1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39
40 #define IPMI_DRIVER_VERSION "39.2"
41
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48 struct ipmi_smi_msg *msg);
49
50 static bool initialized;
51 static bool drvregistered;
52
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 IPMI_SEND_PANIC_EVENT_NONE,
56 IPMI_SEND_PANIC_EVENT,
57 IPMI_SEND_PANIC_EVENT_STRING,
58 IPMI_SEND_PANIC_EVENT_MAX
59 };
60
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73
panic_op_write_handler(const char * val,const struct kernel_param * kp)74 static int panic_op_write_handler(const char *val,
75 const struct kernel_param *kp)
76 {
77 char valcp[16];
78 int e;
79
80 strscpy(valcp, val, sizeof(valcp));
81 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 if (e < 0)
83 return e;
84
85 ipmi_send_panic_event = e;
86 return 0;
87 }
88
panic_op_read_handler(char * buffer,const struct kernel_param * kp)89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 const char *event_str;
92
93 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 event_str = "???";
95 else
96 event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97
98 return sprintf(buffer, "%s\n", event_str);
99 }
100
101 static const struct kernel_param_ops panic_op_ops = {
102 .set = panic_op_write_handler,
103 .get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107
108
109 #define MAX_EVENTS_IN_QUEUE 25
110
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116
117 /*
118 * Don't let a message sit in a queue forever, always time it with at lest
119 * the max message timer. This is in milliseconds.
120 */
121 #define MAX_MSG_TIMEOUT 60000
122
123 /*
124 * Timeout times below are in milliseconds, and are done off a 1
125 * second timer. So setting the value to 1000 would mean anything
126 * between 0 and 1000ms. So really the only reasonable minimum
127 * setting it 2000ms, which is between 1 and 2 seconds.
128 */
129
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 "The time (milliseconds) between retry sends");
135
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 "The time (milliseconds) between retry sends in maintenance mode");
141
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 "The time (milliseconds) between retry sends in maintenance mode");
147
148 /* The default maximum number of users that may register. */
149 static unsigned int max_users = 30;
150 module_param(max_users, uint, 0644);
151 MODULE_PARM_DESC(max_users,
152 "The most users that may use the IPMI stack at one time.");
153
154 /* The default maximum number of message a user may have outstanding. */
155 static unsigned int max_msgs_per_user = 100;
156 module_param(max_msgs_per_user, uint, 0644);
157 MODULE_PARM_DESC(max_msgs_per_user,
158 "The most message a user may have outstanding.");
159
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME 1000
162
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
165
166 /*
167 * Request events from the queue every second (this is the number of
168 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
169 * future, IPMI will add a way to know immediately if an event is in
170 * the queue and this silliness can go away.
171 */
172 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
173
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
176
177 /*
178 * The main "user" data structure.
179 */
180 struct ipmi_user {
181 struct list_head link;
182
183 /*
184 * Set to NULL when the user is destroyed, a pointer to myself
185 * so srcu_dereference can be used on it.
186 */
187 struct ipmi_user *self;
188 struct srcu_struct release_barrier;
189
190 struct kref refcount;
191
192 /* The upper layer that handles receive messages. */
193 const struct ipmi_user_hndl *handler;
194 void *handler_data;
195
196 /* The interface this user is bound to. */
197 struct ipmi_smi *intf;
198
199 /* Does this interface receive IPMI events? */
200 bool gets_events;
201
202 atomic_t nr_msgs;
203
204 /* Free must run in process context for RCU cleanup. */
205 struct work_struct remove_work;
206 };
207
208 static struct workqueue_struct *remove_work_wq;
209
acquire_ipmi_user(struct ipmi_user * user,int * index)210 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
211 __acquires(user->release_barrier)
212 {
213 struct ipmi_user *ruser;
214
215 *index = srcu_read_lock(&user->release_barrier);
216 ruser = srcu_dereference(user->self, &user->release_barrier);
217 if (!ruser)
218 srcu_read_unlock(&user->release_barrier, *index);
219 return ruser;
220 }
221
release_ipmi_user(struct ipmi_user * user,int index)222 static void release_ipmi_user(struct ipmi_user *user, int index)
223 {
224 srcu_read_unlock(&user->release_barrier, index);
225 }
226
227 struct cmd_rcvr {
228 struct list_head link;
229
230 struct ipmi_user *user;
231 unsigned char netfn;
232 unsigned char cmd;
233 unsigned int chans;
234
235 /*
236 * This is used to form a linked lised during mass deletion.
237 * Since this is in an RCU list, we cannot use the link above
238 * or change any data until the RCU period completes. So we
239 * use this next variable during mass deletion so we can have
240 * a list and don't have to wait and restart the search on
241 * every individual deletion of a command.
242 */
243 struct cmd_rcvr *next;
244 };
245
246 struct seq_table {
247 unsigned int inuse : 1;
248 unsigned int broadcast : 1;
249
250 unsigned long timeout;
251 unsigned long orig_timeout;
252 unsigned int retries_left;
253
254 /*
255 * To verify on an incoming send message response that this is
256 * the message that the response is for, we keep a sequence id
257 * and increment it every time we send a message.
258 */
259 long seqid;
260
261 /*
262 * This is held so we can properly respond to the message on a
263 * timeout, and it is used to hold the temporary data for
264 * retransmission, too.
265 */
266 struct ipmi_recv_msg *recv_msg;
267 };
268
269 /*
270 * Store the information in a msgid (long) to allow us to find a
271 * sequence table entry from the msgid.
272 */
273 #define STORE_SEQ_IN_MSGID(seq, seqid) \
274 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
275
276 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
277 do { \
278 seq = (((msgid) >> 26) & 0x3f); \
279 seqid = ((msgid) & 0x3ffffff); \
280 } while (0)
281
282 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
283
284 #define IPMI_MAX_CHANNELS 16
285 struct ipmi_channel {
286 unsigned char medium;
287 unsigned char protocol;
288 };
289
290 struct ipmi_channel_set {
291 struct ipmi_channel c[IPMI_MAX_CHANNELS];
292 };
293
294 struct ipmi_my_addrinfo {
295 /*
296 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
297 * but may be changed by the user.
298 */
299 unsigned char address;
300
301 /*
302 * My LUN. This should generally stay the SMS LUN, but just in
303 * case...
304 */
305 unsigned char lun;
306 };
307
308 /*
309 * Note that the product id, manufacturer id, guid, and device id are
310 * immutable in this structure, so dyn_mutex is not required for
311 * accessing those. If those change on a BMC, a new BMC is allocated.
312 */
313 struct bmc_device {
314 struct platform_device pdev;
315 struct list_head intfs; /* Interfaces on this BMC. */
316 struct ipmi_device_id id;
317 struct ipmi_device_id fetch_id;
318 int dyn_id_set;
319 unsigned long dyn_id_expiry;
320 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
321 guid_t guid;
322 guid_t fetch_guid;
323 int dyn_guid_set;
324 struct kref usecount;
325 struct work_struct remove_work;
326 unsigned char cc; /* completion code */
327 };
328 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
329
330 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
331 struct ipmi_device_id *id,
332 bool *guid_set, guid_t *guid);
333
334 /*
335 * Various statistics for IPMI, these index stats[] in the ipmi_smi
336 * structure.
337 */
338 enum ipmi_stat_indexes {
339 /* Commands we got from the user that were invalid. */
340 IPMI_STAT_sent_invalid_commands = 0,
341
342 /* Commands we sent to the MC. */
343 IPMI_STAT_sent_local_commands,
344
345 /* Responses from the MC that were delivered to a user. */
346 IPMI_STAT_handled_local_responses,
347
348 /* Responses from the MC that were not delivered to a user. */
349 IPMI_STAT_unhandled_local_responses,
350
351 /* Commands we sent out to the IPMB bus. */
352 IPMI_STAT_sent_ipmb_commands,
353
354 /* Commands sent on the IPMB that had errors on the SEND CMD */
355 IPMI_STAT_sent_ipmb_command_errs,
356
357 /* Each retransmit increments this count. */
358 IPMI_STAT_retransmitted_ipmb_commands,
359
360 /*
361 * When a message times out (runs out of retransmits) this is
362 * incremented.
363 */
364 IPMI_STAT_timed_out_ipmb_commands,
365
366 /*
367 * This is like above, but for broadcasts. Broadcasts are
368 * *not* included in the above count (they are expected to
369 * time out).
370 */
371 IPMI_STAT_timed_out_ipmb_broadcasts,
372
373 /* Responses I have sent to the IPMB bus. */
374 IPMI_STAT_sent_ipmb_responses,
375
376 /* The response was delivered to the user. */
377 IPMI_STAT_handled_ipmb_responses,
378
379 /* The response had invalid data in it. */
380 IPMI_STAT_invalid_ipmb_responses,
381
382 /* The response didn't have anyone waiting for it. */
383 IPMI_STAT_unhandled_ipmb_responses,
384
385 /* Commands we sent out to the IPMB bus. */
386 IPMI_STAT_sent_lan_commands,
387
388 /* Commands sent on the IPMB that had errors on the SEND CMD */
389 IPMI_STAT_sent_lan_command_errs,
390
391 /* Each retransmit increments this count. */
392 IPMI_STAT_retransmitted_lan_commands,
393
394 /*
395 * When a message times out (runs out of retransmits) this is
396 * incremented.
397 */
398 IPMI_STAT_timed_out_lan_commands,
399
400 /* Responses I have sent to the IPMB bus. */
401 IPMI_STAT_sent_lan_responses,
402
403 /* The response was delivered to the user. */
404 IPMI_STAT_handled_lan_responses,
405
406 /* The response had invalid data in it. */
407 IPMI_STAT_invalid_lan_responses,
408
409 /* The response didn't have anyone waiting for it. */
410 IPMI_STAT_unhandled_lan_responses,
411
412 /* The command was delivered to the user. */
413 IPMI_STAT_handled_commands,
414
415 /* The command had invalid data in it. */
416 IPMI_STAT_invalid_commands,
417
418 /* The command didn't have anyone waiting for it. */
419 IPMI_STAT_unhandled_commands,
420
421 /* Invalid data in an event. */
422 IPMI_STAT_invalid_events,
423
424 /* Events that were received with the proper format. */
425 IPMI_STAT_events,
426
427 /* Retransmissions on IPMB that failed. */
428 IPMI_STAT_dropped_rexmit_ipmb_commands,
429
430 /* Retransmissions on LAN that failed. */
431 IPMI_STAT_dropped_rexmit_lan_commands,
432
433 /* This *must* remain last, add new values above this. */
434 IPMI_NUM_STATS
435 };
436
437
438 #define IPMI_IPMB_NUM_SEQ 64
439 struct ipmi_smi {
440 struct module *owner;
441
442 /* What interface number are we? */
443 int intf_num;
444
445 struct kref refcount;
446
447 /* Set when the interface is being unregistered. */
448 bool in_shutdown;
449
450 /* Used for a list of interfaces. */
451 struct list_head link;
452
453 /*
454 * The list of upper layers that are using me. seq_lock write
455 * protects this. Read protection is with srcu.
456 */
457 struct list_head users;
458 struct srcu_struct users_srcu;
459 atomic_t nr_users;
460 struct device_attribute nr_users_devattr;
461 struct device_attribute nr_msgs_devattr;
462
463
464 /* Used for wake ups at startup. */
465 wait_queue_head_t waitq;
466
467 /*
468 * Prevents the interface from being unregistered when the
469 * interface is used by being looked up through the BMC
470 * structure.
471 */
472 struct mutex bmc_reg_mutex;
473
474 struct bmc_device tmp_bmc;
475 struct bmc_device *bmc;
476 bool bmc_registered;
477 struct list_head bmc_link;
478 char *my_dev_name;
479 bool in_bmc_register; /* Handle recursive situations. Yuck. */
480 struct work_struct bmc_reg_work;
481
482 const struct ipmi_smi_handlers *handlers;
483 void *send_info;
484
485 /* Driver-model device for the system interface. */
486 struct device *si_dev;
487
488 /*
489 * A table of sequence numbers for this interface. We use the
490 * sequence numbers for IPMB messages that go out of the
491 * interface to match them up with their responses. A routine
492 * is called periodically to time the items in this list.
493 */
494 spinlock_t seq_lock;
495 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496 int curr_seq;
497
498 /*
499 * Messages queued for delivery. If delivery fails (out of memory
500 * for instance), They will stay in here to be processed later in a
501 * periodic timer interrupt. The tasklet is for handling received
502 * messages directly from the handler.
503 */
504 spinlock_t waiting_rcv_msgs_lock;
505 struct list_head waiting_rcv_msgs;
506 atomic_t watchdog_pretimeouts_to_deliver;
507 struct tasklet_struct recv_tasklet;
508
509 spinlock_t xmit_msgs_lock;
510 struct list_head xmit_msgs;
511 struct ipmi_smi_msg *curr_msg;
512 struct list_head hp_xmit_msgs;
513
514 /*
515 * The list of command receivers that are registered for commands
516 * on this interface.
517 */
518 struct mutex cmd_rcvrs_mutex;
519 struct list_head cmd_rcvrs;
520
521 /*
522 * Events that were queues because no one was there to receive
523 * them.
524 */
525 spinlock_t events_lock; /* For dealing with event stuff. */
526 struct list_head waiting_events;
527 unsigned int waiting_events_count; /* How many events in queue? */
528 char delivering_events;
529 char event_msg_printed;
530
531 /* How many users are waiting for events? */
532 atomic_t event_waiters;
533 unsigned int ticks_to_req_ev;
534
535 spinlock_t watch_lock; /* For dealing with watch stuff below. */
536
537 /* How many users are waiting for commands? */
538 unsigned int command_waiters;
539
540 /* How many users are waiting for watchdogs? */
541 unsigned int watchdog_waiters;
542
543 /* How many users are waiting for message responses? */
544 unsigned int response_waiters;
545
546 /*
547 * Tells what the lower layer has last been asked to watch for,
548 * messages and/or watchdogs. Protected by watch_lock.
549 */
550 unsigned int last_watch_mask;
551
552 /*
553 * The event receiver for my BMC, only really used at panic
554 * shutdown as a place to store this.
555 */
556 unsigned char event_receiver;
557 unsigned char event_receiver_lun;
558 unsigned char local_sel_device;
559 unsigned char local_event_generator;
560
561 /* For handling of maintenance mode. */
562 int maintenance_mode;
563 bool maintenance_mode_enable;
564 int auto_maintenance_timeout;
565 spinlock_t maintenance_mode_lock; /* Used in a timer... */
566
567 /*
568 * If we are doing maintenance on something on IPMB, extend
569 * the timeout time to avoid timeouts writing firmware and
570 * such.
571 */
572 int ipmb_maintenance_mode_timeout;
573
574 /*
575 * A cheap hack, if this is non-null and a message to an
576 * interface comes in with a NULL user, call this routine with
577 * it. Note that the message will still be freed by the
578 * caller. This only works on the system interface.
579 *
580 * Protected by bmc_reg_mutex.
581 */
582 void (*null_user_handler)(struct ipmi_smi *intf,
583 struct ipmi_recv_msg *msg);
584
585 /*
586 * When we are scanning the channels for an SMI, this will
587 * tell which channel we are scanning.
588 */
589 int curr_channel;
590
591 /* Channel information */
592 struct ipmi_channel_set *channel_list;
593 unsigned int curr_working_cset; /* First index into the following. */
594 struct ipmi_channel_set wchannels[2];
595 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
596 bool channels_ready;
597
598 atomic_t stats[IPMI_NUM_STATS];
599
600 /*
601 * run_to_completion duplicate of smb_info, smi_info
602 * and ipmi_serial_info structures. Used to decrease numbers of
603 * parameters passed by "low" level IPMI code.
604 */
605 int run_to_completion;
606 };
607 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
608
609 static void __get_guid(struct ipmi_smi *intf);
610 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
611 static int __ipmi_bmc_register(struct ipmi_smi *intf,
612 struct ipmi_device_id *id,
613 bool guid_set, guid_t *guid, int intf_num);
614 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
615
616
617 /*
618 * The driver model view of the IPMI messaging driver.
619 */
620 static struct platform_driver ipmidriver = {
621 .driver = {
622 .name = "ipmi",
623 .bus = &platform_bus_type
624 }
625 };
626 /*
627 * This mutex keeps us from adding the same BMC twice.
628 */
629 static DEFINE_MUTEX(ipmidriver_mutex);
630
631 static LIST_HEAD(ipmi_interfaces);
632 static DEFINE_MUTEX(ipmi_interfaces_mutex);
633 #define ipmi_interfaces_mutex_held() \
634 lockdep_is_held(&ipmi_interfaces_mutex)
635 static struct srcu_struct ipmi_interfaces_srcu;
636
637 /*
638 * List of watchers that want to know when smi's are added and deleted.
639 */
640 static LIST_HEAD(smi_watchers);
641 static DEFINE_MUTEX(smi_watchers_mutex);
642
643 #define ipmi_inc_stat(intf, stat) \
644 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
645 #define ipmi_get_stat(intf, stat) \
646 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
647
648 static const char * const addr_src_to_str[] = {
649 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
650 "device-tree", "platform"
651 };
652
ipmi_addr_src_to_str(enum ipmi_addr_src src)653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
654 {
655 if (src >= SI_LAST)
656 src = 0; /* Invalid */
657 return addr_src_to_str[src];
658 }
659 EXPORT_SYMBOL(ipmi_addr_src_to_str);
660
is_lan_addr(struct ipmi_addr * addr)661 static int is_lan_addr(struct ipmi_addr *addr)
662 {
663 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
664 }
665
is_ipmb_addr(struct ipmi_addr * addr)666 static int is_ipmb_addr(struct ipmi_addr *addr)
667 {
668 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
669 }
670
is_ipmb_bcast_addr(struct ipmi_addr * addr)671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
672 {
673 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
674 }
675
is_ipmb_direct_addr(struct ipmi_addr * addr)676 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
677 {
678 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
679 }
680
free_recv_msg_list(struct list_head * q)681 static void free_recv_msg_list(struct list_head *q)
682 {
683 struct ipmi_recv_msg *msg, *msg2;
684
685 list_for_each_entry_safe(msg, msg2, q, link) {
686 list_del(&msg->link);
687 ipmi_free_recv_msg(msg);
688 }
689 }
690
free_smi_msg_list(struct list_head * q)691 static void free_smi_msg_list(struct list_head *q)
692 {
693 struct ipmi_smi_msg *msg, *msg2;
694
695 list_for_each_entry_safe(msg, msg2, q, link) {
696 list_del(&msg->link);
697 ipmi_free_smi_msg(msg);
698 }
699 }
700
clean_up_interface_data(struct ipmi_smi * intf)701 static void clean_up_interface_data(struct ipmi_smi *intf)
702 {
703 int i;
704 struct cmd_rcvr *rcvr, *rcvr2;
705 struct list_head list;
706
707 tasklet_kill(&intf->recv_tasklet);
708
709 free_smi_msg_list(&intf->waiting_rcv_msgs);
710 free_recv_msg_list(&intf->waiting_events);
711
712 /*
713 * Wholesale remove all the entries from the list in the
714 * interface and wait for RCU to know that none are in use.
715 */
716 mutex_lock(&intf->cmd_rcvrs_mutex);
717 INIT_LIST_HEAD(&list);
718 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
719 mutex_unlock(&intf->cmd_rcvrs_mutex);
720
721 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
722 kfree(rcvr);
723
724 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725 if ((intf->seq_table[i].inuse)
726 && (intf->seq_table[i].recv_msg))
727 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728 }
729 }
730
intf_free(struct kref * ref)731 static void intf_free(struct kref *ref)
732 {
733 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
734
735 clean_up_interface_data(intf);
736 kfree(intf);
737 }
738
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)739 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
740 {
741 struct ipmi_smi *intf;
742 int index, rv;
743
744 /*
745 * Make sure the driver is actually initialized, this handles
746 * problems with initialization order.
747 */
748 rv = ipmi_init_msghandler();
749 if (rv)
750 return rv;
751
752 mutex_lock(&smi_watchers_mutex);
753
754 list_add(&watcher->link, &smi_watchers);
755
756 index = srcu_read_lock(&ipmi_interfaces_srcu);
757 list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
758 lockdep_is_held(&smi_watchers_mutex)) {
759 int intf_num = READ_ONCE(intf->intf_num);
760
761 if (intf_num == -1)
762 continue;
763 watcher->new_smi(intf_num, intf->si_dev);
764 }
765 srcu_read_unlock(&ipmi_interfaces_srcu, index);
766
767 mutex_unlock(&smi_watchers_mutex);
768
769 return 0;
770 }
771 EXPORT_SYMBOL(ipmi_smi_watcher_register);
772
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)773 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
774 {
775 mutex_lock(&smi_watchers_mutex);
776 list_del(&watcher->link);
777 mutex_unlock(&smi_watchers_mutex);
778 return 0;
779 }
780 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
781
782 /*
783 * Must be called with smi_watchers_mutex held.
