1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 *
5 * U-Boot version:
6 * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
7 *
8 * Based on the Linux version which is:
9 * Copyright (C) 2012 Marvell
10 *
11 * Rami Rosen <rosenr@marvell.com>
12 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
13 */
14
15 #include <common.h>
16 #include <dm.h>
17 #include <net.h>
18 #include <netdev.h>
19 #include <config.h>
20 #include <malloc.h>
21 #include <asm/io.h>
22 #include <linux/errno.h>
23 #include <phy.h>
24 #include <miiphy.h>
25 #include <watchdog.h>
26 #include <asm/arch/cpu.h>
27 #include <asm/arch/soc.h>
28 #include <linux/compat.h>
29 #include <linux/mbus.h>
30 #include <asm-generic/gpio.h>
31
32 DECLARE_GLOBAL_DATA_PTR;
33
34 #if !defined(CONFIG_PHYLIB)
35 # error Marvell mvneta requires PHYLIB
36 #endif
37
38 #define CONFIG_NR_CPUS 1
39 #define ETH_HLEN 14 /* Total octets in header */
40
41 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
42 #define WRAP (2 + ETH_HLEN + 4 + 32)
43 #define MTU 1500
44 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
45
46 #define MVNETA_SMI_TIMEOUT 10000
47
48 /* Registers */
49 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
50 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
51 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
52 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
53 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
54 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
55 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
56 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
57 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
58 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
59 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
60 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
63 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
64 #define MVNETA_PORT_RX_RESET 0x1cc0
65 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
66 #define MVNETA_PHY_ADDR 0x2000
67 #define MVNETA_PHY_ADDR_MASK 0x1f
68 #define MVNETA_SMI 0x2004
69 #define MVNETA_PHY_REG_MASK 0x1f
70 /* SMI register fields */
71 #define MVNETA_SMI_DATA_OFFS 0 /* Data */
72 #define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
73 #define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
74 #define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
75 #define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
76 #define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
77 #define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
78 #define MVNETA_SMI_BUSY (1 << 28) /* Busy */
79 #define MVNETA_MBUS_RETRY 0x2010
80 #define MVNETA_UNIT_INTR_CAUSE 0x2080
81 #define MVNETA_UNIT_CONTROL 0x20B0
82 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
83 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
84 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
85 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
86 #define MVNETA_WIN_SIZE_MASK (0xffff0000)
87 #define MVNETA_BASE_ADDR_ENABLE 0x2290
88 #define MVNETA_BASE_ADDR_ENABLE_BIT 0x1
89 #define MVNETA_PORT_ACCESS_PROTECT 0x2294
90 #define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3
91 #define MVNETA_PORT_CONFIG 0x2400
92 #define MVNETA_UNI_PROMISC_MODE BIT(0)
93 #define MVNETA_DEF_RXQ(q) ((q) << 1)
94 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
95 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
96 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
97 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
98 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
99 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
100 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
101 MVNETA_DEF_RXQ_ARP(q) | \
102 MVNETA_DEF_RXQ_TCP(q) | \
103 MVNETA_DEF_RXQ_UDP(q) | \
104 MVNETA_DEF_RXQ_BPDU(q) | \
105 MVNETA_TX_UNSET_ERR_SUM | \
106 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
107 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
108 #define MVNETA_MAC_ADDR_LOW 0x2414
109 #define MVNETA_MAC_ADDR_HIGH 0x2418
110 #define MVNETA_SDMA_CONFIG 0x241c
111 #define MVNETA_SDMA_BRST_SIZE_16 4
112 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
113 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
114 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
115 #define MVNETA_DESC_SWAP BIT(6)
116 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
117 #define MVNETA_PORT_STATUS 0x2444
118 #define MVNETA_TX_IN_PRGRS BIT(1)
119 #define MVNETA_TX_FIFO_EMPTY BIT(8)
120 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
121 #define MVNETA_SERDES_CFG 0x24A0
122 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
123 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
124 #define MVNETA_TYPE_PRIO 0x24bc
125 #define MVNETA_FORCE_UNI BIT(21)
126 #define MVNETA_TXQ_CMD_1 0x24e4
127 #define MVNETA_TXQ_CMD 0x2448
128 #define MVNETA_TXQ_DISABLE_SHIFT 8
129 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
130 #define MVNETA_ACC_MODE 0x2500
131 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
132 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
133 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
134 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
135
136 /* Exception Interrupt Port/Queue Cause register */
137
138 #define MVNETA_INTR_NEW_CAUSE 0x25a0
139 #define MVNETA_INTR_NEW_MASK 0x25a4
140
141 /* bits 0..7 = TXQ SENT, one bit per queue.
142 * bits 8..15 = RXQ OCCUP, one bit per queue.
143 * bits 16..23 = RXQ FREE, one bit per queue.
144 * bit 29 = OLD_REG_SUM, see old reg ?
145 * bit 30 = TX_ERR_SUM, one bit for 4 ports
146 * bit 31 = MISC_SUM, one bit for 4 ports
147 */
148 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
149 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
150 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
151 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
152
153 #define MVNETA_INTR_OLD_CAUSE 0x25a8
154 #define MVNETA_INTR_OLD_MASK 0x25ac
155
156 /* Data Path Port/Queue Cause Register */
157 #define MVNETA_INTR_MISC_CAUSE 0x25b0
158 #define MVNETA_INTR_MISC_MASK 0x25b4
159 #define MVNETA_INTR_ENABLE 0x25b8
160
161 #define MVNETA_RXQ_CMD 0x2680
162 #define MVNETA_RXQ_DISABLE_SHIFT 8
163 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
164 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
165 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
166 #define MVNETA_GMAC_CTRL_0 0x2c00
167 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
168 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
169 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
170 #define MVNETA_GMAC_CTRL_2 0x2c08
171 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
172 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
173 #define MVNETA_GMAC2_PORT_RESET BIT(6)
174 #define MVNETA_GMAC_STATUS 0x2c10
175 #define MVNETA_GMAC_LINK_UP BIT(0)
176 #define MVNETA_GMAC_SPEED_1000 BIT(1)
177 #define MVNETA_GMAC_SPEED_100 BIT(2)
178 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
179 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
180 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
181 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
182 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
183 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
184 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
185 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
186 #define MVNETA_GMAC_FORCE_LINK_UP (BIT(0) | BIT(1))
187 #define MVNETA_GMAC_IB_BYPASS_AN_EN BIT(3)
188 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
189 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
190 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
191 #define MVNETA_GMAC_SET_FC_EN BIT(8)
192 #define MVNETA_GMAC_ADVERT_FC_EN BIT(9)
193 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
194 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
195 #define MVNETA_GMAC_SAMPLE_TX_CFG_EN BIT(15)
196 #define MVNETA_MIB_COUNTERS_BASE 0x3080
197 #define MVNETA_MIB_LATE_COLLISION 0x7c
198 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
199 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
200 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
201 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
202 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
203 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
204 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
205 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
206 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
207 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
208 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
209 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
210 #define MVNETA_PORT_TX_RESET 0x3cf0
211 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
212 #define MVNETA_TX_MTU 0x3e0c
213 #define MVNETA_TX_TOKEN_SIZE 0x3e14
214 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
215 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
216 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
217
218 /* Descriptor ring Macros */
219 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
220 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
221
222 /* Various constants */
223
224 /* Coalescing */
225 #define MVNETA_TXDONE_COAL_PKTS 16
226 #define MVNETA_RX_COAL_PKTS 32
227 #define MVNETA_RX_COAL_USEC 100
228
229 /* The two bytes Marvell header. Either contains a special value used
230 * by Marvell switches when a specific hardware mode is enabled (not
231 * supported by this driver) or is filled automatically by zeroes on
232 * the RX side. Those two bytes being at the front of the Ethernet
233 * header, they allow to have the IP header aligned on a 4 bytes
234 * boundary automatically: the hardware skips those two bytes on its
235 * own.
