xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/t4.h (revision 8be98d2f2a0a262f8bf8a0bc1fdf522b3c7aab17)
1  /*
2   * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3   *
4   * This software is available to you under a choice of one of two
5   * licenses.  You may choose to be licensed under the terms of the GNU
6   * General Public License (GPL) Version 2, available from the file
7   * COPYING in the main directory of this source tree, or the
8   * OpenIB.org BSD license below:
9   *
10   *     Redistribution and use in source and binary forms, with or
11   *     without modification, are permitted provided that the following
12   *     conditions are met:
13   *
14   *      - Redistributions of source code must retain the above
15   *        copyright notice, this list of conditions and the following
16   *        disclaimer.
17   *      - Redistributions in binary form must reproduce the above
18   *        copyright notice, this list of conditions and the following
19   *        disclaimer in the documentation and/or other materials
20   *        provided with the distribution.
21   *
22   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29   * SOFTWARE.
30   */
31  #ifndef __T4_H__
32  #define __T4_H__
33  
34  #include "t4_hw.h"
35  #include "t4_regs.h"
36  #include "t4_values.h"
37  #include "t4_msg.h"
38  #include "t4_tcb.h"
39  #include "t4fw_ri_api.h"
40  
41  #define T4_MAX_NUM_PD 65536
42  #define T4_MAX_MR_SIZE (~0ULL)
43  #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
44  #define T4_STAG_UNSET 0xffffffff
45  #define T4_FW_MAJ 0
46  #define PCIE_MA_SYNC_A 0x30b4
47  
48  struct t4_status_page {
49  	__be32 rsvd1;	/* flit 0 - hw owns */
50  	__be16 rsvd2;
51  	__be16 qid;
52  	__be16 cidx;
53  	__be16 pidx;
54  	u8 qp_err;	/* flit 1 - sw owns */
55  	u8 db_off;
56  	u8 pad[2];
57  	u16 host_wq_pidx;
58  	u16 host_cidx;
59  	u16 host_pidx;
60  	u16 pad2;
61  	u32 srqidx;
62  };
63  
64  #define T4_RQT_ENTRY_SHIFT 6
65  #define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
66  #define T4_EQ_ENTRY_SIZE 64
67  
68  #define T4_SQ_NUM_SLOTS 5
69  #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
70  #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
71  			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
72  #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
73  			sizeof(struct fw_ri_immd)))
74  #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
75  			sizeof(struct fw_ri_rdma_write_wr) - \
76  			sizeof(struct fw_ri_immd)))
77  #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
78  			sizeof(struct fw_ri_rdma_write_wr) - \
79  			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
80  #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
81  			sizeof(struct fw_ri_immd)) & ~31UL)
82  #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
83  #define T4_MAX_FR_DSGL 1024
84  #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
85  
t4_max_fr_depth(int use_dsgl)86  static inline int t4_max_fr_depth(int use_dsgl)
87  {
88  	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
89  }
90  
91  #define T4_RQ_NUM_SLOTS 2
92  #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
93  #define T4_MAX_RECV_SGE 4
94  
95  #define T4_WRITE_CMPL_MAX_SGL 4
96  #define T4_WRITE_CMPL_MAX_CQE 16
97  
98  union t4_wr {
99  	struct fw_ri_res_wr res;
100  	struct fw_ri_wr ri;
101  	struct fw_ri_rdma_write_wr write;
102  	struct fw_ri_send_wr send;
103  	struct fw_ri_rdma_read_wr read;
104  	struct fw_ri_bind_mw_wr bind;
105  	struct fw_ri_fr_nsmr_wr fr;
106  	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
