981
9982 for (i = 0; i < count; i++) {
9983 rx[i].dev = dev;
9984
9985 /* XDP RX-queue setup */
9986 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9987 if (err < 0)
9988 goto err_rxq_info;
9989 }
9990 return 0;
9991
9992 err_rxq_info:
9993 /* Rollback successful reg's and free other resources */
9994 while (i--)
9995 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9996 kvfree(dev->_rx);
9997 dev->_rx = NULL;
9998 return err;
9999 }
10000
netif_free_rx_queues(struct net_device * dev)10001 static void netif_free_rx_queues(struct net_device *dev)
10002 {
10003 unsigned int i, count = dev->num_rx_queues;
10004
10005 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10006 if (!dev->_rx)
10007 return;
10008
10009 for (i = 0; i < count; i++)
10010 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10011
10012 kvfree(dev->_rx);
10013 }
10014
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10015 static void netdev_init_one_queue(struct net_device *dev,
10016 struct netdev_queue *queue, void *_unused)
10017 {
10018 /* Initialize queue lock */
10019 spin_lock_init(&queue->_xmit_lock);
10020 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10021 queue->xmit_lock_owner = -1;
10022 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10023 queue->dev = dev;
10024 #ifdef CONFIG_BQL
10025 dql_init(&queue->dql, HZ);
10026 #endif
10027 }
10028
netif_free_tx_queues(struct net_device * dev)10029 static void netif_free_tx_queues(struct net_device *dev)
10030 {
10031 kvfree(dev->_tx);
10032 }
10033
netif_alloc_netdev_queues(struct net_device * dev)10034 static int netif_alloc_netdev_queues(struct net_device *dev)
10035 {
10036 unsigned int count = dev->num_tx_queues;
10037 struct netdev_queue *tx;
10038 size_t sz = count * sizeof(*tx);
10039
10040 if (count < 1 || count > 0xffff)
10041 return -EINVAL;
10042
10043 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10044 if (!tx)
10045 return -ENOMEM;
10046
10047 dev->_tx = tx;
10048
10049 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10050 spin_lock_init(&dev->tx_global_lock);
10051
10052 return 0;
10053 }
10054
netif_tx_stop_all_queues(struct net_device * dev)10055 void netif_tx_stop_all_queues(struct net_device *dev)
10056 {
10057 unsigned int i;
10058
10059 for (i = 0; i < dev->num_tx_queues; i++) {
10060 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10061
10062 netif_tx_stop_queue(txq);
10063 }
10064 }
10065 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10066
netdev_do_alloc_pcpu_stats(struct net_device * dev)10067 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10068 {
10069 void __percpu *v;
10070
10071 /* Drivers implementing ndo_get_peer_dev must support tstat
10072 * accounting, so that skb_do_redirect() can bump the dev's
10073 * RX stats upon network namespace switch.
10074 */
10075 if (dev->netdev_ops->ndo_get_peer_dev &&
10076 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10077 return -EOPNOTSUPP;
10078
10079 switch (dev->pcpu_stat_type) {
10080 case NETDEV_PCPU_STAT_NONE:
10081 return 0;
10082 case NETDEV_PCPU_STAT_LSTATS:
10083 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10084 break;
10085 case NETDEV_PCPU_STAT_TSTATS:
10086 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10087 break;
10088 case NETDEV_PCPU_STAT_DSTATS:
10089 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10090 break;
10091 default:
10092 return -EINVAL;
10093 }
10094
10095 return v ? 0 : -ENOMEM;
10096 }
10097
netdev_do_free_pcpu_stats(struct net_device * dev)10098 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10099 {
10100 switch (dev->pcpu_stat_type) {
10101 case NETDEV_PCPU_STAT_NONE:
10102 return;
10103 case NETDEV_PCPU_STAT_LSTATS:
10104 free_percpu(dev->lstats);
10105 break;
10106 case NETDEV_PCPU_STAT_TSTATS:
10107 free_percpu(dev->tstats);
10108 break;
10109 case NETDEV_PCPU_STAT_DSTATS:
10110 free_percpu(dev->dstats);
10111 break;
10112 }
10113 }
10114
10115 /**
10116 * register_netdevice() - register a network device
10117 * @dev: device to register
10118 *
10119 * Take a prepared network device structure and make it externally accessible.
10120 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10121 * Callers must hold the rtnl lock - you may want register_netdev()
10122 * instead of this.
10123 */
register_netdevice(struct net_device * dev)10124 int register_netdevice(struct net_device *dev)
10125 {
10126 int ret;
10127 struct net *net = dev_net(dev);
10128
10129 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10130 NETDEV_FEATURE_COUNT);
10131 BUG_ON(dev_boot_phase);
10132 ASSERT_RTNL();
10133
10134 might_sleep();
10135
10136 /* When net_device's are persistent, this will be fatal. */
10137 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10138 BUG_ON(!net);
10139
10140 ret = ethtool_check_ops(dev->ethtool_ops);
10141 if (ret)
10142 return ret;
10143
10144 spin_lock_init(&dev->addr_list_lock);
10145 netdev_set_addr_lockdep_class(dev);
10146
10147 ret = dev_get_valid_name(net, dev, dev->name);
10148 if (ret < 0)
10149 goto out;
10150
10151 ret = -ENOMEM;
10152 dev->name_node = netdev_name_node_head_alloc(dev);
10153 if (!dev->name_node)
10154 goto out;
10155
10156 /* Init, if this function is available */
10157 if (dev->netdev_ops->ndo_init) {
10158 ret = dev->netdev_ops->ndo_init(dev);
10159 if (ret) {
10160 if (ret > 0)
10161 ret = -EIO;
10162 goto err_free_name;
10163 }
10164 }
10165
10166 if (((dev->hw_features | dev->features) &
10167 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10168 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10169 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10170 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10171 ret = -EINVAL;
10172 goto err_uninit;
10173 }
10174
10175 ret = netdev_do_alloc_pcpu_stats(dev);
10176 if (ret)
10177 goto err_uninit;
10178
10179 ret = dev_index_reserve(net, dev->ifindex);
10180 if (ret < 0)
10181 goto err_free_pcpu;
10182 dev->ifindex = ret;
10183
10184 /* Transfer changeable features to wanted_features and enable
10185 * software offloads (GSO and GRO).
10186 */
10187 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10188 dev->features |= NETIF_F_SOFT_FEATURES;
10189
10190 if (dev->udp_tunnel_nic_info) {
10191 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10192 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10193 }
10194
10195 dev->wanted_features = dev->features & dev->hw_features;
10196
10197 if (!(dev->flags & IFF_LOOPBACK))
10198 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10199
10200 /* If IPv4 TCP segmentation offload is supported we should also
10201 * allow the device to enable segmenting the frame with the option
10202 * of ignoring a static IP ID value. This doesn't enable the
10203 * feature itself but allows the user to enable it later.