236 */
237 #define MVNETA_MH_SIZE 2
238
239 #define MVNETA_VLAN_TAG_LEN 4
240
241 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
242 #define MVNETA_TX_CSUM_MAX_SIZE 9800
243 #define MVNETA_ACC_MODE_EXT 1
244
245 /* Timeout constants */
246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
249
250 #define MVNETA_TX_MTU_MAX 0x3ffff
251
252 /* Max number of Rx descriptors */
253 #define MVNETA_MAX_RXD 16
254
255 /* Max number of Tx descriptors */
256 #define MVNETA_MAX_TXD 16
257
258 /* descriptor aligned size */
259 #define MVNETA_DESC_ALIGNED_SIZE 32
260
261 struct mvneta_port {
262 void __iomem *base;
263 struct mvneta_rx_queue *rxqs;
264 struct mvneta_tx_queue *txqs;
265
266 u8 mcast_count[256];
267 u16 tx_ring_size;
268 u16 rx_ring_size;
269
270 phy_interface_t phy_interface;
271 unsigned int link;
272 unsigned int duplex;
273 unsigned int speed;
274
275 int init;
276 int phyaddr;
277 struct phy_device *phydev;
278 #ifdef CONFIG_DM_GPIO
279 struct gpio_desc phy_reset_gpio;
280 #endif
281 struct mii_dev *bus;
282 };
283
284 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
285 * layout of the transmit and reception DMA descriptors, and their
286 * layout is therefore defined by the hardware design
287 */
288
289 #define MVNETA_TX_L3_OFF_SHIFT 0
290 #define MVNETA_TX_IP_HLEN_SHIFT 8
291 #define MVNETA_TX_L4_UDP BIT(16)
292 #define MVNETA_TX_L3_IP6 BIT(17)
293 #define MVNETA_TXD_IP_CSUM BIT(18)
294 #define MVNETA_TXD_Z_PAD BIT(19)
295 #define MVNETA_TXD_L_DESC BIT(20)
296 #define MVNETA_TXD_F_DESC BIT(21)
297 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
298 MVNETA_TXD_L_DESC | \
299 MVNETA_TXD_F_DESC)
300 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
301 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
302
303 #define MVNETA_RXD_ERR_CRC 0x0
304 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
305 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
306 #define MVNETA_RXD_ERR_LEN BIT(18)
307 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
308 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
309 #define MVNETA_RXD_L3_IP4 BIT(25)
310 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
311 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
312
313 struct mvneta_tx_desc {
314 u32 command; /* Options used by HW for packet transmitting.*/
315 u16 reserverd1; /* csum_l4 (for future use) */
316 u16 data_size; /* Data size of transmitted packet in bytes */
317 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
318 u32 reserved2; /* hw_cmd - (for future use, PMT) */
319 u32 reserved3[4]; /* Reserved - (for future use) */
320 };
321
322 struct mvneta_rx_desc {
323 u32 status; /* Info about received packet */
324 u16 reserved1; /* pnc_info - (for future use, PnC) */
325 u16 data_size; /* Size of received packet in bytes */
326
327 u32 buf_phys_addr; /* Physical address of the buffer */
328 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
329
330 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
331 u16 reserved3; /* prefetch_cmd, for future use */
332 u16 reserved4; /* csum_l4 - (for future use, PnC) */
333
334 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
335 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
336 };
337
338 struct mvneta_tx_queue {
339 /* Number of this TX queue, in the range 0-7 */
340 u8 id;
341
342 /* Number of TX DMA descriptors in the descriptor ring */
343 int size;
344
345 /* Index of last TX DMA descriptor that was inserted */
346 int txq_put_index;
347
348 /* Index of the TX DMA descriptor to be cleaned up */
349 int txq_get_index;
350
351 /* Virtual address of the TX DMA descriptors array */
352 struct mvneta_tx_desc *descs;
353
354 /* DMA address of the TX DMA descriptors array */
355 dma_addr_t descs_phys;
356
357 /* Index of the last TX DMA descriptor */
358 int last_desc;
359
360 /* Index of the next TX DMA descriptor to process */
361 int next_desc_to_proc;
362 };
363
364 struct mvneta_rx_queue {
365 /* rx queue number, in the range 0-7 */
366 u8 id;
367
368 /* num of rx descriptors in the rx descriptor ring */
369 int size;
370
371 /* Virtual address of the RX DMA descriptors array */
372 struct mvneta_rx_desc *descs;
373
374 /* DMA address of the RX DMA descriptors array */
375 dma_addr_t descs_phys;
376
377 /* Index of the last RX DMA descriptor */
378 int last_desc;
379
380 /* Index of the next RX DMA descriptor to process */
381 int next_desc_to_proc;
382 };
383
384 /* U-Boot doesn't use the queues, so set the number to 1 */
385 static int rxq_number = 1;
386 static int txq_number = 1;
387 static int rxq_def;
388
389 struct buffer_location {
390 struct mvneta_tx_desc *tx_descs;
391 struct mvneta_rx_desc *rx_descs;
392 u32 rx_buffers;
393 };
394
395 /*
396 * All 4 interfaces use the same global buffer, since only one interface
397 * can be enabled at once
398 */
399 static struct buffer_location buffer_loc;
400
401 /*
402 * Page table entries are set to 1MB, or multiples of 1MB
403 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
404 */
405 #define BD_SPACE (1 << 20)
406
407 /*
408 * Dummy implementation that can be overwritten by a board
409 * specific function
410 */
board_network_enable(struct mii_dev * bus)411 __weak int board_network_enable(struct mii_dev *bus)
412 {
413 return 0;
414 }
415
416 /* Utility/helper methods */
417
418 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)419 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
420 {
421 writel(data, pp->base + offset);
422 }
423
424 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)425 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
426 {
427 return readl(pp->base + offset);
428 }
429
430 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)431 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
432 {
433 int i;
434
435 /* Perform dummy reads from MIB counters */
436 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
437 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
438 }
439
440 /* Rx descriptors helper methods */
441
442 /* Checks whether the RX descriptor having this status is both the first
443 * and the last descriptor for the RX packet. Each RX packet is currently
444 * received through a single RX descriptor, so not having each RX
445 * descriptor with its first and last bits set is an error
446 */
mvneta_rxq_desc_is_first_last(u32 status)447 static int mvneta_rxq_desc_is_first_last(u32 status)
448 {
449 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
450 MVNETA_RXD_FIRST_LAST_DESC;
451 }
452
453 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)454 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
455 struct mvneta_rx_queue *rxq,
456 int ndescs)
457 {
458 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
459 * be added at once
460 */
461 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
462 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
463 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
464 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
465 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
466 }
467
468 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
469 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
470 }
471
472 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)473 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
474 struct mvneta_rx_queue *rxq)
475 {
476 u32 val;
477
478 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
479 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
480 }
481
482 /* Update num of rx desc called upon return from rx path or
483 * from mvneta_rxq_drop_pkts().
