xref: /openbmc/linux/drivers/pinctrl/qcom/pinctrl-msm.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013, Sony Mobile Communications AB.
4  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/gpio/driver.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm.h>
17 #include <linux/firmware/qcom/qcom_scm.h>
18 #include <linux/reboot.h>
19 #include <linux/seq_file.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 
23 #include <linux/pinctrl/machine.h>
24 #include <linux/pinctrl/pinconf-generic.h>
25 #include <linux/pinctrl/pinconf.h>
26 #include <linux/pinctrl/pinmux.h>
27 
28 #include <linux/soc/qcom/irq.h>
29 
30 #include "../core.h"
31 #include "../pinconf.h"
32 #include "../pinctrl-utils.h"
33 
34 #include "pinctrl-msm.h"
35 
36 #define MAX_NR_GPIO 300
37 #define MAX_NR_TILES 4
38 #define PS_HOLD_OFFSET 0x820
39 
40 /**
41  * struct msm_pinctrl - state for a pinctrl-msm device
42  * @dev:            device handle.
43  * @pctrl:          pinctrl handle.
44  * @chip:           gpiochip handle.
45  * @desc:           pin controller descriptor
46  * @irq:            parent irq for the TLMM irq_chip.
47  * @intr_target_use_scm: route irq to application cpu using scm calls
48  * @lock:           Spinlock to protect register resources as well
49  *                  as msm_pinctrl data structures.
50  * @enabled_irqs:   Bitmap of currently enabled irqs.
51  * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge
52  *                  detection.
53  * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller
54  * @disabled_for_mux: These IRQs were disabled because we muxed away.
55  * @ever_gpio:      This bit is set the first time we mux a pin to gpio_func.
56  * @soc:            Reference to soc_data of platform specific data.
57  * @regs:           Base addresses for the TLMM tiles.
58  * @phys_base:      Physical base address
59  */
60 struct msm_pinctrl {
61 	struct device *dev;
62 	struct pinctrl_dev *pctrl;
63 	struct gpio_chip chip;
64 	struct pinctrl_desc desc;
65 
66 	int irq;
67 
68 	bool intr_target_use_scm;
69 
70 	raw_spinlock_t lock;
71 
72 	DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO);
73 	DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO);
74 	DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO);
75 	DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO);
76 	DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO);
77 
78 	const struct msm_pinctrl_soc_data *soc;
79 	void __iomem *regs[MAX_NR_TILES];
80 	u32 phys_base[MAX_NR_TILES];
81 };
82 
83 #define MSM_ACCESSOR(name) \
84 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \
85 			    const struct msm_pingroup *g) \
86 { \
87 	return readl(pctrl->regs[g->tile] + g->name##_reg); \
88 } \
89 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \
90 			      const struct msm_pingroup *g) \
91 { \
92 	writel(val, pctrl->regs[g->tile] + g->name##_reg); \
93 }
94 
95 MSM_ACCESSOR(ctl)
MSM_ACCESSOR(io)96 MSM_ACCESSOR(io)
97 MSM_ACCESSOR(intr_cfg)
98 MSM_ACCESSOR(intr_status)
99 MSM_ACCESSOR(intr_target)
100 
101 static void msm_ack_intr_status(struct msm_pinctrl *pctrl,
102 				const struct msm_pingroup *g)
103 {
104 	u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0;
105 
106 	msm_writel_intr_status(val, pctrl, g);
107 }
108 
msm_get_groups_count(struct pinctrl_dev * pctldev)109 static int msm_get_groups_count(struct pinctrl_dev *pctldev)
110 {
111 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
112 
113 	return pctrl->soc->ngroups;
114 }
115 
msm_get_group_name(struct pinctrl_dev * pctldev,unsigned group)116 static const char *msm_get_group_name(struct pinctrl_dev *pctldev,
117 				      unsigned group)
118 {
119 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
120 
121 	return pctrl->soc->groups[group].grp.name;
122 }
123 
msm_get_group_pins(struct pinctrl_dev * pctldev,unsigned group,const unsigned ** pins,unsigned * num_pins)124 static int msm_get_group_pins(struct pinctrl_dev *pctldev,