10204 */
10205 if (dev->hw_features & NETIF_F_TSO)
10206 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10207 if (dev->vlan_features & NETIF_F_TSO)
10208 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10209 if (dev->mpls_features & NETIF_F_TSO)
10210 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10211 if (dev->hw_enc_features & NETIF_F_TSO)
10212 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10213
10214 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10215 */
10216 dev->vlan_features |= NETIF_F_HIGHDMA;
10217
10218 /* Make NETIF_F_SG inheritable to tunnel devices.
10219 */
10220 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10221
10222 /* Make NETIF_F_SG inheritable to MPLS.
10223 */
10224 dev->mpls_features |= NETIF_F_SG;
10225
10226 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10227 ret = notifier_to_errno(ret);
10228 if (ret)
10229 goto err_ifindex_release;
10230
10231 ret = netdev_register_kobject(dev);
10232 write_lock(&dev_base_lock);
10233 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10234 write_unlock(&dev_base_lock);
10235 if (ret)
10236 goto err_uninit_notify;
10237
10238 __netdev_update_features(dev);
10239
10240 /*
10241 * Default initial state at registry is that the
10242 * device is present.
10243 */
10244
10245 set_bit(__LINK_STATE_PRESENT, &dev->state);
10246
10247 linkwatch_init_dev(dev);
10248
10249 dev_init_scheduler(dev);
10250
10251 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10252 list_netdevice(dev);
10253
10254 add_device_randomness(dev->dev_addr, dev->addr_len);
10255
10256 /* If the device has permanent device address, driver should
10257 * set dev_addr and also addr_assign_type should be set to
10258 * NET_ADDR_PERM (default value).
10259 */
10260 if (dev->addr_assign_type == NET_ADDR_PERM)
10261 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10262
10263 /* Notify protocols, that a new device appeared. */
10264 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10265 ret = notifier_to_errno(ret);
10266 if (ret) {
10267 /* Expect explicit free_netdev() on failure */
10268 dev->needs_free_netdev = false;
10269 unregister_netdevice_queue(dev, NULL);
10270 goto out;
10271 }
10272 /*
10273 * Prevent userspace races by waiting until the network
10274 * device is fully setup before sending notifications.
10275 */
10276 if (!dev->rtnl_link_ops ||
10277 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10278 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10279
10280 out:
10281 return ret;
10282
10283 err_uninit_notify:
10284 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10285 err_ifindex_release:
10286 dev_index_release(net, dev->ifindex);
10287 err_free_pcpu:
10288 netdev_do_free_pcpu_stats(dev);
10289 err_uninit:
10290 if (dev->netdev_ops->ndo_uninit)
10291 dev->netdev_ops->ndo_uninit(dev);
10292 if (dev->priv_destructor)
10293 dev->priv_destructor(dev);
10294 err_free_name:
10295 netdev_name_node_free(dev->name_node);
10296 goto out;
10297 }
10298 EXPORT_SYMBOL(register_netdevice);
10299
10300 /**
10301 * init_dummy_netdev - init a dummy network device for NAPI
10302 * @dev: device to init
10303 *
10304 * This takes a network device structure and initialize the minimum
10305 * amount of fields so it can be used to schedule NAPI polls without
10306 * registering a full blown interface. This is to be used by drivers
10307 * that need to tie several hardware interfaces to a single NAPI
10308 * poll scheduler due to HW limitations.
10309 */
init_dummy_netdev(struct net_device * dev)10310 int init_dummy_netdev(struct net_device *dev)
10311 {
10312 /* Clear everything. Note we don't initialize spinlocks
10313 * are they aren't supposed to be taken by any of the
10314 * NAPI code and this dummy netdev is supposed to be
10315 * only ever used for NAPI polls
10316 */
10317 memset(dev, 0, sizeof(struct net_device));
10318
10319 /* make sure we BUG if trying to hit standard
10320 * register/unregister code path
10321 */
10322 dev->reg_state = NETREG_DUMMY;
10323
10324 /* NAPI wants this */
10325 INIT_LIST_HEAD(&dev->napi_list);
10326
10327 /* a dummy interface is started by default */
10328 set_bit(__LINK_STATE_PRESENT, &dev->state);
10329 set_bit(__LINK_STATE_START, &dev->state);
10330
10331 /* napi_busy_loop stats accounting wants this */
10332 dev_net_set(dev, &init_net);
10333
10334 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10335 * because users of this 'device' dont need to change
10336 * its refcount.
10337 */
10338
10339 return 0;
10340 }
10341 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10342
10343
10344 /**
10345 * register_netdev - register a network device
10346 * @dev: device to register
10347 *
10348 * Take a completed network device structure and add it to the kernel
10349 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10350 * chain. 0 is returned on success. A negative errno code is returned
10351 * on a failure to set up the device, or if the name is a duplicate.
10352 *
10353 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10354 * and expands the device name if you passed a format string to
10355 * alloc_netdev.
10356 */
register_netdev(struct net_device * dev)10357 int register_netdev(struct net_device *dev)
10358 {
10359 int err;
10360
10361 if (rtnl_lock_killable())
10362 return -EINTR;
10363 err = register_netdevice(dev);
10364 rtnl_unlock();
10365 return err;
10366 }
10367 EXPORT_SYMBOL(register_netdev);
10368
netdev_refcnt_read(const struct net_device * dev)10369 int netdev_refcnt_read(const struct net_device *dev)
10370 {
10371 #ifdef CONFIG_PCPU_DEV_REFCNT
10372 int i, refcnt = 0;
10373
10374 for_each_possible_cpu(i)
10375 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10376 return refcnt;
10377 #else
10378 return refcount_read(&dev->dev_refcnt);
10379 #endif
10380 }
10381 EXPORT_SYMBOL(netdev_refcnt_read);
10382
10383 int netdev_unregister_timeout_secs __read_mostly = 10;
10384
10385 #define WAIT_REFS_MIN_MSECS 1
10386 #define WAIT_REFS_MAX_MSECS 250
10387 /**
10388 * netdev_wait_allrefs_any - wait until all references are gone.
10389 * @list: list of net_devices to wait on
10390 *
10391 * This is called when unregistering network devices.
10392 *
10393 * Any protocol or device that holds a reference should register
10394 * for netdevice notification, and cleanup and put back the
10395 * reference if they receive an UNREGISTER event.
10396 * We can get stuck here if buggy protocols don't correctly
10397 * call dev_put.