484 */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)485 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
486 struct mvneta_rx_queue *rxq,
487 int rx_done, int rx_filled)
488 {
489 u32 val;
490
491 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
492 val = rx_done |
493 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
494 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
495 return;
496 }
497
498 /* Only 255 descriptors can be added at once */
499 while ((rx_done > 0) || (rx_filled > 0)) {
500 if (rx_done <= 0xff) {
501 val = rx_done;
502 rx_done = 0;
503 } else {
504 val = 0xff;
505 rx_done -= 0xff;
506 }
507 if (rx_filled <= 0xff) {
508 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
509 rx_filled = 0;
510 } else {
511 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
512 rx_filled -= 0xff;
513 }
514 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
515 }
516 }
517
518 /* Get pointer to next RX descriptor to be processed by SW */
519 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)520 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
521 {
522 int rx_desc = rxq->next_desc_to_proc;
523
524 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
525 return rxq->descs + rx_desc;
526 }
527
528 /* Tx descriptors helper methods */
529
530 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)531 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
532 struct mvneta_tx_queue *txq,
533 int pend_desc)
534 {
535 u32 val;
536
537 /* Only 255 descriptors can be added at once ; Assume caller
538 * process TX descriptors in quanta less than 256
539 */
540 val = pend_desc;
541 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
542 }
543
544 /* Get pointer to next TX descriptor to be processed (send) by HW */
545 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)546 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
547 {
548 int tx_desc = txq->next_desc_to_proc;
549
550 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
551 return txq->descs + tx_desc;
552 }
553
554 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)555 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
556 struct mvneta_rx_queue *rxq,
557 int buf_size)
558 {
559 u32 val;
560
561 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
562
563 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
564 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
565
566 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
567 }
568
mvneta_port_is_fixed_link(struct mvneta_port * pp)569 static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
570 {
571 /* phy_addr is set to invalid value for fixed link */
572 return pp->phyaddr > PHY_MAX_ADDR;
573 }
574
575
576 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)577 static void mvneta_port_up(struct mvneta_port *pp)
578 {
579 int queue;
580 u32 q_map;
581
582 /* Enable all initialized TXs. */
583 mvneta_mib_counters_clear(pp);
584 q_map = 0;
585 for (queue = 0; queue < txq_number; queue++) {
586 struct mvneta_tx_queue *txq = &pp->txqs[queue];
587 if (txq->descs != NULL)
588 q_map |= (1 << queue);
589 }
590 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
591
592 /* Enable all initialized RXQs. */
593 q_map = 0;
594 for (queue = 0; queue < rxq_number; queue++) {
595 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
596 if (rxq->descs != NULL)
597 q_map |= (1 << queue);
598 }
599 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
600 }
601
602 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)603 static void mvneta_port_down(struct mvneta_port *pp)
604 {
605 u32 val;
606 int count;
607
608 /* Stop Rx port activity. Check port Rx activity. */
609 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
610
611 /* Issue stop command for active channels only */
612 if (val != 0)
613 mvreg_write(pp, MVNETA_RXQ_CMD,
614 val << MVNETA_RXQ_DISABLE_SHIFT);
615
616 /* Wait for all Rx activity to terminate. */
617 count = 0;
618 do {
619 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
620 netdev_warn(pp->dev,
621 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
622 val);
623 break;
624 }
625 mdelay(1);
626
627 val = mvreg_read(pp, MVNETA_RXQ_CMD);
628 } while (val & 0xff);
629
630 /* Stop Tx port activity. Check port Tx activity. Issue stop
631 * command for active channels only
632 */
633 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
634
635 if (val != 0)
636 mvreg_write(pp, MVNETA_TXQ_CMD,
637 (val << MVNETA_TXQ_DISABLE_SHIFT));
638
639 /* Wait for all Tx activity to terminate. */
640 count = 0;
641 do {
642 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
643 netdev_warn(pp->dev,
644 "TIMEOUT for TX stopped status=0x%08x\n",
645 val);
646 break;
647 }
648 mdelay(1);
649
650 /* Check TX Command reg that all Txqs are stopped */
651 val = mvreg_read(pp, MVNETA_TXQ_CMD);
652
653 } while (val & 0xff);
654
655 /* Double check to verify that TX FIFO is empty */
656 count = 0;
657 do {
658 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
659 netdev_warn(pp->dev,
660 "TX FIFO empty timeout status=0x08%x\n",
661 val);
662 break;
663 }
664 mdelay(1);
665
666 val = mvreg_read(pp, MVNETA_PORT_STATUS);
667 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
668 (val & MVNETA_TX_IN_PRGRS));
669
670 udelay(200);
671 }
672
673 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)674 static void mvneta_port_enable(struct mvneta_port *pp)
675 {
676 u32 val;
677
678 /* Enable port */
679 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
680 val |= MVNETA_GMAC0_PORT_ENABLE;
681 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
682 }
683
684 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)685 static void mvneta_port_disable(struct mvneta_port *pp)
686 {
687 u32 val;
688
689 /* Reset the Enable bit in the Serial Control Register */
690 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
691 val &= ~MVNETA_GMAC0_PORT_ENABLE;
692 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
693
694 udelay(200);
695 }
696
697 /* Multicast tables methods */
698
699 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)700 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
701 {
702 int offset;
703 u32 val;
704
705 if (queue == -1) {
706 val = 0;
707 } else {
708 val = 0x1 | (queue << 1);
709 val |= (val << 24) | (val << 16) | (val << 8);
710 }
711
712 for (offset = 0; offset <= 0xc; offset += 4)
713 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
714 }
715
716 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)717 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
718 {
719 int offset;
720 u32 val;
721
722 if (queue == -1) {
723 val = 0;
724 } else {
725 val = 0x1 | (queue << 1);
726 val |= (val << 24) | (val << 16) | (val << 8);
727 }
728
729 for (offset = 0; offset <= 0xfc; offset += 4)
730 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
731 }
732
733 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)734 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
735 {
736 int offset;
737 u32 val;
738
739 if (queue == -1) {
740 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
741 val = 0;
742 } else {
743 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
744 val = 0x1 | (queue << 1);
745 val |= (val << 24) | (val << 16) | (val << 8);
746 }
747
748 for (offset = 0; offset <= 0xfc; offset += 4)
749 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
750 }
751
752 /* This method sets defaults to the NETA port:
753 * Clears interrupt Cause and Mask registers.
