1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Overview:
4 * This is the generic MTD driver for NAND flash devices. It should be
5 * capable of working with almost all NAND chips currently available.
6 *
7 * Additional technical information is available on
8 * http://www.linux-mtd.infradead.org/doc/nand.html
9 *
10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
12 *
13 * Credits:
14 * David Woodhouse for adding multichip support
15 *
16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17 * rework for 2K page size chips
18 *
19 * TODO:
20 * Enable cached programming for 2k page size chips
21 * Check, if mtd->ecctype should be set to MTD_ECC_HW
22 * if we have HW ECC support.
23 * BBT table is not serialized, has to be fixed
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47
48 #include "internals.h"
49
nand_pairing_dist3_get_info(struct mtd_info * mtd,int page,struct mtd_pairing_info * info)50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51 struct mtd_pairing_info *info)
52 {
53 int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54 int dist = 3;
55
56 if (page == lastpage)
57 dist = 2;
58
59 if (!page || (page & 1)) {
60 info->group = 0;
61 info->pair = (page + 1) / 2;
62 } else {
63 info->group = 1;
64 info->pair = (page + 1 - dist) / 2;
65 }
66
67 return 0;
68 }
69
nand_pairing_dist3_get_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71 const struct mtd_pairing_info *info)
72 {
73 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74 int page = info->pair * 2;
75 int dist = 3;
76
77 if (!info->group && !info->pair)
78 return 0;
79
80 if (info->pair == lastpair && info->group)
81 dist = 2;
82
83 if (!info->group)
84 page--;
85 else if (info->pair)
86 page += dist - 1;
87
88 if (page >= mtd->erasesize / mtd->writesize)
89 return -EINVAL;
90
91 return page;
92 }
93
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95 .ngroups = 2,
96 .get_info = nand_pairing_dist3_get_info,
97 .get_wunit = nand_pairing_dist3_get_wunit,
98 };
99
check_offs_len(struct nand_chip * chip,loff_t ofs,uint64_t len)100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102 int ret = 0;
103
104 /* Start address must align on block boundary */
105 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106 pr_debug("%s: unaligned address\n", __func__);
107 ret = -EINVAL;
108 }
109
110 /* Length must align on block boundary */
111 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112 pr_debug("%s: length not block aligned\n", __func__);
113 ret = -EINVAL;
114 }
115
116 return ret;
117 }
118
119 /**
120 * nand_extract_bits - Copy unaligned bits from one buffer to another one
121 * @dst: destination buffer
122 * @dst_off: bit offset at which the writing starts
123 * @src: source buffer
124 * @src_off: bit offset at which the reading starts
125 * @nbits: number of bits to copy from @src to @dst
126 *
127 * Copy bits from one memory region to another (overlap authorized).
128 */
nand_extract_bits(u8 * dst,unsigned int dst_off,const u8 * src,unsigned int src_off,unsigned int nbits)129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130 unsigned int src_off, unsigned int nbits)
131 {
132 unsigned int tmp, n;
133
134 dst += dst_off / 8;
135 dst_off %= 8;
136 src += src_off / 8;
137 src_off %= 8;
138
139 while (nbits) {
140 n = min3(8 - dst_off, 8 - src_off, nbits);
141
142 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144 *dst |= tmp << dst_off;
145
146 dst_off += n;
147 if (dst_off >= 8) {
148 dst++;
149 dst_off -= 8;
150 }
151
152 src_off += n;
153 if (src_off >= 8) {
154 src++;
155 src_off -= 8;
156 }
157
158 nbits -= n;
159 }
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162
163 /**
164 * nand_select_target() - Select a NAND target (A.K.A. die)
165 * @chip: NAND chip object
166 * @cs: the CS line to select. Note that this CS id is always from the chip
167 * PoV, not the controller one
168 *
169 * Select a NAND target so that further operations executed on @chip go to the
170 * selected NAND target.
171 */
nand_select_target(struct nand_chip * chip,unsigned int cs)172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174 /*
175 * cs should always lie between 0 and nanddev_ntargets(), when that's
176 * not the case it's a bug and the caller should be fixed.
177 */
178 if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179 return;
180
181 chip->cur_cs = cs;
182
183 if (chip->legacy.select_chip)
184 chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187
188 /**
189 * nand_deselect_target() - Deselect the currently selected target
190 * @chip: NAND chip object
191 *
192 * Deselect the currently selected NAND target. The result of operations
193 * executed on @chip after the target has been deselected is undefined.
194 */
nand_deselect_target(struct nand_chip * chip)195 void nand_deselect_target(struct nand_chip *chip)
196 {
197 if (chip->legacy.select_chip)
198 chip->legacy.select_chip(chip, -1);
199
200 chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203
204 /**
205 * nand_release_device - [GENERIC] release chip
206 * @chip: NAND chip object
207 *
208 * Release chip lock and wake up anyone waiting on the device.
209 */
nand_release_device(struct nand_chip * chip)210 static void nand_release_device(struct nand_chip *chip)
211 {
212 /* Release the controller and the chip */
213 mutex_unlock(&chip->controller->lock);
214 mutex_unlock(&chip->lock);
215 }
216
217 /**
218 * nand_bbm_get_next_page - Get the next page for bad block markers
219 * @chip: NAND chip object
220 * @page: First page to start checking for bad block marker usage
221 *
222 * Returns an integer that corresponds to the page offset within a block, for
223 * a page that is used to store bad block markers. If no more pages are
224 * available, -EINVAL is returned.
225 */
nand_bbm_get_next_page(struct nand_chip * chip,int page)226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228 struct mtd_info *mtd = nand_to_mtd(chip);
229 int last_page = ((mtd->erasesize - mtd->writesize) >>
230 chip->page_shift) & chip->pagemask;
231 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232 | NAND_BBM_LASTPAGE;
233
234 if (page == 0 && !(chip->options & bbm_flags))
235 return 0;
236 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237 return 0;
238 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239 return 1;
240 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241 return last_page;
242
243 return -EINVAL;
244 }
245
246 /**
247 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248 * @chip: NAND chip object
249 * @ofs: offset from device start
250 *
251 * Check, if the block is bad.
252 */
nand_block_bad(struct nand_chip * chip,loff_t ofs)253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255 int first_page, page_offset;
256 int res;
257 u8 bad;
258
259 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260 page_offset = nand_bbm_get_next_page(chip, 0);
261
262 while (page_offset >= 0) {
263 res = chip->ecc.read_oob(chip, first_page + page_offset);
264 if (res < 0)
265 return res;
266
267 bad = chip->oob_poi[chip->badblockpos];
268
269 if (likely(chip->badblockbits == 8))
270 res = bad != 0xFF;
271 else
272 res = hweight8(bad) < chip->badblockbits;
273 if (res)
274 return res;
275
276 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277 }
278
279 return 0;
280 }
281
282 /**
283 * nand_region_is_secured() - Check if the region is secured
284 * @chip: NAND chip object
285 * @offset: Offset of the region to check
286 * @size: Size of the region to check
287 *
288 * Checks if the region is secured by comparing the offset and size with the
289 * list of secure regions obtained from DT. Returns true if the region is
290 * secured else false.
291 */
nand_region_is_secured(struct nand_chip * chip,loff_t offset,u64 size)292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294 int i;
295
296 /* Skip touching the secure regions if present */
297 for (i = 0; i < chip->nr_secure_regions; i++) {
298 const struct nand_secure_region *region = &chip->secure_regions[i];
299
300 if (offset + size <= region->offset ||
301 offset >= region->offset + region->size)
302 continue;
303
304 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305 __func__, offset, offset + size);
306
307 return true;
308 }
309
310 return false;
311 }
312
nand_isbad_bbm(struct nand_chip * chip,loff_t ofs)313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315 struct mtd_info *mtd = nand_to_mtd(chip);
316
317 if (chip->options & NAND_NO_BBM_QUIRK)
318 return 0;
319
320 /* Check if the region is secured */
321 if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322 return -EIO;
323
324 if (mtd_check_expert_analysis_mode())
325 return 0;
326
327 if (chip->legacy.block_bad)
328 return chip->legacy.block_bad(chip, ofs);
329
330 return nand_block_bad(chip, ofs);
331 }
332
333 /**
334 * nand_get_device - [GENERIC] Get chip for selected access
335 * @chip: NAND chip structure
336 *
337 * Lock the device and its controller for exclusive access
338 */
nand_get_device(struct nand_chip * chip)339 static void nand_get_device(struct nand_chip *chip)
340 {
341 /* Wait until the device is resumed. */
342 while (1) {
343 mutex_lock(&chip->lock);
344 if (!chip->suspended) {
345 mutex_lock(&chip->controller->lock);
346 return;
347 }
348 mutex_unlock(&chip->lock);
349
350 wait_event(chip->resume_wq, !chip->suspended);
351 }
352 }
353
354 /**
355 * nand_check_wp - [GENERIC] check if the chip is write protected
356 * @chip: NAND chip object
357 *
358 * Check, if the device is write protected. The function expects, that the
359 * device is already selected.
360 */
nand_check_wp(struct nand_chip * chip)361 static int nand_check_wp(struct nand_chip *chip)
362 {
363 u8 status;
364 int ret;
365
366 /* Broken xD cards report WP despite being writable */
367 if (chip->options & NAND_BROKEN_XD)
368 return 0;
369
370 /* Check the WP bit */
371 ret = nand_status_op(chip, &status);
372 if (ret)
373 return ret;
374
375 return status & NAND_STATUS_WP ? 0 : 1;
376 }
377
378 /**
379 * nand_fill_oob - [INTERN] Transfer client buffer to oob
380 * @chip: NAND chip object
381 * @oob: oob data buffer
382 * @len: oob data write length
383 * @ops: oob ops structure
384 */
nand_fill_oob(struct nand_chip * chip,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
386 struct mtd_oob_ops *ops)
387 {
388 struct mtd_info *mtd = nand_to_mtd(chip);
389 int ret;
390
391 /*
392 * Initialise to all 0xFF, to avoid the possibility of left over OOB
393 * data from a previous OOB read.
394 */
395 memset(chip->oob_poi, 0xff, mtd->oobsize);
396
397 switch (ops->mode) {
398
399 case MTD_OPS_PLACE_OOB:
400 case MTD_OPS_RAW:
401 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
402 return oob + len;
403
404 case MTD_OPS_AUTO_OOB:
405 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
406 ops->ooboffs, len);
407 BUG_ON(ret);
408 return oob + len;
409
410 default:
411 BUG();
412 }
413 return NULL;
414 }
415
416 /**
417 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
418 * @chip: NAND chip object
419 * @to: offset to write to
420 * @ops: oob operation description structure
421 *
422 * NAND write out-of-band.
423 */
nand_do_write_oob(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
425 struct mtd_oob_ops *ops)
426 {
427 struct mtd_info *mtd = nand_to_mtd(chip);
428 int chipnr, page, status, len, ret;
429
430 pr_debug("%s: to = 0x%08x, len = %i\n",
431 __func__, (unsigned int)to, (int)ops->ooblen);
432
433 len = mtd_oobavail(mtd, ops);
434
435 /* Do not allow write past end of page */
436 if ((ops->ooboffs + ops->ooblen) > len) {
437 pr_debug("%s: attempt to write past end of page\n",
438 __func__);
439 return -EINVAL;
440 }
441
442 /* Check if the region is secured */
443 if (nand_region_is_secured(chip, to, ops->ooblen))
444 return -EIO;
445
446 chipnr = (int)(to >> chip->chip_shift);
447
448 /*
449 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
450 * of my DiskOnChip 2000 test units) will clear the whole data page too
451 * if we don't do this. I have no clue why, but I seem to have 'fixed'
452 * it in the doc2000 driver in August 1999. dwmw2.
453 */
454 ret = nand_reset(chip, chipnr);
455 if (ret)
456 return ret;
457
458 nand_select_target(chip, chipnr);
459
460 /* Shift to get page */
461 page = (int)(to >> chip->page_shift);
462
463 /* Check, if it is write protected */
464 if (nand_check_wp(chip)) {
465 nand_deselect_target(chip);
466 return -EROFS;
467 }
468
469 /* Invalidate the page cache, if we write to the cached page */
470 if (page == chip->pagecache.page)
471 chip->pagecache.page = -1;
472
473 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
474
475 if (ops->mode == MTD_OPS_RAW)
476 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
477 else
478 status = chip->ecc.write_oob(chip, page & chip->pagemask);
479
480 nand_deselect_target(chip);
481
482 if (status)
483 return status;
484
485 ops->oobretlen = ops->ooblen;
486
487 return 0;
488 }
489
490 /**
491 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
492 * @chip: NAND chip object
493 * @ofs: offset from device start
494 *
495 * This is the default implementation, which can be overridden by a hardware
496 * specific driver. It provides the details for writing a bad block marker to a
497 * block.
498 */
nand_default_block_markbad(struct nand_chip * chip,loff_t ofs)499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
500 {
501 struct mtd_info *mtd = nand_to_mtd(chip);
502 struct mtd_oob_ops ops;
503 uint8_t buf[2] = { 0, 0 };
504 int ret = 0, res, page_offset;
505
506 memset(&ops, 0, sizeof(ops));
507 ops.oobbuf = buf;
508 ops.ooboffs = chip->badblockpos;
509 if (chip->options & NAND_BUSWIDTH_16) {
510 ops.ooboffs &= ~0x01;
511 ops.len = ops.ooblen = 2;
512 } else {
513 ops.len = ops.ooblen = 1;
514 }
515 ops.mode = MTD_OPS_PLACE_OOB;
516
517 page_offset = nand_bbm_get_next_page(chip, 0);
518
519 while (page_offset >= 0) {
520 res = nand_do_write_oob(chip,
521 ofs + (page_offset * mtd->writesize),
522 &ops);
523
524 if (!ret)
525 ret = res;
526
527 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
528 }
529
530 return ret;
531 }
532
533 /**
534 * nand_markbad_bbm - mark a block by updating the BBM
535 * @chip: NAND chip object
536 * @ofs: offset of the block to mark bad
537 */
nand_markbad_bbm(struct nand_chip * chip,loff_t ofs)538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
539 {
540 if (chip->legacy.block_markbad)
541 return chip->legacy.block_markbad(chip, ofs);
542
543 return nand_default_block_markbad(chip, ofs);
544 }
545
546 /**
547 * nand_block_markbad_lowlevel - mark a block bad
548 * @chip: NAND chip object
549 * @ofs: offset from device start
550 *
551 * This function performs the generic NAND bad block marking steps (i.e., bad
552 * block table(s) and/or marker(s)). We only allow the hardware driver to
553 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
554 *
555 * We try operations in the following order:
556 *
557 * (1) erase the affected block, to allow OOB marker to be written cleanly
558 * (2) write bad block marker to OOB area of affected block (unless flag
559 * NAND_BBT_NO_OOB_BBM is present)
560 * (3) update the BBT
561 *
562 * Note that we retain the first error encountered in (2) or (3), finish the
563 * procedures, and dump the error in the end.
564 */
nand_block_markbad_lowlevel(struct nand_chip * chip,loff_t ofs)565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
566 {
567 struct mtd_info *mtd = nand_to_mtd(chip);
568 int res, ret = 0;
569
570 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
571 struct erase_info einfo;
572
573 /* Attempt erase before marking OOB */
574 memset(&einfo, 0, sizeof(einfo));
575 einfo.addr = ofs;
576 einfo.len = 1ULL << chip->phys_erase_shift;
577 nand_erase_nand(chip, &einfo, 0);
578
579 /* Write bad block marker to OOB */
580 nand_get_device(chip);
581
582 ret = nand_markbad_bbm(chip, ofs);
583 nand_release_device(chip);
584 }
585
586 /* Mark block bad in BBT */
587 if (chip->bbt) {
588 res = nand_markbad_bbt(chip, ofs);
589 if (!ret)
590 ret = res;
591 }
592
593 if (!ret)
594 mtd->ecc_stats.badblocks++;
595
596 return ret;
597 }
598
599 /**
600 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
601 * @mtd: MTD device structure
602 * @ofs: offset from device start
603 *
604 * Check if the block is marked as reserved.
605 */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
607 {
608 struct nand_chip *chip = mtd_to_nand(mtd);
609
610 if (!chip->bbt)
611 return 0;
612 /* Return info from the table */
613 return nand_isreserved_bbt(chip, ofs);
614 }
615
616 /**
617 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
618 * @chip: NAND chip object
619 * @ofs: offset from device start
620 * @allowbbt: 1, if its allowed to access the bbt area
621 *
622 * Check, if the block is bad. Either by reading the bad block table or
623 * calling of the scan function.
624 */
nand_block_checkbad(struct nand_chip * chip,loff_t ofs,int allowbbt)625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
626 {
627 /* Return info from the table */
628 if (chip->bbt)
629 return nand_isbad_bbt(chip, ofs, allowbbt);
630
631 return nand_isbad_bbm(chip, ofs);
632 }
633
634 /**
635 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
636 * @chip: NAND chip structure
637 * @timeout_ms: Timeout in ms
638 *
639 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
640 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
641 * returned.
642 *
643 * This helper is intended to be used when the controller does not have access
644 * to the NAND R/B pin.
645 *
646 * Be aware that calling this helper from an ->exec_op() implementation means
647 * ->exec_op() must be re-entrant.
648 *
649 * Return 0 if the NAND chip is ready, a negative error otherwise.
650 */
nand_soft_waitrdy(struct nand_chip * chip,unsigned long timeout_ms)651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
652 {
653 const struct nand_interface_config *conf;
654 u8 status = 0;
655 int ret;
656
657 if (!nand_has_exec_op(chip))
658 return -ENOTSUPP;
659
660 /* Wait tWB before polling the STATUS reg. */
661 conf = nand_get_interface_config(chip);
662 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
663
664 ret = nand_status_op(chip, NULL);
665 if (ret)
666 return ret;
667
668 /*
669 * +1 below is necessary because if we are now in the last fraction
670 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
671 * small jiffy fraction - possibly leading to false timeout
672 */
673 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
674 do {
675 ret = nand_read_data_op(chip, &status, sizeof(status), true,
676 false);
677 if (ret)
678 break;
679
680 if (status & NAND_STATUS_READY)
681 break;
682
683 /*
684 * Typical lowest execution time for a tR on most NANDs is 10us,
685 * use this as polling delay before doing something smarter (ie.
686 * deriving a delay from the timeout value, timeout_ms/ratio).
687 */
688 udelay(10);
689 } while (time_before(jiffies, timeout_ms));
690
691 /*
692 * We have to exit READ_STATUS mode in order to read real data on the
693 * bus in case the WAITRDY instruction is preceding a DATA_IN
694 * instruction.
695 */
696 nand_exit_status_op(chip);
697
698 if (ret)
699 return ret;
700
701 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
702 };
703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
704
705 /**
706 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
707 * @chip: NAND chip structure
708 * @gpiod: GPIO descriptor of R/B pin
709 * @timeout_ms: Timeout in ms
710 *
711 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
712 * whitin the specified timeout, -ETIMEDOUT is returned.
713 *
714 * This helper is intended to be used when the controller has access to the
715 * NAND R/B pin over GPIO.
716 *
717 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
718 */
nand_gpio_waitrdy(struct nand_chip * chip,struct gpio_desc * gpiod,unsigned long timeout_ms)719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
720 unsigned long timeout_ms)
721 {
722
723 /*
724 * Wait until R/B pin indicates chip is ready or timeout occurs.
725 * +1 below is necessary because if we are now in the last fraction
726 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
727 * small jiffy fraction - possibly leading to false timeout.
728 */
729 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
730 do {
731 if (gpiod_get_value_cansleep(gpiod))
732 return 0;
733
734 cond_resched();
735 } while (time_before(jiffies, timeout_ms));
736
737 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
738 };
739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
740
741 /**
742 * panic_nand_wait - [GENERIC] wait until the command is done
743 * @chip: NAND chip structure
744 * @timeo: timeout
745 *
746 * Wait for command done. This is a helper function for nand_wait used when
747 * we are in interrupt context. May happen when in panic and trying to write
748 * an oops through mtdoops.
749 */
panic_nand_wait(struct nand_chip * chip,unsigned long timeo)750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
751 {
752 int i;
753 for (i = 0; i < timeo; i++) {
754 if (chip->legacy.dev_ready) {
755 if (chip->legacy.dev_ready(chip))
756 break;
757 } else {
758 int ret;
759 u8 status;
760
761 ret = nand_read_data_op(chip, &status, sizeof(status),
762 true, false);
763 if (ret)
764 return;
765
766 if (status & NAND_STATUS_READY)
767 break;
768 }
769 mdelay(1);
770 }
771 }
772
nand_supports_get_features(struct nand_chip * chip,int addr)773 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
774 {
775 return (chip->parameters.supports_set_get_features &&
776 test_bit(addr, chip->parameters.get_feature_list));
777 }
778
nand_supports_set_features(struct nand_chip * chip,int addr)779 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
780 {
781 return (chip->parameters.supports_set_get_features &&
782 test_bit(addr, chip->parameters.set_feature_list));
783 }
784
785 /**
786 * nand_reset_interface - Reset data interface and timings
787 * @chip: The NAND chip
788 * @chipnr: Internal die id
789 *
790 * Reset the Data interface and timings to ONFI mode 0.
791 *
792 * Returns 0 for success or negative error code otherwise.
793 */
nand_reset_interface(struct nand_chip * chip,int chipnr)794 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
795 {
796 const struct nand_controller_ops *ops = chip->controller->ops;
797 int ret;
798
799 if (!nand_controller_can_setup_interface(chip))
800 return 0;
801
802 /*
803 * The ONFI specification says:
804 * "
805 * To transition from NV-DDR or NV-DDR2 to the SDR data
806 * interface, the host shall use the Reset (FFh) command
807 * using SDR timing mode 0. A device in any timing mode is
808 * required to recognize Reset (FFh) command issued in SDR
809 * timing mode 0.
810 * "
811 *
812 * Configure the data interface in SDR mode and set the
813 * timings to timing mode 0.
814 */
815
816 chip->current_interface_config = nand_get_reset_interface_config();
817 ret = ops->setup_interface(chip, chipnr,
818 chip->current_interface_config);
819 if (ret)
820 pr_err("Failed to configure data interface to SDR timing mode 0\n");
821
822 return ret;
823 }
824
825 /**
826 * nand_setup_interface - Setup the best data interface and timings
827 * @chip: The NAND chip
828 * @chipnr: Internal die id
829 *
830 * Configure what has been reported to be the best data interface and NAND
831 * timings supported by the chip and the driver.
832 *
833 * Returns 0 for success or negative error code otherwise.
834 */
nand_setup_interface(struct nand_chip * chip,int chipnr)835 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
836 {
837 const struct nand_controller_ops *ops = chip->controller->ops;
838 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
839 int ret;
840
841 if (!nand_controller_can_setup_interface(chip))
842 return 0;
843
844 /*
845 * A nand_reset_interface() put both the NAND chip and the NAND
846 * controller in timings mode 0. If the default mode for this chip is
847 * also 0, no need to proceed to the change again. Plus, at probe time,
848 * nand_setup_interface() uses ->set/get_features() which would
849 * fail anyway as the parameter page is not available yet.
850 */
851 if (!chip->best_interface_config)
852 return 0;
853
854 request = chip->best_interface_config->timings.mode;
855 if (nand_interface_is_sdr(chip->best_interface_config))
856 request |= ONFI_DATA_INTERFACE_SDR;
857 else
858 request |= ONFI_DATA_INTERFACE_NVDDR;
859 tmode_param[0] = request;
860
861 /* Change the mode on the chip side (if supported by the NAND chip) */
862 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
863 nand_select_target(chip, chipnr);
864 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
865 tmode_param);
866 nand_deselect_target(chip);
867 if (ret)
868 return ret;
869 }
870
871 /* Change the mode on the controller side */
872 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
873 if (ret)
874 return ret;
875
876 /* Check the mode has been accepted by the chip, if supported */
877 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
878 goto update_interface_config;
879
880 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
881 nand_select_target(chip, chipnr);
882 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
883 tmode_param);
884 nand_deselect_target(chip);
885 if (ret)
886 goto err_reset_chip;
887
888 if (request != tmode_param[0]) {
889 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
890 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
891 chip->best_interface_config->timings.mode);
892 pr_debug("NAND chip would work in %s timing mode %d\n",
893 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
894 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
895 goto err_reset_chip;
896 }
897
898 update_interface_config:
899 chip->current_interface_config = chip->best_interface_config;
900
901 return 0;
902
903 err_reset_chip:
904 /*
905 * Fallback to mode 0 if the chip explicitly did not ack the chosen
906 * timing mode.
907 */
908 nand_reset_interface(chip, chipnr);
909 nand_select_target(chip, chipnr);
910 nand_reset_op(chip);
911 nand_deselect_target(chip);
912
913 return ret;
914 }
915
916 /**
917 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
918 * NAND controller and the NAND chip support
919 * @chip: the NAND chip
920 * @iface: the interface configuration (can eventually be updated)
921 * @spec_timings: specific timings, when not fitting the ONFI specification
922 *
923 * If specific timings are provided, use them. Otherwise, retrieve supported
924 * timing modes from ONFI information.
