xref: /openbmc/linux/arch/s390/kernel/perf_cpum_sf.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Performance event support for the System z CPU-measurement Sampling Facility
4   *
5   * Copyright IBM Corp. 2013, 2018
6   * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7   */
8  #define KMSG_COMPONENT	"cpum_sf"
9  #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
10  
11  #include <linux/kernel.h>
12  #include <linux/kernel_stat.h>
13  #include <linux/perf_event.h>
14  #include <linux/percpu.h>
15  #include <linux/pid.h>
16  #include <linux/notifier.h>
17  #include <linux/export.h>
18  #include <linux/slab.h>
19  #include <linux/mm.h>
20  #include <linux/moduleparam.h>
21  #include <asm/cpu_mf.h>
22  #include <asm/irq.h>
23  #include <asm/debug.h>
24  #include <asm/timex.h>
25  #include <linux/io.h>
26  
27  /* Minimum number of sample-data-block-tables:
28   * At least one table is required for the sampling buffer structure.
29   * A single table contains up to 511 pointers to sample-data-blocks.
30   */
31  #define CPUM_SF_MIN_SDBT	1
32  
33  /* Number of sample-data-blocks per sample-data-block-table (SDBT):
34   * A table contains SDB pointers (8 bytes) and one table-link entry
35   * that points to the origin of the next SDBT.
36   */
37  #define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8)
38  
39  /* Maximum page offset for an SDBT table-link entry:
40   * If this page offset is reached, a table-link entry to the next SDBT
41   * must be added.
42   */
43  #define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)44  static inline int require_table_link(const void *sdbt)
45  {
46  	return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
47  }
48  
49  /* Minimum and maximum sampling buffer sizes:
50   *
51   * This number represents the maximum size of the sampling buffer taking
52   * the number of sample-data-block-tables into account.  Note that these
53   * numbers apply to the basic-sampling function only.
54   * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
55   * the diagnostic-sampling function is active.
56   *
57   * Sampling buffer size		Buffer characteristics
58   * ---------------------------------------------------
59   *	 64KB		    ==	  16 pages (4KB per page)
60   *				   1 page  for SDB-tables
61   *				  15 pages for SDBs
62   *
63   *  32MB		    ==	8192 pages (4KB per page)
64   *				  16 pages for SDB-tables
65   *				8176 pages for SDBs
66   */
67  static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
68  static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
69  static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
70  
71  struct sf_buffer {
72  	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */
73  	/* buffer characteristics (required for buffer increments) */
74  	unsigned long  num_sdb;	    /* Number of sample-data-blocks */
75  	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */
76  	unsigned long	 *tail;	    /* last sample-data-block-table */
77  };
78  
79  struct aux_buffer {
80  	struct sf_buffer sfb;
81  	unsigned long head;	   /* index of SDB of buffer head */
82  	unsigned long alert_mark;  /* index of SDB of alert request position */
83  	unsigned long empty_mark;  /* mark of SDB not marked full */
84  	unsigned long *sdb_index;  /* SDB address for fast lookup */
85  	unsigned long *sdbt_index; /* SDBT address for fast lookup */
86  };
87  
88  struct cpu_hw_sf {
89  	/* CPU-measurement sampling information block */
90  	struct hws_qsi_info_block qsi;
91  	/* CPU-measurement sampling control block */
92  	struct hws_lsctl_request_block lsctl;
93  	struct sf_buffer sfb;	    /* Sampling buffer */
94  	unsigned int flags;	    /* Status flags */
95  	struct perf_event *event;   /* Scheduled perf event */
96  	struct perf_output_handle handle; /* AUX buffer output handle */
97  };
98  static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
99  
100  /* Debug feature */
101  static debug_info_t *sfdbg;
102  
103  /* Sampling control helper functions */
freq_to_sample_rate(struct hws_qsi_info_block * qsi,unsigned long freq)104  static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
105  						unsigned long freq)
106  {
107  	return (USEC_PER_SEC / freq) * qsi->cpu_speed;
108  }
109  
sample_rate_to_freq(struct hws_qsi_info_block * qsi,unsigned long rate)110  static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
111  						unsigned long rate)
112  {
113  	return USEC_PER_SEC * qsi->cpu_speed / rate;
114  }
115  
116  /* Return TOD timestamp contained in an trailer entry */
trailer_timestamp(struct hws_trailer_entry * te)117  static inline unsigned long long trailer_timestamp(struct hws_trailer_entry *te)
118  {
119  	/* TOD in STCKE format */
120  	if (te->header.t)
121  		return *((unsigned long long *)&te->timestamp[1]);
122  
123  	/* TOD in STCK format */
124  	return *((unsigned long long *)&te->timestamp[0]);
125  }
126  
127  /* Return pointer to trailer entry of an sample data block */
trailer_entry_ptr(unsigned long v)128  static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
129  {
130  	void *ret;
131  
132  	ret = (void *)v;
133  	ret += PAGE_SIZE;
134  	ret -= sizeof(struct hws_trailer_entry);
135  
136  	return ret;
137  }
138  
139  /*
140   * Return true if the entry in the sample data block table (sdbt)
141   * is a link to the next sdbt
142   */
is_link_entry(unsigned long * s)143  static inline int is_link_entry(unsigned long *s)
144  {
145  	return *s & 0x1UL ? 1 : 0;
146  }
147  
148  /* Return pointer to the linked sdbt */
get_next_sdbt(unsigned long * s)149  static inline unsigned long *get_next_sdbt(unsigned long *s)
150  {
151  	return phys_to_virt(*s & ~0x1UL);
152  }
153  
154  /*
155   * sf_disable() - Switch off sampling facility
156   */
sf_disable(void)157  static int sf_disable(void)
158  {
159  	struct hws_lsctl_request_block sreq;
160  
161  	memset(&sreq, 0, sizeof(sreq));
162  	return lsctl(&sreq);
163  }
164  
165  /*
166   * sf_buffer_available() - Check for an allocated sampling buffer
167   */
sf_buffer_available(struct cpu_hw_sf * cpuhw)168  static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
169  {
170  	return !!cpuhw->sfb.sdbt;
171  }
172  
173  /*
174   * deallocate sampling facility buffer
175   */
free_sampling_buffer(struct sf_buffer * sfb)176  static void free_sampling_buffer(struct sf_buffer *sfb)
177  {
178  	unsigned long *sdbt, *curr;
179  
180  	if (!sfb->sdbt)
181  		return;
182  
183  	sdbt = sfb->sdbt;
184  	curr = sdbt;
185  
186  	/* Free the SDBT after all SDBs are processed... */
187  	while (1) {
188  		if (!*curr || !sdbt)
189  			break;
190  
191  		/* Process table-link entries */
192  		if (is_link_entry(curr)) {
193  			curr = get_next_sdbt(curr);
194  			if (sdbt)
195  				free_page((unsigned long)sdbt);
196  
197  			/* If the origin is reached, sampling buffer is freed */
198  			if (curr == sfb->sdbt)
199  				break;
200  			else
201  				sdbt = curr;
202  		} else {
203  			/* Process SDB pointer */
204  			if (*curr) {
205  				free_page((unsigned long)phys_to_virt(*curr));
206  				curr++;
207  			}
208  		}
209  	}
210  
211  	debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
212  			    (unsigned long)sfb->sdbt);
213  	memset(sfb, 0, sizeof(*sfb));
214  }
215  
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)216  static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
217  {
218  	struct hws_trailer_entry *te;
219  	unsigned long sdb;
220  
221  	/* Allocate and initialize sample-data-block */
222  	sdb = get_zeroed_page(gfp_flags);
223  	if (!sdb)
224  		return -ENOMEM;
225  	te = trailer_entry_ptr(sdb);
226  	te->header.a = 1;
227  
228  	/* Link SDB into the sample-data-block-table */
229  	*sdbt = virt_to_phys((void *)sdb);
230  
231  	return 0;
232  }
233  
234  /*
235   * realloc_sampling_buffer() - extend sampler memory
236   *
237   * Allocates new sample-data-blocks and adds them to the specified sampling
238   * buffer memory.
239   *
240   * Important: This modifies the sampling buffer and must be called when the
241   *	      sampling facility is disabled.
242   *
243   * Returns zero on success, non-zero otherwise.
244   */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)245  static int realloc_sampling_buffer(struct sf_buffer *sfb,
246  				   unsigned long num_sdb, gfp_t gfp_flags)
247  {
248  	int i, rc;
249  	unsigned long *new, *tail, *tail_prev = NULL;
250  
251  	if (!sfb->sdbt || !sfb->tail)
252  		return -EINVAL;
253  
254  	if (!is_link_entry(sfb->tail))
255  		return -EINVAL;
256  
257  	/* Append to the existing sampling buffer, overwriting the table-link
258  	 * register.
259  	 * The tail variables always points to the "tail" (last and table-link)
260  	 * entry in an SDB-table.
261  	 */
262  	tail = sfb->tail;
263  
264  	/* Do a sanity check whether the table-link entry points to
265  	 * the sampling buffer origin.
266  	 */
267  	if (sfb->sdbt != get_next_sdbt(tail)) {
268  		debug_sprintf_event(sfdbg, 3, "%s: "
269  				    "sampling buffer is not linked: origin %#lx"
270  				    " tail %#lx\n", __func__,
271  				    (unsigned long)sfb->sdbt,
272  				    (unsigned long)tail);
273  		return -EINVAL;
274  	}
275  
276  	/* Allocate remaining SDBs */
277  	rc = 0;
278  	for (i = 0; i < num_sdb; i++) {
279  		/* Allocate a new SDB-table if it is full. */
280  		if (require_table_link(tail)) {
281  			new = (unsigned long *)get_zeroed_page(gfp_flags);
282  			if (!new) {
283  				rc = -ENOMEM;
284  				break;
285  			}
286  			sfb->num_sdbt++;
287  			/* Link current page to tail of chain */
288  			*tail = virt_to_phys((void *)new) + 1;
289  			tail_prev = tail;
290  			tail = new;
291  		}
292  
293  		/* Allocate a new sample-data-block.
294  		 * If there is not enough memory, stop the realloc process
295  		 * and simply use what was allocated.  If this is a temporary
296  		 * issue, a new realloc call (if required) might succeed.