754 * Clears all MAC tables.
755 * Sets defaults to all registers.
756 * Resets RX and TX descriptor rings.
757 * Resets PHY.
758 * This method can be called after mvneta_port_down() to return the port
759 * settings to defaults.
760 */
mvneta_defaults_set(struct mvneta_port * pp)761 static void mvneta_defaults_set(struct mvneta_port *pp)
762 {
763 int cpu;
764 int queue;
765 u32 val;
766
767 /* Clear all Cause registers */
768 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
769 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
770 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
771
772 /* Mask all interrupts */
773 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
774 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
775 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
776 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
777
778 /* Enable MBUS Retry bit16 */
779 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
780
781 /* Set CPU queue access map - all CPUs have access to all RX
782 * queues and to all TX queues
783 */
784 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
785 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
786 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
787 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
788
789 /* Reset RX and TX DMAs */
790 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
791 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
792
793 /* Disable Legacy WRR, Disable EJP, Release from reset */
794 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
795 for (queue = 0; queue < txq_number; queue++) {
796 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
797 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
798 }
799
800 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
801 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
802
803 /* Set Port Acceleration Mode */
804 val = MVNETA_ACC_MODE_EXT;
805 mvreg_write(pp, MVNETA_ACC_MODE, val);
806
807 /* Update val of portCfg register accordingly with all RxQueue types */
808 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
809 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
810
811 val = 0;
812 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
813 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
814
815 /* Build PORT_SDMA_CONFIG_REG */
816 val = 0;
817
818 /* Default burst size */
819 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
820 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
821 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
822
823 /* Assign port SDMA configuration */
824 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
825
826 /* Enable PHY polling in hardware if not in fixed-link mode */
827 if (!mvneta_port_is_fixed_link(pp)) {
828 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
829 val |= MVNETA_PHY_POLLING_ENABLE;
830 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
831 }
832
833 mvneta_set_ucast_table(pp, -1);
834 mvneta_set_special_mcast_table(pp, -1);
835 mvneta_set_other_mcast_table(pp, -1);
836 }
837
838 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)839 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
840 int queue)
841 {
842 unsigned int unicast_reg;
843 unsigned int tbl_offset;
844 unsigned int reg_offset;
845
846 /* Locate the Unicast table entry */
847 last_nibble = (0xf & last_nibble);
848
849 /* offset from unicast tbl base */
850 tbl_offset = (last_nibble / 4) * 4;
851
852 /* offset within the above reg */
853 reg_offset = last_nibble % 4;
854
855 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
856
857 if (queue == -1) {
858 /* Clear accepts frame bit at specified unicast DA tbl entry */
859 unicast_reg &= ~(0xff << (8 * reg_offset));
860 } else {
861 unicast_reg &= ~(0xff << (8 * reg_offset));
862 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
863 }
864
865 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
866 }
867
868 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,unsigned char * addr,int queue)869 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
870 int queue)
871 {
872 unsigned int mac_h;
873 unsigned int mac_l;
874
875 if (queue != -1) {
876 mac_l = (addr[4] << 8) | (addr[5]);
877 mac_h = (addr[0] << 24) | (addr[1] << 16) |
878 (addr[2] << 8) | (addr[3] << 0);
879
880 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
881 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
882 }
883
884 /* Accept frames of this address */
885 mvneta_set_ucast_addr(pp, addr[5], queue);
886 }
887
mvneta_write_hwaddr(struct udevice * dev)888 static int mvneta_write_hwaddr(struct udevice *dev)
889 {
890 mvneta_mac_addr_set(dev_get_priv(dev),
891 ((struct eth_pdata *)dev_get_platdata(dev))->enetaddr,
892 rxq_def);
893
894 return 0;
895 }
896
897 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,u32 cookie)898 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
899 u32 phys_addr, u32 cookie)
900 {
901 rx_desc->buf_cookie = cookie;
902 rx_desc->buf_phys_addr = phys_addr;
903 }
904
905 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)906 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
907 struct mvneta_tx_queue *txq,
908 int sent_desc)
909 {
910 u32 val;
911
912 /* Only 255 TX descriptors can be updated at once */
913 while (sent_desc > 0xff) {
914 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
915 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
916 sent_desc = sent_desc - 0xff;
917 }
918
919 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
920 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
921 }
922
923 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)924 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
925 struct mvneta_tx_queue *txq)
926 {
927 u32 val;
928 int sent_desc;
929
930 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
931 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
932 MVNETA_TXQ_SENT_DESC_SHIFT;
933
934 return sent_desc;
935 }
936
937 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)938 static void mvneta_rx_error(struct mvneta_port *pp,
939 struct mvneta_rx_desc *rx_desc)
940 {
941 u32 status = rx_desc->status;
942
943 if (!mvneta_rxq_desc_is_first_last(status)) {
944 netdev_err(pp->dev,
945 "bad rx status %08x (buffer oversize), size=%d\n",
946 status, rx_desc->data_size);
947 return;
948 }
949
950 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
951 case MVNETA_RXD_ERR_CRC:
952 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
953 status, rx_desc->data_size);
954 break;
955 case MVNETA_RXD_ERR_OVERRUN:
956 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
957 status, rx_desc->data_size);
958 break;
959 case MVNETA_RXD_ERR_LEN:
960 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
961 status, rx_desc->data_size);