925 */
nand_choose_best_sdr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_sdr_timings * spec_timings)926 int nand_choose_best_sdr_timings(struct nand_chip *chip,
927 struct nand_interface_config *iface,
928 struct nand_sdr_timings *spec_timings)
929 {
930 const struct nand_controller_ops *ops = chip->controller->ops;
931 int best_mode = 0, mode, ret = -EOPNOTSUPP;
932
933 iface->type = NAND_SDR_IFACE;
934
935 if (spec_timings) {
936 iface->timings.sdr = *spec_timings;
937 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
938
939 /* Verify the controller supports the requested interface */
940 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
941 iface);
942 if (!ret) {
943 chip->best_interface_config = iface;
944 return ret;
945 }
946
947 /* Fallback to slower modes */
948 best_mode = iface->timings.mode;
949 } else if (chip->parameters.onfi) {
950 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
951 }
952
953 for (mode = best_mode; mode >= 0; mode--) {
954 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
955
956 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
957 iface);
958 if (!ret) {
959 chip->best_interface_config = iface;
960 break;
961 }
962 }
963
964 return ret;
965 }
966
967 /**
968 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
969 * NAND controller and the NAND chip support
970 * @chip: the NAND chip
971 * @iface: the interface configuration (can eventually be updated)
972 * @spec_timings: specific timings, when not fitting the ONFI specification
973 *
974 * If specific timings are provided, use them. Otherwise, retrieve supported
975 * timing modes from ONFI information.
976 */
nand_choose_best_nvddr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_nvddr_timings * spec_timings)977 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
978 struct nand_interface_config *iface,
979 struct nand_nvddr_timings *spec_timings)
980 {
981 const struct nand_controller_ops *ops = chip->controller->ops;
982 int best_mode = 0, mode, ret = -EOPNOTSUPP;
983
984 iface->type = NAND_NVDDR_IFACE;
985
986 if (spec_timings) {
987 iface->timings.nvddr = *spec_timings;
988 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
989
990 /* Verify the controller supports the requested interface */
991 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
992 iface);
993 if (!ret) {
994 chip->best_interface_config = iface;
995 return ret;
996 }
997
998 /* Fallback to slower modes */
999 best_mode = iface->timings.mode;
1000 } else if (chip->parameters.onfi) {
1001 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1002 }
1003
1004 for (mode = best_mode; mode >= 0; mode--) {
1005 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1006
1007 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1008 iface);
1009 if (!ret) {
1010 chip->best_interface_config = iface;
1011 break;
1012 }
1013 }
1014
1015 return ret;
1016 }
1017
1018 /**
1019 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1020 * NAND controller and the NAND chip support
1021 * @chip: the NAND chip
1022 * @iface: the interface configuration (can eventually be updated)
1023 *
1024 * If specific timings are provided, use them. Otherwise, retrieve supported
1025 * timing modes from ONFI information.
1026 */
nand_choose_best_timings(struct nand_chip * chip,struct nand_interface_config * iface)1027 static int nand_choose_best_timings(struct nand_chip *chip,
1028 struct nand_interface_config *iface)
1029 {
1030 int ret;
1031
1032 /* Try the fastest timings: NV-DDR */
1033 ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1034 if (!ret)
1035 return 0;
1036
1037 /* Fallback to SDR timings otherwise */
1038 return nand_choose_best_sdr_timings(chip, iface, NULL);
1039 }
1040
1041 /**
1042 * nand_choose_interface_config - find the best data interface and timings
1043 * @chip: The NAND chip
1044 *
1045 * Find the best data interface and NAND timings supported by the chip
1046 * and the driver. Eventually let the NAND manufacturer driver propose his own
1047 * set of timings.
1048 *
1049 * After this function nand_chip->interface_config is initialized with the best
1050 * timing mode available.
1051 *
1052 * Returns 0 for success or negative error code otherwise.
1053 */
nand_choose_interface_config(struct nand_chip * chip)1054 static int nand_choose_interface_config(struct nand_chip *chip)
1055 {
1056 struct nand_interface_config *iface;
1057 int ret;
1058
1059 if (!nand_controller_can_setup_interface(chip))
1060 return 0;
1061
1062 iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1063 if (!iface)
1064 return -ENOMEM;
1065
1066 if (chip->ops.choose_interface_config)
1067 ret = chip->ops.choose_interface_config(chip, iface);
1068 else
1069 ret = nand_choose_best_timings(chip, iface);
1070
1071 if (ret)
1072 kfree(iface);
1073
1074 return ret;
1075 }
1076
1077 /**
1078 * nand_fill_column_cycles - fill the column cycles of an address
1079 * @chip: The NAND chip
1080 * @addrs: Array of address cycles to fill
1081 * @offset_in_page: The offset in the page
1082 *
1083 * Fills the first or the first two bytes of the @addrs field depending
1084 * on the NAND bus width and the page size.
1085 *
1086 * Returns the number of cycles needed to encode the column, or a negative
1087 * error code in case one of the arguments is invalid.
1088 */
nand_fill_column_cycles(struct nand_chip * chip,u8 * addrs,unsigned int offset_in_page)1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1090 unsigned int offset_in_page)
1091 {
1092 struct mtd_info *mtd = nand_to_mtd(chip);
1093 bool ident_stage = !mtd->writesize;
1094
1095 /* Bypass all checks during NAND identification */
1096 if (likely(!ident_stage)) {
1097 /* Make sure the offset is less than the actual page size. */
1098 if (offset_in_page > mtd->writesize + mtd->oobsize)
1099 return -EINVAL;
1100
1101 /*
1102 * On small page NANDs, there's a dedicated command to access the OOB
1103 * area, and the column address is relative to the start of the OOB
1104 * area, not the start of the page. Asjust the address accordingly.
1105 */
1106 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1107 offset_in_page -= mtd->writesize;
1108
1109 /*
1110 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1111 * wide, then it must be divided by 2.
1112 */
1113 if (chip->options & NAND_BUSWIDTH_16) {
1114 if (WARN_ON(offset_in_page % 2))
1115 return -EINVAL;
1116
1117 offset_in_page /= 2;
1118 }
1119 }
1120
1121 addrs[0] = offset_in_page;
1122
1123 /*
1124 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1125 * need 2
1126 */
1127 if (!ident_stage && mtd->writesize <= 512)
1128 return 1;
1129
1130 addrs[1] = offset_in_page >> 8;
1131
1132 return 2;
1133 }
1134
nand_sp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1135 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1136 unsigned int offset_in_page, void *buf,
1137 unsigned int len)
1138 {
1139 const struct nand_interface_config *conf =
1140 nand_get_interface_config(chip);
1141 struct mtd_info *mtd = nand_to_mtd(chip);
1142 u8 addrs[4];
1143 struct nand_op_instr instrs[] = {
1144 NAND_OP_CMD(NAND_CMD_READ0, 0),
1145 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1146 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1147 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1148 NAND_OP_DATA_IN(len, buf, 0),
1149 };
1150 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1151 int ret;
1152
1153 /* Drop the DATA_IN instruction if len is set to 0. */
1154 if (!len)
1155 op.ninstrs--;
1156
1157 if (offset_in_page >= mtd->writesize)
1158 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1159 else if (offset_in_page >= 256 &&
1160 !(chip->options & NAND_BUSWIDTH_16))
1161 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1162
1163 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1164 if (ret < 0)
1165 return ret;
1166
1167 addrs[1] = page;
1168 addrs[2] = page >> 8;
1169
1170 if (chip->options & NAND_ROW_ADDR_3) {
1171 addrs[3] = page >> 16;
1172 instrs[1].ctx.addr.naddrs++;
1173 }
1174
1175 return nand_exec_op(chip, &op);
1176 }
1177
nand_lp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1178 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1179 unsigned int offset_in_page, void *buf,
1180 unsigned int len)
1181 {
1182 const struct nand_interface_config *conf =
1183 nand_get_interface_config(chip);
1184 u8 addrs[5];
1185 struct nand_op_instr instrs[] = {
1186 NAND_OP_CMD(NAND_CMD_READ0, 0),
1187 NAND_OP_ADDR(4, addrs, 0),
1188 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1189 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1190 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1191 NAND_OP_DATA_IN(len, buf, 0),
1192 };
1193 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1194 int ret;
1195
1196 /* Drop the DATA_IN instruction if len is set to 0. */
1197 if (!len)
1198 op.ninstrs--;
1199
1200 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1201 if (ret < 0)
1202 return ret;
1203
1204 addrs[2] = page;
1205 addrs[3] = page >> 8;
1206
1207 if (chip->options & NAND_ROW_ADDR_3) {
1208 addrs[4] = page >> 16;
1209 instrs[1].ctx.addr.naddrs++;
1210 }
1211
1212 return nand_exec_op(chip, &op);
1213 }
1214
rawnand_cap_cont_reads(struct nand_chip * chip)1215 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1216 {
1217 struct nand_memory_organization *memorg;
1218 unsigned int pages_per_lun, first_lun, last_lun;
1219
1220 memorg = nanddev_get_memorg(&chip->base);
1221 pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1222 first_lun = chip->cont_read.first_page / pages_per_lun;
1223 last_lun = chip->cont_read.last_page / pages_per_lun;
1224
1225 /* Prevent sequential cache reads across LUN boundaries */
1226 if (first_lun != last_lun)
1227 chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1;
1228 else
1229 chip->cont_read.pause_page = chip->cont_read.last_page;
1230 }
1231
nand_lp_exec_cont_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len,bool check_only)1232 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1233 unsigned int offset_in_page, void *buf,
1234 unsigned int len, bool check_only)
1235 {
1236 const struct nand_interface_config *conf =
1237 nand_get_interface_config(chip);
1238 u8 addrs[5];
1239 struct nand_op_instr start_instrs[] = {
1240 NAND_OP_CMD(NAND_CMD_READ0, 0),
1241 NAND_OP_ADDR(4, addrs, 0),
1242 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1243 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1244 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1245 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1246 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1247 NAND_OP_DATA_IN(len, buf, 0),
1248 };
1249 struct nand_op_instr cont_instrs[] = {
1250 NAND_OP_CMD(page == chip->cont_read.pause_page ?
1251 NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1252 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1253 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1254 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1255 NAND_OP_DATA_IN(len, buf, 0),
1256 };
1257 struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1258 struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1259 int ret;
1260
1261 if (!len) {
1262 start_op.ninstrs--;
1263 cont_op.ninstrs--;
1264 }
1265
1266 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1267 if (ret < 0)
1268 return ret;
1269
1270 addrs[2] = page;
1271 addrs[3] = page >> 8;
1272
1273 if (chip->options & NAND_ROW_ADDR_3) {
1274 addrs[4] = page >> 16;
1275 start_instrs[1].ctx.addr.naddrs++;
1276 }
1277
1278 /* Check if cache reads are supported */
1279 if (check_only) {
1280 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1281 return -EOPNOTSUPP;
1282
1283 return 0;
1284 }
1285
1286 if (page == chip->cont_read.first_page)
1287 ret = nand_exec_op(chip, &start_op);
1288 else
1289 ret = nand_exec_op(chip, &cont_op);
1290 if (ret)
1291 return ret;
1292
1293 if (!chip->cont_read.ongoing)
1294 return 0;
1295
1296 if (page == chip->cont_read.pause_page &&
1297 page != chip->cont_read.last_page) {
1298 chip->cont_read.first_page = chip->cont_read.pause_page + 1;
1299 rawnand_cap_cont_reads(chip);
1300 } else if (page == chip->cont_read.last_page) {
1301 chip->cont_read.ongoing = false;
1302 }
1303
1304 return 0;
1305 }
1306
rawnand_cont_read_ongoing(struct nand_chip * chip,unsigned int page)1307 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1308 {
1309 return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1310 }
1311
1312 /**
1313 * nand_read_page_op - Do a READ PAGE operation
1314 * @chip: The NAND chip
1315 * @page: page to read
1316 * @offset_in_page: offset within the page
1317 * @buf: buffer used to store the data
1318 * @len: length of the buffer
1319 *
1320 * This function issues a READ PAGE operation.
1321 * This function does not select/unselect the CS line.
1322 *
1323 * Returns 0 on success, a negative error code otherwise.
1324 */
nand_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1325 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1326 unsigned int offset_in_page, void *buf, unsigned int len)
1327 {
1328 struct mtd_info *mtd = nand_to_mtd(chip);
1329
1330 if (len && !buf)
1331 return -EINVAL;
1332
1333 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1334 return -EINVAL;
1335
1336 if (nand_has_exec_op(chip)) {
1337 if (mtd->writesize > 512) {
1338 if (rawnand_cont_read_ongoing(chip, page))
1339 return nand_lp_exec_cont_read_page_op(chip, page,
1340 offset_in_page,
1341 buf, len, false);
1342 else
1343 return nand_lp_exec_read_page_op(chip, page,
1344 offset_in_page, buf,
1345 len);
1346 }
1347
1348 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1349 buf, len);
1350 }
1351
1352 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1353 if (len)
1354 chip->legacy.read_buf(chip, buf, len);
1355
1356 return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(nand_read_page_op);
1359
1360 /**
1361 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1362 * @chip: The NAND chip
1363 * @page: parameter page to read
1364 * @buf: buffer used to store the data
1365 * @len: length of the buffer
1366 *
1367 * This function issues a READ PARAMETER PAGE operation.
1368 * This function does not select/unselect the CS line.
1369 *
1370 * Returns 0 on success, a negative error code otherwise.
1371 */
nand_read_param_page_op(struct nand_chip * chip,u8 page,void * buf,unsigned int len)1372 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1373 unsigned int len)
1374 {
1375 unsigned int i;
1376 u8 *p = buf;
1377
1378 if (len && !buf)
1379 return -EINVAL;
1380
1381 if (nand_has_exec_op(chip)) {
1382 const struct nand_interface_config *conf =
1383 nand_get_interface_config(chip);
1384 struct nand_op_instr instrs[] = {
1385 NAND_OP_CMD(NAND_CMD_PARAM, 0),
1386 NAND_OP_ADDR(1, &page,
1387 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1388 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1389 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1390 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1391 };
1392 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1393
1394 /* Drop the DATA_IN instruction if len is set to 0. */
1395 if (!len)
1396 op.ninstrs--;
1397
1398 return nand_exec_op(chip, &op);
1399 }
1400
1401 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1402 for (i = 0; i < len; i++)
1403 p[i] = chip->legacy.read_byte(chip);
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1410 * @chip: The NAND chip
1411 * @offset_in_page: offset within the page
1412 * @buf: buffer used to store the data
1413 * @len: length of the buffer
1414 * @force_8bit: force 8-bit bus access
1415 *
1416 * This function issues a CHANGE READ COLUMN operation.
1417 * This function does not select/unselect the CS line.
1418 *
1419 * Returns 0 on success, a negative error code otherwise.
1420 */
nand_change_read_column_op(struct nand_chip * chip,unsigned int offset_in_page,void * buf,unsigned int len,bool force_8bit)1421 int nand_change_read_column_op(struct nand_chip *chip,
1422 unsigned int offset_in_page, void *buf,
1423 unsigned int len, bool force_8bit)
1424 {
1425 struct mtd_info *mtd = nand_to_mtd(chip);
1426 bool ident_stage = !mtd->writesize;
1427
1428 if (len && !buf)
1429 return -EINVAL;
1430
1431 if (!ident_stage) {
1432 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1433 return -EINVAL;
1434
1435 /* Small page NANDs do not support column change. */
1436 if (mtd->writesize <= 512)
1437 return -ENOTSUPP;
1438 }
1439
1440 if (nand_has_exec_op(chip)) {
1441 const struct nand_interface_config *conf =
1442 nand_get_interface_config(chip);
1443 u8 addrs[2] = {};
1444 struct nand_op_instr instrs[] = {
1445 NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1446 NAND_OP_ADDR(2, addrs, 0),
1447 NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1448 NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1449 NAND_OP_DATA_IN(len, buf, 0),
1450 };
1451 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1452 int ret;
1453
1454 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1455 if (ret < 0)
1456 return ret;
1457
1458 /* Drop the DATA_IN instruction if len is set to 0. */
1459 if (!len)
1460 op.ninstrs--;
1461
1462 instrs[3].ctx.data.force_8bit = force_8bit;
1463
1464 return nand_exec_op(chip, &op);
1465 }
1466
1467 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1468 if (len)
1469 chip->legacy.read_buf(chip, buf, len);
1470
1471 return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1474
1475 /**
1476 * nand_read_oob_op - Do a READ OOB operation
1477 * @chip: The NAND chip
1478 * @page: page to read
1479 * @offset_in_oob: offset within the OOB area
1480 * @buf: buffer used to store the data
1481 * @len: length of the buffer
1482 *
1483 * This function issues a READ OOB operation.
1484 * This function does not select/unselect the CS line.
1485 *
1486 * Returns 0 on success, a negative error code otherwise.
1487 */
nand_read_oob_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_oob,void * buf,unsigned int len)1488 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1489 unsigned int offset_in_oob, void *buf, unsigned int len)
1490 {
1491 struct mtd_info *mtd = nand_to_mtd(chip);
1492
1493 if (len && !buf)
1494 return -EINVAL;
1495
1496 if (offset_in_oob + len > mtd->oobsize)
1497 return -EINVAL;
1498
1499 if (nand_has_exec_op(chip))
1500 return nand_read_page_op(chip, page,
1501 mtd->writesize + offset_in_oob,
1502 buf, len);
1503
1504 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1505 if (len)
1506 chip->legacy.read_buf(chip, buf, len);
1507
1508 return 0;
1509 }
1510 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1511
nand_exec_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len,bool prog)1512 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1513 unsigned int offset_in_page, const void *buf,
1514 unsigned int len, bool prog)
1515 {
1516 const struct nand_interface_config *conf =
1517 nand_get_interface_config(chip);
1518 struct mtd_info *mtd = nand_to_mtd(chip);
1519 u8 addrs[5] = {};
1520 struct nand_op_instr instrs[] = {
1521 /*
1522 * The first instruction will be dropped if we're dealing
1523 * with a large page NAND and adjusted if we're dealing
1524 * with a small page NAND and the page offset is > 255.
1525 */
1526 NAND_OP_CMD(NAND_CMD_READ0, 0),
1527 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1528 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1529 NAND_OP_DATA_OUT(len, buf, 0),
1530 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1531 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1532 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1533 };
1534 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1535 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1536
1537 if (naddrs < 0)
1538 return naddrs;
1539
1540 addrs[naddrs++] = page;
1541 addrs[naddrs++] = page >> 8;
1542 if (chip->options & NAND_ROW_ADDR_3)
1543 addrs[naddrs++] = page >> 16;
1544
1545 instrs[2].ctx.addr.naddrs = naddrs;
1546
1547 /* Drop the last two instructions if we're not programming the page. */
1548 if (!prog) {
1549 op.ninstrs -= 2;
1550 /* Also drop the DATA_OUT instruction if empty. */
1551 if (!len)
1552 op.ninstrs--;
1553 }
1554
1555 if (mtd->writesize <= 512) {
1556 /*
1557 * Small pages need some more tweaking: we have to adjust the
1558 * first instruction depending on the page offset we're trying
1559 * to access.
1560 */
1561 if (offset_in_page >= mtd->writesize)
1562 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1563 else if (offset_in_page >= 256 &&
1564 !(chip->options & NAND_BUSWIDTH_16))
1565 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1566 } else {
1567 /*
1568 * Drop the first command if we're dealing with a large page
1569 * NAND.
1570 */
1571 op.instrs++;
1572 op.ninstrs--;
1573 }
1574
1575 return nand_exec_op(chip, &op);
1576 }
1577
1578 /**
1579 * nand_prog_page_begin_op - starts a PROG PAGE operation
1580 * @chip: The NAND chip
1581 * @page: page to write
1582 * @offset_in_page: offset within the page
1583 * @buf: buffer containing the data to write to the page
1584 * @len: length of the buffer
1585 *
1586 * This function issues the first half of a PROG PAGE operation.
1587 * This function does not select/unselect the CS line.
1588 *
1589 * Returns 0 on success, a negative error code otherwise.
1590 */
nand_prog_page_begin_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1591 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1592 unsigned int offset_in_page, const void *buf,
1593 unsigned int len)
1594 {
1595 struct mtd_info *mtd = nand_to_mtd(chip);
1596
1597 if (len && !buf)
1598 return -EINVAL;
1599
1600 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1601 return -EINVAL;
1602
1603 if (nand_has_exec_op(chip))
1604 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1605 len, false);
1606
1607 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1608
1609 if (buf)
1610 chip->legacy.write_buf(chip, buf, len);
1611
1612 return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1615
1616 /**
1617 * nand_prog_page_end_op - ends a PROG PAGE operation
1618 * @chip: The NAND chip
1619 *
1620 * This function issues the second half of a PROG PAGE operation.
1621 * This function does not select/unselect the CS line.
1622 *
1623 * Returns 0 on success, a negative error code otherwise.
1624 */
nand_prog_page_end_op(struct nand_chip * chip)1625 int nand_prog_page_end_op(struct nand_chip *chip)
1626 {
1627 int ret;
1628 u8 status;
1629
1630 if (nand_has_exec_op(chip)) {
1631 const struct nand_interface_config *conf =
1632 nand_get_interface_config(chip);
1633 struct nand_op_instr instrs[] = {
1634 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1635 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1636 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1637 0),
1638 };
1639 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1640
1641 ret = nand_exec_op(chip, &op);
1642 if (ret)
1643 return ret;
1644
1645 ret = nand_status_op(chip, &status);
1646 if (ret)
1647 return ret;
1648 } else {
1649 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1650 ret = chip->legacy.waitfunc(chip);
1651 if (ret < 0)
1652 return ret;
1653
1654 status = ret;
1655 }
1656
1657 if (status & NAND_STATUS_FAIL)
1658 return -EIO;
1659
1660 return 0;
1661 }
1662 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1663
1664 /**
1665 * nand_prog_page_op - Do a full PROG PAGE operation
1666 * @chip: The NAND chip
1667 * @page: page to write
1668 * @offset_in_page: offset within the page
1669 * @buf: buffer containing the data to write to the page
1670 * @len: length of the buffer
1671 *
1672 * This function issues a full PROG PAGE operation.
1673 * This function does not select/unselect the CS line.
1674 *
1675 * Returns 0 on success, a negative error code otherwise.
1676 */
nand_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1677 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1678 unsigned int offset_in_page, const void *buf,
1679 unsigned int len)
1680 {
1681 struct mtd_info *mtd = nand_to_mtd(chip);
1682 u8 status;
1683 int ret;
1684
1685 if (!len || !buf)
1686 return -EINVAL;
1687
1688 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1689 return -EINVAL;
1690
1691 if (nand_has_exec_op(chip)) {
1692 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1693 len, true);
1694 if (ret)
1695 return ret;
1696
1697 ret = nand_status_op(chip, &status);
1698 if (ret)
1699 return ret;
1700 } else {
1701 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1702 page);
1703 chip->legacy.write_buf(chip, buf, len);
1704 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1705 ret = chip->legacy.waitfunc(chip);
1706 if (ret < 0)
1707 return ret;
1708
1709 status = ret;
1710 }
1711
1712 if (status & NAND_STATUS_FAIL)
1713 return -EIO;
1714
1715 return 0;
1716 }
1717 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1718
1719 /**
1720 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1721 * @chip: The NAND chip
1722 * @offset_in_page: offset within the page
1723 * @buf: buffer containing the data to send to the NAND
1724 * @len: length of the buffer
1725 * @force_8bit: force 8-bit bus access
1726 *
1727 * This function issues a CHANGE WRITE COLUMN operation.
1728 * This function does not select/unselect the CS line.
1729 *
1730 * Returns 0 on success, a negative error code otherwise.
1731 */
nand_change_write_column_op(struct nand_chip * chip,unsigned int offset_in_page,const void * buf,unsigned int len,bool force_8bit)1732 int nand_change_write_column_op(struct nand_chip *chip,
1733 unsigned int offset_in_page,
1734 const void *buf, unsigned int len,
1735 bool force_8bit)
1736 {
1737 struct mtd_info *mtd = nand_to_mtd(chip);
1738
1739 if (len && !buf)
1740 return -EINVAL;
1741
1742 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1743 return -EINVAL;
1744
1745 /* Small page NANDs do not support column change. */
1746 if (mtd->writesize <= 512)
1747 return -ENOTSUPP;
1748
1749 if (nand_has_exec_op(chip)) {
1750 const struct nand_interface_config *conf =
1751 nand_get_interface_config(chip);
1752 u8 addrs[2];
1753 struct nand_op_instr instrs[] = {
1754 NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1755 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1756 NAND_OP_DATA_OUT(len, buf, 0),
1757 };
1758 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1759 int ret;
1760
1761 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1762 if (ret < 0)
1763 return ret;
1764
1765 instrs[2].ctx.data.force_8bit = force_8bit;
1766
1767 /* Drop the DATA_OUT instruction if len is set to 0. */
1768 if (!len)
1769 op.ninstrs--;
1770
1771 return nand_exec_op(chip, &op);
1772 }
1773
1774 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1775 if (len)
1776 chip->legacy.write_buf(chip, buf, len);
1777
1778 return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1781
1782 /**
1783 * nand_readid_op - Do a READID operation
1784 * @chip: The NAND chip
1785 * @addr: address cycle to pass after the READID command
1786 * @buf: buffer used to store the ID
1787 * @len: length of the buffer
1788 *
1789 * This function sends a READID command and reads back the ID returned by the
1790 * NAND.
1791 * This function does not select/unselect the CS line.
1792 *
1793 * Returns 0 on success, a negative error code otherwise.