125 			      unsigned group,
126 			      const unsigned **pins,
127 			      unsigned *num_pins)
128 {
129 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
130 
131 	*pins = pctrl->soc->groups[group].grp.pins;
132 	*num_pins = pctrl->soc->groups[group].grp.npins;
133 	return 0;
134 }
135 
136 static const struct pinctrl_ops msm_pinctrl_ops = {
137 	.get_groups_count	= msm_get_groups_count,
138 	.get_group_name		= msm_get_group_name,
139 	.get_group_pins		= msm_get_group_pins,
140 	.dt_node_to_map		= pinconf_generic_dt_node_to_map_group,
141 	.dt_free_map		= pinctrl_utils_free_map,
142 };
143 
msm_pinmux_request(struct pinctrl_dev * pctldev,unsigned offset)144 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset)
145 {
146 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
147 	struct gpio_chip *chip = &pctrl->chip;
148 
149 	return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL;
150 }
151 
msm_get_functions_count(struct pinctrl_dev * pctldev)152 static int msm_get_functions_count(struct pinctrl_dev *pctldev)
153 {
154 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
155 
156 	return pctrl->soc->nfunctions;
157 }
158 
msm_get_function_name(struct pinctrl_dev * pctldev,unsigned function)159 static const char *msm_get_function_name(struct pinctrl_dev *pctldev,
160 					 unsigned function)
161 {
162 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
163 
164 	return pctrl->soc->functions[function].name;
165 }
166 
msm_get_function_groups(struct pinctrl_dev * pctldev,unsigned function,const char * const ** groups,unsigned * const num_groups)167 static int msm_get_function_groups(struct pinctrl_dev *pctldev,
168 				   unsigned function,
169 				   const char * const **groups,
170 				   unsigned * const num_groups)
171 {
172 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
173 
174 	*groups = pctrl->soc->functions[function].groups;
175 	*num_groups = pctrl->soc->functions[function].ngroups;
176 	return 0;
177 }
178 
msm_pinmux_set_mux(struct pinctrl_dev * pctldev,unsigned function,unsigned group)179 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev,
180 			      unsigned function,
181 			      unsigned group)
182 {
183 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
184 	struct gpio_chip *gc = &pctrl->chip;
185 	unsigned int irq = irq_find_mapping(gc->irq.domain, group);
186 	struct irq_data *d = irq_get_irq_data(irq);
187 	unsigned int gpio_func = pctrl->soc->gpio_func;
188 	unsigned int egpio_func = pctrl->soc->egpio_func;
189 	const struct msm_pingroup *g;
190 	unsigned long flags;
191 	u32 val, mask;
192 	int i;
193 
194 	g = &pctrl->soc->groups[group];
195 	mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit);
196 
197 	for (i = 0; i < g->nfuncs; i++) {
198 		if (g->funcs[i] == function)
199 			break;
200 	}
201 
202 	if (WARN_ON(i == g->nfuncs))
203 		return -EINVAL;
204 
205 	/*
206 	 * If an GPIO interrupt is setup on this pin then we need special
207 	 * handling.  Specifically interrupt detection logic will still see
208 	 * the pin twiddle even when we're muxed away.
209 	 *
210 	 * When we see a pin with an interrupt setup on it then we'll disable
211 	 * (mask) interrupts on it when we mux away until we mux back.  Note
212 	 * that disable_irq() refcounts and interrupts are disabled as long as
213 	 * at least one disable_irq() has been called.
214 	 */
215 	if (d && i != gpio_func &&
216 	    !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux))
217 		disable_irq(irq);
218 
219 	raw_spin_lock_irqsave(&pctrl->lock, flags);
220 
221 	val = msm_readl_ctl(pctrl, g);
222 
223 	/*
224 	 * If this is the first time muxing to GPIO and the direction is
225 	 * output, make sure that we're not going to be glitching the pin
226 	 * by reading the current state of the pin and setting it as the
227 	 * output.
