1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * U-Boot version:
9 * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 #include <asm-generic/gpio.h>
34 #include <fdt_support.h>
35
36 DECLARE_GLOBAL_DATA_PTR;
37
38 #define __verify_pcpu_ptr(ptr) \
39 do { \
40 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
41 (void)__vpp_verify; \
42 } while (0)
43
44 #define VERIFY_PERCPU_PTR(__p) \
45 ({ \
46 __verify_pcpu_ptr(__p); \
47 (typeof(*(__p)) __kernel __force *)(__p); \
48 })
49
50 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
51 #define smp_processor_id() 0
52 #define num_present_cpus() 1
53 #define for_each_present_cpu(cpu) \
54 for ((cpu) = 0; (cpu) < 1; (cpu)++)
55
56 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
57
58 #define CONFIG_NR_CPUS 1
59
60 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
61 #define WRAP (2 + ETH_HLEN + 4 + 32)
62 #define MTU 1500
63 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
64
65 #define MVPP2_SMI_TIMEOUT 10000
66
67 /* RX Fifo Registers */
68 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
69 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
70 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
71 #define MVPP2_RX_FIFO_INIT_REG 0x64
72
73 /* RX DMA Top Registers */
74 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
75 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
76 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
77 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
78 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
79 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
80 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
81 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
82 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
83 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
84 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
85 #define MVPP2_RXQ_POOL_LONG_OFFS 24
86 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
87 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
88 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
89 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
90 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
91
92 /* Parser Registers */
93 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
94 #define MVPP2_PRS_PORT_LU_MAX 0xf
95 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
96 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
97 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
98 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
99 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
100 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
101 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
102 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
103 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
104 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
105 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
106 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
107 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
108 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
109 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
110
111 /* Classifier Registers */
112 #define MVPP2_CLS_MODE_REG 0x1800
113 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
114 #define MVPP2_CLS_PORT_WAY_REG 0x1810
115 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
116 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
117 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
118 #define MVPP2_CLS_LKP_TBL_REG 0x1818
119 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
120 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
121 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
122 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
123 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
124 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
125 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
126 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
127 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
128 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
129 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
130 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
131
132 /* Descriptor Manager Top Registers */
133 #define MVPP2_RXQ_NUM_REG 0x2040
134 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
135 #define MVPP22_DESC_ADDR_OFFS 8
136 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
137 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
138 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
139 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
140 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
141 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
142 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
143 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
144 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
145 #define MVPP2_RXQ_THRESH_REG 0x204c
146 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
147 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
148 #define MVPP2_RXQ_INDEX_REG 0x2050
149 #define MVPP2_TXQ_NUM_REG 0x2080
150 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
151 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
152 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
153 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
154 #define MVPP2_TXQ_THRESH_REG 0x2094
155 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
156 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
157 #define MVPP2_TXQ_INDEX_REG 0x2098
158 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
159 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
160 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
161 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
162 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
163 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
164 #define MVPP2_TXQ_PENDING_REG 0x20a0
165 #define MVPP2_TXQ_PENDING_MASK 0x3fff
166 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
167 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
168 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
169 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
170 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
171 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
172 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
173 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
174 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
175 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
176 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
177 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
178 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
179 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
180 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
181 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
182 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
183
184 /* MBUS bridge registers */
185 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
186 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
187 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
188 #define MVPP2_BASE_ADDR_ENABLE 0x4060
189
190 /* AXI Bridge Registers */
191 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
192 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
193 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
194 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
195 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
196 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
197 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
198 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
199 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
200 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
201 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
202 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
203
204 /* Values for AXI Bridge registers */
205 #define MVPP22_AXI_ATTR_CACHE_OFFS 0
206 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
207
208 #define MVPP22_AXI_CODE_CACHE_OFFS 0
209 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4
210
211 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
212 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
213 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
214
215 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
216 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
217
218 /* Interrupt Cause and Mask registers */
219 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
220 #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
221
222 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
223 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
224 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
225 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
226
227 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
228 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
229
230 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
231 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
232 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
233 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
234
235 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
236 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
237 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
238 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
239 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
240 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
241 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
242 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
243 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
244 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
245 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
246 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
247 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
248 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
249 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
250 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
251 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
252 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
253
254 /* Buffer Manager registers */
255 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
256 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
257 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
258 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
259 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
260 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
261 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
262 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
263 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
264 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
265 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
266 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
267 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
268 #define MVPP2_BM_START_MASK BIT(0)
269 #define MVPP2_BM_STOP_MASK BIT(1)
270 #define MVPP2_BM_STATE_MASK BIT(4)
271 #define MVPP2_BM_LOW_THRESH_OFFS 8
272 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
273 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
274 MVPP2_BM_LOW_THRESH_OFFS)
275 #define MVPP2_BM_HIGH_THRESH_OFFS 16
276 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
277 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
278 MVPP2_BM_HIGH_THRESH_OFFS)
279 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
280 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
281 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
282 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
283 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
284 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
285 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
286 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
287 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
288 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
289 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444
290 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff
291 #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00
292 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8
293 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
294 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
295 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
296 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
297 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
298 #define MVPP21_BM_MC_RLS_REG 0x64c4
299 #define MVPP2_BM_MC_ID_MASK 0xfff
300 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
301 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
302 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
303 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
304 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
305 #define MVPP22_BM_MC_RLS_REG 0x64d4
306 #define MVPP22_BM_POOL_BASE_HIGH_REG 0x6310
307 #define MVPP22_BM_POOL_BASE_HIGH_MASK 0xff
308
309 /* TX Scheduler registers */
310 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
311 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
312 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
313 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
314 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
315 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
316 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
317 #define MVPP2_TXP_MTU_MAX 0x7FFFF
318 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
319 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
320 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
321 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
322 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
323 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
324 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
325 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
326 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
327 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
328 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
329 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
330 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
331 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
332
333 /* TX general registers */
334 #define MVPP2_TX_SNOOP_REG 0x8800
335 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
336 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
337
338 /* LMS registers */
339 #define MVPP2_SRC_ADDR_MIDDLE 0x24
340 #define MVPP2_SRC_ADDR_HIGH 0x28
341 #define MVPP2_PHY_AN_CFG0_REG 0x34
342 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
343 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
344 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
345
346 /* Per-port registers */
347 #define MVPP2_GMAC_CTRL_0_REG 0x0
348 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
349 #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1)
350 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
351 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
352 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
353 #define MVPP2_GMAC_CTRL_1_REG 0x4
354 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
355 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
356 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
357 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
358 #define MVPP2_GMAC_SA_LOW_OFFS 7
359 #define MVPP2_GMAC_CTRL_2_REG 0x8
360 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
361 #define MVPP2_GMAC_SGMII_MODE_MASK BIT(0)
362 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
363 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
364 #define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5)
365 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
366 #define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9)
367 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
368 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
369 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
370 #define MVPP2_GMAC_EN_PCS_AN BIT(2)
371 #define MVPP2_GMAC_AN_BYPASS_EN BIT(3)
372 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
373 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
374 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
375 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
376 #define MVPP2_GMAC_EN_FC_AN BIT(11)
377 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
378 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
379 #define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15)
380 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
381 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
382 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
383 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
384 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
385 #define MVPP2_GMAC_CTRL_4_REG 0x90
386 #define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0)
387 #define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5)
388 #define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6)
389 #define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7)
390
391 /*
392 * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
393 * relative to port->base.
394 */
395
396 /* Port Mac Control0 */
397 #define MVPP22_XLG_CTRL0_REG 0x100
398 #define MVPP22_XLG_PORT_EN BIT(0)
399 #define MVPP22_XLG_MAC_RESETN BIT(1)
400 #define MVPP22_XLG_RX_FC_EN BIT(7)
401 #define MVPP22_XLG_MIBCNT_DIS BIT(13)
402 /* Port Mac Control1 */
403 #define MVPP22_XLG_CTRL1_REG 0x104
404 #define MVPP22_XLG_MAX_RX_SIZE_OFFS 0
405 #define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff
406 /* Port Interrupt Mask */
407 #define MVPP22_XLG_INTERRUPT_MASK_REG 0x118
408 #define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1)
409 /* Port Mac Control3 */
410 #define MVPP22_XLG_CTRL3_REG 0x11c
411 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
412 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
413 #define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13)
414 /* Port Mac Control4 */
415 #define MVPP22_XLG_CTRL4_REG 0x184
416 #define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5)
417 #define MVPP22_XLG_FORWARD_PFC_EN BIT(6)
418 #define MVPP22_XLG_MODE_DMA_1G BIT(12)
419 #define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14)
420
421 /* XPCS registers */
422
423 /* Global Configuration 0 */
424 #define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0
425 #define MVPP22_XPCS_PCSRESET BIT(0)
426 #define MVPP22_XPCS_PCSMODE_OFFS 3
427 #define MVPP22_XPCS_PCSMODE_MASK (0x3 << \
428 MVPP22_XPCS_PCSMODE_OFFS)
429 #define MVPP22_XPCS_LANEACTIVE_OFFS 5
430 #define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \
431 MVPP22_XPCS_LANEACTIVE_OFFS)
432
433 /* MPCS registers */
434
435 #define PCS40G_COMMON_CONTROL 0x14
436 #define FORWARD_ERROR_CORRECTION_MASK BIT(10)
437
438 #define PCS_CLOCK_RESET 0x14c
439 #define TX_SD_CLK_RESET_MASK BIT(0)
440 #define RX_SD_CLK_RESET_MASK BIT(1)
441 #define MAC_CLK_RESET_MASK BIT(2)
442 #define CLK_DIVISION_RATIO_OFFS 4
443 #define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS)
444 #define CLK_DIV_PHASE_SET_MASK BIT(11)
445
446 /* System Soft Reset 1 */
447 #define GOP_SOFT_RESET_1_REG 0x108
448 #define NETC_GOP_SOFT_RESET_OFFS 6
449 #define NETC_GOP_SOFT_RESET_MASK (0x1 << \
450 NETC_GOP_SOFT_RESET_OFFS)
451
452 /* Ports Control 0 */
453 #define NETCOMP_PORTS_CONTROL_0_REG 0x110
454 #define NETC_BUS_WIDTH_SELECT_OFFS 1
455 #define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \
456 NETC_BUS_WIDTH_SELECT_OFFS)
457 #define NETC_GIG_RX_DATA_SAMPLE_OFFS 29
458 #define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \
459 NETC_GIG_RX_DATA_SAMPLE_OFFS)
460 #define NETC_CLK_DIV_PHASE_OFFS 31
461 #define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS)
462 /* Ports Control 1 */
463 #define NETCOMP_PORTS_CONTROL_1_REG 0x114
464 #define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p)
465 #define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \
466 NETC_PORTS_ACTIVE_OFFSET(p))
467 #define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p)
468 #define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \
469 NETC_PORT_GIG_RF_RESET_OFFS(p))
470 #define NETCOMP_CONTROL_0_REG 0x120
471 #define NETC_GBE_PORT0_SGMII_MODE_OFFS 0
472 #define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \
473 NETC_GBE_PORT0_SGMII_MODE_OFFS)
474 #define NETC_GBE_PORT1_SGMII_MODE_OFFS 1
475 #define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \
476 NETC_GBE_PORT1_SGMII_MODE_OFFS)
477 #define NETC_GBE_PORT1_MII_MODE_OFFS 2
478 #define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \
479 NETC_GBE_PORT1_MII_MODE_OFFS)
480
481 #define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04)
482 #define MVPP22_SMI_POLLING_EN BIT(10)
483
484 #define MVPP22_SMI_PHY_ADDR_REG(port) (MVPP22_SMI + 0x04 + \
485 (0x4 * (port)))
486
487 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
488
489 /* Descriptor ring Macros */
490 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
491 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
492
493 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
494 #define MVPP21_SMI 0x0054
495 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
496 #define MVPP22_SMI 0x1200
497 #define MVPP2_PHY_REG_MASK 0x1f
498 /* SMI register fields */
499 #define MVPP2_SMI_DATA_OFFS 0 /* Data */
500 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS)
501 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
502 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
503 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
504 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS)
505 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */
506 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */
507
508 #define MVPP2_PHY_ADDR_MASK 0x1f
509 #define MVPP2_PHY_REG_MASK 0x1f
510
511 /* Additional PPv2.2 offsets */
512 #define MVPP22_MPCS 0x007000
513 #define MVPP22_XPCS 0x007400
514 #define MVPP22_PORT_BASE 0x007e00
515 #define MVPP22_PORT_OFFSET 0x001000
516 #define MVPP22_RFU1 0x318000
517
518 /* Maximum number of ports */
519 #define MVPP22_GOP_MAC_NUM 4
520
521 /* Sets the field located at the specified in data */
522 #define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41
523 #define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5
524 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb
525
526 /* Net Complex */
527 enum mv_netc_topology {
528 MV_NETC_GE_MAC2_SGMII = BIT(0),
529 MV_NETC_GE_MAC3_SGMII = BIT(1),
530 MV_NETC_GE_MAC3_RGMII = BIT(2),
531 };
532
533 enum mv_netc_phase {
534 MV_NETC_FIRST_PHASE,
535 MV_NETC_SECOND_PHASE,
536 };
537
538 enum mv_netc_sgmii_xmi_mode {
539 MV_NETC_GBE_SGMII,
540 MV_NETC_GBE_XMII,
541 };
542
543 enum mv_netc_mii_mode {
544 MV_NETC_GBE_RGMII,
545 MV_NETC_GBE_MII,
546 };
547
548 enum mv_netc_lanes {
549 MV_NETC_LANE_23,
550 MV_NETC_LANE_45,
551 };
552
553 /* Various constants */
554
555 /* Coalescing */
556 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
557 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
558 #define MVPP2_RX_COAL_PKTS 32
559 #define MVPP2_RX_COAL_USEC 100
560
561 /* The two bytes Marvell header. Either contains a special value used
562 * by Marvell switches when a specific hardware mode is enabled (not
563 * supported by this driver) or is filled automatically by zeroes on
564 * the RX side. Those two bytes being at the front of the Ethernet
565 * header, they allow to have the IP header aligned on a 4 bytes
566 * boundary automatically: the hardware skips those two bytes on its
567 * own.