1794 */
nand_readid_op(struct nand_chip * chip,u8 addr,void * buf,unsigned int len)1795 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1796 unsigned int len)
1797 {
1798 unsigned int i;
1799 u8 *id = buf, *ddrbuf = NULL;
1800
1801 if (len && !buf)
1802 return -EINVAL;
1803
1804 if (nand_has_exec_op(chip)) {
1805 const struct nand_interface_config *conf =
1806 nand_get_interface_config(chip);
1807 struct nand_op_instr instrs[] = {
1808 NAND_OP_CMD(NAND_CMD_READID, 0),
1809 NAND_OP_ADDR(1, &addr,
1810 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1811 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1812 };
1813 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1814 int ret;
1815
1816 /* READ_ID data bytes are received twice in NV-DDR mode */
1817 if (len && nand_interface_is_nvddr(conf)) {
1818 ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1819 if (!ddrbuf)
1820 return -ENOMEM;
1821
1822 instrs[2].ctx.data.len *= 2;
1823 instrs[2].ctx.data.buf.in = ddrbuf;
1824 }
1825
1826 /* Drop the DATA_IN instruction if len is set to 0. */
1827 if (!len)
1828 op.ninstrs--;
1829
1830 ret = nand_exec_op(chip, &op);
1831 if (!ret && len && nand_interface_is_nvddr(conf)) {
1832 for (i = 0; i < len; i++)
1833 id[i] = ddrbuf[i * 2];
1834 }
1835
1836 kfree(ddrbuf);
1837
1838 return ret;
1839 }
1840
1841 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1842
1843 for (i = 0; i < len; i++)
1844 id[i] = chip->legacy.read_byte(chip);
1845
1846 return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(nand_readid_op);
1849
1850 /**
1851 * nand_status_op - Do a STATUS operation
1852 * @chip: The NAND chip
1853 * @status: out variable to store the NAND status
1854 *
1855 * This function sends a STATUS command and reads back the status returned by
1856 * the NAND.
1857 * This function does not select/unselect the CS line.
1858 *
1859 * Returns 0 on success, a negative error code otherwise.
1860 */
nand_status_op(struct nand_chip * chip,u8 * status)1861 int nand_status_op(struct nand_chip *chip, u8 *status)
1862 {
1863 if (nand_has_exec_op(chip)) {
1864 const struct nand_interface_config *conf =
1865 nand_get_interface_config(chip);
1866 u8 ddrstatus[2];
1867 struct nand_op_instr instrs[] = {
1868 NAND_OP_CMD(NAND_CMD_STATUS,
1869 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1870 NAND_OP_8BIT_DATA_IN(1, status, 0),
1871 };
1872 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1873 int ret;
1874
1875 /* The status data byte will be received twice in NV-DDR mode */
1876 if (status && nand_interface_is_nvddr(conf)) {
1877 instrs[1].ctx.data.len *= 2;
1878 instrs[1].ctx.data.buf.in = ddrstatus;
1879 }
1880
1881 if (!status)
1882 op.ninstrs--;
1883
1884 ret = nand_exec_op(chip, &op);
1885 if (!ret && status && nand_interface_is_nvddr(conf))
1886 *status = ddrstatus[0];
1887
1888 return ret;
1889 }
1890
1891 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1892 if (status)
1893 *status = chip->legacy.read_byte(chip);
1894
1895 return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(nand_status_op);
1898
1899 /**
1900 * nand_exit_status_op - Exit a STATUS operation
1901 * @chip: The NAND chip
1902 *
1903 * This function sends a READ0 command to cancel the effect of the STATUS
1904 * command to avoid reading only the status until a new read command is sent.
1905 *
1906 * This function does not select/unselect the CS line.
1907 *
1908 * Returns 0 on success, a negative error code otherwise.
1909 */
nand_exit_status_op(struct nand_chip * chip)1910 int nand_exit_status_op(struct nand_chip *chip)
1911 {
1912 if (nand_has_exec_op(chip)) {
1913 struct nand_op_instr instrs[] = {
1914 NAND_OP_CMD(NAND_CMD_READ0, 0),
1915 };
1916 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1917
1918 return nand_exec_op(chip, &op);
1919 }
1920
1921 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1922
1923 return 0;
1924 }
1925 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1926
1927 /**
1928 * nand_erase_op - Do an erase operation
1929 * @chip: The NAND chip
1930 * @eraseblock: block to erase
1931 *
1932 * This function sends an ERASE command and waits for the NAND to be ready
1933 * before returning.
1934 * This function does not select/unselect the CS line.
1935 *
1936 * Returns 0 on success, a negative error code otherwise.
1937 */
nand_erase_op(struct nand_chip * chip,unsigned int eraseblock)1938 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1939 {
1940 unsigned int page = eraseblock <<
1941 (chip->phys_erase_shift - chip->page_shift);
1942 int ret;
1943 u8 status;
1944
1945 if (nand_has_exec_op(chip)) {
1946 const struct nand_interface_config *conf =
1947 nand_get_interface_config(chip);
1948 u8 addrs[3] = { page, page >> 8, page >> 16 };
1949 struct nand_op_instr instrs[] = {
1950 NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1951 NAND_OP_ADDR(2, addrs, 0),
1952 NAND_OP_CMD(NAND_CMD_ERASE2,
1953 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1954 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1955 0),
1956 };
1957 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1958
1959 if (chip->options & NAND_ROW_ADDR_3)
1960 instrs[1].ctx.addr.naddrs++;
1961
1962 ret = nand_exec_op(chip, &op);
1963 if (ret)
1964 return ret;
1965
1966 ret = nand_status_op(chip, &status);
1967 if (ret)
1968 return ret;
1969 } else {
1970 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1971 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1972
1973 ret = chip->legacy.waitfunc(chip);
1974 if (ret < 0)
1975 return ret;
1976
1977 status = ret;
1978 }
1979
1980 if (status & NAND_STATUS_FAIL)
1981 return -EIO;
1982
1983 return 0;
1984 }
1985 EXPORT_SYMBOL_GPL(nand_erase_op);
1986
1987 /**
1988 * nand_set_features_op - Do a SET FEATURES operation
1989 * @chip: The NAND chip
1990 * @feature: feature id
1991 * @data: 4 bytes of data
1992 *
1993 * This function sends a SET FEATURES command and waits for the NAND to be
1994 * ready before returning.
1995 * This function does not select/unselect the CS line.
1996 *
1997 * Returns 0 on success, a negative error code otherwise.
1998 */
nand_set_features_op(struct nand_chip * chip,u8 feature,const void * data)1999 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2000 const void *data)
2001 {
2002 const u8 *params = data;
2003 int i, ret;
2004
2005 if (nand_has_exec_op(chip)) {
2006 const struct nand_interface_config *conf =
2007 nand_get_interface_config(chip);
2008 struct nand_op_instr instrs[] = {
2009 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2010 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2011 tADL_min)),
2012 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2013 NAND_COMMON_TIMING_NS(conf,
2014 tWB_max)),
2015 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2016 0),
2017 };
2018 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2019
2020 return nand_exec_op(chip, &op);
2021 }
2022
2023 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2024 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2025 chip->legacy.write_byte(chip, params[i]);
2026
2027 ret = chip->legacy.waitfunc(chip);
2028 if (ret < 0)
2029 return ret;
2030
2031 if (ret & NAND_STATUS_FAIL)
2032 return -EIO;
2033
2034 return 0;
2035 }
2036
2037 /**
2038 * nand_get_features_op - Do a GET FEATURES operation
2039 * @chip: The NAND chip
2040 * @feature: feature id
2041 * @data: 4 bytes of data
2042 *
2043 * This function sends a GET FEATURES command and waits for the NAND to be
2044 * ready before returning.
2045 * This function does not select/unselect the CS line.
2046 *
2047 * Returns 0 on success, a negative error code otherwise.
2048 */
nand_get_features_op(struct nand_chip * chip,u8 feature,void * data)2049 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2050 void *data)
2051 {
2052 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2053 int i;
2054
2055 if (nand_has_exec_op(chip)) {
2056 const struct nand_interface_config *conf =
2057 nand_get_interface_config(chip);
2058 struct nand_op_instr instrs[] = {
2059 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2060 NAND_OP_ADDR(1, &feature,
2061 NAND_COMMON_TIMING_NS(conf, tWB_max)),
2062 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2063 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2064 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2065 data, 0),
2066 };
2067 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2068 int ret;
2069
2070 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
2071 if (nand_interface_is_nvddr(conf)) {
2072 instrs[3].ctx.data.len *= 2;
2073 instrs[3].ctx.data.buf.in = ddrbuf;
2074 }
2075
2076 ret = nand_exec_op(chip, &op);
2077 if (nand_interface_is_nvddr(conf)) {
2078 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2079 params[i] = ddrbuf[i * 2];
2080 }
2081
2082 return ret;
2083 }
2084
2085 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2086 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2087 params[i] = chip->legacy.read_byte(chip);
2088
2089 return 0;
2090 }
2091
nand_wait_rdy_op(struct nand_chip * chip,unsigned int timeout_ms,unsigned int delay_ns)2092 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2093 unsigned int delay_ns)
2094 {
2095 if (nand_has_exec_op(chip)) {
2096 struct nand_op_instr instrs[] = {
2097 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2098 PSEC_TO_NSEC(delay_ns)),
2099 };
2100 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2101
2102 return nand_exec_op(chip, &op);
2103 }
2104
2105 /* Apply delay or wait for ready/busy pin */
2106 if (!chip->legacy.dev_ready)
2107 udelay(chip->legacy.chip_delay);
2108 else
2109 nand_wait_ready(chip);
2110
2111 return 0;
2112 }
2113
2114 /**
2115 * nand_reset_op - Do a reset operation
2116 * @chip: The NAND chip
2117 *
2118 * This function sends a RESET command and waits for the NAND to be ready
2119 * before returning.
2120 * This function does not select/unselect the CS line.
2121 *
2122 * Returns 0 on success, a negative error code otherwise.
2123 */
nand_reset_op(struct nand_chip * chip)2124 int nand_reset_op(struct nand_chip *chip)
2125 {
2126 if (nand_has_exec_op(chip)) {
2127 const struct nand_interface_config *conf =
2128 nand_get_interface_config(chip);
2129 struct nand_op_instr instrs[] = {
2130 NAND_OP_CMD(NAND_CMD_RESET,
2131 NAND_COMMON_TIMING_NS(conf, tWB_max)),
2132 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2133 0),
2134 };
2135 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2136
2137 return nand_exec_op(chip, &op);
2138 }
2139
2140 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2141
2142 return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(nand_reset_op);
2145
2146 /**
2147 * nand_read_data_op - Read data from the NAND
2148 * @chip: The NAND chip
2149 * @buf: buffer used to store the data
2150 * @len: length of the buffer
2151 * @force_8bit: force 8-bit bus access
2152 * @check_only: do not actually run the command, only checks if the
2153 * controller driver supports it
2154 *
2155 * This function does a raw data read on the bus. Usually used after launching
2156 * another NAND operation like nand_read_page_op().
2157 * This function does not select/unselect the CS line.
2158 *
2159 * Returns 0 on success, a negative error code otherwise.
2160 */
nand_read_data_op(struct nand_chip * chip,void * buf,unsigned int len,bool force_8bit,bool check_only)2161 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2162 bool force_8bit, bool check_only)
2163 {
2164 if (!len || (!check_only && !buf))
2165 return -EINVAL;
2166
2167 if (nand_has_exec_op(chip)) {
2168 const struct nand_interface_config *conf =
2169 nand_get_interface_config(chip);
2170 struct nand_op_instr instrs[] = {
2171 NAND_OP_DATA_IN(len, buf, 0),
2172 };
2173 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2174 u8 *ddrbuf = NULL;
2175 int ret, i;
2176
2177 instrs[0].ctx.data.force_8bit = force_8bit;
2178
2179 /*
2180 * Parameter payloads (ID, status, features, etc) do not go
2181 * through the same pipeline as regular data, hence the
2182 * force_8bit flag must be set and this also indicates that in
2183 * case NV-DDR timings are being used the data will be received
2184 * twice.
2185 */
2186 if (force_8bit && nand_interface_is_nvddr(conf)) {
2187 ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2188 if (!ddrbuf)
2189 return -ENOMEM;
2190
2191 instrs[0].ctx.data.len *= 2;
2192 instrs[0].ctx.data.buf.in = ddrbuf;
2193 }
2194
2195 if (check_only) {
2196 ret = nand_check_op(chip, &op);
2197 kfree(ddrbuf);
2198 return ret;
2199 }
2200
2201 ret = nand_exec_op(chip, &op);
2202 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2203 u8 *dst = buf;
2204
2205 for (i = 0; i < len; i++)
2206 dst[i] = ddrbuf[i * 2];
2207 }
2208
2209 kfree(ddrbuf);
2210
2211 return ret;
2212 }
2213
2214 if (check_only)
2215 return 0;
2216
2217 if (force_8bit) {
2218 u8 *p = buf;
2219 unsigned int i;
2220
2221 for (i = 0; i < len; i++)
2222 p[i] = chip->legacy.read_byte(chip);
2223 } else {
2224 chip->legacy.read_buf(chip, buf, len);
2225 }
2226
2227 return 0;
2228 }
2229 EXPORT_SYMBOL_GPL(nand_read_data_op);
2230
2231 /**
2232 * nand_write_data_op - Write data from the NAND
2233 * @chip: The NAND chip
2234 * @buf: buffer containing the data to send on the bus
2235 * @len: length of the buffer
2236 * @force_8bit: force 8-bit bus access
2237 *
2238 * This function does a raw data write on the bus. Usually used after launching
2239 * another NAND operation like nand_write_page_begin_op().
2240 * This function does not select/unselect the CS line.
2241 *
2242 * Returns 0 on success, a negative error code otherwise.
2243 */
nand_write_data_op(struct nand_chip * chip,const void * buf,unsigned int len,bool force_8bit)2244 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2245 unsigned int len, bool force_8bit)
2246 {
2247 if (!len || !buf)
2248 return -EINVAL;
2249
2250 if (nand_has_exec_op(chip)) {
2251 struct nand_op_instr instrs[] = {
2252 NAND_OP_DATA_OUT(len, buf, 0),
2253 };
2254 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2255
2256 instrs[0].ctx.data.force_8bit = force_8bit;
2257
2258 return nand_exec_op(chip, &op);
2259 }
2260
2261 if (force_8bit) {
2262 const u8 *p = buf;
2263 unsigned int i;
2264
2265 for (i = 0; i < len; i++)
2266 chip->legacy.write_byte(chip, p[i]);
2267 } else {
2268 chip->legacy.write_buf(chip, buf, len);
2269 }
2270
2271 return 0;
2272 }
2273 EXPORT_SYMBOL_GPL(nand_write_data_op);
2274
2275 /**
2276 * struct nand_op_parser_ctx - Context used by the parser
2277 * @instrs: array of all the instructions that must be addressed
2278 * @ninstrs: length of the @instrs array
2279 * @subop: Sub-operation to be passed to the NAND controller
2280 *
2281 * This structure is used by the core to split NAND operations into
2282 * sub-operations that can be handled by the NAND controller.
2283 */
2284 struct nand_op_parser_ctx {
2285 const struct nand_op_instr *instrs;
2286 unsigned int ninstrs;
2287 struct nand_subop subop;
2288 };
2289
2290 /**
2291 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2292 * @pat: the parser pattern element that matches @instr
2293 * @instr: pointer to the instruction to check
2294 * @start_offset: this is an in/out parameter. If @instr has already been
2295 * split, then @start_offset is the offset from which to start
2296 * (either an address cycle or an offset in the data buffer).
2297 * Conversely, if the function returns true (ie. instr must be
2298 * split), this parameter is updated to point to the first
2299 * data/address cycle that has not been taken care of.
2300 *
2301 * Some NAND controllers are limited and cannot send X address cycles with a
2302 * unique operation, or cannot read/write more than Y bytes at the same time.
2303 * In this case, split the instruction that does not fit in a single
2304 * controller-operation into two or more chunks.
2305 *
2306 * Returns true if the instruction must be split, false otherwise.
2307 * The @start_offset parameter is also updated to the offset at which the next
2308 * bundle of instruction must start (if an address or a data instruction).
2309 */
2310 static bool
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem * pat,const struct nand_op_instr * instr,unsigned int * start_offset)2311 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2312 const struct nand_op_instr *instr,
2313 unsigned int *start_offset)
2314 {
2315 switch (pat->type) {
2316 case NAND_OP_ADDR_INSTR:
2317 if (!pat->ctx.addr.maxcycles)
2318 break;
2319
2320 if (instr->ctx.addr.naddrs - *start_offset >
2321 pat->ctx.addr.maxcycles) {
2322 *start_offset += pat->ctx.addr.maxcycles;
2323 return true;
2324 }
2325 break;
2326
2327 case NAND_OP_DATA_IN_INSTR:
2328 case NAND_OP_DATA_OUT_INSTR:
2329 if (!pat->ctx.data.maxlen)
2330 break;
2331
2332 if (instr->ctx.data.len - *start_offset >
2333 pat->ctx.data.maxlen) {
2334 *start_offset += pat->ctx.data.maxlen;
2335 return true;
2336 }
2337 break;
2338
2339 default:
2340 break;
2341 }
2342
2343 return false;
2344 }
2345
2346 /**
2347 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2348 * remaining in the parser context
2349 * @pat: the pattern to test
2350 * @ctx: the parser context structure to match with the pattern @pat
2351 *
2352 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2353 * Returns true if this is the case, false ortherwise. When true is returned,
2354 * @ctx->subop is updated with the set of instructions to be passed to the
2355 * controller driver.
2356 */
2357 static bool
nand_op_parser_match_pat(const struct nand_op_parser_pattern * pat,struct nand_op_parser_ctx * ctx)2358 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2359 struct nand_op_parser_ctx *ctx)
2360 {
2361 unsigned int instr_offset = ctx->subop.first_instr_start_off;
2362 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2363 const struct nand_op_instr *instr = ctx->subop.instrs;
2364 unsigned int i, ninstrs;
2365
2366 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2367 /*
2368 * The pattern instruction does not match the operation
2369 * instruction. If the instruction is marked optional in the
2370 * pattern definition, we skip the pattern element and continue
2371 * to the next one. If the element is mandatory, there's no
2372 * match and we can return false directly.
2373 */
2374 if (instr->type != pat->elems[i].type) {
2375 if (!pat->elems[i].optional)
2376 return false;
2377
2378 continue;
2379 }
2380
2381 /*
2382 * Now check the pattern element constraints. If the pattern is
2383 * not able to handle the whole instruction in a single step,
2384 * we have to split it.
2385 * The last_instr_end_off value comes back updated to point to
2386 * the position where we have to split the instruction (the
2387 * start of the next subop chunk).
2388 */
2389 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2390 &instr_offset)) {
2391 ninstrs++;
2392 i++;
2393 break;
2394 }
2395
2396 instr++;
2397 ninstrs++;
2398 instr_offset = 0;
2399 }
2400
2401 /*
2402 * This can happen if all instructions of a pattern are optional.
2403 * Still, if there's not at least one instruction handled by this
2404 * pattern, this is not a match, and we should try the next one (if
2405 * any).
2406 */
2407 if (!ninstrs)
2408 return false;
2409
2410 /*
2411 * We had a match on the pattern head, but the pattern may be longer
2412 * than the instructions we're asked to execute. We need to make sure
2413 * there's no mandatory elements in the pattern tail.
2414 */
2415 for (; i < pat->nelems; i++) {
2416 if (!pat->elems[i].optional)
2417 return false;
2418 }
2419
2420 /*
2421 * We have a match: update the subop structure accordingly and return
2422 * true.
2423 */
2424 ctx->subop.ninstrs = ninstrs;
2425 ctx->subop.last_instr_end_off = instr_offset;
2426
2427 return true;
2428 }
2429
2430 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2431 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2432 {
2433 const struct nand_op_instr *instr;
2434 char *prefix = " ";
2435 unsigned int i;
2436
2437 pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2438
2439 for (i = 0; i < ctx->ninstrs; i++) {
2440 instr = &ctx->instrs[i];
2441
2442 if (instr == &ctx->subop.instrs[0])
2443 prefix = " ->";
2444
2445 nand_op_trace(prefix, instr);
2446
2447 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2448 prefix = " ";
2449 }
2450 }
2451 #else
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2452 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2453 {
2454 /* NOP */
2455 }
2456 #endif
2457
nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx * a,const struct nand_op_parser_ctx * b)2458 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2459 const struct nand_op_parser_ctx *b)
2460 {
2461 if (a->subop.ninstrs < b->subop.ninstrs)
2462 return -1;
2463 else if (a->subop.ninstrs > b->subop.ninstrs)
2464 return 1;
2465
2466 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2467 return -1;
2468 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2469 return 1;
2470
2471 return 0;
2472 }
2473
2474 /**
2475 * nand_op_parser_exec_op - exec_op parser
2476 * @chip: the NAND chip
2477 * @parser: patterns description provided by the controller driver
2478 * @op: the NAND operation to address
2479 * @check_only: when true, the function only checks if @op can be handled but
2480 * does not execute the operation
2481 *
2482 * Helper function designed to ease integration of NAND controller drivers that
2483 * only support a limited set of instruction sequences. The supported sequences
2484 * are described in @parser, and the framework takes care of splitting @op into
2485 * multiple sub-operations (if required) and pass them back to the ->exec()
2486 * callback of the matching pattern if @check_only is set to false.
2487 *
2488 * NAND controller drivers should call this function from their own ->exec_op()
2489 * implementation.
2490 *
2491 * Returns 0 on success, a negative error code otherwise. A failure can be
2492 * caused by an unsupported operation (none of the supported patterns is able
2493 * to handle the requested operation), or an error returned by one of the
2494 * matching pattern->exec() hook.
2495 */
nand_op_parser_exec_op(struct nand_chip * chip,const struct nand_op_parser * parser,const struct nand_operation * op,bool check_only)2496 int nand_op_parser_exec_op(struct nand_chip *chip,
2497 const struct nand_op_parser *parser,
2498 const struct nand_operation *op, bool check_only)
2499 {
2500 struct nand_op_parser_ctx ctx = {
2501 .subop.cs = op->cs,
2502 .subop.instrs = op->instrs,
2503 .instrs = op->instrs,
2504 .ninstrs = op->ninstrs,
2505 };
2506 unsigned int i;
2507
2508 while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2509 const struct nand_op_parser_pattern *pattern;
2510 struct nand_op_parser_ctx best_ctx;
2511 int ret, best_pattern = -1;
2512
2513 for (i = 0; i < parser->npatterns; i++) {
2514 struct nand_op_parser_ctx test_ctx = ctx;
2515
2516 pattern = &parser->patterns[i];
2517 if (!nand_op_parser_match_pat(pattern, &test_ctx))
2518 continue;
2519
2520 if (best_pattern >= 0 &&
2521 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2522 continue;
2523
2524 best_pattern = i;
2525 best_ctx = test_ctx;
2526 }
2527
2528 if (best_pattern < 0) {
2529 pr_debug("->exec_op() parser: pattern not found!\n");
2530 return -ENOTSUPP;
2531 }
2532
2533 ctx = best_ctx;
2534 nand_op_parser_trace(&ctx);
2535
2536 if (!check_only) {
2537 pattern = &parser->patterns[best_pattern];
2538 ret = pattern->exec(chip, &ctx.subop);
2539 if (ret)
2540 return ret;
2541 }
2542
2543 /*
2544 * Update the context structure by pointing to the start of the
2545 * next subop.
2546 */
2547 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2548 if (ctx.subop.last_instr_end_off)
2549 ctx.subop.instrs -= 1;
2550
2551 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2552 }
2553
2554 return 0;
2555 }
2556 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2557
nand_instr_is_data(const struct nand_op_instr * instr)2558 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2559 {
2560 return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2561 instr->type == NAND_OP_DATA_OUT_INSTR);
2562 }
2563
nand_subop_instr_is_valid(const struct nand_subop * subop,unsigned int instr_idx)2564 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2565 unsigned int instr_idx)
2566 {
2567 return subop && instr_idx < subop->ninstrs;
2568 }
2569
nand_subop_get_start_off(const struct nand_subop * subop,unsigned int instr_idx)2570 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2571 unsigned int instr_idx)
2572 {
2573 if (instr_idx)
2574 return 0;
2575
2576 return subop->first_instr_start_off;
2577 }
2578
2579 /**
2580 * nand_subop_get_addr_start_off - Get the start offset in an address array
2581 * @subop: The entire sub-operation
2582 * @instr_idx: Index of the instruction inside the sub-operation
2583 *
2584 * During driver development, one could be tempted to directly use the
2585 * ->addr.addrs field of address instructions. This is wrong as address
2586 * instructions might be split.
2587 *
2588 * Given an address instruction, returns the offset of the first cycle to issue.
2589 */
nand_subop_get_addr_start_off(const struct nand_subop * subop,unsigned int instr_idx)2590 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2591 unsigned int instr_idx)
2592 {
2593 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2594 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2595 return 0;
2596
2597 return nand_subop_get_start_off(subop, instr_idx);
2598 }
2599 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2600
2601 /**
2602 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2603 * @subop: The entire sub-operation
2604 * @instr_idx: Index of the instruction inside the sub-operation
2605 *
2606 * During driver development, one could be tempted to directly use the
2607 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2608 * might be split.
2609 *
2610 * Given an address instruction, returns the number of address cycle to issue.
2611 */
nand_subop_get_num_addr_cyc(const struct nand_subop * subop,unsigned int instr_idx)2612 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2613 unsigned int instr_idx)
2614 {
2615 int start_off, end_off;
2616
2617 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2618 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2619 return 0;
2620
2621 start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2622
2623 if (instr_idx == subop->ninstrs - 1 &&
2624 subop->last_instr_end_off)
2625 end_off = subop->last_instr_end_off;
2626 else
2627 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2628
2629 return end_off - start_off;
2630 }
2631 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2632
2633 /**
2634 * nand_subop_get_data_start_off - Get the start offset in a data array
2635 * @subop: The entire sub-operation
2636 * @instr_idx: Index of the instruction inside the sub-operation
2637 *
2638 * During driver development, one could be tempted to directly use the
2639 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2640 * instructions might be split.