297  		 */
298  		rc = alloc_sample_data_block(tail, gfp_flags);
299  		if (rc) {
300  			/* Undo last SDBT. An SDBT with no SDB at its first
301  			 * entry but with an SDBT entry instead can not be
302  			 * handled by the interrupt handler code.
303  			 * Avoid this situation.
304  			 */
305  			if (tail_prev) {
306  				sfb->num_sdbt--;
307  				free_page((unsigned long)new);
308  				tail = tail_prev;
309  			}
310  			break;
311  		}
312  		sfb->num_sdb++;
313  		tail++;
314  		tail_prev = new = NULL;	/* Allocated at least one SBD */
315  	}
316  
317  	/* Link sampling buffer to its origin */
318  	*tail = virt_to_phys(sfb->sdbt) + 1;
319  	sfb->tail = tail;
320  
321  	debug_sprintf_event(sfdbg, 4, "%s: new buffer"
322  			    " settings: sdbt %lu sdb %lu\n", __func__,
323  			    sfb->num_sdbt, sfb->num_sdb);
324  	return rc;
325  }
326  
327  /*
328   * allocate_sampling_buffer() - allocate sampler memory
329   *
330   * Allocates and initializes a sampling buffer structure using the
331   * specified number of sample-data-blocks (SDB).  For each allocation,
332   * a 4K page is used.  The number of sample-data-block-tables (SDBT)
333   * are calculated from SDBs.
334   * Also set the ALERT_REQ mask in each SDBs trailer.
335   *
336   * Returns zero on success, non-zero otherwise.
337   */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)338  static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
339  {
340  	int rc;
341  
342  	if (sfb->sdbt)
343  		return -EINVAL;
344  
345  	/* Allocate the sample-data-block-table origin */
346  	sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
347  	if (!sfb->sdbt)
348  		return -ENOMEM;
349  	sfb->num_sdb = 0;
350  	sfb->num_sdbt = 1;
351  
352  	/* Link the table origin to point to itself to prepare for
353  	 * realloc_sampling_buffer() invocation.
354  	 */
355  	sfb->tail = sfb->sdbt;
356  	*sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
357  
358  	/* Allocate requested number of sample-data-blocks */
359  	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
360  	if (rc) {
361  		free_sampling_buffer(sfb);
362  		debug_sprintf_event(sfdbg, 4, "%s: "
363  			"realloc_sampling_buffer failed with rc %i\n",
364  			__func__, rc);
365  	} else
366  		debug_sprintf_event(sfdbg, 4,
367  			"%s: tear %#lx dear %#lx\n", __func__,
368  			(unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
369  	return rc;
370  }
371  
sfb_set_limits(unsigned long min,unsigned long max)372  static void sfb_set_limits(unsigned long min, unsigned long max)
373  {
374  	struct hws_qsi_info_block si;
375  
376  	CPUM_SF_MIN_SDB = min;
377  	CPUM_SF_MAX_SDB = max;
378  
379  	memset(&si, 0, sizeof(si));
380  	if (!qsi(&si))
381  		CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
382  }
383  
sfb_max_limit(struct hw_perf_event * hwc)384  static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
385  {
386  	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
387  				    : CPUM_SF_MAX_SDB;
388  }
389  
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)390  static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
391  					struct hw_perf_event *hwc)
392  {
393  	if (!sfb->sdbt)
394  		return SFB_ALLOC_REG(hwc);
395  	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
396  		return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
397  	return 0;
398  }
399  
sfb_has_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)400  static int sfb_has_pending_allocs(struct sf_buffer *sfb,
401  				   struct hw_perf_event *hwc)
402  {
403  	return sfb_pending_allocs(sfb, hwc) > 0;
404  }
405  
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)406  static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
407  {
408  	/* Limit the number of SDBs to not exceed the maximum */
409  	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
410  	if (num)
411  		SFB_ALLOC_REG(hwc) += num;
412  }
413  
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)414  static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
415  {
416  	SFB_ALLOC_REG(hwc) = 0;
417  	sfb_account_allocs(num, hwc);
418  }
419  
deallocate_buffers(struct cpu_hw_sf * cpuhw)420  static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
421  {
422  	if (cpuhw->sfb.sdbt)
423  		free_sampling_buffer(&cpuhw->sfb);
424  }
425  
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)426  static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
427  {
428  	unsigned long n_sdb, freq;
429  	size_t sample_size;
430  
431  	/* Calculate sampling buffers using 4K pages
432  	 *
433  	 *    1. The sampling size is 32 bytes for basic sampling. This size
434  	 *	 is the same for all machine types. Diagnostic
435  	 *	 sampling uses auxlilary data buffer setup which provides the
436  	 *	 memory for SDBs using linux common code auxiliary trace
437  	 *	 setup.
438  	 *
439  	 *    2. Function alloc_sampling_buffer() sets the Alert Request
440  	 *	 Control indicator to trigger a measurement-alert to harvest
441  	 *	 sample-data-blocks (SDB). This is done per SDB. This
442  	 *	 measurement alert interrupt fires quick enough to handle
443  	 *	 one SDB, on very high frequency and work loads there might
444  	 *	 be 2 to 3 SBDs available for sample processing.
445  	 *	 Currently there is no need for setup alert request on every
446  	 *	 n-th page. This is counterproductive as one IRQ triggers
447  	 *	 a very high number of samples to be processed at one IRQ.
448  	 *
449  	 *    3. Use the sampling frequency as input.
450  	 *	 Compute the number of SDBs and ensure a minimum
451  	 *	 of CPUM_SF_MIN_SDB.  Depending on frequency add some more
452  	 *	 SDBs to handle a higher sampling rate.
453  	 *	 Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
454  	 *	 (one SDB) for every 10000 HZ frequency increment.
455  	 *
456  	 *    4. Compute the number of sample-data-block-tables (SDBT) and
457  	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
458  	 *	 to 511 SDBs).
459  	 */
460  	sample_size = sizeof(struct hws_basic_entry);
461  	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
462  	n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
463  
464  	/* If there is already a sampling buffer allocated, it is very likely
465  	 * that the sampling facility is enabled too.  If the event to be
466  	 * initialized requires a greater sampling buffer, the allocation must
467  	 * be postponed.  Changing the sampling buffer requires the sampling
468  	 * facility to be in the disabled state.  So, account the number of
469  	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
470  	 * before the event is started.
471  	 */
472  	sfb_init_allocs(n_sdb, hwc);
473  	if (sf_buffer_available(cpuhw))
474  		return 0;
475  
476  	debug_sprintf_event(sfdbg, 3,
477  			    "%s: rate %lu f %lu sdb %lu/%lu"
478  			    " sample_size %lu cpuhw %p\n", __func__,
479  			    SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
480  			    sample_size, cpuhw);
481  
482  	return alloc_sampling_buffer(&cpuhw->sfb,
483  				     sfb_pending_allocs(&cpuhw->sfb, hwc));
484  }
485  
min_percent(unsigned int percent,unsigned long base,unsigned long min)486  static unsigned long min_percent(unsigned int percent, unsigned long base,
487  				 unsigned long min)
488  {
489  	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
490  }
491  
compute_sfb_extent(unsigned long ratio,unsigned long base)492  static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
493  {
494  	/* Use a percentage-based approach to extend the sampling facility
495  	 * buffer.  Accept up to 5% sample data loss.
496  	 * Vary the extents between 1% to 5% of the current number of
497  	 * sample-data-blocks.
498  	 */
499  	if (ratio <= 5)
500  		return 0;
501  	if (ratio <= 25)
502  		return min_percent(1, base, 1);
503  	if (ratio <= 50)
504  		return min_percent(1, base, 1);
505  	if (ratio <= 75)
506  		return min_percent(2, base, 2);
507  	if (ratio <= 100)
508  		return min_percent(3, base, 3);
509  	if (ratio <= 250)
510  		return min_percent(4, base, 4);
511  
512  	return min_percent(5, base, 8);
513  }
514  
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)515  static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
516  				  struct hw_perf_event *hwc)
517  {
518  	unsigned long ratio, num;
519  
520  	if (!OVERFLOW_REG(hwc))
521  		return;
522  
523  	/* The sample_overflow contains the average number of sample data
524  	 * that has been lost because sample-data-blocks were full.
525  	 *
526  	 * Calculate the total number of sample data entries that has been
527  	 * discarded.  Then calculate the ratio of lost samples to total samples
528  	 * per second in percent.
529  	 */
530  	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
531  			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
532  
533  	/* Compute number of sample-data-blocks */
534  	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
535  	if (num)
536  		sfb_account_allocs(num, hwc);
537  
538  	debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
539  			    __func__, OVERFLOW_REG(hwc), ratio, num);
540  	OVERFLOW_REG(hwc) = 0;
541  }
542  
543  /* extend_sampling_buffer() - Extend sampling buffer
544   * @sfb:	Sampling buffer structure (for local CPU)
545   * @hwc:	Perf event hardware structure
546   *
547   * Use this function to extend the sampling buffer based on the overflow counter
548   * and postponed allocation extents stored in the specified Perf event hardware.
549   *
550   * Important: This function disables the sampling facility in order to safely
551   *	      change the sampling buffer structure.  Do not call this function
552   *	      when the PMU is active.
553   */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)554  static void extend_sampling_buffer(struct sf_buffer *sfb,
555  				   struct hw_perf_event *hwc)
556  {
557  	unsigned long num, num_old;
558  	int rc;
559  
560  	num = sfb_pending_allocs(sfb, hwc);
561  	if (!num)
562  		return;
563  	num_old = sfb->num_sdb;
564  
565  	/* Disable the sampling facility to reset any states and also
566  	 * clear pending measurement alerts.
567  	 */
568  	sf_disable();
569  
570  	/* Extend the sampling buffer.
571  	 * This memory allocation typically happens in an atomic context when
572  	 * called by perf.  Because this is a reallocation, it is fine if the
573  	 * new SDB-request cannot be satisfied immediately.