568 */
569 #define MVPP2_MH_SIZE 2
570 #define MVPP2_ETH_TYPE_LEN 2
571 #define MVPP2_PPPOE_HDR_SIZE 8
572 #define MVPP2_VLAN_TAG_LEN 4
573
574 /* Lbtd 802.3 type */
575 #define MVPP2_IP_LBDT_TYPE 0xfffa
576
577 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32
578 #define MVPP2_TX_CSUM_MAX_SIZE 9800
579
580 /* Timeout constants */
581 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
582 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
583
584 #define MVPP2_TX_MTU_MAX 0x7ffff
585
586 /* Maximum number of T-CONTs of PON port */
587 #define MVPP2_MAX_TCONT 16
588
589 /* Maximum number of supported ports */
590 #define MVPP2_MAX_PORTS 4
591
592 /* Maximum number of TXQs used by single port */
593 #define MVPP2_MAX_TXQ 8
594
595 /* Default number of TXQs in use */
596 #define MVPP2_DEFAULT_TXQ 1
597
598 /* Dfault number of RXQs in use */
599 #define MVPP2_DEFAULT_RXQ 1
600 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */
601
602 /* Max number of Rx descriptors */
603 #define MVPP2_MAX_RXD 16
604
605 /* Max number of Tx descriptors */
606 #define MVPP2_MAX_TXD 16
607
608 /* Amount of Tx descriptors that can be reserved at once by CPU */
609 #define MVPP2_CPU_DESC_CHUNK 16
610
611 /* Max number of Tx descriptors in each aggregated queue */
612 #define MVPP2_AGGR_TXQ_SIZE 16
613
614 /* Descriptor aligned size */
615 #define MVPP2_DESC_ALIGNED_SIZE 32
616
617 /* Descriptor alignment mask */
618 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
619
620 /* RX FIFO constants */
621 #define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000
622 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80
623 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000
624 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000
625 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000
626 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200
627 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80
628 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40
629 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
630
631 /* TX general registers */
632 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2))
633 #define MVPP22_TX_FIFO_SIZE_MASK 0xf
634
635 /* TX FIFO constants */
636 #define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa
637 #define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3
638
639 /* RX buffer constants */
640 #define MVPP2_SKB_SHINFO_SIZE \
641 0
642
643 #define MVPP2_RX_PKT_SIZE(mtu) \
644 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
645 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
646
647 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
648 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
649 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
650 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
651
652 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
653
654 /* IPv6 max L3 address size */
655 #define MVPP2_MAX_L3_ADDR_SIZE 16
656
657 /* Port flags */
658 #define MVPP2_F_LOOPBACK BIT(0)
659
660 /* Marvell tag types */
661 enum mvpp2_tag_type {
662 MVPP2_TAG_TYPE_NONE = 0,
663 MVPP2_TAG_TYPE_MH = 1,
664 MVPP2_TAG_TYPE_DSA = 2,
665 MVPP2_TAG_TYPE_EDSA = 3,
666 MVPP2_TAG_TYPE_VLAN = 4,
667 MVPP2_TAG_TYPE_LAST = 5
668 };
669
670 /* Parser constants */
671 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
672 #define MVPP2_PRS_TCAM_WORDS 6
673 #define MVPP2_PRS_SRAM_WORDS 4
674 #define MVPP2_PRS_FLOW_ID_SIZE 64
675 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
676 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
677 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
678 #define MVPP2_PRS_IPV4_HEAD 0x40
679 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
680 #define MVPP2_PRS_IPV4_MC 0xe0
681 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
682 #define MVPP2_PRS_IPV4_BC_MASK 0xff
683 #define MVPP2_PRS_IPV4_IHL 0x5
684 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
685 #define MVPP2_PRS_IPV6_MC 0xff
686 #define MVPP2_PRS_IPV6_MC_MASK 0xff
687 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
688 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
689 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
690 #define MVPP2_PRS_DBL_VLANS_MAX 100
691
692 /* Tcam structure:
693 * - lookup ID - 4 bits
694 * - port ID - 1 byte
695 * - additional information - 1 byte
696 * - header data - 8 bytes
697 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
698 */
699 #define MVPP2_PRS_AI_BITS 8
700 #define MVPP2_PRS_PORT_MASK 0xff
701 #define MVPP2_PRS_LU_MASK 0xf
702 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
703 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
704 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
705 (((offs) * 2) - ((offs) % 2) + 2)
706 #define MVPP2_PRS_TCAM_AI_BYTE 16
707 #define MVPP2_PRS_TCAM_PORT_BYTE 17
708 #define MVPP2_PRS_TCAM_LU_BYTE 20
709 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
710 #define MVPP2_PRS_TCAM_INV_WORD 5
711 /* Tcam entries ID */
712 #define MVPP2_PE_DROP_ALL 0
713 #define MVPP2_PE_FIRST_FREE_TID 1
714 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
715 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
716 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
717 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
718 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
719 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
720 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
721 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
722 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
723 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
724 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
725 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
726 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
727 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
728 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
729 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
730 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
731 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
732 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
733 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
734 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
735 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
736 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
737 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
738 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
739
740 /* Sram structure
741 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
742 */
743 #define MVPP2_PRS_SRAM_RI_OFFS 0
744 #define MVPP2_PRS_SRAM_RI_WORD 0
745 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
746 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
747 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
748 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
749 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
750 #define MVPP2_PRS_SRAM_UDF_OFFS 73
751 #define MVPP2_PRS_SRAM_UDF_BITS 8
752 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
753 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
754 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
755 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
756 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
757 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
758 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
759 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
760 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
761 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
762 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
763 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
764 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
765 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
766 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
767 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
768 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
769 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
770 #define MVPP2_PRS_SRAM_AI_OFFS 90
771 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
772 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
773 #define MVPP2_PRS_SRAM_AI_MASK 0xff
774 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
775 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
776 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
777 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
778
779 /* Sram result info bits assignment */
780 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
781 #define MVPP2_PRS_RI_DSA_MASK 0x2
782 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
783 #define MVPP2_PRS_RI_VLAN_NONE 0x0
784 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
785 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
786 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
787 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
788 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
789 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
790 #define MVPP2_PRS_RI_L2_UCAST 0x0
791 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
792 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
793 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
794 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
795 #define MVPP2_PRS_RI_L3_UN 0x0
796 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
797 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
798 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
799 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
800 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
801 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
802 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
803 #define MVPP2_PRS_RI_L3_UCAST 0x0
804 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
805 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
806 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
807 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
808 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
809 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
810 #define MVPP2_PRS_RI_L4_TCP BIT(22)
811 #define MVPP2_PRS_RI_L4_UDP BIT(23)
812 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
813 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
814 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
815 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
816
817 /* Sram additional info bits assignment */
818 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
819 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
820 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
821 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
822 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
823 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
824 #define MVPP2_PRS_SINGLE_VLAN_AI 0
825 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
826
827 /* DSA/EDSA type */
828 #define MVPP2_PRS_TAGGED true
829 #define MVPP2_PRS_UNTAGGED false
830 #define MVPP2_PRS_EDSA true
831 #define MVPP2_PRS_DSA false
832
833 /* MAC entries, shadow udf */
834 enum mvpp2_prs_udf {
835 MVPP2_PRS_UDF_MAC_DEF,
836 MVPP2_PRS_UDF_MAC_RANGE,
837 MVPP2_PRS_UDF_L2_DEF,
838 MVPP2_PRS_UDF_L2_DEF_COPY,
839 MVPP2_PRS_UDF_L2_USER,
840 };
841
842 /* Lookup ID */
843 enum mvpp2_prs_lookup {
844 MVPP2_PRS_LU_MH,
845 MVPP2_PRS_LU_MAC,
846 MVPP2_PRS_LU_DSA,
847 MVPP2_PRS_LU_VLAN,
848 MVPP2_PRS_LU_L2,
849 MVPP2_PRS_LU_PPPOE,
850 MVPP2_PRS_LU_IP4,
851 MVPP2_PRS_LU_IP6,
852 MVPP2_PRS_LU_FLOWS,
853 MVPP2_PRS_LU_LAST,
854 };
855
856 /* L3 cast enum */
857 enum mvpp2_prs_l3_cast {
858 MVPP2_PRS_L3_UNI_CAST,
859 MVPP2_PRS_L3_MULTI_CAST,
860 MVPP2_PRS_L3_BROAD_CAST
861 };
862
863 /* Classifier constants */
864 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
865 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
866 #define MVPP2_CLS_LKP_TBL_SIZE 64
867
868 /* BM constants */
869 #define MVPP2_BM_POOLS_NUM 1
870 #define MVPP2_BM_LONG_BUF_NUM 16
871 #define MVPP2_BM_SHORT_BUF_NUM 16
872 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
873 #define MVPP2_BM_POOL_PTR_ALIGN 128
874 #define MVPP2_BM_SWF_LONG_POOL(port) 0
875
876 /* BM cookie (32 bits) definition */
877 #define MVPP2_BM_COOKIE_POOL_OFFS 8
878 #define MVPP2_BM_COOKIE_CPU_OFFS 24
879
880 /* BM short pool packet size
881 * These value assure that for SWF the total number
882 * of bytes allocated for each buffer will be 512
883 */
884 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
885
886 enum mvpp2_bm_type {
887 MVPP2_BM_FREE,
888 MVPP2_BM_SWF_LONG,
889 MVPP2_BM_SWF_SHORT
890 };
891
892 /* Definitions */
893
894 /* Shared Packet Processor resources */
895 struct mvpp2 {
896 /* Shared registers' base addresses */
897 void __iomem *base;
898 void __iomem *lms_base;
899 void __iomem *iface_base;
900
901 void __iomem *mpcs_base;
902 void __iomem *xpcs_base;
903 void __iomem *rfu1_base;
904
905 u32 netc_config;
906
907 /* List of pointers to port structures */
908 struct mvpp2_port **port_list;
909
910 /* Aggregated TXQs */
911 struct mvpp2_tx_queue *aggr_txqs;
912
913 /* BM pools */
914 struct mvpp2_bm_pool *bm_pools;
915
916 /* PRS shadow table */
917 struct mvpp2_prs_shadow *prs_shadow;
918 /* PRS auxiliary table for double vlan entries control */
919 bool *prs_double_vlans;
920
921 /* Tclk value */
922 u32 tclk;
923
924 /* HW version */
925 enum { MVPP21, MVPP22 } hw_version;
926
927 /* Maximum number of RXQs per port */
928 unsigned int max_port_rxqs;
929
930 int probe_done;
931 u8 num_ports;
932 };
933
934 struct mvpp2_pcpu_stats {
935 u64 rx_packets;
936 u64 rx_bytes;
937 u64 tx_packets;
938 u64 tx_bytes;
939 };
940
941 struct mvpp2_port {
942 u8 id;
943
944 /* Index of the port from the "group of ports" complex point
945 * of view
946 */
947 int gop_id;
948
949 int irq;
950
951 struct mvpp2 *priv;
952
953 /* Per-port registers' base address */
954 void __iomem *base;
955 void __iomem *mdio_base;
956
957 struct mvpp2_rx_queue **rxqs;
958 struct mvpp2_tx_queue **txqs;
959
960 int pkt_size;
961
962 u32 pending_cause_rx;
963
964 /* Per-CPU port control */
965 struct mvpp2_port_pcpu __percpu *pcpu;
966
967 /* Flags */
968 unsigned long flags;
969
970 u16 tx_ring_size;
971 u16 rx_ring_size;
972 struct mvpp2_pcpu_stats __percpu *stats;
973
974 struct phy_device *phy_dev;
975 phy_interface_t phy_interface;
976 int phy_node;
977 int phyaddr;
978 struct mii_dev *bus;
979 #ifdef CONFIG_DM_GPIO
980 struct gpio_desc phy_reset_gpio;
981 struct gpio_desc phy_tx_disable_gpio;
982 #endif
983 int init;
984 unsigned int link;
985 unsigned int duplex;
986 unsigned int speed;
987
988 unsigned int phy_speed; /* SGMII 1Gbps vs 2.5Gbps */
989
990 struct mvpp2_bm_pool *pool_long;
991 struct mvpp2_bm_pool *pool_short;
992
993 /* Index of first port's physical RXQ */
994 u8 first_rxq;
995
996 u8 dev_addr[ETH_ALEN];
997 };
998
999 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
1000 * layout of the transmit and reception DMA descriptors, and their
1001 * layout is therefore defined by the hardware design
1002 */
1003
1004 #define MVPP2_TXD_L3_OFF_SHIFT 0
1005 #define MVPP2_TXD_IP_HLEN_SHIFT 8
1006 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
1007 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
1008 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
1009 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
1010 #define MVPP2_TXD_L4_UDP BIT(24)
1011 #define MVPP2_TXD_L3_IP6 BIT(26)
1012 #define MVPP2_TXD_L_DESC BIT(28)
1013 #define MVPP2_TXD_F_DESC BIT(29)
1014
1015 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
1016 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
1017 #define MVPP2_RXD_ERR_CRC 0x0
1018 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
1019 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
1020 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
1021 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
1022 #define MVPP2_RXD_HWF_SYNC BIT(21)
1023 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
1024 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
1025 #define MVPP2_RXD_L4_TCP BIT(25)
1026 #define MVPP2_RXD_L4_UDP BIT(26)
1027 #define MVPP2_RXD_L3_IP4 BIT(28)
1028 #define MVPP2_RXD_L3_IP6 BIT(30)
1029 #define MVPP2_RXD_BUF_HDR BIT(31)
1030
1031 /* HW TX descriptor for PPv2.1 */
1032 struct mvpp21_tx_desc {
1033 u32 command; /* Options used by HW for packet transmitting.*/
1034 u8 packet_offset; /* the offset from the buffer beginning */
1035 u8 phys_txq; /* destination queue ID */
1036 u16 data_size; /* data size of transmitted packet in bytes */
1037 u32 buf_dma_addr; /* physical addr of transmitted buffer */
1038 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
1039 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
1040 u32 reserved2; /* reserved (for future use) */
1041 };
1042
1043 /* HW RX descriptor for PPv2.1 */
1044 struct mvpp21_rx_desc {
1045 u32 status; /* info about received packet */
1046 u16 reserved1; /* parser_info (for future use, PnC) */
1047 u16 data_size; /* size of received packet in bytes */
1048 u32 buf_dma_addr; /* physical address of the buffer */
1049 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
1050 u16 reserved2; /* gem_port_id (for future use, PON) */
1051 u16 reserved3; /* csum_l4 (for future use, PnC) */
1052 u8 reserved4; /* bm_qset (for future use, BM) */
1053 u8 reserved5;
1054 u16 reserved6; /* classify_info (for future use, PnC) */
1055 u32 reserved7; /* flow_id (for future use, PnC) */
1056 u32 reserved8;
1057 };
1058
1059 /* HW TX descriptor for PPv2.2 */
1060 struct mvpp22_tx_desc {
1061 u32 command;
1062 u8 packet_offset;
1063 u8 phys_txq;
1064 u16 data_size;
1065 u64 reserved1;
1066 u64 buf_dma_addr_ptp;
1067 u64 buf_cookie_misc;
1068 };
1069
1070 /* HW RX descriptor for PPv2.2 */
1071 struct mvpp22_rx_desc {
1072 u32 status;
1073 u16 reserved1;
1074 u16 data_size;
1075 u32 reserved2;
1076 u32 reserved3;
1077 u64 buf_dma_addr_key_hash;
1078 u64 buf_cookie_misc;
1079 };
1080
1081 /* Opaque type used by the driver to manipulate the HW TX and RX
1082 * descriptors
1083 */
1084 struct mvpp2_tx_desc {
1085 union {
1086 struct mvpp21_tx_desc pp21;
1087 struct mvpp22_tx_desc pp22;
1088 };
1089 };
1090
1091 struct mvpp2_rx_desc {
1092 union {
1093 struct mvpp21_rx_desc pp21;
1094 struct mvpp22_rx_desc pp22;
1095 };
1096 };
1097
1098 /* Per-CPU Tx queue control */
1099 struct mvpp2_txq_pcpu {
1100 int cpu;
1101
1102 /* Number of Tx DMA descriptors in the descriptor ring */
1103 int size;
1104
1105 /* Number of currently used Tx DMA descriptor in the
1106 * descriptor ring
1107 */
1108 int count;
1109
1110 /* Number of Tx DMA descriptors reserved for each CPU */
1111 int reserved_num;
1112
1113 /* Index of last TX DMA descriptor that was inserted */
1114 int txq_put_index;
1115
1116 /* Index of the TX DMA descriptor to be cleaned up */
1117 int txq_get_index;
1118 };
1119
1120 struct mvpp2_tx_queue {
1121 /* Physical number of this Tx queue */
1122 u8 id;
1123
1124 /* Logical number of this Tx queue */
1125 u8 log_id;
1126
1127 /* Number of Tx DMA descriptors in the descriptor ring */
1128 int size;
1129
1130 /* Number of currently used Tx DMA descriptor in the descriptor ring */
1131 int count;
1132
1133 /* Per-CPU control of physical Tx queues */
1134 struct mvpp2_txq_pcpu __percpu *pcpu;
1135
1136 u32 done_pkts_coal;
1137
1138 /* Virtual address of thex Tx DMA descriptors array */
1139 struct mvpp2_tx_desc *descs;
1140
1141 /* DMA address of the Tx DMA descriptors array */
1142 dma_addr_t descs_dma;
1143
1144 /* Index of the last Tx DMA descriptor */
1145 int last_desc;
1146
1147 /* Index of the next Tx DMA descriptor to process */
1148 int next_desc_to_proc;
1149 };
1150
1151 struct mvpp2_rx_queue {
1152 /* RX queue number, in the range 0-31 for physical RXQs */
1153 u8 id;
1154
1155 /* Num of rx descriptors in the rx descriptor ring */
1156 int size;
1157
1158 u32 pkts_coal;
1159 u32 time_coal;
1160
1161 /* Virtual address of the RX DMA descriptors array */
1162 struct mvpp2_rx_desc *descs;
1163
1164 /* DMA address of the RX DMA descriptors array */
1165 dma_addr_t descs_dma;
1166
1167 /* Index of the last RX DMA descriptor */
1168 int last_desc;
1169
1170 /* Index of the next RX DMA descriptor to process */
1171 int next_desc_to_proc;
1172
1173 /* ID of port to which physical RXQ is mapped */
1174 int port;
1175
1176 /* Port's logic RXQ number to which physical RXQ is mapped */
1177 int logic_rxq;
1178 };
1179
1180 union mvpp2_prs_tcam_entry {
1181 u32 word[MVPP2_PRS_TCAM_WORDS];
1182 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
1183 };
1184
1185 union mvpp2_prs_sram_entry {
1186 u32 word[MVPP2_PRS_SRAM_WORDS];
1187 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
1188 };
1189
1190 struct mvpp2_prs_entry {
1191 u32 index;
1192 union mvpp2_prs_tcam_entry tcam;
1193 union mvpp2_prs_sram_entry sram;
1194 };
1195
1196 struct mvpp2_prs_shadow {
1197 bool valid;
1198 bool finish;
1199
1200 /* Lookup ID */
1201 int lu;
1202
1203 /* User defined offset */
1204 int udf;
1205
1206 /* Result info */
1207 u32 ri;
1208 u32 ri_mask;
1209 };
1210
1211 struct mvpp2_cls_flow_entry {
1212 u32 index;
1213 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1214 };
1215
1216 struct mvpp2_cls_lookup_entry {
1217 u32 lkpid;
1218 u32 way;
1219 u32 data;
1220 };
1221
1222 struct mvpp2_bm_pool {
1223 /* Pool number in the range 0-7 */
1224 int id;
1225 enum mvpp2_bm_type type;
1226
1227 /* Buffer Pointers Pool External (BPPE) size */
1228 int size;
1229 /* Number of buffers for this pool */
1230 int buf_num;
1231 /* Pool buffer size */
1232 int buf_size;
1233 /* Packet size */
1234 int pkt_size;
1235
1236 /* BPPE virtual base address */
1237 unsigned long *virt_addr;
1238 /* BPPE DMA base address */
1239 dma_addr_t dma_addr;
1240
1241 /* Ports using BM pool */
1242 u32 port_map;
1243 };
1244
1245 /* Static declaractions */
1246
1247 /* Number of RXQs used by single port */
1248 static int rxq_number = MVPP2_DEFAULT_RXQ;
1249 /* Number of TXQs used by single port */
1250 static int txq_number = MVPP2_DEFAULT_TXQ;
1251
1252 static int base_id;
1253
1254 #define MVPP2_DRIVER_NAME "mvpp2"
1255 #define MVPP2_DRIVER_VERSION "1.0"
1256
1257 /*
1258 * U-Boot internal data, mostly uncached buffers for descriptors and data
1259 */
1260 struct buffer_location {
1261 struct mvpp2_tx_desc *aggr_tx_descs;
1262 struct mvpp2_tx_desc *tx_descs;
1263 struct mvpp2_rx_desc *rx_descs;
1264 unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1265 unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1266 int first_rxq;
1267 };
1268
1269 /*
1270 * All 4 interfaces use the same global buffer, since only one interface
1271 * can be enabled at once
1272 */
1273 static struct buffer_location buffer_loc;
1274
1275 /*
1276 * Page table entries are set to 1MB, or multiples of 1MB
1277 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1278 */
1279 #define BD_SPACE (1 << 20)
1280
1281 /* Utility/helper methods */
1282
mvpp2_write(struct mvpp2 * priv,u32 offset,u32 data)1283 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1284 {
1285 writel(data, priv->base + offset);
1286 }
1287
mvpp2_read(struct mvpp2 * priv,u32 offset)1288 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1289 {
1290 return readl(priv->base + offset);
1291 }
1292
mvpp2_txdesc_dma_addr_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,dma_addr_t dma_addr)1293 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1294 struct mvpp2_tx_desc *tx_desc,
1295 dma_addr_t dma_addr)
1296 {
1297 if (port->priv->hw_version == MVPP21) {
1298 tx_desc->pp21.buf_dma_addr = dma_addr;
1299 } else {
1300 u64 val = (u64)dma_addr;
1301
1302 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1303 tx_desc->pp22.buf_dma_addr_ptp |= val;
1304 }
1305 }
1306
mvpp2_txdesc_size_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,size_t size)1307 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1308 struct mvpp2_tx_desc *tx_desc,
1309 size_t size)
1310 {
1311 if (port->priv->hw_version == MVPP21)
1312 tx_desc->pp21.data_size = size;
1313 else
1314 tx_desc->pp22.data_size = size;
1315 }
1316
mvpp2_txdesc_txq_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,unsigned int txq)1317 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1318 struct mvpp2_tx_desc *tx_desc,
1319 unsigned int txq)
1320 {
1321 if (port->priv->hw_version == MVPP21)
1322 tx_desc->pp21.phys_txq = txq;
1323 else
1324 tx_desc->pp22.phys_txq = txq;
1325 }
1326
mvpp2_txdesc_cmd_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,unsigned int command)1327 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1328 struct mvpp2_tx_desc *tx_desc,
1329 unsigned int command)
1330 {
1331 if (port->priv->hw_version == MVPP21)
1332 tx_desc->pp21.command = command;
1333 else
1334 tx_desc->pp22.command = command;
1335 }
1336
mvpp2_txdesc_offset_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,unsigned int offset)1337 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1338 struct mvpp2_tx_desc *tx_desc,
1339 unsigned int offset)
1340 {
1341 if (port->priv->hw_version == MVPP21)
1342 tx_desc->pp21.packet_offset = offset;
1343 else
1344 tx_desc->pp22.packet_offset = offset;
1345 }
1346
mvpp2_rxdesc_dma_addr_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1347 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1348 struct mvpp2_rx_desc *rx_desc)