228 	 */
229 	if (i == gpio_func && (val & BIT(g->oe_bit)) &&
230 	    !test_and_set_bit(group, pctrl->ever_gpio)) {
231 		u32 io_val = msm_readl_io(pctrl, g);
232 
233 		if (io_val & BIT(g->in_bit)) {
234 			if (!(io_val & BIT(g->out_bit)))
235 				msm_writel_io(io_val | BIT(g->out_bit), pctrl, g);
236 		} else {
237 			if (io_val & BIT(g->out_bit))
238 				msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g);
239 		}
240 	}
241 
242 	if (egpio_func && i == egpio_func) {
243 		if (val & BIT(g->egpio_present))
244 			val &= ~BIT(g->egpio_enable);
245 	} else {
246 		val &= ~mask;
247 		val |= i << g->mux_bit;
248 		/* Claim ownership of pin if egpio capable */
249 		if (egpio_func && val & BIT(g->egpio_present))
250 			val |= BIT(g->egpio_enable);
251 	}
252 
253 	msm_writel_ctl(val, pctrl, g);
254 
255 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
256 
257 	if (d && i == gpio_func &&
258 	    test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) {
259 		/*
260 		 * Clear interrupts detected while not GPIO since we only
261 		 * masked things.
262 		 */
263 		if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
264 			irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false);
265 		else
266 			msm_ack_intr_status(pctrl, g);
267 
268 		enable_irq(irq);
269 	}
270 
271 	return 0;
272 }
273 
msm_pinmux_request_gpio(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range,unsigned offset)274 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev,
275 				   struct pinctrl_gpio_range *range,
276 				   unsigned offset)
277 {
278 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
279 	const struct msm_pingroup *g = &pctrl->soc->groups[offset];
280 
281 	/* No funcs? Probably ACPI so can't do anything here */
282 	if (!g->nfuncs)
283 		return 0;
284 
285 	return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset);
286 }
287 
288 static const struct pinmux_ops msm_pinmux_ops = {
289 	.request		= msm_pinmux_request,
290 	.get_functions_count	= msm_get_functions_count,
291 	.get_function_name	= msm_get_function_name,
292 	.get_function_groups	= msm_get_function_groups,
293 	.gpio_request_enable	= msm_pinmux_request_gpio,
294 	.set_mux		= msm_pinmux_set_mux,
295 };
296 
msm_config_reg(struct msm_pinctrl * pctrl,const struct msm_pingroup * g,unsigned param,unsigned * mask,unsigned * bit)297 static int msm_config_reg(struct msm_pinctrl *pctrl,
298 			  const struct msm_pingroup *g,
299 			  unsigned param,
300 			  unsigned *mask,
301 			  unsigned *bit)
302 {
303 	switch (param) {
304 	case PIN_CONFIG_BIAS_DISABLE:
305 	case PIN_CONFIG_BIAS_PULL_DOWN:
306 	case PIN_CONFIG_BIAS_BUS_HOLD:
307 	case PIN_CONFIG_BIAS_PULL_UP:
308 		*bit = g->pull_bit;
309 		*mask = 3;
310 		if (g->i2c_pull_bit)
311 			*mask |= BIT(g->i2c_pull_bit) >> *bit;
312 		break;
313 	case PIN_CONFIG_DRIVE_OPEN_DRAIN:
314 		*bit = g->od_bit;
315 		*mask = 1;
316 		break;
317 	case PIN_CONFIG_DRIVE_STRENGTH:
318 		*bit = g->drv_bit;