962 break;
963 case MVNETA_RXD_ERR_RESOURCE:
964 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
965 status, rx_desc->data_size);
966 break;
967 }
968 }
969
mvneta_rxq_handle_get(struct mvneta_port * pp,int rxq)970 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
971 int rxq)
972 {
973 return &pp->rxqs[rxq];
974 }
975
976
977 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)978 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
979 struct mvneta_rx_queue *rxq)
980 {
981 int rx_done;
982
983 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
984 if (rx_done)
985 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
986 }
987
988 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)989 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
990 int num)
991 {
992 int i;
993
994 for (i = 0; i < num; i++) {
995 u32 addr;
996
997 /* U-Boot special: Fill in the rx buffer addresses */
998 addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
999 mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
1000 }
1001
1002 /* Add this number of RX descriptors as non occupied (ready to
1003 * get packets)
1004 */
1005 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1006
1007 return 0;
1008 }
1009
1010 /* Rx/Tx queue initialization/cleanup methods */
1011
1012 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1013 static int mvneta_rxq_init(struct mvneta_port *pp,
1014 struct mvneta_rx_queue *rxq)
1015
1016 {
1017 rxq->size = pp->rx_ring_size;
1018
1019 /* Allocate memory for RX descriptors */
1020 rxq->descs_phys = (dma_addr_t)rxq->descs;
1021 if (rxq->descs == NULL)
1022 return -ENOMEM;
1023
1024 WARN_ON(rxq->descs != PTR_ALIGN(rxq->descs, ARCH_DMA_MINALIGN));
1025
1026 rxq->last_desc = rxq->size - 1;
1027
1028 /* Set Rx descriptors queue starting address */
1029 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1030 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1031
1032 /* Fill RXQ with buffers from RX pool */
1033 mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1034 mvneta_rxq_fill(pp, rxq, rxq->size);
1035
1036 return 0;
1037 }
1038
1039 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1040 static void mvneta_rxq_deinit(struct mvneta_port *pp,
1041 struct mvneta_rx_queue *rxq)
1042 {
1043 mvneta_rxq_drop_pkts(pp, rxq);
1044
1045 rxq->descs = NULL;
1046 rxq->last_desc = 0;
1047 rxq->next_desc_to_proc = 0;
1048 rxq->descs_phys = 0;
1049 }
1050
1051 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1052 static int mvneta_txq_init(struct mvneta_port *pp,
1053 struct mvneta_tx_queue *txq)
1054 {
1055 txq->size = pp->tx_ring_size;
1056
1057 /* Allocate memory for TX descriptors */
1058 txq->descs_phys = (dma_addr_t)txq->descs;
1059 if (txq->descs == NULL)
1060 return -ENOMEM;
1061
1062 WARN_ON(txq->descs != PTR_ALIGN(txq->descs, ARCH_DMA_MINALIGN));
1063
1064 txq->last_desc = txq->size - 1;
1065
1066 /* Set maximum bandwidth for enabled TXQs */
1067 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1068 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1069
1070 /* Set Tx descriptors queue starting address */
1071 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1072 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1073
1074 return 0;
1075 }
1076
1077 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1078 static void mvneta_txq_deinit(struct mvneta_port *pp,
1079 struct mvneta_tx_queue *txq)
1080 {
1081 txq->descs = NULL;
1082 txq->last_desc = 0;
1083 txq->next_desc_to_proc = 0;
1084 txq->descs_phys = 0;
1085
1086 /* Set minimum bandwidth for disabled TXQs */
1087 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1088 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1089
1090 /* Set Tx descriptors queue starting address and size */
1091 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1092 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1093 }
1094
1095 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)1096 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1097 {
1098 int queue;
1099
1100 for (queue = 0; queue < txq_number; queue++)
1101 mvneta_txq_deinit(pp, &pp->txqs[queue]);
1102 }
1103
1104 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)1105 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1106 {
1107 int queue;
1108
1109 for (queue = 0; queue < rxq_number; queue++)
1110 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1111 }
1112
1113
1114 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)1115 static int mvneta_setup_rxqs(struct mvneta_port *pp)
1116 {
1117 int queue;
1118
1119 for (queue = 0; queue < rxq_number; queue++) {
1120 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1121 if (err) {
1122 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1123 __func__, queue);
1124 mvneta_cleanup_rxqs(pp);
1125 return err;
1126 }
1127 }
1128
1129 return 0;
1130 }
1131
1132 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)1133 static int mvneta_setup_txqs(struct mvneta_port *pp)
1134 {
1135 int queue;
1136
1137 for (queue = 0; queue < txq_number; queue++) {
1138 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1139 if (err) {
1140 netdev_err(pp->dev, "%s: can't create txq=%d\n",
1141 __func__, queue);
1142 mvneta_cleanup_txqs(pp);
1143 return err;
1144 }
1145 }
1146
1147 return 0;
1148 }
1149
mvneta_start_dev(struct mvneta_port * pp)1150 static void mvneta_start_dev(struct mvneta_port *pp)
1151 {
1152 /* start the Rx/Tx activity */
1153 mvneta_port_enable(pp);
1154 }
1155
mvneta_adjust_link(struct udevice * dev)1156 static void mvneta_adjust_link(struct udevice *dev)
1157 {
1158 struct mvneta_port *pp = dev_get_priv(dev);
1159 struct phy_device *phydev = pp->phydev;
1160 int status_change = 0;
1161
1162 if (mvneta_port_is_fixed_link(pp)) {
1163 debug("Using fixed link, skip link adjust\n");
1164 return;
1165 }
1166
1167 if (phydev->link) {
1168 if ((pp->speed != phydev->speed) ||
1169 (pp->duplex != phydev->duplex)) {
1170 u32 val;
1171
1172 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1173 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1174 MVNETA_GMAC_CONFIG_GMII_SPEED |
1175 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1176 MVNETA_GMAC_AN_SPEED_EN |
1177 MVNETA_GMAC_AN_DUPLEX_EN);
1178
1179 if (phydev->duplex)
1180 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1181
1182 if (phydev->speed == SPEED_1000)
1183 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1184 else
1185 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1186
1187 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1188
1189 pp->duplex = phydev->duplex;
1190 pp->speed = phydev->speed;
1191 }
1192 }
1193
1194 if (phydev->link != pp->link) {
1195 if (!phydev->link) {
1196 pp->duplex = -1;
1197 pp->speed = 0;
1198 }
1199
1200 pp->link = phydev->link;
1201 status_change = 1;