10398 */
netdev_wait_allrefs_any(struct list_head * list)10399 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10400 {
10401 unsigned long rebroadcast_time, warning_time;
10402 struct net_device *dev;
10403 int wait = 0;
10404
10405 rebroadcast_time = warning_time = jiffies;
10406
10407 list_for_each_entry(dev, list, todo_list)
10408 if (netdev_refcnt_read(dev) == 1)
10409 return dev;
10410
10411 while (true) {
10412 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10413 rtnl_lock();
10414
10415 /* Rebroadcast unregister notification */
10416 list_for_each_entry(dev, list, todo_list)
10417 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10418
10419 __rtnl_unlock();
10420 rcu_barrier();
10421 rtnl_lock();
10422
10423 list_for_each_entry(dev, list, todo_list)
10424 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10425 &dev->state)) {
10426 /* We must not have linkwatch events
10427 * pending on unregister. If this
10428 * happens, we simply run the queue
10429 * unscheduled, resulting in a noop
10430 * for this device.
10431 */
10432 linkwatch_run_queue();
10433 break;
10434 }
10435
10436 __rtnl_unlock();
10437
10438 rebroadcast_time = jiffies;
10439 }
10440
10441 rcu_barrier();
10442
10443 if (!wait) {
10444 wait = WAIT_REFS_MIN_MSECS;
10445 } else {
10446 msleep(wait);
10447 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10448 }
10449
10450 list_for_each_entry(dev, list, todo_list)
10451 if (netdev_refcnt_read(dev) == 1)
10452 return dev;
10453
10454 if (time_after(jiffies, warning_time +
10455 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10456 list_for_each_entry(dev, list, todo_list) {
10457 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10458 dev->name, netdev_refcnt_read(dev));
10459 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10460 }
10461
10462 warning_time = jiffies;
10463 }
10464 }
10465 }
10466
10467 /* The sequence is:
10468 *
10469 * rtnl_lock();
10470 * ...
10471 * register_netdevice(x1);
10472 * register_netdevice(x2);
10473 * ...
10474 * unregister_netdevice(y1);
10475 * unregister_netdevice(y2);
10476 * ...
10477 * rtnl_unlock();
10478 * free_netdev(y1);
10479 * free_netdev(y2);
10480 *
10481 * We are invoked by rtnl_unlock().
10482 * This allows us to deal with problems:
10483 * 1) We can delete sysfs objects which invoke hotplug
10484 * without deadlocking with linkwatch via keventd.
10485 * 2) Since we run with the RTNL semaphore not held, we can sleep
10486 * safely in order to wait for the netdev refcnt to drop to zero.
10487 *
10488 * We must not return until all unregister events added during
10489 * the interval the lock was held have been completed.
10490 */
netdev_run_todo(void)10491 void netdev_run_todo(void)
10492 {
10493 struct net_device *dev, *tmp;
10494 struct list_head list;
10495 #ifdef CONFIG_LOCKDEP
10496 struct list_head unlink_list;
10497
10498 list_replace_init(&net_unlink_list, &unlink_list);
10499
10500 while (!list_empty(&unlink_list)) {
10501 struct net_device *dev = list_first_entry(&unlink_list,
10502 struct net_device,
10503 unlink_list);
10504 list_del_init(&dev->unlink_list);
10505 dev->nested_level = dev->lower_level - 1;
10506 }
10507 #endif
10508
10509 /* Snapshot list, allow later requests */
10510 list_replace_init(&net_todo_list, &list);
10511
10512 __rtnl_unlock();
10513
10514 /* Wait for rcu callbacks to finish before next phase */
10515 if (!list_empty(&list))
10516 rcu_barrier();
10517
10518 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10519 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10520 netdev_WARN(dev, "run_todo but not unregistering\n");
10521 list_del(&dev->todo_list);
10522 continue;
10523 }
10524
10525 write_lock(&dev_base_lock);
10526 dev->reg_state = NETREG_UNREGISTERED;
10527 write_unlock(&dev_base_lock);
10528 linkwatch_forget_dev(dev);
10529 }
10530
10531 while (!list_empty(&list)) {
10532 dev = netdev_wait_allrefs_any(&list);
10533 list_del(&dev->todo_list);
10534
10535 /* paranoia */
10536 BUG_ON(netdev_refcnt_read(dev) != 1);
10537 BUG_ON(!list_empty(&dev->ptype_all));
10538 BUG_ON(!list_empty(&dev->ptype_specific));
10539 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10540 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10541
10542 netdev_do_free_pcpu_stats(dev);
10543 if (dev->priv_destructor)
10544 dev->priv_destructor(dev);
10545 if (dev->needs_free_netdev)
10546 free_netdev(dev);
10547
10548 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10549 wake_up(&netdev_unregistering_wq);
10550
10551 /* Free network device */
10552 kobject_put(&dev->dev.kobj);
10553 }
10554 }
10555
10556 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10557 * all the same fields in the same order as net_device_stats, with only
10558 * the type differing, but rtnl_link_stats64 may have additional fields
10559 * at the end for newer counters.
10560 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10561 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10562 const struct net_device_stats *netdev_stats)
10563 {
10564 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10565 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10566 u64 *dst = (u64 *)stats64;
10567
10568 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10569 for (i = 0; i < n; i++)
10570 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10571 /* zero out counters that only exist in rtnl_link_stats64 */
10572 memset((char *)stats64 + n * sizeof(u64), 0,
10573 sizeof(*stats64) - n * sizeof(u64));
10574 }
10575 EXPORT_SYMBOL(netdev_stats_to_stats64);
10576
netdev_core_stats_alloc(struct net_device * dev)10577 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10578 {
10579 struct net_device_core_stats __percpu *p;
10580
10581 p = alloc_percpu_gfp(struct net_device_core_stats,
10582 GFP_ATOMIC | __GFP_NOWARN);
10583
10584 if (p && cmpxchg(&dev->core_stats, NULL, p))
10585 free_percpu(p);
10586
10587 /* This READ_ONCE() pairs with the cmpxchg() above */
10588 return READ_ONCE(dev->core_stats);
10589 }
10590 EXPORT_SYMBOL(netdev_core_stats_alloc);
10591
10592 /**
10593 * dev_get_stats - get network device statistics
10594 * @dev: device to get statistics from
10595 * @storage: place to store stats
10596 *
10597 * Get network statistics from device. Return @storage.
10598 * The device driver may provide its own method by setting
10599 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10600 * otherwise the internal statistics structure is used.