1349 {
1350 if (port->priv->hw_version == MVPP21)
1351 return rx_desc->pp21.buf_dma_addr;
1352 else
1353 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1354 }
1355
mvpp2_rxdesc_cookie_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1356 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1357 struct mvpp2_rx_desc *rx_desc)
1358 {
1359 if (port->priv->hw_version == MVPP21)
1360 return rx_desc->pp21.buf_cookie;
1361 else
1362 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1363 }
1364
mvpp2_rxdesc_size_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1365 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1366 struct mvpp2_rx_desc *rx_desc)
1367 {
1368 if (port->priv->hw_version == MVPP21)
1369 return rx_desc->pp21.data_size;
1370 else
1371 return rx_desc->pp22.data_size;
1372 }
1373
mvpp2_rxdesc_status_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1374 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1375 struct mvpp2_rx_desc *rx_desc)
1376 {
1377 if (port->priv->hw_version == MVPP21)
1378 return rx_desc->pp21.status;
1379 else
1380 return rx_desc->pp22.status;
1381 }
1382
mvpp2_txq_inc_get(struct mvpp2_txq_pcpu * txq_pcpu)1383 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1384 {
1385 txq_pcpu->txq_get_index++;
1386 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1387 txq_pcpu->txq_get_index = 0;
1388 }
1389
1390 /* Get number of physical egress port */
mvpp2_egress_port(struct mvpp2_port * port)1391 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1392 {
1393 return MVPP2_MAX_TCONT + port->id;
1394 }
1395
1396 /* Get number of physical TXQ */
mvpp2_txq_phys(int port,int txq)1397 static inline int mvpp2_txq_phys(int port, int txq)
1398 {
1399 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1400 }
1401
1402 /* Parser configuration routines */
1403
1404 /* Update parser tcam and sram hw entries */
mvpp2_prs_hw_write(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)1405 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1406 {
1407 int i;
1408
1409 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1410 return -EINVAL;
1411
1412 /* Clear entry invalidation bit */
1413 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1414
1415 /* Write tcam index - indirect access */
1416 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1417 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1418 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1419
1420 /* Write sram index - indirect access */
1421 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1422 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1423 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1424
1425 return 0;
1426 }
1427
1428 /* Read tcam entry from hw */
mvpp2_prs_hw_read(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)1429 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1430 {
1431 int i;
1432
1433 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1434 return -EINVAL;
1435
1436 /* Write tcam index - indirect access */
1437 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1438
1439 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1440 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1441 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1442 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1443
1444 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1445 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1446
1447 /* Write sram index - indirect access */
1448 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1449 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1450 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1451
1452 return 0;
1453 }
1454
1455 /* Invalidate tcam hw entry */
mvpp2_prs_hw_inv(struct mvpp2 * priv,int index)1456 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1457 {
1458 /* Write index - indirect access */
1459 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1460 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1461 MVPP2_PRS_TCAM_INV_MASK);
1462 }
1463
1464 /* Enable shadow table entry and set its lookup ID */
mvpp2_prs_shadow_set(struct mvpp2 * priv,int index,int lu)1465 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1466 {
1467 priv->prs_shadow[index].valid = true;
1468 priv->prs_shadow[index].lu = lu;
1469 }
1470
1471 /* Update ri fields in shadow table entry */
mvpp2_prs_shadow_ri_set(struct mvpp2 * priv,int index,unsigned int ri,unsigned int ri_mask)1472 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1473 unsigned int ri, unsigned int ri_mask)
1474 {
1475 priv->prs_shadow[index].ri_mask = ri_mask;
1476 priv->prs_shadow[index].ri = ri;
1477 }
1478
1479 /* Update lookup field in tcam sw entry */
mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1480 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1481 {
1482 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1483
1484 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1485 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1486 }
1487
1488 /* Update mask for single port in tcam sw entry */
mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry * pe,unsigned int port,bool add)1489 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1490 unsigned int port, bool add)
1491 {
1492 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1493
1494 if (add)
1495 pe->tcam.byte[enable_off] &= ~(1 << port);
1496 else
1497 pe->tcam.byte[enable_off] |= 1 << port;
1498 }
1499
1500 /* Update port map in tcam sw entry */
mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry * pe,unsigned int ports)1501 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1502 unsigned int ports)
1503 {
1504 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1505 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1506
1507 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1508 pe->tcam.byte[enable_off] &= ~port_mask;
1509 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1510 }
1511
1512 /* Obtain port map from tcam sw entry */
mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry * pe)1513 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1514 {
1515 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1516
1517 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1518 }
1519
1520 /* Set byte of data and its enable bits in tcam sw entry */
mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char byte,unsigned char enable)1521 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1522 unsigned int offs, unsigned char byte,
1523 unsigned char enable)
1524 {
1525 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1526 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1527 }
1528
1529 /* Get byte of data and its enable bits from tcam sw entry */
mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char * byte,unsigned char * enable)1530 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1531 unsigned int offs, unsigned char *byte,
1532 unsigned char *enable)
1533 {
1534 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1535 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1536 }
1537
1538 /* Set ethertype in tcam sw entry */
mvpp2_prs_match_etype(struct mvpp2_prs_entry * pe,int offset,unsigned short ethertype)1539 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1540 unsigned short ethertype)
1541 {
1542 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1543 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1544 }
1545
1546 /* Set bits in sram sw entry */
mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry * pe,int bit_num,int val)1547 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1548 int val)
1549 {
1550 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1551 }
1552
1553 /* Clear bits in sram sw entry */
mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry * pe,int bit_num,int val)1554 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1555 int val)
1556 {
1557 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1558 }
1559
1560 /* Update ri bits in sram sw entry */
mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1561 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1562 unsigned int bits, unsigned int mask)
1563 {
1564 unsigned int i;
1565
1566 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1567 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1568
1569 if (!(mask & BIT(i)))
1570 continue;
1571
1572 if (bits & BIT(i))
1573 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1574 else
1575 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1576
1577 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1578 }
1579 }
1580
1581 /* Update ai bits in sram sw entry */
mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1582 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1583 unsigned int bits, unsigned int mask)
1584 {
1585 unsigned int i;
1586 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1587
1588 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1589
1590 if (!(mask & BIT(i)))
1591 continue;
1592
1593 if (bits & BIT(i))
1594 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1595 else
1596 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1597
1598 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1599 }
1600 }
1601
1602 /* Read ai bits from sram sw entry */
mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry * pe)1603 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1604 {
1605 u8 bits;
1606 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1607 int ai_en_off = ai_off + 1;
1608 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1609
1610 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1611 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1612
1613 return bits;
1614 }
1615
1616 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1617 * lookup interation
1618 */
mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1619 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1620 unsigned int lu)
1621 {
1622 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1623
1624 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1625 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1626 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1627 }
1628
1629 /* In the sram sw entry set sign and value of the next lookup offset
1630 * and the offset value generated to the classifier
1631 */
mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry * pe,int shift,unsigned int op)1632 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1633 unsigned int op)
1634 {
1635 /* Set sign */
1636 if (shift < 0) {
1637 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1638 shift = 0 - shift;
1639 } else {
1640 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1641 }
1642
1643 /* Set value */
1644 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1645 (unsigned char)shift;
1646
1647 /* Reset and set operation */
1648 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1649 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1650 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1651
1652 /* Set base offset as current */
1653 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1654 }
1655
1656 /* In the sram sw entry set sign and value of the user defined offset
1657 * generated to the classifier
1658 */
mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry * pe,unsigned int type,int offset,unsigned int op)1659 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1660 unsigned int type, int offset,
1661 unsigned int op)
1662 {
1663 /* Set sign */
1664 if (offset < 0) {
1665 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1666 offset = 0 - offset;
1667 } else {
1668 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1669 }
1670
1671 /* Set value */
1672 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1673 MVPP2_PRS_SRAM_UDF_MASK);
1674 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1675 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1676 MVPP2_PRS_SRAM_UDF_BITS)] &=
1677 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1678 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1679 MVPP2_PRS_SRAM_UDF_BITS)] |=
1680 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1681
1682 /* Set offset type */
1683 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1684 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1685 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1686
1687 /* Set offset operation */
1688 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1689 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1690 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1691
1692 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1693 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1694 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1695 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1696
1697 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1698 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1699 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1700
1701 /* Set base offset as current */
1702 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1703 }
1704
1705 /* Find parser flow entry */
mvpp2_prs_flow_find(struct mvpp2 * priv,int flow)1706 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1707 {
1708 struct mvpp2_prs_entry *pe;
1709 int tid;
1710
1711 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1712 if (!pe)
1713 return NULL;
1714 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1715
1716 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1717 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1718 u8 bits;
1719
1720 if (!priv->prs_shadow[tid].valid ||
1721 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1722 continue;
1723
1724 pe->index = tid;
1725 mvpp2_prs_hw_read(priv, pe);
1726 bits = mvpp2_prs_sram_ai_get(pe);
1727
1728 /* Sram store classification lookup ID in AI bits [5:0] */
1729 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1730 return pe;
1731 }
1732 kfree(pe);
1733
1734 return NULL;
1735 }
1736
1737 /* Return first free tcam index, seeking from start to end */
mvpp2_prs_tcam_first_free(struct mvpp2 * priv,unsigned char start,unsigned char end)1738 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1739 unsigned char end)
1740 {
1741 int tid;
1742
1743 if (start > end)
1744 swap(start, end);
1745
1746 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1747 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1748
1749 for (tid = start; tid <= end; tid++) {
1750 if (!priv->prs_shadow[tid].valid)
1751 return tid;
1752 }
1753
1754 return -EINVAL;
1755 }
1756
1757 /* Enable/disable dropping all mac da's */
mvpp2_prs_mac_drop_all_set(struct mvpp2 * priv,int port,bool add)1758 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1759 {
1760 struct mvpp2_prs_entry pe;
1761
1762 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1763 /* Entry exist - update port only */
1764 pe.index = MVPP2_PE_DROP_ALL;
1765 mvpp2_prs_hw_read(priv, &pe);
1766 } else {
1767 /* Entry doesn't exist - create new */
1768 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1769 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1770 pe.index = MVPP2_PE_DROP_ALL;
1771
1772 /* Non-promiscuous mode for all ports - DROP unknown packets */
1773 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1774 MVPP2_PRS_RI_DROP_MASK);
1775
1776 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1777 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1778
1779 /* Update shadow table */
1780 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1781
1782 /* Mask all ports */
1783 mvpp2_prs_tcam_port_map_set(&pe, 0);
1784 }
1785
1786 /* Update port mask */
1787 mvpp2_prs_tcam_port_set(&pe, port, add);
1788
1789 mvpp2_prs_hw_write(priv, &pe);
1790 }
1791
1792 /* Set port to promiscuous mode */
mvpp2_prs_mac_promisc_set(struct mvpp2 * priv,int port,bool add)1793 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1794 {
1795 struct mvpp2_prs_entry pe;
1796
1797 /* Promiscuous mode - Accept unknown packets */
1798
1799 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1800 /* Entry exist - update port only */
1801 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1802 mvpp2_prs_hw_read(priv, &pe);
1803 } else {
1804 /* Entry doesn't exist - create new */
1805 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1806 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1807 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1808
1809 /* Continue - set next lookup */
1810 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1811
1812 /* Set result info bits */
1813 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1814 MVPP2_PRS_RI_L2_CAST_MASK);
1815
1816 /* Shift to ethertype */
1817 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1818 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1819
1820 /* Mask all ports */
1821 mvpp2_prs_tcam_port_map_set(&pe, 0);
1822
1823 /* Update shadow table */
1824 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1825 }
1826
1827 /* Update port mask */
1828 mvpp2_prs_tcam_port_set(&pe, port, add);
1829
1830 mvpp2_prs_hw_write(priv, &pe);
1831 }
1832
1833 /* Accept multicast */
mvpp2_prs_mac_multi_set(struct mvpp2 * priv,int port,int index,bool add)1834 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1835 bool add)
1836 {
1837 struct mvpp2_prs_entry pe;
1838 unsigned char da_mc;
1839
1840 /* Ethernet multicast address first byte is
1841 * 0x01 for IPv4 and 0x33 for IPv6
1842 */
1843 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1844
1845 if (priv->prs_shadow[index].valid) {
1846 /* Entry exist - update port only */
1847 pe.index = index;
1848 mvpp2_prs_hw_read(priv, &pe);
1849 } else {
1850 /* Entry doesn't exist - create new */
1851 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1852 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1853 pe.index = index;
1854
1855 /* Continue - set next lookup */
1856 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1857
1858 /* Set result info bits */
1859 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1860 MVPP2_PRS_RI_L2_CAST_MASK);
1861
1862 /* Update tcam entry data first byte */
1863 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1864
1865 /* Shift to ethertype */
1866 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1867 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1868
1869 /* Mask all ports */
1870 mvpp2_prs_tcam_port_map_set(&pe, 0);
1871
1872 /* Update shadow table */
1873 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1874 }
1875
1876 /* Update port mask */
1877 mvpp2_prs_tcam_port_set(&pe, port, add);
1878
1879 mvpp2_prs_hw_write(priv, &pe);
1880 }
1881
1882 /* Parser per-port initialization */
mvpp2_prs_hw_port_init(struct mvpp2 * priv,int port,int lu_first,int lu_max,int offset)1883 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1884 int lu_max, int offset)
1885 {
1886 u32 val;
1887
1888 /* Set lookup ID */
1889 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1890 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1891 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1892 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1893
1894 /* Set maximum number of loops for packet received from port */
1895 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1896 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1897 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1898 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1899
1900 /* Set initial offset for packet header extraction for the first
1901 * searching loop
1902 */
1903 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1904 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1905 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1906 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1907 }
1908
1909 /* Default flow entries initialization for all ports */
mvpp2_prs_def_flow_init(struct mvpp2 * priv)1910 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1911 {
1912 struct mvpp2_prs_entry pe;
1913 int port;
1914
1915 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1916 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1917 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1918 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1919
1920 /* Mask all ports */
1921 mvpp2_prs_tcam_port_map_set(&pe, 0);
1922
1923 /* Set flow ID*/
1924 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1925 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1926
1927 /* Update shadow table and hw entry */
1928 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1929 mvpp2_prs_hw_write(priv, &pe);
1930 }
1931 }
1932
1933 /* Set default entry for Marvell Header field */
mvpp2_prs_mh_init(struct mvpp2 * priv)1934 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1935 {
1936 struct mvpp2_prs_entry pe;
1937
1938 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1939
1940 pe.index = MVPP2_PE_MH_DEFAULT;
1941 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1942 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1943 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1944 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1945
1946 /* Unmask all ports */
1947 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1948
1949 /* Update shadow table and hw entry */
1950 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1951 mvpp2_prs_hw_write(priv, &pe);
1952 }
1953
1954 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1955 * multicast MAC addresses
1956 */
mvpp2_prs_mac_init(struct mvpp2 * priv)1957 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1958 {
1959 struct mvpp2_prs_entry pe;
1960
1961 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1962
1963 /* Non-promiscuous mode for all ports - DROP unknown packets */
1964 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1965 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1966
1967 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1968 MVPP2_PRS_RI_DROP_MASK);
1969 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1970 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1971
1972 /* Unmask all ports */
1973 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1974
1975 /* Update shadow table and hw entry */
1976 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1977 mvpp2_prs_hw_write(priv, &pe);
1978
1979 /* place holders only - no ports */
1980 mvpp2_prs_mac_drop_all_set(priv, 0, false);
1981 mvpp2_prs_mac_promisc_set(priv, 0, false);
1982 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1983 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1984 }
1985
1986 /* Match basic ethertypes */
mvpp2_prs_etype_init(struct mvpp2 * priv)1987 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1988 {
1989 struct mvpp2_prs_entry pe;
1990 int tid;
1991
1992 /* Ethertype: PPPoE */
1993 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1994 MVPP2_PE_LAST_FREE_TID);
1995 if (tid < 0)
1996 return tid;
1997
1998 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1999 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2000 pe.index = tid;
2001
2002 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
2003
2004 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2005 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2006 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2007 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2008 MVPP2_PRS_RI_PPPOE_MASK);
2009
2010 /* Update shadow table and hw entry */
2011 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2012 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2013 priv->prs_shadow[pe.index].finish = false;
2014 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2015 MVPP2_PRS_RI_PPPOE_MASK);
2016 mvpp2_prs_hw_write(priv, &pe);
2017
2018 /* Ethertype: ARP */
2019 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2020 MVPP2_PE_LAST_FREE_TID);
2021 if (tid < 0)
2022 return tid;
2023
2024 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2025 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2026 pe.index = tid;
2027
2028 mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2029
2030 /* Generate flow in the next iteration*/
2031 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2032 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2033 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2034 MVPP2_PRS_RI_L3_PROTO_MASK);
2035 /* Set L3 offset */
2036 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2037 MVPP2_ETH_TYPE_LEN,
2038 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2039
2040 /* Update shadow table and hw entry */
2041 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2042 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2043 priv->prs_shadow[pe.index].finish = true;
2044 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2045 MVPP2_PRS_RI_L3_PROTO_MASK);
2046 mvpp2_prs_hw_write(priv, &pe);
2047
2048 /* Ethertype: LBTD */
2049 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2050 MVPP2_PE_LAST_FREE_TID);
2051 if (tid < 0)
2052 return tid;
2053
2054 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2055 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2056 pe.index = tid;
2057
2058 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2059
2060 /* Generate flow in the next iteration*/