574  	 */
575  	rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
576  	if (rc)
577  		debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
578  				    __func__, rc);
579  
580  	if (sfb_has_pending_allocs(sfb, hwc))
581  		debug_sprintf_event(sfdbg, 5, "%s: "
582  				    "req %lu alloc %lu remaining %lu\n",
583  				    __func__, num, sfb->num_sdb - num_old,
584  				    sfb_pending_allocs(sfb, hwc));
585  }
586  
587  /* Number of perf events counting hardware events */
588  static atomic_t num_events;
589  /* Used to avoid races in calling reserve/release_cpumf_hardware */
590  static DEFINE_MUTEX(pmc_reserve_mutex);
591  
592  #define PMC_INIT      0
593  #define PMC_RELEASE   1
594  #define PMC_FAILURE   2
setup_pmc_cpu(void * flags)595  static void setup_pmc_cpu(void *flags)
596  {
597  	struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
598  	int err = 0;
599  
600  	switch (*((int *)flags)) {
601  	case PMC_INIT:
602  		memset(cpusf, 0, sizeof(*cpusf));
603  		err = qsi(&cpusf->qsi);
604  		if (err)
605  			break;
606  		cpusf->flags |= PMU_F_RESERVED;
607  		err = sf_disable();
608  		break;
609  	case PMC_RELEASE:
610  		cpusf->flags &= ~PMU_F_RESERVED;
611  		err = sf_disable();
612  		if (!err)
613  			deallocate_buffers(cpusf);
614  		break;
615  	}
616  	if (err) {
617  		*((int *)flags) |= PMC_FAILURE;
618  		pr_err("Switching off the sampling facility failed with rc %i\n", err);
619  	}
620  }
621  
release_pmc_hardware(void)622  static void release_pmc_hardware(void)
623  {
624  	int flags = PMC_RELEASE;
625  
626  	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
627  	on_each_cpu(setup_pmc_cpu, &flags, 1);
628  }
629  
reserve_pmc_hardware(void)630  static int reserve_pmc_hardware(void)
631  {
632  	int flags = PMC_INIT;
633  
634  	on_each_cpu(setup_pmc_cpu, &flags, 1);
635  	if (flags & PMC_FAILURE) {
636  		release_pmc_hardware();
637  		return -ENODEV;
638  	}
639  	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
640  
641  	return 0;
642  }
643  
hw_perf_event_destroy(struct perf_event * event)644  static void hw_perf_event_destroy(struct perf_event *event)
645  {
646  	/* Release PMC if this is the last perf event */
647  	if (!atomic_add_unless(&num_events, -1, 1)) {
648  		mutex_lock(&pmc_reserve_mutex);
649  		if (atomic_dec_return(&num_events) == 0)
650  			release_pmc_hardware();
651  		mutex_unlock(&pmc_reserve_mutex);
652  	}
653  }
654  
hw_init_period(struct hw_perf_event * hwc,u64 period)655  static void hw_init_period(struct hw_perf_event *hwc, u64 period)
656  {
657  	hwc->sample_period = period;
658  	hwc->last_period = hwc->sample_period;
659  	local64_set(&hwc->period_left, hwc->sample_period);
660  }
661  
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)662  static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
663  				   unsigned long rate)
664  {
665  	return clamp_t(unsigned long, rate,
666  		       si->min_sampl_rate, si->max_sampl_rate);
667  }
668  
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)669  static u32 cpumsf_pid_type(struct perf_event *event,
670  			   u32 pid, enum pid_type type)
671  {
672  	struct task_struct *tsk;
673  
674  	/* Idle process */
675  	if (!pid)
676  		goto out;
677  
678  	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
679  	pid = -1;
680  	if (tsk) {
681  		/*
682  		 * Only top level events contain the pid namespace in which
683  		 * they are created.
684  		 */
685  		if (event->parent)
686  			event = event->parent;
687  		pid = __task_pid_nr_ns(tsk, type, event->ns);
688  		/*
689  		 * See also 1d953111b648
690  		 * "perf/core: Don't report zero PIDs for exiting tasks".
691  		 */
692  		if (!pid && !pid_alive(tsk))
693  			pid = -1;
694  	}
695  out:
696  	return pid;
697  }
698  
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)699  static void cpumsf_output_event_pid(struct perf_event *event,
700  				    struct perf_sample_data *data,
701  				    struct pt_regs *regs)
702  {
703  	u32 pid;
704  	struct perf_event_header header;
705  	struct perf_output_handle handle;
706  
707  	/*
708  	 * Obtain the PID from the basic-sampling data entry and
709  	 * correct the data->tid_entry.pid value.
710  	 */
711  	pid = data->tid_entry.pid;
712  
713  	/* Protect callchain buffers, tasks */
714  	rcu_read_lock();
715  
716  	perf_prepare_sample(data, event, regs);
717  	perf_prepare_header(&header, data, event, regs);
718  	if (perf_output_begin(&handle, data, event, header.size))
719  		goto out;
720  
721  	/* Update the process ID (see also kernel/events/core.c) */
722  	data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
723  	data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
724  
725  	perf_output_sample(&handle, &header, data, event);
726  	perf_output_end(&handle);
727  out:
728  	rcu_read_unlock();
729  }
730  
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)731  static unsigned long getrate(bool freq, unsigned long sample,
732  			     struct hws_qsi_info_block *si)
733  {
734  	unsigned long rate;
735  
736  	if (freq) {
737  		rate = freq_to_sample_rate(si, sample);
738  		rate = hw_limit_rate(si, rate);
739  	} else {
740  		/* The min/max sampling rates specifies the valid range
741  		 * of sample periods.  If the specified sample period is
742  		 * out of range, limit the period to the range boundary.
743  		 */
744  		rate = hw_limit_rate(si, sample);
745  
746  		/* The perf core maintains a maximum sample rate that is
747  		 * configurable through the sysctl interface.  Ensure the
748  		 * sampling rate does not exceed this value.  This also helps
749  		 * to avoid throttling when pushing samples with
750  		 * perf_event_overflow().
751  		 */
752  		if (sample_rate_to_freq(si, rate) >
753  		    sysctl_perf_event_sample_rate) {
754  			debug_sprintf_event(sfdbg, 1, "%s: "
755  					    "Sampling rate exceeds maximum "
756  					    "perf sample rate\n", __func__);
757  			rate = 0;
758  		}
759  	}
760  	return rate;
761  }
762  
763  /* The sampling information (si) contains information about the
764   * min/max sampling intervals and the CPU speed.  So calculate the
765   * correct sampling interval and avoid the whole period adjust
766   * feedback loop.
767   *
768   * Since the CPU Measurement sampling facility can not handle frequency
769   * calculate the sampling interval when frequency is specified using
770   * this formula:
771   *	interval := cpu_speed * 1000000 / sample_freq
772   *
773   * Returns errno on bad input and zero on success with parameter interval
774   * set to the correct sampling rate.
775   *
776   * Note: This function turns off freq bit to avoid calling function
777   * perf_adjust_period(). This causes frequency adjustment in the common
778   * code part which causes tremendous variations in the counter values.
779   */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)780  static int __hw_perf_event_init_rate(struct perf_event *event,
781  				     struct hws_qsi_info_block *si)
782  {
783  	struct perf_event_attr *attr = &event->attr;
784  	struct hw_perf_event *hwc = &event->hw;
785  	unsigned long rate;
786  
787  	if (attr->freq) {
788  		if (!attr->sample_freq)
789  			return -EINVAL;
790  		rate = getrate(attr->freq, attr->sample_freq, si);
791  		attr->freq = 0;		/* Don't call  perf_adjust_period() */
792  		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
793  	} else {
794  		rate = getrate(attr->freq, attr->sample_period, si);
795  		if (!rate)
796  			return -EINVAL;
797  	}
798  	attr->sample_period = rate;
799  	SAMPL_RATE(hwc) = rate;
800  	hw_init_period(hwc, SAMPL_RATE(hwc));
801  	debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
802  			    __func__, event->cpu, event->attr.sample_period,
803  			    event->attr.freq, SAMPLE_FREQ_MODE(hwc));
804  	return 0;
805  }
806  
__hw_perf_event_init(struct perf_event * event)807  static int __hw_perf_event_init(struct perf_event *event)
808  {
809  	struct cpu_hw_sf *cpuhw;
810  	struct hws_qsi_info_block si;
811  	struct perf_event_attr *attr = &event->attr;
812  	struct hw_perf_event *hwc = &event->hw;
813  	int cpu, err;
814  
815  	/* Reserve CPU-measurement sampling facility */
816  	err = 0;
817  	if (!atomic_inc_not_zero(&num_events)) {
818  		mutex_lock(&pmc_reserve_mutex);
819  		if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
820  			err = -EBUSY;
821  		else
822  			atomic_inc(&num_events);
823  		mutex_unlock(&pmc_reserve_mutex);
824  	}
825  	event->destroy = hw_perf_event_destroy;
826  
827  	if (err)
828  		goto out;
829  
830  	/* Access per-CPU sampling information (query sampling info) */
831  	/*
832  	 * The event->cpu value can be -1 to count on every CPU, for example,
833  	 * when attaching to a task.  If this is specified, use the query
834  	 * sampling info from the current CPU, otherwise use event->cpu to
835  	 * retrieve the per-CPU information.
836  	 * Later, cpuhw indicates whether to allocate sampling buffers for a
837  	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
838  	 */
839  	memset(&si, 0, sizeof(si));
840  	cpuhw = NULL;
841  	if (event->cpu == -1)
842  		qsi(&si);
843  	else {
844  		/* Event is pinned to a particular CPU, retrieve the per-CPU
845  		 * sampling structure for accessing the CPU-specific QSI.
846  		 */
847  		cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
848  		si = cpuhw->qsi;
849  	}
850  
851  	/* Check sampling facility authorization and, if not authorized,
852  	 * fall back to other PMUs.  It is safe to check any CPU because
853  	 * the authorization is identical for all configured CPUs.
854  	 */
855  	if (!si.as) {
856  		err = -ENOENT;
857  		goto out;
858  	}
859  
860  	if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
861  		pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
862  		err = -EBUSY;
863  		goto out;
864  	}
865  
866  	/* Always enable basic sampling */
867  	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
868  
869  	/* Check if diagnostic sampling is requested.  Deny if the required
870  	 * sampling authorization is missing.