784 */
785 static void
call_smi_watchers(int i,struct device * dev)786 call_smi_watchers(int i, struct device *dev)
787 {
788 struct ipmi_smi_watcher *w;
789
790 mutex_lock(&smi_watchers_mutex);
791 list_for_each_entry(w, &smi_watchers, link) {
792 if (try_module_get(w->owner)) {
793 w->new_smi(i, dev);
794 module_put(w->owner);
795 }
796 }
797 mutex_unlock(&smi_watchers_mutex);
798 }
799
800 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)801 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
802 {
803 if (addr1->addr_type != addr2->addr_type)
804 return 0;
805
806 if (addr1->channel != addr2->channel)
807 return 0;
808
809 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
810 struct ipmi_system_interface_addr *smi_addr1
811 = (struct ipmi_system_interface_addr *) addr1;
812 struct ipmi_system_interface_addr *smi_addr2
813 = (struct ipmi_system_interface_addr *) addr2;
814 return (smi_addr1->lun == smi_addr2->lun);
815 }
816
817 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
818 struct ipmi_ipmb_addr *ipmb_addr1
819 = (struct ipmi_ipmb_addr *) addr1;
820 struct ipmi_ipmb_addr *ipmb_addr2
821 = (struct ipmi_ipmb_addr *) addr2;
822
823 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
824 && (ipmb_addr1->lun == ipmb_addr2->lun));
825 }
826
827 if (is_ipmb_direct_addr(addr1)) {
828 struct ipmi_ipmb_direct_addr *daddr1
829 = (struct ipmi_ipmb_direct_addr *) addr1;
830 struct ipmi_ipmb_direct_addr *daddr2
831 = (struct ipmi_ipmb_direct_addr *) addr2;
832
833 return daddr1->slave_addr == daddr2->slave_addr &&
834 daddr1->rq_lun == daddr2->rq_lun &&
835 daddr1->rs_lun == daddr2->rs_lun;
836 }
837
838 if (is_lan_addr(addr1)) {
839 struct ipmi_lan_addr *lan_addr1
840 = (struct ipmi_lan_addr *) addr1;
841 struct ipmi_lan_addr *lan_addr2
842 = (struct ipmi_lan_addr *) addr2;
843
844 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
845 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
846 && (lan_addr1->session_handle
847 == lan_addr2->session_handle)
848 && (lan_addr1->lun == lan_addr2->lun));
849 }
850
851 return 1;
852 }
853
ipmi_validate_addr(struct ipmi_addr * addr,int len)854 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
855 {
856 if (len < sizeof(struct ipmi_system_interface_addr))
857 return -EINVAL;
858
859 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
860 if (addr->channel != IPMI_BMC_CHANNEL)
861 return -EINVAL;
862 return 0;
863 }
864
865 if ((addr->channel == IPMI_BMC_CHANNEL)
866 || (addr->channel >= IPMI_MAX_CHANNELS)
867 || (addr->channel < 0))
868 return -EINVAL;
869
870 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
871 if (len < sizeof(struct ipmi_ipmb_addr))
872 return -EINVAL;
873 return 0;
874 }
875
876 if (is_ipmb_direct_addr(addr)) {
877 struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
878
879 if (addr->channel != 0)
880 return -EINVAL;
881 if (len < sizeof(struct ipmi_ipmb_direct_addr))
882 return -EINVAL;
883
884 if (daddr->slave_addr & 0x01)
885 return -EINVAL;
886 if (daddr->rq_lun >= 4)
887 return -EINVAL;
888 if (daddr->rs_lun >= 4)
889 return -EINVAL;
890 return 0;
891 }
892
893 if (is_lan_addr(addr)) {
894 if (len < sizeof(struct ipmi_lan_addr))
895 return -EINVAL;
896 return 0;
897 }
898
899 return -EINVAL;
900 }
901 EXPORT_SYMBOL(ipmi_validate_addr);
902
ipmi_addr_length(int addr_type)903 unsigned int ipmi_addr_length(int addr_type)
904 {
905 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
906 return sizeof(struct ipmi_system_interface_addr);
907
908 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
909 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
910 return sizeof(struct ipmi_ipmb_addr);
911
912 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
913 return sizeof(struct ipmi_ipmb_direct_addr);
914
915 if (addr_type == IPMI_LAN_ADDR_TYPE)
916 return sizeof(struct ipmi_lan_addr);
917
918 return 0;
919 }
920 EXPORT_SYMBOL(ipmi_addr_length);
921
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)922 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
923 {
924 int rv = 0;
925
926 if (!msg->user) {
927 /* Special handling for NULL users. */
928 if (intf->null_user_handler) {
929 intf->null_user_handler(intf, msg);
930 } else {
931 /* No handler, so give up. */
932 rv = -EINVAL;
933 }
934 ipmi_free_recv_msg(msg);
935 } else if (oops_in_progress) {
936 /*
937 * If we are running in the panic context, calling the
938 * receive handler doesn't much meaning and has a deadlock
939 * risk. At this moment, simply skip it in that case.
940 */
941 ipmi_free_recv_msg(msg);
942 atomic_dec(&msg->user->nr_msgs);
943 } else {
944 int index;
945 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
946
947 if (user) {
948 atomic_dec(&user->nr_msgs);
949 user->handler->ipmi_recv_hndl(msg, user->handler_data);
950 release_ipmi_user(user, index);
951 } else {
952 /* User went away, give up. */
953 ipmi_free_recv_msg(msg);
954 rv = -EINVAL;
955 }
956 }
957
958 return rv;
959 }
960
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)961 static void deliver_local_response(struct ipmi_smi *intf,
962 struct ipmi_recv_msg *msg)
963 {
964 if (deliver_response(intf, msg))
965 ipmi_inc_stat(intf, unhandled_local_responses);
966 else
967 ipmi_inc_stat(intf, handled_local_responses);
968 }
969
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)970 static void deliver_err_response(struct ipmi_smi *intf,
971 struct ipmi_recv_msg *msg, int err)
972 {
973 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
974 msg->msg_data[0] = err;
975 msg->msg.netfn |= 1; /* Convert to a response. */
976 msg->msg.data_len = 1;
977 msg->msg.data = msg->msg_data;
978 deliver_local_response(intf, msg);
979 }
980
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)981 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
982 {
983 unsigned long iflags;
984
985 if (!intf->handlers->set_need_watch)
986 return;
987
988 spin_lock_irqsave(&intf->watch_lock, iflags);
989 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
990 intf->response_waiters++;
991
992 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
993 intf->watchdog_waiters++;
994
995 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
996 intf->command_waiters++;
997
998 if ((intf->last_watch_mask & flags) != flags) {
999 intf->last_watch_mask |= flags;
1000 intf->handlers->set_need_watch(intf->send_info,
1001 intf->last_watch_mask);
1002 }
1003 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1004 }
1005
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)1006 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1007 {
1008 unsigned long iflags;
1009
1010 if (!intf->handlers->set_need_watch)
1011 return;
1012
1013 spin_lock_irqsave(&intf->watch_lock, iflags);
1014 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1015 intf->response_waiters--;
1016
1017 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1018 intf->watchdog_waiters--;
1019
1020 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1021 intf->command_waiters--;
1022
1023 flags = 0;
1024 if (intf->response_waiters)
1025 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1026 if (intf->watchdog_waiters)
1027 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1028 if (intf->command_waiters)
1029 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1030
1031 if (intf->last_watch_mask != flags) {
1032 intf->last_watch_mask = flags;
1033 intf->handlers->set_need_watch(intf->send_info,
1034 intf->last_watch_mask);
1035 }
1036 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1037 }
1038
1039 /*
1040 * Find the next sequence number not being used and add the given
1041 * message with the given timeout to the sequence table. This must be
1042 * called with the interface's seq_lock held.
1043 */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1044 static int intf_next_seq(struct ipmi_smi *intf,
1045 struct ipmi_recv_msg *recv_msg,
1046 unsigned long timeout,
1047 int retries,
1048 int broadcast,
1049 unsigned char *seq,
1050 long *seqid)
1051 {
1052 int rv = 0;
1053 unsigned int i;
1054
1055 if (timeout == 0)
1056 timeout = default_retry_ms;
1057 if (retries < 0)
1058 retries = default_max_retries;
1059
1060 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1061 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1062 if (!intf->seq_table[i].inuse)
1063 break;
1064 }
1065
1066 if (!intf->seq_table[i].inuse) {
1067 intf->seq_table[i].recv_msg = recv_msg;
1068
1069 /*
1070 * Start with the maximum timeout, when the send response
1071 * comes in we will start the real timer.
1072 */
1073 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1074 intf->seq_table[i].orig_timeout = timeout;
1075 intf->seq_table[i].retries_left = retries;
1076 intf->seq_table[i].broadcast = broadcast;
1077 intf->seq_table[i].inuse = 1;
1078 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1079 *seq = i;
1080 *seqid = intf->seq_table[i].seqid;
1081 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1082 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1083 need_waiter(intf);
1084 } else {
1085 rv = -EAGAIN;
1086 }
1087
1088 return rv;
1089 }
1090
1091 /*
1092 * Return the receive message for the given sequence number and
1093 * release the sequence number so it can be reused. Some other data
1094 * is passed in to be sure the message matches up correctly (to help
1095 * guard against message coming in after their timeout and the
1096 * sequence number being reused).
1097 */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1098 static int intf_find_seq(struct ipmi_smi *intf,
1099 unsigned char seq,
1100 short channel,
1101 unsigned char cmd,
1102 unsigned char netfn,
1103 struct ipmi_addr *addr,
1104 struct ipmi_recv_msg **recv_msg)
1105 {
1106 int rv = -ENODEV;
1107 unsigned long flags;
1108
1109 if (seq >= IPMI_IPMB_NUM_SEQ)
1110 return -EINVAL;
1111
1112 spin_lock_irqsave(&intf->seq_lock, flags);
1113 if (intf->seq_table[seq].inuse) {
1114 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1115
1116 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1117 && (msg->msg.netfn == netfn)
1118 && (ipmi_addr_equal(addr, &msg->addr))) {
1119 *recv_msg = msg;
1120 intf->seq_table[seq].inuse = 0;
1121 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1122 rv = 0;
1123 }
1124 }
1125 spin_unlock_irqrestore(&intf->seq_lock, flags);
1126
1127 return rv;
1128 }
1129
1130
1131 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1132 static int intf_start_seq_timer(struct ipmi_smi *intf,
1133 long msgid)
1134 {
1135 int rv = -ENODEV;
1136 unsigned long flags;
1137 unsigned char seq;
1138 unsigned long seqid;
1139
1140
1141 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1142
1143 spin_lock_irqsave(&intf->seq_lock, flags);
1144 /*
1145 * We do this verification because the user can be deleted
1146 * while a message is outstanding.
1147 */
1148 if ((intf->seq_table[seq].inuse)
1149 && (intf->seq_table[seq].seqid == seqid)) {
1150 struct seq_table *ent = &intf->seq_table[seq];
1151 ent->timeout = ent->orig_timeout;
1152 rv = 0;
1153 }
1154 spin_unlock_irqrestore(&intf->seq_lock, flags);
1155
1156 return rv;
1157 }
1158
1159 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1160 static int intf_err_seq(struct ipmi_smi *intf,
1161 long msgid,
1162 unsigned int err)
1163 {
1164 int rv = -ENODEV;
1165 unsigned long flags;
1166 unsigned char seq;
1167 unsigned long seqid;
1168 struct ipmi_recv_msg *msg = NULL;
1169
1170
1171 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1172
1173 spin_lock_irqsave(&intf->seq_lock, flags);
1174 /*
1175 * We do this verification because the user can be deleted
1176 * while a message is outstanding.
1177 */
1178 if ((intf->seq_table[seq].inuse)
1179 && (intf->seq_table[seq].seqid == seqid)) {
1180 struct seq_table *ent = &intf->seq_table[seq];
1181
1182 ent->inuse = 0;
1183 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1184 msg = ent->recv_msg;
1185 rv = 0;
1186 }
1187 spin_unlock_irqrestore(&intf->seq_lock, flags);
1188
1189 if (msg)
1190 deliver_err_response(intf, msg, err);
1191
1192 return rv;
1193 }
1194
free_user_work(struct work_struct * work)1195 static void free_user_work(struct work_struct *work)
1196 {
1197 struct ipmi_user *user = container_of(work, struct ipmi_user,
1198 remove_work);
1199
1200 cleanup_srcu_struct(&user->release_barrier);
1201 vfree(user);
1202 }
1203
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1204 int ipmi_create_user(unsigned int if_num,
1205 const struct ipmi_user_hndl *handler,
1206 void *handler_data,
1207 struct ipmi_user **user)
1208 {
1209 unsigned long flags;
1210 struct ipmi_user *new_user;
1211 int rv, index;
1212 struct ipmi_smi *intf;
1213
1214 /*
1215 * There is no module usecount here, because it's not
1216 * required. Since this can only be used by and called from
1217 * other modules, they will implicitly use this module, and
1218 * thus this can't be removed unless the other modules are
1219 * removed.
1220 */
1221
1222 if (handler == NULL)
1223 return -EINVAL;
1224
1225 /*
1226 * Make sure the driver is actually initialized, this handles
1227 * problems with initialization order.
1228 */
1229 rv = ipmi_init_msghandler();
1230 if (rv)
1231 return rv;
1232
1233 new_user = vzalloc(sizeof(*new_user));
1234 if (!new_user)
1235 return -ENOMEM;
1236
1237 index = srcu_read_lock(&ipmi_interfaces_srcu);
1238 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1239 if (intf->intf_num == if_num)
1240 goto found;
1241 }
1242 /* Not found, return an error */
1243 rv = -EINVAL;
1244 goto out_unlock;
1245
1246 found:
1247 if (atomic_add_return(1, &intf->nr_users) > max_users) {
1248 rv = -EBUSY;
1249 goto out_kfree;
1250 }
1251
1252 INIT_WORK(&new_user->remove_work, free_user_work);
1253
1254 rv = init_srcu_struct(&new_user->release_barrier);
1255 if (rv)
1256 goto out_kfree;
1257
1258 if (!try_module_get(intf->owner)) {
1259 rv = -ENODEV;
1260 goto out_kfree;
1261 }
1262
1263 /* Note that each existing user holds a refcount to the interface. */
1264 kref_get(&intf->refcount);
1265
1266 atomic_set(&new_user->nr_msgs, 0);
1267 kref_init(&new_user->refcount);
1268 new_user->handler = handler;
1269 new_user->handler_data = handler_data;
1270 new_user->intf = intf;
1271 new_user->gets_events = false;
1272
1273 rcu_assign_pointer(new_user->self, new_user);
1274 spin_lock_irqsave(&intf->seq_lock, flags);
1275 list_add_rcu(&new_user->link, &intf->users);
1276 spin_unlock_irqrestore(&intf->seq_lock, flags);
1277 if (handler->ipmi_watchdog_pretimeout)
1278 /* User wants pretimeouts, so make sure to watch for them. */
1279 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1280 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1281 *user = new_user;
1282 return 0;
1283
1284 out_kfree:
1285 atomic_dec(&intf->nr_users);
1286 out_unlock:
1287 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1288 vfree(new_user);
1289 return rv;
1290 }
1291 EXPORT_SYMBOL(ipmi_create_user);
1292
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1293 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1294 {
1295 int rv, index;
1296 struct ipmi_smi *intf;
1297
1298 index = srcu_read_lock(&ipmi_interfaces_srcu);
1299 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1300 if (intf->intf_num == if_num)
1301 goto found;
1302 }
1303 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1304
1305 /* Not found, return an error */
1306 return -EINVAL;
1307
1308 found:
1309 if (!intf->handlers->get_smi_info)
1310 rv = -ENOTTY;
1311 else
1312 rv = intf->handlers->get_smi_info(intf->send_info, data);
1313 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1314
1315 return rv;
1316 }
1317 EXPORT_SYMBOL(ipmi_get_smi_info);
1318
free_user(struct kref * ref)1319 static void free_user(struct kref *ref)
1320 {
1321 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1322
1323 /* SRCU cleanup must happen in task context. */
1324 queue_work(remove_work_wq, &user->remove_work);
1325 }
1326
_ipmi_destroy_user(struct ipmi_user * user)1327 static void _ipmi_destroy_user(struct ipmi_user *user)
1328 {
1329 struct ipmi_smi *intf = user->intf;
1330 int i;
1331 unsigned long flags;
1332 struct cmd_rcvr *rcvr;
1333 struct cmd_rcvr *rcvrs = NULL;
1334 struct module *owner;
1335
1336 if (!acquire_ipmi_user(user, &i)) {
1337 /*
1338 * The user has already been cleaned up, just make sure
1339 * nothing is using it and return.
1340 */
1341 synchronize_srcu(&user->release_barrier);
1342 return;
1343 }
1344
1345 rcu_assign_pointer(user->self, NULL);
1346 release_ipmi_user(user, i);
1347
1348 synchronize_srcu(&user->release_barrier);
1349
1350 if (user->handler->shutdown)
1351 user->handler->shutdown(user->handler_data);
1352
1353 if (user->handler->ipmi_watchdog_pretimeout)
1354 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1355
1356 if (user->gets_events)
1357 atomic_dec(&intf->event_waiters);
1358
1359 /* Remove the user from the interface's sequence table. */
1360 spin_lock_irqsave(&intf->seq_lock, flags);
1361 list_del_rcu(&user->link);
1362 atomic_dec(&intf->nr_users);
1363
1364 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1365 if (intf->seq_table[i].inuse
1366 && (intf->seq_table[i].recv_msg->user == user)) {
1367 intf->seq_table[i].inuse = 0;
1368 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1369 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1370 }
1371 }
1372 spin_unlock_irqrestore(&intf->seq_lock, flags);
1373
1374 /*
1375 * Remove the user from the command receiver's table. First
1376 * we build a list of everything (not using the standard link,
1377 * since other things may be using it till we do
1378 * synchronize_srcu()) then free everything in that list.