10601 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10602 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10603 struct rtnl_link_stats64 *storage)
10604 {
10605 const struct net_device_ops *ops = dev->netdev_ops;
10606 const struct net_device_core_stats __percpu *p;
10607
10608 if (ops->ndo_get_stats64) {
10609 memset(storage, 0, sizeof(*storage));
10610 ops->ndo_get_stats64(dev, storage);
10611 } else if (ops->ndo_get_stats) {
10612 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10613 } else {
10614 netdev_stats_to_stats64(storage, &dev->stats);
10615 }
10616
10617 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10618 p = READ_ONCE(dev->core_stats);
10619 if (p) {
10620 const struct net_device_core_stats *core_stats;
10621 int i;
10622
10623 for_each_possible_cpu(i) {
10624 core_stats = per_cpu_ptr(p, i);
10625 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10626 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10627 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10628 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10629 }
10630 }
10631 return storage;
10632 }
10633 EXPORT_SYMBOL(dev_get_stats);
10634
10635 /**
10636 * dev_fetch_sw_netstats - get per-cpu network device statistics
10637 * @s: place to store stats
10638 * @netstats: per-cpu network stats to read from
10639 *
10640 * Read per-cpu network statistics and populate the related fields in @s.
10641 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10642 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10643 const struct pcpu_sw_netstats __percpu *netstats)
10644 {
10645 int cpu;
10646
10647 for_each_possible_cpu(cpu) {
10648 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10649 const struct pcpu_sw_netstats *stats;
10650 unsigned int start;
10651
10652 stats = per_cpu_ptr(netstats, cpu);
10653 do {
10654 start = u64_stats_fetch_begin(&stats->syncp);
10655 rx_packets = u64_stats_read(&stats->rx_packets);
10656 rx_bytes = u64_stats_read(&stats->rx_bytes);
10657 tx_packets = u64_stats_read(&stats->tx_packets);
10658 tx_bytes = u64_stats_read(&stats->tx_bytes);
10659 } while (u64_stats_fetch_retry(&stats->syncp, start));
10660
10661 s->rx_packets += rx_packets;
10662 s->rx_bytes += rx_bytes;
10663 s->tx_packets += tx_packets;
10664 s->tx_bytes += tx_bytes;
10665 }
10666 }
10667 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10668
10669 /**
10670 * dev_get_tstats64 - ndo_get_stats64 implementation
10671 * @dev: device to get statistics from
10672 * @s: place to store stats
10673 *
10674 * Populate @s from dev->stats and dev->tstats. Can be used as
10675 * ndo_get_stats64() callback.
10676 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10677 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10678 {
10679 netdev_stats_to_stats64(s, &dev->stats);
10680 dev_fetch_sw_netstats(s, dev->tstats);
10681 }
10682 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10683
dev_ingress_queue_create(struct net_device * dev)10684 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10685 {
10686 struct netdev_queue *queue = dev_ingress_queue(dev);
10687
10688 #ifdef CONFIG_NET_CLS_ACT
10689 if (queue)
10690 return queue;
10691 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10692 if (!queue)
10693 return NULL;
10694 netdev_init_one_queue(dev, queue, NULL);
10695 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10696 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10697 rcu_assign_pointer(dev->ingress_queue, queue);
10698 #endif
10699 return queue;
10700 }
10701
10702 static const struct ethtool_ops default_ethtool_ops;
10703
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10704 void netdev_set_default_ethtool_ops(struct net_device *dev,
10705 const struct ethtool_ops *ops)
10706 {
10707 if (dev->ethtool_ops == &default_ethtool_ops)
10708 dev->ethtool_ops = ops;
10709 }
10710 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10711
10712 /**
10713 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10714 * @dev: netdev to enable the IRQ coalescing on
10715 *
10716 * Sets a conservative default for SW IRQ coalescing. Users can use
10717 * sysfs attributes to override the default values.
10718 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)10719 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10720 {
10721 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10722
10723 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10724 dev->gro_flush_timeout = 20000;
10725 dev->napi_defer_hard_irqs = 1;
10726 }
10727 }
10728 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10729
netdev_freemem(struct net_device * dev)10730 void netdev_freemem(struct net_device *dev)
10731 {
10732 char *addr = (char *)dev - dev->padded;
10733
10734 kvfree(addr);
10735 }
10736
10737 /**
10738 * alloc_netdev_mqs - allocate network device
10739 * @sizeof_priv: size of private data to allocate space for
10740 * @name: device name format string
10741 * @name_assign_type: origin of device name
10742 * @setup: callback to initialize device
10743 * @txqs: the number of TX subqueues to allocate
10744 * @rxqs: the number of RX subqueues to allocate
10745 *
10746 * Allocates a struct net_device with private data area for driver use
10747 * and performs basic initialization. Also allocates subqueue structs
10748 * for each queue on the device.
10749 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10750 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10751 unsigned char name_assign_type,
10752 void (*setup)(struct net_device *),
10753 unsigned int txqs, unsigned int rxqs)
10754 {
10755 struct net_device *dev;
10756 unsigned int alloc_size;
10757 struct net_device *p;
10758
10759 BUG_ON(strlen(name) >= sizeof(dev->name));
10760
10761 if (txqs < 1) {
10762 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10763 return NULL;
10764 }
10765
10766 if (rxqs < 1) {
10767 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10768 return NULL;
10769 }
10770
10771 alloc_size = sizeof(struct net_device);
10772 if (sizeof_priv) {
10773 /* ensure 32-byte alignment of private area */
10774 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10775 alloc_size += sizeof_priv;
10776 }
10777 /* ensure 32-byte alignment of whole construct */
10778 alloc_size += NETDEV_ALIGN - 1;
10779
10780 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10781 if (!p)
10782 return NULL;
10783
10784 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10785 dev->padded = (char *)dev - (char *)p;
10786
10787 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10788 #ifdef CONFIG_PCPU_DEV_REFCNT
10789 dev->pcpu_refcnt = alloc_percpu(int);
10790 if (!dev->pcpu_refcnt)
10791 goto free_dev;
10792 __dev_hold(dev);
10793 #else
10794 refcount_set(&dev->dev_refcnt, 1);
10795 #endif
10796
10797 if (dev_addr_init(dev))
10798 goto free_pcpu;
10799
10800 dev_mc_init(dev);
10801 dev_uc_init(dev);
10802
10803 dev_net_set(dev, &init_net);
10804
10805 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10806 dev->xdp_zc_max_segs = 1;
10807 dev->gso_max_segs = GSO_MAX_SEGS;
10808 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10809 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10810 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10811 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10812 dev->tso_max_segs = TSO_MAX_SEGS;
10813 dev->upper_level = 1;
10814 dev->lower_level = 1;
10815 #ifdef CONFIG_LOCKDEP
10816 dev->nested_level = 0;
10817 INIT_LIST_HEAD(&dev->unlink_list);
10818 #endif
10819
10820 INIT_LIST_HEAD(&dev->napi_list);
10821 INIT_LIST_HEAD(&dev->unreg_list);
10822 INIT_LIST_HEAD(&dev->close_list);
10823 INIT_LIST_HEAD(&dev->link_watch_list);
10824 INIT_LIST_HEAD(&dev->adj_list.upper);
10825 INIT_LIST_HEAD(&dev->adj_list.lower);
10826 INIT_LIST_HEAD(&dev->ptype_all);
10827 INIT_LIST_HEAD(&dev->ptype_specific);
10828 INIT_LIST_HEAD(&dev->net_notifier_list);
10829 #ifdef CONFIG_NET_SCHED
10830 hash_init(dev->qdisc_hash);
10831 #endif
10832 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10833 setup(dev);
10834
10835 if (!dev->tx_queue_len) {
10836 dev->priv_flags |= IFF_NO_QUEUE;
10837 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10838 }
10839
10840 dev->num_tx_queues = txqs;
10841 dev->real_num_tx_queues = txqs;
10842 if (netif_alloc_netdev_queues(dev))
10843 goto free_all;
10844
10845 dev->num_rx_queues = rxqs;
10846 dev->real_num_rx_queues = rxqs;
10847 if (netif_alloc_rx_queues(dev))
10848 goto free_all;
10849
10850 strcpy(dev->name, name);
10851 dev->name_assign_type = name_assign_type;
10852 dev->group = INIT_NETDEV_GROUP;
10853 if (!dev->ethtool_ops)
10854 dev->ethtool_ops = &default_ethtool_ops;
10855
10856 nf_hook_netdev_init(dev);
10857
10858 return dev;
10859
10860 free_all:
10861 free_netdev(dev);
10862 return NULL;
10863
10864 free_pcpu:
10865 #ifdef CONFIG_PCPU_DEV_REFCNT
10866 free_percpu(dev->pcpu_refcnt);
10867 free_dev:
10868 #endif
10869 netdev_freemem(dev);
10870 return NULL;
10871 }
10872 EXPORT_SYMBOL(alloc_netdev_mqs);
10873
10874 /**
10875 * free_netdev - free network device
10876 * @dev: device
10877 *
10878 * This function does the last stage of destroying an allocated device
10879 * interface. The reference to the device object is released. If this
10880 * is the last reference then it will be freed.Must be called in process
10881 * context.