871  	 */
872  	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
873  		if (!si.ad) {
874  			err = -EPERM;
875  			goto out;
876  		}
877  		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
878  	}
879  
880  	err =  __hw_perf_event_init_rate(event, &si);
881  	if (err)
882  		goto out;
883  
884  	/* Initialize sample data overflow accounting */
885  	hwc->extra_reg.reg = REG_OVERFLOW;
886  	OVERFLOW_REG(hwc) = 0;
887  
888  	/* Use AUX buffer. No need to allocate it by ourself */
889  	if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
890  		return 0;
891  
892  	/* Allocate the per-CPU sampling buffer using the CPU information
893  	 * from the event.  If the event is not pinned to a particular
894  	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
895  	 * buffers for each online CPU.
896  	 */
897  	if (cpuhw)
898  		/* Event is pinned to a particular CPU */
899  		err = allocate_buffers(cpuhw, hwc);
900  	else {
901  		/* Event is not pinned, allocate sampling buffer on
902  		 * each online CPU
903  		 */
904  		for_each_online_cpu(cpu) {
905  			cpuhw = &per_cpu(cpu_hw_sf, cpu);
906  			err = allocate_buffers(cpuhw, hwc);
907  			if (err)
908  				break;
909  		}
910  	}
911  
912  	/* If PID/TID sampling is active, replace the default overflow
913  	 * handler to extract and resolve the PIDs from the basic-sampling
914  	 * data entries.
915  	 */
916  	if (event->attr.sample_type & PERF_SAMPLE_TID)
917  		if (is_default_overflow_handler(event))
918  			event->overflow_handler = cpumsf_output_event_pid;
919  out:
920  	return err;
921  }
922  
is_callchain_event(struct perf_event * event)923  static bool is_callchain_event(struct perf_event *event)
924  {
925  	u64 sample_type = event->attr.sample_type;
926  
927  	return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
928  			      PERF_SAMPLE_STACK_USER);
929  }
930  
cpumsf_pmu_event_init(struct perf_event * event)931  static int cpumsf_pmu_event_init(struct perf_event *event)
932  {
933  	int err;
934  
935  	/* No support for taken branch sampling */
936  	/* No support for callchain, stacks and registers */
937  	if (has_branch_stack(event) || is_callchain_event(event))
938  		return -EOPNOTSUPP;
939  
940  	switch (event->attr.type) {
941  	case PERF_TYPE_RAW:
942  		if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
943  		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
944  			return -ENOENT;
945  		break;
946  	case PERF_TYPE_HARDWARE:
947  		/* Support sampling of CPU cycles in addition to the
948  		 * counter facility.  However, the counter facility
949  		 * is more precise and, hence, restrict this PMU to
950  		 * sampling events only.
951  		 */
952  		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
953  			return -ENOENT;
954  		if (!is_sampling_event(event))
955  			return -ENOENT;
956  		break;
957  	default:
958  		return -ENOENT;
959  	}
960  
961  	/* Force reset of idle/hv excludes regardless of what the
962  	 * user requested.
963  	 */
964  	if (event->attr.exclude_hv)
965  		event->attr.exclude_hv = 0;
966  	if (event->attr.exclude_idle)
967  		event->attr.exclude_idle = 0;
968  
969  	err = __hw_perf_event_init(event);
970  	if (unlikely(err))
971  		if (event->destroy)
972  			event->destroy(event);
973  	return err;
974  }
975  
cpumsf_pmu_enable(struct pmu * pmu)976  static void cpumsf_pmu_enable(struct pmu *pmu)
977  {
978  	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
979  	struct hw_perf_event *hwc;
980  	int err;
981  
982  	if (cpuhw->flags & PMU_F_ENABLED)
983  		return;
984  
985  	if (cpuhw->flags & PMU_F_ERR_MASK)
986  		return;
987  
988  	/* Check whether to extent the sampling buffer.
989  	 *
990  	 * Two conditions trigger an increase of the sampling buffer for a
991  	 * perf event:
992  	 *    1. Postponed buffer allocations from the event initialization.
993  	 *    2. Sampling overflows that contribute to pending allocations.
994  	 *
995  	 * Note that the extend_sampling_buffer() function disables the sampling
996  	 * facility, but it can be fully re-enabled using sampling controls that
997  	 * have been saved in cpumsf_pmu_disable().
998  	 */
999  	if (cpuhw->event) {
1000  		hwc = &cpuhw->event->hw;
1001  		if (!(SAMPL_DIAG_MODE(hwc))) {
1002  			/*
1003  			 * Account number of overflow-designated
1004  			 * buffer extents
1005  			 */
1006  			sfb_account_overflows(cpuhw, hwc);
1007  			extend_sampling_buffer(&cpuhw->sfb, hwc);
1008  		}
1009  		/* Rate may be adjusted with ioctl() */
1010  		cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
1011  	}
1012  
1013  	/* (Re)enable the PMU and sampling facility */
1014  	cpuhw->flags |= PMU_F_ENABLED;
1015  	barrier();
1016  
1017  	err = lsctl(&cpuhw->lsctl);
1018  	if (err) {
1019  		cpuhw->flags &= ~PMU_F_ENABLED;
1020  		pr_err("Loading sampling controls failed: op 1 err %i\n", err);
1021  		return;
1022  	}
1023  
1024  	/* Load current program parameter */
1025  	lpp(&S390_lowcore.lpp);
1026  
1027  	debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
1028  			    "interval %#lx tear %#lx dear %#lx\n", __func__,
1029  			    cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
1030  			    cpuhw->lsctl.cd, cpuhw->lsctl.interval,
1031  			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1032  }
1033  
cpumsf_pmu_disable(struct pmu * pmu)1034  static void cpumsf_pmu_disable(struct pmu *pmu)
1035  {
1036  	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1037  	struct hws_lsctl_request_block inactive;
1038  	struct hws_qsi_info_block si;
1039  	int err;
1040  
1041  	if (!(cpuhw->flags & PMU_F_ENABLED))
1042  		return;
1043  
1044  	if (cpuhw->flags & PMU_F_ERR_MASK)
1045  		return;
1046  
1047  	/* Switch off sampling activation control */
1048  	inactive = cpuhw->lsctl;
1049  	inactive.cs = 0;
1050  	inactive.cd = 0;
1051  
1052  	err = lsctl(&inactive);
1053  	if (err) {
1054  		pr_err("Loading sampling controls failed: op 2 err %i\n", err);
1055  		return;
1056  	}
1057  
1058  	/* Save state of TEAR and DEAR register contents */
1059  	err = qsi(&si);
1060  	if (!err) {
1061  		/* TEAR/DEAR values are valid only if the sampling facility is
1062  		 * enabled.  Note that cpumsf_pmu_disable() might be called even
1063  		 * for a disabled sampling facility because cpumsf_pmu_enable()
1064  		 * controls the enable/disable state.
1065  		 */
1066  		if (si.es) {
1067  			cpuhw->lsctl.tear = si.tear;
1068  			cpuhw->lsctl.dear = si.dear;
1069  		}
1070  	} else
1071  		debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1072  				    __func__, err);
1073  
1074  	cpuhw->flags &= ~PMU_F_ENABLED;
1075  }
1076  
1077  /* perf_exclude_event() - Filter event
1078   * @event:	The perf event
1079   * @regs:	pt_regs structure
1080   * @sde_regs:	Sample-data-entry (sde) regs structure
1081   *
1082   * Filter perf events according to their exclude specification.
1083   *
1084   * Return non-zero if the event shall be excluded.
1085   */
perf_exclude_event(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)1086  static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1087  			      struct perf_sf_sde_regs *sde_regs)
1088  {
1089  	if (event->attr.exclude_user && user_mode(regs))
1090  		return 1;
1091  	if (event->attr.exclude_kernel && !user_mode(regs))
1092  		return 1;
1093  	if (event->attr.exclude_guest && sde_regs->in_guest)
1094  		return 1;
1095  	if (event->attr.exclude_host && !sde_regs->in_guest)
1096  		return 1;
1097  	return 0;
1098  }
1099  
1100  /* perf_push_sample() - Push samples to perf
1101   * @event:	The perf event
1102   * @sample:	Hardware sample data
1103   *
1104   * Use the hardware sample data to create perf event sample.  The sample
1105   * is the pushed to the event subsystem and the function checks for
1106   * possible event overflows.  If an event overflow occurs, the PMU is
1107   * stopped.
1108   *
1109   * Return non-zero if an event overflow occurred.
1110   */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1111  static int perf_push_sample(struct perf_event *event,
1112  			    struct hws_basic_entry *basic)
1113  {
1114  	int overflow;
1115  	struct pt_regs regs;
1116  	struct perf_sf_sde_regs *sde_regs;
1117  	struct perf_sample_data data;
1118  
1119  	/* Setup perf sample */
1120  	perf_sample_data_init(&data, 0, event->hw.last_period);
1121  
1122  	/* Setup pt_regs to look like an CPU-measurement external interrupt
1123  	 * using the Program Request Alert code.  The regs.int_parm_long
1124  	 * field which is unused contains additional sample-data-entry related
1125  	 * indicators.
1126  	 */
1127  	memset(&regs, 0, sizeof(regs));
1128  	regs.int_code = 0x1407;
1129  	regs.int_parm = CPU_MF_INT_SF_PRA;
1130  	sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1131  
1132  	psw_bits(regs.psw).ia	= basic->ia;
1133  	psw_bits(regs.psw).dat	= basic->T;
1134  	psw_bits(regs.psw).wait = basic->W;
1135  	psw_bits(regs.psw).pstate = basic->P;
1136  	psw_bits(regs.psw).as	= basic->AS;
1137  
1138  	/*
1139  	 * Use the hardware provided configuration level to decide if the
1140  	 * sample belongs to a guest or host. If that is not available,
1141  	 * fall back to the following heuristics:
1142  	 * A non-zero guest program parameter always indicates a guest
1143  	 * sample. Some early samples or samples from guests without
1144  	 * lpp usage would be misaccounted to the host. We use the asn
1145  	 * value as an addon heuristic to detect most of these guest samples.
1146  	 * If the value differs from 0xffff (the host value), we assume to
1147  	 * be a KVM guest.