1379 */
1380 mutex_lock(&intf->cmd_rcvrs_mutex);
1381 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1382 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1383 if (rcvr->user == user) {
1384 list_del_rcu(&rcvr->link);
1385 rcvr->next = rcvrs;
1386 rcvrs = rcvr;
1387 }
1388 }
1389 mutex_unlock(&intf->cmd_rcvrs_mutex);
1390 synchronize_rcu();
1391 while (rcvrs) {
1392 rcvr = rcvrs;
1393 rcvrs = rcvr->next;
1394 kfree(rcvr);
1395 }
1396
1397 owner = intf->owner;
1398 kref_put(&intf->refcount, intf_free);
1399 module_put(owner);
1400 }
1401
ipmi_destroy_user(struct ipmi_user * user)1402 int ipmi_destroy_user(struct ipmi_user *user)
1403 {
1404 _ipmi_destroy_user(user);
1405
1406 kref_put(&user->refcount, free_user);
1407
1408 return 0;
1409 }
1410 EXPORT_SYMBOL(ipmi_destroy_user);
1411
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1412 int ipmi_get_version(struct ipmi_user *user,
1413 unsigned char *major,
1414 unsigned char *minor)
1415 {
1416 struct ipmi_device_id id;
1417 int rv, index;
1418
1419 user = acquire_ipmi_user(user, &index);
1420 if (!user)
1421 return -ENODEV;
1422
1423 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1424 if (!rv) {
1425 *major = ipmi_version_major(&id);
1426 *minor = ipmi_version_minor(&id);
1427 }
1428 release_ipmi_user(user, index);
1429
1430 return rv;
1431 }
1432 EXPORT_SYMBOL(ipmi_get_version);
1433
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1434 int ipmi_set_my_address(struct ipmi_user *user,
1435 unsigned int channel,
1436 unsigned char address)
1437 {
1438 int index, rv = 0;
1439
1440 user = acquire_ipmi_user(user, &index);
1441 if (!user)
1442 return -ENODEV;
1443
1444 if (channel >= IPMI_MAX_CHANNELS) {
1445 rv = -EINVAL;
1446 } else {
1447 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1448 user->intf->addrinfo[channel].address = address;
1449 }
1450 release_ipmi_user(user, index);
1451
1452 return rv;
1453 }
1454 EXPORT_SYMBOL(ipmi_set_my_address);
1455
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1456 int ipmi_get_my_address(struct ipmi_user *user,
1457 unsigned int channel,
1458 unsigned char *address)
1459 {
1460 int index, rv = 0;
1461
1462 user = acquire_ipmi_user(user, &index);
1463 if (!user)
1464 return -ENODEV;
1465
1466 if (channel >= IPMI_MAX_CHANNELS) {
1467 rv = -EINVAL;
1468 } else {
1469 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1470 *address = user->intf->addrinfo[channel].address;
1471 }
1472 release_ipmi_user(user, index);
1473
1474 return rv;
1475 }
1476 EXPORT_SYMBOL(ipmi_get_my_address);
1477
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1478 int ipmi_set_my_LUN(struct ipmi_user *user,
1479 unsigned int channel,
1480 unsigned char LUN)
1481 {
1482 int index, rv = 0;
1483
1484 user = acquire_ipmi_user(user, &index);
1485 if (!user)
1486 return -ENODEV;
1487
1488 if (channel >= IPMI_MAX_CHANNELS) {
1489 rv = -EINVAL;
1490 } else {
1491 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1492 user->intf->addrinfo[channel].lun = LUN & 0x3;
1493 }
1494 release_ipmi_user(user, index);
1495
1496 return rv;
1497 }
1498 EXPORT_SYMBOL(ipmi_set_my_LUN);
1499
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1500 int ipmi_get_my_LUN(struct ipmi_user *user,
1501 unsigned int channel,
1502 unsigned char *address)
1503 {
1504 int index, rv = 0;
1505
1506 user = acquire_ipmi_user(user, &index);
1507 if (!user)
1508 return -ENODEV;
1509
1510 if (channel >= IPMI_MAX_CHANNELS) {
1511 rv = -EINVAL;
1512 } else {
1513 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1514 *address = user->intf->addrinfo[channel].lun;
1515 }
1516 release_ipmi_user(user, index);
1517
1518 return rv;
1519 }
1520 EXPORT_SYMBOL(ipmi_get_my_LUN);
1521
ipmi_get_maintenance_mode(struct ipmi_user * user)1522 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1523 {
1524 int mode, index;
1525 unsigned long flags;
1526
1527 user = acquire_ipmi_user(user, &index);
1528 if (!user)
1529 return -ENODEV;
1530
1531 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1532 mode = user->intf->maintenance_mode;
1533 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1534 release_ipmi_user(user, index);
1535
1536 return mode;
1537 }
1538 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1539
maintenance_mode_update(struct ipmi_smi * intf)1540 static void maintenance_mode_update(struct ipmi_smi *intf)
1541 {
1542 if (intf->handlers->set_maintenance_mode)
1543 intf->handlers->set_maintenance_mode(
1544 intf->send_info, intf->maintenance_mode_enable);
1545 }
1546
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1547 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1548 {
1549 int rv = 0, index;
1550 unsigned long flags;
1551 struct ipmi_smi *intf = user->intf;
1552
1553 user = acquire_ipmi_user(user, &index);
1554 if (!user)
1555 return -ENODEV;
1556
1557 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1558 if (intf->maintenance_mode != mode) {
1559 switch (mode) {
1560 case IPMI_MAINTENANCE_MODE_AUTO:
1561 intf->maintenance_mode_enable
1562 = (intf->auto_maintenance_timeout > 0);
1563 break;
1564
1565 case IPMI_MAINTENANCE_MODE_OFF:
1566 intf->maintenance_mode_enable = false;
1567 break;
1568
1569 case IPMI_MAINTENANCE_MODE_ON:
1570 intf->maintenance_mode_enable = true;
1571 break;
1572
1573 default:
1574 rv = -EINVAL;
1575 goto out_unlock;
1576 }
1577 intf->maintenance_mode = mode;
1578
1579 maintenance_mode_update(intf);
1580 }
1581 out_unlock:
1582 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1583 release_ipmi_user(user, index);
1584
1585 return rv;
1586 }
1587 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1588
ipmi_set_gets_events(struct ipmi_user * user,bool val)1589 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1590 {
1591 unsigned long flags;
1592 struct ipmi_smi *intf = user->intf;
1593 struct ipmi_recv_msg *msg, *msg2;
1594 struct list_head msgs;
1595 int index;
1596
1597 user = acquire_ipmi_user(user, &index);
1598 if (!user)
1599 return -ENODEV;
1600
1601 INIT_LIST_HEAD(&msgs);
1602
1603 spin_lock_irqsave(&intf->events_lock, flags);
1604 if (user->gets_events == val)
1605 goto out;
1606
1607 user->gets_events = val;
1608
1609 if (val) {
1610 if (atomic_inc_return(&intf->event_waiters) == 1)
1611 need_waiter(intf);
1612 } else {
1613 atomic_dec(&intf->event_waiters);
1614 }
1615
1616 if (intf->delivering_events)
1617 /*
1618 * Another thread is delivering events for this, so
1619 * let it handle any new events.
1620 */
1621 goto out;
1622
1623 /* Deliver any queued events. */
1624 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1625 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1626 list_move_tail(&msg->link, &msgs);
1627 intf->waiting_events_count = 0;
1628 if (intf->event_msg_printed) {
1629 dev_warn(intf->si_dev, "Event queue no longer full\n");
1630 intf->event_msg_printed = 0;
1631 }
1632
1633 intf->delivering_events = 1;
1634 spin_unlock_irqrestore(&intf->events_lock, flags);
1635
1636 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1637 msg->user = user;
1638 kref_get(&user->refcount);
1639 deliver_local_response(intf, msg);
1640 }
1641
1642 spin_lock_irqsave(&intf->events_lock, flags);
1643 intf->delivering_events = 0;
1644 }
1645
1646 out:
1647 spin_unlock_irqrestore(&intf->events_lock, flags);
1648 release_ipmi_user(user, index);
1649
1650 return 0;
1651 }
1652 EXPORT_SYMBOL(ipmi_set_gets_events);
1653
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1654 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1655 unsigned char netfn,
1656 unsigned char cmd,
1657 unsigned char chan)
1658 {
1659 struct cmd_rcvr *rcvr;
1660
1661 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1662 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1663 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1664 && (rcvr->chans & (1 << chan)))
1665 return rcvr;
1666 }
1667 return NULL;
1668 }
1669
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1670 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1671 unsigned char netfn,
1672 unsigned char cmd,
1673 unsigned int chans)
1674 {
1675 struct cmd_rcvr *rcvr;
1676
1677 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1678 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1679 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1680 && (rcvr->chans & chans))
1681 return 0;
1682 }
1683 return 1;
1684 }
1685
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1686 int ipmi_register_for_cmd(struct ipmi_user *user,
1687 unsigned char netfn,
1688 unsigned char cmd,
1689 unsigned int chans)
1690 {
1691 struct ipmi_smi *intf = user->intf;
1692 struct cmd_rcvr *rcvr;
1693 int rv = 0, index;
1694
1695 user = acquire_ipmi_user(user, &index);
1696 if (!user)
1697 return -ENODEV;
1698
1699 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1700 if (!rcvr) {
1701 rv = -ENOMEM;
1702 goto out_release;
1703 }
1704 rcvr->cmd = cmd;
1705 rcvr->netfn = netfn;
1706 rcvr->chans = chans;
1707 rcvr->user = user;
1708
1709 mutex_lock(&intf->cmd_rcvrs_mutex);
1710 /* Make sure the command/netfn is not already registered. */
1711 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1712 rv = -EBUSY;
1713 goto out_unlock;
1714 }
1715
1716 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1717
1718 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1719
1720 out_unlock:
1721 mutex_unlock(&intf->cmd_rcvrs_mutex);
1722 if (rv)
1723 kfree(rcvr);
1724 out_release:
1725 release_ipmi_user(user, index);
1726
1727 return rv;
1728 }
1729 EXPORT_SYMBOL(ipmi_register_for_cmd);
1730
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1731 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1732 unsigned char netfn,
1733 unsigned char cmd,
1734 unsigned int chans)
1735 {
1736 struct ipmi_smi *intf = user->intf;
1737 struct cmd_rcvr *rcvr;
1738 struct cmd_rcvr *rcvrs = NULL;
1739 int i, rv = -ENOENT, index;
1740
1741 user = acquire_ipmi_user(user, &index);
1742 if (!user)
1743 return -ENODEV;
1744
1745 mutex_lock(&intf->cmd_rcvrs_mutex);
1746 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1747 if (((1 << i) & chans) == 0)
1748 continue;
1749 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1750 if (rcvr == NULL)
1751 continue;
1752 if (rcvr->user == user) {
1753 rv = 0;
1754 rcvr->chans &= ~chans;
1755 if (rcvr->chans == 0) {
1756 list_del_rcu(&rcvr->link);
1757 rcvr->next = rcvrs;
1758 rcvrs = rcvr;
1759 }
1760 }
1761 }
1762 mutex_unlock(&intf->cmd_rcvrs_mutex);
1763 synchronize_rcu();
1764 release_ipmi_user(user, index);
1765 while (rcvrs) {
1766 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1767 rcvr = rcvrs;
1768 rcvrs = rcvr->next;
1769 kfree(rcvr);
1770 }
1771
1772 return rv;
1773 }
1774 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1775
1776 unsigned char
ipmb_checksum(unsigned char * data,int size)1777 ipmb_checksum(unsigned char *data, int size)
1778 {
1779 unsigned char csum = 0;
1780
1781 for (; size > 0; size--, data++)
1782 csum += *data;
1783
1784 return -csum;
1785 }
1786 EXPORT_SYMBOL(ipmb_checksum);
1787
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1788 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1789 struct kernel_ipmi_msg *msg,
1790 struct ipmi_ipmb_addr *ipmb_addr,
1791 long msgid,
1792 unsigned char ipmb_seq,
1793 int broadcast,
1794 unsigned char source_address,
1795 unsigned char source_lun)
1796 {
1797 int i = broadcast;
1798
1799 /* Format the IPMB header data. */
1800 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1801 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1802 smi_msg->data[2] = ipmb_addr->channel;
1803 if (broadcast)
1804 smi_msg->data[3] = 0;
1805 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1806 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1807 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1808 smi_msg->data[i+6] = source_address;
1809 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1810 smi_msg->data[i+8] = msg->cmd;
1811
1812 /* Now tack on the data to the message. */
1813 if (msg->data_len > 0)
1814 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1815 smi_msg->data_size = msg->data_len + 9;
1816
1817 /* Now calculate the checksum and tack it on. */
1818 smi_msg->data[i+smi_msg->data_size]
1819 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1820
1821 /*
1822 * Add on the checksum size and the offset from the
1823 * broadcast.
1824 */
1825 smi_msg->data_size += 1 + i;
1826
1827 smi_msg->msgid = msgid;
1828 }
1829
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1830 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1831 struct kernel_ipmi_msg *msg,
1832 struct ipmi_lan_addr *lan_addr,
1833 long msgid,
1834 unsigned char ipmb_seq,
1835 unsigned char source_lun)
1836 {
1837 /* Format the IPMB header data. */
1838 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1839 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1840 smi_msg->data[2] = lan_addr->channel;
1841 smi_msg->data[3] = lan_addr->session_handle;
1842 smi_msg->data[4] = lan_addr->remote_SWID;
1843 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1844 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1845 smi_msg->data[7] = lan_addr->local_SWID;
1846 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1847 smi_msg->data[9] = msg->cmd;
1848
1849 /* Now tack on the data to the message. */
1850 if (msg->data_len > 0)
1851 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1852 smi_msg->data_size = msg->data_len + 10;
1853
1854 /* Now calculate the checksum and tack it on. */
1855 smi_msg->data[smi_msg->data_size]
1856 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1857
1858 /*
1859 * Add on the checksum size and the offset from the
1860 * broadcast.
1861 */
1862 smi_msg->data_size += 1;
1863
1864 smi_msg->msgid = msgid;
1865 }
1866
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1867 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1868 struct ipmi_smi_msg *smi_msg,
1869 int priority)
1870 {
1871 if (intf->curr_msg) {
1872 if (priority > 0)
1873 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1874 else
1875 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1876 smi_msg = NULL;
1877 } else {
1878 intf->curr_msg = smi_msg;
1879 }
1880
1881 return smi_msg;
1882 }
1883
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1884 static void smi_send(struct ipmi_smi *intf,
1885 const struct ipmi_smi_handlers *handlers,
1886 struct ipmi_smi_msg *smi_msg, int priority)
1887 {
1888 int run_to_completion = intf->run_to_completion;
1889 unsigned long flags = 0;
1890
1891 if (!run_to_completion)
1892 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1893 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1894
1895 if (!run_to_completion)
1896 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1897
1898 if (smi_msg)
1899 handlers->sender(intf->send_info, smi_msg);
1900 }
1901
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1902 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1903 {
1904 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1905 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1906 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1907 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1908 }
1909
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1910 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1911 struct ipmi_addr *addr,
1912 long msgid,
1913 struct kernel_ipmi_msg *msg,
1914 struct ipmi_smi_msg *smi_msg,
1915 struct ipmi_recv_msg *recv_msg,
1916 int retries,
1917 unsigned int retry_time_ms)
1918 {
1919 struct ipmi_system_interface_addr *smi_addr;
1920
1921 if (msg->netfn & 1)
1922 /* Responses are not allowed to the SMI. */
1923 return -EINVAL;
1924
1925 smi_addr = (struct ipmi_system_interface_addr *) addr;
1926 if (smi_addr->lun > 3) {
1927 ipmi_inc_stat(intf, sent_invalid_commands);
1928 return -EINVAL;
1929 }
1930
1931 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1932
1933 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1934 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1935 || (msg->cmd == IPMI_GET_MSG_CMD)
1936 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1937 /*
1938 * We don't let the user do these, since we manage
1939 * the sequence numbers.
1940 */
1941 ipmi_inc_stat(intf, sent_invalid_commands);
1942 return -EINVAL;
1943 }
1944
1945 if (is_maintenance_mode_cmd(msg)) {
1946 unsigned long flags;
1947
1948 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1949 intf->auto_maintenance_timeout
1950 = maintenance_mode_timeout_ms;
1951 if (!intf->maintenance_mode
1952 && !intf->maintenance_mode_enable) {
1953 intf->maintenance_mode_enable = true;
1954 maintenance_mode_update(intf);
1955 }
1956 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1957 flags);
1958 }
1959
1960 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1961 ipmi_inc_stat(intf, sent_invalid_commands);
1962 return -EMSGSIZE;
1963 }
1964
1965 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1966 smi_msg->data[1] = msg->cmd;
1967 smi_msg->msgid = msgid;
1968 smi_msg->user_data = recv_msg;
1969 if (msg->data_len > 0)
1970 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1971 smi_msg->data_size = msg->data_len + 2;
1972 ipmi_inc_stat(intf, sent_local_commands);
1973
1974 return 0;
1975 }
1976
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1977 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1978 struct ipmi_addr *addr,
1979 long msgid,
1980 struct kernel_ipmi_msg *msg,
1981 struct ipmi_smi_msg *smi_msg,
1982 struct ipmi_recv_msg *recv_msg,
1983 unsigned char source_address,
1984 unsigned char source_lun,
1985 int retries,
1986 unsigned int retry_time_ms)
1987 {
1988 struct ipmi_ipmb_addr *ipmb_addr;
1989 unsigned char ipmb_seq;
1990 long seqid;
1991 int broadcast = 0;
1992 struct ipmi_channel *chans;
1993 int rv = 0;
1994
1995 if (addr->channel >= IPMI_MAX_CHANNELS) {
1996 ipmi_inc_stat(intf, sent_invalid_commands);
1997 return -EINVAL;
1998 }
1999
2000 chans = READ_ONCE(intf->channel_list)->c;
2001
2002 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
2003 ipmi_inc_stat(intf, sent_invalid_commands);
2004 return -EINVAL;
2005 }
2006
2007 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2008 /*
2009 * Broadcasts add a zero at the beginning of the
2010 * message, but otherwise is the same as an IPMB
2011 * address.
2012 */
2013 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2014 broadcast = 1;
2015 retries = 0; /* Don't retry broadcasts. */
2016 }
2017
2018 /*
2019 * 9 for the header and 1 for the checksum, plus
2020 * possibly one for the broadcast.
2021 */
2022 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2023 ipmi_inc_stat(intf, sent_invalid_commands);
2024 return -EMSGSIZE;
2025 }
2026
2027 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2028 if (ipmb_addr->lun > 3) {
2029 ipmi_inc_stat(intf, sent_invalid_commands);
2030 return -EINVAL;
2031 }
2032
2033 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2034
2035 if (recv_msg->msg.netfn & 0x1) {
2036 /*
2037 * It's a response, so use the user's sequence
2038 * from msgid.
2039 */
2040 ipmi_inc_stat(intf, sent_ipmb_responses);
2041 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2042 msgid, broadcast,
2043 source_address, source_lun);
2044
2045 /*
2046 * Save the receive message so we can use it
2047 * to deliver the response.
2048 */
2049 smi_msg->user_data = recv_msg;
2050 } else {
2051 /* It's a command, so get a sequence for it. */
2052 unsigned long flags;
2053
2054 spin_lock_irqsave(&intf->seq_lock, flags);
2055
2056 if (is_maintenance_mode_cmd(msg))
2057 intf->ipmb_maintenance_mode_timeout =
2058 maintenance_mode_timeout_ms;
2059
2060 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2061 /* Different default in maintenance mode */
2062 retry_time_ms = default_maintenance_retry_ms;
2063
2064 /*
2065 * Create a sequence number with a 1 second
2066 * timeout and 4 retries.
2067 */
2068 rv = intf_next_seq(intf,
2069 recv_msg,
2070 retry_time_ms,
2071 retries,
2072 broadcast,
2073 &ipmb_seq,
2074 &seqid);
2075 if (rv)
2076 /*
2077 * We have used up all the sequence numbers,
2078 * probably, so abort.
2079 */
2080 goto out_err;
2081
2082 ipmi_inc_stat(intf, sent_ipmb_commands);
2083
2084 /*
2085 * Store the sequence number in the message,
2086 * so that when the send message response
2087 * comes back we can start the timer.
2088 */
2089 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2090 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2091 ipmb_seq, broadcast,
2092 source_address, source_lun);
2093
2094 /*
2095 * Copy the message into the recv message data, so we
2096 * can retransmit it later if necessary.
2097 */
2098 memcpy(recv_msg->msg_data, smi_msg->data,
2099 smi_msg->data_size);
2100 recv_msg->msg.data = recv_msg->msg_data;
2101 recv_msg->msg.data_len = smi_msg->data_size;
2102
2103 /*
2104 * We don't unlock until here, because we need
2105 * to copy the completed message into the
2106 * recv_msg before we release the lock.
2107 * Otherwise, race conditions may bite us. I
2108 * know that's pretty paranoid, but I prefer
2109 * to be correct.
2110 */
2111 out_err:
2112 spin_unlock_irqrestore(&intf->seq_lock, flags);
2113 }
2114
2115 return rv;
2116 }
2117
i_ipmi_req_ipmb_direct(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun)2118 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf,
2119 struct ipmi_addr *addr,
2120 long msgid,
2121 struct kernel_ipmi_msg *msg,
2122 struct ipmi_smi_msg *smi_msg,
2123 struct ipmi_recv_msg *recv_msg,
2124 unsigned char source_lun)
2125 {
2126 struct ipmi_ipmb_direct_addr *daddr;
2127 bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2128
2129 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2130 return -EAFNOSUPPORT;
2131
2132 /* Responses must have a completion code. */
2133 if (!is_cmd && msg->data_len < 1) {
2134 ipmi_inc_stat(intf, sent_invalid_commands);
2135 return -EINVAL;
2136 }
2137
2138 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2139 ipmi_inc_stat(intf, sent_invalid_commands);
2140 return -EMSGSIZE;
2141 }
2142
2143 daddr = (struct ipmi_ipmb_direct_addr *) addr;
2144 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2145 ipmi_inc_stat(intf, sent_invalid_commands);
2146 return -EINVAL;
2147 }
2148
2149 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2150 smi_msg->msgid = msgid;
2151
2152 if (is_cmd) {
2153 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2154 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2155 } else {
2156 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2157 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2158 }
2159 smi_msg->data[1] = daddr->slave_addr;
2160 smi_msg->data[3] = msg->cmd;
2161
2162 memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2163 smi_msg->data_size = msg->data_len + 4;
2164
2165 smi_msg->user_data = recv_msg;
2166
2167 return 0;
2168 }
2169
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2170 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2171 struct ipmi_addr *addr,
2172 long msgid,
2173 struct kernel_ipmi_msg *msg,
2174 struct ipmi_smi_msg *smi_msg,
2175 struct ipmi_recv_msg *recv_msg,
2176 unsigned char source_lun,
2177 int retries,
2178 unsigned int retry_time_ms)
2179 {
2180 struct ipmi_lan_addr *lan_addr;
2181 unsigned char ipmb_seq;
2182 long seqid;
2183 struct ipmi_channel *chans;
2184 int rv = 0;
2185
2186 if (addr->channel >= IPMI_MAX_CHANNELS) {
2187 ipmi_inc_stat(intf, sent_invalid_commands);
2188 return -EINVAL;
2189 }
2190
2191 chans = READ_ONCE(intf->channel_list)->c;
2192
2193 if ((chans[addr->channel].medium
2194 != IPMI_CHANNEL_MEDIUM_8023LAN)
2195 && (chans[addr->channel].medium
2196 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2197 ipmi_inc_stat(intf, sent_invalid_commands);
2198 return -EINVAL;
2199 }
2200
2201 /* 11 for the header and 1 for the checksum. */
2202 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2203 ipmi_inc_stat(intf, sent_invalid_commands);
2204 return -EMSGSIZE;
2205 }
2206
2207 lan_addr = (struct ipmi_lan_addr *) addr;
2208 if (lan_addr->lun > 3) {
2209 ipmi_inc_stat(intf, sent_invalid_commands);
2210 return -EINVAL;
2211 }
2212
2213 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2214
2215 if (recv_msg->msg.netfn & 0x1) {
2216 /*
2217 * It's a response, so use the user's sequence
2218 * from msgid.