319 		*mask = 7;
320 		break;
321 	case PIN_CONFIG_OUTPUT:
322 	case PIN_CONFIG_INPUT_ENABLE:
323 	case PIN_CONFIG_OUTPUT_ENABLE:
324 		*bit = g->oe_bit;
325 		*mask = 1;
326 		break;
327 	default:
328 		return -ENOTSUPP;
329 	}
330 
331 	return 0;
332 }
333 
334 #define MSM_NO_PULL		0
335 #define MSM_PULL_DOWN		1
336 #define MSM_KEEPER		2
337 #define MSM_PULL_UP_NO_KEEPER	2
338 #define MSM_PULL_UP		3
339 #define MSM_I2C_STRONG_PULL_UP	2200
340 
msm_regval_to_drive(u32 val)341 static unsigned msm_regval_to_drive(u32 val)
342 {
343 	return (val + 1) * 2;
344 }
345 
msm_config_group_get(struct pinctrl_dev * pctldev,unsigned int group,unsigned long * config)346 static int msm_config_group_get(struct pinctrl_dev *pctldev,
347 				unsigned int group,
348 				unsigned long *config)
349 {
350 	const struct msm_pingroup *g;
351 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
352 	unsigned param = pinconf_to_config_param(*config);
353 	unsigned mask;
354 	unsigned arg;
355 	unsigned bit;
356 	int ret;
357 	u32 val;
358 
359 	g = &pctrl->soc->groups[group];
360 
361 	ret = msm_config_reg(pctrl, g, param, &mask, &bit);
362 	if (ret < 0)
363 		return ret;
364 
365 	val = msm_readl_ctl(pctrl, g);
366 	arg = (val >> bit) & mask;
367 
368 	/* Convert register value to pinconf value */
369 	switch (param) {
370 	case PIN_CONFIG_BIAS_DISABLE:
371 		if (arg != MSM_NO_PULL)
372 			return -EINVAL;
373 		arg = 1;
374 		break;
375 	case PIN_CONFIG_BIAS_PULL_DOWN:
376 		if (arg != MSM_PULL_DOWN)
377 			return -EINVAL;
378 		arg = 1;
379 		break;
380 	case PIN_CONFIG_BIAS_BUS_HOLD:
381 		if (pctrl->soc->pull_no_keeper)
382 			return -ENOTSUPP;
383 
384 		if (arg != MSM_KEEPER)
385 			return -EINVAL;
386 		arg = 1;
387 		break;
388 	case PIN_CONFIG_BIAS_PULL_UP:
389 		if (pctrl->soc->pull_no_keeper)
390 			arg = arg == MSM_PULL_UP_NO_KEEPER;
391 		else if (arg & BIT(g->i2c_pull_bit))
392 			arg = MSM_I2C_STRONG_PULL_UP;
393 		else
394 			arg = arg == MSM_PULL_UP;
395 		if (!arg)
396 			return -EINVAL;
397 		break;
398 	case PIN_CONFIG_DRIVE_OPEN_DRAIN:
399 		/* Pin is not open-drain */
400 		if (!arg)
401 			return -EINVAL;
402 		arg = 1;
403 		break;
404 	case PIN_CONFIG_DRIVE_STRENGTH:
405 		arg = msm_regval_to_drive(arg);
406 		break;
407 	case PIN_CONFIG_OUTPUT:
408 		/* Pin is not output */
409 		if (!arg)
410 			return -EINVAL;
411 
412 		val = msm_readl_io(pctrl, g);
413 		arg = !!(val & BIT(g->in_bit));
414 		break;
415 	case PIN_CONFIG_OUTPUT_ENABLE:
416 		if (!arg)
417 			return -EINVAL;
418 		break;
419 	default:
420 		return -ENOTSUPP;
421 	}
422 
423 	*config = pinconf_to_config_packed(param, arg);
424 
425 	return 0;
426 }
427 
msm_config_group_set(struct pinctrl_dev * pctldev,unsigned group,unsigned long * configs,unsigned num_configs)428 static int msm_config_group_set(struct pinctrl_dev *pctldev,
429 				unsigned group,
430 				unsigned long *configs,
431 				unsigned num_configs)
432 {
433 	const struct msm_pingroup *g;