107  	struct fw_ri_inv_lstag_wr inv;
108  	struct fw_ri_rdma_write_cmpl_wr write_cmpl;
109  	struct t4_status_page status;
110  	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
111  };
112  
113  union t4_recv_wr {
114  	struct fw_ri_recv_wr recv;
115  	struct t4_status_page status;
116  	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
117  };
118  
init_wr_hdr(union t4_wr * wqe,u16 wrid,enum fw_wr_opcodes opcode,u8 flags,u8 len16)119  static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
120  			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
121  {
122  	wqe->send.opcode = (u8)opcode;
123  	wqe->send.flags = flags;
124  	wqe->send.wrid = wrid;
125  	wqe->send.r1[0] = 0;
126  	wqe->send.r1[1] = 0;
127  	wqe->send.r1[2] = 0;
128  	wqe->send.len16 = len16;
129  }
130  
131  /* CQE/AE status codes */
132  #define T4_ERR_SUCCESS                     0x0
133  #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
134  						/* STAG is offlimt, being 0, */
135  						/* or STAG_key mismatch */
136  #define T4_ERR_PDID                        0x2	/* PDID mismatch */
137  #define T4_ERR_QPID                        0x3	/* QPID mismatch */
138  #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
139  #define T4_ERR_WRAP                        0x5	/* Wrap error */
140  #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
141  #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
142  						/* shared memory region */
143  #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
144  						/* shared memory region */
145  #define T4_ERR_ECC                         0x9	/* ECC error detected */
146  #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
147  						/* reading PSTAG for a MW  */
148  						/* Invalidate */
149  #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
150  						/* software error */
151  #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
152  #define T4_ERR_CRC                         0x10 /* CRC error */
153  #define T4_ERR_MARKER                      0x11 /* Marker error */
154  #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
155  #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
156  #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
157  #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
158  #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
159  #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
160  #define T4_ERR_MSN                         0x18 /* MSN error */
161  #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
162  #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
163  						/* or READ_REQ */
164  #define T4_ERR_MSN_GAP                     0x1B
165  #define T4_ERR_MSN_RANGE                   0x1C
166  #define T4_ERR_IRD_OVERFLOW                0x1D
167  #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
168  						/* software error */
169  #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
170  						/* mismatch) */
171  /*
172   * CQE defs
173   */
174  struct t4_cqe {
175  	__be32 header;
176  	__be32 len;
177  	union {
178  		struct {
179  			__be32 stag;
180  			__be32 msn;
181  		} rcqe;
182  		struct {
183  			__be32 stag;
184  			u16 nada2;
185  			u16 cidx;
186  		} scqe;
187  		struct {
188  			__be32 wrid_hi;
189  			__be32 wrid_low;
190  		} gen;
191  		struct {
192  			__be32 stag;
193  			__be32 msn;
194  			__be32 reserved;
195  			__be32 abs_rqe_idx;
196  		} srcqe;
197  		struct {
198  			__be32 mo;
199  			__be32 msn;
200  			/*
201  			 * Use union for immediate data to be consistent with
202  			 * stack's 32 bit data and iWARP spec's 64 bit data.