1148  	 */
1149  	switch (basic->CL) {
1150  	case 1: /* logical partition */
1151  		sde_regs->in_guest = 0;
1152  		break;
1153  	case 2: /* virtual machine */
1154  		sde_regs->in_guest = 1;
1155  		break;
1156  	default: /* old machine, use heuristics */
1157  		if (basic->gpp || basic->prim_asn != 0xffff)
1158  			sde_regs->in_guest = 1;
1159  		break;
1160  	}
1161  
1162  	/*
1163  	 * Store the PID value from the sample-data-entry to be
1164  	 * processed and resolved by cpumsf_output_event_pid().
1165  	 */
1166  	data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1167  
1168  	overflow = 0;
1169  	if (perf_exclude_event(event, &regs, sde_regs))
1170  		goto out;
1171  	if (perf_event_overflow(event, &data, &regs)) {
1172  		overflow = 1;
1173  		event->pmu->stop(event, 0);
1174  	}
1175  	perf_event_update_userpage(event);
1176  out:
1177  	return overflow;
1178  }
1179  
perf_event_count_update(struct perf_event * event,u64 count)1180  static void perf_event_count_update(struct perf_event *event, u64 count)
1181  {
1182  	local64_add(count, &event->count);
1183  }
1184  
1185  /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1186   * @event:	The perf event
1187   * @sdbt:	Sample-data-block table
1188   * @overflow:	Event overflow counter
1189   *
1190   * Walks through a sample-data-block and collects sampling data entries that are
1191   * then pushed to the perf event subsystem.  Depending on the sampling function,
1192   * there can be either basic-sampling or combined-sampling data entries.  A
1193   * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1194   * data entry.	The sampling function is determined by the flags in the perf
1195   * event hardware structure.  The function always works with a combined-sampling
1196   * data entry but ignores the the diagnostic portion if it is not available.
1197   *
1198   * Note that the implementation focuses on basic-sampling data entries and, if
1199   * such an entry is not valid, the entire combined-sampling data entry is
1200   * ignored.
1201   *
1202   * The overflow variables counts the number of samples that has been discarded
1203   * due to a perf event overflow.
1204   */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1205  static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1206  			       unsigned long long *overflow)
1207  {
1208  	struct hws_trailer_entry *te;
1209  	struct hws_basic_entry *sample;
1210  
1211  	te = trailer_entry_ptr((unsigned long)sdbt);
1212  	sample = (struct hws_basic_entry *)sdbt;
1213  	while ((unsigned long *)sample < (unsigned long *)te) {
1214  		/* Check for an empty sample */
1215  		if (!sample->def || sample->LS)
1216  			break;
1217  
1218  		/* Update perf event period */
1219  		perf_event_count_update(event, SAMPL_RATE(&event->hw));
1220  
1221  		/* Check whether sample is valid */
1222  		if (sample->def == 0x0001) {
1223  			/* If an event overflow occurred, the PMU is stopped to
1224  			 * throttle event delivery.  Remaining sample data is
1225  			 * discarded.
1226  			 */
1227  			if (!*overflow) {
1228  				/* Check whether sample is consistent */
1229  				if (sample->I == 0 && sample->W == 0) {
1230  					/* Deliver sample data to perf */
1231  					*overflow = perf_push_sample(event,
1232  								     sample);
1233  				}
1234  			} else
1235  				/* Count discarded samples */
1236  				*overflow += 1;
1237  		} else {
1238  			debug_sprintf_event(sfdbg, 4,
1239  					    "%s: Found unknown"
1240  					    " sampling data entry: te->f %i"
1241  					    " basic.def %#4x (%p)\n", __func__,
1242  					    te->header.f, sample->def, sample);
1243  			/* Sample slot is not yet written or other record.
1244  			 *
1245  			 * This condition can occur if the buffer was reused
1246  			 * from a combined basic- and diagnostic-sampling.
1247  			 * If only basic-sampling is then active, entries are
1248  			 * written into the larger diagnostic entries.
1249  			 * This is typically the case for sample-data-blocks
1250  			 * that are not full.  Stop processing if the first
1251  			 * invalid format was detected.
1252  			 */
1253  			if (!te->header.f)
1254  				break;
1255  		}
1256  
1257  		/* Reset sample slot and advance to next sample */
1258  		sample->def = 0;
1259  		sample++;
1260  	}
1261  }
1262  
1263  /* hw_perf_event_update() - Process sampling buffer
1264   * @event:	The perf event
1265   * @flush_all:	Flag to also flush partially filled sample-data-blocks
1266   *
1267   * Processes the sampling buffer and create perf event samples.
1268   * The sampling buffer position are retrieved and saved in the TEAR_REG
1269   * register of the specified perf event.
1270   *
1271   * Only full sample-data-blocks are processed.	Specify the flush_all flag
1272   * to also walk through partially filled sample-data-blocks.
1273   */
hw_perf_event_update(struct perf_event * event,int flush_all)1274  static void hw_perf_event_update(struct perf_event *event, int flush_all)
1275  {
1276  	unsigned long long event_overflow, sampl_overflow, num_sdb;
1277  	union hws_trailer_header old, prev, new;
1278  	struct hw_perf_event *hwc = &event->hw;
1279  	struct hws_trailer_entry *te;
1280  	unsigned long *sdbt, sdb;
1281  	int done;
1282  
1283  	/*
1284  	 * AUX buffer is used when in diagnostic sampling mode.
1285  	 * No perf events/samples are created.
1286  	 */
1287  	if (SAMPL_DIAG_MODE(&event->hw))
1288  		return;
1289  
1290  	sdbt = (unsigned long *)TEAR_REG(hwc);
1291  	done = event_overflow = sampl_overflow = num_sdb = 0;
1292  	while (!done) {
1293  		/* Get the trailer entry of the sample-data-block */
1294  		sdb = (unsigned long)phys_to_virt(*sdbt);
1295  		te = trailer_entry_ptr(sdb);
1296  
1297  		/* Leave loop if no more work to do (block full indicator) */
1298  		if (!te->header.f) {
1299  			done = 1;
1300  			if (!flush_all)
1301  				break;
1302  		}
1303  
1304  		/* Check the sample overflow count */
1305  		if (te->header.overflow)
1306  			/* Account sample overflows and, if a particular limit
1307  			 * is reached, extend the sampling buffer.
1308  			 * For details, see sfb_account_overflows().
1309  			 */
1310  			sampl_overflow += te->header.overflow;
1311  
1312  		/* Timestamps are valid for full sample-data-blocks only */
1313  		debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx/%#lx "
1314  				    "overflow %llu timestamp %#llx\n",
1315  				    __func__, sdb, (unsigned long)sdbt,
1316  				    te->header.overflow,
1317  				    (te->header.f) ? trailer_timestamp(te) : 0ULL);
1318  
1319  		/* Collect all samples from a single sample-data-block and
1320  		 * flag if an (perf) event overflow happened.  If so, the PMU
1321  		 * is stopped and remaining samples will be discarded.
1322  		 */
1323  		hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
1324  		num_sdb++;
1325  
1326  		/* Reset trailer (using compare-double-and-swap) */
1327  		prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1328  		do {
1329  			old.val = prev.val;
1330  			new.val = prev.val;
1331  			new.f = 0;
1332  			new.a = 1;
1333  			new.overflow = 0;
1334  			prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1335  		} while (prev.val != old.val);
1336  
1337  		/* Advance to next sample-data-block */
1338  		sdbt++;
1339  		if (is_link_entry(sdbt))
1340  			sdbt = get_next_sdbt(sdbt);
1341  
1342  		/* Update event hardware registers */
1343  		TEAR_REG(hwc) = (unsigned long) sdbt;
1344  
1345  		/* Stop processing sample-data if all samples of the current
1346  		 * sample-data-block were flushed even if it was not full.
1347  		 */
1348  		if (flush_all && done)
1349  			break;
1350  	}
1351  
1352  	/* Account sample overflows in the event hardware structure */
1353  	if (sampl_overflow)
1354  		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1355  						 sampl_overflow, 1 + num_sdb);
1356  
1357  	/* Perf_event_overflow() and perf_event_account_interrupt() limit
1358  	 * the interrupt rate to an upper limit. Roughly 1000 samples per
1359  	 * task tick.
1360  	 * Hitting this limit results in a large number
1361  	 * of throttled REF_REPORT_THROTTLE entries and the samples
1362  	 * are dropped.
1363  	 * Slightly increase the interval to avoid hitting this limit.
1364  	 */
1365  	if (event_overflow) {
1366  		SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1367  		debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1368  				    __func__,
1369  				    DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1370  	}
1371  
1372  	if (sampl_overflow || event_overflow)
1373  		debug_sprintf_event(sfdbg, 4, "%s: "
1374  				    "overflows: sample %llu event %llu"
1375  				    " total %llu num_sdb %llu\n",
1376  				    __func__, sampl_overflow, event_overflow,
1377  				    OVERFLOW_REG(hwc), num_sdb);
1378  }
1379  
aux_sdb_index(struct aux_buffer * aux,unsigned long i)1380  static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1381  					  unsigned long i)
1382  {
1383  	return i % aux->sfb.num_sdb;
1384  }
1385  
aux_sdb_num(unsigned long start,unsigned long end)1386  static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1387  {
1388  	return end >= start ? end - start + 1 : 0;
1389  }
1390  
aux_sdb_num_alert(struct aux_buffer * aux)1391  static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1392  {
1393  	return aux_sdb_num(aux->head, aux->alert_mark);
1394  }
1395  
aux_sdb_num_empty(struct aux_buffer * aux)1396  static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1397  {
1398  	return aux_sdb_num(aux->head, aux->empty_mark);
1399  }
1400  
1401  /*
1402   * Get trailer entry by index of SDB.
1403   */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1404  static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1405  						 unsigned long index)
1406  {
1407  	unsigned long sdb;
1408  
1409  	index = aux_sdb_index(aux, index);
1410  	sdb = aux->sdb_index[index];
1411  	return trailer_entry_ptr(sdb);
1412  }
1413  
1414  /*
1415   * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1416   * disabled. Collect the full SDBs in AUX buffer which have not reached
1417   * the point of alert indicator. And ignore the SDBs which are not
1418   * full.
1419   *
1420   * 1. Scan SDBs to see how much data is there and consume them.
1421   * 2. Remove alert indicator in the buffer.