2061 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2062 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2063 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2064 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2065 MVPP2_PRS_RI_CPU_CODE_MASK |
2066 MVPP2_PRS_RI_UDF3_MASK);
2067 /* Set L3 offset */
2068 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2069 MVPP2_ETH_TYPE_LEN,
2070 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2071
2072 /* Update shadow table and hw entry */
2073 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2074 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2075 priv->prs_shadow[pe.index].finish = true;
2076 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2077 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2078 MVPP2_PRS_RI_CPU_CODE_MASK |
2079 MVPP2_PRS_RI_UDF3_MASK);
2080 mvpp2_prs_hw_write(priv, &pe);
2081
2082 /* Ethertype: IPv4 without options */
2083 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2084 MVPP2_PE_LAST_FREE_TID);
2085 if (tid < 0)
2086 return tid;
2087
2088 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2089 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2090 pe.index = tid;
2091
2092 mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2093 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2094 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2095 MVPP2_PRS_IPV4_HEAD_MASK |
2096 MVPP2_PRS_IPV4_IHL_MASK);
2097
2098 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2099 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2100 MVPP2_PRS_RI_L3_PROTO_MASK);
2101 /* Skip eth_type + 4 bytes of IP header */
2102 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2103 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2104 /* Set L3 offset */
2105 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2106 MVPP2_ETH_TYPE_LEN,
2107 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2108
2109 /* Update shadow table and hw entry */
2110 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2111 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2112 priv->prs_shadow[pe.index].finish = false;
2113 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2114 MVPP2_PRS_RI_L3_PROTO_MASK);
2115 mvpp2_prs_hw_write(priv, &pe);
2116
2117 /* Ethertype: IPv4 with options */
2118 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2119 MVPP2_PE_LAST_FREE_TID);
2120 if (tid < 0)
2121 return tid;
2122
2123 pe.index = tid;
2124
2125 /* Clear tcam data before updating */
2126 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2127 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2128
2129 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2130 MVPP2_PRS_IPV4_HEAD,
2131 MVPP2_PRS_IPV4_HEAD_MASK);
2132
2133 /* Clear ri before updating */
2134 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2135 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2136 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2137 MVPP2_PRS_RI_L3_PROTO_MASK);
2138
2139 /* Update shadow table and hw entry */
2140 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2141 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2142 priv->prs_shadow[pe.index].finish = false;
2143 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2144 MVPP2_PRS_RI_L3_PROTO_MASK);
2145 mvpp2_prs_hw_write(priv, &pe);
2146
2147 /* Ethertype: IPv6 without options */
2148 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2149 MVPP2_PE_LAST_FREE_TID);
2150 if (tid < 0)
2151 return tid;
2152
2153 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2154 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2155 pe.index = tid;
2156
2157 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2158
2159 /* Skip DIP of IPV6 header */
2160 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2161 MVPP2_MAX_L3_ADDR_SIZE,
2162 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2163 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2164 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2165 MVPP2_PRS_RI_L3_PROTO_MASK);
2166 /* Set L3 offset */
2167 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2168 MVPP2_ETH_TYPE_LEN,
2169 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2170
2171 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2172 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2173 priv->prs_shadow[pe.index].finish = false;
2174 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2175 MVPP2_PRS_RI_L3_PROTO_MASK);
2176 mvpp2_prs_hw_write(priv, &pe);
2177
2178 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2179 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2180 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2181 pe.index = MVPP2_PE_ETH_TYPE_UN;
2182
2183 /* Unmask all ports */
2184 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2185
2186 /* Generate flow in the next iteration*/
2187 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2188 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2189 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2190 MVPP2_PRS_RI_L3_PROTO_MASK);
2191 /* Set L3 offset even it's unknown L3 */
2192 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2193 MVPP2_ETH_TYPE_LEN,
2194 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2195
2196 /* Update shadow table and hw entry */
2197 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2198 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2199 priv->prs_shadow[pe.index].finish = true;
2200 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2201 MVPP2_PRS_RI_L3_PROTO_MASK);
2202 mvpp2_prs_hw_write(priv, &pe);
2203
2204 return 0;
2205 }
2206
2207 /* Parser default initialization */
mvpp2_prs_default_init(struct udevice * dev,struct mvpp2 * priv)2208 static int mvpp2_prs_default_init(struct udevice *dev,
2209 struct mvpp2 *priv)
2210 {
2211 int err, index, i;
2212
2213 /* Enable tcam table */
2214 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2215
2216 /* Clear all tcam and sram entries */
2217 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2218 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2219 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2220 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2221
2222 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2223 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2224 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2225 }
2226
2227 /* Invalidate all tcam entries */
2228 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2229 mvpp2_prs_hw_inv(priv, index);
2230
2231 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2232 sizeof(struct mvpp2_prs_shadow),
2233 GFP_KERNEL);
2234 if (!priv->prs_shadow)
2235 return -ENOMEM;
2236
2237 /* Always start from lookup = 0 */
2238 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2239 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2240 MVPP2_PRS_PORT_LU_MAX, 0);
2241
2242 mvpp2_prs_def_flow_init(priv);
2243
2244 mvpp2_prs_mh_init(priv);
2245
2246 mvpp2_prs_mac_init(priv);
2247
2248 err = mvpp2_prs_etype_init(priv);
2249 if (err)
2250 return err;
2251
2252 return 0;
2253 }
2254
2255 /* Compare MAC DA with tcam entry data */
mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry * pe,const u8 * da,unsigned char * mask)2256 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2257 const u8 *da, unsigned char *mask)
2258 {
2259 unsigned char tcam_byte, tcam_mask;
2260 int index;
2261
2262 for (index = 0; index < ETH_ALEN; index++) {
2263 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2264 if (tcam_mask != mask[index])
2265 return false;
2266
2267 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2268 return false;
2269 }
2270
2271 return true;
2272 }
2273
2274 /* Find tcam entry with matched pair <MAC DA, port> */
2275 static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 * priv,int pmap,const u8 * da,unsigned char * mask,int udf_type)2276 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2277 unsigned char *mask, int udf_type)
2278 {
2279 struct mvpp2_prs_entry *pe;
2280 int tid;
2281
2282 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2283 if (!pe)
2284 return NULL;
2285 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2286
2287 /* Go through the all entires with MVPP2_PRS_LU_MAC */
2288 for (tid = MVPP2_PE_FIRST_FREE_TID;
2289 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2290 unsigned int entry_pmap;
2291
2292 if (!priv->prs_shadow[tid].valid ||
2293 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2294 (priv->prs_shadow[tid].udf != udf_type))
2295 continue;
2296
2297 pe->index = tid;
2298 mvpp2_prs_hw_read(priv, pe);
2299 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2300
2301 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2302 entry_pmap == pmap)
2303 return pe;
2304 }
2305 kfree(pe);
2306
2307 return NULL;
2308 }
2309
2310 /* Update parser's mac da entry */
mvpp2_prs_mac_da_accept(struct mvpp2 * priv,int port,const u8 * da,bool add)2311 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2312 const u8 *da, bool add)
2313 {
2314 struct mvpp2_prs_entry *pe;
2315 unsigned int pmap, len, ri;
2316 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2317 int tid;
2318
2319 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2320 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2321 MVPP2_PRS_UDF_MAC_DEF);
2322
2323 /* No such entry */
2324 if (!pe) {
2325 if (!add)
2326 return 0;
2327
2328 /* Create new TCAM entry */
2329 /* Find first range mac entry*/
2330 for (tid = MVPP2_PE_FIRST_FREE_TID;
2331 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2332 if (priv->prs_shadow[tid].valid &&
2333 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2334 (priv->prs_shadow[tid].udf ==
2335 MVPP2_PRS_UDF_MAC_RANGE))
2336 break;
2337
2338 /* Go through the all entries from first to last */
2339 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2340 tid - 1);
2341 if (tid < 0)
2342 return tid;
2343
2344 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2345 if (!pe)
2346 return -1;
2347 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2348 pe->index = tid;
2349
2350 /* Mask all ports */
2351 mvpp2_prs_tcam_port_map_set(pe, 0);
2352 }
2353
2354 /* Update port mask */
2355 mvpp2_prs_tcam_port_set(pe, port, add);
2356
2357 /* Invalidate the entry if no ports are left enabled */
2358 pmap = mvpp2_prs_tcam_port_map_get(pe);
2359 if (pmap == 0) {
2360 if (add) {
2361 kfree(pe);
2362 return -1;
2363 }
2364 mvpp2_prs_hw_inv(priv, pe->index);
2365 priv->prs_shadow[pe->index].valid = false;
2366 kfree(pe);
2367 return 0;
2368 }
2369
2370 /* Continue - set next lookup */
2371 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2372
2373 /* Set match on DA */
2374 len = ETH_ALEN;
2375 while (len--)
2376 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2377
2378 /* Set result info bits */
2379 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2380
2381 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2382 MVPP2_PRS_RI_MAC_ME_MASK);
2383 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2384 MVPP2_PRS_RI_MAC_ME_MASK);
2385
2386 /* Shift to ethertype */
2387 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2388 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2389
2390 /* Update shadow table and hw entry */
2391 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2392 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2393 mvpp2_prs_hw_write(priv, pe);
2394
2395 kfree(pe);
2396
2397 return 0;
2398 }
2399
mvpp2_prs_update_mac_da(struct mvpp2_port * port,const u8 * da)2400 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2401 {
2402 int err;
2403
2404 /* Remove old parser entry */
2405 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2406 false);
2407 if (err)
2408 return err;
2409
2410 /* Add new parser entry */
2411 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2412 if (err)
2413 return err;
2414
2415 /* Set addr in the device */
2416 memcpy(port->dev_addr, da, ETH_ALEN);
2417
2418 return 0;
2419 }
2420
2421 /* Set prs flow for the port */
mvpp2_prs_def_flow(struct mvpp2_port * port)2422 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2423 {
2424 struct mvpp2_prs_entry *pe;
2425 int tid;
2426
2427 pe = mvpp2_prs_flow_find(port->priv, port->id);
2428
2429 /* Such entry not exist */
2430 if (!pe) {
2431 /* Go through the all entires from last to first */
2432 tid = mvpp2_prs_tcam_first_free(port->priv,
2433 MVPP2_PE_LAST_FREE_TID,
2434 MVPP2_PE_FIRST_FREE_TID);
2435 if (tid < 0)
2436 return tid;
2437
2438 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2439 if (!pe)
2440 return -ENOMEM;
2441
2442 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2443 pe->index = tid;
2444
2445 /* Set flow ID*/
2446 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2447 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2448
2449 /* Update shadow table */
2450 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2451 }
2452
2453 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2454 mvpp2_prs_hw_write(port->priv, pe);
2455 kfree(pe);
2456
2457 return 0;
2458 }
2459
2460 /* Classifier configuration routines */
2461
2462 /* Update classification flow table registers */
mvpp2_cls_flow_write(struct mvpp2 * priv,struct mvpp2_cls_flow_entry * fe)2463 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2464 struct mvpp2_cls_flow_entry *fe)
2465 {
2466 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2467 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
2468 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
2469 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
2470 }
2471
2472 /* Update classification lookup table register */
mvpp2_cls_lookup_write(struct mvpp2 * priv,struct mvpp2_cls_lookup_entry * le)2473 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2474 struct mvpp2_cls_lookup_entry *le)
2475 {
2476 u32 val;
2477
2478 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2479 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2480 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2481 }
2482
2483 /* Classifier default initialization */
mvpp2_cls_init(struct mvpp2 * priv)2484 static void mvpp2_cls_init(struct mvpp2 *priv)
2485 {
2486 struct mvpp2_cls_lookup_entry le;
2487 struct mvpp2_cls_flow_entry fe;
2488 int index;
2489
2490 /* Enable classifier */
2491 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2492
2493 /* Clear classifier flow table */
2494 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2495 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2496 fe.index = index;
2497 mvpp2_cls_flow_write(priv, &fe);
2498 }
2499
2500 /* Clear classifier lookup table */
2501 le.data = 0;
2502 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2503 le.lkpid = index;
2504 le.way = 0;
2505 mvpp2_cls_lookup_write(priv, &le);
2506
2507 le.way = 1;
2508 mvpp2_cls_lookup_write(priv, &le);
2509 }
2510 }
2511
mvpp2_cls_port_config(struct mvpp2_port * port)2512 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2513 {
2514 struct mvpp2_cls_lookup_entry le;
2515 u32 val;
2516
2517 /* Set way for the port */
2518 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2519 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2520 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2521
2522 /* Pick the entry to be accessed in lookup ID decoding table
2523 * according to the way and lkpid.
2524 */
2525 le.lkpid = port->id;
2526 le.way = 0;
2527 le.data = 0;
2528
2529 /* Set initial CPU queue for receiving packets */
2530 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2531 le.data |= port->first_rxq;
2532
2533 /* Disable classification engines */
2534 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2535
2536 /* Update lookup ID table entry */
2537 mvpp2_cls_lookup_write(port->priv, &le);
2538 }
2539
2540 /* Set CPU queue number for oversize packets */
mvpp2_cls_oversize_rxq_set(struct mvpp2_port * port)2541 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2542 {
2543 u32 val;
2544
2545 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2546 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2547
2548 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2549 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2550
2551 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2552 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2553 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2554 }
2555
2556 /* Buffer Manager configuration routines */
2557
2558 /* Create pool */
mvpp2_bm_pool_create(struct udevice * dev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int size)2559 static int mvpp2_bm_pool_create(struct udevice *dev,
2560 struct mvpp2 *priv,
2561 struct mvpp2_bm_pool *bm_pool, int size)
2562 {
2563 u32 val;
2564
2565 /* Number of buffer pointers must be a multiple of 16, as per
2566 * hardware constraints
2567 */
2568 if (!IS_ALIGNED(size, 16))
2569 return -EINVAL;
2570
2571 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2572 bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2573 if (!bm_pool->virt_addr)
2574 return -ENOMEM;
2575
2576 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2577 MVPP2_BM_POOL_PTR_ALIGN)) {
2578 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2579 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2580 return -ENOMEM;
2581 }
2582
2583 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2584 lower_32_bits(bm_pool->dma_addr));
2585 if (priv->hw_version == MVPP22)
2586 mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG,
2587 (upper_32_bits(bm_pool->dma_addr) &
2588 MVPP22_BM_POOL_BASE_HIGH_MASK));
2589 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2590
2591 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2592 val |= MVPP2_BM_START_MASK;
2593 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2594
2595 bm_pool->type = MVPP2_BM_FREE;
2596 bm_pool->size = size;
2597 bm_pool->pkt_size = 0;
2598 bm_pool->buf_num = 0;
2599
2600 return 0;
2601 }
2602
2603 /* Set pool buffer size */
mvpp2_bm_pool_bufsize_set(struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int buf_size)2604 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2605 struct mvpp2_bm_pool *bm_pool,
2606 int buf_size)
2607 {
2608 u32 val;
2609
2610 bm_pool->buf_size = buf_size;
2611
2612 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2613 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2614 }
2615
2616 /* Free all buffers from the pool */
mvpp2_bm_bufs_free(struct udevice * dev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)2617 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2618 struct mvpp2_bm_pool *bm_pool)
2619 {
2620 int i;
2621
2622 for (i = 0; i < bm_pool->buf_num; i++) {
2623 /* Allocate buffer back from the buffer manager */
2624 mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
2625 }
2626
2627 bm_pool->buf_num = 0;
2628 }
2629
2630 /* Cleanup pool */
mvpp2_bm_pool_destroy(struct udevice * dev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)2631 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2632 struct mvpp2 *priv,
2633 struct mvpp2_bm_pool *bm_pool)
2634 {
2635 u32 val;
2636
2637 mvpp2_bm_bufs_free(dev, priv, bm_pool);
2638 if (bm_pool->buf_num) {
2639 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2640 return 0;
2641 }
2642
2643 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2644 val |= MVPP2_BM_STOP_MASK;
2645 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2646
2647 return 0;
2648 }
2649
mvpp2_bm_pools_init(struct udevice * dev,struct mvpp2 * priv)2650 static int mvpp2_bm_pools_init(struct udevice *dev,
2651 struct mvpp2 *priv)
2652 {
2653 int i, err, size;
2654 struct mvpp2_bm_pool *bm_pool;
2655
2656 /* Create all pools with maximum size */
2657 size = MVPP2_BM_POOL_SIZE_MAX;
2658 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2659 bm_pool = &priv->bm_pools[i];
2660 bm_pool->id = i;
2661 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2662 if (err)
2663 goto err_unroll_pools;
2664 mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE);
2665 }
2666 return 0;
2667
2668 err_unroll_pools:
2669 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2670 for (i = i - 1; i >= 0; i--)
2671 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2672 return err;
2673 }
2674
mvpp2_bm_init(struct udevice * dev,struct mvpp2 * priv)2675 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2676 {
2677 int i, err;
2678
2679 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2680 /* Mask BM all interrupts */
2681 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2682 /* Clear BM cause register */
2683 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2684 }
2685
2686 /* Allocate and initialize BM pools */
2687 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2688 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2689 if (!priv->bm_pools)
2690 return -ENOMEM;
2691
2692 err = mvpp2_bm_pools_init(dev, priv);
2693 if (err < 0)
2694 return err;
2695 return 0;
2696 }
2697
2698 /* Attach long pool to rxq */
mvpp2_rxq_long_pool_set(struct mvpp2_port * port,int lrxq,int long_pool)2699 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2700 int lrxq, int long_pool)
2701 {
2702 u32 val, mask;
2703 int prxq;
2704
2705 /* Get queue physical ID */
2706 prxq = port->rxqs[lrxq]->id;
2707
2708 if (port->priv->hw_version == MVPP21)
2709 mask = MVPP21_RXQ_POOL_LONG_MASK;
2710 else
2711 mask = MVPP22_RXQ_POOL_LONG_MASK;
2712
2713 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2714 val &= ~mask;
2715 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2716 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2717 }
2718
2719 /* Set pool number in a BM cookie */
mvpp2_bm_cookie_pool_set(u32 cookie,int pool)2720 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2721 {
2722 u32 bm;
2723
2724 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2725 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2726
2727 return bm;
2728 }
2729
2730 /* Get pool number from a BM cookie */
mvpp2_bm_cookie_pool_get(unsigned long cookie)2731 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2732 {
2733 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2734 }
2735
2736 /* Release buffer to BM */
mvpp2_bm_pool_put(struct mvpp2_port * port,int pool,dma_addr_t buf_dma_addr,unsigned long buf_phys_addr)2737 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2738 dma_addr_t buf_dma_addr,
2739 unsigned long buf_phys_addr)
2740 {
2741 if (port->priv->hw_version == MVPP22) {
2742 u32 val = 0;
2743
2744 if (sizeof(dma_addr_t) == 8)
2745 val |= upper_32_bits(buf_dma_addr) &
2746 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2747
2748 if (sizeof(phys_addr_t) == 8)
2749 val |= (upper_32_bits(buf_phys_addr)
2750 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2751 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2752
2753 mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2754 }
2755
2756 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2757 * returned in the "cookie" field of the RX
2758 * descriptor. Instead of storing the virtual address, we
2759 * store the physical address
2760 */
2761 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2762 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2763 }
2764
2765 /* Refill BM pool */
mvpp2_pool_refill(struct mvpp2_port * port,u32 bm,dma_addr_t dma_addr,phys_addr_t phys_addr)2766 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2767 dma_addr_t dma_addr,
2768 phys_addr_t phys_addr)
2769 {
2770 int pool = mvpp2_bm_cookie_pool_get(bm);
2771
2772 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2773 }
2774
2775 /* Allocate buffers for the pool */
mvpp2_bm_bufs_add(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,int buf_num)2776 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2777 struct mvpp2_bm_pool *bm_pool, int buf_num)
2778 {
2779 int i;
2780
2781 if (buf_num < 0 ||
2782 (buf_num + bm_pool->buf_num > bm_pool->size)) {
2783 netdev_err(port->dev,
2784 "cannot allocate %d buffers for pool %d\n",
2785 buf_num, bm_pool->id);
2786 return 0;
2787 }
2788
2789 for (i = 0; i < buf_num; i++) {
2790 mvpp2_bm_pool_put(port, bm_pool->id,
2791 (dma_addr_t)buffer_loc.rx_buffer[i],
2792 (unsigned long)buffer_loc.rx_buffer[i]);
2793
2794 }
2795
2796 /* Update BM driver with number of buffers added to pool */
2797 bm_pool->buf_num += i;
2798
2799 return i;
2800 }
2801
2802 /* Notify the driver that BM pool is being used as specific type and return the
2803 * pool pointer on success
2804 */
2805 static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port * port,int pool,enum mvpp2_bm_type type,int pkt_size)2806 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2807 int pkt_size)
2808 {
2809 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2810 int num;
2811
2812 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2813 netdev_err(port->dev, "mixing pool types is forbidden\n");
2814 return NULL;
2815 }
2816
2817 if (new_pool->type == MVPP2_BM_FREE)
2818 new_pool->type = type;
2819
2820 /* Allocate buffers in case BM pool is used as long pool, but packet
2821 * size doesn't match MTU or BM pool hasn't being used yet
2822 */
2823 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2824 (new_pool->pkt_size == 0)) {
2825 int pkts_num;
2826
2827 /* Set default buffer number or free all the buffers in case
2828 * the pool is not empty
2829 */
2830 pkts_num = new_pool->buf_num;
2831 if (pkts_num == 0)
2832 pkts_num = type == MVPP2_BM_SWF_LONG ?