434 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
435 	unsigned long flags;
436 	unsigned param;
437 	unsigned mask;
438 	unsigned arg;
439 	unsigned bit;
440 	int ret;
441 	u32 val;
442 	int i;
443 
444 	g = &pctrl->soc->groups[group];
445 
446 	for (i = 0; i < num_configs; i++) {
447 		param = pinconf_to_config_param(configs[i]);
448 		arg = pinconf_to_config_argument(configs[i]);
449 
450 		ret = msm_config_reg(pctrl, g, param, &mask, &bit);
451 		if (ret < 0)
452 			return ret;
453 
454 		/* Convert pinconf values to register values */
455 		switch (param) {
456 		case PIN_CONFIG_BIAS_DISABLE:
457 			arg = MSM_NO_PULL;
458 			break;
459 		case PIN_CONFIG_BIAS_PULL_DOWN:
460 			arg = MSM_PULL_DOWN;
461 			break;
462 		case PIN_CONFIG_BIAS_BUS_HOLD:
463 			if (pctrl->soc->pull_no_keeper)
464 				return -ENOTSUPP;
465 
466 			arg = MSM_KEEPER;
467 			break;
468 		case PIN_CONFIG_BIAS_PULL_UP:
469 			if (pctrl->soc->pull_no_keeper)
470 				arg = MSM_PULL_UP_NO_KEEPER;
471 			else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP)
472 				arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP;
473 			else
474 				arg = MSM_PULL_UP;
475 			break;
476 		case PIN_CONFIG_DRIVE_OPEN_DRAIN:
477 			arg = 1;
478 			break;
479 		case PIN_CONFIG_DRIVE_STRENGTH:
480 			/* Check for invalid values */
481 			if (arg > 16 || arg < 2 || (arg % 2) != 0)
482 				arg = -1;
483 			else
484 				arg = (arg / 2) - 1;
485 			break;
486 		case PIN_CONFIG_OUTPUT:
487 			/* set output value */
488 			raw_spin_lock_irqsave(&pctrl->lock, flags);
489 			val = msm_readl_io(pctrl, g);
490 			if (arg)
491 				val |= BIT(g->out_bit);
492 			else
493 				val &= ~BIT(g->out_bit);
494 			msm_writel_io(val, pctrl, g);
495 			raw_spin_unlock_irqrestore(&pctrl->lock, flags);
496 
497 			/* enable output */
498 			arg = 1;
499 			break;
500 		case PIN_CONFIG_INPUT_ENABLE:
501 			/*
502 			 * According to pinctrl documentation this should
503 			 * actually be a no-op.
504 			 *
505 			 * The docs are explicit that "this does not affect
506 			 * the pin's ability to drive output" but what we do
507 			 * here is to modify the output enable bit. Thus, to
508 			 * follow the docs we should remove that.
509 			 *
510 			 * The docs say that we should enable any relevant
511 			 * input buffer, but TLMM there is no input buffer that
512 			 * can be enabled/disabled. It's always on.
513 			 *
514 			 * The points above, explain why this _should_ be a
515 			 * no-op. However, for historical reasons and to
516 			 * support old device trees, we'll violate the docs
517 			 * and still affect the output.
518 			 *
519 			 * It should further be noted that this old historical
520 			 * behavior actually overrides arg to 0. That means
521 			 * that "input-enable" and "input-disable" in a device
522 			 * tree would _both_ disable the output. We'll
523 			 * continue to preserve this behavior as well since
524 			 * we have no other use for this attribute.