1422   */
aux_output_end(struct perf_output_handle * handle)1423  static void aux_output_end(struct perf_output_handle *handle)
1424  {
1425  	unsigned long i, range_scan, idx;
1426  	struct aux_buffer *aux;
1427  	struct hws_trailer_entry *te;
1428  
1429  	aux = perf_get_aux(handle);
1430  	if (!aux)
1431  		return;
1432  
1433  	range_scan = aux_sdb_num_alert(aux);
1434  	for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1435  		te = aux_sdb_trailer(aux, idx);
1436  		if (!te->header.f)
1437  			break;
1438  	}
1439  	/* i is num of SDBs which are full */
1440  	perf_aux_output_end(handle, i << PAGE_SHIFT);
1441  
1442  	/* Remove alert indicators in the buffer */
1443  	te = aux_sdb_trailer(aux, aux->alert_mark);
1444  	te->header.a = 0;
1445  
1446  	debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1447  			    __func__, i, range_scan, aux->head);
1448  }
1449  
1450  /*
1451   * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1452   * is first added to the CPU or rescheduled again to the CPU. It is called
1453   * with pmu disabled.
1454   *
1455   * 1. Reset the trailer of SDBs to get ready for new data.
1456   * 2. Tell the hardware where to put the data by reset the SDBs buffer
1457   *    head(tear/dear).
1458   */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1459  static int aux_output_begin(struct perf_output_handle *handle,
1460  			    struct aux_buffer *aux,
1461  			    struct cpu_hw_sf *cpuhw)
1462  {
1463  	unsigned long range, i, range_scan, idx, head, base, offset;
1464  	struct hws_trailer_entry *te;
1465  
1466  	if (handle->head & ~PAGE_MASK)
1467  		return -EINVAL;
1468  
1469  	aux->head = handle->head >> PAGE_SHIFT;
1470  	range = (handle->size + 1) >> PAGE_SHIFT;
1471  	if (range <= 1)
1472  		return -ENOMEM;
1473  
1474  	/*
1475  	 * SDBs between aux->head and aux->empty_mark are already ready
1476  	 * for new data. range_scan is num of SDBs not within them.
1477  	 */
1478  	debug_sprintf_event(sfdbg, 6,
1479  			    "%s: range %ld head %ld alert %ld empty %ld\n",
1480  			    __func__, range, aux->head, aux->alert_mark,
1481  			    aux->empty_mark);
1482  	if (range > aux_sdb_num_empty(aux)) {
1483  		range_scan = range - aux_sdb_num_empty(aux);
1484  		idx = aux->empty_mark + 1;
1485  		for (i = 0; i < range_scan; i++, idx++) {
1486  			te = aux_sdb_trailer(aux, idx);
1487  			te->header.f = 0;
1488  			te->header.a = 0;
1489  			te->header.overflow = 0;
1490  		}
1491  		/* Save the position of empty SDBs */
1492  		aux->empty_mark = aux->head + range - 1;
1493  	}
1494  
1495  	/* Set alert indicator */
1496  	aux->alert_mark = aux->head + range/2 - 1;
1497  	te = aux_sdb_trailer(aux, aux->alert_mark);
1498  	te->header.a = 1;
1499  
1500  	/* Reset hardware buffer head */
1501  	head = aux_sdb_index(aux, aux->head);
1502  	base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1503  	offset = head % CPUM_SF_SDB_PER_TABLE;
1504  	cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
1505  	cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
1506  
1507  	debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1508  			    "index %ld tear %#lx dear %#lx\n", __func__,
1509  			    aux->head, aux->alert_mark, aux->empty_mark,
1510  			    head / CPUM_SF_SDB_PER_TABLE,
1511  			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1512  
1513  	return 0;
1514  }
1515  
1516  /*
1517   * Set alert indicator on SDB at index @alert_index while sampler is running.
1518   *
1519   * Return true if successfully.
1520   * Return false if full indicator is already set by hardware sampler.
1521   */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1522  static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1523  			  unsigned long long *overflow)
1524  {
1525  	union hws_trailer_header old, prev, new;
1526  	struct hws_trailer_entry *te;
1527  
1528  	te = aux_sdb_trailer(aux, alert_index);
1529  	prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1530  	do {
1531  		old.val = prev.val;
1532  		new.val = prev.val;
1533  		*overflow = old.overflow;
1534  		if (old.f) {
1535  			/*
1536  			 * SDB is already set by hardware.
1537  			 * Abort and try to set somewhere
1538  			 * behind.
1539  			 */
1540  			return false;
1541  		}
1542  		new.a = 1;
1543  		new.overflow = 0;
1544  		prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1545  	} while (prev.val != old.val);
1546  	return true;
1547  }
1548  
1549  /*
1550   * aux_reset_buffer() - Scan and setup SDBs for new samples
1551   * @aux:	The AUX buffer to set
1552   * @range:	The range of SDBs to scan started from aux->head
1553   * @overflow:	Set to overflow count
1554   *
1555   * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1556   * marked as empty, check if it is already set full by the hardware sampler.
1557   * If yes, that means new data is already there before we can set an alert
1558   * indicator. Caller should try to set alert indicator to some position behind.
1559   *
1560   * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1561   * previously and have already been consumed by user space. Reset these SDBs
1562   * (clear full indicator and alert indicator) for new data.
1563   * If aux->alert_mark fall in this area, just set it. Overflow count is
1564   * recorded while scanning.
1565   *
1566   * SDBs between aux->head and aux->empty_mark are already reset at last time.
1567   * and ready for new samples. So scanning on this area could be skipped.
1568   *
1569   * Return true if alert indicator is set successfully and false if not.
1570   */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1571  static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1572  			     unsigned long long *overflow)
1573  {
1574  	unsigned long i, range_scan, idx, idx_old;
1575  	union hws_trailer_header old, prev, new;
1576  	unsigned long long orig_overflow;
1577  	struct hws_trailer_entry *te;
1578  
1579  	debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1580  			    "empty %ld\n", __func__, range, aux->head,
1581  			    aux->alert_mark, aux->empty_mark);
1582  	if (range <= aux_sdb_num_empty(aux))
1583  		/*
1584  		 * No need to scan. All SDBs in range are marked as empty.
1585  		 * Just set alert indicator. Should check race with hardware
1586  		 * sampler.
1587  		 */
1588  		return aux_set_alert(aux, aux->alert_mark, overflow);
1589  
1590  	if (aux->alert_mark <= aux->empty_mark)
1591  		/*
1592  		 * Set alert indicator on empty SDB. Should check race
1593  		 * with hardware sampler.
1594  		 */
1595  		if (!aux_set_alert(aux, aux->alert_mark, overflow))
1596  			return false;
1597  
1598  	/*
1599  	 * Scan the SDBs to clear full and alert indicator used previously.
1600  	 * Start scanning from one SDB behind empty_mark. If the new alert
1601  	 * indicator fall into this range, set it.
1602  	 */
1603  	range_scan = range - aux_sdb_num_empty(aux);
1604  	idx_old = idx = aux->empty_mark + 1;
1605  	for (i = 0; i < range_scan; i++, idx++) {
1606  		te = aux_sdb_trailer(aux, idx);
1607  		prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1608  		do {
1609  			old.val = prev.val;
1610  			new.val = prev.val;
1611  			orig_overflow = old.overflow;
1612  			new.f = 0;
1613  			new.overflow = 0;
1614  			if (idx == aux->alert_mark)
1615  				new.a = 1;
1616  			else
1617  				new.a = 0;
1618  			prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1619  		} while (prev.val != old.val);
1620  		*overflow += orig_overflow;
1621  	}
1622  
1623  	/* Update empty_mark to new position */
1624  	aux->empty_mark = aux->head + range - 1;
1625  
1626  	debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1627  			    "empty %ld\n", __func__, range_scan, idx_old,
1628  			    idx - 1, aux->empty_mark);
1629  	return true;
1630  }
1631  
1632  /*
1633   * Measurement alert handler for diagnostic mode sampling.
1634   */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1635  static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1636  {
1637  	struct aux_buffer *aux;
1638  	int done = 0;
1639  	unsigned long range = 0, size;
1640  	unsigned long long overflow = 0;
1641  	struct perf_output_handle *handle = &cpuhw->handle;
1642  	unsigned long num_sdb;
1643  
1644  	aux = perf_get_aux(handle);
1645  	if (!aux)
1646  		return;
1647  
1648  	/* Inform user space new data arrived */
1649  	size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1650  	debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1651  			    size >> PAGE_SHIFT);
1652  	perf_aux_output_end(handle, size);
1653  
1654  	num_sdb = aux->sfb.num_sdb;
1655  	while (!done) {
1656  		/* Get an output handle */
1657  		aux = perf_aux_output_begin(handle, cpuhw->event);
1658  		if (handle->size == 0) {
1659  			pr_err("The AUX buffer with %lu pages for the "
1660  			       "diagnostic-sampling mode is full\n",
1661  				num_sdb);
1662  			break;
1663  		}
1664  		if (!aux)
1665  			return;
1666  
1667  		/* Update head and alert_mark to new position */
1668  		aux->head = handle->head >> PAGE_SHIFT;
1669  		range = (handle->size + 1) >> PAGE_SHIFT;
1670  		if (range == 1)
1671  			aux->alert_mark = aux->head;
1672  		else
1673  			aux->alert_mark = aux->head + range/2 - 1;
1674  
1675  		if (aux_reset_buffer(aux, range, &overflow)) {
1676  			if (!overflow) {
1677  				done = 1;
1678  				break;
1679  			}
1680  			size = range << PAGE_SHIFT;
1681  			perf_aux_output_end(&cpuhw->handle, size);
1682  			pr_err("Sample data caused the AUX buffer with %lu "
1683  			       "pages to overflow\n", aux->sfb.num_sdb);
1684  			debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1685  					    "overflow %lld\n", __func__,
1686  					    aux->head, range, overflow);
1687  		} else {
1688  			size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1689  			perf_aux_output_end(&cpuhw->handle, size);
1690  			debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1691  					    "already full, try another\n",
1692  					    __func__,
1693  					    aux->head, aux->alert_mark);
1694  		}
1695  	}
1696  
1697  	if (done)
1698  		debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1699  				    "empty %ld\n", __func__, aux->head,
1700  				    aux->alert_mark, aux->empty_mark);
1701  }
1702  
1703  /*
1704   * Callback when freeing AUX buffers.