2833 MVPP2_BM_LONG_BUF_NUM :
2834 MVPP2_BM_SHORT_BUF_NUM;
2835 else
2836 mvpp2_bm_bufs_free(NULL,
2837 port->priv, new_pool);
2838
2839 new_pool->pkt_size = pkt_size;
2840
2841 /* Allocate buffers for this pool */
2842 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2843 if (num != pkts_num) {
2844 dev_err(dev, "pool %d: %d of %d allocated\n",
2845 new_pool->id, num, pkts_num);
2846 return NULL;
2847 }
2848 }
2849
2850 return new_pool;
2851 }
2852
2853 /* Initialize pools for swf */
mvpp2_swf_bm_pool_init(struct mvpp2_port * port)2854 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2855 {
2856 int rxq;
2857
2858 if (!port->pool_long) {
2859 port->pool_long =
2860 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2861 MVPP2_BM_SWF_LONG,
2862 port->pkt_size);
2863 if (!port->pool_long)
2864 return -ENOMEM;
2865
2866 port->pool_long->port_map |= (1 << port->id);
2867
2868 for (rxq = 0; rxq < rxq_number; rxq++)
2869 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2870 }
2871
2872 return 0;
2873 }
2874
2875 /* Port configuration routines */
2876
mvpp2_port_mii_set(struct mvpp2_port * port)2877 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2878 {
2879 u32 val;
2880
2881 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2882
2883 switch (port->phy_interface) {
2884 case PHY_INTERFACE_MODE_SGMII:
2885 val |= MVPP2_GMAC_INBAND_AN_MASK;
2886 break;
2887 case PHY_INTERFACE_MODE_RGMII:
2888 case PHY_INTERFACE_MODE_RGMII_ID:
2889 val |= MVPP2_GMAC_PORT_RGMII_MASK;
2890 default:
2891 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2892 }
2893
2894 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2895 }
2896
mvpp2_port_fc_adv_enable(struct mvpp2_port * port)2897 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2898 {
2899 u32 val;
2900
2901 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2902 val |= MVPP2_GMAC_FC_ADV_EN;
2903 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2904 }
2905
mvpp2_port_enable(struct mvpp2_port * port)2906 static void mvpp2_port_enable(struct mvpp2_port *port)
2907 {
2908 u32 val;
2909
2910 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2911 val |= MVPP2_GMAC_PORT_EN_MASK;
2912 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2913 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2914 }
2915
mvpp2_port_disable(struct mvpp2_port * port)2916 static void mvpp2_port_disable(struct mvpp2_port *port)
2917 {
2918 u32 val;
2919
2920 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2921 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2922 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2923 }
2924
2925 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
mvpp2_port_periodic_xon_disable(struct mvpp2_port * port)2926 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2927 {
2928 u32 val;
2929
2930 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2931 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2932 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2933 }
2934
2935 /* Configure loopback port */
mvpp2_port_loopback_set(struct mvpp2_port * port)2936 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2937 {
2938 u32 val;
2939
2940 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2941
2942 if (port->speed == 1000)
2943 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2944 else
2945 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2946
2947 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2948 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2949 else
2950 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2951
2952 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2953 }
2954
mvpp2_port_reset(struct mvpp2_port * port)2955 static void mvpp2_port_reset(struct mvpp2_port *port)
2956 {
2957 u32 val;
2958
2959 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2960 ~MVPP2_GMAC_PORT_RESET_MASK;
2961 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2962
2963 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2964 MVPP2_GMAC_PORT_RESET_MASK)
2965 continue;
2966 }
2967
2968 /* Change maximum receive size of the port */
mvpp2_gmac_max_rx_size_set(struct mvpp2_port * port)2969 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2970 {
2971 u32 val;
2972
2973 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2974 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2975 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2976 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2977 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2978 }
2979
2980 /* PPv2.2 GoP/GMAC config */
2981
2982 /* Set the MAC to reset or exit from reset */
gop_gmac_reset(struct mvpp2_port * port,int reset)2983 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2984 {
2985 u32 val;
2986
2987 /* read - modify - write */
2988 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2989 if (reset)
2990 val |= MVPP2_GMAC_PORT_RESET_MASK;
2991 else
2992 val &= ~MVPP2_GMAC_PORT_RESET_MASK;
2993 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2994
2995 return 0;
2996 }
2997
2998 /*
2999 * gop_gpcs_mode_cfg
3000 *
3001 * Configure port to working with Gig PCS or don't.
3002 */
gop_gpcs_mode_cfg(struct mvpp2_port * port,int en)3003 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3004 {
3005 u32 val;
3006
3007 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3008 if (en)
3009 val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3010 else
3011 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3012 /* enable / disable PCS on this port */
3013 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3014
3015 return 0;
3016 }
3017
gop_bypass_clk_cfg(struct mvpp2_port * port,int en)3018 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3019 {
3020 u32 val;
3021
3022 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3023 if (en)
3024 val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3025 else
3026 val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3027 /* enable / disable PCS on this port */
3028 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3029
3030 return 0;
3031 }
3032
gop_gmac_sgmii2_5_cfg(struct mvpp2_port * port)3033 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3034 {
3035 u32 val, thresh;
3036
3037 /*
3038 * Configure minimal level of the Tx FIFO before the lower part
3039 * starts to read a packet
3040 */
3041 thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3042 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3043 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3044 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3045 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3046
3047 /* Disable bypass of sync module */
3048 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3049 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3050 /* configure DP clock select according to mode */
3051 val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3052 /* configure QSGMII bypass according to mode */
3053 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3054 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3055
3056 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3057 /*
3058 * Configure GIG MAC to 1000Base-X mode connected to a fiber
3059 * transceiver
3060 */
3061 val |= MVPP2_GMAC_PORT_TYPE_MASK;
3062 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3063
3064 /* configure AN 0x9268 */
3065 val = MVPP2_GMAC_EN_PCS_AN |
3066 MVPP2_GMAC_AN_BYPASS_EN |
3067 MVPP2_GMAC_CONFIG_MII_SPEED |
3068 MVPP2_GMAC_CONFIG_GMII_SPEED |
3069 MVPP2_GMAC_FC_ADV_EN |
3070 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3071 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3072 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3073 }
3074
gop_gmac_sgmii_cfg(struct mvpp2_port * port)3075 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3076 {
3077 u32 val, thresh;
3078
3079 /*
3080 * Configure minimal level of the Tx FIFO before the lower part
3081 * starts to read a packet
3082 */
3083 thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3084 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3085 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3086 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3087 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3088
3089 /* Disable bypass of sync module */
3090 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3091 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3092 /* configure DP clock select according to mode */
3093 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3094 /* configure QSGMII bypass according to mode */
3095 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3096 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3097
3098 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3099 /* configure GIG MAC to SGMII mode */
3100 val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3101 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3102
3103 /* configure AN */
3104 val = MVPP2_GMAC_EN_PCS_AN |
3105 MVPP2_GMAC_AN_BYPASS_EN |
3106 MVPP2_GMAC_AN_SPEED_EN |
3107 MVPP2_GMAC_EN_FC_AN |
3108 MVPP2_GMAC_AN_DUPLEX_EN |
3109 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3110 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3111 }
3112
gop_gmac_rgmii_cfg(struct mvpp2_port * port)3113 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3114 {
3115 u32 val, thresh;
3116
3117 /*
3118 * Configure minimal level of the Tx FIFO before the lower part
3119 * starts to read a packet
3120 */
3121 thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3122 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3123 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3124 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3125 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3126
3127 /* Disable bypass of sync module */
3128 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3129 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3130 /* configure DP clock select according to mode */
3131 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3132 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3133 val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3134 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3135
3136 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3137 /* configure GIG MAC to SGMII mode */
3138 val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3139 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3140
3141 /* configure AN 0xb8e8 */
3142 val = MVPP2_GMAC_AN_BYPASS_EN |
3143 MVPP2_GMAC_AN_SPEED_EN |
3144 MVPP2_GMAC_EN_FC_AN |
3145 MVPP2_GMAC_AN_DUPLEX_EN |
3146 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3147 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3148 }
3149
3150 /* Set the internal mux's to the required MAC in the GOP */
gop_gmac_mode_cfg(struct mvpp2_port * port)3151 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3152 {
3153 u32 val;
3154
3155 /* Set TX FIFO thresholds */
3156 switch (port->phy_interface) {
3157 case PHY_INTERFACE_MODE_SGMII:
3158 if (port->phy_speed == 2500)
3159 gop_gmac_sgmii2_5_cfg(port);
3160 else
3161 gop_gmac_sgmii_cfg(port);
3162 break;
3163
3164 case PHY_INTERFACE_MODE_RGMII:
3165 case PHY_INTERFACE_MODE_RGMII_ID:
3166 gop_gmac_rgmii_cfg(port);
3167 break;
3168
3169 default:
3170 return -1;
3171 }
3172
3173 /* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3174 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3175 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3176 val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3177 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3178
3179 /* PeriodicXonEn disable */
3180 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3181 val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3182 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3183
3184 return 0;
3185 }
3186
gop_xlg_2_gig_mac_cfg(struct mvpp2_port * port)3187 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3188 {
3189 u32 val;
3190
3191 /* relevant only for MAC0 (XLG0 and GMAC0) */
3192 if (port->gop_id > 0)
3193 return;
3194
3195 /* configure 1Gig MAC mode */
3196 val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3197 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3198 val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3199 writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3200 }
3201
gop_gpcs_reset(struct mvpp2_port * port,int reset)3202 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3203 {
3204 u32 val;
3205
3206 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3207 if (reset)
3208 val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3209 else
3210 val |= MVPP2_GMAC_SGMII_MODE_MASK;
3211 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3212
3213 return 0;
3214 }
3215
3216 /* Set the internal mux's to the required PCS in the PI */
gop_xpcs_mode(struct mvpp2_port * port,int num_of_lanes)3217 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes)
3218 {
3219 u32 val;
3220 int lane;
3221
3222 switch (num_of_lanes) {
3223 case 1:
3224 lane = 0;
3225 break;
3226 case 2:
3227 lane = 1;
3228 break;
3229 case 4:
3230 lane = 2;
3231 break;
3232 default:
3233 return -1;
3234 }
3235
3236 /* configure XG MAC mode */
3237 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3238 val &= ~MVPP22_XPCS_PCSMODE_MASK;
3239 val &= ~MVPP22_XPCS_LANEACTIVE_MASK;
3240 val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS;
3241 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3242
3243 return 0;
3244 }
3245
gop_mpcs_mode(struct mvpp2_port * port)3246 static int gop_mpcs_mode(struct mvpp2_port *port)
3247 {
3248 u32 val;
3249
3250 /* configure PCS40G COMMON CONTROL */
3251 val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3252 val &= ~FORWARD_ERROR_CORRECTION_MASK;
3253 writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3254
3255 /* configure PCS CLOCK RESET */
3256 val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET);
3257 val &= ~CLK_DIVISION_RATIO_MASK;
3258 val |= 1 << CLK_DIVISION_RATIO_OFFS;
3259 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3260
3261 val &= ~CLK_DIV_PHASE_SET_MASK;
3262 val |= MAC_CLK_RESET_MASK;
3263 val |= RX_SD_CLK_RESET_MASK;
3264 val |= TX_SD_CLK_RESET_MASK;
3265 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3266
3267 return 0;
3268 }
3269
3270 /* Set the internal mux's to the required MAC in the GOP */
gop_xlg_mac_mode_cfg(struct mvpp2_port * port,int num_of_act_lanes)3271 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3272 {
3273 u32 val;
3274
3275 /* configure 10G MAC mode */
3276 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3277 val |= MVPP22_XLG_RX_FC_EN;
3278 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3279
3280 val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3281 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3282 val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3283 writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3284
3285 /* read - modify - write */
3286 val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3287 val &= ~MVPP22_XLG_MODE_DMA_1G;
3288 val |= MVPP22_XLG_FORWARD_PFC_EN;
3289 val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3290 val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3291 writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3292
3293 /* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3294 val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3295 val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3296 val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3297 writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3298
3299 /* unmask link change interrupt */
3300 val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3301 val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3302 val |= 1; /* unmask summary bit */
3303 writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3304
3305 return 0;
3306 }
3307
3308 /* Set PCS to reset or exit from reset */
gop_xpcs_reset(struct mvpp2_port * port,int reset)3309 static int gop_xpcs_reset(struct mvpp2_port *port, int reset)
3310 {
3311 u32 val;
3312
3313 /* read - modify - write */
3314 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3315 if (reset)
3316 val &= ~MVPP22_XPCS_PCSRESET;
3317 else
3318 val |= MVPP22_XPCS_PCSRESET;
3319 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3320
3321 return 0;
3322 }
3323
3324 /* Set the MAC to reset or exit from reset */
gop_xlg_mac_reset(struct mvpp2_port * port,int reset)3325 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3326 {
3327 u32 val;
3328
3329 /* read - modify - write */
3330 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3331 if (reset)
3332 val &= ~MVPP22_XLG_MAC_RESETN;
3333 else
3334 val |= MVPP22_XLG_MAC_RESETN;
3335 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3336
3337 return 0;
3338 }
3339
3340 /*
3341 * gop_port_init
3342 *
3343 * Init physical port. Configures the port mode and all it's elements
3344 * accordingly.
3345 * Does not verify that the selected mode/port number is valid at the
3346 * core level.
3347 */
gop_port_init(struct mvpp2_port * port)3348 static int gop_port_init(struct mvpp2_port *port)
3349 {
3350 int mac_num = port->gop_id;
3351 int num_of_act_lanes;
3352
3353 if (mac_num >= MVPP22_GOP_MAC_NUM) {
3354 netdev_err(NULL, "%s: illegal port number %d", __func__,
3355 mac_num);
3356 return -1;
3357 }
3358
3359 switch (port->phy_interface) {
3360 case PHY_INTERFACE_MODE_RGMII:
3361 case PHY_INTERFACE_MODE_RGMII_ID:
3362 gop_gmac_reset(port, 1);
3363
3364 /* configure PCS */
3365 gop_gpcs_mode_cfg(port, 0);
3366 gop_bypass_clk_cfg(port, 1);
3367
3368 /* configure MAC */
3369 gop_gmac_mode_cfg(port);
3370 /* pcs unreset */
3371 gop_gpcs_reset(port, 0);
3372
3373 /* mac unreset */
3374 gop_gmac_reset(port, 0);
3375 break;
3376
3377 case PHY_INTERFACE_MODE_SGMII:
3378 /* configure PCS */
3379 gop_gpcs_mode_cfg(port, 1);
3380
3381 /* configure MAC */
3382 gop_gmac_mode_cfg(port);
3383 /* select proper Mac mode */
3384 gop_xlg_2_gig_mac_cfg(port);
3385
3386 /* pcs unreset */
3387 gop_gpcs_reset(port, 0);
3388 /* mac unreset */
3389 gop_gmac_reset(port, 0);
3390 break;
3391
3392 case PHY_INTERFACE_MODE_SFI:
3393 num_of_act_lanes = 2;
3394 mac_num = 0;
3395 /* configure PCS */
3396 gop_xpcs_mode(port, num_of_act_lanes);
3397 gop_mpcs_mode(port);
3398 /* configure MAC */
3399 gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3400
3401 /* pcs unreset */
3402 gop_xpcs_reset(port, 0);
3403
3404 /* mac unreset */
3405 gop_xlg_mac_reset(port, 0);
3406 break;
3407
3408 default:
3409 netdev_err(NULL, "%s: Requested port mode (%d) not supported\n",
3410 __func__, port->phy_interface);
3411 return -1;
3412 }
3413
3414 return 0;
3415 }
3416
gop_xlg_mac_port_enable(struct mvpp2_port * port,int enable)3417 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3418 {
3419 u32 val;
3420
3421 val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3422 if (enable) {
3423 /* Enable port and MIB counters update */
3424 val |= MVPP22_XLG_PORT_EN;
3425 val &= ~MVPP22_XLG_MIBCNT_DIS;
3426 } else {
3427 /* Disable port */
3428 val &= ~MVPP22_XLG_PORT_EN;
3429 }
3430 writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3431 }
3432
gop_port_enable(struct mvpp2_port * port,int enable)3433 static void gop_port_enable(struct mvpp2_port *port, int enable)
3434 {
3435 switch (port->phy_interface) {
3436 case PHY_INTERFACE_MODE_RGMII:
3437 case PHY_INTERFACE_MODE_RGMII_ID:
3438 case PHY_INTERFACE_MODE_SGMII:
3439 if (enable)
3440 mvpp2_port_enable(port);
3441 else
3442 mvpp2_port_disable(port);
3443 break;
3444
3445 case PHY_INTERFACE_MODE_SFI:
3446 gop_xlg_mac_port_enable(port, enable);
3447
3448 break;
3449 default:
3450 netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__,
3451 port->phy_interface);
3452 return;
3453 }
3454 }
3455
3456 /* RFU1 functions */
gop_rfu1_read(struct mvpp2 * priv,u32 offset)3457 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3458 {
3459 return readl(priv->rfu1_base + offset);
3460 }
3461
gop_rfu1_write(struct mvpp2 * priv,u32 offset,u32 data)3462 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3463 {
3464 writel(data, priv->rfu1_base + offset);
3465 }
3466
mvpp2_netc_cfg_create(int gop_id,phy_interface_t phy_type)3467 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3468 {
3469 u32 val = 0;
3470
3471 if (gop_id == 2) {
3472 if (phy_type == PHY_INTERFACE_MODE_SGMII)
3473 val |= MV_NETC_GE_MAC2_SGMII;
3474 }
3475
3476 if (gop_id == 3) {
3477 if (phy_type == PHY_INTERFACE_MODE_SGMII)
3478 val |= MV_NETC_GE_MAC3_SGMII;
3479 else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3480 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3481 val |= MV_NETC_GE_MAC3_RGMII;
3482 }
3483
3484 return val;
3485 }
3486
gop_netc_active_port(struct mvpp2 * priv,int gop_id,u32 val)3487 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3488 {
3489 u32 reg;
3490
3491 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3492 reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3493
3494 val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3495 val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3496
3497 reg |= val;
3498
3499 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3500 }
3501
gop_netc_mii_mode(struct mvpp2 * priv,int gop_id,u32 val)3502 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3503 {
3504 u32 reg;
3505
3506 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3507 reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3508
3509 val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3510 val &= NETC_GBE_PORT1_MII_MODE_MASK;
3511
3512 reg |= val;
3513
3514 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3515 }
3516
gop_netc_gop_reset(struct mvpp2 * priv,u32 val)3517 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3518 {
3519 u32 reg;
3520
3521 reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3522 reg &= ~NETC_GOP_SOFT_RESET_MASK;
3523
3524 val <<= NETC_GOP_SOFT_RESET_OFFS;
3525 val &= NETC_GOP_SOFT_RESET_MASK;
3526
3527 reg |= val;
3528
3529 gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3530 }
3531
gop_netc_gop_clock_logic_set(struct mvpp2 * priv,u32 val)3532 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3533 {
3534 u32 reg;
3535
3536 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3537 reg &= ~NETC_CLK_DIV_PHASE_MASK;
3538
3539 val <<= NETC_CLK_DIV_PHASE_OFFS;
3540 val &= NETC_CLK_DIV_PHASE_MASK;
3541
3542 reg |= val;
3543
3544 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3545 }
3546
gop_netc_port_rf_reset(struct mvpp2 * priv,int gop_id,u32 val)3547 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3548 {
3549 u32 reg;
3550
3551 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3552 reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3553
3554 val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3555 val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3556
3557 reg |= val;
3558
3559 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3560 }
3561
gop_netc_gbe_sgmii_mode_select(struct mvpp2 * priv,int gop_id,u32 val)3562 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3563 u32 val)
3564 {
3565 u32 reg, mask, offset;
3566
3567 if (gop_id == 2) {
3568 mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3569 offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3570 } else {
3571 mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3572 offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3573 }
3574 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3575 reg &= ~mask;