203  			 */
204  			union {
205  				struct {
206  					__be32 imm_data32;
207  					u32 reserved;
208  				} ib_imm_data;
209  				__be64 imm_data64;
210  			} iw_imm_data;
211  		} imm_data_rcqe;
212  
213  		u64 drain_cookie;
214  		__be64 flits[3];
215  	} u;
216  	__be64 reserved[3];
217  	__be64 bits_type_ts;
218  };
219  
220  /* macros for flit 0 of the cqe */
221  
222  #define CQE_QPID_S        12
223  #define CQE_QPID_M        0xFFFFF
224  #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
225  #define CQE_QPID_V(x)	  ((x)<<CQE_QPID_S)
226  
227  #define CQE_SWCQE_S       11
228  #define CQE_SWCQE_M       0x1
229  #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
230  #define CQE_SWCQE_V(x)	  ((x)<<CQE_SWCQE_S)
231  
232  #define CQE_DRAIN_S       10
233  #define CQE_DRAIN_M       0x1
234  #define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
235  #define CQE_DRAIN_V(x)	  ((x)<<CQE_DRAIN_S)
236  
237  #define CQE_STATUS_S      5
238  #define CQE_STATUS_M      0x1F
239  #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
240  #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
241  
242  #define CQE_TYPE_S        4
243  #define CQE_TYPE_M        0x1
244  #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
245  #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
246  
247  #define CQE_OPCODE_S      0
248  #define CQE_OPCODE_M      0xF
249  #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
250  #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
251  
252  #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
253  #define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
254  #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
255  #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
256  #define SQ_TYPE(x)	  (CQE_TYPE((x)))
257  #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
258  #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
259  #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
260  
261  #define CQE_SEND_OPCODE(x)( \
262  	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
263  	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
264  	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
265  	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
266  
267  #define CQE_LEN(x)        (be32_to_cpu((x)->len))
268  
269  /* used for RQ completion processing */
270  #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
271  #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
272  #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
273  #define CQE_IMM_DATA(x)( \
274  	(x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
275  
276  /* used for SQ completion processing */
277  #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
278  #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
279  
280  /* generic accessor macros */
281  #define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
282  #define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
283  #define CQE_DRAIN_COOKIE(x)	((x)->u.drain_cookie)
284  
285  /* macros for flit 3 of the cqe */
286  #define CQE_GENBIT_S	63
287  #define CQE_GENBIT_M	0x1
288  #define CQE_GENBIT_G(x)	(((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
289  #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
290  
291  #define CQE_OVFBIT_S	62
292  #define CQE_OVFBIT_M	0x1
293  #define CQE_OVFBIT_G(x)	((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
294  
295  #define CQE_IQTYPE_S	60
296  #define CQE_IQTYPE_M	0x3
297  #define CQE_IQTYPE_G(x)	((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
298  
299  #define CQE_TS_M	0x0fffffffffffffffULL
300  #define CQE_TS_G(x)	((x) & CQE_TS_M)
301  
302  #define CQE_OVFBIT(x)	((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