1705   */
aux_buffer_free(void * data)1706  static void aux_buffer_free(void *data)
1707  {
1708  	struct aux_buffer *aux = data;
1709  	unsigned long i, num_sdbt;
1710  
1711  	if (!aux)
1712  		return;
1713  
1714  	/* Free SDBT. SDB is freed by the caller */
1715  	num_sdbt = aux->sfb.num_sdbt;
1716  	for (i = 0; i < num_sdbt; i++)
1717  		free_page(aux->sdbt_index[i]);
1718  
1719  	kfree(aux->sdbt_index);
1720  	kfree(aux->sdb_index);
1721  	kfree(aux);
1722  
1723  	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1724  }
1725  
aux_sdb_init(unsigned long sdb)1726  static void aux_sdb_init(unsigned long sdb)
1727  {
1728  	struct hws_trailer_entry *te;
1729  
1730  	te = trailer_entry_ptr(sdb);
1731  
1732  	/* Save clock base */
1733  	te->clock_base = 1;
1734  	te->progusage2 = tod_clock_base.tod;
1735  }
1736  
1737  /*
1738   * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1739   * @event:	Event the buffer is setup for, event->cpu == -1 means current
1740   * @pages:	Array of pointers to buffer pages passed from perf core
1741   * @nr_pages:	Total pages
1742   * @snapshot:	Flag for snapshot mode
1743   *
1744   * This is the callback when setup an event using AUX buffer. Perf tool can
1745   * trigger this by an additional mmap() call on the event. Unlike the buffer
1746   * for basic samples, AUX buffer belongs to the event. It is scheduled with
1747   * the task among online cpus when it is a per-thread event.
1748   *
1749   * Return the private AUX buffer structure if success or NULL if fails.
1750   */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1751  static void *aux_buffer_setup(struct perf_event *event, void **pages,
1752  			      int nr_pages, bool snapshot)
1753  {
1754  	struct sf_buffer *sfb;
1755  	struct aux_buffer *aux;
1756  	unsigned long *new, *tail;
1757  	int i, n_sdbt;
1758  
1759  	if (!nr_pages || !pages)
1760  		return NULL;
1761  
1762  	if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1763  		pr_err("AUX buffer size (%i pages) is larger than the "
1764  		       "maximum sampling buffer limit\n",
1765  		       nr_pages);
1766  		return NULL;
1767  	} else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1768  		pr_err("AUX buffer size (%i pages) is less than the "
1769  		       "minimum sampling buffer limit\n",
1770  		       nr_pages);
1771  		return NULL;
1772  	}
1773  
1774  	/* Allocate aux_buffer struct for the event */
1775  	aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1776  	if (!aux)
1777  		goto no_aux;
1778  	sfb = &aux->sfb;
1779  
1780  	/* Allocate sdbt_index for fast reference */
1781  	n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1782  	aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1783  	if (!aux->sdbt_index)
1784  		goto no_sdbt_index;
1785  
1786  	/* Allocate sdb_index for fast reference */
1787  	aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1788  	if (!aux->sdb_index)
1789  		goto no_sdb_index;
1790  
1791  	/* Allocate the first SDBT */
1792  	sfb->num_sdbt = 0;
1793  	sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1794  	if (!sfb->sdbt)
1795  		goto no_sdbt;
1796  	aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1797  	tail = sfb->tail = sfb->sdbt;
1798  
1799  	/*
1800  	 * Link the provided pages of AUX buffer to SDBT.
1801  	 * Allocate SDBT if needed.
1802  	 */
1803  	for (i = 0; i < nr_pages; i++, tail++) {
1804  		if (require_table_link(tail)) {
1805  			new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1806  			if (!new)
1807  				goto no_sdbt;
1808  			aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1809  			/* Link current page to tail of chain */
1810  			*tail = virt_to_phys(new) + 1;
1811  			tail = new;
1812  		}
1813  		/* Tail is the entry in a SDBT */
1814  		*tail = virt_to_phys(pages[i]);
1815  		aux->sdb_index[i] = (unsigned long)pages[i];
1816  		aux_sdb_init((unsigned long)pages[i]);
1817  	}
1818  	sfb->num_sdb = nr_pages;
1819  
1820  	/* Link the last entry in the SDBT to the first SDBT */
1821  	*tail = virt_to_phys(sfb->sdbt) + 1;
1822  	sfb->tail = tail;
1823  
1824  	/*
1825  	 * Initial all SDBs are zeroed. Mark it as empty.
1826  	 * So there is no need to clear the full indicator
1827  	 * when this event is first added.
1828  	 */
1829  	aux->empty_mark = sfb->num_sdb - 1;
1830  
1831  	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1832  			    sfb->num_sdbt, sfb->num_sdb);
1833  
1834  	return aux;
1835  
1836  no_sdbt:
1837  	/* SDBs (AUX buffer pages) are freed by caller */
1838  	for (i = 0; i < sfb->num_sdbt; i++)
1839  		free_page(aux->sdbt_index[i]);
1840  	kfree(aux->sdb_index);
1841  no_sdb_index:
1842  	kfree(aux->sdbt_index);
1843  no_sdbt_index:
1844  	kfree(aux);
1845  no_aux:
1846  	return NULL;
1847  }
1848  
cpumsf_pmu_read(struct perf_event * event)1849  static void cpumsf_pmu_read(struct perf_event *event)
1850  {
1851  	/* Nothing to do ... updates are interrupt-driven */
1852  }
1853  
1854  /* Check if the new sampling period/frequency is appropriate.
1855   *
1856   * Return non-zero on error and zero on passed checks.
1857   */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1858  static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1859  {
1860  	struct hws_qsi_info_block si;
1861  	unsigned long rate;
1862  	bool do_freq;
1863  
1864  	memset(&si, 0, sizeof(si));
1865  	if (event->cpu == -1) {
1866  		if (qsi(&si))
1867  			return -ENODEV;
1868  	} else {
1869  		/* Event is pinned to a particular CPU, retrieve the per-CPU
1870  		 * sampling structure for accessing the CPU-specific QSI.
1871  		 */
1872  		struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1873  
1874  		si = cpuhw->qsi;
1875  	}
1876  
1877  	do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1878  	rate = getrate(do_freq, value, &si);
1879  	if (!rate)
1880  		return -EINVAL;
1881  
1882  	event->attr.sample_period = rate;
1883  	SAMPL_RATE(&event->hw) = rate;
1884  	hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1885  	debug_sprintf_event(sfdbg, 4, "%s:"
1886  			    " cpu %d value %#llx period %#llx freq %d\n",
1887  			    __func__, event->cpu, value,
1888  			    event->attr.sample_period, do_freq);
1889  	return 0;
1890  }
1891  
1892  /* Activate sampling control.
1893   * Next call of pmu_enable() starts sampling.
1894   */
cpumsf_pmu_start(struct perf_event * event,int flags)1895  static void cpumsf_pmu_start(struct perf_event *event, int flags)
1896  {
1897  	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1898  
1899  	if (!(event->hw.state & PERF_HES_STOPPED))
1900  		return;
1901  	perf_pmu_disable(event->pmu);
1902  	event->hw.state = 0;
1903  	cpuhw->lsctl.cs = 1;
1904  	if (SAMPL_DIAG_MODE(&event->hw))
1905  		cpuhw->lsctl.cd = 1;
1906  	perf_pmu_enable(event->pmu);
1907  }
1908  
1909  /* Deactivate sampling control.
1910   * Next call of pmu_enable() stops sampling.
1911   */
cpumsf_pmu_stop(struct perf_event * event,int flags)1912  static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1913  {
1914  	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1915  
1916  	if (event->hw.state & PERF_HES_STOPPED)
1917  		return;
1918  
1919  	perf_pmu_disable(event->pmu);
1920  	cpuhw->lsctl.cs = 0;
1921  	cpuhw->lsctl.cd = 0;
1922  	event->hw.state |= PERF_HES_STOPPED;
1923  
1924  	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1925  		/* CPU hotplug off removes SDBs. No samples to extract. */
1926  		if (cpuhw->flags & PMU_F_RESERVED)
1927  			hw_perf_event_update(event, 1);
1928  		event->hw.state |= PERF_HES_UPTODATE;
1929  	}
1930  	perf_pmu_enable(event->pmu);
1931  }
1932  
cpumsf_pmu_add(struct perf_event * event,int flags)1933  static int cpumsf_pmu_add(struct perf_event *event, int flags)
1934  {
1935  	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1936  	struct aux_buffer *aux;
1937  	int err;
1938  
1939  	if (cpuhw->flags & PMU_F_IN_USE)
1940  		return -EAGAIN;
1941  
1942  	if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1943  		return -EINVAL;
1944  
1945  	err = 0;
1946  	perf_pmu_disable(event->pmu);
1947  
1948  	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1949  
1950  	/* Set up sampling controls.  Always program the sampling register
1951  	 * using the SDB-table start.  Reset TEAR_REG event hardware register
1952  	 * that is used by hw_perf_event_update() to store the sampling buffer
1953  	 * position after samples have been flushed.
1954  	 */
1955  	cpuhw->lsctl.s = 0;
1956  	cpuhw->lsctl.h = 1;
1957  	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1958  	if (!SAMPL_DIAG_MODE(&event->hw)) {
1959  		cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
1960  		cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1961  		TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1962  	}
1963  
1964  	/* Ensure sampling functions are in the disabled state.  If disabled,
1965  	 * switch on sampling enable control. */
1966  	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1967  		err = -EAGAIN;
1968  		goto out;
1969  	}
1970  	if (SAMPL_DIAG_MODE(&event->hw)) {
1971  		aux = perf_aux_output_begin(&cpuhw->handle, event);
1972  		if (!aux) {
1973  			err = -EINVAL;
1974  			goto out;
1975  		}
1976  		err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1977  		if (err)
1978  			goto out;
1979  		cpuhw->lsctl.ed = 1;
1980  	}
1981  	cpuhw->lsctl.es = 1;
1982  
1983  	/* Set in_use flag and store event */
1984  	cpuhw->event = event;
1985  	cpuhw->flags |= PMU_F_IN_USE;
1986  
1987  	if (flags & PERF_EF_START)
1988  		cpumsf_pmu_start(event, PERF_EF_RELOAD);
1989  out:
1990  	perf_event_update_userpage(event);
1991  	perf_pmu_enable(event->pmu);
1992  	return err;
1993  }
1994  
cpumsf_pmu_del(struct perf_event * event,int flags)1995  static void cpumsf_pmu_del(struct perf_event *event, int flags)
1996  {
1997  	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1998  
1999  	perf_pmu_disable(event->pmu);
2000  	cpumsf_pmu_stop(event, PERF_EF_UPDATE);
2001  
2002  	cpuhw->lsctl.es = 0;
2003  	cpuhw->lsctl.ed = 0;
2004  	cpuhw->flags &= ~PMU_F_IN_USE;
2005  	cpuhw->event = NULL;
2006  
2007  	if (SAMPL_DIAG_MODE(&event->hw))
2008  		aux_output_end(&cpuhw->handle);
2009  	perf_event_update_userpage(event);
2010  	perf_pmu_enable(event->pmu);
2011  }
2012  
2013  CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
2014  CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
2015  
2016  /* Attribute list for CPU_SF.