2641 *
2642 * Given a data instruction, returns the offset to start from.
2643 */
nand_subop_get_data_start_off(const struct nand_subop * subop,unsigned int instr_idx)2644 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2645 unsigned int instr_idx)
2646 {
2647 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2648 !nand_instr_is_data(&subop->instrs[instr_idx])))
2649 return 0;
2650
2651 return nand_subop_get_start_off(subop, instr_idx);
2652 }
2653 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2654
2655 /**
2656 * nand_subop_get_data_len - Get the number of bytes to retrieve
2657 * @subop: The entire sub-operation
2658 * @instr_idx: Index of the instruction inside the sub-operation
2659 *
2660 * During driver development, one could be tempted to directly use the
2661 * ->data->len field of a data instruction. This is wrong as data instructions
2662 * might be split.
2663 *
2664 * Returns the length of the chunk of data to send/receive.
2665 */
nand_subop_get_data_len(const struct nand_subop * subop,unsigned int instr_idx)2666 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2667 unsigned int instr_idx)
2668 {
2669 int start_off = 0, end_off;
2670
2671 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2672 !nand_instr_is_data(&subop->instrs[instr_idx])))
2673 return 0;
2674
2675 start_off = nand_subop_get_data_start_off(subop, instr_idx);
2676
2677 if (instr_idx == subop->ninstrs - 1 &&
2678 subop->last_instr_end_off)
2679 end_off = subop->last_instr_end_off;
2680 else
2681 end_off = subop->instrs[instr_idx].ctx.data.len;
2682
2683 return end_off - start_off;
2684 }
2685 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2686
2687 /**
2688 * nand_reset - Reset and initialize a NAND device
2689 * @chip: The NAND chip
2690 * @chipnr: Internal die id
2691 *
2692 * Save the timings data structure, then apply SDR timings mode 0 (see
2693 * nand_reset_interface for details), do the reset operation, and apply
2694 * back the previous timings.
2695 *
2696 * Returns 0 on success, a negative error code otherwise.
2697 */
nand_reset(struct nand_chip * chip,int chipnr)2698 int nand_reset(struct nand_chip *chip, int chipnr)
2699 {
2700 int ret;
2701
2702 ret = nand_reset_interface(chip, chipnr);
2703 if (ret)
2704 return ret;
2705
2706 /*
2707 * The CS line has to be released before we can apply the new NAND
2708 * interface settings, hence this weird nand_select_target()
2709 * nand_deselect_target() dance.
2710 */
2711 nand_select_target(chip, chipnr);
2712 ret = nand_reset_op(chip);
2713 nand_deselect_target(chip);
2714 if (ret)
2715 return ret;
2716
2717 ret = nand_setup_interface(chip, chipnr);
2718 if (ret)
2719 return ret;
2720
2721 return 0;
2722 }
2723 EXPORT_SYMBOL_GPL(nand_reset);
2724
2725 /**
2726 * nand_get_features - wrapper to perform a GET_FEATURE
2727 * @chip: NAND chip info structure
2728 * @addr: feature address
2729 * @subfeature_param: the subfeature parameters, a four bytes array
2730 *
2731 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2732 * operation cannot be handled.
2733 */
nand_get_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2734 int nand_get_features(struct nand_chip *chip, int addr,
2735 u8 *subfeature_param)
2736 {
2737 if (!nand_supports_get_features(chip, addr))
2738 return -ENOTSUPP;
2739
2740 if (chip->legacy.get_features)
2741 return chip->legacy.get_features(chip, addr, subfeature_param);
2742
2743 return nand_get_features_op(chip, addr, subfeature_param);
2744 }
2745
2746 /**
2747 * nand_set_features - wrapper to perform a SET_FEATURE
2748 * @chip: NAND chip info structure
2749 * @addr: feature address
2750 * @subfeature_param: the subfeature parameters, a four bytes array
2751 *
2752 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2753 * operation cannot be handled.
2754 */
nand_set_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2755 int nand_set_features(struct nand_chip *chip, int addr,
2756 u8 *subfeature_param)
2757 {
2758 if (!nand_supports_set_features(chip, addr))
2759 return -ENOTSUPP;
2760
2761 if (chip->legacy.set_features)
2762 return chip->legacy.set_features(chip, addr, subfeature_param);
2763
2764 return nand_set_features_op(chip, addr, subfeature_param);
2765 }
2766
2767 /**
2768 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2769 * @buf: buffer to test
2770 * @len: buffer length
2771 * @bitflips_threshold: maximum number of bitflips
2772 *
2773 * Check if a buffer contains only 0xff, which means the underlying region
2774 * has been erased and is ready to be programmed.
2775 * The bitflips_threshold specify the maximum number of bitflips before
2776 * considering the region is not erased.
2777 * Note: The logic of this function has been extracted from the memweight
2778 * implementation, except that nand_check_erased_buf function exit before
2779 * testing the whole buffer if the number of bitflips exceed the
2780 * bitflips_threshold value.
2781 *
2782 * Returns a positive number of bitflips less than or equal to
2783 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2784 * threshold.
2785 */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)2786 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2787 {
2788 const unsigned char *bitmap = buf;
2789 int bitflips = 0;
2790 int weight;
2791
2792 for (; len && ((uintptr_t)bitmap) % sizeof(long);
2793 len--, bitmap++) {
2794 weight = hweight8(*bitmap);
2795 bitflips += BITS_PER_BYTE - weight;
2796 if (unlikely(bitflips > bitflips_threshold))
2797 return -EBADMSG;
2798 }
2799
2800 for (; len >= sizeof(long);
2801 len -= sizeof(long), bitmap += sizeof(long)) {
2802 unsigned long d = *((unsigned long *)bitmap);
2803 if (d == ~0UL)
2804 continue;
2805 weight = hweight_long(d);
2806 bitflips += BITS_PER_LONG - weight;
2807 if (unlikely(bitflips > bitflips_threshold))
2808 return -EBADMSG;
2809 }
2810
2811 for (; len > 0; len--, bitmap++) {
2812 weight = hweight8(*bitmap);
2813 bitflips += BITS_PER_BYTE - weight;
2814 if (unlikely(bitflips > bitflips_threshold))
2815 return -EBADMSG;
2816 }
2817
2818 return bitflips;
2819 }
2820
2821 /**
2822 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2823 * 0xff data
2824 * @data: data buffer to test
2825 * @datalen: data length
2826 * @ecc: ECC buffer
2827 * @ecclen: ECC length
2828 * @extraoob: extra OOB buffer
2829 * @extraooblen: extra OOB length
2830 * @bitflips_threshold: maximum number of bitflips
2831 *
2832 * Check if a data buffer and its associated ECC and OOB data contains only
2833 * 0xff pattern, which means the underlying region has been erased and is
2834 * ready to be programmed.
2835 * The bitflips_threshold specify the maximum number of bitflips before
2836 * considering the region as not erased.
2837 *
2838 * Note:
2839 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2840 * different from the NAND page size. When fixing bitflips, ECC engines will
2841 * report the number of errors per chunk, and the NAND core infrastructure
2842 * expect you to return the maximum number of bitflips for the whole page.
2843 * This is why you should always use this function on a single chunk and
2844 * not on the whole page. After checking each chunk you should update your
2845 * max_bitflips value accordingly.
2846 * 2/ When checking for bitflips in erased pages you should not only check
2847 * the payload data but also their associated ECC data, because a user might
2848 * have programmed almost all bits to 1 but a few. In this case, we
2849 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
2850 * this case.
2851 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2852 * data are protected by the ECC engine.
2853 * It could also be used if you support subpages and want to attach some
2854 * extra OOB data to an ECC chunk.
2855 *
2856 * Returns a positive number of bitflips less than or equal to
2857 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2858 * threshold. In case of success, the passed buffers are filled with 0xff.
2859 */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)2860 int nand_check_erased_ecc_chunk(void *data, int datalen,
2861 void *ecc, int ecclen,
2862 void *extraoob, int extraooblen,
2863 int bitflips_threshold)
2864 {
2865 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2866
2867 data_bitflips = nand_check_erased_buf(data, datalen,
2868 bitflips_threshold);
2869 if (data_bitflips < 0)
2870 return data_bitflips;
2871
2872 bitflips_threshold -= data_bitflips;
2873
2874 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2875 if (ecc_bitflips < 0)
2876 return ecc_bitflips;
2877
2878 bitflips_threshold -= ecc_bitflips;
2879
2880 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2881 bitflips_threshold);
2882 if (extraoob_bitflips < 0)
2883 return extraoob_bitflips;
2884
2885 if (data_bitflips)
2886 memset(data, 0xff, datalen);
2887
2888 if (ecc_bitflips)
2889 memset(ecc, 0xff, ecclen);
2890
2891 if (extraoob_bitflips)
2892 memset(extraoob, 0xff, extraooblen);
2893
2894 return data_bitflips + ecc_bitflips + extraoob_bitflips;
2895 }
2896 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2897
2898 /**
2899 * nand_read_page_raw_notsupp - dummy read raw page function
2900 * @chip: nand chip info structure
2901 * @buf: buffer to store read data
2902 * @oob_required: caller requires OOB data read to chip->oob_poi
2903 * @page: page number to read
2904 *
2905 * Returns -ENOTSUPP unconditionally.
2906 */
nand_read_page_raw_notsupp(struct nand_chip * chip,u8 * buf,int oob_required,int page)2907 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2908 int oob_required, int page)
2909 {
2910 return -ENOTSUPP;
2911 }
2912
2913 /**
2914 * nand_read_page_raw - [INTERN] read raw page data without ecc
2915 * @chip: nand chip info structure
2916 * @buf: buffer to store read data
2917 * @oob_required: caller requires OOB data read to chip->oob_poi
2918 * @page: page number to read
2919 *
2920 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2921 */
nand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2922 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2923 int page)
2924 {
2925 struct mtd_info *mtd = nand_to_mtd(chip);
2926 int ret;
2927
2928 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2929 if (ret)
2930 return ret;
2931
2932 if (oob_required) {
2933 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2934 false, false);
2935 if (ret)
2936 return ret;
2937 }
2938
2939 return 0;
2940 }
2941 EXPORT_SYMBOL(nand_read_page_raw);
2942
2943 /**
2944 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2945 * @chip: NAND chip info structure
2946 * @buf: buffer to store read data
2947 * @oob_required: caller requires OOB data read to chip->oob_poi
2948 * @page: page number to read
2949 *
2950 * This is a raw page read, ie. without any error detection/correction.
2951 * Monolithic means we are requesting all the relevant data (main plus
2952 * eventually OOB) to be loaded in the NAND cache and sent over the
2953 * bus (from the NAND chip to the NAND controller) in a single
2954 * operation. This is an alternative to nand_read_page_raw(), which
2955 * first reads the main data, and if the OOB data is requested too,
2956 * then reads more data on the bus.
2957 */
nand_monolithic_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)2958 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2959 int oob_required, int page)
2960 {
2961 struct mtd_info *mtd = nand_to_mtd(chip);
2962 unsigned int size = mtd->writesize;
2963 u8 *read_buf = buf;
2964 int ret;
2965
2966 if (oob_required) {
2967 size += mtd->oobsize;
2968
2969 if (buf != chip->data_buf)
2970 read_buf = nand_get_data_buf(chip);
2971 }
2972
2973 ret = nand_read_page_op(chip, page, 0, read_buf, size);
2974 if (ret)
2975 return ret;
2976
2977 if (buf != chip->data_buf)
2978 memcpy(buf, read_buf, mtd->writesize);
2979
2980 return 0;
2981 }
2982 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2983
2984 /**
2985 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2986 * @chip: nand chip info structure
2987 * @buf: buffer to store read data
2988 * @oob_required: caller requires OOB data read to chip->oob_poi
2989 * @page: page number to read
2990 *
2991 * We need a special oob layout and handling even when OOB isn't used.
2992 */
nand_read_page_raw_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2993 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2994 int oob_required, int page)
2995 {
2996 struct mtd_info *mtd = nand_to_mtd(chip);
2997 int eccsize = chip->ecc.size;
2998 int eccbytes = chip->ecc.bytes;
2999 uint8_t *oob = chip->oob_poi;
3000 int steps, size, ret;
3001
3002 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3003 if (ret)
3004 return ret;
3005
3006 for (steps = chip->ecc.steps; steps > 0; steps--) {
3007 ret = nand_read_data_op(chip, buf, eccsize, false, false);
3008 if (ret)
3009 return ret;
3010
3011 buf += eccsize;
3012
3013 if (chip->ecc.prepad) {
3014 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3015 false, false);
3016 if (ret)
3017 return ret;
3018
3019 oob += chip->ecc.prepad;
3020 }
3021
3022 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3023 if (ret)
3024 return ret;
3025
3026 oob += eccbytes;
3027
3028 if (chip->ecc.postpad) {
3029 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3030 false, false);
3031 if (ret)
3032 return ret;
3033
3034 oob += chip->ecc.postpad;
3035 }
3036 }
3037
3038 size = mtd->oobsize - (oob - chip->oob_poi);
3039 if (size) {
3040 ret = nand_read_data_op(chip, oob, size, false, false);
3041 if (ret)
3042 return ret;
3043 }
3044
3045 return 0;
3046 }
3047
3048 /**
3049 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3050 * @chip: nand chip info structure
3051 * @buf: buffer to store read data
3052 * @oob_required: caller requires OOB data read to chip->oob_poi
3053 * @page: page number to read
3054 */
nand_read_page_swecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3055 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3056 int oob_required, int page)
3057 {
3058 struct mtd_info *mtd = nand_to_mtd(chip);
3059 int i, eccsize = chip->ecc.size, ret;
3060 int eccbytes = chip->ecc.bytes;
3061 int eccsteps = chip->ecc.steps;
3062 uint8_t *p = buf;
3063 uint8_t *ecc_calc = chip->ecc.calc_buf;
3064 uint8_t *ecc_code = chip->ecc.code_buf;
3065 unsigned int max_bitflips = 0;
3066
3067 chip->ecc.read_page_raw(chip, buf, 1, page);
3068
3069 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3070 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3071
3072 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3073 chip->ecc.total);
3074 if (ret)
3075 return ret;
3076
3077 eccsteps = chip->ecc.steps;
3078 p = buf;
3079
3080 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3081 int stat;
3082
3083 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3084 if (stat < 0) {
3085 mtd->ecc_stats.failed++;
3086 } else {
3087 mtd->ecc_stats.corrected += stat;
3088 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3089 }
3090 }
3091 return max_bitflips;
3092 }
3093
3094 /**
3095 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3096 * @chip: nand chip info structure
3097 * @data_offs: offset of requested data within the page
3098 * @readlen: data length
3099 * @bufpoi: buffer to store read data
3100 * @page: page number to read
3101 */
nand_read_subpage(struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)3102 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3103 uint32_t readlen, uint8_t *bufpoi, int page)
3104 {
3105 struct mtd_info *mtd = nand_to_mtd(chip);
3106 int start_step, end_step, num_steps, ret;
3107 uint8_t *p;
3108 int data_col_addr, i, gaps = 0;
3109 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3110 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3111 int index, section = 0;
3112 unsigned int max_bitflips = 0;
3113 struct mtd_oob_region oobregion = { };
3114
3115 /* Column address within the page aligned to ECC size (256bytes) */
3116 start_step = data_offs / chip->ecc.size;
3117 end_step = (data_offs + readlen - 1) / chip->ecc.size;
3118 num_steps = end_step - start_step + 1;
3119 index = start_step * chip->ecc.bytes;
3120
3121 /* Data size aligned to ECC ecc.size */
3122 datafrag_len = num_steps * chip->ecc.size;
3123 eccfrag_len = num_steps * chip->ecc.bytes;
3124
3125 data_col_addr = start_step * chip->ecc.size;
3126 /* If we read not a page aligned data */
3127 p = bufpoi + data_col_addr;
3128 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3129 if (ret)
3130 return ret;
3131
3132 /* Calculate ECC */
3133 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3134 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3135
3136 /*
3137 * The performance is faster if we position offsets according to
3138 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3139 */
3140 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion);
3141 if (ret)
3142 return ret;
3143
3144 if (oobregion.length < eccfrag_len)
3145 gaps = 1;
3146
3147 if (gaps) {
3148 ret = nand_change_read_column_op(chip, mtd->writesize,
3149 chip->oob_poi, mtd->oobsize,
3150 false);
3151 if (ret)
3152 return ret;
3153 } else {
3154 /*
3155 * Send the command to read the particular ECC bytes take care
3156 * about buswidth alignment in read_buf.
3157 */
3158 aligned_pos = oobregion.offset & ~(busw - 1);
3159 aligned_len = eccfrag_len;
3160 if (oobregion.offset & (busw - 1))
3161 aligned_len++;
3162 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3163 (busw - 1))
3164 aligned_len++;
3165
3166 ret = nand_change_read_column_op(chip,
3167 mtd->writesize + aligned_pos,
3168 &chip->oob_poi[aligned_pos],
3169 aligned_len, false);
3170 if (ret)
3171 return ret;
3172 }
3173
3174 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3175 chip->oob_poi, index, eccfrag_len);
3176 if (ret)
3177 return ret;
3178
3179 p = bufpoi + data_col_addr;
3180 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3181 int stat;
3182
3183 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3184 &chip->ecc.calc_buf[i]);
3185 if (stat == -EBADMSG &&
3186 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3187 /* check for empty pages with bitflips */
3188 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3189 &chip->ecc.code_buf[i],
3190 chip->ecc.bytes,
3191 NULL, 0,
3192 chip->ecc.strength);
3193 }
3194
3195 if (stat < 0) {
3196 mtd->ecc_stats.failed++;
3197 } else {
3198 mtd->ecc_stats.corrected += stat;
3199 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3200 }
3201 }
3202 return max_bitflips;
3203 }
3204
3205 /**
3206 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3207 * @chip: nand chip info structure
3208 * @buf: buffer to store read data
3209 * @oob_required: caller requires OOB data read to chip->oob_poi
3210 * @page: page number to read
3211 *
3212 * Not for syndrome calculating ECC controllers which need a special oob layout.
3213 */
nand_read_page_hwecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3214 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3215 int oob_required, int page)
3216 {
3217 struct mtd_info *mtd = nand_to_mtd(chip);
3218 int i, eccsize = chip->ecc.size, ret;
3219 int eccbytes = chip->ecc.bytes;
3220 int eccsteps = chip->ecc.steps;
3221 uint8_t *p = buf;
3222 uint8_t *ecc_calc = chip->ecc.calc_buf;
3223 uint8_t *ecc_code = chip->ecc.code_buf;
3224 unsigned int max_bitflips = 0;
3225
3226 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3227 if (ret)
3228 return ret;
3229
3230 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3231 chip->ecc.hwctl(chip, NAND_ECC_READ);
3232
3233 ret = nand_read_data_op(chip, p, eccsize, false, false);
3234 if (ret)
3235 return ret;
3236
3237 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3238 }
3239
3240 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3241 false);
3242 if (ret)
3243 return ret;
3244
3245 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3246 chip->ecc.total);
3247 if (ret)
3248 return ret;
3249
3250 eccsteps = chip->ecc.steps;
3251 p = buf;
3252
3253 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3254 int stat;
3255
3256 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3257 if (stat == -EBADMSG &&
3258 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3259 /* check for empty pages with bitflips */
3260 stat = nand_check_erased_ecc_chunk(p, eccsize,
3261 &ecc_code[i], eccbytes,
3262 NULL, 0,
3263 chip->ecc.strength);
3264 }
3265
3266 if (stat < 0) {
3267 mtd->ecc_stats.failed++;
3268 } else {
3269 mtd->ecc_stats.corrected += stat;
3270 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3271 }
3272 }
3273 return max_bitflips;
3274 }
3275
3276 /**
3277 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3278 * data read from OOB area
3279 * @chip: nand chip info structure
3280 * @buf: buffer to store read data
3281 * @oob_required: caller requires OOB data read to chip->oob_poi
3282 * @page: page number to read
3283 *
3284 * Hardware ECC for large page chips, which requires the ECC data to be
3285 * extracted from the OOB before the actual data is read.
3286 */
nand_read_page_hwecc_oob_first(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3287 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3288 int oob_required, int page)
3289 {
3290 struct mtd_info *mtd = nand_to_mtd(chip);
3291 int i, eccsize = chip->ecc.size, ret;
3292 int eccbytes = chip->ecc.bytes;
3293 int eccsteps = chip->ecc.steps;
3294 uint8_t *p = buf;
3295 uint8_t *ecc_code = chip->ecc.code_buf;
3296 unsigned int max_bitflips = 0;
3297
3298 /* Read the OOB area first */
3299 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3300 if (ret)
3301 return ret;
3302
3303 /* Move read cursor to start of page */
3304 ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3305 if (ret)
3306 return ret;
3307
3308 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3309 chip->ecc.total);
3310 if (ret)
3311 return ret;
3312
3313 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3314 int stat;
3315
3316 chip->ecc.hwctl(chip, NAND_ECC_READ);
3317
3318 ret = nand_read_data_op(chip, p, eccsize, false, false);
3319 if (ret)
3320 return ret;
3321
3322 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3323 if (stat == -EBADMSG &&
3324 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3325 /* check for empty pages with bitflips */
3326 stat = nand_check_erased_ecc_chunk(p, eccsize,
3327 &ecc_code[i],
3328 eccbytes, NULL, 0,
3329 chip->ecc.strength);
3330 }
3331
3332 if (stat < 0) {
3333 mtd->ecc_stats.failed++;
3334 } else {
3335 mtd->ecc_stats.corrected += stat;
3336 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3337 }
3338 }
3339 return max_bitflips;
3340 }
3341 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3342
3343 /**
3344 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3345 * @chip: nand chip info structure
3346 * @buf: buffer to store read data
3347 * @oob_required: caller requires OOB data read to chip->oob_poi
3348 * @page: page number to read
3349 *
3350 * The hw generator calculates the error syndrome automatically. Therefore we
3351 * need a special oob layout and handling.
3352 */
nand_read_page_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3353 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3354 int oob_required, int page)
3355 {
3356 struct mtd_info *mtd = nand_to_mtd(chip);
3357 int ret, i, eccsize = chip->ecc.size;
3358 int eccbytes = chip->ecc.bytes;
3359 int eccsteps = chip->ecc.steps;
3360 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3361 uint8_t *p = buf;
3362 uint8_t *oob = chip->oob_poi;
3363 unsigned int max_bitflips = 0;
3364
3365 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3366 if (ret)
3367 return ret;
3368
3369 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3370 int stat;
3371
3372 chip->ecc.hwctl(chip, NAND_ECC_READ);
3373
3374 ret = nand_read_data_op(chip, p, eccsize, false, false);
3375 if (ret)
3376 return ret;
3377
3378 if (chip->ecc.prepad) {
3379 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3380 false, false);
3381 if (ret)
3382 return ret;
3383
3384 oob += chip->ecc.prepad;
3385 }
3386
3387 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3388
3389 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3390 if (ret)
3391 return ret;
3392
3393 stat = chip->ecc.correct(chip, p, oob, NULL);
3394
3395 oob += eccbytes;
3396
3397 if (chip->ecc.postpad) {
3398 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3399 false, false);
3400 if (ret)
3401 return ret;
3402
3403 oob += chip->ecc.postpad;
3404 }
3405
3406 if (stat == -EBADMSG &&
3407 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3408 /* check for empty pages with bitflips */
3409 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3410 oob - eccpadbytes,
3411 eccpadbytes,
3412 NULL, 0,
3413 chip->ecc.strength);
3414 }
3415
3416 if (stat < 0) {
3417 mtd->ecc_stats.failed++;
3418 } else {
3419 mtd->ecc_stats.corrected += stat;
3420 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3421 }
3422 }
3423
3424 /* Calculate remaining oob bytes */
3425 i = mtd->oobsize - (oob - chip->oob_poi);
3426 if (i) {
3427 ret = nand_read_data_op(chip, oob, i, false, false);
3428 if (ret)
3429 return ret;
3430 }
3431
3432 return max_bitflips;
3433 }
3434
3435 /**
3436 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3437 * @chip: NAND chip object
3438 * @oob: oob destination address
3439 * @ops: oob ops structure
3440 * @len: size of oob to transfer
3441 */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)3442 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3443 struct mtd_oob_ops *ops, size_t len)
3444 {
3445 struct mtd_info *mtd = nand_to_mtd(chip);
3446 int ret;
3447
3448 switch (ops->mode) {
3449
3450 case MTD_OPS_PLACE_OOB:
3451 case MTD_OPS_RAW:
3452 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3453 return oob + len;
3454
3455 case MTD_OPS_AUTO_OOB:
3456 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3457 ops->ooboffs, len);
3458 BUG_ON(ret);
3459 return oob + len;
3460
3461 default:
3462 BUG();
3463 }
3464 return NULL;
3465 }
3466
rawnand_enable_cont_reads(struct nand_chip * chip,unsigned int page,u32 readlen,int col)3467 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3468 u32 readlen, int col)
3469 {
3470 struct mtd_info *mtd = nand_to_mtd(chip);
3471 unsigned int first_page, last_page;
3472
3473 chip->cont_read.ongoing = false;
3474
3475 if (!chip->controller->supported_op.cont_read)
3476 return;
3477
3478 /*
3479 * Don't bother making any calculations if the length is too small.
3480 * Side effect: avoids possible integer underflows below.