525 			 */
526 			arg = 0;
527 			break;
528 		case PIN_CONFIG_OUTPUT_ENABLE:
529 			arg = !!arg;
530 			break;
531 		default:
532 			dev_err(pctrl->dev, "Unsupported config parameter: %x\n",
533 				param);
534 			return -EINVAL;
535 		}
536 
537 		/* Range-check user-supplied value */
538 		if (arg & ~mask) {
539 			dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg);
540 			return -EINVAL;
541 		}
542 
543 		raw_spin_lock_irqsave(&pctrl->lock, flags);
544 		val = msm_readl_ctl(pctrl, g);
545 		val &= ~(mask << bit);
546 		val |= arg << bit;
547 		msm_writel_ctl(val, pctrl, g);
548 		raw_spin_unlock_irqrestore(&pctrl->lock, flags);
549 	}
550 
551 	return 0;
552 }
553 
554 static const struct pinconf_ops msm_pinconf_ops = {
555 	.is_generic		= true,
556 	.pin_config_group_get	= msm_config_group_get,
557 	.pin_config_group_set	= msm_config_group_set,
558 };
559 
msm_gpio_direction_input(struct gpio_chip * chip,unsigned offset)560 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
561 {
562 	const struct msm_pingroup *g;
563 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
564 	unsigned long flags;
565 	u32 val;
566 
567 	g = &pctrl->soc->groups[offset];
568 
569 	raw_spin_lock_irqsave(&pctrl->lock, flags);
570 
571 	val = msm_readl_ctl(pctrl, g);
572 	val &= ~BIT(g->oe_bit);
573 	msm_writel_ctl(val, pctrl, g);
574 
575 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
576 
577 	return 0;
578 }
579 
msm_gpio_direction_output(struct gpio_chip * chip,unsigned offset,int value)580 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value)
581 {
582 	const struct msm_pingroup *g;
583 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
584 	unsigned long flags;
585 	u32 val;
586 
587 	g = &pctrl->soc->groups[offset];
588 
589 	raw_spin_lock_irqsave(&pctrl->lock, flags);
590 
591 	val = msm_readl_io(pctrl, g);
592 	if (value)
593 		val |= BIT(g->out_bit);
594 	else
595 		val &= ~BIT(g->out_bit);
596 	msm_writel_io(val, pctrl, g);
597 
598 	val = msm_readl_ctl(pctrl, g);
599 	val |= BIT(g->oe_bit);
600 	msm_writel_ctl(val, pctrl, g);
601 
602 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
603 
604 	return 0;
605 }
606 
msm_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)607 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
608 {
609 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
610 	const struct msm_pingroup *g;
611 	u32 val;
612 
613 	g = &pctrl->soc->groups[offset];
614 
615 	val = msm_readl_ctl(pctrl, g);
616 
617 	return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT :
618 				      GPIO_LINE_DIRECTION_IN;
619 }
620 
msm_gpio_get(struct gpio_chip * chip,unsigned offset)621 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
622 {
623 	const struct msm_pingroup *g;
624 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
625 	u32 val;
626 
627 	g = &pctrl->soc->groups[offset];
628 
629 	val = msm_readl_io(pctrl, g);
630 	return !!(val & BIT(g->in_bit));
631 }
632 
msm_gpio_set(struct gpio_chip * chip,unsigned offset,int value)633 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
634 {
635 	const struct msm_pingroup *g;
636 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
637 	unsigned long flags;
638 	u32 val;
639 
640 	g = &pctrl->soc->groups[offset];
641 
642 	raw_spin_lock_irqsave(&pctrl->lock, flags);
643 
644 	val = msm_readl_io(pctrl, g);
645 	if (value)
646 		val |= BIT(g->out_bit);
647 	else
648 		val &= ~BIT(g->out_bit);
649 	msm_writel_io(val, pctrl, g);
650 
651 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
652 }
653 
654 #ifdef CONFIG_DEBUG_FS
655 
msm_gpio_dbg_show_one(struct seq_file * s,struct pinctrl_dev * pctldev,struct gpio_chip * chip,unsigned offset,unsigned gpio)656 static void msm_gpio_dbg_show_one(struct seq_file *s,
657 				  struct pinctrl_dev *pctldev,
658 				  struct gpio_chip *chip,
659 				  unsigned offset,
660 				  unsigned gpio)
661 {
662 	const struct msm_pingroup *g;
663 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