3576
3577 val <<= offset;
3578 val &= mask;
3579
3580 reg |= val;
3581
3582 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3583 }
3584
gop_netc_bus_width_select(struct mvpp2 * priv,u32 val)3585 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3586 {
3587 u32 reg;
3588
3589 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3590 reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3591
3592 val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3593 val &= NETC_BUS_WIDTH_SELECT_MASK;
3594
3595 reg |= val;
3596
3597 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3598 }
3599
gop_netc_sample_stages_timing(struct mvpp2 * priv,u32 val)3600 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3601 {
3602 u32 reg;
3603
3604 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3605 reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3606
3607 val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3608 val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3609
3610 reg |= val;
3611
3612 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3613 }
3614
gop_netc_mac_to_xgmii(struct mvpp2 * priv,int gop_id,enum mv_netc_phase phase)3615 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3616 enum mv_netc_phase phase)
3617 {
3618 switch (phase) {
3619 case MV_NETC_FIRST_PHASE:
3620 /* Set Bus Width to HB mode = 1 */
3621 gop_netc_bus_width_select(priv, 1);
3622 /* Select RGMII mode */
3623 gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3624 break;
3625
3626 case MV_NETC_SECOND_PHASE:
3627 /* De-assert the relevant port HB reset */
3628 gop_netc_port_rf_reset(priv, gop_id, 1);
3629 break;
3630 }
3631 }
3632
gop_netc_mac_to_sgmii(struct mvpp2 * priv,int gop_id,enum mv_netc_phase phase)3633 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3634 enum mv_netc_phase phase)
3635 {
3636 switch (phase) {
3637 case MV_NETC_FIRST_PHASE:
3638 /* Set Bus Width to HB mode = 1 */
3639 gop_netc_bus_width_select(priv, 1);
3640 /* Select SGMII mode */
3641 if (gop_id >= 1) {
3642 gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3643 MV_NETC_GBE_SGMII);
3644 }
3645
3646 /* Configure the sample stages */
3647 gop_netc_sample_stages_timing(priv, 0);
3648 /* Configure the ComPhy Selector */
3649 /* gop_netc_com_phy_selector_config(netComplex); */
3650 break;
3651
3652 case MV_NETC_SECOND_PHASE:
3653 /* De-assert the relevant port HB reset */
3654 gop_netc_port_rf_reset(priv, gop_id, 1);
3655 break;
3656 }
3657 }
3658
gop_netc_init(struct mvpp2 * priv,enum mv_netc_phase phase)3659 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3660 {
3661 u32 c = priv->netc_config;
3662
3663 if (c & MV_NETC_GE_MAC2_SGMII)
3664 gop_netc_mac_to_sgmii(priv, 2, phase);
3665 else
3666 gop_netc_mac_to_xgmii(priv, 2, phase);
3667
3668 if (c & MV_NETC_GE_MAC3_SGMII) {
3669 gop_netc_mac_to_sgmii(priv, 3, phase);
3670 } else {
3671 gop_netc_mac_to_xgmii(priv, 3, phase);
3672 if (c & MV_NETC_GE_MAC3_RGMII)
3673 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3674 else
3675 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3676 }
3677
3678 /* Activate gop ports 0, 2, 3 */
3679 gop_netc_active_port(priv, 0, 1);
3680 gop_netc_active_port(priv, 2, 1);
3681 gop_netc_active_port(priv, 3, 1);
3682
3683 if (phase == MV_NETC_SECOND_PHASE) {
3684 /* Enable the GOP internal clock logic */
3685 gop_netc_gop_clock_logic_set(priv, 1);
3686 /* De-assert GOP unit reset */
3687 gop_netc_gop_reset(priv, 1);
3688 }
3689
3690 return 0;
3691 }
3692
3693 /* Set defaults to the MVPP2 port */
mvpp2_defaults_set(struct mvpp2_port * port)3694 static void mvpp2_defaults_set(struct mvpp2_port *port)
3695 {
3696 int tx_port_num, val, queue, ptxq, lrxq;
3697
3698 if (port->priv->hw_version == MVPP21) {
3699 /* Configure port to loopback if needed */
3700 if (port->flags & MVPP2_F_LOOPBACK)
3701 mvpp2_port_loopback_set(port);
3702
3703 /* Update TX FIFO MIN Threshold */
3704 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3705 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3706 /* Min. TX threshold must be less than minimal packet length */
3707 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3708 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3709 }
3710
3711 /* Disable Legacy WRR, Disable EJP, Release from reset */
3712 tx_port_num = mvpp2_egress_port(port);
3713 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3714 tx_port_num);
3715 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3716
3717 /* Close bandwidth for all queues */
3718 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3719 ptxq = mvpp2_txq_phys(port->id, queue);
3720 mvpp2_write(port->priv,
3721 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3722 }
3723
3724 /* Set refill period to 1 usec, refill tokens
3725 * and bucket size to maximum
3726 */
3727 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3728 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3729 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3730 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3731 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3732 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3733 val = MVPP2_TXP_TOKEN_SIZE_MAX;
3734 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3735
3736 /* Set MaximumLowLatencyPacketSize value to 256 */
3737 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3738 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3739 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3740
3741 /* Enable Rx cache snoop */
3742 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3743 queue = port->rxqs[lrxq]->id;
3744 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3745 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3746 MVPP2_SNOOP_BUF_HDR_MASK;
3747 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3748 }
3749 }
3750
3751 /* Enable/disable receiving packets */
mvpp2_ingress_enable(struct mvpp2_port * port)3752 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3753 {
3754 u32 val;
3755 int lrxq, queue;
3756
3757 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3758 queue = port->rxqs[lrxq]->id;
3759 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3760 val &= ~MVPP2_RXQ_DISABLE_MASK;
3761 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3762 }
3763 }
3764
mvpp2_ingress_disable(struct mvpp2_port * port)3765 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3766 {
3767 u32 val;
3768 int lrxq, queue;
3769
3770 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3771 queue = port->rxqs[lrxq]->id;
3772 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3773 val |= MVPP2_RXQ_DISABLE_MASK;
3774 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3775 }
3776 }
3777
3778 /* Enable transmit via physical egress queue
3779 * - HW starts take descriptors from DRAM
3780 */
mvpp2_egress_enable(struct mvpp2_port * port)3781 static void mvpp2_egress_enable(struct mvpp2_port *port)
3782 {
3783 u32 qmap;
3784 int queue;
3785 int tx_port_num = mvpp2_egress_port(port);
3786
3787 /* Enable all initialized TXs. */
3788 qmap = 0;
3789 for (queue = 0; queue < txq_number; queue++) {
3790 struct mvpp2_tx_queue *txq = port->txqs[queue];
3791
3792 if (txq->descs != NULL)
3793 qmap |= (1 << queue);
3794 }
3795
3796 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3797 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3798 }
3799
3800 /* Disable transmit via physical egress queue
3801 * - HW doesn't take descriptors from DRAM
3802 */
mvpp2_egress_disable(struct mvpp2_port * port)3803 static void mvpp2_egress_disable(struct mvpp2_port *port)
3804 {
3805 u32 reg_data;
3806 int delay;
3807 int tx_port_num = mvpp2_egress_port(port);
3808
3809 /* Issue stop command for active channels only */
3810 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3811 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3812 MVPP2_TXP_SCHED_ENQ_MASK;
3813 if (reg_data != 0)
3814 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3815 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3816
3817 /* Wait for all Tx activity to terminate. */
3818 delay = 0;
3819 do {
3820 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3821 netdev_warn(port->dev,
3822 "Tx stop timed out, status=0x%08x\n",
3823 reg_data);
3824 break;
3825 }
3826 mdelay(1);
3827 delay++;
3828
3829 /* Check port TX Command register that all
3830 * Tx queues are stopped
3831 */
3832 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3833 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3834 }
3835
3836 /* Rx descriptors helper methods */
3837
3838 /* Get number of Rx descriptors occupied by received packets */
3839 static inline int
mvpp2_rxq_received(struct mvpp2_port * port,int rxq_id)3840 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3841 {
3842 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3843
3844 return val & MVPP2_RXQ_OCCUPIED_MASK;
3845 }
3846
3847 /* Update Rx queue status with the number of occupied and available
3848 * Rx descriptor slots.
3849 */
3850 static inline void
mvpp2_rxq_status_update(struct mvpp2_port * port,int rxq_id,int used_count,int free_count)3851 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3852 int used_count, int free_count)
3853 {
3854 /* Decrement the number of used descriptors and increment count
3855 * increment the number of free descriptors.
3856 */
3857 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3858
3859 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3860 }
3861
3862 /* Get pointer to next RX descriptor to be processed by SW */
3863 static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue * rxq)3864 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3865 {
3866 int rx_desc = rxq->next_desc_to_proc;
3867
3868 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3869 prefetch(rxq->descs + rxq->next_desc_to_proc);
3870 return rxq->descs + rx_desc;
3871 }
3872
3873 /* Set rx queue offset */
mvpp2_rxq_offset_set(struct mvpp2_port * port,int prxq,int offset)3874 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3875 int prxq, int offset)
3876 {
3877 u32 val;
3878
3879 /* Convert offset from bytes to units of 32 bytes */
3880 offset = offset >> 5;
3881
3882 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3883 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3884
3885 /* Offset is in */
3886 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3887 MVPP2_RXQ_PACKET_OFFSET_MASK);
3888
3889 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3890 }
3891
3892 /* Obtain BM cookie information from descriptor */
mvpp2_bm_cookie_build(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)3893 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3894 struct mvpp2_rx_desc *rx_desc)
3895 {
3896 int cpu = smp_processor_id();
3897 int pool;
3898
3899 pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3900 MVPP2_RXD_BM_POOL_ID_MASK) >>
3901 MVPP2_RXD_BM_POOL_ID_OFFS;
3902
3903 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3904 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3905 }
3906
3907 /* Tx descriptors helper methods */
3908
3909 /* Get number of Tx descriptors waiting to be transmitted by HW */
mvpp2_txq_pend_desc_num_get(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)3910 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3911 struct mvpp2_tx_queue *txq)
3912 {
3913 u32 val;
3914
3915 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3916 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3917
3918 return val & MVPP2_TXQ_PENDING_MASK;
3919 }
3920
3921 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3922 static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue * txq)3923 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3924 {
3925 int tx_desc = txq->next_desc_to_proc;
3926
3927 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3928 return txq->descs + tx_desc;
3929 }
3930
3931 /* Update HW with number of aggregated Tx descriptors to be sent */
mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port * port,int pending)3932 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3933 {
3934 /* aggregated access - relevant TXQ number is written in TX desc */
3935 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3936 }
3937
3938 /* Get number of sent descriptors and decrement counter.
3939 * The number of sent descriptors is returned.
3940 * Per-CPU access
3941 */
mvpp2_txq_sent_desc_proc(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)3942 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3943 struct mvpp2_tx_queue *txq)
3944 {
3945 u32 val;
3946
3947 /* Reading status reg resets transmitted descriptor counter */
3948 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3949
3950 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3951 MVPP2_TRANSMITTED_COUNT_OFFSET;
3952 }
3953
mvpp2_txq_sent_counter_clear(void * arg)3954 static void mvpp2_txq_sent_counter_clear(void *arg)
3955 {
3956 struct mvpp2_port *port = arg;
3957 int queue;
3958
3959 for (queue = 0; queue < txq_number; queue++) {
3960 int id = port->txqs[queue]->id;
3961
3962 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3963 }
3964 }
3965
3966 /* Set max sizes for Tx queues */
mvpp2_txp_max_tx_size_set(struct mvpp2_port * port)3967 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3968 {
3969 u32 val, size, mtu;
3970 int txq, tx_port_num;
3971
3972 mtu = port->pkt_size * 8;
3973 if (mtu > MVPP2_TXP_MTU_MAX)
3974 mtu = MVPP2_TXP_MTU_MAX;
3975
3976 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3977 mtu = 3 * mtu;
3978
3979 /* Indirect access to registers */
3980 tx_port_num = mvpp2_egress_port(port);
3981 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3982
3983 /* Set MTU */
3984 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3985 val &= ~MVPP2_TXP_MTU_MAX;
3986 val |= mtu;
3987 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
3988
3989 /* TXP token size and all TXQs token size must be larger that MTU */
3990 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
3991 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
3992 if (size < mtu) {
3993 size = mtu;
3994 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
3995 val |= size;
3996 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3997 }
3998
3999 for (txq = 0; txq < txq_number; txq++) {
4000 val = mvpp2_read(port->priv,
4001 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4002 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4003
4004 if (size < mtu) {
4005 size = mtu;
4006 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4007 val |= size;
4008 mvpp2_write(port->priv,
4009 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4010 val);
4011 }
4012 }
4013 }
4014
4015 /* Free Tx queue skbuffs */
mvpp2_txq_bufs_free(struct mvpp2_port * port,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu,int num)4016 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4017 struct mvpp2_tx_queue *txq,
4018 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4019 {
4020 int i;
4021
4022 for (i = 0; i < num; i++)
4023 mvpp2_txq_inc_get(txq_pcpu);
4024 }
4025
mvpp2_get_rx_queue(struct mvpp2_port * port,u32 cause)4026 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4027 u32 cause)
4028 {
4029 int queue = fls(cause) - 1;
4030
4031 return port->rxqs[queue];
4032 }
4033
mvpp2_get_tx_queue(struct mvpp2_port * port,u32 cause)4034 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4035 u32 cause)
4036 {
4037 int queue = fls(cause) - 1;
4038
4039 return port->txqs[queue];
4040 }
4041
4042 /* Rx/Tx queue initialization/cleanup methods */
4043
4044 /* Allocate and initialize descriptors for aggr TXQ */
mvpp2_aggr_txq_init(struct udevice * dev,struct mvpp2_tx_queue * aggr_txq,int desc_num,int cpu,struct mvpp2 * priv)4045 static int mvpp2_aggr_txq_init(struct udevice *dev,
4046 struct mvpp2_tx_queue *aggr_txq,
4047 int desc_num, int cpu,
4048 struct mvpp2 *priv)
4049 {
4050 u32 txq_dma;
4051
4052 /* Allocate memory for TX descriptors */
4053 aggr_txq->descs = buffer_loc.aggr_tx_descs;
4054 aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4055 if (!aggr_txq->descs)
4056 return -ENOMEM;
4057
4058 /* Make sure descriptor address is cache line size aligned */
4059 BUG_ON(aggr_txq->descs !=
4060 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4061
4062 aggr_txq->last_desc = aggr_txq->size - 1;
4063
4064 /* Aggr TXQ no reset WA */
4065 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4066 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4067
4068 /* Set Tx descriptors queue starting address indirect
4069 * access
4070 */
4071 if (priv->hw_version == MVPP21)
4072 txq_dma = aggr_txq->descs_dma;
4073 else
4074 txq_dma = aggr_txq->descs_dma >>
4075 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4076
4077 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4078 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4079
4080 return 0;
4081 }
4082
4083 /* Create a specified Rx queue */
mvpp2_rxq_init(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4084 static int mvpp2_rxq_init(struct mvpp2_port *port,
4085 struct mvpp2_rx_queue *rxq)
4086
4087 {
4088 u32 rxq_dma;
4089
4090 rxq->size = port->rx_ring_size;
4091
4092 /* Allocate memory for RX descriptors */
4093 rxq->descs = buffer_loc.rx_descs;
4094 rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4095 if (!rxq->descs)
4096 return -ENOMEM;
4097
4098 BUG_ON(rxq->descs !=
4099 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4100
4101 rxq->last_desc = rxq->size - 1;
4102
4103 /* Zero occupied and non-occupied counters - direct access */
4104 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4105
4106 /* Set Rx descriptors queue starting address - indirect access */
4107 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4108 if (port->priv->hw_version == MVPP21)
4109 rxq_dma = rxq->descs_dma;
4110 else
4111 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4112 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4113 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4114 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4115
4116 /* Set Offset */
4117 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4118
4119 /* Add number of descriptors ready for receiving packets */
4120 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4121
4122 return 0;
4123 }
4124
4125 /* Push packets received by the RXQ to BM pool */
mvpp2_rxq_drop_pkts(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4126 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4127 struct mvpp2_rx_queue *rxq)
4128 {
4129 int rx_received, i;
4130
4131 rx_received = mvpp2_rxq_received(port, rxq->id);
4132 if (!rx_received)
4133 return;
4134
4135 for (i = 0; i < rx_received; i++) {
4136 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4137 u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4138
4139 mvpp2_pool_refill(port, bm,
4140 mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4141 mvpp2_rxdesc_cookie_get(port, rx_desc));
4142 }
4143 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4144 }
4145
4146 /* Cleanup Rx queue */
mvpp2_rxq_deinit(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4147 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4148 struct mvpp2_rx_queue *rxq)
4149 {
4150 mvpp2_rxq_drop_pkts(port, rxq);
4151
4152 rxq->descs = NULL;
4153 rxq->last_desc = 0;
4154 rxq->next_desc_to_proc = 0;
4155 rxq->descs_dma = 0;
4156
4157 /* Clear Rx descriptors queue starting address and size;
4158 * free descriptor number
4159 */
4160 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4161 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4162 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4163 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4164 }
4165
4166 /* Create and initialize a Tx queue */
mvpp2_txq_init(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4167 static int mvpp2_txq_init(struct mvpp2_port *port,
4168 struct mvpp2_tx_queue *txq)
4169 {
4170 u32 val;
4171 int cpu, desc, desc_per_txq, tx_port_num;
4172 struct mvpp2_txq_pcpu *txq_pcpu;
4173
4174 txq->size = port->tx_ring_size;
4175
4176 /* Allocate memory for Tx descriptors */
4177 txq->descs = buffer_loc.tx_descs;
4178 txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4179 if (!txq->descs)
4180 return -ENOMEM;
4181
4182 /* Make sure descriptor address is cache line size aligned */
4183 BUG_ON(txq->descs !=
4184 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4185
4186 txq->last_desc = txq->size - 1;
4187
4188 /* Set Tx descriptors queue starting address - indirect access */
4189 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4190 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4191 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4192 MVPP2_TXQ_DESC_SIZE_MASK);
4193 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4194 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4195 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4196 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4197 val &= ~MVPP2_TXQ_PENDING_MASK;
4198 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4199
4200 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
4201 * for each existing TXQ.
4202 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4203 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4204 */
4205 desc_per_txq = 16;
4206 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4207 (txq->log_id * desc_per_txq);
4208
4209 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4210 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4211 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4212
4213 /* WRR / EJP configuration - indirect access */
4214 tx_port_num = mvpp2_egress_port(port);
4215 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4216
4217 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4218 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4219 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4220 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4221 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4222
4223 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4224 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4225 val);
4226
4227 for_each_present_cpu(cpu) {
4228 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4229 txq_pcpu->size = txq->size;
4230 }
4231
4232 return 0;
4233 }
4234
4235 /* Free allocated TXQ resources */
mvpp2_txq_deinit(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4236 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4237 struct mvpp2_tx_queue *txq)
4238 {
4239 txq->descs = NULL;
4240 txq->last_desc = 0;
4241 txq->next_desc_to_proc = 0;
4242 txq->descs_dma = 0;
4243
4244 /* Set minimum bandwidth for disabled TXQs */
4245 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4246
4247 /* Set Tx descriptors queue starting address and size */
4248 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4249 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4250 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4251 }
4252
4253 /* Cleanup Tx ports */
mvpp2_txq_clean(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4254 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4255 {
4256 struct mvpp2_txq_pcpu *txq_pcpu;
4257 int delay, pending, cpu;
4258 u32 val;
4259
4260 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4261 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4262 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4263 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4264
4265 /* The napi queue has been stopped so wait for all packets
4266 * to be transmitted.