1202 }
1203
1204 if (status_change) {
1205 if (phydev->link) {
1206 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1207 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1208 MVNETA_GMAC_FORCE_LINK_DOWN);
1209 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1210 mvneta_port_up(pp);
1211 } else {
1212 mvneta_port_down(pp);
1213 }
1214 }
1215 }
1216
mvneta_open(struct udevice * dev)1217 static int mvneta_open(struct udevice *dev)
1218 {
1219 struct mvneta_port *pp = dev_get_priv(dev);
1220 int ret;
1221
1222 ret = mvneta_setup_rxqs(pp);
1223 if (ret)
1224 return ret;
1225
1226 ret = mvneta_setup_txqs(pp);
1227 if (ret)
1228 return ret;
1229
1230 mvneta_adjust_link(dev);
1231
1232 mvneta_start_dev(pp);
1233
1234 return 0;
1235 }
1236
1237 /* Initialize hw */
mvneta_init2(struct mvneta_port * pp)1238 static int mvneta_init2(struct mvneta_port *pp)
1239 {
1240 int queue;
1241
1242 /* Disable port */
1243 mvneta_port_disable(pp);
1244
1245 /* Set port default values */
1246 mvneta_defaults_set(pp);
1247
1248 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1249 GFP_KERNEL);
1250 if (!pp->txqs)
1251 return -ENOMEM;
1252
1253 /* U-Boot special: use preallocated area */
1254 pp->txqs[0].descs = buffer_loc.tx_descs;
1255
1256 /* Initialize TX descriptor rings */
1257 for (queue = 0; queue < txq_number; queue++) {
1258 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1259 txq->id = queue;
1260 txq->size = pp->tx_ring_size;
1261 }
1262
1263 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1264 GFP_KERNEL);
1265 if (!pp->rxqs) {
1266 kfree(pp->txqs);
1267 return -ENOMEM;
1268 }
1269
1270 /* U-Boot special: use preallocated area */
1271 pp->rxqs[0].descs = buffer_loc.rx_descs;
1272
1273 /* Create Rx descriptor rings */
1274 for (queue = 0; queue < rxq_number; queue++) {
1275 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1276 rxq->id = queue;
1277 rxq->size = pp->rx_ring_size;
1278 }
1279
1280 return 0;
1281 }
1282
1283 /* platform glue : initialize decoding windows */
1284
1285 /*
1286 * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1287 * First layer is: GbE Address window that resides inside the GBE unit,
1288 * Second layer is: Fabric address window which is located in the NIC400
1289 * (South Fabric).
1290 * To simplify the address decode configuration for Armada3700, we bypass the
1291 * first layer of GBE decode window by setting the first window to 4GB.
1292 */
mvneta_bypass_mbus_windows(struct mvneta_port * pp)1293 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1294 {
1295 /*
1296 * Set window size to 4GB, to bypass GBE address decode, leave the
1297 * work to MBUS decode window
1298 */
1299 mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1300
1301 /* Enable GBE address decode window 0 by set bit 0 to 0 */
1302 clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1303 MVNETA_BASE_ADDR_ENABLE_BIT);
1304
1305 /* Set GBE address decode window 0 to full Access (read or write) */
1306 setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1307 MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1308 }
1309
mvneta_conf_mbus_windows(struct mvneta_port * pp)1310 static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1311 {
1312 const struct mbus_dram_target_info *dram;
1313 u32 win_enable;
1314 u32 win_protect;
1315 int i;
1316
1317 dram = mvebu_mbus_dram_info();
1318 for (i = 0; i < 6; i++) {
1319 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1320 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1321
1322 if (i < 4)
1323 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1324 }
1325
1326 win_enable = 0x3f;
1327 win_protect = 0;
1328
1329 for (i = 0; i < dram->num_cs; i++) {
1330 const struct mbus_dram_window *cs = dram->cs + i;
1331 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1332 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1333
1334 mvreg_write(pp, MVNETA_WIN_SIZE(i),
1335 (cs->size - 1) & 0xffff0000);
1336
1337 win_enable &= ~(1 << i);
1338 win_protect |= 3 << (2 * i);
1339 }
1340
1341 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1342 }
1343
1344 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)1345 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1346 {
1347 u32 ctrl;
1348
1349 /* MAC Cause register should be cleared */
1350 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1351
1352 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1353
1354 /* Even though it might look weird, when we're configured in
1355 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1356 */
1357 switch (phy_mode) {
1358 case PHY_INTERFACE_MODE_QSGMII:
1359 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1360 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1361 break;
1362 case PHY_INTERFACE_MODE_SGMII:
1363 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1364 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1365 break;
1366 case PHY_INTERFACE_MODE_RGMII:
1367 case PHY_INTERFACE_MODE_RGMII_ID:
1368 ctrl |= MVNETA_GMAC2_PORT_RGMII;
1369 break;
1370 default:
1371 return -EINVAL;
1372 }
1373
1374 /* Cancel Port Reset */
1375 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1376 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1377
1378 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1379 MVNETA_GMAC2_PORT_RESET) != 0)
1380 continue;
1381
1382 return 0;
1383 }
1384
1385 /* Device initialization routine */
mvneta_init(struct udevice * dev)1386 static int mvneta_init(struct udevice *dev)
1387 {
1388 struct eth_pdata *pdata = dev_get_platdata(dev);
1389 struct mvneta_port *pp = dev_get_priv(dev);
1390 int err;
1391
1392 pp->tx_ring_size = MVNETA_MAX_TXD;
1393 pp->rx_ring_size = MVNETA_MAX_RXD;
1394
1395 err = mvneta_init2(pp);
1396 if (err < 0) {
1397 dev_err(&pdev->dev, "can't init eth hal\n");
1398 return err;
1399 }
1400
1401 mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
1402
1403 err = mvneta_port_power_up(pp, pp->phy_interface);
1404 if (err < 0) {
1405 dev_err(&pdev->dev, "can't power up port\n");
1406 return err;
1407 }
1408
1409 /* Call open() now as it needs to be done before runing send() */
1410 mvneta_open(dev);
1411
1412 return 0;
1413 }
1414
1415 /* U-Boot only functions follow here */
1416
1417 /* SMI / MDIO functions */
1418
smi_wait_ready(struct mvneta_port * pp)1419 static int smi_wait_ready(struct mvneta_port *pp)
1420 {
1421 u32 timeout = MVNETA_SMI_TIMEOUT;
1422 u32 smi_reg;
1423
1424 /* wait till the SMI is not busy */
1425 do {
1426 /* read smi register */
1427 smi_reg = mvreg_read(pp, MVNETA_SMI);
1428 if (timeout-- == 0) {
1429 printf("Error: SMI busy timeout\n");
1430 return -EFAULT;
1431 }
1432 } while (smi_reg & MVNETA_SMI_BUSY);
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * mvneta_mdio_read - miiphy_read callback function.