664 	unsigned func;
665 	int is_out;
666 	int drive;
667 	int pull;
668 	int val;
669 	int egpio_enable;
670 	u32 ctl_reg, io_reg;
671 
672 	static const char * const pulls_keeper[] = {
673 		"no pull",
674 		"pull down",
675 		"keeper",
676 		"pull up"
677 	};
678 
679 	static const char * const pulls_no_keeper[] = {
680 		"no pull",
681 		"pull down",
682 		"pull up",
683 	};
684 
685 	if (!gpiochip_line_is_valid(chip, offset))
686 		return;
687 
688 	g = &pctrl->soc->groups[offset];
689 	ctl_reg = msm_readl_ctl(pctrl, g);
690 	io_reg = msm_readl_io(pctrl, g);
691 
692 	is_out = !!(ctl_reg & BIT(g->oe_bit));
693 	func = (ctl_reg >> g->mux_bit) & 7;
694 	drive = (ctl_reg >> g->drv_bit) & 7;
695 	pull = (ctl_reg >> g->pull_bit) & 3;
696 	egpio_enable = 0;
697 	if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present))
698 		egpio_enable = !(ctl_reg & BIT(g->egpio_enable));
699 
700 	if (is_out)
701 		val = !!(io_reg & BIT(g->out_bit));
702 	else
703 		val = !!(io_reg & BIT(g->in_bit));
704 
705 	if (egpio_enable) {
706 		seq_printf(s, " %-8s: egpio\n", g->grp.name);
707 		return;
708 	}
709 
710 	seq_printf(s, " %-8s: %-3s", g->grp.name, is_out ? "out" : "in");
711 	seq_printf(s, " %-4s func%d", val ? "high" : "low", func);
712 	seq_printf(s, " %dmA", msm_regval_to_drive(drive));
713 	if (pctrl->soc->pull_no_keeper)
714 		seq_printf(s, " %s", pulls_no_keeper[pull]);
715 	else
716 		seq_printf(s, " %s", pulls_keeper[pull]);
717 	seq_puts(s, "\n");
718 }
719 
msm_gpio_dbg_show(struct seq_file * s,struct gpio_chip * chip)720 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
721 {
722 	unsigned gpio = chip->base;
723 	unsigned i;
724 
725 	for (i = 0; i < chip->ngpio; i++, gpio++)
726 		msm_gpio_dbg_show_one(s, NULL, chip, i, gpio);
727 }
728 
729 #else
730 #define msm_gpio_dbg_show NULL
731 #endif
732 
msm_gpio_init_valid_mask(struct gpio_chip * gc,unsigned long * valid_mask,unsigned int ngpios)733 static int msm_gpio_init_valid_mask(struct gpio_chip *gc,
734 				    unsigned long *valid_mask,
735 				    unsigned int ngpios)
736 {
737 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
738 	int ret;
739 	unsigned int len, i;
740 	const int *reserved = pctrl->soc->reserved_gpios;
741 	u16 *tmp;
742 
743 	/* Remove driver-provided reserved GPIOs from valid_mask */
744 	if (reserved) {
745 		for (i = 0; reserved[i] >= 0; i++) {
746 			if (i >= ngpios || reserved[i] >= ngpios) {
747 				dev_err(pctrl->dev, "invalid list of reserved GPIOs\n");
748 				return -EINVAL;
749 			}
750 			clear_bit(reserved[i], valid_mask);
751 		}
752 
753 		return 0;
754 	}
755 
756 	/* The number of GPIOs in the ACPI tables */
757 	len = ret = device_property_count_u16(pctrl->dev, "gpios");
758 	if (ret < 0)
759 		return 0;
760 
761 	if (ret > ngpios)
762 		return -EINVAL;
763 
764 	tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL);
765 	if (!tmp)
766 		return -ENOMEM;
767 
768 	ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len);
769 	if (ret < 0) {
770 		dev_err(pctrl->dev, "could not read list of GPIOs\n");
771 		goto out;
772 	}
773 
774 	bitmap_zero(valid_mask, ngpios);
775 	for (i = 0; i < len; i++)
776 		set_bit(tmp[i], valid_mask);
777 
778 out:
779 	kfree(tmp);
780 	return ret;
781 }
782 
783 static const struct gpio_chip msm_gpio_template = {
784 	.direction_input  = msm_gpio_direction_input,
785 	.direction_output = msm_gpio_direction_output,
786 	.get_direction    = msm_gpio_get_direction,
787 	.get              = msm_gpio_get,
788 	.set              = msm_gpio_set,
789 	.request          = gpiochip_generic_request,
790 	.free             = gpiochip_generic_free,
791 	.dbg_show         = msm_gpio_dbg_show,
792 };
793 
794 /* For dual-edge interrupts in software, since some hardware has no
795  * such support:
796  *
797  * At appropriate moments, this function may be called to flip the polarity
798  * settings of both-edge irq lines to try and catch the next edge.