4267 */
4268 delay = 0;
4269 do {
4270 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4271 netdev_warn(port->dev,
4272 "port %d: cleaning queue %d timed out\n",
4273 port->id, txq->log_id);
4274 break;
4275 }
4276 mdelay(1);
4277 delay++;
4278
4279 pending = mvpp2_txq_pend_desc_num_get(port, txq);
4280 } while (pending);
4281
4282 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4283 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4284
4285 for_each_present_cpu(cpu) {
4286 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4287
4288 /* Release all packets */
4289 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4290
4291 /* Reset queue */
4292 txq_pcpu->count = 0;
4293 txq_pcpu->txq_put_index = 0;
4294 txq_pcpu->txq_get_index = 0;
4295 }
4296 }
4297
4298 /* Cleanup all Tx queues */
mvpp2_cleanup_txqs(struct mvpp2_port * port)4299 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4300 {
4301 struct mvpp2_tx_queue *txq;
4302 int queue;
4303 u32 val;
4304
4305 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4306
4307 /* Reset Tx ports and delete Tx queues */
4308 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4309 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4310
4311 for (queue = 0; queue < txq_number; queue++) {
4312 txq = port->txqs[queue];
4313 mvpp2_txq_clean(port, txq);
4314 mvpp2_txq_deinit(port, txq);
4315 }
4316
4317 mvpp2_txq_sent_counter_clear(port);
4318
4319 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4320 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4321 }
4322
4323 /* Cleanup all Rx queues */
mvpp2_cleanup_rxqs(struct mvpp2_port * port)4324 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4325 {
4326 int queue;
4327
4328 for (queue = 0; queue < rxq_number; queue++)
4329 mvpp2_rxq_deinit(port, port->rxqs[queue]);
4330 }
4331
4332 /* Init all Rx queues for port */
mvpp2_setup_rxqs(struct mvpp2_port * port)4333 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4334 {
4335 int queue, err;
4336
4337 for (queue = 0; queue < rxq_number; queue++) {
4338 err = mvpp2_rxq_init(port, port->rxqs[queue]);
4339 if (err)
4340 goto err_cleanup;
4341 }
4342 return 0;
4343
4344 err_cleanup:
4345 mvpp2_cleanup_rxqs(port);
4346 return err;
4347 }
4348
4349 /* Init all tx queues for port */
mvpp2_setup_txqs(struct mvpp2_port * port)4350 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4351 {
4352 struct mvpp2_tx_queue *txq;
4353 int queue, err;
4354
4355 for (queue = 0; queue < txq_number; queue++) {
4356 txq = port->txqs[queue];
4357 err = mvpp2_txq_init(port, txq);
4358 if (err)
4359 goto err_cleanup;
4360 }
4361
4362 mvpp2_txq_sent_counter_clear(port);
4363 return 0;
4364
4365 err_cleanup:
4366 mvpp2_cleanup_txqs(port);
4367 return err;
4368 }
4369
4370 /* Adjust link */
mvpp2_link_event(struct mvpp2_port * port)4371 static void mvpp2_link_event(struct mvpp2_port *port)
4372 {
4373 struct phy_device *phydev = port->phy_dev;
4374 int status_change = 0;
4375 u32 val;
4376
4377 if (phydev->link) {
4378 if ((port->speed != phydev->speed) ||
4379 (port->duplex != phydev->duplex)) {
4380 u32 val;
4381
4382 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4383 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4384 MVPP2_GMAC_CONFIG_GMII_SPEED |
4385 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4386 MVPP2_GMAC_AN_SPEED_EN |
4387 MVPP2_GMAC_AN_DUPLEX_EN);
4388
4389 if (phydev->duplex)
4390 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4391
4392 if (phydev->speed == SPEED_1000)
4393 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4394 else if (phydev->speed == SPEED_100)
4395 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4396
4397 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4398
4399 port->duplex = phydev->duplex;
4400 port->speed = phydev->speed;
4401 }
4402 }
4403
4404 if (phydev->link != port->link) {
4405 if (!phydev->link) {
4406 port->duplex = -1;
4407 port->speed = 0;
4408 }
4409
4410 port->link = phydev->link;
4411 status_change = 1;
4412 }
4413
4414 if (status_change) {
4415 if (phydev->link) {
4416 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4417 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4418 MVPP2_GMAC_FORCE_LINK_DOWN);
4419 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4420 mvpp2_egress_enable(port);
4421 mvpp2_ingress_enable(port);
4422 } else {
4423 mvpp2_ingress_disable(port);
4424 mvpp2_egress_disable(port);
4425 }
4426 }
4427 }
4428
4429 /* Main RX/TX processing routines */
4430
4431 /* Display more error info */
mvpp2_rx_error(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)4432 static void mvpp2_rx_error(struct mvpp2_port *port,
4433 struct mvpp2_rx_desc *rx_desc)
4434 {
4435 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4436 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4437
4438 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4439 case MVPP2_RXD_ERR_CRC:
4440 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
4441 status, sz);
4442 break;
4443 case MVPP2_RXD_ERR_OVERRUN:
4444 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
4445 status, sz);
4446 break;
4447 case MVPP2_RXD_ERR_RESOURCE:
4448 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
4449 status, sz);
4450 break;
4451 }
4452 }
4453
4454 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
mvpp2_rx_refill(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,u32 bm,dma_addr_t dma_addr)4455 static int mvpp2_rx_refill(struct mvpp2_port *port,
4456 struct mvpp2_bm_pool *bm_pool,
4457 u32 bm, dma_addr_t dma_addr)
4458 {
4459 mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4460 return 0;
4461 }
4462
4463 /* Set hw internals when starting port */
mvpp2_start_dev(struct mvpp2_port * port)4464 static void mvpp2_start_dev(struct mvpp2_port *port)
4465 {
4466 switch (port->phy_interface) {
4467 case PHY_INTERFACE_MODE_RGMII:
4468 case PHY_INTERFACE_MODE_RGMII_ID:
4469 case PHY_INTERFACE_MODE_SGMII:
4470 mvpp2_gmac_max_rx_size_set(port);
4471 default:
4472 break;
4473 }
4474
4475 mvpp2_txp_max_tx_size_set(port);
4476
4477 if (port->priv->hw_version == MVPP21)
4478 mvpp2_port_enable(port);
4479 else
4480 gop_port_enable(port, 1);
4481 }
4482
4483 /* Set hw internals when stopping port */
mvpp2_stop_dev(struct mvpp2_port * port)4484 static void mvpp2_stop_dev(struct mvpp2_port *port)
4485 {
4486 /* Stop new packets from arriving to RXQs */
4487 mvpp2_ingress_disable(port);
4488
4489 mvpp2_egress_disable(port);
4490
4491 if (port->priv->hw_version == MVPP21)
4492 mvpp2_port_disable(port);
4493 else
4494 gop_port_enable(port, 0);
4495 }
4496
mvpp2_phy_connect(struct udevice * dev,struct mvpp2_port * port)4497 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4498 {
4499 struct phy_device *phy_dev;
4500
4501 if (!port->init || port->link == 0) {
4502 phy_dev = phy_connect(port->bus, port->phyaddr, dev,
4503 port->phy_interface);
4504 port->phy_dev = phy_dev;
4505 if (!phy_dev) {
4506 netdev_err(port->dev, "cannot connect to phy\n");
4507 return -ENODEV;
4508 }
4509 phy_dev->supported &= PHY_GBIT_FEATURES;
4510 phy_dev->advertising = phy_dev->supported;
4511
4512 port->phy_dev = phy_dev;
4513 port->link = 0;
4514 port->duplex = 0;
4515 port->speed = 0;
4516
4517 phy_config(phy_dev);
4518 phy_startup(phy_dev);
4519 if (!phy_dev->link) {
4520 printf("%s: No link\n", phy_dev->dev->name);
4521 return -1;
4522 }
4523
4524 port->init = 1;
4525 } else {
4526 mvpp2_egress_enable(port);
4527 mvpp2_ingress_enable(port);
4528 }
4529
4530 return 0;
4531 }
4532
mvpp2_open(struct udevice * dev,struct mvpp2_port * port)4533 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4534 {
4535 unsigned char mac_bcast[ETH_ALEN] = {
4536 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4537 int err;
4538
4539 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4540 if (err) {
4541 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4542 return err;
4543 }
4544 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4545 port->dev_addr, true);
4546 if (err) {
4547 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4548 return err;
4549 }
4550 err = mvpp2_prs_def_flow(port);
4551 if (err) {
4552 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
4553 return err;
4554 }
4555
4556 /* Allocate the Rx/Tx queues */
4557 err = mvpp2_setup_rxqs(port);
4558 if (err) {
4559 netdev_err(port->dev, "cannot allocate Rx queues\n");
4560 return err;
4561 }
4562
4563 err = mvpp2_setup_txqs(port);
4564 if (err) {
4565 netdev_err(port->dev, "cannot allocate Tx queues\n");
4566 return err;
4567 }
4568
4569 if (port->phy_node) {
4570 err = mvpp2_phy_connect(dev, port);
4571 if (err < 0)
4572 return err;
4573
4574 mvpp2_link_event(port);
4575 } else {
4576 mvpp2_egress_enable(port);
4577 mvpp2_ingress_enable(port);
4578 }
4579
4580 mvpp2_start_dev(port);
4581
4582 return 0;
4583 }
4584
4585 /* No Device ops here in U-Boot */
4586
4587 /* Driver initialization */
4588
mvpp2_port_power_up(struct mvpp2_port * port)4589 static void mvpp2_port_power_up(struct mvpp2_port *port)
4590 {
4591 struct mvpp2 *priv = port->priv;
4592
4593 /* On PPv2.2 the GoP / interface configuration has already been done */
4594 if (priv->hw_version == MVPP21)
4595 mvpp2_port_mii_set(port);
4596 mvpp2_port_periodic_xon_disable(port);
4597 if (priv->hw_version == MVPP21)
4598 mvpp2_port_fc_adv_enable(port);
4599 mvpp2_port_reset(port);
4600 }
4601
4602 /* Initialize port HW */
mvpp2_port_init(struct udevice * dev,struct mvpp2_port * port)4603 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4604 {
4605 struct mvpp2 *priv = port->priv;
4606 struct mvpp2_txq_pcpu *txq_pcpu;
4607 int queue, cpu, err;
4608
4609 if (port->first_rxq + rxq_number >
4610 MVPP2_MAX_PORTS * priv->max_port_rxqs)
4611 return -EINVAL;
4612
4613 /* Disable port */
4614 mvpp2_egress_disable(port);
4615 if (priv->hw_version == MVPP21)
4616 mvpp2_port_disable(port);
4617 else
4618 gop_port_enable(port, 0);
4619
4620 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4621 GFP_KERNEL);
4622 if (!port->txqs)
4623 return -ENOMEM;
4624
4625 /* Associate physical Tx queues to this port and initialize.
4626 * The mapping is predefined.
4627 */
4628 for (queue = 0; queue < txq_number; queue++) {
4629 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4630 struct mvpp2_tx_queue *txq;
4631
4632 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4633 if (!txq)
4634 return -ENOMEM;
4635
4636 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4637 GFP_KERNEL);
4638 if (!txq->pcpu)
4639 return -ENOMEM;
4640
4641 txq->id = queue_phy_id;
4642 txq->log_id = queue;
4643 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4644 for_each_present_cpu(cpu) {
4645 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4646 txq_pcpu->cpu = cpu;
4647 }
4648
4649 port->txqs[queue] = txq;
4650 }
4651
4652 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4653 GFP_KERNEL);
4654 if (!port->rxqs)
4655 return -ENOMEM;
4656
4657 /* Allocate and initialize Rx queue for this port */
4658 for (queue = 0; queue < rxq_number; queue++) {
4659 struct mvpp2_rx_queue *rxq;
4660
4661 /* Map physical Rx queue to port's logical Rx queue */
4662 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4663 if (!rxq)
4664 return -ENOMEM;
4665 /* Map this Rx queue to a physical queue */
4666 rxq->id = port->first_rxq + queue;
4667 rxq->port = port->id;
4668 rxq->logic_rxq = queue;
4669
4670 port->rxqs[queue] = rxq;
4671 }
4672
4673
4674 /* Create Rx descriptor rings */
4675 for (queue = 0; queue < rxq_number; queue++) {
4676 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4677
4678 rxq->size = port->rx_ring_size;
4679 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4680 rxq->time_coal = MVPP2_RX_COAL_USEC;
4681 }
4682
4683 mvpp2_ingress_disable(port);
4684
4685 /* Port default configuration */
4686 mvpp2_defaults_set(port);
4687
4688 /* Port's classifier configuration */
4689 mvpp2_cls_oversize_rxq_set(port);
4690 mvpp2_cls_port_config(port);
4691
4692 /* Provide an initial Rx packet size */
4693 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4694
4695 /* Initialize pools for swf */
4696 err = mvpp2_swf_bm_pool_init(port);
4697 if (err)
4698 return err;
4699
4700 return 0;
4701 }
4702
phy_info_parse(struct udevice * dev,struct mvpp2_port * port)4703 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4704 {
4705 int port_node = dev_of_offset(dev);
4706 const char *phy_mode_str;
4707 int phy_node;
4708 u32 id;
4709 u32 phyaddr = 0;
4710 int phy_mode = -1;
4711
4712 /* Default mdio_base from the same eth base */
4713 if (port->priv->hw_version == MVPP21)
4714 port->mdio_base = port->priv->lms_base + MVPP21_SMI;
4715 else
4716 port->mdio_base = port->priv->iface_base + MVPP22_SMI;
4717
4718 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4719
4720 if (phy_node > 0) {
4721 ofnode phy_ofnode;
4722 fdt_addr_t phy_base;
4723
4724 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
4725 if (phyaddr < 0) {
4726 dev_err(&pdev->dev, "could not find phy address\n");
4727 return -1;
4728 }
4729
4730 phy_ofnode = ofnode_get_parent(offset_to_ofnode(phy_node));
4731 phy_base = ofnode_get_addr(phy_ofnode);
4732 port->mdio_base = (void *)phy_base;
4733
4734 if (port->mdio_base < 0) {
4735 dev_err(&pdev->dev, "could not find mdio base address\n");
4736 return -1;
4737 }
4738 } else {
4739 phy_node = 0;
4740 }
4741
4742 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4743 if (phy_mode_str)
4744 phy_mode = phy_get_interface_by_name(phy_mode_str);
4745 if (phy_mode == -1) {
4746 dev_err(&pdev->dev, "incorrect phy mode\n");
4747 return -EINVAL;
4748 }
4749
4750 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4751 if (id == -1) {
4752 dev_err(&pdev->dev, "missing port-id value\n");
4753 return -EINVAL;
4754 }
4755
4756 #ifdef CONFIG_DM_GPIO
4757 gpio_request_by_name(dev, "phy-reset-gpios", 0,
4758 &port->phy_reset_gpio, GPIOD_IS_OUT);
4759 gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
4760 &port->phy_tx_disable_gpio, GPIOD_IS_OUT);
4761 #endif
4762
4763 /*
4764 * ToDo:
4765 * Not sure if this DT property "phy-speed" will get accepted, so
4766 * this might change later
4767 */
4768 /* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */
4769 port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node,
4770 "phy-speed", 1000);
4771
4772 port->id = id;
4773 if (port->priv->hw_version == MVPP21)
4774 port->first_rxq = port->id * rxq_number;
4775 else
4776 port->first_rxq = port->id * port->priv->max_port_rxqs;
4777 port->phy_node = phy_node;
4778 port->phy_interface = phy_mode;
4779 port->phyaddr = phyaddr;
4780
4781 return 0;
4782 }
4783
4784 #ifdef CONFIG_DM_GPIO
4785 /* Port GPIO initialization */
mvpp2_gpio_init(struct mvpp2_port * port)4786 static void mvpp2_gpio_init(struct mvpp2_port *port)
4787 {
4788 if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
4789 dm_gpio_set_value(&port->phy_reset_gpio, 1);
4790 mdelay(10);
4791 dm_gpio_set_value(&port->phy_reset_gpio, 0);
4792 }
4793
4794 if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
4795 dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
4796 }
4797 #endif
4798
4799 /* Ports initialization */
mvpp2_port_probe(struct udevice * dev,struct mvpp2_port * port,int port_node,struct mvpp2 * priv)4800 static int mvpp2_port_probe(struct udevice *dev,
4801 struct mvpp2_port *port,
4802 int port_node,
4803 struct mvpp2 *priv)
4804 {
4805 int err;
4806
4807 port->tx_ring_size = MVPP2_MAX_TXD;
4808 port->rx_ring_size = MVPP2_MAX_RXD;
4809
4810 err = mvpp2_port_init(dev, port);
4811 if (err < 0) {
4812 dev_err(&pdev->dev, "failed to init port %d\n", port->id);
4813 return err;
4814 }
4815 mvpp2_port_power_up(port);
4816
4817 #ifdef CONFIG_DM_GPIO
4818 mvpp2_gpio_init(port);
4819 #endif
4820
4821 priv->port_list[port->id] = port;
4822 priv->num_ports++;
4823 return 0;
4824 }
4825
4826 /* Initialize decoding windows */
mvpp2_conf_mbus_windows(const struct mbus_dram_target_info * dram,struct mvpp2 * priv)4827 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4828 struct mvpp2 *priv)
4829 {
4830 u32 win_enable;
4831 int i;
4832
4833 for (i = 0; i < 6; i++) {
4834 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4835 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4836
4837 if (i < 4)
4838 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4839 }
4840
4841 win_enable = 0;
4842
4843 for (i = 0; i < dram->num_cs; i++) {
4844 const struct mbus_dram_window *cs = dram->cs + i;
4845
4846 mvpp2_write(priv, MVPP2_WIN_BASE(i),
4847 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4848 dram->mbus_dram_target_id);
4849
4850 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4851 (cs->size - 1) & 0xffff0000);
4852
4853 win_enable |= (1 << i);
4854 }
4855
4856 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4857 }
4858
4859 /* Initialize Rx FIFO's */
mvpp2_rx_fifo_init(struct mvpp2 * priv)4860 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4861 {
4862 int port;
4863
4864 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4865 if (priv->hw_version == MVPP22) {
4866 if (port == 0) {
4867 mvpp2_write(priv,
4868 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4869 MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4870 mvpp2_write(priv,
4871 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4872 MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4873 } else if (port == 1) {
4874 mvpp2_write(priv,
4875 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4876 MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4877 mvpp2_write(priv,
4878 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4879 MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4880 } else {
4881 mvpp2_write(priv,
4882 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4883 MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4884 mvpp2_write(priv,
4885 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4886 MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4887 }
4888 } else {
4889 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4890 MVPP21_RX_FIFO_PORT_DATA_SIZE);
4891 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4892 MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4893 }
4894 }
4895
4896 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4897 MVPP2_RX_FIFO_PORT_MIN_PKT);
4898 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4899 }
4900
4901 /* Initialize Tx FIFO's */
mvpp2_tx_fifo_init(struct mvpp2 * priv)4902 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4903 {
4904 int port, val;
4905
4906 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4907 /* Port 0 supports 10KB TX FIFO */
4908 if (port == 0) {
4909 val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4910 MVPP22_TX_FIFO_SIZE_MASK;
4911 } else {
4912 val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4913 MVPP22_TX_FIFO_SIZE_MASK;
4914 }
4915 mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4916 }
4917 }
4918
mvpp2_axi_init(struct mvpp2 * priv)4919 static void mvpp2_axi_init(struct mvpp2 *priv)
4920 {
4921 u32 val, rdval, wrval;
4922
4923 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4924
4925 /* AXI Bridge Configuration */
4926
4927 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4928 << MVPP22_AXI_ATTR_CACHE_OFFS;
4929 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4930 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
4931
4932 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4933 << MVPP22_AXI_ATTR_CACHE_OFFS;
4934 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4935 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
4936
4937 /* BM */
4938 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4939 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4940
4941 /* Descriptors */
4942 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4943 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4944 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4945 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4946
4947 /* Buffer Data */
4948 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4949 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4950
4951 val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4952 << MVPP22_AXI_CODE_CACHE_OFFS;
4953 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4954 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4955 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4956 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4957
4958 val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4959 << MVPP22_AXI_CODE_CACHE_OFFS;
4960 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4961 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4962
4963 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4964
4965 val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4966 << MVPP22_AXI_CODE_CACHE_OFFS;
4967 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4968 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4969
4970 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
4971 }
4972
4973 /* Initialize network controller common part HW */
mvpp2_init(struct udevice * dev,struct mvpp2 * priv)4974 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
4975 {
4976 const struct mbus_dram_target_info *dram_target_info;
4977 int err, i;
4978 u32 val;
4979
4980 /* Checks for hardware constraints (U-Boot uses only one rxq) */
4981 if ((rxq_number > priv->max_port_rxqs) ||
4982 (txq_number > MVPP2_MAX_TXQ)) {
4983 dev_err(&pdev->dev, "invalid queue size parameter\n");
4984 return -EINVAL;
4985 }
4986
4987 if (priv->hw_version == MVPP22)
4988 mvpp2_axi_init(priv);
4989 else {
4990 /* MBUS windows configuration */
4991 dram_target_info = mvebu_mbus_dram_info();
4992 if (dram_target_info)
4993 mvpp2_conf_mbus_windows(dram_target_info, priv);
4994 }
4995
4996 if (priv->hw_version == MVPP21) {
4997 /* Disable HW PHY polling */
4998 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4999 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
5000 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5001 } else {
5002 /* Enable HW PHY polling */
5003 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5004 val |= MVPP22_SMI_POLLING_EN;
5005 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5006 }
5007
5008 /* Allocate and initialize aggregated TXQs */
5009 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
5010 sizeof(struct mvpp2_tx_queue),
5011 GFP_KERNEL);
5012 if (!priv->aggr_txqs)
5013 return -ENOMEM;
5014
5015 for_each_present_cpu(i) {
5016 priv->aggr_txqs[i].id = i;
5017 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
5018 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
5019 MVPP2_AGGR_TXQ_SIZE, i, priv);
5020 if (err < 0)
5021 return err;
5022 }
5023
5024 /* Rx Fifo Init */
5025 mvpp2_rx_fifo_init(priv);
5026
5027 /* Tx Fifo Init */
5028 if (priv->hw_version == MVPP22)
5029 mvpp2_tx_fifo_init(priv);
5030
5031 if (priv->hw_version == MVPP21)
5032 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5033 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5034
5035 /* Allow cache snoop when transmiting packets */
5036 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5037
5038 /* Buffer Manager initialization */
5039 err = mvpp2_bm_init(dev, priv);
5040 if (err < 0)
5041 return err;
5042
5043 /* Parser default initialization */
5044 err = mvpp2_prs_default_init(dev, priv);
5045 if (err < 0)
5046 return err;
5047
5048 /* Classifier default initialization */
5049 mvpp2_cls_init(priv);
5050
5051 return 0;
5052 }
5053
5054 /* SMI / MDIO functions */
5055
smi_wait_ready(struct mvpp2_port * priv)5056 static int smi_wait_ready(struct mvpp2_port *priv)
5057 {
5058 u32 timeout = MVPP2_SMI_TIMEOUT;
5059 u32 smi_reg;
5060
5061 /* wait till the SMI is not busy */
5062 do {
5063 /* read smi register */
5064 smi_reg = readl(priv->mdio_base);
5065 if (timeout-- == 0) {
5066 printf("Error: SMI busy timeout\n");
5067 return -EFAULT;
5068 }
5069 } while (smi_reg & MVPP2_SMI_BUSY);
5070
5071 return 0;
5072 }
5073
5074 /*
5075 * mpp2_mdio_read - miiphy_read callback function.