3481 */
3482 if (readlen < (2 * mtd->writesize))
3483 return;
3484
3485 /* Derive the page where continuous read should start (the first full page read) */
3486 first_page = page;
3487 if (col)
3488 first_page++;
3489
3490 /* Derive the page where continuous read should stop (the last full page read) */
3491 last_page = page + ((col + readlen) / mtd->writesize) - 1;
3492
3493 /* Configure and enable continuous read when suitable */
3494 if (first_page < last_page) {
3495 chip->cont_read.first_page = first_page;
3496 chip->cont_read.last_page = last_page;
3497 chip->cont_read.ongoing = true;
3498 /* May reset the ongoing flag */
3499 rawnand_cap_cont_reads(chip);
3500 }
3501 }
3502
rawnand_cont_read_skip_first_page(struct nand_chip * chip,unsigned int page)3503 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3504 {
3505 if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3506 return;
3507
3508 chip->cont_read.first_page++;
3509 if (chip->cont_read.first_page == chip->cont_read.pause_page)
3510 chip->cont_read.first_page++;
3511 if (chip->cont_read.first_page >= chip->cont_read.last_page)
3512 chip->cont_read.ongoing = false;
3513 }
3514
3515 /**
3516 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3517 * @chip: NAND chip object
3518 * @retry_mode: the retry mode to use
3519 *
3520 * Some vendors supply a special command to shift the Vt threshold, to be used
3521 * when there are too many bitflips in a page (i.e., ECC error). After setting
3522 * a new threshold, the host should retry reading the page.
3523 */
nand_setup_read_retry(struct nand_chip * chip,int retry_mode)3524 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3525 {
3526 pr_debug("setting READ RETRY mode %d\n", retry_mode);
3527
3528 if (retry_mode >= chip->read_retries)
3529 return -EINVAL;
3530
3531 if (!chip->ops.setup_read_retry)
3532 return -EOPNOTSUPP;
3533
3534 return chip->ops.setup_read_retry(chip, retry_mode);
3535 }
3536
nand_wait_readrdy(struct nand_chip * chip)3537 static void nand_wait_readrdy(struct nand_chip *chip)
3538 {
3539 const struct nand_interface_config *conf;
3540
3541 if (!(chip->options & NAND_NEED_READRDY))
3542 return;
3543
3544 conf = nand_get_interface_config(chip);
3545 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3546 }
3547
3548 /**
3549 * nand_do_read_ops - [INTERN] Read data with ECC
3550 * @chip: NAND chip object
3551 * @from: offset to read from
3552 * @ops: oob ops structure
3553 *
3554 * Internal function. Called with chip held.
3555 */
nand_do_read_ops(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3556 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3557 struct mtd_oob_ops *ops)
3558 {
3559 int chipnr, page, realpage, col, bytes, aligned, oob_required;
3560 struct mtd_info *mtd = nand_to_mtd(chip);
3561 int ret = 0;
3562 uint32_t readlen = ops->len;
3563 uint32_t oobreadlen = ops->ooblen;
3564 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3565
3566 uint8_t *bufpoi, *oob, *buf;
3567 int use_bounce_buf;
3568 unsigned int max_bitflips = 0;
3569 int retry_mode = 0;
3570 bool ecc_fail = false;
3571
3572 /* Check if the region is secured */
3573 if (nand_region_is_secured(chip, from, readlen))
3574 return -EIO;
3575
3576 chipnr = (int)(from >> chip->chip_shift);
3577 nand_select_target(chip, chipnr);
3578
3579 realpage = (int)(from >> chip->page_shift);
3580 page = realpage & chip->pagemask;
3581
3582 col = (int)(from & (mtd->writesize - 1));
3583
3584 buf = ops->datbuf;
3585 oob = ops->oobbuf;
3586 oob_required = oob ? 1 : 0;
3587
3588 if (likely(ops->mode != MTD_OPS_RAW))
3589 rawnand_enable_cont_reads(chip, page, readlen, col);
3590
3591 while (1) {
3592 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3593
3594 bytes = min(mtd->writesize - col, readlen);
3595 aligned = (bytes == mtd->writesize);
3596
3597 if (!aligned)
3598 use_bounce_buf = 1;
3599 else if (chip->options & NAND_USES_DMA)
3600 use_bounce_buf = !virt_addr_valid(buf) ||
3601 !IS_ALIGNED((unsigned long)buf,
3602 chip->buf_align);
3603 else
3604 use_bounce_buf = 0;
3605
3606 /* Is the current page in the buffer? */
3607 if (realpage != chip->pagecache.page || oob) {
3608 bufpoi = use_bounce_buf ? chip->data_buf : buf;
3609
3610 if (use_bounce_buf && aligned)
3611 pr_debug("%s: using read bounce buffer for buf@%p\n",
3612 __func__, buf);
3613
3614 read_retry:
3615 /*
3616 * Now read the page into the buffer. Absent an error,
3617 * the read methods return max bitflips per ecc step.
3618 */
3619 if (unlikely(ops->mode == MTD_OPS_RAW))
3620 ret = chip->ecc.read_page_raw(chip, bufpoi,
3621 oob_required,
3622 page);
3623 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3624 !oob)
3625 ret = chip->ecc.read_subpage(chip, col, bytes,
3626 bufpoi, page);
3627 else
3628 ret = chip->ecc.read_page(chip, bufpoi,
3629 oob_required, page);
3630 if (ret < 0) {
3631 if (use_bounce_buf)
3632 /* Invalidate page cache */
3633 chip->pagecache.page = -1;
3634 break;
3635 }
3636
3637 /*
3638 * Copy back the data in the initial buffer when reading
3639 * partial pages or when a bounce buffer is required.
3640 */
3641 if (use_bounce_buf) {
3642 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3643 !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3644 (ops->mode != MTD_OPS_RAW)) {
3645 chip->pagecache.page = realpage;
3646 chip->pagecache.bitflips = ret;
3647 } else {
3648 /* Invalidate page cache */
3649 chip->pagecache.page = -1;
3650 }
3651 memcpy(buf, bufpoi + col, bytes);
3652 }
3653
3654 if (unlikely(oob)) {
3655 int toread = min(oobreadlen, max_oobsize);
3656
3657 if (toread) {
3658 oob = nand_transfer_oob(chip, oob, ops,
3659 toread);
3660 oobreadlen -= toread;
3661 }
3662 }
3663
3664 nand_wait_readrdy(chip);
3665
3666 if (mtd->ecc_stats.failed - ecc_stats.failed) {
3667 if (retry_mode + 1 < chip->read_retries) {
3668 retry_mode++;
3669 ret = nand_setup_read_retry(chip,
3670 retry_mode);
3671 if (ret < 0)
3672 break;
3673
3674 /* Reset ecc_stats; retry */
3675 mtd->ecc_stats = ecc_stats;
3676 goto read_retry;
3677 } else {
3678 /* No more retry modes; real failure */
3679 ecc_fail = true;
3680 }
3681 }
3682
3683 buf += bytes;
3684 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3685 } else {
3686 memcpy(buf, chip->data_buf + col, bytes);
3687 buf += bytes;
3688 max_bitflips = max_t(unsigned int, max_bitflips,
3689 chip->pagecache.bitflips);
3690
3691 rawnand_cont_read_skip_first_page(chip, page);
3692 }
3693
3694 readlen -= bytes;
3695
3696 /* Reset to retry mode 0 */
3697 if (retry_mode) {
3698 ret = nand_setup_read_retry(chip, 0);
3699 if (ret < 0)
3700 break;
3701 retry_mode = 0;
3702 }
3703
3704 if (!readlen)
3705 break;
3706
3707 /* For subsequent reads align to page boundary */
3708 col = 0;
3709 /* Increment page address */
3710 realpage++;
3711
3712 page = realpage & chip->pagemask;
3713 /* Check, if we cross a chip boundary */
3714 if (!page) {
3715 chipnr++;
3716 nand_deselect_target(chip);
3717 nand_select_target(chip, chipnr);
3718 }
3719 }
3720 nand_deselect_target(chip);
3721
3722 ops->retlen = ops->len - (size_t) readlen;
3723 if (oob)
3724 ops->oobretlen = ops->ooblen - oobreadlen;
3725
3726 if (ret < 0)
3727 return ret;
3728
3729 if (ecc_fail)
3730 return -EBADMSG;
3731
3732 return max_bitflips;
3733 }
3734
3735 /**
3736 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3737 * @chip: nand chip info structure
3738 * @page: page number to read
3739 */
nand_read_oob_std(struct nand_chip * chip,int page)3740 int nand_read_oob_std(struct nand_chip *chip, int page)
3741 {
3742 struct mtd_info *mtd = nand_to_mtd(chip);
3743
3744 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3745 }
3746 EXPORT_SYMBOL(nand_read_oob_std);
3747
3748 /**
3749 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3750 * with syndromes
3751 * @chip: nand chip info structure
3752 * @page: page number to read
3753 */
nand_read_oob_syndrome(struct nand_chip * chip,int page)3754 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3755 {
3756 struct mtd_info *mtd = nand_to_mtd(chip);
3757 int length = mtd->oobsize;
3758 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3759 int eccsize = chip->ecc.size;
3760 uint8_t *bufpoi = chip->oob_poi;
3761 int i, toread, sndrnd = 0, pos, ret;
3762
3763 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3764 if (ret)
3765 return ret;
3766
3767 for (i = 0; i < chip->ecc.steps; i++) {
3768 if (sndrnd) {
3769 int ret;
3770
3771 pos = eccsize + i * (eccsize + chunk);
3772 if (mtd->writesize > 512)
3773 ret = nand_change_read_column_op(chip, pos,
3774 NULL, 0,
3775 false);
3776 else
3777 ret = nand_read_page_op(chip, page, pos, NULL,
3778 0);
3779
3780 if (ret)
3781 return ret;
3782 } else
3783 sndrnd = 1;
3784 toread = min_t(int, length, chunk);
3785
3786 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3787 if (ret)
3788 return ret;
3789
3790 bufpoi += toread;
3791 length -= toread;
3792 }
3793 if (length > 0) {
3794 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3795 if (ret)
3796 return ret;
3797 }
3798
3799 return 0;
3800 }
3801
3802 /**
3803 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3804 * @chip: nand chip info structure
3805 * @page: page number to write
3806 */
nand_write_oob_std(struct nand_chip * chip,int page)3807 int nand_write_oob_std(struct nand_chip *chip, int page)
3808 {
3809 struct mtd_info *mtd = nand_to_mtd(chip);
3810
3811 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3812 mtd->oobsize);
3813 }
3814 EXPORT_SYMBOL(nand_write_oob_std);
3815
3816 /**
3817 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3818 * with syndrome - only for large page flash
3819 * @chip: nand chip info structure
3820 * @page: page number to write
3821 */
nand_write_oob_syndrome(struct nand_chip * chip,int page)3822 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3823 {
3824 struct mtd_info *mtd = nand_to_mtd(chip);
3825 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3826 int eccsize = chip->ecc.size, length = mtd->oobsize;
3827 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3828 const uint8_t *bufpoi = chip->oob_poi;
3829
3830 /*
3831 * data-ecc-data-ecc ... ecc-oob
3832 * or
3833 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3834 */
3835 if (!chip->ecc.prepad && !chip->ecc.postpad) {
3836 pos = steps * (eccsize + chunk);
3837 steps = 0;
3838 } else
3839 pos = eccsize;
3840
3841 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3842 if (ret)
3843 return ret;
3844
3845 for (i = 0; i < steps; i++) {
3846 if (sndcmd) {
3847 if (mtd->writesize <= 512) {
3848 uint32_t fill = 0xFFFFFFFF;
3849
3850 len = eccsize;
3851 while (len > 0) {
3852 int num = min_t(int, len, 4);
3853
3854 ret = nand_write_data_op(chip, &fill,
3855 num, false);
3856 if (ret)
3857 return ret;
3858
3859 len -= num;
3860 }
3861 } else {
3862 pos = eccsize + i * (eccsize + chunk);
3863 ret = nand_change_write_column_op(chip, pos,
3864 NULL, 0,
3865 false);
3866 if (ret)
3867 return ret;
3868 }
3869 } else
3870 sndcmd = 1;
3871 len = min_t(int, length, chunk);
3872
3873 ret = nand_write_data_op(chip, bufpoi, len, false);
3874 if (ret)
3875 return ret;
3876
3877 bufpoi += len;
3878 length -= len;
3879 }
3880 if (length > 0) {
3881 ret = nand_write_data_op(chip, bufpoi, length, false);
3882 if (ret)
3883 return ret;
3884 }
3885
3886 return nand_prog_page_end_op(chip);
3887 }
3888
3889 /**
3890 * nand_do_read_oob - [INTERN] NAND read out-of-band
3891 * @chip: NAND chip object
3892 * @from: offset to read from
3893 * @ops: oob operations description structure
3894 *
3895 * NAND read out-of-band data from the spare area.
3896 */
nand_do_read_oob(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3897 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3898 struct mtd_oob_ops *ops)
3899 {
3900 struct mtd_info *mtd = nand_to_mtd(chip);
3901 unsigned int max_bitflips = 0;
3902 int page, realpage, chipnr;
3903 struct mtd_ecc_stats stats;
3904 int readlen = ops->ooblen;
3905 int len;
3906 uint8_t *buf = ops->oobbuf;
3907 int ret = 0;
3908
3909 pr_debug("%s: from = 0x%08Lx, len = %i\n",
3910 __func__, (unsigned long long)from, readlen);
3911
3912 /* Check if the region is secured */
3913 if (nand_region_is_secured(chip, from, readlen))
3914 return -EIO;
3915
3916 stats = mtd->ecc_stats;
3917
3918 len = mtd_oobavail(mtd, ops);
3919
3920 chipnr = (int)(from >> chip->chip_shift);
3921 nand_select_target(chip, chipnr);
3922
3923 /* Shift to get page */
3924 realpage = (int)(from >> chip->page_shift);
3925 page = realpage & chip->pagemask;
3926
3927 while (1) {
3928 if (ops->mode == MTD_OPS_RAW)
3929 ret = chip->ecc.read_oob_raw(chip, page);
3930 else
3931 ret = chip->ecc.read_oob(chip, page);
3932
3933 if (ret < 0)
3934 break;
3935
3936 len = min(len, readlen);
3937 buf = nand_transfer_oob(chip, buf, ops, len);
3938
3939 nand_wait_readrdy(chip);
3940
3941 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3942
3943 readlen -= len;
3944 if (!readlen)
3945 break;
3946
3947 /* Increment page address */
3948 realpage++;
3949
3950 page = realpage & chip->pagemask;
3951 /* Check, if we cross a chip boundary */
3952 if (!page) {
3953 chipnr++;
3954 nand_deselect_target(chip);
3955 nand_select_target(chip, chipnr);
3956 }
3957 }
3958 nand_deselect_target(chip);
3959
3960 ops->oobretlen = ops->ooblen - readlen;
3961
3962 if (ret < 0)
3963 return ret;
3964
3965 if (mtd->ecc_stats.failed - stats.failed)
3966 return -EBADMSG;
3967
3968 return max_bitflips;
3969 }
3970
3971 /**
3972 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3973 * @mtd: MTD device structure
3974 * @from: offset to read from
3975 * @ops: oob operation description structure
3976 *
3977 * NAND read data and/or out-of-band data.
3978 */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)3979 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3980 struct mtd_oob_ops *ops)
3981 {
3982 struct nand_chip *chip = mtd_to_nand(mtd);
3983 struct mtd_ecc_stats old_stats;
3984 int ret;
3985
3986 ops->retlen = 0;
3987
3988 if (ops->mode != MTD_OPS_PLACE_OOB &&
3989 ops->mode != MTD_OPS_AUTO_OOB &&
3990 ops->mode != MTD_OPS_RAW)
3991 return -ENOTSUPP;
3992
3993 nand_get_device(chip);
3994
3995 old_stats = mtd->ecc_stats;
3996
3997 if (!ops->datbuf)
3998 ret = nand_do_read_oob(chip, from, ops);
3999 else
4000 ret = nand_do_read_ops(chip, from, ops);
4001
4002 if (ops->stats) {
4003 ops->stats->uncorrectable_errors +=
4004 mtd->ecc_stats.failed - old_stats.failed;
4005 ops->stats->corrected_bitflips +=
4006 mtd->ecc_stats.corrected - old_stats.corrected;
4007 }
4008
4009 nand_release_device(chip);
4010 return ret;
4011 }
4012
4013 /**
4014 * nand_write_page_raw_notsupp - dummy raw page write function
4015 * @chip: nand chip info structure
4016 * @buf: data buffer
4017 * @oob_required: must write chip->oob_poi to OOB
4018 * @page: page number to write
4019 *
4020 * Returns -ENOTSUPP unconditionally.
4021 */
nand_write_page_raw_notsupp(struct nand_chip * chip,const u8 * buf,int oob_required,int page)4022 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4023 int oob_required, int page)
4024 {
4025 return -ENOTSUPP;
4026 }
4027
4028 /**
4029 * nand_write_page_raw - [INTERN] raw page write function
4030 * @chip: nand chip info structure
4031 * @buf: data buffer
4032 * @oob_required: must write chip->oob_poi to OOB
4033 * @page: page number to write
4034 *
4035 * Not for syndrome calculating ECC controllers, which use a special oob layout.
4036 */
nand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4037 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4038 int oob_required, int page)
4039 {
4040 struct mtd_info *mtd = nand_to_mtd(chip);
4041 int ret;
4042
4043 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4044 if (ret)
4045 return ret;
4046
4047 if (oob_required) {
4048 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4049 false);
4050 if (ret)
4051 return ret;
4052 }
4053
4054 return nand_prog_page_end_op(chip);
4055 }
4056 EXPORT_SYMBOL(nand_write_page_raw);
4057
4058 /**
4059 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4060 * @chip: NAND chip info structure
4061 * @buf: data buffer to write
4062 * @oob_required: must write chip->oob_poi to OOB
4063 * @page: page number to write
4064 *
4065 * This is a raw page write, ie. without any error detection/correction.
4066 * Monolithic means we are requesting all the relevant data (main plus
4067 * eventually OOB) to be sent over the bus and effectively programmed
4068 * into the NAND chip arrays in a single operation. This is an
4069 * alternative to nand_write_page_raw(), which first sends the main
4070 * data, then eventually send the OOB data by latching more data
4071 * cycles on the NAND bus, and finally sends the program command to
4072 * synchronyze the NAND chip cache.
4073 */
nand_monolithic_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)4074 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4075 int oob_required, int page)
4076 {
4077 struct mtd_info *mtd = nand_to_mtd(chip);
4078 unsigned int size = mtd->writesize;
4079 u8 *write_buf = (u8 *)buf;
4080
4081 if (oob_required) {
4082 size += mtd->oobsize;
4083
4084 if (buf != chip->data_buf) {
4085 write_buf = nand_get_data_buf(chip);
4086 memcpy(write_buf, buf, mtd->writesize);
4087 }
4088 }
4089
4090 return nand_prog_page_op(chip, page, 0, write_buf, size);
4091 }
4092 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4093
4094 /**
4095 * nand_write_page_raw_syndrome - [INTERN] raw page write function
4096 * @chip: nand chip info structure
4097 * @buf: data buffer
4098 * @oob_required: must write chip->oob_poi to OOB
4099 * @page: page number to write
4100 *
4101 * We need a special oob layout and handling even when ECC isn't checked.
4102 */
nand_write_page_raw_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4103 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4104 const uint8_t *buf, int oob_required,
4105 int page)
4106 {
4107 struct mtd_info *mtd = nand_to_mtd(chip);
4108 int eccsize = chip->ecc.size;
4109 int eccbytes = chip->ecc.bytes;
4110 uint8_t *oob = chip->oob_poi;
4111 int steps, size, ret;
4112
4113 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4114 if (ret)
4115 return ret;
4116
4117 for (steps = chip->ecc.steps; steps > 0; steps--) {
4118 ret = nand_write_data_op(chip, buf, eccsize, false);
4119 if (ret)
4120 return ret;
4121
4122 buf += eccsize;
4123
4124 if (chip->ecc.prepad) {
4125 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4126 false);
4127 if (ret)
4128 return ret;
4129
4130 oob += chip->ecc.prepad;
4131 }
4132
4133 ret = nand_write_data_op(chip, oob, eccbytes, false);
4134 if (ret)
4135 return ret;
4136
4137 oob += eccbytes;
4138
4139 if (chip->ecc.postpad) {
4140 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4141 false);
4142 if (ret)
4143 return ret;
4144
4145 oob += chip->ecc.postpad;
4146 }
4147 }
4148
4149 size = mtd->oobsize - (oob - chip->oob_poi);
4150 if (size) {
4151 ret = nand_write_data_op(chip, oob, size, false);
4152 if (ret)
4153 return ret;
4154 }
4155
4156 return nand_prog_page_end_op(chip);
4157 }
4158 /**
4159 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4160 * @chip: nand chip info structure
4161 * @buf: data buffer
4162 * @oob_required: must write chip->oob_poi to OOB
4163 * @page: page number to write
4164 */
nand_write_page_swecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4165 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4166 int oob_required, int page)
4167 {
4168 struct mtd_info *mtd = nand_to_mtd(chip);
4169 int i, eccsize = chip->ecc.size, ret;
4170 int eccbytes = chip->ecc.bytes;
4171 int eccsteps = chip->ecc.steps;
4172 uint8_t *ecc_calc = chip->ecc.calc_buf;
4173 const uint8_t *p = buf;
4174
4175 /* Software ECC calculation */
4176 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4177 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4178
4179 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4180 chip->ecc.total);
4181 if (ret)
4182 return ret;
4183
4184 return chip->ecc.write_page_raw(chip, buf, 1, page);
4185 }
4186
4187 /**
4188 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4189 * @chip: nand chip info structure
4190 * @buf: data buffer
4191 * @oob_required: must write chip->oob_poi to OOB
4192 * @page: page number to write
4193 */
nand_write_page_hwecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4194 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4195 int oob_required, int page)
4196 {
4197 struct mtd_info *mtd = nand_to_mtd(chip);
4198 int i, eccsize = chip->ecc.size, ret;
4199 int eccbytes = chip->ecc.bytes;
4200 int eccsteps = chip->ecc.steps;
4201 uint8_t *ecc_calc = chip->ecc.calc_buf;
4202 const uint8_t *p = buf;
4203
4204 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4205 if (ret)
4206 return ret;
4207
4208 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4209 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4210
4211 ret = nand_write_data_op(chip, p, eccsize, false);
4212 if (ret)
4213 return ret;
4214
4215 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4216 }
4217
4218 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4219 chip->ecc.total);
4220 if (ret)
4221 return ret;
4222
4223 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4224 if (ret)
4225 return ret;
4226
4227 return nand_prog_page_end_op(chip);
4228 }
4229
4230
4231 /**
4232 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4233 * @chip: nand chip info structure
4234 * @offset: column address of subpage within the page
4235 * @data_len: data length
4236 * @buf: data buffer
4237 * @oob_required: must write chip->oob_poi to OOB
4238 * @page: page number to write
4239 */
nand_write_subpage_hwecc(struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)4240 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4241 uint32_t data_len, const uint8_t *buf,
4242 int oob_required, int page)
4243 {
4244 struct mtd_info *mtd = nand_to_mtd(chip);
4245 uint8_t *oob_buf = chip->oob_poi;
4246 uint8_t *ecc_calc = chip->ecc.calc_buf;
4247 int ecc_size = chip->ecc.size;
4248 int ecc_bytes = chip->ecc.bytes;
4249 int ecc_steps = chip->ecc.steps;
4250 uint32_t start_step = offset / ecc_size;
4251 uint32_t end_step = (offset + data_len - 1) / ecc_size;
4252 int oob_bytes = mtd->oobsize / ecc_steps;
4253 int step, ret;
4254
4255 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4256 if (ret)
4257 return ret;
4258
4259 for (step = 0; step < ecc_steps; step++) {
4260 /* configure controller for WRITE access */
4261 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4262
4263 /* write data (untouched subpages already masked by 0xFF) */
4264 ret = nand_write_data_op(chip, buf, ecc_size, false);
4265 if (ret)
4266 return ret;
4267
4268 /* mask ECC of un-touched subpages by padding 0xFF */
4269 if ((step < start_step) || (step > end_step))
4270 memset(ecc_calc, 0xff, ecc_bytes);
4271 else
4272 chip->ecc.calculate(chip, buf, ecc_calc);
4273
4274 /* mask OOB of un-touched subpages by padding 0xFF */
4275 /* if oob_required, preserve OOB metadata of written subpage */
4276 if (!oob_required || (step < start_step) || (step > end_step))
4277 memset(oob_buf, 0xff, oob_bytes);
4278
4279 buf += ecc_size;
4280 ecc_calc += ecc_bytes;
4281 oob_buf += oob_bytes;
4282 }
4283
4284 /* copy calculated ECC for whole page to chip->buffer->oob */
4285 /* this include masked-value(0xFF) for unwritten subpages */
4286 ecc_calc = chip->ecc.calc_buf;
4287 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4288 chip->ecc.total);
4289 if (ret)
4290 return ret;
4291
4292 /* write OOB buffer to NAND device */
4293 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4294 if (ret)
4295 return ret;
4296
4297 return nand_prog_page_end_op(chip);
4298 }
4299
4300
4301 /**
4302 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4303 * @chip: nand chip info structure
4304 * @buf: data buffer
4305 * @oob_required: must write chip->oob_poi to OOB
4306 * @page: page number to write
4307 *
4308 * The hw generator calculates the error syndrome automatically. Therefore we
4309 * need a special oob layout and handling.