1439 *
1440 * Returns 16bit phy register value, or 0xffff on error
1441 */
mvneta_mdio_read(struct mii_dev * bus,int addr,int devad,int reg)1442 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
1443 {
1444 struct mvneta_port *pp = bus->priv;
1445 u32 smi_reg;
1446 u32 timeout;
1447
1448 /* check parameters */
1449 if (addr > MVNETA_PHY_ADDR_MASK) {
1450 printf("Error: Invalid PHY address %d\n", addr);
1451 return -EFAULT;
1452 }
1453
1454 if (reg > MVNETA_PHY_REG_MASK) {
1455 printf("Err: Invalid register offset %d\n", reg);
1456 return -EFAULT;
1457 }
1458
1459 /* wait till the SMI is not busy */
1460 if (smi_wait_ready(pp) < 0)
1461 return -EFAULT;
1462
1463 /* fill the phy address and regiser offset and read opcode */
1464 smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1465 | (reg << MVNETA_SMI_REG_ADDR_OFFS)
1466 | MVNETA_SMI_OPCODE_READ;
1467
1468 /* write the smi register */
1469 mvreg_write(pp, MVNETA_SMI, smi_reg);
1470
1471 /* wait till read value is ready */
1472 timeout = MVNETA_SMI_TIMEOUT;
1473
1474 do {
1475 /* read smi register */
1476 smi_reg = mvreg_read(pp, MVNETA_SMI);
1477 if (timeout-- == 0) {
1478 printf("Err: SMI read ready timeout\n");
1479 return -EFAULT;
1480 }
1481 } while (!(smi_reg & MVNETA_SMI_READ_VALID));
1482
1483 /* Wait for the data to update in the SMI register */
1484 for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1485 ;
1486
1487 return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
1488 }
1489
1490 /*
1491 * mvneta_mdio_write - miiphy_write callback function.
1492 *
1493 * Returns 0 if write succeed, -EINVAL on bad parameters
1494 * -ETIME on timeout
1495 */
mvneta_mdio_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)1496 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1497 u16 value)
1498 {
1499 struct mvneta_port *pp = bus->priv;
1500 u32 smi_reg;
1501
1502 /* check parameters */
1503 if (addr > MVNETA_PHY_ADDR_MASK) {
1504 printf("Error: Invalid PHY address %d\n", addr);
1505 return -EFAULT;
1506 }
1507
1508 if (reg > MVNETA_PHY_REG_MASK) {
1509 printf("Err: Invalid register offset %d\n", reg);
1510 return -EFAULT;
1511 }
1512
1513 /* wait till the SMI is not busy */
1514 if (smi_wait_ready(pp) < 0)
1515 return -EFAULT;
1516
1517 /* fill the phy addr and reg offset and write opcode and data */
1518 smi_reg = value << MVNETA_SMI_DATA_OFFS;
1519 smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1520 | (reg << MVNETA_SMI_REG_ADDR_OFFS);
1521 smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1522
1523 /* write the smi register */
1524 mvreg_write(pp, MVNETA_SMI, smi_reg);
1525
1526 return 0;
1527 }
1528
mvneta_start(struct udevice * dev)1529 static int mvneta_start(struct udevice *dev)
1530 {
1531 struct mvneta_port *pp = dev_get_priv(dev);
1532 struct phy_device *phydev;
1533
1534 mvneta_port_power_up(pp, pp->phy_interface);
1535
1536 if (!pp->init || pp->link == 0) {
1537 if (mvneta_port_is_fixed_link(pp)) {
1538 u32 val;
1539
1540 pp->init = 1;
1541 pp->link = 1;
1542 mvneta_init(dev);
1543
1544 val = MVNETA_GMAC_FORCE_LINK_UP |
1545 MVNETA_GMAC_IB_BYPASS_AN_EN |
1546 MVNETA_GMAC_SET_FC_EN |
1547 MVNETA_GMAC_ADVERT_FC_EN |
1548 MVNETA_GMAC_SAMPLE_TX_CFG_EN;
1549
1550 if (pp->duplex)
1551 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1552
1553 if (pp->speed == SPEED_1000)
1554 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1555 else if (pp->speed == SPEED_100)
1556 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1557
1558 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1559 } else {
1560 /* Set phy address of the port */
1561 mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1562
1563 phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1564 pp->phy_interface);
1565 if (!phydev) {
1566 printf("phy_connect failed\n");
1567 return -ENODEV;
1568 }
1569
1570 pp->phydev = phydev;
1571 phy_config(phydev);
1572 phy_startup(phydev);
1573 if (!phydev->link) {
1574 printf("%s: No link.\n", phydev->dev->name);
1575 return -1;
1576 }
1577
1578 /* Full init on first call */
1579 mvneta_init(dev);
1580 pp->init = 1;
1581 return 0;
1582 }
1583 }
1584
1585 /* Upon all following calls, this is enough */
1586 mvneta_port_up(pp);
1587 mvneta_port_enable(pp);
1588
1589 return 0;
1590 }
1591
mvneta_send(struct udevice * dev,void * packet,int length)1592 static int mvneta_send(struct udevice *dev, void *packet, int length)
1593 {
1594 struct mvneta_port *pp = dev_get_priv(dev);
1595 struct mvneta_tx_queue *txq = &pp->txqs[0];
1596 struct mvneta_tx_desc *tx_desc;
1597 int sent_desc;
1598 u32 timeout = 0;
1599
1600 /* Get a descriptor for the first part of the packet */
1601 tx_desc = mvneta_txq_next_desc_get(txq);
1602
1603 tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
1604 tx_desc->data_size = length;
1605 flush_dcache_range((ulong)packet,
1606 (ulong)packet + ALIGN(length, PKTALIGN));
1607
1608 /* First and Last descriptor */
1609 tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1610 mvneta_txq_pend_desc_add(pp, txq, 1);
1611
1612 /* Wait for packet to be sent (queue might help with speed here) */
1613 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1614 while (!sent_desc) {
1615 if (timeout++ > 10000) {
1616 printf("timeout: packet not sent\n");
1617 return -1;
1618 }
1619 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1620 }
1621
1622 /* txDone has increased - hw sent packet */
1623 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1624
1625 return 0;
1626 }
1627
mvneta_recv(struct udevice * dev,int flags,uchar ** packetp)1628 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
1629 {
1630 struct mvneta_port *pp = dev_get_priv(dev);
1631 int rx_done;
1632 struct mvneta_rx_queue *rxq;
1633 int rx_bytes = 0;
1634
1635 /* get rx queue */
1636 rxq = mvneta_rxq_handle_get(pp, rxq_def);