10882 */
free_netdev(struct net_device * dev)10883 void free_netdev(struct net_device *dev)
10884 {
10885 struct napi_struct *p, *n;
10886
10887 might_sleep();
10888
10889 /* When called immediately after register_netdevice() failed the unwind
10890 * handling may still be dismantling the device. Handle that case by
10891 * deferring the free.
10892 */
10893 if (dev->reg_state == NETREG_UNREGISTERING) {
10894 ASSERT_RTNL();
10895 dev->needs_free_netdev = true;
10896 return;
10897 }
10898
10899 netif_free_tx_queues(dev);
10900 netif_free_rx_queues(dev);
10901
10902 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10903
10904 /* Flush device addresses */
10905 dev_addr_flush(dev);
10906
10907 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10908 netif_napi_del(p);
10909
10910 ref_tracker_dir_exit(&dev->refcnt_tracker);
10911 #ifdef CONFIG_PCPU_DEV_REFCNT
10912 free_percpu(dev->pcpu_refcnt);
10913 dev->pcpu_refcnt = NULL;
10914 #endif
10915 free_percpu(dev->core_stats);
10916 dev->core_stats = NULL;
10917 free_percpu(dev->xdp_bulkq);
10918 dev->xdp_bulkq = NULL;
10919
10920 /* Compatibility with error handling in drivers */
10921 if (dev->reg_state == NETREG_UNINITIALIZED) {
10922 netdev_freemem(dev);
10923 return;
10924 }
10925
10926 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10927 dev->reg_state = NETREG_RELEASED;
10928
10929 /* will free via device release */
10930 put_device(&dev->dev);
10931 }
10932 EXPORT_SYMBOL(free_netdev);
10933
10934 /**
10935 * synchronize_net - Synchronize with packet receive processing
10936 *
10937 * Wait for packets currently being received to be done.
10938 * Does not block later packets from starting.
10939 */
synchronize_net(void)10940 void synchronize_net(void)
10941 {
10942 might_sleep();
10943 if (rtnl_is_locked())
10944 synchronize_rcu_expedited();
10945 else
10946 synchronize_rcu();
10947 }
10948 EXPORT_SYMBOL(synchronize_net);
10949
10950 /**
10951 * unregister_netdevice_queue - remove device from the kernel
10952 * @dev: device
10953 * @head: list
10954 *
10955 * This function shuts down a device interface and removes it
10956 * from the kernel tables.
10957 * If head not NULL, device is queued to be unregistered later.
10958 *
10959 * Callers must hold the rtnl semaphore. You may want
10960 * unregister_netdev() instead of this.
10961 */
10962
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10963 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10964 {
10965 ASSERT_RTNL();
10966
10967 if (head) {
10968 list_move_tail(&dev->unreg_list, head);
10969 } else {
10970 LIST_HEAD(single);
10971
10972 list_add(&dev->unreg_list, &single);
10973 unregister_netdevice_many(&single);
10974 }
10975 }
10976 EXPORT_SYMBOL(unregister_netdevice_queue);
10977
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)10978 void unregister_netdevice_many_notify(struct list_head *head,
10979 u32 portid, const struct nlmsghdr *nlh)
10980 {
10981 struct net_device *dev, *tmp;
10982 LIST_HEAD(close_head);
10983
10984 BUG_ON(dev_boot_phase);
10985 ASSERT_RTNL();
10986
10987 if (list_empty(head))
10988 return;
10989
10990 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10991 /* Some devices call without registering
10992 * for initialization unwind. Remove those
10993 * devices and proceed with the remaining.
10994 */
10995 if (dev->reg_state == NETREG_UNINITIALIZED) {
10996 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10997 dev->name, dev);
10998
10999 WARN_ON(1);
11000 list_del(&dev->unreg_list);
11001 continue;
11002 }
11003 dev->dismantle = true;
11004 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11005 }
11006
11007 /* If device is running, close it first. */
11008 list_for_each_entry(dev, head, unreg_list)
11009 list_add_tail(&dev->close_list, &close_head);
11010 dev_close_many(&close_head, true);
11011
11012 list_for_each_entry(dev, head, unreg_list) {
11013 /* And unlink it from device chain. */
11014 write_lock(&dev_base_lock);
11015 unlist_netdevice(dev, false);
11016 dev->reg_state = NETREG_UNREGISTERING;
11017 write_unlock(&dev_base_lock);
11018 }
11019 flush_all_backlogs();
11020
11021 synchronize_net();
11022
11023 list_for_each_entry(dev, head, unreg_list) {
11024 struct sk_buff *skb = NULL;
11025
11026 /* Shutdown queueing discipline. */
11027 dev_shutdown(dev);
11028 dev_tcx_uninstall(dev);
11029 dev_xdp_uninstall(dev);
11030 bpf_dev_bound_netdev_unregister(dev);
11031
11032 netdev_offload_xstats_disable_all(dev);
11033
11034 /* Notify protocols, that we are about to destroy
11035 * this device. They should clean all the things.