4310 */
nand_write_page_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4311 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4312 int oob_required, int page)
4313 {
4314 struct mtd_info *mtd = nand_to_mtd(chip);
4315 int i, eccsize = chip->ecc.size;
4316 int eccbytes = chip->ecc.bytes;
4317 int eccsteps = chip->ecc.steps;
4318 const uint8_t *p = buf;
4319 uint8_t *oob = chip->oob_poi;
4320 int ret;
4321
4322 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4323 if (ret)
4324 return ret;
4325
4326 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4327 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4328
4329 ret = nand_write_data_op(chip, p, eccsize, false);
4330 if (ret)
4331 return ret;
4332
4333 if (chip->ecc.prepad) {
4334 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4335 false);
4336 if (ret)
4337 return ret;
4338
4339 oob += chip->ecc.prepad;
4340 }
4341
4342 chip->ecc.calculate(chip, p, oob);
4343
4344 ret = nand_write_data_op(chip, oob, eccbytes, false);
4345 if (ret)
4346 return ret;
4347
4348 oob += eccbytes;
4349
4350 if (chip->ecc.postpad) {
4351 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4352 false);
4353 if (ret)
4354 return ret;
4355
4356 oob += chip->ecc.postpad;
4357 }
4358 }
4359
4360 /* Calculate remaining oob bytes */
4361 i = mtd->oobsize - (oob - chip->oob_poi);
4362 if (i) {
4363 ret = nand_write_data_op(chip, oob, i, false);
4364 if (ret)
4365 return ret;
4366 }
4367
4368 return nand_prog_page_end_op(chip);
4369 }
4370
4371 /**
4372 * nand_write_page - write one page
4373 * @chip: NAND chip descriptor
4374 * @offset: address offset within the page
4375 * @data_len: length of actual data to be written
4376 * @buf: the data to write
4377 * @oob_required: must write chip->oob_poi to OOB
4378 * @page: page number to write
4379 * @raw: use _raw version of write_page
4380 */
nand_write_page(struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)4381 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4382 int data_len, const uint8_t *buf, int oob_required,
4383 int page, int raw)
4384 {
4385 struct mtd_info *mtd = nand_to_mtd(chip);
4386 int status, subpage;
4387
4388 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4389 chip->ecc.write_subpage)
4390 subpage = offset || (data_len < mtd->writesize);
4391 else
4392 subpage = 0;
4393
4394 if (unlikely(raw))
4395 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4396 page);
4397 else if (subpage)
4398 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4399 oob_required, page);
4400 else
4401 status = chip->ecc.write_page(chip, buf, oob_required, page);
4402
4403 if (status < 0)
4404 return status;
4405
4406 return 0;
4407 }
4408
4409 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
4410
4411 /**
4412 * nand_do_write_ops - [INTERN] NAND write with ECC
4413 * @chip: NAND chip object
4414 * @to: offset to write to
4415 * @ops: oob operations description structure
4416 *
4417 * NAND write with ECC.
4418 */
nand_do_write_ops(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)4419 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4420 struct mtd_oob_ops *ops)
4421 {
4422 struct mtd_info *mtd = nand_to_mtd(chip);
4423 int chipnr, realpage, page, column;
4424 uint32_t writelen = ops->len;
4425
4426 uint32_t oobwritelen = ops->ooblen;
4427 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4428
4429 uint8_t *oob = ops->oobbuf;
4430 uint8_t *buf = ops->datbuf;
4431 int ret;
4432 int oob_required = oob ? 1 : 0;
4433
4434 ops->retlen = 0;
4435 if (!writelen)
4436 return 0;
4437
4438 /* Reject writes, which are not page aligned */
4439 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4440 pr_notice("%s: attempt to write non page aligned data\n",
4441 __func__);
4442 return -EINVAL;
4443 }
4444
4445 /* Check if the region is secured */
4446 if (nand_region_is_secured(chip, to, writelen))
4447 return -EIO;
4448
4449 column = to & (mtd->writesize - 1);
4450
4451 chipnr = (int)(to >> chip->chip_shift);
4452 nand_select_target(chip, chipnr);
4453
4454 /* Check, if it is write protected */
4455 if (nand_check_wp(chip)) {
4456 ret = -EIO;
4457 goto err_out;
4458 }
4459
4460 realpage = (int)(to >> chip->page_shift);
4461 page = realpage & chip->pagemask;
4462
4463 /* Invalidate the page cache, when we write to the cached page */
4464 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4465 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4466 chip->pagecache.page = -1;
4467
4468 /* Don't allow multipage oob writes with offset */
4469 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4470 ret = -EINVAL;
4471 goto err_out;
4472 }
4473
4474 while (1) {
4475 int bytes = mtd->writesize;
4476 uint8_t *wbuf = buf;
4477 int use_bounce_buf;
4478 int part_pagewr = (column || writelen < mtd->writesize);
4479
4480 if (part_pagewr)
4481 use_bounce_buf = 1;
4482 else if (chip->options & NAND_USES_DMA)
4483 use_bounce_buf = !virt_addr_valid(buf) ||
4484 !IS_ALIGNED((unsigned long)buf,
4485 chip->buf_align);
4486 else
4487 use_bounce_buf = 0;
4488
4489 /*
4490 * Copy the data from the initial buffer when doing partial page
4491 * writes or when a bounce buffer is required.
4492 */
4493 if (use_bounce_buf) {
4494 pr_debug("%s: using write bounce buffer for buf@%p\n",
4495 __func__, buf);
4496 if (part_pagewr)
4497 bytes = min_t(int, bytes - column, writelen);
4498 wbuf = nand_get_data_buf(chip);
4499 memset(wbuf, 0xff, mtd->writesize);
4500 memcpy(&wbuf[column], buf, bytes);
4501 }
4502
4503 if (unlikely(oob)) {
4504 size_t len = min(oobwritelen, oobmaxlen);
4505 oob = nand_fill_oob(chip, oob, len, ops);
4506 oobwritelen -= len;
4507 } else {
4508 /* We still need to erase leftover OOB data */
4509 memset(chip->oob_poi, 0xff, mtd->oobsize);
4510 }
4511
4512 ret = nand_write_page(chip, column, bytes, wbuf,
4513 oob_required, page,
4514 (ops->mode == MTD_OPS_RAW));
4515 if (ret)
4516 break;
4517
4518 writelen -= bytes;
4519 if (!writelen)
4520 break;
4521
4522 column = 0;
4523 buf += bytes;
4524 realpage++;
4525
4526 page = realpage & chip->pagemask;
4527 /* Check, if we cross a chip boundary */
4528 if (!page) {
4529 chipnr++;
4530 nand_deselect_target(chip);
4531 nand_select_target(chip, chipnr);
4532 }
4533 }
4534
4535 ops->retlen = ops->len - writelen;
4536 if (unlikely(oob))
4537 ops->oobretlen = ops->ooblen;
4538
4539 err_out:
4540 nand_deselect_target(chip);
4541 return ret;
4542 }
4543
4544 /**
4545 * panic_nand_write - [MTD Interface] NAND write with ECC
4546 * @mtd: MTD device structure
4547 * @to: offset to write to
4548 * @len: number of bytes to write
4549 * @retlen: pointer to variable to store the number of written bytes
4550 * @buf: the data to write
4551 *
4552 * NAND write with ECC. Used when performing writes in interrupt context, this
4553 * may for example be called by mtdoops when writing an oops while in panic.
4554 */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)4555 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4556 size_t *retlen, const uint8_t *buf)
4557 {
4558 struct nand_chip *chip = mtd_to_nand(mtd);
4559 int chipnr = (int)(to >> chip->chip_shift);
4560 struct mtd_oob_ops ops;
4561 int ret;
4562
4563 nand_select_target(chip, chipnr);
4564
4565 /* Wait for the device to get ready */
4566 panic_nand_wait(chip, 400);
4567
4568 memset(&ops, 0, sizeof(ops));
4569 ops.len = len;
4570 ops.datbuf = (uint8_t *)buf;
4571 ops.mode = MTD_OPS_PLACE_OOB;
4572
4573 ret = nand_do_write_ops(chip, to, &ops);
4574
4575 *retlen = ops.retlen;
4576 return ret;
4577 }
4578
4579 /**
4580 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4581 * @mtd: MTD device structure
4582 * @to: offset to write to
4583 * @ops: oob operation description structure
4584 */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)4585 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4586 struct mtd_oob_ops *ops)
4587 {
4588 struct nand_chip *chip = mtd_to_nand(mtd);
4589 int ret = 0;
4590
4591 ops->retlen = 0;
4592
4593 nand_get_device(chip);
4594
4595 switch (ops->mode) {
4596 case MTD_OPS_PLACE_OOB:
4597 case MTD_OPS_AUTO_OOB:
4598 case MTD_OPS_RAW:
4599 break;
4600
4601 default:
4602 goto out;
4603 }
4604
4605 if (!ops->datbuf)
4606 ret = nand_do_write_oob(chip, to, ops);
4607 else
4608 ret = nand_do_write_ops(chip, to, ops);
4609
4610 out:
4611 nand_release_device(chip);
4612 return ret;
4613 }
4614
4615 /**
4616 * nand_erase - [MTD Interface] erase block(s)
4617 * @mtd: MTD device structure
4618 * @instr: erase instruction
4619 *
4620 * Erase one ore more blocks.
4621 */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)4622 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4623 {
4624 return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4625 }
4626
4627 /**
4628 * nand_erase_nand - [INTERN] erase block(s)
4629 * @chip: NAND chip object
4630 * @instr: erase instruction
4631 * @allowbbt: allow erasing the bbt area
4632 *
4633 * Erase one ore more blocks.
4634 */
nand_erase_nand(struct nand_chip * chip,struct erase_info * instr,int allowbbt)4635 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4636 int allowbbt)
4637 {
4638 int page, pages_per_block, ret, chipnr;
4639 loff_t len;
4640
4641 pr_debug("%s: start = 0x%012llx, len = %llu\n",
4642 __func__, (unsigned long long)instr->addr,
4643 (unsigned long long)instr->len);
4644
4645 if (check_offs_len(chip, instr->addr, instr->len))
4646 return -EINVAL;
4647
4648 /* Check if the region is secured */
4649 if (nand_region_is_secured(chip, instr->addr, instr->len))
4650 return -EIO;
4651
4652 /* Grab the lock and see if the device is available */
4653 nand_get_device(chip);
4654
4655 /* Shift to get first page */
4656 page = (int)(instr->addr >> chip->page_shift);
4657 chipnr = (int)(instr->addr >> chip->chip_shift);
4658
4659 /* Calculate pages in each block */
4660 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4661
4662 /* Select the NAND device */
4663 nand_select_target(chip, chipnr);
4664
4665 /* Check, if it is write protected */
4666 if (nand_check_wp(chip)) {
4667 pr_debug("%s: device is write protected!\n",
4668 __func__);
4669 ret = -EIO;
4670 goto erase_exit;
4671 }
4672
4673 /* Loop through the pages */
4674 len = instr->len;
4675
4676 while (len) {
4677 loff_t ofs = (loff_t)page << chip->page_shift;
4678
4679 /* Check if we have a bad block, we do not erase bad blocks! */
4680 if (nand_block_checkbad(chip, ((loff_t) page) <<
4681 chip->page_shift, allowbbt)) {
4682 pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4683 __func__, (unsigned long long)ofs);
4684 ret = -EIO;
4685 goto erase_exit;
4686 }
4687
4688 /*
4689 * Invalidate the page cache, if we erase the block which
4690 * contains the current cached page.
4691 */
4692 if (page <= chip->pagecache.page && chip->pagecache.page <
4693 (page + pages_per_block))
4694 chip->pagecache.page = -1;
4695
4696 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4697 (chip->phys_erase_shift - chip->page_shift));
4698 if (ret) {
4699 pr_debug("%s: failed erase, page 0x%08x\n",
4700 __func__, page);
4701 instr->fail_addr = ofs;
4702 goto erase_exit;
4703 }
4704
4705 /* Increment page address and decrement length */
4706 len -= (1ULL << chip->phys_erase_shift);
4707 page += pages_per_block;
4708
4709 /* Check, if we cross a chip boundary */
4710 if (len && !(page & chip->pagemask)) {
4711 chipnr++;
4712 nand_deselect_target(chip);
4713 nand_select_target(chip, chipnr);
4714 }
4715 }
4716
4717 ret = 0;
4718 erase_exit:
4719
4720 /* Deselect and wake up anyone waiting on the device */
4721 nand_deselect_target(chip);
4722 nand_release_device(chip);
4723
4724 /* Return more or less happy */
4725 return ret;
4726 }
4727
4728 /**
4729 * nand_sync - [MTD Interface] sync
4730 * @mtd: MTD device structure
4731 *
4732 * Sync is actually a wait for chip ready function.
4733 */
nand_sync(struct mtd_info * mtd)4734 static void nand_sync(struct mtd_info *mtd)
4735 {
4736 struct nand_chip *chip = mtd_to_nand(mtd);
4737
4738 pr_debug("%s: called\n", __func__);
4739
4740 /* Grab the lock and see if the device is available */
4741 nand_get_device(chip);
4742 /* Release it and go back */
4743 nand_release_device(chip);
4744 }
4745
4746 /**
4747 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4748 * @mtd: MTD device structure
4749 * @offs: offset relative to mtd start
4750 */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)4751 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4752 {
4753 struct nand_chip *chip = mtd_to_nand(mtd);
4754 int chipnr = (int)(offs >> chip->chip_shift);
4755 int ret;
4756
4757 /* Select the NAND device */
4758 nand_get_device(chip);
4759
4760 nand_select_target(chip, chipnr);
4761
4762 ret = nand_block_checkbad(chip, offs, 0);
4763
4764 nand_deselect_target(chip);
4765 nand_release_device(chip);
4766
4767 return ret;
4768 }
4769
4770 /**
4771 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4772 * @mtd: MTD device structure
4773 * @ofs: offset relative to mtd start
4774 */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)4775 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4776 {
4777 int ret;
4778
4779 ret = nand_block_isbad(mtd, ofs);
4780 if (ret) {
4781 /* If it was bad already, return success and do nothing */
4782 if (ret > 0)
4783 return 0;
4784 return ret;
4785 }
4786
4787 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4788 }
4789
4790 /**
4791 * nand_suspend - [MTD Interface] Suspend the NAND flash
4792 * @mtd: MTD device structure
4793 *
4794 * Returns 0 for success or negative error code otherwise.
4795 */
nand_suspend(struct mtd_info * mtd)4796 static int nand_suspend(struct mtd_info *mtd)
4797 {
4798 struct nand_chip *chip = mtd_to_nand(mtd);
4799 int ret = 0;
4800
4801 mutex_lock(&chip->lock);
4802 if (chip->ops.suspend)
4803 ret = chip->ops.suspend(chip);
4804 if (!ret)
4805 chip->suspended = 1;
4806 mutex_unlock(&chip->lock);
4807
4808 return ret;
4809 }
4810
4811 /**
4812 * nand_resume - [MTD Interface] Resume the NAND flash
4813 * @mtd: MTD device structure
4814 */
nand_resume(struct mtd_info * mtd)4815 static void nand_resume(struct mtd_info *mtd)
4816 {
4817 struct nand_chip *chip = mtd_to_nand(mtd);
4818
4819 mutex_lock(&chip->lock);
4820 if (chip->suspended) {
4821 if (chip->ops.resume)
4822 chip->ops.resume(chip);
4823 chip->suspended = 0;
4824 } else {
4825 pr_err("%s called for a chip which is not in suspended state\n",
4826 __func__);
4827 }
4828 mutex_unlock(&chip->lock);
4829
4830 wake_up_all(&chip->resume_wq);
4831 }
4832
4833 /**
4834 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4835 * prevent further operations
4836 * @mtd: MTD device structure
4837 */
nand_shutdown(struct mtd_info * mtd)4838 static void nand_shutdown(struct mtd_info *mtd)
4839 {
4840 nand_suspend(mtd);
4841 }
4842
4843 /**
4844 * nand_lock - [MTD Interface] Lock the NAND flash
4845 * @mtd: MTD device structure
4846 * @ofs: offset byte address
4847 * @len: number of bytes to lock (must be a multiple of block/page size)
4848 */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4849 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4850 {
4851 struct nand_chip *chip = mtd_to_nand(mtd);
4852
4853 if (!chip->ops.lock_area)
4854 return -ENOTSUPP;
4855
4856 return chip->ops.lock_area(chip, ofs, len);
4857 }
4858
4859 /**
4860 * nand_unlock - [MTD Interface] Unlock the NAND flash
4861 * @mtd: MTD device structure
4862 * @ofs: offset byte address
4863 * @len: number of bytes to unlock (must be a multiple of block/page size)
4864 */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4865 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4866 {
4867 struct nand_chip *chip = mtd_to_nand(mtd);
4868
4869 if (!chip->ops.unlock_area)
4870 return -ENOTSUPP;
4871
4872 return chip->ops.unlock_area(chip, ofs, len);
4873 }
4874
4875 /* Set default functions */
nand_set_defaults(struct nand_chip * chip)4876 static void nand_set_defaults(struct nand_chip *chip)
4877 {
4878 /* If no controller is provided, use the dummy, legacy one. */
4879 if (!chip->controller) {
4880 chip->controller = &chip->legacy.dummy_controller;
4881 nand_controller_init(chip->controller);
4882 }
4883
4884 nand_legacy_set_defaults(chip);
4885
4886 if (!chip->buf_align)
4887 chip->buf_align = 1;
4888 }
4889
4890 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)4891 void sanitize_string(uint8_t *s, size_t len)
4892 {
4893 ssize_t i;
4894
4895 /* Null terminate */
4896 s[len - 1] = 0;
4897
4898 /* Remove non printable chars */
4899 for (i = 0; i < len - 1; i++) {
4900 if (s[i] < ' ' || s[i] > 127)
4901 s[i] = '?';
4902 }
4903
4904 /* Remove trailing spaces */
4905 strim(s);
4906 }
4907
4908 /*
4909 * nand_id_has_period - Check if an ID string has a given wraparound period
4910 * @id_data: the ID string
4911 * @arrlen: the length of the @id_data array
4912 * @period: the period of repitition
4913 *
4914 * Check if an ID string is repeated within a given sequence of bytes at
4915 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4916 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4917 * if the repetition has a period of @period; otherwise, returns zero.
4918 */
nand_id_has_period(u8 * id_data,int arrlen,int period)4919 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4920 {
4921 int i, j;
4922 for (i = 0; i < period; i++)
4923 for (j = i + period; j < arrlen; j += period)
4924 if (id_data[i] != id_data[j])
4925 return 0;
4926 return 1;
4927 }
4928
4929 /*
4930 * nand_id_len - Get the length of an ID string returned by CMD_READID
4931 * @id_data: the ID string
4932 * @arrlen: the length of the @id_data array
4933
4934 * Returns the length of the ID string, according to known wraparound/trailing
4935 * zero patterns. If no pattern exists, returns the length of the array.
4936 */
nand_id_len(u8 * id_data,int arrlen)4937 static int nand_id_len(u8 *id_data, int arrlen)
4938 {
4939 int last_nonzero, period;
4940
4941 /* Find last non-zero byte */
4942 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4943 if (id_data[last_nonzero])
4944 break;
4945
4946 /* All zeros */
4947 if (last_nonzero < 0)
4948 return 0;
4949
4950 /* Calculate wraparound period */
4951 for (period = 1; period < arrlen; period++)
4952 if (nand_id_has_period(id_data, arrlen, period))
4953 break;
4954
4955 /* There's a repeated pattern */
4956 if (period < arrlen)
4957 return period;
4958
4959 /* There are trailing zeros */
4960 if (last_nonzero < arrlen - 1)
4961 return last_nonzero + 1;
4962
4963 /* No pattern detected */
4964 return arrlen;
4965 }
4966
4967 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)4968 static int nand_get_bits_per_cell(u8 cellinfo)
4969 {
4970 int bits;
4971
4972 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4973 bits >>= NAND_CI_CELLTYPE_SHIFT;
4974 return bits + 1;
4975 }
4976
4977 /*
4978 * Many new NAND share similar device ID codes, which represent the size of the
4979 * chip. The rest of the parameters must be decoded according to generic or
4980 * manufacturer-specific "extended ID" decoding patterns.
4981 */
nand_decode_ext_id(struct nand_chip * chip)4982 void nand_decode_ext_id(struct nand_chip *chip)
4983 {
4984 struct nand_memory_organization *memorg;
4985 struct mtd_info *mtd = nand_to_mtd(chip);
4986 int extid;
4987 u8 *id_data = chip->id.data;
4988
4989 memorg = nanddev_get_memorg(&chip->base);
4990
4991 /* The 3rd id byte holds MLC / multichip data */
4992 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4993 /* The 4th id byte is the important one */
4994 extid = id_data[3];
4995
4996 /* Calc pagesize */
4997 memorg->pagesize = 1024 << (extid & 0x03);
4998 mtd->writesize = memorg->pagesize;
4999 extid >>= 2;
5000 /* Calc oobsize */
5001 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5002 mtd->oobsize = memorg->oobsize;
5003 extid >>= 2;
5004 /* Calc blocksize. Blocksize is multiples of 64KiB */
5005 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
5006 memorg->pagesize;
5007 mtd->erasesize = (64 * 1024) << (extid & 0x03);
5008 extid >>= 2;
5009 /* Get buswidth information */
5010 if (extid & 0x1)
5011 chip->options |= NAND_BUSWIDTH_16;
5012 }
5013 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5014
5015 /*
5016 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5017 * decodes a matching ID table entry and assigns the MTD size parameters for
5018 * the chip.
5019 */
nand_decode_id(struct nand_chip * chip,struct nand_flash_dev * type)5020 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5021 {
5022 struct mtd_info *mtd = nand_to_mtd(chip);
5023 struct nand_memory_organization *memorg;
5024
5025 memorg = nanddev_get_memorg(&chip->base);
5026
5027 memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5028 mtd->erasesize = type->erasesize;
5029 memorg->pagesize = type->pagesize;
5030 mtd->writesize = memorg->pagesize;
5031 memorg->oobsize = memorg->pagesize / 32;
5032 mtd->oobsize = memorg->oobsize;
5033
5034 /* All legacy ID NAND are small-page, SLC */
5035 memorg->bits_per_cell = 1;
5036 }
5037
5038 /*
5039 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5040 * heuristic patterns using various detected parameters (e.g., manufacturer,
5041 * page size, cell-type information).
5042 */
nand_decode_bbm_options(struct nand_chip * chip)5043 static void nand_decode_bbm_options(struct nand_chip *chip)
5044 {
5045 struct mtd_info *mtd = nand_to_mtd(chip);
5046
5047 /* Set the bad block position */
5048 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5049 chip->badblockpos = NAND_BBM_POS_LARGE;
5050 else
5051 chip->badblockpos = NAND_BBM_POS_SMALL;
5052 }
5053
is_full_id_nand(struct nand_flash_dev * type)5054 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5055 {
5056 return type->id_len;
5057 }
5058
find_full_id_nand(struct nand_chip * chip,struct nand_flash_dev * type)5059 static bool find_full_id_nand(struct nand_chip *chip,
5060 struct nand_flash_dev *type)
5061 {
5062 struct nand_device *base = &chip->base;
5063 struct nand_ecc_props requirements;
5064 struct mtd_info *mtd = nand_to_mtd(chip);
5065 struct nand_memory_organization *memorg;
5066 u8 *id_data = chip->id.data;
5067
5068 memorg = nanddev_get_memorg(&chip->base);
5069
5070 if (!strncmp(type->id, id_data, type->id_len)) {
5071 memorg->pagesize = type->pagesize;
5072 mtd->writesize = memorg->pagesize;
5073 memorg->pages_per_eraseblock = type->erasesize /
5074 type->pagesize;
5075 mtd->erasesize = type->erasesize;
5076 memorg->oobsize = type->oobsize;
5077 mtd->oobsize = memorg->oobsize;
5078
5079 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5080 memorg->eraseblocks_per_lun =
5081 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5082 memorg->pagesize *
5083 memorg->pages_per_eraseblock);
5084 chip->options |= type->options;
5085 requirements.strength = NAND_ECC_STRENGTH(type);
5086 requirements.step_size = NAND_ECC_STEP(type);
5087 nanddev_set_ecc_requirements(base, &requirements);
5088
5089 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5090 if (!chip->parameters.model)
5091 return false;
5092
5093 return true;
5094 }
5095 return false;
5096 }
5097
5098 /*
5099 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5100 * compliant and does not have a full-id or legacy-id entry in the nand_ids
5101 * table.
5102 */
nand_manufacturer_detect(struct nand_chip * chip)5103 static void nand_manufacturer_detect(struct nand_chip *chip)
5104 {
5105 /*
5106 * Try manufacturer detection if available and use
5107 * nand_decode_ext_id() otherwise.
5108 */
5109 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5110 chip->manufacturer.desc->ops->detect) {
5111 struct nand_memory_organization *memorg;
5112
5113 memorg = nanddev_get_memorg(&chip->base);
5114
5115 /* The 3rd id byte holds MLC / multichip data */
5116 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5117 chip->manufacturer.desc->ops->detect(chip);
5118 } else {
5119 nand_decode_ext_id(chip);
5120 }
5121 }
5122
5123 /*
5124 * Manufacturer initialization. This function is called for all NANDs including
5125 * ONFI and JEDEC compliant ones.
5126 * Manufacturer drivers should put all their specific initialization code in
5127 * their ->init() hook.