303  #define CQE_GENBIT(x)	((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
304  #define CQE_TS(x)	(CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
305  
306  struct t4_swsqe {
307  	u64			wr_id;
308  	struct t4_cqe		cqe;
309  	int			read_len;
310  	int			opcode;
311  	int			complete;
312  	int			signaled;
313  	u16			idx;
314  	int                     flushed;
315  	ktime_t			host_time;
316  	u64                     sge_ts;
317  };
318  
t4_pgprot_wc(pgprot_t prot)319  static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
320  {
321  #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
322  	return pgprot_writecombine(prot);
323  #else
324  	return pgprot_noncached(prot);
325  #endif
326  }
327  
328  enum {
329  	T4_SQ_ONCHIP = (1<<0),
330  };
331  
332  struct t4_sq {
333  	union t4_wr *queue;
334  	dma_addr_t dma_addr;
335  	DEFINE_DMA_UNMAP_ADDR(mapping);
336  	unsigned long phys_addr;
337  	struct t4_swsqe *sw_sq;
338  	struct t4_swsqe *oldest_read;
339  	void __iomem *bar2_va;
340  	u64 bar2_pa;
341  	size_t memsize;
342  	u32 bar2_qid;
343  	u32 qid;
344  	u16 in_use;
345  	u16 size;
346  	u16 cidx;
347  	u16 pidx;
348  	u16 wq_pidx;
349  	u16 wq_pidx_inc;
350  	u16 flags;
351  	short flush_cidx;
352  };
353  
354  struct t4_swrqe {
355  	u64 wr_id;
356  	ktime_t	host_time;
357  	u64 sge_ts;
358  	int valid;
359  };
360  
361  struct t4_rq {
362  	union  t4_recv_wr *queue;
363  	dma_addr_t dma_addr;
364  	DEFINE_DMA_UNMAP_ADDR(mapping);
365  	struct t4_swrqe *sw_rq;
366  	void __iomem *bar2_va;
367  	u64 bar2_pa;
368  	size_t memsize;
369  	u32 bar2_qid;
370  	u32 qid;
371  	u32 msn;
372  	u32 rqt_hwaddr;
373  	u16 rqt_size;
374  	u16 in_use;
375  	u16 size;
376  	u16 cidx;
377  	u16 pidx;
378  	u16 wq_pidx;
379  	u16 wq_pidx_inc;
380  };
381  
382  struct t4_wq {
383  	struct t4_sq sq;
384  	struct t4_rq rq;
385  	void __iomem *db;
386  	struct c4iw_rdev *rdev;
387  	int flushed;
388  	u8 *qp_errp;
389  	u32 *srqidxp;
390  };
391  
392  struct t4_srq_pending_wr {
393  	u64 wr_id;
394  	union t4_recv_wr wqe;
395  	u8 len16;
396  };
397  
398  struct t4_srq {
399  	union t4_recv_wr *queue;
400  	dma_addr_t dma_addr;
401  	DEFINE_DMA_UNMAP_ADDR(mapping);
402  	struct t4_swrqe *sw_rq;
403  	void __iomem *bar2_va;
404  	u64 bar2_pa;
405  	size_t memsize;
406  	u32 bar2_qid;
407  	u32 qid;
408  	u32 msn;
409  	u32 rqt_hwaddr;
410  	u32 rqt_abs_idx;
411  	u16 rqt_size;
412  	u16 size;
413  	u16 cidx;
414  	u16 pidx;
415  	u16 wq_pidx;
416  	u16 wq_pidx_inc;
417  	u16 in_use;
418  	struct t4_srq_pending_wr *pending_wrs;
419  	u16 pending_cidx;
420  	u16 pending_pidx;
421  	u16 pending_in_use;
422  	u16 ooo_count;
423  };
424  
t4_srq_avail(struct t4_srq * srq)425  static inline u32 t4_srq_avail(struct t4_srq *srq)
426  {
427  	return srq->size - 1 - srq->in_use;
428  }
429  
t4_srq_produce(struct t4_srq * srq,u8 len16)430  static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
431  {
432  	srq->in_use++;
433  	if (++srq->pidx == srq->size)
434  		srq->pidx = 0;
435  	srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
436  	if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
437  		srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
438  	srq->queue[srq->size].status.host_pidx = srq->pidx;
439  }
440  
t4_srq_produce_pending_wr(struct t4_srq * srq)441  static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
442  {
443  	srq->pending_in_use++;
444  	srq->in_use++;
445  	if (++srq->pending_pidx == srq->size)
446  		srq->pending_pidx = 0;
447  }
448  
t4_srq_consume_pending_wr(struct t4_srq * srq)449  static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
450  {
451  	srq->pending_in_use--;