11036 */
11037 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11038
11039 if (!dev->rtnl_link_ops ||
11040 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11041 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11042 GFP_KERNEL, NULL, 0,
11043 portid, nlh);
11044
11045 /*
11046 * Flush the unicast and multicast chains
11047 */
11048 dev_uc_flush(dev);
11049 dev_mc_flush(dev);
11050
11051 netdev_name_node_alt_flush(dev);
11052 netdev_name_node_free(dev->name_node);
11053
11054 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11055
11056 if (dev->netdev_ops->ndo_uninit)
11057 dev->netdev_ops->ndo_uninit(dev);
11058
11059 if (skb)
11060 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11061
11062 /* Notifier chain MUST detach us all upper devices. */
11063 WARN_ON(netdev_has_any_upper_dev(dev));
11064 WARN_ON(netdev_has_any_lower_dev(dev));
11065
11066 /* Remove entries from kobject tree */
11067 netdev_unregister_kobject(dev);
11068 #ifdef CONFIG_XPS
11069 /* Remove XPS queueing entries */
11070 netif_reset_xps_queues_gt(dev, 0);
11071 #endif
11072 }
11073
11074 synchronize_net();
11075
11076 list_for_each_entry(dev, head, unreg_list) {
11077 netdev_put(dev, &dev->dev_registered_tracker);
11078 net_set_todo(dev);
11079 }
11080
11081 list_del(head);
11082 }
11083
11084 /**
11085 * unregister_netdevice_many - unregister many devices
11086 * @head: list of devices
11087 *
11088 * Note: As most callers use a stack allocated list_head,
11089 * we force a list_del() to make sure stack wont be corrupted later.
11090 */
unregister_netdevice_many(struct list_head * head)11091 void unregister_netdevice_many(struct list_head *head)
11092 {
11093 unregister_netdevice_many_notify(head, 0, NULL);
11094 }
11095 EXPORT_SYMBOL(unregister_netdevice_many);
11096
11097 /**
11098 * unregister_netdev - remove device from the kernel
11099 * @dev: device
11100 *
11101 * This function shuts down a device interface and removes it
11102 * from the kernel tables.
11103 *
11104 * This is just a wrapper for unregister_netdevice that takes
11105 * the rtnl semaphore. In general you want to use this and not
11106 * unregister_netdevice.
11107 */
unregister_netdev(struct net_device * dev)11108 void unregister_netdev(struct net_device *dev)
11109 {
11110 rtnl_lock();
11111 unregister_netdevice(dev);
11112 rtnl_unlock();
11113 }
11114 EXPORT_SYMBOL(unregister_netdev);
11115
11116 /**
11117 * __dev_change_net_namespace - move device to different nethost namespace
11118 * @dev: device
11119 * @net: network namespace
11120 * @pat: If not NULL name pattern to try if the current device name
11121 * is already taken in the destination network namespace.
11122 * @new_ifindex: If not zero, specifies device index in the target
11123 * namespace.
11124 *
11125 * This function shuts down a device interface and moves it
11126 * to a new network namespace. On success 0 is returned, on
11127 * a failure a netagive errno code is returned.
11128 *
11129 * Callers must hold the rtnl semaphore.
11130 */
11131
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11132 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11133 const char *pat, int new_ifindex)
11134 {
11135 struct netdev_name_node *name_node;
11136 struct net *net_old = dev_net(dev);
11137 char new_name[IFNAMSIZ] = {};
11138 int err, new_nsid;
11139
11140 ASSERT_RTNL();
11141
11142 /* Don't allow namespace local devices to be moved. */
11143 err = -EINVAL;
11144 if (dev->features & NETIF_F_NETNS_LOCAL)
11145 goto out;
11146
11147 /* Ensure the device has been registrered */
11148 if (dev->reg_state != NETREG_REGISTERED)
11149 goto out;
11150
11151 /* Get out if there is nothing todo */
11152 err = 0;
11153 if (net_eq(net_old, net))
11154 goto out;
11155
11156 /* Pick the destination device name, and ensure
11157 * we can use it in the destination network namespace.
11158 */
11159 err = -EEXIST;
11160 if (netdev_name_in_use(net, dev->name)) {
11161 /* We get here if we can't use the current device name */
11162 if (!pat)
11163 goto out;
11164 err = dev_prep_valid_name(net, dev, pat, new_name);
11165 if (err < 0)
11166 goto out;
11167 }
11168 /* Check that none of the altnames conflicts. */
11169 err = -EEXIST;
11170 netdev_for_each_altname(dev, name_node)
11171 if (netdev_name_in_use(net, name_node->name))
11172 goto out;
11173
11174 /* Check that new_ifindex isn't used yet. */
11175 if (new_ifindex) {
11176 err = dev_index_reserve(net, new_ifindex);
11177 if (err < 0)
11178 goto out;
11179 } else {
11180 /* If there is an ifindex conflict assign a new one */
11181 err = dev_index_reserve(net, dev->ifindex);
11182 if (err == -EBUSY)
11183 err = dev_index_reserve(net, 0);
11184 if (err < 0)
11185 goto out;
11186 new_ifindex = err;
11187 }
11188
11189 /*
11190 * And now a mini version of register_netdevice unregister_netdevice.
11191 */
11192
11193 /* If device is running close it first. */
11194 dev_close(dev);
11195
11196 /* And unlink it from device chain */
11197 unlist_netdevice(dev, true);
11198
11199 synchronize_net();
11200
11201 /* Shutdown queueing discipline. */
11202 dev_shutdown(dev);
11203
11204 /* Notify protocols, that we are about to destroy
11205 * this device. They should clean all the things.
11206 *
11207 * Note that dev->reg_state stays at NETREG_REGISTERED.
11208 * This is wanted because this way 8021q and macvlan know
11209 * the device is just moving and can keep their slaves up.
11210 */
11211 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11212 rcu_barrier();
11213
11214 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11215
11216 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11217 new_ifindex);
11218
11219 /*
11220 * Flush the unicast and multicast chains
11221 */
11222 dev_uc_flush(dev);
11223 dev_mc_flush(dev);
11224
11225 /* Send a netdev-removed uevent to the old namespace */
11226 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11227 netdev_adjacent_del_links(dev);
11228
11229 /* Move per-net netdevice notifiers that are following the netdevice */
11230 move_netdevice_notifiers_dev_net(dev, net);
11231
11232 /* Actually switch the network namespace */
11233 dev_net_set(dev, net);
11234 dev->ifindex = new_ifindex;
11235
11236 /* Send a netdev-add uevent to the new namespace */
11237 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11238 netdev_adjacent_add_links(dev);
11239
11240 if (new_name[0]) /* Rename the netdev to prepared name */
11241 strscpy(dev->name, new_name, IFNAMSIZ);
11242
11243 /* Fixup kobjects */
11244 err = device_rename(&dev->dev, dev->name);
11245 WARN_ON(err);
11246
11247 /* Adapt owner in case owning user namespace of target network
11248 * namespace is different from the original one.