2219 */
2220 ipmi_inc_stat(intf, sent_lan_responses);
2221 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2222 msgid, source_lun);
2223
2224 /*
2225 * Save the receive message so we can use it
2226 * to deliver the response.
2227 */
2228 smi_msg->user_data = recv_msg;
2229 } else {
2230 /* It's a command, so get a sequence for it. */
2231 unsigned long flags;
2232
2233 spin_lock_irqsave(&intf->seq_lock, flags);
2234
2235 /*
2236 * Create a sequence number with a 1 second
2237 * timeout and 4 retries.
2238 */
2239 rv = intf_next_seq(intf,
2240 recv_msg,
2241 retry_time_ms,
2242 retries,
2243 0,
2244 &ipmb_seq,
2245 &seqid);
2246 if (rv)
2247 /*
2248 * We have used up all the sequence numbers,
2249 * probably, so abort.
2250 */
2251 goto out_err;
2252
2253 ipmi_inc_stat(intf, sent_lan_commands);
2254
2255 /*
2256 * Store the sequence number in the message,
2257 * so that when the send message response
2258 * comes back we can start the timer.
2259 */
2260 format_lan_msg(smi_msg, msg, lan_addr,
2261 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2262 ipmb_seq, source_lun);
2263
2264 /*
2265 * Copy the message into the recv message data, so we
2266 * can retransmit it later if necessary.
2267 */
2268 memcpy(recv_msg->msg_data, smi_msg->data,
2269 smi_msg->data_size);
2270 recv_msg->msg.data = recv_msg->msg_data;
2271 recv_msg->msg.data_len = smi_msg->data_size;
2272
2273 /*
2274 * We don't unlock until here, because we need
2275 * to copy the completed message into the
2276 * recv_msg before we release the lock.
2277 * Otherwise, race conditions may bite us. I
2278 * know that's pretty paranoid, but I prefer
2279 * to be correct.
2280 */
2281 out_err:
2282 spin_unlock_irqrestore(&intf->seq_lock, flags);
2283 }
2284
2285 return rv;
2286 }
2287
2288 /*
2289 * Separate from ipmi_request so that the user does not have to be
2290 * supplied in certain circumstances (mainly at panic time). If
2291 * messages are supplied, they will be freed, even if an error
2292 * occurs.
2293 */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2294 static int i_ipmi_request(struct ipmi_user *user,
2295 struct ipmi_smi *intf,
2296 struct ipmi_addr *addr,
2297 long msgid,
2298 struct kernel_ipmi_msg *msg,
2299 void *user_msg_data,
2300 void *supplied_smi,
2301 struct ipmi_recv_msg *supplied_recv,
2302 int priority,
2303 unsigned char source_address,
2304 unsigned char source_lun,
2305 int retries,
2306 unsigned int retry_time_ms)
2307 {
2308 struct ipmi_smi_msg *smi_msg;
2309 struct ipmi_recv_msg *recv_msg;
2310 int rv = 0;
2311
2312 if (user) {
2313 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
2314 /* Decrement will happen at the end of the routine. */
2315 rv = -EBUSY;
2316 goto out;
2317 }
2318 }
2319
2320 if (supplied_recv)
2321 recv_msg = supplied_recv;
2322 else {
2323 recv_msg = ipmi_alloc_recv_msg();
2324 if (recv_msg == NULL) {
2325 rv = -ENOMEM;
2326 goto out;
2327 }
2328 }
2329 recv_msg->user_msg_data = user_msg_data;
2330
2331 if (supplied_smi)
2332 smi_msg = supplied_smi;
2333 else {
2334 smi_msg = ipmi_alloc_smi_msg();
2335 if (smi_msg == NULL) {
2336 if (!supplied_recv)
2337 ipmi_free_recv_msg(recv_msg);
2338 rv = -ENOMEM;
2339 goto out;
2340 }
2341 }
2342
2343 rcu_read_lock();
2344 if (intf->in_shutdown) {
2345 rv = -ENODEV;
2346 goto out_err;
2347 }
2348
2349 recv_msg->user = user;
2350 if (user)
2351 /* The put happens when the message is freed. */
2352 kref_get(&user->refcount);
2353 recv_msg->msgid = msgid;
2354 /*
2355 * Store the message to send in the receive message so timeout
2356 * responses can get the proper response data.
2357 */
2358 recv_msg->msg = *msg;
2359
2360 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2361 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2362 recv_msg, retries, retry_time_ms);
2363 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2364 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2365 source_address, source_lun,
2366 retries, retry_time_ms);
2367 } else if (is_ipmb_direct_addr(addr)) {
2368 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2369 recv_msg, source_lun);
2370 } else if (is_lan_addr(addr)) {
2371 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2372 source_lun, retries, retry_time_ms);
2373 } else {
2374 /* Unknown address type. */
2375 ipmi_inc_stat(intf, sent_invalid_commands);
2376 rv = -EINVAL;
2377 }
2378
2379 if (rv) {
2380 out_err:
2381 ipmi_free_smi_msg(smi_msg);
2382 ipmi_free_recv_msg(recv_msg);
2383 } else {
2384 dev_dbg(intf->si_dev, "Send: %*ph\n",
2385 smi_msg->data_size, smi_msg->data);
2386
2387 smi_send(intf, intf->handlers, smi_msg, priority);
2388 }
2389 rcu_read_unlock();
2390
2391 out:
2392 if (rv && user)
2393 atomic_dec(&user->nr_msgs);
2394 return rv;
2395 }
2396
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2397 static int check_addr(struct ipmi_smi *intf,
2398 struct ipmi_addr *addr,
2399 unsigned char *saddr,
2400 unsigned char *lun)
2401 {
2402 if (addr->channel >= IPMI_MAX_CHANNELS)
2403 return -EINVAL;
2404 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2405 *lun = intf->addrinfo[addr->channel].lun;
2406 *saddr = intf->addrinfo[addr->channel].address;
2407 return 0;
2408 }
2409
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2410 int ipmi_request_settime(struct ipmi_user *user,
2411 struct ipmi_addr *addr,
2412 long msgid,
2413 struct kernel_ipmi_msg *msg,
2414 void *user_msg_data,
2415 int priority,
2416 int retries,
2417 unsigned int retry_time_ms)
2418 {
2419 unsigned char saddr = 0, lun = 0;
2420 int rv, index;
2421
2422 if (!user)
2423 return -EINVAL;
2424
2425 user = acquire_ipmi_user(user, &index);
2426 if (!user)
2427 return -ENODEV;
2428
2429 rv = check_addr(user->intf, addr, &saddr, &lun);
2430 if (!rv)
2431 rv = i_ipmi_request(user,
2432 user->intf,
2433 addr,
2434 msgid,
2435 msg,
2436 user_msg_data,
2437 NULL, NULL,
2438 priority,
2439 saddr,
2440 lun,
2441 retries,
2442 retry_time_ms);
2443
2444 release_ipmi_user(user, index);
2445 return rv;
2446 }
2447 EXPORT_SYMBOL(ipmi_request_settime);
2448
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2449 int ipmi_request_supply_msgs(struct ipmi_user *user,
2450 struct ipmi_addr *addr,
2451 long msgid,
2452 struct kernel_ipmi_msg *msg,
2453 void *user_msg_data,
2454 void *supplied_smi,
2455 struct ipmi_recv_msg *supplied_recv,
2456 int priority)
2457 {
2458 unsigned char saddr = 0, lun = 0;
2459 int rv, index;
2460
2461 if (!user)
2462 return -EINVAL;
2463
2464 user = acquire_ipmi_user(user, &index);
2465 if (!user)
2466 return -ENODEV;
2467
2468 rv = check_addr(user->intf, addr, &saddr, &lun);
2469 if (!rv)
2470 rv = i_ipmi_request(user,
2471 user->intf,
2472 addr,
2473 msgid,
2474 msg,
2475 user_msg_data,
2476 supplied_smi,
2477 supplied_recv,
2478 priority,
2479 saddr,
2480 lun,
2481 -1, 0);
2482
2483 release_ipmi_user(user, index);
2484 return rv;
2485 }
2486 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2487
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2488 static void bmc_device_id_handler(struct ipmi_smi *intf,
2489 struct ipmi_recv_msg *msg)
2490 {
2491 int rv;
2492
2493 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2494 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2495 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2496 dev_warn(intf->si_dev,
2497 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2498 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2499 return;
2500 }
2501
2502 if (msg->msg.data[0]) {
2503 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2504 msg->msg.data[0]);
2505 intf->bmc->dyn_id_set = 0;
2506 goto out;
2507 }
2508
2509 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2510 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2511 if (rv) {
2512 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2513 /* record completion code when error */
2514 intf->bmc->cc = msg->msg.data[0];
2515 intf->bmc->dyn_id_set = 0;
2516 } else {
2517 /*
2518 * Make sure the id data is available before setting
2519 * dyn_id_set.
2520 */
2521 smp_wmb();
2522 intf->bmc->dyn_id_set = 1;
2523 }
2524 out:
2525 wake_up(&intf->waitq);
2526 }
2527
2528 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2529 send_get_device_id_cmd(struct ipmi_smi *intf)
2530 {
2531 struct ipmi_system_interface_addr si;
2532 struct kernel_ipmi_msg msg;
2533
2534 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2535 si.channel = IPMI_BMC_CHANNEL;
2536 si.lun = 0;
2537
2538 msg.netfn = IPMI_NETFN_APP_REQUEST;
2539 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2540 msg.data = NULL;
2541 msg.data_len = 0;
2542
2543 return i_ipmi_request(NULL,
2544 intf,
2545 (struct ipmi_addr *) &si,
2546 0,
2547 &msg,
2548 intf,
2549 NULL,
2550 NULL,
2551 0,
2552 intf->addrinfo[0].address,
2553 intf->addrinfo[0].lun,
2554 -1, 0);
2555 }
2556
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2557 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2558 {
2559 int rv;
2560 unsigned int retry_count = 0;
2561
2562 intf->null_user_handler = bmc_device_id_handler;
2563
2564 retry:
2565 bmc->cc = 0;
2566 bmc->dyn_id_set = 2;
2567
2568 rv = send_get_device_id_cmd(intf);
2569 if (rv)
2570 goto out_reset_handler;
2571
2572 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2573
2574 if (!bmc->dyn_id_set) {
2575 if (bmc->cc != IPMI_CC_NO_ERROR &&
2576 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2577 msleep(500);
2578 dev_warn(intf->si_dev,
2579 "BMC returned 0x%2.2x, retry get bmc device id\n",
2580 bmc->cc);
2581 goto retry;
2582 }
2583
2584 rv = -EIO; /* Something went wrong in the fetch. */
2585 }
2586
2587 /* dyn_id_set makes the id data available. */
2588 smp_rmb();
2589
2590 out_reset_handler:
2591 intf->null_user_handler = NULL;
2592
2593 return rv;
2594 }
2595
2596 /*
2597 * Fetch the device id for the bmc/interface. You must pass in either
2598 * bmc or intf, this code will get the other one. If the data has
2599 * been recently fetched, this will just use the cached data. Otherwise
2600 * it will run a new fetch.
2601 *
2602 * Except for the first time this is called (in ipmi_add_smi()),
2603 * this will always return good data;
2604 */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2605 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2606 struct ipmi_device_id *id,
2607 bool *guid_set, guid_t *guid, int intf_num)
2608 {
2609 int rv = 0;
2610 int prev_dyn_id_set, prev_guid_set;
2611 bool intf_set = intf != NULL;
2612
2613 if (!intf) {
2614 mutex_lock(&bmc->dyn_mutex);
2615 retry_bmc_lock:
2616 if (list_empty(&bmc->intfs)) {
2617 mutex_unlock(&bmc->dyn_mutex);
2618 return -ENOENT;
2619 }
2620 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2621 bmc_link);
2622 kref_get(&intf->refcount);
2623 mutex_unlock(&bmc->dyn_mutex);
2624 mutex_lock(&intf->bmc_reg_mutex);
2625 mutex_lock(&bmc->dyn_mutex);
2626 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2627 bmc_link)) {
2628 mutex_unlock(&intf->bmc_reg_mutex);
2629 kref_put(&intf->refcount, intf_free);
2630 goto retry_bmc_lock;
2631 }
2632 } else {
2633 mutex_lock(&intf->bmc_reg_mutex);
2634 bmc = intf->bmc;
2635 mutex_lock(&bmc->dyn_mutex);
2636 kref_get(&intf->refcount);
2637 }
2638
2639 /* If we have a valid and current ID, just return that. */
2640 if (intf->in_bmc_register ||
2641 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2642 goto out_noprocessing;
2643
2644 prev_guid_set = bmc->dyn_guid_set;
2645 __get_guid(intf);
2646
2647 prev_dyn_id_set = bmc->dyn_id_set;
2648 rv = __get_device_id(intf, bmc);
2649 if (rv)
2650 goto out;
2651
2652 /*
2653 * The guid, device id, manufacturer id, and product id should
2654 * not change on a BMC. If it does we have to do some dancing.
2655 */
2656 if (!intf->bmc_registered
2657 || (!prev_guid_set && bmc->dyn_guid_set)
2658 || (!prev_dyn_id_set && bmc->dyn_id_set)
2659 || (prev_guid_set && bmc->dyn_guid_set
2660 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2661 || bmc->id.device_id != bmc->fetch_id.device_id
2662 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2663 || bmc->id.product_id != bmc->fetch_id.product_id) {
2664 struct ipmi_device_id id = bmc->fetch_id;
2665 int guid_set = bmc->dyn_guid_set;
2666 guid_t guid;
2667
2668 guid = bmc->fetch_guid;
2669 mutex_unlock(&bmc->dyn_mutex);
2670
2671 __ipmi_bmc_unregister(intf);
2672 /* Fill in the temporary BMC for good measure. */
2673 intf->bmc->id = id;
2674 intf->bmc->dyn_guid_set = guid_set;
2675 intf->bmc->guid = guid;
2676 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2677 need_waiter(intf); /* Retry later on an error. */
2678 else
2679 __scan_channels(intf, &id);
2680
2681
2682 if (!intf_set) {
2683 /*
2684 * We weren't given the interface on the
2685 * command line, so restart the operation on
2686 * the next interface for the BMC.
2687 */
2688 mutex_unlock(&intf->bmc_reg_mutex);
2689 mutex_lock(&bmc->dyn_mutex);
2690 goto retry_bmc_lock;
2691 }
2692
2693 /* We have a new BMC, set it up. */
2694 bmc = intf->bmc;
2695 mutex_lock(&bmc->dyn_mutex);
2696 goto out_noprocessing;
2697 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2698 /* Version info changes, scan the channels again. */
2699 __scan_channels(intf, &bmc->fetch_id);
2700
2701 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2702
2703 out:
2704 if (rv && prev_dyn_id_set) {
2705 rv = 0; /* Ignore failures if we have previous data. */
2706 bmc->dyn_id_set = prev_dyn_id_set;
2707 }
2708 if (!rv) {
2709 bmc->id = bmc->fetch_id;
2710 if (bmc->dyn_guid_set)
2711 bmc->guid = bmc->fetch_guid;
2712 else if (prev_guid_set)
2713 /*
2714 * The guid used to be valid and it failed to fetch,
2715 * just use the cached value.
2716 */
2717 bmc->dyn_guid_set = prev_guid_set;
2718 }
2719 out_noprocessing:
2720 if (!rv) {
2721 if (id)
2722 *id = bmc->id;
2723
2724 if (guid_set)
2725 *guid_set = bmc->dyn_guid_set;
2726
2727 if (guid && bmc->dyn_guid_set)
2728 *guid = bmc->guid;
2729 }
2730
2731 mutex_unlock(&bmc->dyn_mutex);
2732 mutex_unlock(&intf->bmc_reg_mutex);
2733
2734 kref_put(&intf->refcount, intf_free);
2735 return rv;
2736 }
2737
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2738 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2739 struct ipmi_device_id *id,
2740 bool *guid_set, guid_t *guid)
2741 {
2742 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2743 }
2744
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2745 static ssize_t device_id_show(struct device *dev,
2746 struct device_attribute *attr,
2747 char *buf)
2748 {
2749 struct bmc_device *bmc = to_bmc_device(dev);
2750 struct ipmi_device_id id;
2751 int rv;
2752
2753 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2754 if (rv)
2755 return rv;
2756
2757 return sysfs_emit(buf, "%u\n", id.device_id);
2758 }
2759 static DEVICE_ATTR_RO(device_id);
2760
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2761 static ssize_t provides_device_sdrs_show(struct device *dev,
2762 struct device_attribute *attr,
2763 char *buf)
2764 {
2765 struct bmc_device *bmc = to_bmc_device(dev);
2766 struct ipmi_device_id id;
2767 int rv;
2768
2769 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2770 if (rv)
2771 return rv;
2772
2773 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2774 }
2775 static DEVICE_ATTR_RO(provides_device_sdrs);
2776
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2777 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2778 char *buf)
2779 {
2780 struct bmc_device *bmc = to_bmc_device(dev);
2781 struct ipmi_device_id id;
2782 int rv;
2783
2784 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2785 if (rv)
2786 return rv;
2787
2788 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2789 }
2790 static DEVICE_ATTR_RO(revision);
2791
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2792 static ssize_t firmware_revision_show(struct device *dev,
2793 struct device_attribute *attr,
2794 char *buf)
2795 {
2796 struct bmc_device *bmc = to_bmc_device(dev);
2797 struct ipmi_device_id id;
2798 int rv;
2799
2800 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2801 if (rv)
2802 return rv;
2803
2804 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2805 id.firmware_revision_2);
2806 }
2807 static DEVICE_ATTR_RO(firmware_revision);
2808
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2809 static ssize_t ipmi_version_show(struct device *dev,
2810 struct device_attribute *attr,
2811 char *buf)
2812 {
2813 struct bmc_device *bmc = to_bmc_device(dev);
2814 struct ipmi_device_id id;
2815 int rv;
2816
2817 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2818 if (rv)
2819 return rv;
2820
2821 return sysfs_emit(buf, "%u.%u\n",
2822 ipmi_version_major(&id),
2823 ipmi_version_minor(&id));
2824 }
2825 static DEVICE_ATTR_RO(ipmi_version);
2826
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2827 static ssize_t add_dev_support_show(struct device *dev,
2828 struct device_attribute *attr,
2829 char *buf)
2830 {
2831 struct bmc_device *bmc = to_bmc_device(dev);
2832 struct ipmi_device_id id;
2833 int rv;
2834
2835 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2836 if (rv)
2837 return rv;
2838
2839 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2840 }
2841 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2842 NULL);
2843
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2844 static ssize_t manufacturer_id_show(struct device *dev,
2845 struct device_attribute *attr,
2846 char *buf)
2847 {
2848 struct bmc_device *bmc = to_bmc_device(dev);
2849 struct ipmi_device_id id;
2850 int rv;
2851
2852 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2853 if (rv)
2854 return rv;
2855
2856 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2857 }
2858 static DEVICE_ATTR_RO(manufacturer_id);
2859
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2860 static ssize_t product_id_show(struct device *dev,
2861 struct device_attribute *attr,
2862 char *buf)
2863 {
2864 struct bmc_device *bmc = to_bmc_device(dev);
2865 struct ipmi_device_id id;
2866 int rv;
2867
2868 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2869 if (rv)
2870 return rv;
2871
2872 return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2873 }
2874 static DEVICE_ATTR_RO(product_id);
2875
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2876 static ssize_t aux_firmware_rev_show(struct device *dev,
2877 struct device_attribute *attr,
2878 char *buf)
2879 {
2880 struct bmc_device *bmc = to_bmc_device(dev);
2881 struct ipmi_device_id id;
2882 int rv;
2883
2884 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2885 if (rv)
2886 return rv;
2887
2888 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2889 id.aux_firmware_revision[3],
2890 id.aux_firmware_revision[2],
2891 id.aux_firmware_revision[1],
2892 id.aux_firmware_revision[0]);
2893 }
2894 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2895
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2896 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2897 char *buf)
2898 {
2899 struct bmc_device *bmc = to_bmc_device(dev);
2900 bool guid_set;
2901 guid_t guid;
2902 int rv;
2903
2904 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2905 if (rv)
2906 return rv;
2907 if (!guid_set)
2908 return -ENOENT;
2909
2910 return sysfs_emit(buf, "%pUl\n", &guid);
2911 }
2912 static DEVICE_ATTR_RO(guid);
2913
2914 static struct attribute *bmc_dev_attrs[] = {
2915 &dev_attr_device_id.attr,
2916 &dev_attr_provides_device_sdrs.attr,
2917 &dev_attr_revision.attr,
2918 &dev_attr_firmware_revision.attr,
2919 &dev_attr_ipmi_version.attr,
2920 &dev_attr_additional_device_support.attr,
2921 &dev_attr_manufacturer_id.attr,
2922 &dev_attr_product_id.attr,
2923 &dev_attr_aux_firmware_revision.attr,
2924 &dev_attr_guid.attr,
2925 NULL
2926 };
2927
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2928 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2929 struct attribute *attr, int idx)
2930 {
2931 struct device *dev = kobj_to_dev(kobj);
2932 struct bmc_device *bmc = to_bmc_device(dev);
2933 umode_t mode = attr->mode;
2934 int rv;
2935
2936 if (attr == &dev_attr_aux_firmware_revision.attr) {
2937 struct ipmi_device_id id;
2938
2939 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2940 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2941 }
2942 if (attr == &dev_attr_guid.attr) {
2943 bool guid_set;
2944
2945 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2946 return (!rv && guid_set) ? mode : 0;
2947 }
2948 return mode;
2949 }
2950
2951 static const struct attribute_group bmc_dev_attr_group = {
2952 .attrs = bmc_dev_attrs,
2953 .is_visible = bmc_dev_attr_is_visible,
2954 };
2955
2956 static const struct attribute_group *bmc_dev_attr_groups[] = {
2957 &bmc_dev_attr_group,
2958 NULL
2959 };
2960
2961 static const struct device_type bmc_device_type = {
2962 .groups = bmc_dev_attr_groups,
2963 };
2964
__find_bmc_guid(struct device * dev,const void * data)2965 static int __find_bmc_guid(struct device *dev, const void *data)
2966 {
2967 const guid_t *guid = data;
2968 struct bmc_device *bmc;
2969 int rv;
2970
2971 if (dev->type != &bmc_device_type)
2972 return 0;
2973
2974 bmc = to_bmc_device(dev);
2975 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2976 if (rv)
2977 rv = kref_get_unless_zero(&bmc->usecount);
2978 return rv;
2979 }
2980
2981 /*
2982 * Returns with the bmc's usecount incremented, if it is non-NULL.