5076 *
5077 * Returns 16bit phy register value, or 0xffff on error
5078 */
mpp2_mdio_read(struct mii_dev * bus,int addr,int devad,int reg)5079 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
5080 {
5081 struct mvpp2_port *priv = bus->priv;
5082 u32 smi_reg;
5083 u32 timeout;
5084
5085 /* check parameters */
5086 if (addr > MVPP2_PHY_ADDR_MASK) {
5087 printf("Error: Invalid PHY address %d\n", addr);
5088 return -EFAULT;
5089 }
5090
5091 if (reg > MVPP2_PHY_REG_MASK) {
5092 printf("Err: Invalid register offset %d\n", reg);
5093 return -EFAULT;
5094 }
5095
5096 /* wait till the SMI is not busy */
5097 if (smi_wait_ready(priv) < 0)
5098 return -EFAULT;
5099
5100 /* fill the phy address and regiser offset and read opcode */
5101 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5102 | (reg << MVPP2_SMI_REG_ADDR_OFFS)
5103 | MVPP2_SMI_OPCODE_READ;
5104
5105 /* write the smi register */
5106 writel(smi_reg, priv->mdio_base);
5107
5108 /* wait till read value is ready */
5109 timeout = MVPP2_SMI_TIMEOUT;
5110
5111 do {
5112 /* read smi register */
5113 smi_reg = readl(priv->mdio_base);
5114 if (timeout-- == 0) {
5115 printf("Err: SMI read ready timeout\n");
5116 return -EFAULT;
5117 }
5118 } while (!(smi_reg & MVPP2_SMI_READ_VALID));
5119
5120 /* Wait for the data to update in the SMI register */
5121 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
5122 ;
5123
5124 return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
5125 }
5126
5127 /*
5128 * mpp2_mdio_write - miiphy_write callback function.
5129 *
5130 * Returns 0 if write succeed, -EINVAL on bad parameters
5131 * -ETIME on timeout
5132 */
mpp2_mdio_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)5133 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
5134 u16 value)
5135 {
5136 struct mvpp2_port *priv = bus->priv;
5137 u32 smi_reg;
5138
5139 /* check parameters */
5140 if (addr > MVPP2_PHY_ADDR_MASK) {
5141 printf("Error: Invalid PHY address %d\n", addr);
5142 return -EFAULT;
5143 }
5144
5145 if (reg > MVPP2_PHY_REG_MASK) {
5146 printf("Err: Invalid register offset %d\n", reg);
5147 return -EFAULT;
5148 }
5149
5150 /* wait till the SMI is not busy */
5151 if (smi_wait_ready(priv) < 0)
5152 return -EFAULT;
5153
5154 /* fill the phy addr and reg offset and write opcode and data */
5155 smi_reg = value << MVPP2_SMI_DATA_OFFS;
5156 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5157 | (reg << MVPP2_SMI_REG_ADDR_OFFS);
5158 smi_reg &= ~MVPP2_SMI_OPCODE_READ;
5159
5160 /* write the smi register */
5161 writel(smi_reg, priv->mdio_base);
5162
5163 return 0;
5164 }
5165
mvpp2_recv(struct udevice * dev,int flags,uchar ** packetp)5166 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5167 {
5168 struct mvpp2_port *port = dev_get_priv(dev);
5169 struct mvpp2_rx_desc *rx_desc;
5170 struct mvpp2_bm_pool *bm_pool;
5171 dma_addr_t dma_addr;
5172 u32 bm, rx_status;
5173 int pool, rx_bytes, err;
5174 int rx_received;
5175 struct mvpp2_rx_queue *rxq;
5176 u8 *data;
5177
5178 /* Process RX packets */
5179 rxq = port->rxqs[0];
5180
5181 /* Get number of received packets and clamp the to-do */
5182 rx_received = mvpp2_rxq_received(port, rxq->id);
5183
5184 /* Return if no packets are received */
5185 if (!rx_received)
5186 return 0;
5187
5188 rx_desc = mvpp2_rxq_next_desc_get(rxq);
5189 rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5190 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5191 rx_bytes -= MVPP2_MH_SIZE;
5192 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5193
5194 bm = mvpp2_bm_cookie_build(port, rx_desc);
5195 pool = mvpp2_bm_cookie_pool_get(bm);
5196 bm_pool = &port->priv->bm_pools[pool];
5197
5198 /* In case of an error, release the requested buffer pointer
5199 * to the Buffer Manager. This request process is controlled
5200 * by the hardware, and the information about the buffer is
5201 * comprised by the RX descriptor.
5202 */
5203 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5204 mvpp2_rx_error(port, rx_desc);
5205 /* Return the buffer to the pool */
5206 mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5207 return 0;
5208 }
5209
5210 err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5211 if (err) {
5212 netdev_err(port->dev, "failed to refill BM pools\n");
5213 return 0;
5214 }
5215
5216 /* Update Rx queue management counters */
5217 mb();
5218 mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5219
5220 /* give packet to stack - skip on first n bytes */
5221 data = (u8 *)dma_addr + 2 + 32;
5222
5223 if (rx_bytes <= 0)
5224 return 0;
5225
5226 /*
5227 * No cache invalidation needed here, since the rx_buffer's are
5228 * located in a uncached memory region
5229 */
5230 *packetp = data;
5231
5232 return rx_bytes;
5233 }
5234
mvpp2_send(struct udevice * dev,void * packet,int length)5235 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5236 {
5237 struct mvpp2_port *port = dev_get_priv(dev);
5238 struct mvpp2_tx_queue *txq, *aggr_txq;
5239 struct mvpp2_tx_desc *tx_desc;
5240 int tx_done;
5241 int timeout;
5242
5243 txq = port->txqs[0];
5244 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5245
5246 /* Get a descriptor for the first part of the packet */
5247 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5248 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5249 mvpp2_txdesc_size_set(port, tx_desc, length);
5250 mvpp2_txdesc_offset_set(port, tx_desc,
5251 (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5252 mvpp2_txdesc_dma_addr_set(port, tx_desc,
5253 (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5254 /* First and Last descriptor */
5255 mvpp2_txdesc_cmd_set(port, tx_desc,
5256 MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5257 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5258
5259 /* Flush tx data */
5260 flush_dcache_range((unsigned long)packet,
5261 (unsigned long)packet + ALIGN(length, PKTALIGN));
5262
5263 /* Enable transmit */
5264 mb();
5265 mvpp2_aggr_txq_pend_desc_add(port, 1);
5266
5267 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5268
5269 timeout = 0;
5270 do {
5271 if (timeout++ > 10000) {
5272 printf("timeout: packet not sent from aggregated to phys TXQ\n");
5273 return 0;
5274 }
5275 tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5276 } while (tx_done);
5277
5278 timeout = 0;
5279 do {
5280 if (timeout++ > 10000) {
5281 printf("timeout: packet not sent\n");
5282 return 0;
5283 }
5284 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5285 } while (!tx_done);
5286
5287 return 0;
5288 }
5289
mvpp2_start(struct udevice * dev)5290 static int mvpp2_start(struct udevice *dev)
5291 {
5292 struct eth_pdata *pdata = dev_get_platdata(dev);
5293 struct mvpp2_port *port = dev_get_priv(dev);
5294
5295 /* Load current MAC address */
5296 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5297
5298 /* Reconfigure parser accept the original MAC address */
5299 mvpp2_prs_update_mac_da(port, port->dev_addr);
5300
5301 switch (port->phy_interface) {
5302 case PHY_INTERFACE_MODE_RGMII:
5303 case PHY_INTERFACE_MODE_RGMII_ID:
5304 case PHY_INTERFACE_MODE_SGMII:
5305 mvpp2_port_power_up(port);
5306 default:
5307 break;
5308 }
5309
5310 mvpp2_open(dev, port);
5311
5312 return 0;
5313 }
5314
mvpp2_stop(struct udevice * dev)5315 static void mvpp2_stop(struct udevice *dev)
5316 {
5317 struct mvpp2_port *port = dev_get_priv(dev);
5318
5319 mvpp2_stop_dev(port);
5320 mvpp2_cleanup_rxqs(port);
5321 mvpp2_cleanup_txqs(port);
5322 }
5323
mvpp22_smi_phy_addr_cfg(struct mvpp2_port * port)5324 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port)
5325 {
5326 writel(port->phyaddr, port->priv->iface_base +
5327 MVPP22_SMI_PHY_ADDR_REG(port->gop_id));
5328
5329 return 0;
5330 }
5331
mvpp2_base_probe(struct udevice * dev)5332 static int mvpp2_base_probe(struct udevice *dev)
5333 {
5334 struct mvpp2 *priv = dev_get_priv(dev);
5335 void *bd_space;
5336 u32 size = 0;
5337 int i;
5338
5339 /* Save hw-version */
5340 priv->hw_version = dev_get_driver_data(dev);
5341
5342 /*
5343 * U-Boot special buffer handling:
5344 *
5345 * Allocate buffer area for descs and rx_buffers. This is only
5346 * done once for all interfaces. As only one interface can
5347 * be active. Make this area DMA-safe by disabling the D-cache
5348 */
5349
5350 /* Align buffer area for descs and rx_buffers to 1MiB */
5351 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5352 mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5353 BD_SPACE, DCACHE_OFF);
5354
5355 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5356 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5357
5358 buffer_loc.tx_descs =
5359 (struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5360 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5361
5362 buffer_loc.rx_descs =
5363 (struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5364 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5365
5366 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5367 buffer_loc.bm_pool[i] =
5368 (unsigned long *)((unsigned long)bd_space + size);
5369 if (priv->hw_version == MVPP21)
5370 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5371 else
5372 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5373 }
5374
5375 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5376 buffer_loc.rx_buffer[i] =
5377 (unsigned long *)((unsigned long)bd_space + size);
5378 size += RX_BUFFER_SIZE;
5379 }
5380
5381 /* Clear the complete area so that all descriptors are cleared */
5382 memset(bd_space, 0, size);
5383
5384 /* Save base addresses for later use */
5385 priv->base = (void *)devfdt_get_addr_index(dev, 0);
5386 if (IS_ERR(priv->base))
5387 return PTR_ERR(priv->base);
5388
5389 if (priv->hw_version == MVPP21) {
5390 priv->lms_base = (void *)devfdt_get_addr_index(dev, 1);
5391 if (IS_ERR(priv->lms_base))
5392 return PTR_ERR(priv->lms_base);
5393 } else {
5394 priv->iface_base = (void *)devfdt_get_addr_index(dev, 1);
5395 if (IS_ERR(priv->iface_base))
5396 return PTR_ERR(priv->iface_base);
5397
5398 /* Store common base addresses for all ports */
5399 priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5400 priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5401 priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5402 }
5403
5404 if (priv->hw_version == MVPP21)
5405 priv->max_port_rxqs = 8;
5406 else
5407 priv->max_port_rxqs = 32;
5408
5409 return 0;
5410 }
5411
mvpp2_probe(struct udevice * dev)5412 static int mvpp2_probe(struct udevice *dev)
5413 {
5414 struct mvpp2_port *port = dev_get_priv(dev);
5415 struct mvpp2 *priv = dev_get_priv(dev->parent);
5416 struct mii_dev *bus;
5417 int err;
5418
5419 /* Only call the probe function for the parent once */
5420 if (!priv->probe_done)
5421 err = mvpp2_base_probe(dev->parent);
5422
5423 port->priv = dev_get_priv(dev->parent);
5424
5425 /* Create and register the MDIO bus driver */
5426 bus = mdio_alloc();
5427 if (!bus) {
5428 printf("Failed to allocate MDIO bus\n");
5429 return -ENOMEM;
5430 }
5431
5432 bus->read = mpp2_mdio_read;
5433 bus->write = mpp2_mdio_write;
5434 snprintf(bus->name, sizeof(bus->name), dev->name);
5435 bus->priv = (void *)port;
5436 port->bus = bus;
5437
5438 err = mdio_register(bus);
5439 if (err)
5440 return err;
5441
5442 err = phy_info_parse(dev, port);
5443 if (err)
5444 return err;
5445
5446 /*
5447 * We need the port specific io base addresses at this stage, since
5448 * gop_port_init() accesses these registers
5449 */
5450 if (priv->hw_version == MVPP21) {
5451 int priv_common_regs_num = 2;
5452
5453 port->base = (void __iomem *)devfdt_get_addr_index(
5454 dev->parent, priv_common_regs_num + port->id);
5455 if (IS_ERR(port->base))
5456 return PTR_ERR(port->base);
5457 } else {
5458 port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5459 "gop-port-id", -1);
5460 if (port->id == -1) {
5461 dev_err(&pdev->dev, "missing gop-port-id value\n");
5462 return -EINVAL;
5463 }
5464
5465 port->base = priv->iface_base + MVPP22_PORT_BASE +
5466 port->gop_id * MVPP22_PORT_OFFSET;
5467
5468 /* Set phy address of the port */
5469 if(port->phy_node)
5470 mvpp22_smi_phy_addr_cfg(port);
5471
5472 /* GoP Init */
5473 gop_port_init(port);
5474 }
5475
5476 if (!priv->probe_done) {
5477 /* Initialize network controller */
5478 err = mvpp2_init(dev, priv);
5479 if (err < 0) {
5480 dev_err(&pdev->dev, "failed to initialize controller\n");
5481 return err;
5482 }
5483 priv->num_ports = 0;
5484 priv->probe_done = 1;
5485 }
5486
5487 err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5488 if (err)
5489 return err;
5490
5491 if (priv->hw_version == MVPP22) {
5492 priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5493 port->phy_interface);
5494
5495 /* Netcomplex configurations for all ports */
5496 gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5497 gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5498 }
5499
5500 return 0;
5501 }
5502
5503 /*
5504 * Empty BM pool and stop its activity before the OS is started
5505 */
mvpp2_remove(struct udevice * dev)5506 static int mvpp2_remove(struct udevice *dev)
5507 {
5508 struct mvpp2_port *port = dev_get_priv(dev);
5509 struct mvpp2 *priv = port->priv;
5510 int i;
5511
5512 priv->num_ports--;
5513
5514 if (priv->num_ports)
5515 return 0;
5516
5517 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
5518 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
5519
5520 return 0;
5521 }
5522
5523 static const struct eth_ops mvpp2_ops = {
5524 .start = mvpp2_start,
5525 .send = mvpp2_send,
5526 .recv = mvpp2_recv,
5527 .stop = mvpp2_stop,
5528 };
5529
5530 static struct driver mvpp2_driver = {
5531 .name = "mvpp2",
5532 .id = UCLASS_ETH,
5533 .probe = mvpp2_probe,
5534 .remove = mvpp2_remove,
5535 .ops = &mvpp2_ops,
5536 .priv_auto_alloc_size = sizeof(struct mvpp2_port),
5537 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5538 .flags = DM_FLAG_ACTIVE_DMA,
5539 };
5540
5541 /*
5542 * Use a MISC device to bind the n instances (child nodes) of the
5543 * network base controller in UCLASS_ETH.
5544 */
mvpp2_base_bind(struct udevice * parent)5545 static int mvpp2_base_bind(struct udevice *parent)
5546 {
5547 const void *blob = gd->fdt_blob;
5548 int node = dev_of_offset(parent);
5549 struct uclass_driver *drv;
5550 struct udevice *dev;
5551 struct eth_pdata *plat;
5552 char *name;
5553 int subnode;
5554 u32 id;
5555 int base_id_add;
5556
5557 /* Lookup eth driver */
5558 drv = lists_uclass_lookup(UCLASS_ETH);
5559 if (!drv) {
5560 puts("Cannot find eth driver\n");
5561 return -ENOENT;
5562 }
5563
5564 base_id_add = base_id;
5565
5566 fdt_for_each_subnode(subnode, blob, node) {
5567 /* Increment base_id for all subnodes, also the disabled ones */
5568 base_id++;
5569
5570 /* Skip disabled ports */
5571 if (!fdtdec_get_is_enabled(blob, subnode))
5572 continue;
5573
5574 plat = calloc(1, sizeof(*plat));
5575 if (!plat)
5576 return -ENOMEM;
5577
5578 id = fdtdec_get_int(blob, subnode, "port-id", -1);
5579 id += base_id_add;
5580
5581 name = calloc(1, 16);
5582 if (!name) {
5583 free(plat);
5584 return -ENOMEM;
5585 }
5586 sprintf(name, "mvpp2-%d", id);
5587
5588 /* Create child device UCLASS_ETH and bind it */
5589 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
5590 dev_set_of_offset(dev, subnode);
5591 }
5592
5593 return 0;
5594 }
5595
5596 static const struct udevice_id mvpp2_ids[] = {
5597 {
5598 .compatible = "marvell,armada-375-pp2",
5599 .data = MVPP21,
5600 },
5601 {
5602 .compatible = "marvell,armada-7k-pp22",
5603 .data = MVPP22,
5604 },
5605 { }
5606 };
5607
5608 U_BOOT_DRIVER(mvpp2_base) = {
5609 .name = "mvpp2_base",
5610 .id = UCLASS_MISC,
5611 .of_match = mvpp2_ids,
5612 .bind = mvpp2_base_bind,
5613 .priv_auto_alloc_size = sizeof(struct mvpp2),
5614 };
5615