11249 */
11250 err = netdev_change_owner(dev, net_old, net);
11251 WARN_ON(err);
11252
11253 /* Add the device back in the hashes */
11254 list_netdevice(dev);
11255
11256 /* Notify protocols, that a new device appeared. */
11257 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11258
11259 /*
11260 * Prevent userspace races by waiting until the network
11261 * device is fully setup before sending notifications.
11262 */
11263 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11264
11265 synchronize_net();
11266 err = 0;
11267 out:
11268 return err;
11269 }
11270 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11271
dev_cpu_dead(unsigned int oldcpu)11272 static int dev_cpu_dead(unsigned int oldcpu)
11273 {
11274 struct sk_buff **list_skb;
11275 struct sk_buff *skb;
11276 unsigned int cpu;
11277 struct softnet_data *sd, *oldsd, *remsd = NULL;
11278
11279 local_irq_disable();
11280 cpu = smp_processor_id();
11281 sd = &per_cpu(softnet_data, cpu);
11282 oldsd = &per_cpu(softnet_data, oldcpu);
11283
11284 /* Find end of our completion_queue. */
11285 list_skb = &sd->completion_queue;
11286 while (*list_skb)
11287 list_skb = &(*list_skb)->next;
11288 /* Append completion queue from offline CPU. */
11289 *list_skb = oldsd->completion_queue;
11290 oldsd->completion_queue = NULL;
11291
11292 /* Append output queue from offline CPU. */
11293 if (oldsd->output_queue) {
11294 *sd->output_queue_tailp = oldsd->output_queue;
11295 sd->output_queue_tailp = oldsd->output_queue_tailp;
11296 oldsd->output_queue = NULL;
11297 oldsd->output_queue_tailp = &oldsd->output_queue;
11298 }
11299 /* Append NAPI poll list from offline CPU, with one exception :
11300 * process_backlog() must be called by cpu owning percpu backlog.
11301 * We properly handle process_queue & input_pkt_queue later.
11302 */
11303 while (!list_empty(&oldsd->poll_list)) {
11304 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11305 struct napi_struct,
11306 poll_list);
11307
11308 list_del_init(&napi->poll_list);
11309 if (napi->poll == process_backlog)
11310 napi->state = 0;
11311 else
11312 ____napi_schedule(sd, napi);
11313 }
11314
11315 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11316 local_irq_enable();
11317
11318 #ifdef CONFIG_RPS
11319 remsd = oldsd->rps_ipi_list;
11320 oldsd->rps_ipi_list = NULL;
11321 #endif
11322 /* send out pending IPI's on offline CPU */
11323 net_rps_send_ipi(remsd);
11324
11325 /* Process offline CPU's input_pkt_queue */
11326 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11327 netif_rx(skb);
11328 input_queue_head_incr(oldsd);
11329 }
11330 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11331 netif_rx(skb);
11332 input_queue_head_incr(oldsd);
11333 }
11334
11335 return 0;
11336 }
11337
11338 /**
11339 * netdev_increment_features - increment feature set by one
11340 * @all: current feature set
11341 * @one: new feature set
11342 * @mask: mask feature set
11343 *
11344 * Computes a new feature set after adding a device with feature set
11345 * @one to the master device with current feature set @all. Will not
11346 * enable anything that is off in @mask. Returns the new feature set.
11347 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11348 netdev_features_t netdev_increment_features(netdev_features_t all,
11349 netdev_features_t one, netdev_features_t mask)
11350 {
11351 if (mask & NETIF_F_HW_CSUM)
11352 mask |= NETIF_F_CSUM_MASK;
11353 mask |= NETIF_F_VLAN_CHALLENGED;
11354
11355 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11356 all &= one | ~NETIF_F_ALL_FOR_ALL;
11357
11358 /* If one device supports hw checksumming, set for all. */
11359 if (all & NETIF_F_HW_CSUM)
11360 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11361
11362 return all;
11363 }
11364 EXPORT_SYMBOL(netdev_increment_features);
11365
netdev_create_hash(void)11366 static struct hlist_head * __net_init netdev_create_hash(void)
11367 {
11368 int i;
11369 struct hlist_head *hash;
11370
11371 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11372 if (hash != NULL)
11373 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11374 INIT_HLIST_HEAD(&hash[i]);
11375
11376 return hash;
11377 }
11378
11379 /* Initialize per network namespace state */
netdev_init(struct net * net)11380 static int __net_init netdev_init(struct net *net)
11381 {
11382 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11383 8 * sizeof_field(struct napi_struct, gro_bitmask));
11384
11385 INIT_LIST_HEAD(&net->dev_base_head);
11386
11387 net->dev_name_head = netdev_create_hash();
11388 if (net->dev_name_head == NULL)
11389 goto err_name;
11390
11391 net->dev_index_head = netdev_create_hash();
11392 if (net->dev_index_head == NULL)
11393 goto err_idx;
11394
11395 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11396
11397 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11398
11399 return 0;
11400
11401 err_idx:
11402 kfree(net->dev_name_head);
11403 err_name:
11404 return -ENOMEM;
11405 }
11406
11407 /**
11408 * netdev_drivername - network driver for the device
11409 * @dev: network device
11410 *
11411 * Determine network driver for device.
11412 */
netdev_drivername(const struct net_device * dev)11413 const char *netdev_drivername(const struct net_device *dev)
11414 {
11415 const struct device_driver *driver;
11416 const struct device *parent;
11417 const char *empty = "";
11418
11419 parent = dev->dev.parent;
11420 if (!parent)
11421 return empty;
11422
11423 driver = parent->driver;
11424 if (driver && driver->name)
11425 return driver->name;
11426 return empty;
11427 }
11428
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11429 static void __netdev_printk(const char *level, const struct net_device *dev,
11430 struct va_format *vaf)
11431 {
11432 if (dev && dev->dev.parent) {
11433 dev_printk_emit(level[1] - '0',
11434 dev->dev.parent,
11435 "%s %s %s%s: %pV",
11436 dev_driver_string(dev->dev.parent),
11437 dev_name(dev->dev.parent),
11438 netdev_name(dev), netdev_reg_state(dev),
11439 vaf);
11440 } else if (dev) {
11441 printk("%s%s%s: %pV",
11442 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11443 } else {
11444 printk("%s(NULL net_device): %pV", level, vaf);
11445 }
11446 }
11447
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11448 void netdev_printk(const char *level, const struct net_device *dev,
11449 const char *format, ...)