2983 */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2984 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2985 guid_t *guid)
2986 {
2987 struct device *dev;
2988 struct bmc_device *bmc = NULL;
2989
2990 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2991 if (dev) {
2992 bmc = to_bmc_device(dev);
2993 put_device(dev);
2994 }
2995 return bmc;
2996 }
2997
2998 struct prod_dev_id {
2999 unsigned int product_id;
3000 unsigned char device_id;
3001 };
3002
__find_bmc_prod_dev_id(struct device * dev,const void * data)3003 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
3004 {
3005 const struct prod_dev_id *cid = data;
3006 struct bmc_device *bmc;
3007 int rv;
3008
3009 if (dev->type != &bmc_device_type)
3010 return 0;
3011
3012 bmc = to_bmc_device(dev);
3013 rv = (bmc->id.product_id == cid->product_id
3014 && bmc->id.device_id == cid->device_id);
3015 if (rv)
3016 rv = kref_get_unless_zero(&bmc->usecount);
3017 return rv;
3018 }
3019
3020 /*
3021 * Returns with the bmc's usecount incremented, if it is non-NULL.
3022 */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)3023 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3024 struct device_driver *drv,
3025 unsigned int product_id, unsigned char device_id)
3026 {
3027 struct prod_dev_id id = {
3028 .product_id = product_id,
3029 .device_id = device_id,
3030 };
3031 struct device *dev;
3032 struct bmc_device *bmc = NULL;
3033
3034 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3035 if (dev) {
3036 bmc = to_bmc_device(dev);
3037 put_device(dev);
3038 }
3039 return bmc;
3040 }
3041
3042 static DEFINE_IDA(ipmi_bmc_ida);
3043
3044 static void
release_bmc_device(struct device * dev)3045 release_bmc_device(struct device *dev)
3046 {
3047 kfree(to_bmc_device(dev));
3048 }
3049
cleanup_bmc_work(struct work_struct * work)3050 static void cleanup_bmc_work(struct work_struct *work)
3051 {
3052 struct bmc_device *bmc = container_of(work, struct bmc_device,
3053 remove_work);
3054 int id = bmc->pdev.id; /* Unregister overwrites id */
3055
3056 platform_device_unregister(&bmc->pdev);
3057 ida_simple_remove(&ipmi_bmc_ida, id);
3058 }
3059
3060 static void
cleanup_bmc_device(struct kref * ref)3061 cleanup_bmc_device(struct kref *ref)
3062 {
3063 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3064
3065 /*
3066 * Remove the platform device in a work queue to avoid issues
3067 * with removing the device attributes while reading a device
3068 * attribute.
3069 */
3070 queue_work(remove_work_wq, &bmc->remove_work);
3071 }
3072
3073 /*
3074 * Must be called with intf->bmc_reg_mutex held.
3075 */
__ipmi_bmc_unregister(struct ipmi_smi * intf)3076 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3077 {
3078 struct bmc_device *bmc = intf->bmc;
3079
3080 if (!intf->bmc_registered)
3081 return;
3082
3083 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3084 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3085 kfree(intf->my_dev_name);
3086 intf->my_dev_name = NULL;
3087
3088 mutex_lock(&bmc->dyn_mutex);
3089 list_del(&intf->bmc_link);
3090 mutex_unlock(&bmc->dyn_mutex);
3091 intf->bmc = &intf->tmp_bmc;
3092 kref_put(&bmc->usecount, cleanup_bmc_device);
3093 intf->bmc_registered = false;
3094 }
3095
ipmi_bmc_unregister(struct ipmi_smi * intf)3096 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3097 {
3098 mutex_lock(&intf->bmc_reg_mutex);
3099 __ipmi_bmc_unregister(intf);
3100 mutex_unlock(&intf->bmc_reg_mutex);
3101 }
3102
3103 /*
3104 * Must be called with intf->bmc_reg_mutex held.
3105 */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)3106 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3107 struct ipmi_device_id *id,
3108 bool guid_set, guid_t *guid, int intf_num)
3109 {
3110 int rv;
3111 struct bmc_device *bmc;
3112 struct bmc_device *old_bmc;
3113
3114 /*
3115 * platform_device_register() can cause bmc_reg_mutex to
3116 * be claimed because of the is_visible functions of
3117 * the attributes. Eliminate possible recursion and
3118 * release the lock.
3119 */
3120 intf->in_bmc_register = true;
3121 mutex_unlock(&intf->bmc_reg_mutex);
3122
3123 /*
3124 * Try to find if there is an bmc_device struct
3125 * representing the interfaced BMC already
3126 */
3127 mutex_lock(&ipmidriver_mutex);
3128 if (guid_set)
3129 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3130 else
3131 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3132 id->product_id,
3133 id->device_id);
3134
3135 /*
3136 * If there is already an bmc_device, free the new one,
3137 * otherwise register the new BMC device
3138 */
3139 if (old_bmc) {
3140 bmc = old_bmc;
3141 /*
3142 * Note: old_bmc already has usecount incremented by
3143 * the BMC find functions.
3144 */
3145 intf->bmc = old_bmc;
3146 mutex_lock(&bmc->dyn_mutex);
3147 list_add_tail(&intf->bmc_link, &bmc->intfs);
3148 mutex_unlock(&bmc->dyn_mutex);
3149
3150 dev_info(intf->si_dev,
3151 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3152 bmc->id.manufacturer_id,
3153 bmc->id.product_id,
3154 bmc->id.device_id);
3155 } else {
3156 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3157 if (!bmc) {
3158 rv = -ENOMEM;
3159 goto out;
3160 }
3161 INIT_LIST_HEAD(&bmc->intfs);
3162 mutex_init(&bmc->dyn_mutex);
3163 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3164
3165 bmc->id = *id;
3166 bmc->dyn_id_set = 1;
3167 bmc->dyn_guid_set = guid_set;
3168 bmc->guid = *guid;
3169 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3170
3171 bmc->pdev.name = "ipmi_bmc";
3172
3173 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3174 if (rv < 0) {
3175 kfree(bmc);
3176 goto out;
3177 }
3178
3179 bmc->pdev.dev.driver = &ipmidriver.driver;
3180 bmc->pdev.id = rv;
3181 bmc->pdev.dev.release = release_bmc_device;
3182 bmc->pdev.dev.type = &bmc_device_type;
3183 kref_init(&bmc->usecount);
3184
3185 intf->bmc = bmc;
3186 mutex_lock(&bmc->dyn_mutex);
3187 list_add_tail(&intf->bmc_link, &bmc->intfs);
3188 mutex_unlock(&bmc->dyn_mutex);
3189
3190 rv = platform_device_register(&bmc->pdev);
3191 if (rv) {
3192 dev_err(intf->si_dev,
3193 "Unable to register bmc device: %d\n",
3194 rv);
3195 goto out_list_del;
3196 }
3197
3198 dev_info(intf->si_dev,
3199 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3200 bmc->id.manufacturer_id,
3201 bmc->id.product_id,
3202 bmc->id.device_id);
3203 }
3204
3205 /*
3206 * create symlink from system interface device to bmc device
3207 * and back.
3208 */
3209 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3210 if (rv) {
3211 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3212 goto out_put_bmc;
3213 }
3214
3215 if (intf_num == -1)
3216 intf_num = intf->intf_num;
3217 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3218 if (!intf->my_dev_name) {
3219 rv = -ENOMEM;
3220 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3221 rv);
3222 goto out_unlink1;
3223 }
3224
3225 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3226 intf->my_dev_name);
3227 if (rv) {
3228 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3229 rv);
3230 goto out_free_my_dev_name;
3231 }
3232
3233 intf->bmc_registered = true;
3234
3235 out:
3236 mutex_unlock(&ipmidriver_mutex);
3237 mutex_lock(&intf->bmc_reg_mutex);
3238 intf->in_bmc_register = false;
3239 return rv;
3240
3241
3242 out_free_my_dev_name:
3243 kfree(intf->my_dev_name);
3244 intf->my_dev_name = NULL;
3245
3246 out_unlink1:
3247 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3248
3249 out_put_bmc:
3250 mutex_lock(&bmc->dyn_mutex);
3251 list_del(&intf->bmc_link);
3252 mutex_unlock(&bmc->dyn_mutex);
3253 intf->bmc = &intf->tmp_bmc;
3254 kref_put(&bmc->usecount, cleanup_bmc_device);
3255 goto out;
3256
3257 out_list_del:
3258 mutex_lock(&bmc->dyn_mutex);
3259 list_del(&intf->bmc_link);
3260 mutex_unlock(&bmc->dyn_mutex);
3261 intf->bmc = &intf->tmp_bmc;
3262 put_device(&bmc->pdev.dev);
3263 goto out;
3264 }
3265
3266 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3267 send_guid_cmd(struct ipmi_smi *intf, int chan)
3268 {
3269 struct kernel_ipmi_msg msg;
3270 struct ipmi_system_interface_addr si;
3271
3272 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3273 si.channel = IPMI_BMC_CHANNEL;
3274 si.lun = 0;
3275
3276 msg.netfn = IPMI_NETFN_APP_REQUEST;
3277 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3278 msg.data = NULL;
3279 msg.data_len = 0;
3280 return i_ipmi_request(NULL,
3281 intf,
3282 (struct ipmi_addr *) &si,
3283 0,
3284 &msg,
3285 intf,
3286 NULL,
3287 NULL,
3288 0,
3289 intf->addrinfo[0].address,
3290 intf->addrinfo[0].lun,
3291 -1, 0);
3292 }
3293
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3294 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3295 {
3296 struct bmc_device *bmc = intf->bmc;
3297
3298 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3299 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3300 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3301 /* Not for me */
3302 return;
3303
3304 if (msg->msg.data[0] != 0) {
3305 /* Error from getting the GUID, the BMC doesn't have one. */
3306 bmc->dyn_guid_set = 0;
3307 goto out;
3308 }
3309
3310 if (msg->msg.data_len < UUID_SIZE + 1) {
3311 bmc->dyn_guid_set = 0;
3312 dev_warn(intf->si_dev,
3313 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3314 msg->msg.data_len, UUID_SIZE + 1);
3315 goto out;
3316 }
3317
3318 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3319 /*
3320 * Make sure the guid data is available before setting
3321 * dyn_guid_set.
3322 */
3323 smp_wmb();
3324 bmc->dyn_guid_set = 1;
3325 out:
3326 wake_up(&intf->waitq);
3327 }
3328
__get_guid(struct ipmi_smi * intf)3329 static void __get_guid(struct ipmi_smi *intf)
3330 {
3331 int rv;
3332 struct bmc_device *bmc = intf->bmc;
3333
3334 bmc->dyn_guid_set = 2;
3335 intf->null_user_handler = guid_handler;
3336 rv = send_guid_cmd(intf, 0);
3337 if (rv)
3338 /* Send failed, no GUID available. */
3339 bmc->dyn_guid_set = 0;
3340 else
3341 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3342
3343 /* dyn_guid_set makes the guid data available. */
3344 smp_rmb();
3345
3346 intf->null_user_handler = NULL;
3347 }
3348
3349 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3350 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3351 {
3352 struct kernel_ipmi_msg msg;
3353 unsigned char data[1];
3354 struct ipmi_system_interface_addr si;
3355
3356 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3357 si.channel = IPMI_BMC_CHANNEL;
3358 si.lun = 0;
3359
3360 msg.netfn = IPMI_NETFN_APP_REQUEST;
3361 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3362 msg.data = data;
3363 msg.data_len = 1;
3364 data[0] = chan;
3365 return i_ipmi_request(NULL,
3366 intf,
3367 (struct ipmi_addr *) &si,
3368 0,
3369 &msg,
3370 intf,
3371 NULL,
3372 NULL,
3373 0,
3374 intf->addrinfo[0].address,
3375 intf->addrinfo[0].lun,
3376 -1, 0);
3377 }
3378
3379 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3380 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3381 {
3382 int rv = 0;
3383 int ch;
3384 unsigned int set = intf->curr_working_cset;
3385 struct ipmi_channel *chans;
3386
3387 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3388 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3389 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3390 /* It's the one we want */
3391 if (msg->msg.data[0] != 0) {
3392 /* Got an error from the channel, just go on. */
3393 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3394 /*
3395 * If the MC does not support this
3396 * command, that is legal. We just
3397 * assume it has one IPMB at channel
3398 * zero.
3399 */
3400 intf->wchannels[set].c[0].medium
3401 = IPMI_CHANNEL_MEDIUM_IPMB;
3402 intf->wchannels[set].c[0].protocol
3403 = IPMI_CHANNEL_PROTOCOL_IPMB;
3404
3405 intf->channel_list = intf->wchannels + set;
3406 intf->channels_ready = true;
3407 wake_up(&intf->waitq);
3408 goto out;
3409 }
3410 goto next_channel;
3411 }
3412 if (msg->msg.data_len < 4) {
3413 /* Message not big enough, just go on. */
3414 goto next_channel;
3415 }
3416 ch = intf->curr_channel;
3417 chans = intf->wchannels[set].c;
3418 chans[ch].medium = msg->msg.data[2] & 0x7f;
3419 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3420
3421 next_channel:
3422 intf->curr_channel++;
3423 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3424 intf->channel_list = intf->wchannels + set;
3425 intf->channels_ready = true;
3426 wake_up(&intf->waitq);
3427 } else {
3428 intf->channel_list = intf->wchannels + set;
3429 intf->channels_ready = true;
3430 rv = send_channel_info_cmd(intf, intf->curr_channel);
3431 }
3432
3433 if (rv) {
3434 /* Got an error somehow, just give up. */
3435 dev_warn(intf->si_dev,
3436 "Error sending channel information for channel %d: %d\n",
3437 intf->curr_channel, rv);
3438
3439 intf->channel_list = intf->wchannels + set;
3440 intf->channels_ready = true;
3441 wake_up(&intf->waitq);
3442 }
3443 }
3444 out:
3445 return;
3446 }
3447
3448 /*
3449 * Must be holding intf->bmc_reg_mutex to call this.
3450 */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3451 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3452 {
3453 int rv;
3454
3455 if (ipmi_version_major(id) > 1
3456 || (ipmi_version_major(id) == 1
3457 && ipmi_version_minor(id) >= 5)) {
3458 unsigned int set;
3459
3460 /*
3461 * Start scanning the channels to see what is
3462 * available.
3463 */
3464 set = !intf->curr_working_cset;
3465 intf->curr_working_cset = set;
3466 memset(&intf->wchannels[set], 0,
3467 sizeof(struct ipmi_channel_set));
3468
3469 intf->null_user_handler = channel_handler;
3470 intf->curr_channel = 0;
3471 rv = send_channel_info_cmd(intf, 0);
3472 if (rv) {
3473 dev_warn(intf->si_dev,
3474 "Error sending channel information for channel 0, %d\n",
3475 rv);
3476 intf->null_user_handler = NULL;
3477 return -EIO;
3478 }
3479
3480 /* Wait for the channel info to be read. */
3481 wait_event(intf->waitq, intf->channels_ready);
3482 intf->null_user_handler = NULL;
3483 } else {
3484 unsigned int set = intf->curr_working_cset;
3485
3486 /* Assume a single IPMB channel at zero. */
3487 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3488 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3489 intf->channel_list = intf->wchannels + set;
3490 intf->channels_ready = true;
3491 }
3492
3493 return 0;
3494 }
3495
ipmi_poll(struct ipmi_smi * intf)3496 static void ipmi_poll(struct ipmi_smi *intf)
3497 {
3498 if (intf->handlers->poll)
3499 intf->handlers->poll(intf->send_info);
3500 /* In case something came in */
3501 handle_new_recv_msgs(intf);
3502 }
3503
ipmi_poll_interface(struct ipmi_user * user)3504 void ipmi_poll_interface(struct ipmi_user *user)
3505 {
3506 ipmi_poll(user->intf);
3507 }
3508 EXPORT_SYMBOL(ipmi_poll_interface);
3509
nr_users_show(struct device * dev,struct device_attribute * attr,char * buf)3510 static ssize_t nr_users_show(struct device *dev,
3511 struct device_attribute *attr,
3512 char *buf)
3513 {
3514 struct ipmi_smi *intf = container_of(attr,
3515 struct ipmi_smi, nr_users_devattr);
3516
3517 return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3518 }
3519 static DEVICE_ATTR_RO(nr_users);
3520
nr_msgs_show(struct device * dev,struct device_attribute * attr,char * buf)3521 static ssize_t nr_msgs_show(struct device *dev,
3522 struct device_attribute *attr,
3523 char *buf)
3524 {
3525 struct ipmi_smi *intf = container_of(attr,
3526 struct ipmi_smi, nr_msgs_devattr);
3527 struct ipmi_user *user;
3528 int index;
3529 unsigned int count = 0;
3530
3531 index = srcu_read_lock(&intf->users_srcu);
3532 list_for_each_entry_rcu(user, &intf->users, link)
3533 count += atomic_read(&user->nr_msgs);
3534 srcu_read_unlock(&intf->users_srcu, index);
3535
3536 return sysfs_emit(buf, "%u\n", count);
3537 }
3538 static DEVICE_ATTR_RO(nr_msgs);
3539
redo_bmc_reg(struct work_struct * work)3540 static void redo_bmc_reg(struct work_struct *work)
3541 {
3542 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3543 bmc_reg_work);
3544
3545 if (!intf->in_shutdown)
3546 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3547
3548 kref_put(&intf->refcount, intf_free);
3549 }
3550
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3551 int ipmi_add_smi(struct module *owner,
3552 const struct ipmi_smi_handlers *handlers,
3553 void *send_info,
3554 struct device *si_dev,
3555 unsigned char slave_addr)
3556 {
3557 int i, j;
3558 int rv;
3559 struct ipmi_smi *intf, *tintf;
3560 struct list_head *link;
3561 struct ipmi_device_id id;
3562
3563 /*
3564 * Make sure the driver is actually initialized, this handles
3565 * problems with initialization order.