2017   *
2018   * The availablitiy depends on the CPU_MF sampling facility authorization
2019   * for basic + diagnositic samples. This is determined at initialization
2020   * time by the sampling facility device driver.
2021   * If the authorization for basic samples is turned off, it should be
2022   * also turned off for diagnostic sampling.
2023   *
2024   * During initialization of the device driver, check the authorization
2025   * level for diagnostic sampling and installs the attribute
2026   * file for diagnostic sampling if necessary.
2027   *
2028   * For now install a placeholder to reference all possible attributes:
2029   * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
2030   * Add another entry for the final NULL pointer.
2031   */
2032  enum {
2033  	SF_CYCLES_BASIC_ATTR_IDX = 0,
2034  	SF_CYCLES_BASIC_DIAG_ATTR_IDX,
2035  	SF_CYCLES_ATTR_MAX
2036  };
2037  
2038  static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
2039  	[SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
2040  };
2041  
2042  PMU_FORMAT_ATTR(event, "config:0-63");
2043  
2044  static struct attribute *cpumsf_pmu_format_attr[] = {
2045  	&format_attr_event.attr,
2046  	NULL,
2047  };
2048  
2049  static struct attribute_group cpumsf_pmu_events_group = {
2050  	.name = "events",
2051  	.attrs = cpumsf_pmu_events_attr,
2052  };
2053  
2054  static struct attribute_group cpumsf_pmu_format_group = {
2055  	.name = "format",
2056  	.attrs = cpumsf_pmu_format_attr,
2057  };
2058  
2059  static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2060  	&cpumsf_pmu_events_group,
2061  	&cpumsf_pmu_format_group,
2062  	NULL,
2063  };
2064  
2065  static struct pmu cpumf_sampling = {
2066  	.pmu_enable   = cpumsf_pmu_enable,
2067  	.pmu_disable  = cpumsf_pmu_disable,
2068  
2069  	.event_init   = cpumsf_pmu_event_init,
2070  	.add	      = cpumsf_pmu_add,
2071  	.del	      = cpumsf_pmu_del,
2072  
2073  	.start	      = cpumsf_pmu_start,
2074  	.stop	      = cpumsf_pmu_stop,
2075  	.read	      = cpumsf_pmu_read,
2076  
2077  	.attr_groups  = cpumsf_pmu_attr_groups,
2078  
2079  	.setup_aux    = aux_buffer_setup,
2080  	.free_aux     = aux_buffer_free,
2081  
2082  	.check_period = cpumsf_pmu_check_period,
2083  };
2084  
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)2085  static void cpumf_measurement_alert(struct ext_code ext_code,
2086  				    unsigned int alert, unsigned long unused)
2087  {
2088  	struct cpu_hw_sf *cpuhw;
2089  
2090  	if (!(alert & CPU_MF_INT_SF_MASK))
2091  		return;
2092  	inc_irq_stat(IRQEXT_CMS);
2093  	cpuhw = this_cpu_ptr(&cpu_hw_sf);
2094  
2095  	/* Measurement alerts are shared and might happen when the PMU
2096  	 * is not reserved.  Ignore these alerts in this case. */
2097  	if (!(cpuhw->flags & PMU_F_RESERVED))
2098  		return;
2099  
2100  	/* The processing below must take care of multiple alert events that
2101  	 * might be indicated concurrently. */
2102  
2103  	/* Program alert request */
2104  	if (alert & CPU_MF_INT_SF_PRA) {
2105  		if (cpuhw->flags & PMU_F_IN_USE)
2106  			if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2107  				hw_collect_aux(cpuhw);
2108  			else
2109  				hw_perf_event_update(cpuhw->event, 0);
2110  		else
2111  			WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2112  	}
2113  
2114  	/* Report measurement alerts only for non-PRA codes */
2115  	if (alert != CPU_MF_INT_SF_PRA)
2116  		debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2117  				    alert);
2118  
2119  	/* Sampling authorization change request */
2120  	if (alert & CPU_MF_INT_SF_SACA)
2121  		qsi(&cpuhw->qsi);
2122  
2123  	/* Loss of sample data due to high-priority machine activities */
2124  	if (alert & CPU_MF_INT_SF_LSDA) {
2125  		pr_err("Sample data was lost\n");
2126  		cpuhw->flags |= PMU_F_ERR_LSDA;
2127  		sf_disable();
2128  	}
2129  
2130  	/* Invalid sampling buffer entry */
2131  	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2132  		pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2133  		       alert);
2134  		cpuhw->flags |= PMU_F_ERR_IBE;
2135  		sf_disable();
2136  	}
2137  }
2138  
cpusf_pmu_setup(unsigned int cpu,int flags)2139  static int cpusf_pmu_setup(unsigned int cpu, int flags)
2140  {
2141  	/* Ignore the notification if no events are scheduled on the PMU.
2142  	 * This might be racy...
2143  	 */
2144  	if (!atomic_read(&num_events))
2145  		return 0;
2146  
2147  	local_irq_disable();
2148  	setup_pmc_cpu(&flags);
2149  	local_irq_enable();
2150  	return 0;
2151  }
2152  
s390_pmu_sf_online_cpu(unsigned int cpu)2153  static int s390_pmu_sf_online_cpu(unsigned int cpu)
2154  {
2155  	return cpusf_pmu_setup(cpu, PMC_INIT);
2156  }
2157  
s390_pmu_sf_offline_cpu(unsigned int cpu)2158  static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2159  {
2160  	return cpusf_pmu_setup(cpu, PMC_RELEASE);
2161  }
2162  
param_get_sfb_size(char * buffer,const struct kernel_param * kp)2163  static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2164  {
2165  	if (!cpum_sf_avail())
2166  		return -ENODEV;
2167  	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2168  }
2169  
param_set_sfb_size(const char * val,const struct kernel_param * kp)2170  static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2171  {
2172  	int rc;
2173  	unsigned long min, max;
2174  
2175  	if (!cpum_sf_avail())
2176  		return -ENODEV;
2177  	if (!val || !strlen(val))
2178  		return -EINVAL;
2179  
2180  	/* Valid parameter values: "min,max" or "max" */
2181  	min = CPUM_SF_MIN_SDB;
2182  	max = CPUM_SF_MAX_SDB;
2183  	if (strchr(val, ','))
2184  		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2185  	else
2186  		rc = kstrtoul(val, 10, &max);
2187  
2188  	if (min < 2 || min >= max || max > get_num_physpages())
2189  		rc = -EINVAL;
2190  	if (rc)
2191  		return rc;
2192  
2193  	sfb_set_limits(min, max);
2194  	pr_info("The sampling buffer limits have changed to: "
2195  		"min %lu max %lu (diag %lu)\n",
2196  		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2197  	return 0;
2198  }
2199  
2200  #define param_check_sfb_size(name, p) __param_check(name, p, void)
2201  static const struct kernel_param_ops param_ops_sfb_size = {
2202  	.set = param_set_sfb_size,
2203  	.get = param_get_sfb_size,
2204  };
2205  
2206  #define RS_INIT_FAILURE_QSI	  0x0001
2207  #define RS_INIT_FAILURE_BSDES	  0x0002
2208  #define RS_INIT_FAILURE_ALRT	  0x0003
2209  #define RS_INIT_FAILURE_PERF	  0x0004
pr_cpumsf_err(unsigned int reason)2210  static void __init pr_cpumsf_err(unsigned int reason)
2211  {
2212  	pr_err("Sampling facility support for perf is not available: "
2213  	       "reason %#x\n", reason);
2214  }
2215  
init_cpum_sampling_pmu(void)2216  static int __init init_cpum_sampling_pmu(void)
2217  {
2218  	struct hws_qsi_info_block si;
2219  	int err;
2220  
2221  	if (!cpum_sf_avail())
2222  		return -ENODEV;
2223  
2224  	memset(&si, 0, sizeof(si));
2225  	if (qsi(&si)) {
2226  		pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2227  		return -ENODEV;
2228  	}
2229  
2230  	if (!si.as && !si.ad)
2231  		return -ENODEV;
2232  
2233  	if (si.bsdes != sizeof(struct hws_basic_entry)) {
2234  		pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2235  		return -EINVAL;
2236  	}
2237  
2238  	if (si.ad) {
2239  		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2240  		/* Sampling of diagnostic data authorized,
2241  		 * install event into attribute list of PMU device.
2242  		 */
2243  		cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2244  			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2245  	}
2246  
2247  	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2248  	if (!sfdbg) {
2249  		pr_err("Registering for s390dbf failed\n");
2250  		return -ENOMEM;
2251  	}
2252  	debug_register_view(sfdbg, &debug_sprintf_view);
2253  
2254  	err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2255  				    cpumf_measurement_alert);
2256  	if (err) {
2257  		pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2258  		debug_unregister(sfdbg);
2259  		goto out;
2260  	}
2261  
2262  	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2263  	if (err) {
2264  		pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2265  		unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2266  					cpumf_measurement_alert);
2267  		debug_unregister(sfdbg);
2268  		goto out;
2269  	}
2270  
2271  	cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2272  			  s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2273  out:
2274  	return err;
2275  }
2276  
2277  arch_initcall(init_cpum_sampling_pmu);
2278  core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2279