11450 {
11451 struct va_format vaf;
11452 va_list args;
11453
11454 va_start(args, format);
11455
11456 vaf.fmt = format;
11457 vaf.va = &args;
11458
11459 __netdev_printk(level, dev, &vaf);
11460
11461 va_end(args);
11462 }
11463 EXPORT_SYMBOL(netdev_printk);
11464
11465 #define define_netdev_printk_level(func, level) \
11466 void func(const struct net_device *dev, const char *fmt, ...) \
11467 { \
11468 struct va_format vaf; \
11469 va_list args; \
11470 \
11471 va_start(args, fmt); \
11472 \
11473 vaf.fmt = fmt; \
11474 vaf.va = &args; \
11475 \
11476 __netdev_printk(level, dev, &vaf); \
11477 \
11478 va_end(args); \
11479 } \
11480 EXPORT_SYMBOL(func);
11481
11482 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11483 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11484 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11485 define_netdev_printk_level(netdev_err, KERN_ERR);
11486 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11487 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11488 define_netdev_printk_level(netdev_info, KERN_INFO);
11489
netdev_exit(struct net * net)11490 static void __net_exit netdev_exit(struct net *net)
11491 {
11492 kfree(net->dev_name_head);
11493 kfree(net->dev_index_head);
11494 xa_destroy(&net->dev_by_index);
11495 if (net != &init_net)
11496 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11497 }
11498
11499 static struct pernet_operations __net_initdata netdev_net_ops = {
11500 .init = netdev_init,
11501 .exit = netdev_exit,
11502 };
11503
default_device_exit_net(struct net * net)11504 static void __net_exit default_device_exit_net(struct net *net)
11505 {
11506 struct netdev_name_node *name_node, *tmp;
11507 struct net_device *dev, *aux;
11508 /*
11509 * Push all migratable network devices back to the
11510 * initial network namespace
11511 */
11512 ASSERT_RTNL();
11513 for_each_netdev_safe(net, dev, aux) {
11514 int err;
11515 char fb_name[IFNAMSIZ];
11516
11517 /* Ignore unmoveable devices (i.e. loopback) */
11518 if (dev->features & NETIF_F_NETNS_LOCAL)
11519 continue;
11520
11521 /* Leave virtual devices for the generic cleanup */
11522 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11523 continue;
11524
11525 /* Push remaining network devices to init_net */
11526 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11527 if (netdev_name_in_use(&init_net, fb_name))
11528 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11529
11530 netdev_for_each_altname_safe(dev, name_node, tmp)
11531 if (netdev_name_in_use(&init_net, name_node->name)) {
11532 netdev_name_node_del(name_node);
11533 synchronize_rcu();
11534 __netdev_name_node_alt_destroy(name_node);
11535 }
11536
11537 err = dev_change_net_namespace(dev, &init_net, fb_name);
11538 if (err) {
11539 pr_emerg("%s: failed to move %s to init_net: %d\n",
11540 __func__, dev->name, err);
11541 BUG();
11542 }
11543 }
11544 }
11545
default_device_exit_batch(struct list_head * net_list)11546 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11547 {
11548 /* At exit all network devices most be removed from a network
11549 * namespace. Do this in the reverse order of registration.
11550 * Do this across as many network namespaces as possible to
11551 * improve batching efficiency.
11552 */
11553 struct net_device *dev;
11554 struct net *net;
11555 LIST_HEAD(dev_kill_list);
11556
11557 rtnl_lock();
11558 list_for_each_entry(net, net_list, exit_list) {
11559 default_device_exit_net(net);
11560 cond_resched();
11561 }
11562
11563 list_for_each_entry(net, net_list, exit_list) {
11564 for_each_netdev_reverse(net, dev) {
11565 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11566 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11567 else
11568 unregister_netdevice_queue(dev, &dev_kill_list);
11569 }
11570 }
11571 unregister_netdevice_many(&dev_kill_list);
11572 rtnl_unlock();
11573 }
11574
11575 static struct pernet_operations __net_initdata default_device_ops = {
11576 .exit_batch = default_device_exit_batch,
11577 };
11578
11579 /*
11580 * Initialize the DEV module. At boot time this walks the device list and
11581 * unhooks any devices that fail to initialise (normally hardware not
11582 * present) and leaves us with a valid list of present and active devices.
11583 *
11584 */
11585
11586 /*
11587 * This is called single threaded during boot, so no need
11588 * to take the rtnl semaphore.
11589 */
net_dev_init(void)11590 static int __init net_dev_init(void)
11591 {
11592 int i, rc = -ENOMEM;
11593
11594 BUG_ON(!dev_boot_phase);
11595
11596 if (dev_proc_init())
11597 goto out;
11598
11599 if (netdev_kobject_init())
11600 goto out;
11601
11602 INIT_LIST_HEAD(&ptype_all);
11603 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11604 INIT_LIST_HEAD(&ptype_base[i]);
11605
11606 if (register_pernet_subsys(&netdev_net_ops))
11607 goto out;
11608
11609 /*
11610 * Initialise the packet receive queues.
11611 */
11612
11613 for_each_possible_cpu(i) {
11614 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11615 struct softnet_data *sd = &per_cpu(softnet_data, i);
11616
11617 INIT_WORK(flush, flush_backlog);
11618
11619 skb_queue_head_init(&sd->input_pkt_queue);
11620 skb_queue_head_init(&sd->process_queue);
11621 #ifdef CONFIG_XFRM_OFFLOAD
11622 skb_queue_head_init(&sd->xfrm_backlog);
11623 #endif
11624 INIT_LIST_HEAD(&sd->poll_list);
11625 sd->output_queue_tailp = &sd->output_queue;
11626 #ifdef CONFIG_RPS
11627 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11628 sd->cpu = i;
11629 #endif
11630 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11631 spin_lock_init(&sd->defer_lock);
11632
11633 init_gro_hash(&sd->backlog);
11634 sd->backlog.poll = process_backlog;
11635 sd->backlog.weight = weight_p;
11636 }
11637
11638 dev_boot_phase = 0;
11639
11640 /* The loopback device is special if any other network devices
11641 * is present in a network namespace the loopback device must
11642 * be present. Since we now dynamically allocate and free the
11643 * loopback device ensure this invariant is maintained by
11644 * keeping the loopback device as the first device on the
11645 * list of network devices. Ensuring the loopback devices
11646 * is the first device that appears and the last network device
11647 * that disappears.
11648 */
11649 if (register_pernet_device(&loopback_net_ops))
11650 goto out;
11651
11652 if (register_pernet_device(&default_device_ops))
11653 goto out;
11654
11655 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11656 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11657
11658 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11659 NULL, dev_cpu_dead);
11660 WARN_ON(rc < 0);
11661 rc = 0;
11662 out:
11663 return rc;
11664 }
11665
11666 subsys_initcall(net_dev_init);
11667