3566 */
3567 rv = ipmi_init_msghandler();
3568 if (rv)
3569 return rv;
3570
3571 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3572 if (!intf)
3573 return -ENOMEM;
3574
3575 rv = init_srcu_struct(&intf->users_srcu);
3576 if (rv) {
3577 kfree(intf);
3578 return rv;
3579 }
3580
3581 intf->owner = owner;
3582 intf->bmc = &intf->tmp_bmc;
3583 INIT_LIST_HEAD(&intf->bmc->intfs);
3584 mutex_init(&intf->bmc->dyn_mutex);
3585 INIT_LIST_HEAD(&intf->bmc_link);
3586 mutex_init(&intf->bmc_reg_mutex);
3587 intf->intf_num = -1; /* Mark it invalid for now. */
3588 kref_init(&intf->refcount);
3589 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3590 intf->si_dev = si_dev;
3591 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3592 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3593 intf->addrinfo[j].lun = 2;
3594 }
3595 if (slave_addr != 0)
3596 intf->addrinfo[0].address = slave_addr;
3597 INIT_LIST_HEAD(&intf->users);
3598 atomic_set(&intf->nr_users, 0);
3599 intf->handlers = handlers;
3600 intf->send_info = send_info;
3601 spin_lock_init(&intf->seq_lock);
3602 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3603 intf->seq_table[j].inuse = 0;
3604 intf->seq_table[j].seqid = 0;
3605 }
3606 intf->curr_seq = 0;
3607 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3608 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3609 tasklet_setup(&intf->recv_tasklet,
3610 smi_recv_tasklet);
3611 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3612 spin_lock_init(&intf->xmit_msgs_lock);
3613 INIT_LIST_HEAD(&intf->xmit_msgs);
3614 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3615 spin_lock_init(&intf->events_lock);
3616 spin_lock_init(&intf->watch_lock);
3617 atomic_set(&intf->event_waiters, 0);
3618 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3619 INIT_LIST_HEAD(&intf->waiting_events);
3620 intf->waiting_events_count = 0;
3621 mutex_init(&intf->cmd_rcvrs_mutex);
3622 spin_lock_init(&intf->maintenance_mode_lock);
3623 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3624 init_waitqueue_head(&intf->waitq);
3625 for (i = 0; i < IPMI_NUM_STATS; i++)
3626 atomic_set(&intf->stats[i], 0);
3627
3628 mutex_lock(&ipmi_interfaces_mutex);
3629 /* Look for a hole in the numbers. */
3630 i = 0;
3631 link = &ipmi_interfaces;
3632 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3633 ipmi_interfaces_mutex_held()) {
3634 if (tintf->intf_num != i) {
3635 link = &tintf->link;
3636 break;
3637 }
3638 i++;
3639 }
3640 /* Add the new interface in numeric order. */
3641 if (i == 0)
3642 list_add_rcu(&intf->link, &ipmi_interfaces);
3643 else
3644 list_add_tail_rcu(&intf->link, link);
3645
3646 rv = handlers->start_processing(send_info, intf);
3647 if (rv)
3648 goto out_err;
3649
3650 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3651 if (rv) {
3652 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3653 goto out_err_started;
3654 }
3655
3656 mutex_lock(&intf->bmc_reg_mutex);
3657 rv = __scan_channels(intf, &id);
3658 mutex_unlock(&intf->bmc_reg_mutex);
3659 if (rv)
3660 goto out_err_bmc_reg;
3661
3662 intf->nr_users_devattr = dev_attr_nr_users;
3663 sysfs_attr_init(&intf->nr_users_devattr.attr);
3664 rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3665 if (rv)
3666 goto out_err_bmc_reg;
3667
3668 intf->nr_msgs_devattr = dev_attr_nr_msgs;
3669 sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3670 rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3671 if (rv) {
3672 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3673 goto out_err_bmc_reg;
3674 }
3675
3676 /*
3677 * Keep memory order straight for RCU readers. Make
3678 * sure everything else is committed to memory before
3679 * setting intf_num to mark the interface valid.
3680 */
3681 smp_wmb();
3682 intf->intf_num = i;
3683 mutex_unlock(&ipmi_interfaces_mutex);
3684
3685 /* After this point the interface is legal to use. */
3686 call_smi_watchers(i, intf->si_dev);
3687
3688 return 0;
3689
3690 out_err_bmc_reg:
3691 ipmi_bmc_unregister(intf);
3692 out_err_started:
3693 if (intf->handlers->shutdown)
3694 intf->handlers->shutdown(intf->send_info);
3695 out_err:
3696 list_del_rcu(&intf->link);
3697 mutex_unlock(&ipmi_interfaces_mutex);
3698 synchronize_srcu(&ipmi_interfaces_srcu);
3699 cleanup_srcu_struct(&intf->users_srcu);
3700 kref_put(&intf->refcount, intf_free);
3701
3702 return rv;
3703 }
3704 EXPORT_SYMBOL(ipmi_add_smi);
3705
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3706 static void deliver_smi_err_response(struct ipmi_smi *intf,
3707 struct ipmi_smi_msg *msg,
3708 unsigned char err)
3709 {
3710 int rv;
3711 msg->rsp[0] = msg->data[0] | 4;
3712 msg->rsp[1] = msg->data[1];
3713 msg->rsp[2] = err;
3714 msg->rsp_size = 3;
3715
3716 /* This will never requeue, but it may ask us to free the message. */
3717 rv = handle_one_recv_msg(intf, msg);
3718 if (rv == 0)
3719 ipmi_free_smi_msg(msg);
3720 }
3721
cleanup_smi_msgs(struct ipmi_smi * intf)3722 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3723 {
3724 int i;
3725 struct seq_table *ent;
3726 struct ipmi_smi_msg *msg;
3727 struct list_head *entry;
3728 struct list_head tmplist;
3729
3730 /* Clear out our transmit queues and hold the messages. */
3731 INIT_LIST_HEAD(&tmplist);
3732 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3733 list_splice_tail(&intf->xmit_msgs, &tmplist);
3734
3735 /* Current message first, to preserve order */
3736 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3737 /* Wait for the message to clear out. */
3738 schedule_timeout(1);
3739 }
3740
3741 /* No need for locks, the interface is down. */
3742
3743 /*
3744 * Return errors for all pending messages in queue and in the
3745 * tables waiting for remote responses.
3746 */
3747 while (!list_empty(&tmplist)) {
3748 entry = tmplist.next;
3749 list_del(entry);
3750 msg = list_entry(entry, struct ipmi_smi_msg, link);
3751 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3752 }
3753
3754 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3755 ent = &intf->seq_table[i];
3756 if (!ent->inuse)
3757 continue;
3758 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3759 }
3760 }
3761
ipmi_unregister_smi(struct ipmi_smi * intf)3762 void ipmi_unregister_smi(struct ipmi_smi *intf)
3763 {
3764 struct ipmi_smi_watcher *w;
3765 int intf_num, index;
3766
3767 if (!intf)
3768 return;
3769 intf_num = intf->intf_num;
3770 mutex_lock(&ipmi_interfaces_mutex);
3771 intf->intf_num = -1;
3772 intf->in_shutdown = true;
3773 list_del_rcu(&intf->link);
3774 mutex_unlock(&ipmi_interfaces_mutex);
3775 synchronize_srcu(&ipmi_interfaces_srcu);
3776
3777 /* At this point no users can be added to the interface. */
3778
3779 device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3780 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3781
3782 /*
3783 * Call all the watcher interfaces to tell them that
3784 * an interface is going away.
3785 */
3786 mutex_lock(&smi_watchers_mutex);
3787 list_for_each_entry(w, &smi_watchers, link)
3788 w->smi_gone(intf_num);
3789 mutex_unlock(&smi_watchers_mutex);
3790
3791 index = srcu_read_lock(&intf->users_srcu);
3792 while (!list_empty(&intf->users)) {
3793 struct ipmi_user *user =
3794 container_of(list_next_rcu(&intf->users),
3795 struct ipmi_user, link);
3796
3797 _ipmi_destroy_user(user);
3798 }
3799 srcu_read_unlock(&intf->users_srcu, index);
3800
3801 if (intf->handlers->shutdown)
3802 intf->handlers->shutdown(intf->send_info);
3803
3804 cleanup_smi_msgs(intf);
3805
3806 ipmi_bmc_unregister(intf);
3807
3808 cleanup_srcu_struct(&intf->users_srcu);
3809 kref_put(&intf->refcount, intf_free);
3810 }
3811 EXPORT_SYMBOL(ipmi_unregister_smi);
3812
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3813 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3814 struct ipmi_smi_msg *msg)
3815 {
3816 struct ipmi_ipmb_addr ipmb_addr;
3817 struct ipmi_recv_msg *recv_msg;
3818
3819 /*
3820 * This is 11, not 10, because the response must contain a
3821 * completion code.
3822 */
3823 if (msg->rsp_size < 11) {
3824 /* Message not big enough, just ignore it. */
3825 ipmi_inc_stat(intf, invalid_ipmb_responses);
3826 return 0;
3827 }
3828
3829 if (msg->rsp[2] != 0) {
3830 /* An error getting the response, just ignore it. */
3831 return 0;
3832 }
3833
3834 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3835 ipmb_addr.slave_addr = msg->rsp[6];
3836 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3837 ipmb_addr.lun = msg->rsp[7] & 3;
3838
3839 /*
3840 * It's a response from a remote entity. Look up the sequence
3841 * number and handle the response.
3842 */
3843 if (intf_find_seq(intf,
3844 msg->rsp[7] >> 2,
3845 msg->rsp[3] & 0x0f,
3846 msg->rsp[8],
3847 (msg->rsp[4] >> 2) & (~1),
3848 (struct ipmi_addr *) &ipmb_addr,
3849 &recv_msg)) {
3850 /*
3851 * We were unable to find the sequence number,
3852 * so just nuke the message.
3853 */
3854 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3855 return 0;
3856 }
3857
3858 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3859 /*
3860 * The other fields matched, so no need to set them, except
3861 * for netfn, which needs to be the response that was
3862 * returned, not the request value.
3863 */
3864 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3865 recv_msg->msg.data = recv_msg->msg_data;
3866 recv_msg->msg.data_len = msg->rsp_size - 10;
3867 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3868 if (deliver_response(intf, recv_msg))
3869 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3870 else
3871 ipmi_inc_stat(intf, handled_ipmb_responses);
3872
3873 return 0;
3874 }
3875
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3876 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3877 struct ipmi_smi_msg *msg)
3878 {
3879 struct cmd_rcvr *rcvr;
3880 int rv = 0;
3881 unsigned char netfn;
3882 unsigned char cmd;
3883 unsigned char chan;
3884 struct ipmi_user *user = NULL;
3885 struct ipmi_ipmb_addr *ipmb_addr;
3886 struct ipmi_recv_msg *recv_msg;
3887
3888 if (msg->rsp_size < 10) {
3889 /* Message not big enough, just ignore it. */
3890 ipmi_inc_stat(intf, invalid_commands);
3891 return 0;
3892 }
3893
3894 if (msg->rsp[2] != 0) {
3895 /* An error getting the response, just ignore it. */
3896 return 0;
3897 }
3898
3899 netfn = msg->rsp[4] >> 2;
3900 cmd = msg->rsp[8];
3901 chan = msg->rsp[3] & 0xf;
3902
3903 rcu_read_lock();
3904 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3905 if (rcvr) {
3906 user = rcvr->user;
3907 kref_get(&user->refcount);
3908 } else
3909 user = NULL;
3910 rcu_read_unlock();
3911
3912 if (user == NULL) {
3913 /* We didn't find a user, deliver an error response. */
3914 ipmi_inc_stat(intf, unhandled_commands);
3915
3916 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3917 msg->data[1] = IPMI_SEND_MSG_CMD;
3918 msg->data[2] = msg->rsp[3];
3919 msg->data[3] = msg->rsp[6];
3920 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3921 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3922 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3923 /* rqseq/lun */
3924 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3925 msg->data[8] = msg->rsp[8]; /* cmd */
3926 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3927 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3928 msg->data_size = 11;
3929
3930 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3931 msg->data_size, msg->data);
3932
3933 rcu_read_lock();
3934 if (!intf->in_shutdown) {
3935 smi_send(intf, intf->handlers, msg, 0);
3936 /*
3937 * We used the message, so return the value
3938 * that causes it to not be freed or
3939 * queued.
3940 */
3941 rv = -1;
3942 }
3943 rcu_read_unlock();
3944 } else {
3945 recv_msg = ipmi_alloc_recv_msg();
3946 if (!recv_msg) {
3947 /*
3948 * We couldn't allocate memory for the
3949 * message, so requeue it for handling
3950 * later.
3951 */
3952 rv = 1;
3953 kref_put(&user->refcount, free_user);
3954 } else {
3955 /* Extract the source address from the data. */
3956 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3957 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3958 ipmb_addr->slave_addr = msg->rsp[6];
3959 ipmb_addr->lun = msg->rsp[7] & 3;
3960 ipmb_addr->channel = msg->rsp[3] & 0xf;
3961
3962 /*
3963 * Extract the rest of the message information
3964 * from the IPMB header.
3965 */
3966 recv_msg->user = user;
3967 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3968 recv_msg->msgid = msg->rsp[7] >> 2;
3969 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3970 recv_msg->msg.cmd = msg->rsp[8];
3971 recv_msg->msg.data = recv_msg->msg_data;
3972
3973 /*
3974 * We chop off 10, not 9 bytes because the checksum
3975 * at the end also needs to be removed.
3976 */
3977 recv_msg->msg.data_len = msg->rsp_size - 10;
3978 memcpy(recv_msg->msg_data, &msg->rsp[9],
3979 msg->rsp_size - 10);
3980 if (deliver_response(intf, recv_msg))
3981 ipmi_inc_stat(intf, unhandled_commands);
3982 else
3983 ipmi_inc_stat(intf, handled_commands);
3984 }
3985 }
3986
3987 return rv;
3988 }
3989
handle_ipmb_direct_rcv_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3990 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3991 struct ipmi_smi_msg *msg)
3992 {
3993 struct cmd_rcvr *rcvr;
3994 int rv = 0;
3995 struct ipmi_user *user = NULL;
3996 struct ipmi_ipmb_direct_addr *daddr;
3997 struct ipmi_recv_msg *recv_msg;
3998 unsigned char netfn = msg->rsp[0] >> 2;
3999 unsigned char cmd = msg->rsp[3];
4000
4001 rcu_read_lock();
4002 /* We always use channel 0 for direct messages. */
4003 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
4004 if (rcvr) {
4005 user = rcvr->user;
4006 kref_get(&user->refcount);
4007 } else
4008 user = NULL;
4009 rcu_read_unlock();
4010
4011 if (user == NULL) {
4012 /* We didn't find a user, deliver an error response. */
4013 ipmi_inc_stat(intf, unhandled_commands);
4014
4015 msg->data[0] = (netfn + 1) << 2;
4016 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4017 msg->data[1] = msg->rsp[1]; /* Addr */
4018 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4019 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4020 msg->data[3] = cmd;
4021 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4022 msg->data_size = 5;
4023
4024 rcu_read_lock();
4025 if (!intf->in_shutdown) {
4026 smi_send(intf, intf->handlers, msg, 0);
4027 /*
4028 * We used the message, so return the value
4029 * that causes it to not be freed or
4030 * queued.
4031 */
4032 rv = -1;
4033 }
4034 rcu_read_unlock();
4035 } else {
4036 recv_msg = ipmi_alloc_recv_msg();
4037 if (!recv_msg) {
4038 /*
4039 * We couldn't allocate memory for the
4040 * message, so requeue it for handling
4041 * later.
4042 */
4043 rv = 1;
4044 kref_put(&user->refcount, free_user);
4045 } else {
4046 /* Extract the source address from the data. */
4047 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4048 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4049 daddr->channel = 0;
4050 daddr->slave_addr = msg->rsp[1];
4051 daddr->rs_lun = msg->rsp[0] & 3;
4052 daddr->rq_lun = msg->rsp[2] & 3;
4053
4054 /*
4055 * Extract the rest of the message information
4056 * from the IPMB header.
4057 */
4058 recv_msg->user = user;
4059 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4060 recv_msg->msgid = (msg->rsp[2] >> 2);
4061 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4062 recv_msg->msg.cmd = msg->rsp[3];
4063 recv_msg->msg.data = recv_msg->msg_data;
4064
4065 recv_msg->msg.data_len = msg->rsp_size - 4;
4066 memcpy(recv_msg->msg_data, msg->rsp + 4,
4067 msg->rsp_size - 4);
4068 if (deliver_response(intf, recv_msg))
4069 ipmi_inc_stat(intf, unhandled_commands);
4070 else
4071 ipmi_inc_stat(intf, handled_commands);
4072 }
4073 }
4074
4075 return rv;
4076 }
4077
handle_ipmb_direct_rcv_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4078 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4079 struct ipmi_smi_msg *msg)
4080 {
4081 struct ipmi_recv_msg *recv_msg;
4082 struct ipmi_ipmb_direct_addr *daddr;
4083
4084 recv_msg = msg->user_data;
4085 if (recv_msg == NULL) {
4086 dev_warn(intf->si_dev,
4087 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4088 return 0;
4089 }
4090
4091 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4092 recv_msg->msgid = msg->msgid;
4093 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4094 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4095 daddr->channel = 0;
4096 daddr->slave_addr = msg->rsp[1];
4097 daddr->rq_lun = msg->rsp[0] & 3;
4098 daddr->rs_lun = msg->rsp[2] & 3;
4099 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4100 recv_msg->msg.cmd = msg->rsp[3];
4101 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4102 recv_msg->msg.data = recv_msg->msg_data;
4103 recv_msg->msg.data_len = msg->rsp_size - 4;
4104 deliver_local_response(intf, recv_msg);
4105
4106 return 0;
4107 }
4108
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4109 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4110 struct ipmi_smi_msg *msg)
4111 {
4112 struct ipmi_lan_addr lan_addr;
4113 struct ipmi_recv_msg *recv_msg;
4114
4115
4116 /*
4117 * This is 13, not 12, because the response must contain a
4118 * completion code.
4119 */
4120 if (msg->rsp_size < 13) {
4121 /* Message not big enough, just ignore it. */
4122 ipmi_inc_stat(intf, invalid_lan_responses);
4123 return 0;
4124 }
4125
4126 if (msg->rsp[2] != 0) {
4127 /* An error getting the response, just ignore it. */
4128 return 0;
4129 }
4130
4131 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4132 lan_addr.session_handle = msg->rsp[4];
4133 lan_addr.remote_SWID = msg->rsp[8];
4134 lan_addr.local_SWID = msg->rsp[5];
4135 lan_addr.channel = msg->rsp[3] & 0x0f;
4136 lan_addr.privilege = msg->rsp[3] >> 4;
4137 lan_addr.lun = msg->rsp[9] & 3;
4138
4139 /*
4140 * It's a response from a remote entity. Look up the sequence
4141 * number and handle the response.
4142 */
4143 if (intf_find_seq(intf,
4144 msg->rsp[9] >> 2,
4145 msg->rsp[3] & 0x0f,
4146 msg->rsp[10],
4147 (msg->rsp[6] >> 2) & (~1),
4148 (struct ipmi_addr *) &lan_addr,
4149 &recv_msg)) {
4150 /*
4151 * We were unable to find the sequence number,
4152 * so just nuke the message.
4153 */
4154 ipmi_inc_stat(intf, unhandled_lan_responses);
4155 return 0;
4156 }
4157
4158 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4159 /*
4160 * The other fields matched, so no need to set them, except
4161 * for netfn, which needs to be the response that was
4162 * returned, not the request value.
4163 */
4164 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4165 recv_msg->msg.data = recv_msg->msg_data;
4166 recv_msg->msg.data_len = msg->rsp_size - 12;
4167 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4168 if (deliver_response(intf, recv_msg))
4169 ipmi_inc_stat(intf, unhandled_lan_responses);
4170 else
4171 ipmi_inc_stat(intf, handled_lan_responses);
4172
4173 return 0;
4174 }
4175
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4176 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4177 struct ipmi_smi_msg *msg)
4178 {
4179 struct cmd_rcvr *rcvr;
4180 int rv = 0;
4181 unsigned char netfn;
4182 unsigned char cmd;
4183 unsigned char chan;
4184 struct ipmi_user *user = NULL;
4185 struct ipmi_lan_addr *lan_addr;
4186 struct ipmi_recv_msg *recv_msg;
4187
4188 if (msg->rsp_size < 12) {
4189 /* Message not big enough, just ignore it. */
4190 ipmi_inc_stat(intf, invalid_commands);
4191 return 0;
4192 }
4193
4194 if (msg->rsp[2] != 0) {
4195 /* An error getting the response, just ignore it. */
4196 return 0;
4197 }
4198
4199 netfn = msg->rsp[6] >> 2;
4200 cmd = msg->rsp[10];
4201 chan = msg->rsp[3] & 0xf;
4202
4203 rcu_read_lock();
4204 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4205 if (rcvr) {
4206 user = rcvr->user;
4207 kref_get(&user->refcount);
4208 } else
4209 user = NULL;
4210 rcu_read_unlock();
4211
4212 if (user == NULL) {
4213 /* We didn't find a user, just give up. */
4214 ipmi_inc_stat(intf, unhandled_commands);
4215
4216 /*
4217 * Don't do anything with these messages, just allow
4218 * them to be freed.