452  	srq->in_use--;
453  	if (++srq->pending_cidx == srq->size)
454  		srq->pending_cidx = 0;
455  }
456  
t4_srq_produce_ooo(struct t4_srq * srq)457  static inline void t4_srq_produce_ooo(struct t4_srq *srq)
458  {
459  	srq->in_use--;
460  	srq->ooo_count++;
461  }
462  
t4_srq_consume_ooo(struct t4_srq * srq)463  static inline void t4_srq_consume_ooo(struct t4_srq *srq)
464  {
465  	srq->cidx++;
466  	if (srq->cidx == srq->size)
467  		srq->cidx  = 0;
468  	srq->queue[srq->size].status.host_cidx = srq->cidx;
469  	srq->ooo_count--;
470  }
471  
t4_srq_consume(struct t4_srq * srq)472  static inline void t4_srq_consume(struct t4_srq *srq)
473  {
474  	srq->in_use--;
475  	if (++srq->cidx == srq->size)
476  		srq->cidx = 0;
477  	srq->queue[srq->size].status.host_cidx = srq->cidx;
478  }
479  
t4_rqes_posted(struct t4_wq * wq)480  static inline int t4_rqes_posted(struct t4_wq *wq)
481  {
482  	return wq->rq.in_use;
483  }
484  
t4_rq_empty(struct t4_wq * wq)485  static inline int t4_rq_empty(struct t4_wq *wq)
486  {
487  	return wq->rq.in_use == 0;
488  }
489  
t4_rq_avail(struct t4_wq * wq)490  static inline u32 t4_rq_avail(struct t4_wq *wq)
491  {
492  	return wq->rq.size - 1 - wq->rq.in_use;
493  }
494  
t4_rq_produce(struct t4_wq * wq,u8 len16)495  static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
496  {
497  	wq->rq.in_use++;
498  	if (++wq->rq.pidx == wq->rq.size)
499  		wq->rq.pidx = 0;
500  	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
501  	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
502  		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
503  }
504  
t4_rq_consume(struct t4_wq * wq)505  static inline void t4_rq_consume(struct t4_wq *wq)
506  {
507  	wq->rq.in_use--;
508  	if (++wq->rq.cidx == wq->rq.size)
509  		wq->rq.cidx = 0;
510  }
511  
t4_rq_host_wq_pidx(struct t4_wq * wq)512  static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
513  {
514  	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
515  }
516  
t4_rq_wq_size(struct t4_wq * wq)517  static inline u16 t4_rq_wq_size(struct t4_wq *wq)
518  {
519  		return wq->rq.size * T4_RQ_NUM_SLOTS;
520  }
521  
t4_sq_onchip(struct t4_sq * sq)522  static inline int t4_sq_onchip(struct t4_sq *sq)
523  {
524  	return sq->flags & T4_SQ_ONCHIP;
525  }
526  
t4_sq_empty(struct t4_wq * wq)527  static inline int t4_sq_empty(struct t4_wq *wq)
528  {
529  	return wq->sq.in_use == 0;
530  }
531  
t4_sq_avail(struct t4_wq * wq)532  static inline u32 t4_sq_avail(struct t4_wq *wq)
533  {
534  	return wq->sq.size - 1 - wq->sq.in_use;
535  }
536  
t4_sq_produce(struct t4_wq * wq,u8 len16)537  static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
538  {
539  	wq->sq.in_use++;
540  	if (++wq->sq.pidx == wq->sq.size)
541  		wq->sq.pidx = 0;
542  	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
543  	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
544  		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
545  }
546  
t4_sq_consume(struct t4_wq * wq)547  static inline void t4_sq_consume(struct t4_wq *wq)
548  {
549  	if (wq->sq.cidx == wq->sq.flush_cidx)
550  		wq->sq.flush_cidx = -1;
551  	wq->sq.in_use--;
552  	if (++wq->sq.cidx == wq->sq.size)
553  		wq->sq.cidx = 0;
554  }
555  
t4_sq_host_wq_pidx(struct t4_wq * wq)556  static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
557  {
558  	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
559  }
560  
t4_sq_wq_size(struct t4_wq * wq)561  static inline u16 t4_sq_wq_size(struct t4_wq *wq)
562  {
563  		return wq->sq.size * T4_SQ_NUM_SLOTS;
564  }
565  
566  /* This function copies 64 byte coalesced work request to memory
567   * mapped BAR2 space. For coalesced WRs, the SGE fetches data
568   * from the FIFO instead of from Host.