5128 */
nand_manufacturer_init(struct nand_chip * chip)5129 static int nand_manufacturer_init(struct nand_chip *chip)
5130 {
5131 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5132 !chip->manufacturer.desc->ops->init)
5133 return 0;
5134
5135 return chip->manufacturer.desc->ops->init(chip);
5136 }
5137
5138 /*
5139 * Manufacturer cleanup. This function is called for all NANDs including
5140 * ONFI and JEDEC compliant ones.
5141 * Manufacturer drivers should put all their specific cleanup code in their
5142 * ->cleanup() hook.
5143 */
nand_manufacturer_cleanup(struct nand_chip * chip)5144 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5145 {
5146 /* Release manufacturer private data */
5147 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5148 chip->manufacturer.desc->ops->cleanup)
5149 chip->manufacturer.desc->ops->cleanup(chip);
5150 }
5151
5152 static const char *
nand_manufacturer_name(const struct nand_manufacturer_desc * manufacturer_desc)5153 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5154 {
5155 return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5156 }
5157
rawnand_check_data_only_read_support(struct nand_chip * chip)5158 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5159 {
5160 /* Use an arbitrary size for the check */
5161 if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5162 chip->controller->supported_op.data_only_read = 1;
5163 }
5164
rawnand_early_check_supported_ops(struct nand_chip * chip)5165 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5166 {
5167 /* The supported_op fields should not be set by individual drivers */
5168 WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5169
5170 if (!nand_has_exec_op(chip))
5171 return;
5172
5173 rawnand_check_data_only_read_support(chip);
5174 }
5175
rawnand_check_cont_read_support(struct nand_chip * chip)5176 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5177 {
5178 struct mtd_info *mtd = nand_to_mtd(chip);
5179
5180 if (!chip->parameters.supports_read_cache)
5181 return;
5182
5183 if (chip->read_retries)
5184 return;
5185
5186 if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5187 mtd->writesize, true))
5188 chip->controller->supported_op.cont_read = 1;
5189 }
5190
rawnand_late_check_supported_ops(struct nand_chip * chip)5191 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5192 {
5193 /* The supported_op fields should not be set by individual drivers */
5194 WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5195
5196 /*
5197 * Too many devices do not support sequential cached reads with on-die
5198 * ECC correction enabled, so in this case refuse to perform the
5199 * automation.
5200 */
5201 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5202 return;
5203
5204 if (!nand_has_exec_op(chip))
5205 return;
5206
5207 /*
5208 * For now, continuous reads can only be used with the core page helpers.
5209 * This can be extended later.
5210 */
5211 if (!(chip->ecc.read_page == nand_read_page_hwecc ||
5212 chip->ecc.read_page == nand_read_page_syndrome ||
5213 chip->ecc.read_page == nand_read_page_swecc))
5214 return;
5215
5216 rawnand_check_cont_read_support(chip);
5217 }
5218
5219 /*
5220 * Get the flash and manufacturer id and lookup if the type is supported.
5221 */
nand_detect(struct nand_chip * chip,struct nand_flash_dev * type)5222 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5223 {
5224 const struct nand_manufacturer_desc *manufacturer_desc;
5225 struct mtd_info *mtd = nand_to_mtd(chip);
5226 struct nand_memory_organization *memorg;
5227 int busw, ret;
5228 u8 *id_data = chip->id.data;
5229 u8 maf_id, dev_id;
5230 u64 targetsize;
5231
5232 /*
5233 * Let's start by initializing memorg fields that might be left
5234 * unassigned by the ID-based detection logic.
5235 */
5236 memorg = nanddev_get_memorg(&chip->base);
5237 memorg->planes_per_lun = 1;
5238 memorg->luns_per_target = 1;
5239
5240 /*
5241 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5242 * after power-up.
5243 */
5244 ret = nand_reset(chip, 0);
5245 if (ret)
5246 return ret;
5247
5248 /* Select the device */
5249 nand_select_target(chip, 0);
5250
5251 rawnand_early_check_supported_ops(chip);
5252
5253 /* Send the command for reading device ID */
5254 ret = nand_readid_op(chip, 0, id_data, 2);
5255 if (ret)
5256 return ret;
5257
5258 /* Read manufacturer and device IDs */
5259 maf_id = id_data[0];
5260 dev_id = id_data[1];
5261
5262 /*
5263 * Try again to make sure, as some systems the bus-hold or other
5264 * interface concerns can cause random data which looks like a
5265 * possibly credible NAND flash to appear. If the two results do
5266 * not match, ignore the device completely.
5267 */
5268
5269 /* Read entire ID string */
5270 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5271 if (ret)
5272 return ret;
5273
5274 if (id_data[0] != maf_id || id_data[1] != dev_id) {
5275 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5276 maf_id, dev_id, id_data[0], id_data[1]);
5277 return -ENODEV;
5278 }
5279
5280 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5281
5282 /* Try to identify manufacturer */
5283 manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5284 chip->manufacturer.desc = manufacturer_desc;
5285
5286 if (!type)
5287 type = nand_flash_ids;
5288
5289 /*
5290 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5291 * override it.
5292 * This is required to make sure initial NAND bus width set by the
5293 * NAND controller driver is coherent with the real NAND bus width
5294 * (extracted by auto-detection code).
5295 */
5296 busw = chip->options & NAND_BUSWIDTH_16;
5297
5298 /*
5299 * The flag is only set (never cleared), reset it to its default value
5300 * before starting auto-detection.
5301 */
5302 chip->options &= ~NAND_BUSWIDTH_16;
5303
5304 for (; type->name != NULL; type++) {
5305 if (is_full_id_nand(type)) {
5306 if (find_full_id_nand(chip, type))
5307 goto ident_done;
5308 } else if (dev_id == type->dev_id) {
5309 break;
5310 }
5311 }
5312
5313 if (!type->name || !type->pagesize) {
5314 /* Check if the chip is ONFI compliant */
5315 ret = nand_onfi_detect(chip);
5316 if (ret < 0)
5317 return ret;
5318 else if (ret)
5319 goto ident_done;
5320
5321 /* Check if the chip is JEDEC compliant */
5322 ret = nand_jedec_detect(chip);
5323 if (ret < 0)
5324 return ret;
5325 else if (ret)
5326 goto ident_done;
5327 }
5328
5329 if (!type->name)
5330 return -ENODEV;
5331
5332 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5333 if (!chip->parameters.model)
5334 return -ENOMEM;
5335
5336 if (!type->pagesize)
5337 nand_manufacturer_detect(chip);
5338 else
5339 nand_decode_id(chip, type);
5340
5341 /* Get chip options */
5342 chip->options |= type->options;
5343
5344 memorg->eraseblocks_per_lun =
5345 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5346 memorg->pagesize *
5347 memorg->pages_per_eraseblock);
5348
5349 ident_done:
5350 if (!mtd->name)
5351 mtd->name = chip->parameters.model;
5352
5353 if (chip->options & NAND_BUSWIDTH_AUTO) {
5354 WARN_ON(busw & NAND_BUSWIDTH_16);
5355 nand_set_defaults(chip);
5356 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5357 /*
5358 * Check, if buswidth is correct. Hardware drivers should set
5359 * chip correct!
5360 */
5361 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5362 maf_id, dev_id);
5363 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5364 mtd->name);
5365 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5366 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5367 ret = -EINVAL;
5368
5369 goto free_detect_allocation;
5370 }
5371
5372 nand_decode_bbm_options(chip);
5373
5374 /* Calculate the address shift from the page size */
5375 chip->page_shift = ffs(mtd->writesize) - 1;
5376 /* Convert chipsize to number of pages per chip -1 */
5377 targetsize = nanddev_target_size(&chip->base);
5378 chip->pagemask = (targetsize >> chip->page_shift) - 1;
5379
5380 chip->bbt_erase_shift = chip->phys_erase_shift =
5381 ffs(mtd->erasesize) - 1;
5382 if (targetsize & 0xffffffff)
5383 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5384 else {
5385 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5386 chip->chip_shift += 32 - 1;
5387 }
5388
5389 if (chip->chip_shift - chip->page_shift > 16)
5390 chip->options |= NAND_ROW_ADDR_3;
5391
5392 chip->badblockbits = 8;
5393
5394 nand_legacy_adjust_cmdfunc(chip);
5395
5396 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5397 maf_id, dev_id);
5398 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5399 chip->parameters.model);
5400 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5401 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5402 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5403 return 0;
5404
5405 free_detect_allocation:
5406 kfree(chip->parameters.model);
5407
5408 return ret;
5409 }
5410
5411 static enum nand_ecc_engine_type
of_get_rawnand_ecc_engine_type_legacy(struct device_node * np)5412 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5413 {
5414 enum nand_ecc_legacy_mode {
5415 NAND_ECC_INVALID,
5416 NAND_ECC_NONE,
5417 NAND_ECC_SOFT,
5418 NAND_ECC_SOFT_BCH,
5419 NAND_ECC_HW,
5420 NAND_ECC_HW_SYNDROME,
5421 NAND_ECC_ON_DIE,
5422 };
5423 const char * const nand_ecc_legacy_modes[] = {
5424 [NAND_ECC_NONE] = "none",
5425 [NAND_ECC_SOFT] = "soft",
5426 [NAND_ECC_SOFT_BCH] = "soft_bch",
5427 [NAND_ECC_HW] = "hw",
5428 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
5429 [NAND_ECC_ON_DIE] = "on-die",
5430 };
5431 enum nand_ecc_legacy_mode eng_type;
5432 const char *pm;
5433 int err;
5434
5435 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5436 if (err)
5437 return NAND_ECC_ENGINE_TYPE_INVALID;
5438
5439 for (eng_type = NAND_ECC_NONE;
5440 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5441 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5442 switch (eng_type) {
5443 case NAND_ECC_NONE:
5444 return NAND_ECC_ENGINE_TYPE_NONE;
5445 case NAND_ECC_SOFT:
5446 case NAND_ECC_SOFT_BCH:
5447 return NAND_ECC_ENGINE_TYPE_SOFT;
5448 case NAND_ECC_HW:
5449 case NAND_ECC_HW_SYNDROME:
5450 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5451 case NAND_ECC_ON_DIE:
5452 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5453 default:
5454 break;
5455 }
5456 }
5457 }
5458
5459 return NAND_ECC_ENGINE_TYPE_INVALID;
5460 }
5461
5462 static enum nand_ecc_placement
of_get_rawnand_ecc_placement_legacy(struct device_node * np)5463 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5464 {
5465 const char *pm;
5466 int err;
5467
5468 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5469 if (!err) {
5470 if (!strcasecmp(pm, "hw_syndrome"))
5471 return NAND_ECC_PLACEMENT_INTERLEAVED;
5472 }
5473
5474 return NAND_ECC_PLACEMENT_UNKNOWN;
5475 }
5476
of_get_rawnand_ecc_algo_legacy(struct device_node * np)5477 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5478 {
5479 const char *pm;
5480 int err;
5481
5482 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5483 if (!err) {
5484 if (!strcasecmp(pm, "soft"))
5485 return NAND_ECC_ALGO_HAMMING;
5486 else if (!strcasecmp(pm, "soft_bch"))
5487 return NAND_ECC_ALGO_BCH;
5488 }
5489
5490 return NAND_ECC_ALGO_UNKNOWN;
5491 }
5492
of_get_nand_ecc_legacy_user_config(struct nand_chip * chip)5493 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5494 {
5495 struct device_node *dn = nand_get_flash_node(chip);
5496 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5497
5498 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5499 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5500
5501 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5502 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5503
5504 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5505 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5506 }
5507
of_get_nand_bus_width(struct nand_chip * chip)5508 static int of_get_nand_bus_width(struct nand_chip *chip)
5509 {
5510 struct device_node *dn = nand_get_flash_node(chip);
5511 u32 val;
5512 int ret;
5513
5514 ret = of_property_read_u32(dn, "nand-bus-width", &val);
5515 if (ret == -EINVAL)
5516 /* Buswidth defaults to 8 if the property does not exist .*/
5517 return 0;
5518 else if (ret)
5519 return ret;
5520
5521 if (val == 16)
5522 chip->options |= NAND_BUSWIDTH_16;
5523 else if (val != 8)
5524 return -EINVAL;
5525 return 0;
5526 }
5527
of_get_nand_secure_regions(struct nand_chip * chip)5528 static int of_get_nand_secure_regions(struct nand_chip *chip)
5529 {
5530 struct device_node *dn = nand_get_flash_node(chip);
5531 struct property *prop;
5532 int nr_elem, i, j;
5533
5534 /* Only proceed if the "secure-regions" property is present in DT */
5535 prop = of_find_property(dn, "secure-regions", NULL);
5536 if (!prop)
5537 return 0;
5538
5539 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5540 if (nr_elem <= 0)
5541 return nr_elem;
5542
5543 chip->nr_secure_regions = nr_elem / 2;
5544 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5545 GFP_KERNEL);
5546 if (!chip->secure_regions)
5547 return -ENOMEM;
5548
5549 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5550 of_property_read_u64_index(dn, "secure-regions", j,
5551 &chip->secure_regions[i].offset);
5552 of_property_read_u64_index(dn, "secure-regions", j + 1,
5553 &chip->secure_regions[i].size);
5554 }
5555
5556 return 0;
5557 }
5558
5559 /**
5560 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5561 * @dev: Device that will be parsed. Also used for managed allocations.
5562 * @cs_array: Array of GPIO desc pointers allocated on success
5563 * @ncs_array: Number of entries in @cs_array updated on success.
5564 * @return 0 on success, an error otherwise.
5565 */
rawnand_dt_parse_gpio_cs(struct device * dev,struct gpio_desc *** cs_array,unsigned int * ncs_array)5566 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5567 unsigned int *ncs_array)
5568 {
5569 struct gpio_desc **descs;
5570 int ndescs, i;
5571
5572 ndescs = gpiod_count(dev, "cs");
5573 if (ndescs < 0) {
5574 dev_dbg(dev, "No valid cs-gpios property\n");
5575 return 0;
5576 }
5577
5578 descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5579 if (!descs)
5580 return -ENOMEM;
5581
5582 for (i = 0; i < ndescs; i++) {
5583 descs[i] = gpiod_get_index_optional(dev, "cs", i,
5584 GPIOD_OUT_HIGH);
5585 if (IS_ERR(descs[i]))
5586 return PTR_ERR(descs[i]);
5587 }
5588
5589 *ncs_array = ndescs;
5590 *cs_array = descs;
5591
5592 return 0;
5593 }
5594 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5595
rawnand_dt_init(struct nand_chip * chip)5596 static int rawnand_dt_init(struct nand_chip *chip)
5597 {
5598 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5599 struct device_node *dn = nand_get_flash_node(chip);
5600 int ret;
5601
5602 if (!dn)
5603 return 0;
5604
5605 ret = of_get_nand_bus_width(chip);
5606 if (ret)
5607 return ret;
5608
5609 if (of_property_read_bool(dn, "nand-is-boot-medium"))
5610 chip->options |= NAND_IS_BOOT_MEDIUM;
5611
5612 if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5613 chip->bbt_options |= NAND_BBT_USE_FLASH;
5614
5615 of_get_nand_ecc_user_config(nand);
5616 of_get_nand_ecc_legacy_user_config(chip);
5617
5618 /*
5619 * If neither the user nor the NAND controller have requested a specific
5620 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5621 */
5622 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5623
5624 /*
5625 * Use the user requested engine type, unless there is none, in this
5626 * case default to the NAND controller choice, otherwise fallback to
5627 * the raw NAND default one.
5628 */
5629 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5630 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5631 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5632 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5633
5634 chip->ecc.placement = nand->ecc.user_conf.placement;
5635 chip->ecc.algo = nand->ecc.user_conf.algo;
5636 chip->ecc.strength = nand->ecc.user_conf.strength;
5637 chip->ecc.size = nand->ecc.user_conf.step_size;
5638
5639 return 0;
5640 }
5641
5642 /**
5643 * nand_scan_ident - Scan for the NAND device
5644 * @chip: NAND chip object
5645 * @maxchips: number of chips to scan for
5646 * @table: alternative NAND ID table
5647 *
5648 * This is the first phase of the normal nand_scan() function. It reads the
5649 * flash ID and sets up MTD fields accordingly.
5650 *
5651 * This helper used to be called directly from controller drivers that needed
5652 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5653 * prevented dynamic allocations during this phase which was unconvenient and
5654 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5655 */
nand_scan_ident(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * table)5656 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5657 struct nand_flash_dev *table)
5658 {
5659 struct mtd_info *mtd = nand_to_mtd(chip);
5660 struct nand_memory_organization *memorg;
5661 int nand_maf_id, nand_dev_id;
5662 unsigned int i;
5663 int ret;
5664
5665 memorg = nanddev_get_memorg(&chip->base);
5666
5667 /* Assume all dies are deselected when we enter nand_scan_ident(). */
5668 chip->cur_cs = -1;
5669
5670 mutex_init(&chip->lock);
5671 init_waitqueue_head(&chip->resume_wq);
5672
5673 /* Enforce the right timings for reset/detection */
5674 chip->current_interface_config = nand_get_reset_interface_config();
5675
5676 ret = rawnand_dt_init(chip);
5677 if (ret)
5678 return ret;
5679
5680 if (!mtd->name && mtd->dev.parent)
5681 mtd->name = dev_name(mtd->dev.parent);
5682
5683 /* Set the default functions */
5684 nand_set_defaults(chip);
5685
5686 ret = nand_legacy_check_hooks(chip);
5687 if (ret)
5688 return ret;
5689
5690 memorg->ntargets = maxchips;
5691
5692 /* Read the flash type */
5693 ret = nand_detect(chip, table);
5694 if (ret) {
5695 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5696 pr_warn("No NAND device found\n");
5697 nand_deselect_target(chip);
5698 return ret;
5699 }
5700
5701 nand_maf_id = chip->id.data[0];
5702 nand_dev_id = chip->id.data[1];
5703
5704 nand_deselect_target(chip);
5705
5706 /* Check for a chip array */
5707 for (i = 1; i < maxchips; i++) {
5708 u8 id[2];
5709
5710 /* See comment in nand_get_flash_type for reset */
5711 ret = nand_reset(chip, i);
5712 if (ret)
5713 break;
5714
5715 nand_select_target(chip, i);
5716 /* Send the command for reading device ID */
5717 ret = nand_readid_op(chip, 0, id, sizeof(id));
5718 if (ret)
5719 break;
5720 /* Read manufacturer and device IDs */
5721 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5722 nand_deselect_target(chip);
5723 break;
5724 }
5725 nand_deselect_target(chip);
5726 }
5727 if (i > 1)
5728 pr_info("%d chips detected\n", i);
5729
5730 /* Store the number of chips and calc total size for mtd */
5731 memorg->ntargets = i;
5732 mtd->size = i * nanddev_target_size(&chip->base);
5733
5734 return 0;
5735 }
5736
nand_scan_ident_cleanup(struct nand_chip * chip)5737 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5738 {
5739 kfree(chip->parameters.model);
5740 kfree(chip->parameters.onfi);
5741 }
5742
rawnand_sw_hamming_init(struct nand_chip * chip)5743 int rawnand_sw_hamming_init(struct nand_chip *chip)
5744 {
5745 struct nand_ecc_sw_hamming_conf *engine_conf;
5746 struct nand_device *base = &chip->base;
5747 int ret;
5748
5749 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5750 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5751 base->ecc.user_conf.strength = chip->ecc.strength;
5752 base->ecc.user_conf.step_size = chip->ecc.size;
5753
5754 ret = nand_ecc_sw_hamming_init_ctx(base);
5755 if (ret)
5756 return ret;
5757
5758 engine_conf = base->ecc.ctx.priv;
5759
5760 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5761 engine_conf->sm_order = true;
5762
5763 chip->ecc.size = base->ecc.ctx.conf.step_size;
5764 chip->ecc.strength = base->ecc.ctx.conf.strength;
5765 chip->ecc.total = base->ecc.ctx.total;
5766 chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5767 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5768
5769 return 0;
5770 }
5771 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5772
rawnand_sw_hamming_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5773 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5774 const unsigned char *buf,
5775 unsigned char *code)
5776 {
5777 struct nand_device *base = &chip->base;
5778
5779 return nand_ecc_sw_hamming_calculate(base, buf, code);
5780 }
5781 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5782
rawnand_sw_hamming_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5783 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5784 unsigned char *buf,
5785 unsigned char *read_ecc,
5786 unsigned char *calc_ecc)
5787 {
5788 struct nand_device *base = &chip->base;
5789
5790 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5791 }
5792 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5793
rawnand_sw_hamming_cleanup(struct nand_chip * chip)5794 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5795 {
5796 struct nand_device *base = &chip->base;
5797
5798 nand_ecc_sw_hamming_cleanup_ctx(base);
5799 }
5800 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5801
rawnand_sw_bch_init(struct nand_chip * chip)5802 int rawnand_sw_bch_init(struct nand_chip *chip)
5803 {
5804 struct nand_device *base = &chip->base;
5805 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5806 int ret;
5807
5808 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5809 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5810 base->ecc.user_conf.step_size = chip->ecc.size;
5811 base->ecc.user_conf.strength = chip->ecc.strength;
5812
5813 ret = nand_ecc_sw_bch_init_ctx(base);
5814 if (ret)
5815 return ret;
5816
5817 chip->ecc.size = ecc_conf->step_size;
5818 chip->ecc.strength = ecc_conf->strength;
5819 chip->ecc.total = base->ecc.ctx.total;
5820 chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5821 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5822
5823 return 0;
5824 }
5825 EXPORT_SYMBOL(rawnand_sw_bch_init);
5826
rawnand_sw_bch_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5827 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5828 const unsigned char *buf,
5829 unsigned char *code)
5830 {
5831 struct nand_device *base = &chip->base;
5832
5833 return nand_ecc_sw_bch_calculate(base, buf, code);
5834 }
5835
rawnand_sw_bch_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5836 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5837 unsigned char *read_ecc, unsigned char *calc_ecc)
5838 {
5839 struct nand_device *base = &chip->base;
5840
5841 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5842 }
5843 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5844
rawnand_sw_bch_cleanup(struct nand_chip * chip)5845 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5846 {
5847 struct nand_device *base = &chip->base;
5848
5849 nand_ecc_sw_bch_cleanup_ctx(base);
5850 }
5851 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5852
nand_set_ecc_on_host_ops(struct nand_chip * chip)5853 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5854 {
5855 struct nand_ecc_ctrl *ecc = &chip->ecc;
5856
5857 switch (ecc->placement) {
5858 case NAND_ECC_PLACEMENT_UNKNOWN:
5859 case NAND_ECC_PLACEMENT_OOB:
5860 /* Use standard hwecc read page function? */
5861 if (!ecc->read_page)
5862 ecc->read_page = nand_read_page_hwecc;
5863 if (!ecc->write_page)
5864 ecc->write_page = nand_write_page_hwecc;
5865 if (!ecc->read_page_raw)
5866 ecc->read_page_raw = nand_read_page_raw;
5867 if (!ecc->write_page_raw)
5868 ecc->write_page_raw = nand_write_page_raw;
5869 if (!ecc->read_oob)
5870 ecc->read_oob = nand_read_oob_std;
5871 if (!ecc->write_oob)
5872 ecc->write_oob = nand_write_oob_std;
5873 if (!ecc->read_subpage)
5874 ecc->read_subpage = nand_read_subpage;
5875 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5876 ecc->write_subpage = nand_write_subpage_hwecc;
5877 fallthrough;
5878
5879 case NAND_ECC_PLACEMENT_INTERLEAVED:
5880 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5881 (!ecc->read_page ||
5882 ecc->read_page == nand_read_page_hwecc ||
5883 !ecc->write_page ||
5884 ecc->write_page == nand_write_page_hwecc)) {
5885 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5886 return -EINVAL;
5887 }
5888 /* Use standard syndrome read/write page function? */
5889 if (!ecc->read_page)
5890 ecc->read_page = nand_read_page_syndrome;
5891 if (!ecc->write_page)
5892 ecc->write_page = nand_write_page_syndrome;
5893 if (!ecc->read_page_raw)
5894 ecc->read_page_raw = nand_read_page_raw_syndrome;
5895 if (!ecc->write_page_raw)
5896 ecc->write_page_raw = nand_write_page_raw_syndrome;
5897 if (!ecc->read_oob)
5898 ecc->read_oob = nand_read_oob_syndrome;
5899 if (!ecc->write_oob)
5900 ecc->write_oob = nand_write_oob_syndrome;
5901 break;
5902
5903 default:
5904 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5905 ecc->placement);
5906 return -EINVAL;
5907 }
5908
5909 return 0;
5910 }
5911
nand_set_ecc_soft_ops(struct nand_chip * chip)5912 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5913 {
5914 struct mtd_info *mtd = nand_to_mtd(chip);
5915 struct nand_device *nanddev = mtd_to_nanddev(mtd);
5916 struct nand_ecc_ctrl *ecc = &chip->ecc;
5917 int ret;
5918
5919 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5920 return -EINVAL;
5921
5922 switch (ecc->algo) {
5923 case NAND_ECC_ALGO_HAMMING:
5924 ecc->calculate = rawnand_sw_hamming_calculate;
5925 ecc->correct = rawnand_sw_hamming_correct;
5926 ecc->read_page = nand_read_page_swecc;
5927 ecc->read_subpage = nand_read_subpage;
5928 ecc->write_page = nand_write_page_swecc;
5929 if (!ecc->read_page_raw)
5930 ecc->read_page_raw = nand_read_page_raw;
5931 if (!ecc->write_page_raw)
5932 ecc->write_page_raw = nand_write_page_raw;
5933 ecc->read_oob = nand_read_oob_std;
5934 ecc->write_oob = nand_write_oob_std;
5935 if (!ecc->size)
5936 ecc->size = 256;
5937 ecc->bytes = 3;
5938 ecc->strength = 1;
5939
5940 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5941 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5942
5943 ret = rawnand_sw_hamming_init(chip);
5944 if (ret) {
5945 WARN(1, "Hamming ECC initialization failed!\n");
5946 return ret;
5947 }
5948
5949 return 0;
5950 case NAND_ECC_ALGO_BCH:
5951 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5952 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5953 return -EINVAL;
5954 }
5955 ecc->calculate = rawnand_sw_bch_calculate;
5956 ecc->correct = rawnand_sw_bch_correct;
5957 ecc->read_page = nand_read_page_swecc;
5958 ecc->read_subpage = nand_read_subpage;
5959 ecc->write_page = nand_write_page_swecc;
5960 if (!ecc->read_page_raw)
5961 ecc->read_page_raw = nand_read_page_raw;
5962 if (!ecc->write_page_raw)
5963 ecc->write_page_raw = nand_write_page_raw;
5964 ecc->read_oob = nand_read_oob_std;
5965 ecc->write_oob = nand_write_oob_std;
5966
5967 /*
5968 * We can only maximize ECC config when the default layout is
5969 * used, otherwise we don't know how many bytes can really be
5970 * used.