4219 */
4220 rv = 0;
4221 } else {
4222 recv_msg = ipmi_alloc_recv_msg();
4223 if (!recv_msg) {
4224 /*
4225 * We couldn't allocate memory for the
4226 * message, so requeue it for handling later.
4227 */
4228 rv = 1;
4229 kref_put(&user->refcount, free_user);
4230 } else {
4231 /* Extract the source address from the data. */
4232 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4233 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4234 lan_addr->session_handle = msg->rsp[4];
4235 lan_addr->remote_SWID = msg->rsp[8];
4236 lan_addr->local_SWID = msg->rsp[5];
4237 lan_addr->lun = msg->rsp[9] & 3;
4238 lan_addr->channel = msg->rsp[3] & 0xf;
4239 lan_addr->privilege = msg->rsp[3] >> 4;
4240
4241 /*
4242 * Extract the rest of the message information
4243 * from the IPMB header.
4244 */
4245 recv_msg->user = user;
4246 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4247 recv_msg->msgid = msg->rsp[9] >> 2;
4248 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4249 recv_msg->msg.cmd = msg->rsp[10];
4250 recv_msg->msg.data = recv_msg->msg_data;
4251
4252 /*
4253 * We chop off 12, not 11 bytes because the checksum
4254 * at the end also needs to be removed.
4255 */
4256 recv_msg->msg.data_len = msg->rsp_size - 12;
4257 memcpy(recv_msg->msg_data, &msg->rsp[11],
4258 msg->rsp_size - 12);
4259 if (deliver_response(intf, recv_msg))
4260 ipmi_inc_stat(intf, unhandled_commands);
4261 else
4262 ipmi_inc_stat(intf, handled_commands);
4263 }
4264 }
4265
4266 return rv;
4267 }
4268
4269 /*
4270 * This routine will handle "Get Message" command responses with
4271 * channels that use an OEM Medium. The message format belongs to
4272 * the OEM. See IPMI 2.0 specification, Chapter 6 and
4273 * Chapter 22, sections 22.6 and 22.24 for more details.
4274 */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4275 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4276 struct ipmi_smi_msg *msg)
4277 {
4278 struct cmd_rcvr *rcvr;
4279 int rv = 0;
4280 unsigned char netfn;
4281 unsigned char cmd;
4282 unsigned char chan;
4283 struct ipmi_user *user = NULL;
4284 struct ipmi_system_interface_addr *smi_addr;
4285 struct ipmi_recv_msg *recv_msg;
4286
4287 /*
4288 * We expect the OEM SW to perform error checking
4289 * so we just do some basic sanity checks
4290 */
4291 if (msg->rsp_size < 4) {
4292 /* Message not big enough, just ignore it. */
4293 ipmi_inc_stat(intf, invalid_commands);
4294 return 0;
4295 }
4296
4297 if (msg->rsp[2] != 0) {
4298 /* An error getting the response, just ignore it. */
4299 return 0;
4300 }
4301
4302 /*
4303 * This is an OEM Message so the OEM needs to know how
4304 * handle the message. We do no interpretation.
4305 */
4306 netfn = msg->rsp[0] >> 2;
4307 cmd = msg->rsp[1];
4308 chan = msg->rsp[3] & 0xf;
4309
4310 rcu_read_lock();
4311 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4312 if (rcvr) {
4313 user = rcvr->user;
4314 kref_get(&user->refcount);
4315 } else
4316 user = NULL;
4317 rcu_read_unlock();
4318
4319 if (user == NULL) {
4320 /* We didn't find a user, just give up. */
4321 ipmi_inc_stat(intf, unhandled_commands);
4322
4323 /*
4324 * Don't do anything with these messages, just allow
4325 * them to be freed.
4326 */
4327
4328 rv = 0;
4329 } else {
4330 recv_msg = ipmi_alloc_recv_msg();
4331 if (!recv_msg) {
4332 /*
4333 * We couldn't allocate memory for the
4334 * message, so requeue it for handling
4335 * later.
4336 */
4337 rv = 1;
4338 kref_put(&user->refcount, free_user);
4339 } else {
4340 /*
4341 * OEM Messages are expected to be delivered via
4342 * the system interface to SMS software. We might
4343 * need to visit this again depending on OEM
4344 * requirements
4345 */
4346 smi_addr = ((struct ipmi_system_interface_addr *)
4347 &recv_msg->addr);
4348 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4349 smi_addr->channel = IPMI_BMC_CHANNEL;
4350 smi_addr->lun = msg->rsp[0] & 3;
4351
4352 recv_msg->user = user;
4353 recv_msg->user_msg_data = NULL;
4354 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4355 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4356 recv_msg->msg.cmd = msg->rsp[1];
4357 recv_msg->msg.data = recv_msg->msg_data;
4358
4359 /*
4360 * The message starts at byte 4 which follows the
4361 * Channel Byte in the "GET MESSAGE" command
4362 */
4363 recv_msg->msg.data_len = msg->rsp_size - 4;
4364 memcpy(recv_msg->msg_data, &msg->rsp[4],
4365 msg->rsp_size - 4);
4366 if (deliver_response(intf, recv_msg))
4367 ipmi_inc_stat(intf, unhandled_commands);
4368 else
4369 ipmi_inc_stat(intf, handled_commands);
4370 }
4371 }
4372
4373 return rv;
4374 }
4375
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4376 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4377 struct ipmi_smi_msg *msg)
4378 {
4379 struct ipmi_system_interface_addr *smi_addr;
4380
4381 recv_msg->msgid = 0;
4382 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4383 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4384 smi_addr->channel = IPMI_BMC_CHANNEL;
4385 smi_addr->lun = msg->rsp[0] & 3;
4386 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4387 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4388 recv_msg->msg.cmd = msg->rsp[1];
4389 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4390 recv_msg->msg.data = recv_msg->msg_data;
4391 recv_msg->msg.data_len = msg->rsp_size - 3;
4392 }
4393
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4394 static int handle_read_event_rsp(struct ipmi_smi *intf,
4395 struct ipmi_smi_msg *msg)
4396 {
4397 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4398 struct list_head msgs;
4399 struct ipmi_user *user;
4400 int rv = 0, deliver_count = 0, index;
4401 unsigned long flags;
4402
4403 if (msg->rsp_size < 19) {
4404 /* Message is too small to be an IPMB event. */
4405 ipmi_inc_stat(intf, invalid_events);
4406 return 0;
4407 }
4408
4409 if (msg->rsp[2] != 0) {
4410 /* An error getting the event, just ignore it. */
4411 return 0;
4412 }
4413
4414 INIT_LIST_HEAD(&msgs);
4415
4416 spin_lock_irqsave(&intf->events_lock, flags);
4417
4418 ipmi_inc_stat(intf, events);
4419
4420 /*
4421 * Allocate and fill in one message for every user that is
4422 * getting events.
4423 */
4424 index = srcu_read_lock(&intf->users_srcu);
4425 list_for_each_entry_rcu(user, &intf->users, link) {
4426 if (!user->gets_events)
4427 continue;
4428
4429 recv_msg = ipmi_alloc_recv_msg();
4430 if (!recv_msg) {
4431 rcu_read_unlock();
4432 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4433 link) {
4434 list_del(&recv_msg->link);
4435 ipmi_free_recv_msg(recv_msg);
4436 }
4437 /*
4438 * We couldn't allocate memory for the
4439 * message, so requeue it for handling
4440 * later.
4441 */
4442 rv = 1;
4443 goto out;
4444 }
4445
4446 deliver_count++;
4447
4448 copy_event_into_recv_msg(recv_msg, msg);
4449 recv_msg->user = user;
4450 kref_get(&user->refcount);
4451 list_add_tail(&recv_msg->link, &msgs);
4452 }
4453 srcu_read_unlock(&intf->users_srcu, index);
4454
4455 if (deliver_count) {
4456 /* Now deliver all the messages. */
4457 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4458 list_del(&recv_msg->link);
4459 deliver_local_response(intf, recv_msg);
4460 }
4461 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4462 /*
4463 * No one to receive the message, put it in queue if there's
4464 * not already too many things in the queue.
4465 */
4466 recv_msg = ipmi_alloc_recv_msg();
4467 if (!recv_msg) {
4468 /*
4469 * We couldn't allocate memory for the
4470 * message, so requeue it for handling
4471 * later.
4472 */
4473 rv = 1;
4474 goto out;
4475 }
4476
4477 copy_event_into_recv_msg(recv_msg, msg);
4478 list_add_tail(&recv_msg->link, &intf->waiting_events);
4479 intf->waiting_events_count++;
4480 } else if (!intf->event_msg_printed) {
4481 /*
4482 * There's too many things in the queue, discard this
4483 * message.
4484 */
4485 dev_warn(intf->si_dev,
4486 "Event queue full, discarding incoming events\n");
4487 intf->event_msg_printed = 1;
4488 }
4489
4490 out:
4491 spin_unlock_irqrestore(&intf->events_lock, flags);
4492
4493 return rv;
4494 }
4495
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4496 static int handle_bmc_rsp(struct ipmi_smi *intf,
4497 struct ipmi_smi_msg *msg)
4498 {
4499 struct ipmi_recv_msg *recv_msg;
4500 struct ipmi_system_interface_addr *smi_addr;
4501
4502 recv_msg = msg->user_data;
4503 if (recv_msg == NULL) {
4504 dev_warn(intf->si_dev,
4505 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4506 return 0;
4507 }
4508
4509 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4510 recv_msg->msgid = msg->msgid;
4511 smi_addr = ((struct ipmi_system_interface_addr *)
4512 &recv_msg->addr);
4513 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4514 smi_addr->channel = IPMI_BMC_CHANNEL;
4515 smi_addr->lun = msg->rsp[0] & 3;
4516 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4517 recv_msg->msg.cmd = msg->rsp[1];
4518 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4519 recv_msg->msg.data = recv_msg->msg_data;
4520 recv_msg->msg.data_len = msg->rsp_size - 2;
4521 deliver_local_response(intf, recv_msg);
4522
4523 return 0;
4524 }
4525
4526 /*
4527 * Handle a received message. Return 1 if the message should be requeued,
4528 * 0 if the message should be freed, or -1 if the message should not
4529 * be freed or requeued.
4530 */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4531 static int handle_one_recv_msg(struct ipmi_smi *intf,
4532 struct ipmi_smi_msg *msg)
4533 {
4534 int requeue = 0;
4535 int chan;
4536 unsigned char cc;
4537 bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4538
4539 dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4540
4541 if (msg->rsp_size < 2) {
4542 /* Message is too small to be correct. */
4543 dev_warn(intf->si_dev,
4544 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4545 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4546
4547 return_unspecified:
4548 /* Generate an error response for the message. */
4549 msg->rsp[0] = msg->data[0] | (1 << 2);
4550 msg->rsp[1] = msg->data[1];
4551 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4552 msg->rsp_size = 3;
4553 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4554 /* commands must have at least 4 bytes, responses 5. */
4555 if (is_cmd && (msg->rsp_size < 4)) {
4556 ipmi_inc_stat(intf, invalid_commands);
4557 goto out;
4558 }
4559 if (!is_cmd && (msg->rsp_size < 5)) {
4560 ipmi_inc_stat(intf, invalid_ipmb_responses);
4561 /* Construct a valid error response. */
4562 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4563 msg->rsp[0] |= (1 << 2); /* Make it a response */
4564 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4565 msg->rsp[1] = msg->data[1]; /* Addr */
4566 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4567 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4568 msg->rsp[3] = msg->data[3]; /* Cmd */
4569 msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4570 msg->rsp_size = 5;
4571 }
4572 } else if ((msg->data_size >= 2)
4573 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4574 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4575 && (msg->user_data == NULL)) {
4576
4577 if (intf->in_shutdown)
4578 goto out;
4579
4580 /*
4581 * This is the local response to a command send, start
4582 * the timer for these. The user_data will not be
4583 * NULL if this is a response send, and we will let
4584 * response sends just go through.
4585 */
4586
4587 /*
4588 * Check for errors, if we get certain errors (ones
4589 * that mean basically we can try again later), we
4590 * ignore them and start the timer. Otherwise we
4591 * report the error immediately.
4592 */
4593 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4594 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4595 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4596 && (msg->rsp[2] != IPMI_BUS_ERR)
4597 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4598 int ch = msg->rsp[3] & 0xf;
4599 struct ipmi_channel *chans;
4600
4601 /* Got an error sending the message, handle it. */
4602
4603 chans = READ_ONCE(intf->channel_list)->c;
4604 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4605 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4606 ipmi_inc_stat(intf, sent_lan_command_errs);
4607 else
4608 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4609 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4610 } else
4611 /* The message was sent, start the timer. */
4612 intf_start_seq_timer(intf, msg->msgid);
4613 requeue = 0;
4614 goto out;
4615 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4616 || (msg->rsp[1] != msg->data[1])) {
4617 /*
4618 * The NetFN and Command in the response is not even
4619 * marginally correct.
4620 */
4621 dev_warn(intf->si_dev,
4622 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4623 (msg->data[0] >> 2) | 1, msg->data[1],
4624 msg->rsp[0] >> 2, msg->rsp[1]);
4625
4626 goto return_unspecified;
4627 }
4628
4629 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4630 if ((msg->data[0] >> 2) & 1) {
4631 /* It's a response to a sent response. */
4632 chan = 0;
4633 cc = msg->rsp[4];
4634 goto process_response_response;
4635 }
4636 if (is_cmd)
4637 requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4638 else
4639 requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4640 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4641 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4642 && (msg->user_data != NULL)) {
4643 /*
4644 * It's a response to a response we sent. For this we
4645 * deliver a send message response to the user.
4646 */
4647 struct ipmi_recv_msg *recv_msg;
4648
4649 chan = msg->data[2] & 0x0f;
4650 if (chan >= IPMI_MAX_CHANNELS)
4651 /* Invalid channel number */
4652 goto out;
4653 cc = msg->rsp[2];
4654
4655 process_response_response:
4656 recv_msg = msg->user_data;
4657
4658 requeue = 0;
4659 if (!recv_msg)
4660 goto out;
4661
4662 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4663 recv_msg->msg.data = recv_msg->msg_data;
4664 recv_msg->msg_data[0] = cc;
4665 recv_msg->msg.data_len = 1;
4666 deliver_local_response(intf, recv_msg);
4667 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4668 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4669 struct ipmi_channel *chans;
4670
4671 /* It's from the receive queue. */
4672 chan = msg->rsp[3] & 0xf;
4673 if (chan >= IPMI_MAX_CHANNELS) {
4674 /* Invalid channel number */
4675 requeue = 0;
4676 goto out;
4677 }
4678
4679 /*
4680 * We need to make sure the channels have been initialized.
4681 * The channel_handler routine will set the "curr_channel"
4682 * equal to or greater than IPMI_MAX_CHANNELS when all the
4683 * channels for this interface have been initialized.
4684 */
4685 if (!intf->channels_ready) {
4686 requeue = 0; /* Throw the message away */
4687 goto out;
4688 }
4689
4690 chans = READ_ONCE(intf->channel_list)->c;
4691
4692 switch (chans[chan].medium) {
4693 case IPMI_CHANNEL_MEDIUM_IPMB:
4694 if (msg->rsp[4] & 0x04) {
4695 /*
4696 * It's a response, so find the
4697 * requesting message and send it up.
4698 */
4699 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4700 } else {
4701 /*
4702 * It's a command to the SMS from some other
4703 * entity. Handle that.
4704 */
4705 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4706 }
4707 break;
4708
4709 case IPMI_CHANNEL_MEDIUM_8023LAN:
4710 case IPMI_CHANNEL_MEDIUM_ASYNC:
4711 if (msg->rsp[6] & 0x04) {
4712 /*
4713 * It's a response, so find the
4714 * requesting message and send it up.
4715 */
4716 requeue = handle_lan_get_msg_rsp(intf, msg);
4717 } else {
4718 /*
4719 * It's a command to the SMS from some other
4720 * entity. Handle that.
4721 */
4722 requeue = handle_lan_get_msg_cmd(intf, msg);
4723 }
4724 break;
4725
4726 default:
4727 /* Check for OEM Channels. Clients had better
4728 register for these commands. */
4729 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4730 && (chans[chan].medium
4731 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4732 requeue = handle_oem_get_msg_cmd(intf, msg);
4733 } else {
4734 /*
4735 * We don't handle the channel type, so just
4736 * free the message.
4737 */
4738 requeue = 0;
4739 }
4740 }
4741
4742 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4743 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4744 /* It's an asynchronous event. */
4745 requeue = handle_read_event_rsp(intf, msg);
4746 } else {
4747 /* It's a response from the local BMC. */
4748 requeue = handle_bmc_rsp(intf, msg);
4749 }
4750
4751 out:
4752 return requeue;
4753 }
4754
4755 /*
4756 * If there are messages in the queue or pretimeouts, handle them.
4757 */
handle_new_recv_msgs(struct ipmi_smi * intf)4758 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4759 {
4760 struct ipmi_smi_msg *smi_msg;
4761 unsigned long flags = 0;
4762 int rv;
4763 int run_to_completion = intf->run_to_completion;
4764
4765 /* See if any waiting messages need to be processed. */
4766 if (!run_to_completion)
4767 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4768 while (!list_empty(&intf->waiting_rcv_msgs)) {
4769 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4770 struct ipmi_smi_msg, link);
4771 list_del(&smi_msg->link);
4772 if (!run_to_completion)
4773 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4774 flags);
4775 rv = handle_one_recv_msg(intf, smi_msg);
4776 if (!run_to_completion)
4777 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4778 if (rv > 0) {
4779 /*
4780 * To preserve message order, quit if we
4781 * can't handle a message. Add the message
4782 * back at the head, this is safe because this
4783 * tasklet is the only thing that pulls the
4784 * messages.
4785 */
4786 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4787 break;
4788 } else {
4789 if (rv == 0)
4790 /* Message handled */
4791 ipmi_free_smi_msg(smi_msg);
4792 /* If rv < 0, fatal error, del but don't free. */
4793 }
4794 }
4795 if (!run_to_completion)
4796 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4797
4798 /*
4799 * If the pretimout count is non-zero, decrement one from it and
4800 * deliver pretimeouts to all the users.
4801 */
4802 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4803 struct ipmi_user *user;
4804 int index;
4805
4806 index = srcu_read_lock(&intf->users_srcu);
4807 list_for_each_entry_rcu(user, &intf->users, link) {
4808 if (user->handler->ipmi_watchdog_pretimeout)
4809 user->handler->ipmi_watchdog_pretimeout(
4810 user->handler_data);
4811 }
4812 srcu_read_unlock(&intf->users_srcu, index);
4813 }
4814 }
4815
smi_recv_tasklet(struct tasklet_struct * t)4816 static void smi_recv_tasklet(struct tasklet_struct *t)
4817 {
4818 unsigned long flags = 0; /* keep us warning-free. */
4819 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4820 int run_to_completion = intf->run_to_completion;
4821 struct ipmi_smi_msg *newmsg = NULL;
4822
4823 /*
4824 * Start the next message if available.
4825 *
4826 * Do this here, not in the actual receiver, because we may deadlock
4827 * because the lower layer is allowed to hold locks while calling
4828 * message delivery.
4829 */
4830
4831 rcu_read_lock();
4832
4833 if (!run_to_completion)
4834 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4835 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4836 struct list_head *entry = NULL;
4837
4838 /* Pick the high priority queue first. */
4839 if (!list_empty(&intf->hp_xmit_msgs))
4840 entry = intf->hp_xmit_msgs.next;
4841 else if (!list_empty(&intf->xmit_msgs))
4842 entry = intf->xmit_msgs.next;
4843
4844 if (entry) {
4845 list_del(entry);
4846 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4847 intf->curr_msg = newmsg;
4848 }
4849 }
4850
4851 if (!run_to_completion)
4852 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4853 if (newmsg)
4854 intf->handlers->sender(intf->send_info, newmsg);
4855
4856 rcu_read_unlock();
4857
4858 handle_new_recv_msgs(intf);
4859 }
4860
4861 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4862 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4863 struct ipmi_smi_msg *msg)
4864 {
4865 unsigned long flags = 0; /* keep us warning-free. */
4866 int run_to_completion = intf->run_to_completion;
4867
4868 /*
4869 * To preserve message order, we keep a queue and deliver from
4870 * a tasklet.
4871 */
4872 if (!run_to_completion)
4873 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4874 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4875 if (!run_to_completion)
4876 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4877 flags);
4878
4879 if (!run_to_completion)
4880 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4881 /*
4882 * We can get an asynchronous event or receive message in addition
4883 * to commands we send.