1637 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1638
1639 if (rx_done) {
1640 struct mvneta_rx_desc *rx_desc;
1641 unsigned char *data;
1642 u32 rx_status;
1643
1644 /*
1645 * No cache invalidation needed here, since the desc's are
1646 * located in a uncached memory region
1647 */
1648 rx_desc = mvneta_rxq_next_desc_get(rxq);
1649
1650 rx_status = rx_desc->status;
1651 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1652 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1653 mvneta_rx_error(pp, rx_desc);
1654 /* leave the descriptor untouched */
1655 return -EIO;
1656 }
1657
1658 /* 2 bytes for marvell header. 4 bytes for crc */
1659 rx_bytes = rx_desc->data_size - 6;
1660
1661 /* give packet to stack - skip on first 2 bytes */
1662 data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
1663 /*
1664 * No cache invalidation needed here, since the rx_buffer's are
1665 * located in a uncached memory region
1666 */
1667 *packetp = data;
1668
1669 /*
1670 * Only mark one descriptor as free
1671 * since only one was processed
1672 */
1673 mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
1674 }
1675
1676 return rx_bytes;
1677 }
1678
mvneta_probe(struct udevice * dev)1679 static int mvneta_probe(struct udevice *dev)
1680 {
1681 struct eth_pdata *pdata = dev_get_platdata(dev);
1682 struct mvneta_port *pp = dev_get_priv(dev);
1683 void *blob = (void *)gd->fdt_blob;
1684 int node = dev_of_offset(dev);
1685 struct mii_dev *bus;
1686 unsigned long addr;
1687 void *bd_space;
1688 int ret;
1689 int fl_node;
1690
1691 /*
1692 * Allocate buffer area for descs and rx_buffers. This is only
1693 * done once for all interfaces. As only one interface can
1694 * be active. Make this area DMA safe by disabling the D-cache
1695 */
1696 if (!buffer_loc.tx_descs) {
1697 u32 size;
1698
1699 /* Align buffer area for descs and rx_buffers to 1MiB */
1700 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1701 flush_dcache_range((ulong)bd_space, (ulong)bd_space + BD_SPACE);
1702 mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
1703 DCACHE_OFF);
1704 buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1705 size = roundup(MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc),
1706 ARCH_DMA_MINALIGN);
1707 memset(buffer_loc.tx_descs, 0, size);
1708 buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1709 ((phys_addr_t)bd_space + size);
1710 size += roundup(MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc),
1711 ARCH_DMA_MINALIGN);
1712 buffer_loc.rx_buffers = (phys_addr_t)(bd_space + size);
1713 }
1714
1715 pp->base = (void __iomem *)pdata->iobase;
1716
1717 /* Configure MBUS address windows */
1718 if (device_is_compatible(dev, "marvell,armada-3700-neta"))
1719 mvneta_bypass_mbus_windows(pp);
1720 else
1721 mvneta_conf_mbus_windows(pp);
1722
1723 /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1724 pp->phy_interface = pdata->phy_interface;
1725
1726 /* fetch 'fixed-link' property from 'neta' node */
1727 fl_node = fdt_subnode_offset(blob, node, "fixed-link");
1728 if (fl_node != -FDT_ERR_NOTFOUND) {
1729 /* set phy_addr to invalid value for fixed link */
1730 pp->phyaddr = PHY_MAX_ADDR + 1;
1731 pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
1732 pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
1733 } else {
1734 /* Now read phyaddr from DT */
1735 addr = fdtdec_get_int(blob, node, "phy", 0);
1736 addr = fdt_node_offset_by_phandle(blob, addr);
1737 pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1738 }
1739
1740 bus = mdio_alloc();
1741 if (!bus) {
1742 printf("Failed to allocate MDIO bus\n");
1743 return -ENOMEM;
1744 }
1745
1746 bus->read = mvneta_mdio_read;
1747 bus->write = mvneta_mdio_write;
1748 snprintf(bus->name, sizeof(bus->name), dev->name);
1749 bus->priv = (void *)pp;
1750 pp->bus = bus;
1751
1752 ret = mdio_register(bus);
1753 if (ret)
1754 return ret;
1755
1756 #ifdef CONFIG_DM_GPIO
1757 gpio_request_by_name(dev, "phy-reset-gpios", 0,
1758 &pp->phy_reset_gpio, GPIOD_IS_OUT);
1759
1760 if (dm_gpio_is_valid(&pp->phy_reset_gpio)) {
1761 dm_gpio_set_value(&pp->phy_reset_gpio, 1);
1762 mdelay(10);
1763 dm_gpio_set_value(&pp->phy_reset_gpio, 0);
1764 }
1765 #endif
1766
1767 return board_network_enable(bus);
1768 }
1769
mvneta_stop(struct udevice * dev)1770 static void mvneta_stop(struct udevice *dev)
1771 {
1772 struct mvneta_port *pp = dev_get_priv(dev);
1773
1774 mvneta_port_down(pp);
1775 mvneta_port_disable(pp);
1776 }
1777
1778 static const struct eth_ops mvneta_ops = {
1779 .start = mvneta_start,
1780 .send = mvneta_send,
1781 .recv = mvneta_recv,
1782 .stop = mvneta_stop,
1783 .write_hwaddr = mvneta_write_hwaddr,
1784 };
1785
mvneta_ofdata_to_platdata(struct udevice * dev)1786 static int mvneta_ofdata_to_platdata(struct udevice *dev)
1787 {
1788 struct eth_pdata *pdata = dev_get_platdata(dev);
1789 const char *phy_mode;
1790
1791 pdata->iobase = devfdt_get_addr(dev);
1792
1793 /* Get phy-mode / phy_interface from DT */
1794 pdata->phy_interface = -1;
1795 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1796 NULL);
1797 if (phy_mode)
1798 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1799 if (pdata->phy_interface == -1) {
1800 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1801 return -EINVAL;
1802 }
1803
1804 return 0;
1805 }
1806
1807 static const struct udevice_id mvneta_ids[] = {
1808 { .compatible = "marvell,armada-370-neta" },
1809 { .compatible = "marvell,armada-xp-neta" },
1810 { .compatible = "marvell,armada-3700-neta" },
1811 { }
1812 };
1813
1814 U_BOOT_DRIVER(mvneta) = {
1815 .name = "mvneta",
1816 .id = UCLASS_ETH,
1817 .of_match = mvneta_ids,
1818 .ofdata_to_platdata = mvneta_ofdata_to_platdata,
1819 .probe = mvneta_probe,
1820 .ops = &mvneta_ops,
1821 .priv_auto_alloc_size = sizeof(struct mvneta_port),
1822 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1823 };
1824