569   */
pio_copy(u64 __iomem * dst,u64 * src)570  static inline void pio_copy(u64 __iomem *dst, u64 *src)
571  {
572  	int count = 8;
573  
574  	while (count) {
575  		writeq(*src, dst);
576  		src++;
577  		dst++;
578  		count--;
579  	}
580  }
581  
t4_ring_srq_db(struct t4_srq * srq,u16 inc,u8 len16,union t4_recv_wr * wqe)582  static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
583  				  union t4_recv_wr *wqe)
584  {
585  	/* Flush host queue memory writes. */
586  	wmb();
587  	if (inc == 1 && srq->bar2_qid == 0 && wqe) {
588  		pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
589  			 __func__, srq->pidx, len16);
590  		pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
591  	} else {
592  		pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
593  			 __func__, srq->pidx, len16);
594  		writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
595  		       srq->bar2_va + SGE_UDB_KDOORBELL);
596  	}
597  	/* Flush user doorbell area writes. */
598  	wmb();
599  }
600  
t4_ring_sq_db(struct t4_wq * wq,u16 inc,union t4_wr * wqe)601  static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
602  {
603  
604  	/* Flush host queue memory writes. */
605  	wmb();
606  	if (wq->sq.bar2_va) {
607  		if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
608  			pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
609  			pio_copy((u64 __iomem *)
610  				 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
611  				 (u64 *)wqe);
612  		} else {
613  			pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
614  			writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
615  			       wq->sq.bar2_va + SGE_UDB_KDOORBELL);
616  		}
617  
618  		/* Flush user doorbell area writes. */
619  		wmb();
620  		return;
621  	}
622  	writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
623  }
624  
t4_ring_rq_db(struct t4_wq * wq,u16 inc,union t4_recv_wr * wqe)625  static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
626  				 union t4_recv_wr *wqe)
627  {
628  
629  	/* Flush host queue memory writes. */
630  	wmb();
631  	if (wq->rq.bar2_va) {
632  		if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
633  			pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
634  			pio_copy((u64 __iomem *)
635  				 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
636  				 (void *)wqe);
637  		} else {
638  			pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
639  			writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
640  			       wq->rq.bar2_va + SGE_UDB_KDOORBELL);
641  		}
642  
643  		/* Flush user doorbell area writes. */
644  		wmb();
645  		return;
646  	}
647  	writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
648  }
649  
t4_wq_in_error(struct t4_wq * wq)650  static inline int t4_wq_in_error(struct t4_wq *wq)
651  {
652  	return *wq->qp_errp;
653  }
654  
t4_set_wq_in_error(struct t4_wq * wq,u32 srqidx)655  static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
656  {
657  	if (srqidx)
658  		*wq->srqidxp = srqidx;
659  	*wq->qp_errp = 1;
660  }
661  
t4_disable_wq_db(struct t4_wq * wq)662  static inline void t4_disable_wq_db(struct t4_wq *wq)
663  {
664  	wq->rq.queue[wq->rq.size].status.db_off = 1;
665  }
666  
t4_enable_wq_db(struct t4_wq * wq)667  static inline void t4_enable_wq_db(struct t4_wq *wq)
668  {
669  	wq->rq.queue[wq->rq.size].status.db_off = 0;
670  }
671  
672  enum t4_cq_flags {
673  	CQ_ARMED	= 1,
674  };
675  
676  struct t4_cq {
677  	struct t4_cqe *queue;
678  	dma_addr_t dma_addr;
679  	DEFINE_DMA_UNMAP_ADDR(mapping);
680  	struct t4_cqe *sw_queue;
681  	void __iomem *gts;
682  	void __iomem *bar2_va;
683  	u64 bar2_pa;
684  	u32 bar2_qid;
685  	struct c4iw_rdev *rdev;
686  	size_t memsize;
687  	__be64 bits_type_ts;
688  	u32 cqid;
689  	u32 qid_mask;
690  	int vector;
691  	u16 size; /* including status page */
692  	u16 cidx;