4884 */
4885 if (msg == intf->curr_msg)
4886 intf->curr_msg = NULL;
4887 if (!run_to_completion)
4888 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4889
4890 if (run_to_completion)
4891 smi_recv_tasklet(&intf->recv_tasklet);
4892 else
4893 tasklet_schedule(&intf->recv_tasklet);
4894 }
4895 EXPORT_SYMBOL(ipmi_smi_msg_received);
4896
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4897 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4898 {
4899 if (intf->in_shutdown)
4900 return;
4901
4902 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4903 tasklet_schedule(&intf->recv_tasklet);
4904 }
4905 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4906
4907 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4908 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4909 unsigned char seq, long seqid)
4910 {
4911 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4912 if (!smi_msg)
4913 /*
4914 * If we can't allocate the message, then just return, we
4915 * get 4 retries, so this should be ok.
4916 */
4917 return NULL;
4918
4919 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4920 smi_msg->data_size = recv_msg->msg.data_len;
4921 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4922
4923 dev_dbg(intf->si_dev, "Resend: %*ph\n",
4924 smi_msg->data_size, smi_msg->data);
4925
4926 return smi_msg;
4927 }
4928
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4929 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4930 struct list_head *timeouts,
4931 unsigned long timeout_period,
4932 int slot, unsigned long *flags,
4933 bool *need_timer)
4934 {
4935 struct ipmi_recv_msg *msg;
4936
4937 if (intf->in_shutdown)
4938 return;
4939
4940 if (!ent->inuse)
4941 return;
4942
4943 if (timeout_period < ent->timeout) {
4944 ent->timeout -= timeout_period;
4945 *need_timer = true;
4946 return;
4947 }
4948
4949 if (ent->retries_left == 0) {
4950 /* The message has used all its retries. */
4951 ent->inuse = 0;
4952 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4953 msg = ent->recv_msg;
4954 list_add_tail(&msg->link, timeouts);
4955 if (ent->broadcast)
4956 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4957 else if (is_lan_addr(&ent->recv_msg->addr))
4958 ipmi_inc_stat(intf, timed_out_lan_commands);
4959 else
4960 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4961 } else {
4962 struct ipmi_smi_msg *smi_msg;
4963 /* More retries, send again. */
4964
4965 *need_timer = true;
4966
4967 /*
4968 * Start with the max timer, set to normal timer after
4969 * the message is sent.
4970 */
4971 ent->timeout = MAX_MSG_TIMEOUT;
4972 ent->retries_left--;
4973 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4974 ent->seqid);
4975 if (!smi_msg) {
4976 if (is_lan_addr(&ent->recv_msg->addr))
4977 ipmi_inc_stat(intf,
4978 dropped_rexmit_lan_commands);
4979 else
4980 ipmi_inc_stat(intf,
4981 dropped_rexmit_ipmb_commands);
4982 return;
4983 }
4984
4985 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4986
4987 /*
4988 * Send the new message. We send with a zero
4989 * priority. It timed out, I doubt time is that
4990 * critical now, and high priority messages are really
4991 * only for messages to the local MC, which don't get
4992 * resent.
4993 */
4994 if (intf->handlers) {
4995 if (is_lan_addr(&ent->recv_msg->addr))
4996 ipmi_inc_stat(intf,
4997 retransmitted_lan_commands);
4998 else
4999 ipmi_inc_stat(intf,
5000 retransmitted_ipmb_commands);
5001
5002 smi_send(intf, intf->handlers, smi_msg, 0);
5003 } else
5004 ipmi_free_smi_msg(smi_msg);
5005
5006 spin_lock_irqsave(&intf->seq_lock, *flags);
5007 }
5008 }
5009
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)5010 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5011 unsigned long timeout_period)
5012 {
5013 struct list_head timeouts;
5014 struct ipmi_recv_msg *msg, *msg2;
5015 unsigned long flags;
5016 int i;
5017 bool need_timer = false;
5018
5019 if (!intf->bmc_registered) {
5020 kref_get(&intf->refcount);
5021 if (!schedule_work(&intf->bmc_reg_work)) {
5022 kref_put(&intf->refcount, intf_free);
5023 need_timer = true;
5024 }
5025 }
5026
5027 /*
5028 * Go through the seq table and find any messages that
5029 * have timed out, putting them in the timeouts
5030 * list.
5031 */
5032 INIT_LIST_HEAD(&timeouts);
5033 spin_lock_irqsave(&intf->seq_lock, flags);
5034 if (intf->ipmb_maintenance_mode_timeout) {
5035 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5036 intf->ipmb_maintenance_mode_timeout = 0;
5037 else
5038 intf->ipmb_maintenance_mode_timeout -= timeout_period;
5039 }
5040 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5041 check_msg_timeout(intf, &intf->seq_table[i],
5042 &timeouts, timeout_period, i,
5043 &flags, &need_timer);
5044 spin_unlock_irqrestore(&intf->seq_lock, flags);
5045
5046 list_for_each_entry_safe(msg, msg2, &timeouts, link)
5047 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5048
5049 /*
5050 * Maintenance mode handling. Check the timeout
5051 * optimistically before we claim the lock. It may
5052 * mean a timeout gets missed occasionally, but that
5053 * only means the timeout gets extended by one period
5054 * in that case. No big deal, and it avoids the lock
5055 * most of the time.
5056 */
5057 if (intf->auto_maintenance_timeout > 0) {
5058 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5059 if (intf->auto_maintenance_timeout > 0) {
5060 intf->auto_maintenance_timeout
5061 -= timeout_period;
5062 if (!intf->maintenance_mode
5063 && (intf->auto_maintenance_timeout <= 0)) {
5064 intf->maintenance_mode_enable = false;
5065 maintenance_mode_update(intf);
5066 }
5067 }
5068 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5069 flags);
5070 }
5071
5072 tasklet_schedule(&intf->recv_tasklet);
5073
5074 return need_timer;
5075 }
5076
ipmi_request_event(struct ipmi_smi * intf)5077 static void ipmi_request_event(struct ipmi_smi *intf)
5078 {
5079 /* No event requests when in maintenance mode. */
5080 if (intf->maintenance_mode_enable)
5081 return;
5082
5083 if (!intf->in_shutdown)
5084 intf->handlers->request_events(intf->send_info);
5085 }
5086
5087 static struct timer_list ipmi_timer;
5088
5089 static atomic_t stop_operation;
5090
ipmi_timeout(struct timer_list * unused)5091 static void ipmi_timeout(struct timer_list *unused)
5092 {
5093 struct ipmi_smi *intf;
5094 bool need_timer = false;
5095 int index;
5096
5097 if (atomic_read(&stop_operation))
5098 return;
5099
5100 index = srcu_read_lock(&ipmi_interfaces_srcu);
5101 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5102 if (atomic_read(&intf->event_waiters)) {
5103 intf->ticks_to_req_ev--;
5104 if (intf->ticks_to_req_ev == 0) {
5105 ipmi_request_event(intf);
5106 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5107 }
5108 need_timer = true;
5109 }
5110
5111 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5112 }
5113 srcu_read_unlock(&ipmi_interfaces_srcu, index);
5114
5115 if (need_timer)
5116 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5117 }
5118
need_waiter(struct ipmi_smi * intf)5119 static void need_waiter(struct ipmi_smi *intf)
5120 {
5121 /* Racy, but worst case we start the timer twice. */
5122 if (!timer_pending(&ipmi_timer))
5123 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5124 }
5125
5126 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5127 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5128
free_smi_msg(struct ipmi_smi_msg * msg)5129 static void free_smi_msg(struct ipmi_smi_msg *msg)
5130 {
5131 atomic_dec(&smi_msg_inuse_count);
5132 /* Try to keep as much stuff out of the panic path as possible. */
5133 if (!oops_in_progress)
5134 kfree(msg);
5135 }
5136
ipmi_alloc_smi_msg(void)5137 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5138 {
5139 struct ipmi_smi_msg *rv;
5140 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5141 if (rv) {
5142 rv->done = free_smi_msg;
5143 rv->user_data = NULL;
5144 rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5145 atomic_inc(&smi_msg_inuse_count);
5146 }
5147 return rv;
5148 }
5149 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5150
free_recv_msg(struct ipmi_recv_msg * msg)5151 static void free_recv_msg(struct ipmi_recv_msg *msg)
5152 {
5153 atomic_dec(&recv_msg_inuse_count);
5154 /* Try to keep as much stuff out of the panic path as possible. */
5155 if (!oops_in_progress)
5156 kfree(msg);
5157 }
5158
ipmi_alloc_recv_msg(void)5159 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5160 {
5161 struct ipmi_recv_msg *rv;
5162
5163 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5164 if (rv) {
5165 rv->user = NULL;
5166 rv->done = free_recv_msg;
5167 atomic_inc(&recv_msg_inuse_count);
5168 }
5169 return rv;
5170 }
5171
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)5172 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5173 {
5174 if (msg->user && !oops_in_progress)
5175 kref_put(&msg->user->refcount, free_user);
5176 msg->done(msg);
5177 }
5178 EXPORT_SYMBOL(ipmi_free_recv_msg);
5179
5180 static atomic_t panic_done_count = ATOMIC_INIT(0);
5181
dummy_smi_done_handler(struct ipmi_smi_msg * msg)5182 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5183 {
5184 atomic_dec(&panic_done_count);
5185 }
5186
dummy_recv_done_handler(struct ipmi_recv_msg * msg)5187 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5188 {
5189 atomic_dec(&panic_done_count);
5190 }
5191
5192 /*
5193 * Inside a panic, send a message and wait for a response.
5194 */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5195 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5196 struct ipmi_addr *addr,
5197 struct kernel_ipmi_msg *msg)
5198 {
5199 struct ipmi_smi_msg smi_msg;
5200 struct ipmi_recv_msg recv_msg;
5201 int rv;
5202
5203 smi_msg.done = dummy_smi_done_handler;
5204 recv_msg.done = dummy_recv_done_handler;
5205 atomic_add(2, &panic_done_count);
5206 rv = i_ipmi_request(NULL,
5207 intf,
5208 addr,
5209 0,
5210 msg,
5211 intf,
5212 &smi_msg,
5213 &recv_msg,
5214 0,
5215 intf->addrinfo[0].address,
5216 intf->addrinfo[0].lun,
5217 0, 1); /* Don't retry, and don't wait. */
5218 if (rv)
5219 atomic_sub(2, &panic_done_count);
5220 else if (intf->handlers->flush_messages)
5221 intf->handlers->flush_messages(intf->send_info);
5222
5223 while (atomic_read(&panic_done_count) != 0)
5224 ipmi_poll(intf);
5225 }
5226
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5227 static void event_receiver_fetcher(struct ipmi_smi *intf,
5228 struct ipmi_recv_msg *msg)
5229 {
5230 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5231 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5232 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5233 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5234 /* A get event receiver command, save it. */
5235 intf->event_receiver = msg->msg.data[1];
5236 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5237 }
5238 }
5239
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5240 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5241 {
5242 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5243 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5244 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5245 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5246 /*
5247 * A get device id command, save if we are an event
5248 * receiver or generator.
5249 */
5250 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5251 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5252 }
5253 }
5254
send_panic_events(struct ipmi_smi * intf,char * str)5255 static void send_panic_events(struct ipmi_smi *intf, char *str)
5256 {
5257 struct kernel_ipmi_msg msg;
5258 unsigned char data[16];
5259 struct ipmi_system_interface_addr *si;
5260 struct ipmi_addr addr;
5261 char *p = str;
5262 struct ipmi_ipmb_addr *ipmb;
5263 int j;
5264
5265 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5266 return;
5267
5268 si = (struct ipmi_system_interface_addr *) &addr;
5269 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5270 si->channel = IPMI_BMC_CHANNEL;
5271 si->lun = 0;
5272
5273 /* Fill in an event telling that we have failed. */
5274 msg.netfn = 0x04; /* Sensor or Event. */
5275 msg.cmd = 2; /* Platform event command. */
5276 msg.data = data;
5277 msg.data_len = 8;
5278 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5279 data[1] = 0x03; /* This is for IPMI 1.0. */
5280 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5281 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5282 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5283
5284 /*
5285 * Put a few breadcrumbs in. Hopefully later we can add more things
5286 * to make the panic events more useful.
5287 */
5288 if (str) {
5289 data[3] = str[0];
5290 data[6] = str[1];
5291 data[7] = str[2];
5292 }
5293
5294 /* Send the event announcing the panic. */
5295 ipmi_panic_request_and_wait(intf, &addr, &msg);
5296
5297 /*
5298 * On every interface, dump a bunch of OEM event holding the
5299 * string.
5300 */
5301 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5302 return;
5303
5304 /*
5305 * intf_num is used as an marker to tell if the
5306 * interface is valid. Thus we need a read barrier to
5307 * make sure data fetched before checking intf_num
5308 * won't be used.
5309 */
5310 smp_rmb();
5311
5312 /*
5313 * First job here is to figure out where to send the
5314 * OEM events. There's no way in IPMI to send OEM
5315 * events using an event send command, so we have to
5316 * find the SEL to put them in and stick them in
5317 * there.
5318 */
5319
5320 /* Get capabilities from the get device id. */
5321 intf->local_sel_device = 0;
5322 intf->local_event_generator = 0;
5323 intf->event_receiver = 0;
5324
5325 /* Request the device info from the local MC. */
5326 msg.netfn = IPMI_NETFN_APP_REQUEST;
5327 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5328 msg.data = NULL;
5329 msg.data_len = 0;
5330 intf->null_user_handler = device_id_fetcher;
5331 ipmi_panic_request_and_wait(intf, &addr, &msg);
5332
5333 if (intf->local_event_generator) {
5334 /* Request the event receiver from the local MC. */
5335 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5336 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5337 msg.data = NULL;
5338 msg.data_len = 0;
5339 intf->null_user_handler = event_receiver_fetcher;
5340 ipmi_panic_request_and_wait(intf, &addr, &msg);
5341 }
5342 intf->null_user_handler = NULL;
5343
5344 /*
5345 * Validate the event receiver. The low bit must not
5346 * be 1 (it must be a valid IPMB address), it cannot
5347 * be zero, and it must not be my address.
5348 */
5349 if (((intf->event_receiver & 1) == 0)
5350 && (intf->event_receiver != 0)
5351 && (intf->event_receiver != intf->addrinfo[0].address)) {
5352 /*
5353 * The event receiver is valid, send an IPMB
5354 * message.
5355 */
5356 ipmb = (struct ipmi_ipmb_addr *) &addr;
5357 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5358 ipmb->channel = 0; /* FIXME - is this right? */
5359 ipmb->lun = intf->event_receiver_lun;
5360 ipmb->slave_addr = intf->event_receiver;
5361 } else if (intf->local_sel_device) {
5362 /*
5363 * The event receiver was not valid (or was
5364 * me), but I am an SEL device, just dump it
5365 * in my SEL.
5366 */
5367 si = (struct ipmi_system_interface_addr *) &addr;
5368 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5369 si->channel = IPMI_BMC_CHANNEL;
5370 si->lun = 0;
5371 } else
5372 return; /* No where to send the event. */
5373
5374 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5375 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5376 msg.data = data;
5377 msg.data_len = 16;
5378
5379 j = 0;
5380 while (*p) {
5381 int size = strlen(p);
5382
5383 if (size > 11)
5384 size = 11;
5385 data[0] = 0;
5386 data[1] = 0;
5387 data[2] = 0xf0; /* OEM event without timestamp. */
5388 data[3] = intf->addrinfo[0].address;
5389 data[4] = j++; /* sequence # */
5390 /*
5391 * Always give 11 bytes, so strncpy will fill
5392 * it with zeroes for me.
5393 */
5394 strncpy(data+5, p, 11);
5395 p += size;
5396
5397 ipmi_panic_request_and_wait(intf, &addr, &msg);
5398 }
5399 }
5400
5401 static int has_panicked;
5402
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5403 static int panic_event(struct notifier_block *this,
5404 unsigned long event,
5405 void *ptr)
5406 {
5407 struct ipmi_smi *intf;
5408 struct ipmi_user *user;
5409
5410 if (has_panicked)
5411 return NOTIFY_DONE;
5412 has_panicked = 1;
5413
5414 /* For every registered interface, set it to run to completion. */
5415 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5416 if (!intf->handlers || intf->intf_num == -1)
5417 /* Interface is not ready. */
5418 continue;
5419
5420 if (!intf->handlers->poll)
5421 continue;
5422
5423 /*
5424 * If we were interrupted while locking xmit_msgs_lock or
5425 * waiting_rcv_msgs_lock, the corresponding list may be
5426 * corrupted. In this case, drop items on the list for
5427 * the safety.
5428 */
5429 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5430 INIT_LIST_HEAD(&intf->xmit_msgs);
5431 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5432 } else
5433 spin_unlock(&intf->xmit_msgs_lock);
5434
5435 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5436 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5437 else
5438 spin_unlock(&intf->waiting_rcv_msgs_lock);
5439
5440 intf->run_to_completion = 1;
5441 if (intf->handlers->set_run_to_completion)
5442 intf->handlers->set_run_to_completion(intf->send_info,
5443 1);
5444
5445 list_for_each_entry_rcu(user, &intf->users, link) {
5446 if (user->handler->ipmi_panic_handler)
5447 user->handler->ipmi_panic_handler(
5448 user->handler_data);
5449 }
5450
5451 send_panic_events(intf, ptr);
5452 }
5453
5454 return NOTIFY_DONE;
5455 }
5456
5457 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5458 static int ipmi_register_driver(void)
5459 {
5460 int rv;
5461
5462 if (drvregistered)
5463 return 0;
5464
5465 rv = driver_register(&ipmidriver.driver);
5466 if (rv)
5467 pr_err("Could not register IPMI driver\n");
5468 else
5469 drvregistered = true;
5470 return rv;
5471 }
5472
5473 static struct notifier_block panic_block = {
5474 .notifier_call = panic_event,
5475 .next = NULL,
5476 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5477 };
5478
ipmi_init_msghandler(void)5479 static int ipmi_init_msghandler(void)
5480 {
5481 int rv;
5482
5483 mutex_lock(&ipmi_interfaces_mutex);
5484 rv = ipmi_register_driver();
5485 if (rv)
5486 goto out;
5487 if (initialized)
5488 goto out;
5489
5490 rv = init_srcu_struct(&ipmi_interfaces_srcu);
5491 if (rv)
5492 goto out;
5493
5494 remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5495 if (!remove_work_wq) {
5496 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5497 rv = -ENOMEM;
5498 goto out_wq;
5499 }
5500
5501 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5502 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5503
5504 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5505
5506 initialized = true;
5507
5508 out_wq:
5509 if (rv)
5510 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5511 out:
5512 mutex_unlock(&ipmi_interfaces_mutex);
5513 return rv;
5514 }
5515
ipmi_init_msghandler_mod(void)5516 static int __init ipmi_init_msghandler_mod(void)
5517 {
5518 int rv;
5519
5520 pr_info("version " IPMI_DRIVER_VERSION "\n");
5521
5522 mutex_lock(&ipmi_interfaces_mutex);
5523 rv = ipmi_register_driver();
5524 mutex_unlock(&ipmi_interfaces_mutex);
5525
5526 return rv;
5527 }
5528
cleanup_ipmi(void)5529 static void __exit cleanup_ipmi(void)
5530 {
5531 int count;
5532
5533 if (initialized) {
5534 destroy_workqueue(remove_work_wq);
5535
5536 atomic_notifier_chain_unregister(&panic_notifier_list,
5537 &panic_block);
5538
5539 /*
5540 * This can't be called if any interfaces exist, so no worry
5541 * about shutting down the interfaces.
5542 */
5543
5544 /*
5545 * Tell the timer to stop, then wait for it to stop. This
5546 * avoids problems with race conditions removing the timer
5547 * here.
5548 */
5549 atomic_set(&stop_operation, 1);
5550 del_timer_sync(&ipmi_timer);
5551
5552 initialized = false;
5553
5554 /* Check for buffer leaks. */
5555 count = atomic_read(&smi_msg_inuse_count);
5556 if (count != 0)
5557 pr_warn("SMI message count %d at exit\n", count);
5558 count = atomic_read(&recv_msg_inuse_count);
5559 if (count != 0)
5560 pr_warn("recv message count %d at exit\n", count);
5561
5562 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5563 }
5564 if (drvregistered)
5565 driver_unregister(&ipmidriver.driver);
5566 }
5567 module_exit(cleanup_ipmi);
5568
5569 module_init(ipmi_init_msghandler_mod);
5570 MODULE_LICENSE("GPL");
5571 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5572 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5573 MODULE_VERSION(IPMI_DRIVER_VERSION);
5574 MODULE_SOFTDEP("post: ipmi_devintf");
5575