5971 */
5972 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5973 mtd->ooblayout != nand_get_large_page_ooblayout())
5974 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5975
5976 ret = rawnand_sw_bch_init(chip);
5977 if (ret) {
5978 WARN(1, "BCH ECC initialization failed!\n");
5979 return ret;
5980 }
5981
5982 return 0;
5983 default:
5984 WARN(1, "Unsupported ECC algorithm!\n");
5985 return -EINVAL;
5986 }
5987 }
5988
5989 /**
5990 * nand_check_ecc_caps - check the sanity of preset ECC settings
5991 * @chip: nand chip info structure
5992 * @caps: ECC caps info structure
5993 * @oobavail: OOB size that the ECC engine can use
5994 *
5995 * When ECC step size and strength are already set, check if they are supported
5996 * by the controller and the calculated ECC bytes fit within the chip's OOB.
5997 * On success, the calculated ECC bytes is set.
5998 */
5999 static int
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)6000 nand_check_ecc_caps(struct nand_chip *chip,
6001 const struct nand_ecc_caps *caps, int oobavail)
6002 {
6003 struct mtd_info *mtd = nand_to_mtd(chip);
6004 const struct nand_ecc_step_info *stepinfo;
6005 int preset_step = chip->ecc.size;
6006 int preset_strength = chip->ecc.strength;
6007 int ecc_bytes, nsteps = mtd->writesize / preset_step;
6008 int i, j;
6009
6010 for (i = 0; i < caps->nstepinfos; i++) {
6011 stepinfo = &caps->stepinfos[i];
6012
6013 if (stepinfo->stepsize != preset_step)
6014 continue;
6015
6016 for (j = 0; j < stepinfo->nstrengths; j++) {
6017 if (stepinfo->strengths[j] != preset_strength)
6018 continue;
6019
6020 ecc_bytes = caps->calc_ecc_bytes(preset_step,
6021 preset_strength);
6022 if (WARN_ON_ONCE(ecc_bytes < 0))
6023 return ecc_bytes;
6024
6025 if (ecc_bytes * nsteps > oobavail) {
6026 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6027 preset_step, preset_strength);
6028 return -ENOSPC;
6029 }
6030
6031 chip->ecc.bytes = ecc_bytes;
6032
6033 return 0;
6034 }
6035 }
6036
6037 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6038 preset_step, preset_strength);
6039
6040 return -ENOTSUPP;
6041 }
6042
6043 /**
6044 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6045 * @chip: nand chip info structure
6046 * @caps: ECC engine caps info structure
6047 * @oobavail: OOB size that the ECC engine can use
6048 *
6049 * If a chip's ECC requirement is provided, try to meet it with the least
6050 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6051 * On success, the chosen ECC settings are set.
6052 */
6053 static int
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)6054 nand_match_ecc_req(struct nand_chip *chip,
6055 const struct nand_ecc_caps *caps, int oobavail)
6056 {
6057 const struct nand_ecc_props *requirements =
6058 nanddev_get_ecc_requirements(&chip->base);
6059 struct mtd_info *mtd = nand_to_mtd(chip);
6060 const struct nand_ecc_step_info *stepinfo;
6061 int req_step = requirements->step_size;
6062 int req_strength = requirements->strength;
6063 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6064 int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6065 int best_ecc_bytes_total = INT_MAX;
6066 int i, j;
6067
6068 /* No information provided by the NAND chip */
6069 if (!req_step || !req_strength)
6070 return -ENOTSUPP;
6071
6072 /* number of correctable bits the chip requires in a page */
6073 req_corr = mtd->writesize / req_step * req_strength;
6074
6075 for (i = 0; i < caps->nstepinfos; i++) {
6076 stepinfo = &caps->stepinfos[i];
6077 step_size = stepinfo->stepsize;
6078
6079 for (j = 0; j < stepinfo->nstrengths; j++) {
6080 strength = stepinfo->strengths[j];
6081
6082 /*
6083 * If both step size and strength are smaller than the
6084 * chip's requirement, it is not easy to compare the
6085 * resulted reliability.
6086 */
6087 if (step_size < req_step && strength < req_strength)
6088 continue;
6089
6090 if (mtd->writesize % step_size)
6091 continue;
6092
6093 nsteps = mtd->writesize / step_size;
6094
6095 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6096 if (WARN_ON_ONCE(ecc_bytes < 0))
6097 continue;
6098 ecc_bytes_total = ecc_bytes * nsteps;
6099
6100 if (ecc_bytes_total > oobavail ||
6101 strength * nsteps < req_corr)
6102 continue;
6103
6104 /*
6105 * We assume the best is to meet the chip's requrement
6106 * with the least number of ECC bytes.
6107 */
6108 if (ecc_bytes_total < best_ecc_bytes_total) {
6109 best_ecc_bytes_total = ecc_bytes_total;
6110 best_step = step_size;
6111 best_strength = strength;
6112 best_ecc_bytes = ecc_bytes;
6113 }
6114 }
6115 }
6116
6117 if (best_ecc_bytes_total == INT_MAX)
6118 return -ENOTSUPP;
6119
6120 chip->ecc.size = best_step;
6121 chip->ecc.strength = best_strength;
6122 chip->ecc.bytes = best_ecc_bytes;
6123
6124 return 0;
6125 }
6126
6127 /**
6128 * nand_maximize_ecc - choose the max ECC strength available
6129 * @chip: nand chip info structure
6130 * @caps: ECC engine caps info structure
6131 * @oobavail: OOB size that the ECC engine can use
6132 *
6133 * Choose the max ECC strength that is supported on the controller, and can fit
6134 * within the chip's OOB. On success, the chosen ECC settings are set.
6135 */
6136 static int
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)6137 nand_maximize_ecc(struct nand_chip *chip,
6138 const struct nand_ecc_caps *caps, int oobavail)
6139 {
6140 struct mtd_info *mtd = nand_to_mtd(chip);
6141 const struct nand_ecc_step_info *stepinfo;
6142 int step_size, strength, nsteps, ecc_bytes, corr;
6143 int best_corr = 0;
6144 int best_step = 0;
6145 int best_strength = 0, best_ecc_bytes = 0;
6146 int i, j;
6147
6148 for (i = 0; i < caps->nstepinfos; i++) {
6149 stepinfo = &caps->stepinfos[i];
6150 step_size = stepinfo->stepsize;
6151
6152 /* If chip->ecc.size is already set, respect it */
6153 if (chip->ecc.size && step_size != chip->ecc.size)
6154 continue;
6155
6156 for (j = 0; j < stepinfo->nstrengths; j++) {
6157 strength = stepinfo->strengths[j];
6158
6159 if (mtd->writesize % step_size)
6160 continue;
6161
6162 nsteps = mtd->writesize / step_size;
6163
6164 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6165 if (WARN_ON_ONCE(ecc_bytes < 0))
6166 continue;
6167
6168 if (ecc_bytes * nsteps > oobavail)
6169 continue;
6170
6171 corr = strength * nsteps;
6172
6173 /*
6174 * If the number of correctable bits is the same,
6175 * bigger step_size has more reliability.
6176 */
6177 if (corr > best_corr ||
6178 (corr == best_corr && step_size > best_step)) {
6179 best_corr = corr;
6180 best_step = step_size;
6181 best_strength = strength;
6182 best_ecc_bytes = ecc_bytes;
6183 }
6184 }
6185 }
6186
6187 if (!best_corr)
6188 return -ENOTSUPP;
6189
6190 chip->ecc.size = best_step;
6191 chip->ecc.strength = best_strength;
6192 chip->ecc.bytes = best_ecc_bytes;
6193
6194 return 0;
6195 }
6196
6197 /**
6198 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6199 * @chip: nand chip info structure
6200 * @caps: ECC engine caps info structure
6201 * @oobavail: OOB size that the ECC engine can use
6202 *
6203 * Choose the ECC configuration according to following logic.
6204 *
6205 * 1. If both ECC step size and ECC strength are already set (usually by DT)
6206 * then check if it is supported by this controller.
6207 * 2. If the user provided the nand-ecc-maximize property, then select maximum
6208 * ECC strength.
6209 * 3. Otherwise, try to match the ECC step size and ECC strength closest
6210 * to the chip's requirement. If available OOB size can't fit the chip
6211 * requirement then fallback to the maximum ECC step size and ECC strength.
6212 *
6213 * On success, the chosen ECC settings are set.
6214 */
nand_ecc_choose_conf(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)6215 int nand_ecc_choose_conf(struct nand_chip *chip,
6216 const struct nand_ecc_caps *caps, int oobavail)
6217 {
6218 struct mtd_info *mtd = nand_to_mtd(chip);
6219 struct nand_device *nanddev = mtd_to_nanddev(mtd);
6220
6221 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6222 return -EINVAL;
6223
6224 if (chip->ecc.size && chip->ecc.strength)
6225 return nand_check_ecc_caps(chip, caps, oobavail);
6226
6227 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6228 return nand_maximize_ecc(chip, caps, oobavail);
6229
6230 if (!nand_match_ecc_req(chip, caps, oobavail))
6231 return 0;
6232
6233 return nand_maximize_ecc(chip, caps, oobavail);
6234 }
6235 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6236
rawnand_erase(struct nand_device * nand,const struct nand_pos * pos)6237 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6238 {
6239 struct nand_chip *chip = container_of(nand, struct nand_chip,
6240 base);
6241 unsigned int eb = nanddev_pos_to_row(nand, pos);
6242 int ret;
6243
6244 eb >>= nand->rowconv.eraseblock_addr_shift;
6245
6246 nand_select_target(chip, pos->target);
6247 ret = nand_erase_op(chip, eb);
6248 nand_deselect_target(chip);
6249
6250 return ret;
6251 }
6252
rawnand_markbad(struct nand_device * nand,const struct nand_pos * pos)6253 static int rawnand_markbad(struct nand_device *nand,
6254 const struct nand_pos *pos)
6255 {
6256 struct nand_chip *chip = container_of(nand, struct nand_chip,
6257 base);
6258
6259 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6260 }
6261
rawnand_isbad(struct nand_device * nand,const struct nand_pos * pos)6262 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6263 {
6264 struct nand_chip *chip = container_of(nand, struct nand_chip,
6265 base);
6266 int ret;
6267
6268 nand_select_target(chip, pos->target);
6269 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6270 nand_deselect_target(chip);
6271
6272 return ret;
6273 }
6274
6275 static const struct nand_ops rawnand_ops = {
6276 .erase = rawnand_erase,
6277 .markbad = rawnand_markbad,
6278 .isbad = rawnand_isbad,
6279 };
6280
6281 /**
6282 * nand_scan_tail - Scan for the NAND device
6283 * @chip: NAND chip object
6284 *
6285 * This is the second phase of the normal nand_scan() function. It fills out
6286 * all the uninitialized function pointers with the defaults and scans for a
6287 * bad block table if appropriate.
6288 */
nand_scan_tail(struct nand_chip * chip)6289 static int nand_scan_tail(struct nand_chip *chip)
6290 {
6291 struct mtd_info *mtd = nand_to_mtd(chip);
6292 struct nand_device *base = &chip->base;
6293 struct nand_ecc_ctrl *ecc = &chip->ecc;
6294 int ret, i;
6295
6296 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6297 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6298 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6299 return -EINVAL;
6300 }
6301
6302 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6303 if (!chip->data_buf)
6304 return -ENOMEM;
6305
6306 /*
6307 * FIXME: some NAND manufacturer drivers expect the first die to be
6308 * selected when manufacturer->init() is called. They should be fixed
6309 * to explictly select the relevant die when interacting with the NAND
6310 * chip.
6311 */
6312 nand_select_target(chip, 0);
6313 ret = nand_manufacturer_init(chip);
6314 nand_deselect_target(chip);
6315 if (ret)
6316 goto err_free_buf;
6317
6318 /* Set the internal oob buffer location, just after the page data */
6319 chip->oob_poi = chip->data_buf + mtd->writesize;
6320
6321 /*
6322 * If no default placement scheme is given, select an appropriate one.
6323 */
6324 if (!mtd->ooblayout &&
6325 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6326 ecc->algo == NAND_ECC_ALGO_BCH) &&
6327 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6328 ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6329 switch (mtd->oobsize) {
6330 case 8:
6331 case 16:
6332 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6333 break;
6334 case 64:
6335 case 128:
6336 mtd_set_ooblayout(mtd,
6337 nand_get_large_page_hamming_ooblayout());
6338 break;
6339 default:
6340 /*
6341 * Expose the whole OOB area to users if ECC_NONE
6342 * is passed. We could do that for all kind of
6343 * ->oobsize, but we must keep the old large/small
6344 * page with ECC layout when ->oobsize <= 128 for
6345 * compatibility reasons.
6346 */
6347 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6348 mtd_set_ooblayout(mtd,
6349 nand_get_large_page_ooblayout());
6350 break;
6351 }
6352
6353 WARN(1, "No oob scheme defined for oobsize %d\n",
6354 mtd->oobsize);
6355 ret = -EINVAL;
6356 goto err_nand_manuf_cleanup;
6357 }
6358 }
6359
6360 /*
6361 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6362 * selected and we have 256 byte pagesize fallback to software ECC
6363 */
6364
6365 switch (ecc->engine_type) {
6366 case NAND_ECC_ENGINE_TYPE_ON_HOST:
6367 ret = nand_set_ecc_on_host_ops(chip);
6368 if (ret)
6369 goto err_nand_manuf_cleanup;
6370
6371 if (mtd->writesize >= ecc->size) {
6372 if (!ecc->strength) {
6373 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6374 ret = -EINVAL;
6375 goto err_nand_manuf_cleanup;
6376 }
6377 break;
6378 }
6379 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6380 ecc->size, mtd->writesize);
6381 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6382 ecc->algo = NAND_ECC_ALGO_HAMMING;
6383 fallthrough;
6384
6385 case NAND_ECC_ENGINE_TYPE_SOFT:
6386 ret = nand_set_ecc_soft_ops(chip);
6387 if (ret)
6388 goto err_nand_manuf_cleanup;
6389 break;
6390
6391 case NAND_ECC_ENGINE_TYPE_ON_DIE:
6392 if (!ecc->read_page || !ecc->write_page) {
6393 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6394 ret = -EINVAL;
6395 goto err_nand_manuf_cleanup;
6396 }
6397 if (!ecc->read_oob)
6398 ecc->read_oob = nand_read_oob_std;
6399 if (!ecc->write_oob)
6400 ecc->write_oob = nand_write_oob_std;
6401 break;
6402
6403 case NAND_ECC_ENGINE_TYPE_NONE:
6404 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6405 ecc->read_page = nand_read_page_raw;
6406 ecc->write_page = nand_write_page_raw;
6407 ecc->read_oob = nand_read_oob_std;
6408 ecc->read_page_raw = nand_read_page_raw;
6409 ecc->write_page_raw = nand_write_page_raw;
6410 ecc->write_oob = nand_write_oob_std;
6411 ecc->size = mtd->writesize;
6412 ecc->bytes = 0;
6413 ecc->strength = 0;
6414 break;
6415
6416 default:
6417 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6418 ret = -EINVAL;
6419 goto err_nand_manuf_cleanup;
6420 }
6421
6422 if (ecc->correct || ecc->calculate) {
6423 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6424 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6425 if (!ecc->calc_buf || !ecc->code_buf) {
6426 ret = -ENOMEM;
6427 goto err_nand_manuf_cleanup;
6428 }
6429 }
6430
6431 /* For many systems, the standard OOB write also works for raw */
6432 if (!ecc->read_oob_raw)
6433 ecc->read_oob_raw = ecc->read_oob;
6434 if (!ecc->write_oob_raw)
6435 ecc->write_oob_raw = ecc->write_oob;
6436
6437 /* Propagate ECC info to the generic NAND and MTD layers */
6438 mtd->ecc_strength = ecc->strength;
6439 if (!base->ecc.ctx.conf.strength)
6440 base->ecc.ctx.conf.strength = ecc->strength;
6441 mtd->ecc_step_size = ecc->size;
6442 if (!base->ecc.ctx.conf.step_size)
6443 base->ecc.ctx.conf.step_size = ecc->size;
6444
6445 /*
6446 * Set the number of read / write steps for one page depending on ECC
6447 * mode.
6448 */
6449 if (!ecc->steps)
6450 ecc->steps = mtd->writesize / ecc->size;
6451 if (!base->ecc.ctx.nsteps)
6452 base->ecc.ctx.nsteps = ecc->steps;
6453 if (ecc->steps * ecc->size != mtd->writesize) {
6454 WARN(1, "Invalid ECC parameters\n");
6455 ret = -EINVAL;
6456 goto err_nand_manuf_cleanup;
6457 }
6458
6459 if (!ecc->total) {
6460 ecc->total = ecc->steps * ecc->bytes;
6461 chip->base.ecc.ctx.total = ecc->total;
6462 }
6463
6464 if (ecc->total > mtd->oobsize) {
6465 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6466 ret = -EINVAL;
6467 goto err_nand_manuf_cleanup;
6468 }
6469
6470 /*
6471 * The number of bytes available for a client to place data into
6472 * the out of band area.
6473 */
6474 ret = mtd_ooblayout_count_freebytes(mtd);
6475 if (ret < 0)
6476 ret = 0;
6477
6478 mtd->oobavail = ret;
6479
6480 /* ECC sanity check: warn if it's too weak */
6481 if (!nand_ecc_is_strong_enough(&chip->base))
6482 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6483 mtd->name, chip->ecc.strength, chip->ecc.size,
6484 nanddev_get_ecc_requirements(&chip->base)->strength,
6485 nanddev_get_ecc_requirements(&chip->base)->step_size);
6486
6487 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6488 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6489 switch (ecc->steps) {
6490 case 2:
6491 mtd->subpage_sft = 1;
6492 break;
6493 case 4:
6494 case 8:
6495 case 16:
6496 mtd->subpage_sft = 2;
6497 break;
6498 }
6499 }
6500 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6501
6502 /* Invalidate the pagebuffer reference */
6503 chip->pagecache.page = -1;
6504
6505 /* Large page NAND with SOFT_ECC should support subpage reads */
6506 switch (ecc->engine_type) {
6507 case NAND_ECC_ENGINE_TYPE_SOFT:
6508 if (chip->page_shift > 9)
6509 chip->options |= NAND_SUBPAGE_READ;
6510 break;
6511
6512 default:
6513 break;
6514 }
6515
6516 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6517 if (ret)
6518 goto err_nand_manuf_cleanup;
6519
6520 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6521 if (chip->options & NAND_ROM)
6522 mtd->flags = MTD_CAP_ROM;
6523
6524 /* Fill in remaining MTD driver data */
6525 mtd->_erase = nand_erase;
6526 mtd->_point = NULL;
6527 mtd->_unpoint = NULL;
6528 mtd->_panic_write = panic_nand_write;
6529 mtd->_read_oob = nand_read_oob;
6530 mtd->_write_oob = nand_write_oob;
6531 mtd->_sync = nand_sync;
6532 mtd->_lock = nand_lock;
6533 mtd->_unlock = nand_unlock;
6534 mtd->_suspend = nand_suspend;
6535 mtd->_resume = nand_resume;
6536 mtd->_reboot = nand_shutdown;
6537 mtd->_block_isreserved = nand_block_isreserved;
6538 mtd->_block_isbad = nand_block_isbad;
6539 mtd->_block_markbad = nand_block_markbad;
6540 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6541
6542 /*
6543 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6544 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6545 * properly set.
6546 */
6547 if (!mtd->bitflip_threshold)
6548 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6549
6550 /* Find the fastest data interface for this chip */
6551 ret = nand_choose_interface_config(chip);
6552 if (ret)
6553 goto err_nanddev_cleanup;
6554
6555 /* Enter fastest possible mode on all dies. */
6556 for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6557 ret = nand_setup_interface(chip, i);
6558 if (ret)
6559 goto err_free_interface_config;
6560 }
6561
6562 rawnand_late_check_supported_ops(chip);
6563
6564 /*
6565 * Look for secure regions in the NAND chip. These regions are supposed
6566 * to be protected by a secure element like Trustzone. So the read/write
6567 * accesses to these regions will be blocked in the runtime by this
6568 * driver.
6569 */
6570 ret = of_get_nand_secure_regions(chip);
6571 if (ret)
6572 goto err_free_interface_config;
6573
6574 /* Check, if we should skip the bad block table scan */
6575 if (chip->options & NAND_SKIP_BBTSCAN)
6576 return 0;
6577
6578 /* Build bad block table */
6579 ret = nand_create_bbt(chip);
6580 if (ret)
6581 goto err_free_secure_regions;
6582
6583 return 0;
6584
6585 err_free_secure_regions:
6586 kfree(chip->secure_regions);
6587
6588 err_free_interface_config:
6589 kfree(chip->best_interface_config);
6590
6591 err_nanddev_cleanup:
6592 nanddev_cleanup(&chip->base);
6593
6594 err_nand_manuf_cleanup:
6595 nand_manufacturer_cleanup(chip);
6596
6597 err_free_buf:
6598 kfree(chip->data_buf);
6599 kfree(ecc->code_buf);
6600 kfree(ecc->calc_buf);
6601
6602 return ret;
6603 }
6604
nand_attach(struct nand_chip * chip)6605 static int nand_attach(struct nand_chip *chip)
6606 {
6607 if (chip->controller->ops && chip->controller->ops->attach_chip)
6608 return chip->controller->ops->attach_chip(chip);
6609
6610 return 0;
6611 }
6612
nand_detach(struct nand_chip * chip)6613 static void nand_detach(struct nand_chip *chip)
6614 {
6615 if (chip->controller->ops && chip->controller->ops->detach_chip)
6616 chip->controller->ops->detach_chip(chip);
6617 }
6618
6619 /**
6620 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6621 * @chip: NAND chip object
6622 * @maxchips: number of chips to scan for.
6623 * @ids: optional flash IDs table
6624 *
6625 * This fills out all the uninitialized function pointers with the defaults.
6626 * The flash ID is read and the mtd/chip structures are filled with the
6627 * appropriate values.
6628 */
nand_scan_with_ids(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * ids)6629 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6630 struct nand_flash_dev *ids)
6631 {
6632 int ret;
6633
6634 if (!maxchips)
6635 return -EINVAL;
6636
6637 ret = nand_scan_ident(chip, maxchips, ids);
6638 if (ret)
6639 return ret;
6640
6641 ret = nand_attach(chip);
6642 if (ret)
6643 goto cleanup_ident;
6644
6645 ret = nand_scan_tail(chip);
6646 if (ret)
6647 goto detach_chip;
6648
6649 return 0;
6650
6651 detach_chip:
6652 nand_detach(chip);
6653 cleanup_ident:
6654 nand_scan_ident_cleanup(chip);
6655
6656 return ret;
6657 }
6658 EXPORT_SYMBOL(nand_scan_with_ids);
6659
6660 /**
6661 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6662 * @chip: NAND chip object
6663 */
nand_cleanup(struct nand_chip * chip)6664 void nand_cleanup(struct nand_chip *chip)
6665 {
6666 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6667 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6668 rawnand_sw_hamming_cleanup(chip);
6669 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6670 rawnand_sw_bch_cleanup(chip);
6671 }
6672
6673 nanddev_cleanup(&chip->base);
6674
6675 /* Free secure regions data */
6676 kfree(chip->secure_regions);
6677
6678 /* Free bad block table memory */
6679 kfree(chip->bbt);
6680 kfree(chip->data_buf);
6681 kfree(chip->ecc.code_buf);
6682 kfree(chip->ecc.calc_buf);
6683
6684 /* Free bad block descriptor memory */
6685 if (chip->badblock_pattern && chip->badblock_pattern->options
6686 & NAND_BBT_DYNAMICSTRUCT)
6687 kfree(chip->badblock_pattern);
6688
6689 /* Free the data interface */
6690 kfree(chip->best_interface_config);
6691
6692 /* Free manufacturer priv data. */
6693 nand_manufacturer_cleanup(chip);
6694
6695 /* Free controller specific allocations after chip identification */
6696 nand_detach(chip);
6697
6698 /* Free identification phase allocations */
6699 nand_scan_ident_cleanup(chip);
6700 }
6701
6702 EXPORT_SYMBOL_GPL(nand_cleanup);
6703
6704 MODULE_LICENSE("GPL");
6705 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6706 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6707 MODULE_DESCRIPTION("Generic NAND flash driver code");
6708