693  	u16 sw_pidx;
694  	u16 sw_cidx;
695  	u16 sw_in_use;
696  	u16 cidx_inc;
697  	u8 gen;
698  	u8 error;
699  	u8 *qp_errp;
700  	unsigned long flags;
701  };
702  
write_gts(struct t4_cq * cq,u32 val)703  static inline void write_gts(struct t4_cq *cq, u32 val)
704  {
705  	if (cq->bar2_va)
706  		writel(val | INGRESSQID_V(cq->bar2_qid),
707  		       cq->bar2_va + SGE_UDB_GTS);
708  	else
709  		writel(val | INGRESSQID_V(cq->cqid), cq->gts);
710  }
711  
t4_clear_cq_armed(struct t4_cq * cq)712  static inline int t4_clear_cq_armed(struct t4_cq *cq)
713  {
714  	return test_and_clear_bit(CQ_ARMED, &cq->flags);
715  }
716  
t4_arm_cq(struct t4_cq * cq,int se)717  static inline int t4_arm_cq(struct t4_cq *cq, int se)
718  {
719  	u32 val;
720  
721  	set_bit(CQ_ARMED, &cq->flags);
722  	while (cq->cidx_inc > CIDXINC_M) {
723  		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
724  		write_gts(cq, val);
725  		cq->cidx_inc -= CIDXINC_M;
726  	}
727  	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
728  	write_gts(cq, val);
729  	cq->cidx_inc = 0;
730  	return 0;
731  }
732  
t4_swcq_produce(struct t4_cq * cq)733  static inline void t4_swcq_produce(struct t4_cq *cq)
734  {
735  	cq->sw_in_use++;
736  	if (cq->sw_in_use == cq->size) {
737  		pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
738  			__func__, cq->cqid);
739  		cq->error = 1;
740  		cq->sw_in_use--;
741  		return;
742  	}
743  	if (++cq->sw_pidx == cq->size)
744  		cq->sw_pidx = 0;
745  }
746  
t4_swcq_consume(struct t4_cq * cq)747  static inline void t4_swcq_consume(struct t4_cq *cq)
748  {
749  	cq->sw_in_use--;
750  	if (++cq->sw_cidx == cq->size)
751  		cq->sw_cidx = 0;
752  }
753  
t4_hwcq_consume(struct t4_cq * cq)754  static inline void t4_hwcq_consume(struct t4_cq *cq)
755  {
756  	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
757  	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
758  		u32 val;
759  
760  		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
761  		write_gts(cq, val);
762  		cq->cidx_inc = 0;
763  	}
764  	if (++cq->cidx == cq->size) {
765  		cq->cidx = 0;
766  		cq->gen ^= 1;
767  	}
768  }
769  
t4_valid_cqe(struct t4_cq * cq,struct t4_cqe * cqe)770  static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
771  {
772  	return (CQE_GENBIT(cqe) == cq->gen);
773  }
774  
t4_cq_notempty(struct t4_cq * cq)775  static inline int t4_cq_notempty(struct t4_cq *cq)
776  {
777  	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
778  }
779  
t4_next_hw_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)780  static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
781  {
782  	int ret;
783  	u16 prev_cidx;
784  
785  	if (cq->cidx == 0)
786  		prev_cidx = cq->size - 1;
787  	else
788  		prev_cidx = cq->cidx - 1;
789  
790  	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
791  		ret = -EOVERFLOW;
792  		cq->error = 1;
793  		pr_err("cq overflow cqid %u\n", cq->cqid);
794  	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
795  
796  		/* Ensure CQE is flushed to memory */
797  		rmb();
798  		*cqe = &cq->queue[cq->cidx];
799  		ret = 0;
800  	} else
801  		ret = -ENODATA;
802  	return ret;
803  }
804  
t4_next_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)805  static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
806  {
807  	int ret = 0;
808  
809  	if (cq->error)
810  		ret = -ENODATA;
811  	else if (cq->sw_in_use)
812  		*cqe = &cq->sw_queue[cq->sw_cidx];
813  	else
814  		ret = t4_next_hw_cqe(cq, cqe);
815  	return ret;
816  }
817  
t4_set_cq_in_error(struct t4_cq * cq)818  static inline void t4_set_cq_in_error(struct t4_cq *cq)
819  {
820  	*cq->qp_errp = 1;
821  }
822  #endif
823  
824  struct t4_dev_status_page {
825  	u8 db_off;
826  	u8 write_cmpl_supported;
827  	u16 pad2;
828  	u32 pad3;
829  	u64 qp_start;
830  	u64 qp_size;
831  	u64 cq_start;
832  	u64 cq_size;
833  };
834