799  *
800  * The attempt is considered successful if:
801  * - the status bit goes high, indicating that an edge was caught, or
802  * - the input value of the gpio doesn't change during the attempt.
803  * If the value changes twice during the process, that would cause the first
804  * test to fail but would force the second, as two opposite
805  * transitions would cause a detection no matter the polarity setting.
806  *
807  * The do-loop tries to sledge-hammer closed the timing hole between
808  * the initial value-read and the polarity-write - if the line value changes
809  * during that window, an interrupt is lost, the new polarity setting is
810  * incorrect, and the first success test will fail, causing a retry.
811  *
812  * Algorithm comes from Google's msmgpio driver.
813  */
msm_gpio_update_dual_edge_pos(struct msm_pinctrl * pctrl,const struct msm_pingroup * g,struct irq_data * d)814 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl,
815 					  const struct msm_pingroup *g,
816 					  struct irq_data *d)
817 {
818 	int loop_limit = 100;
819 	unsigned val, val2, intstat;
820 	unsigned pol;
821 
822 	do {
823 		val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
824 
825 		pol = msm_readl_intr_cfg(pctrl, g);
826 		pol ^= BIT(g->intr_polarity_bit);
827 		msm_writel_intr_cfg(pol, pctrl, g);
828 
829 		val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit);
830 		intstat = msm_readl_intr_status(pctrl, g);
831 		if (intstat || (val == val2))
832 			return;
833 	} while (loop_limit-- > 0);
834 	dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n",
835 		val, val2);
836 }
837 
msm_gpio_irq_mask(struct irq_data * d)838 static void msm_gpio_irq_mask(struct irq_data *d)
839 {
840 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
841 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
842 	const struct msm_pingroup *g;
843 	unsigned long flags;
844 	u32 val;
845 
846 	if (d->parent_data)
847 		irq_chip_mask_parent(d);
848 
849 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
850 		return;
851 
852 	g = &pctrl->soc->groups[d->hwirq];
853 
854 	raw_spin_lock_irqsave(&pctrl->lock, flags);
855 
856 	val = msm_readl_intr_cfg(pctrl, g);
857 	/*
858 	 * There are two bits that control interrupt forwarding to the CPU. The
859 	 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be
860 	 * latched into the interrupt status register when the hardware detects
861 	 * an irq that it's configured for (either edge for edge type or level
862 	 * for level type irq). The 'non-raw' status enable bit causes the
863 	 * hardware to assert the summary interrupt to the CPU if the latched
864 	 * status bit is set. There's a bug though, the edge detection logic
865 	 * seems to have a problem where toggling the RAW_STATUS_EN bit may
866 	 * cause the status bit to latch spuriously when there isn't any edge
867 	 * so we can't touch that bit for edge type irqs and we have to keep
868 	 * the bit set anyway so that edges are latched while the line is masked.
869 	 *
870 	 * To make matters more complicated, leaving the RAW_STATUS_EN bit
871 	 * enabled all the time causes level interrupts to re-latch into the
872 	 * status register because the level is still present on the line after
873 	 * we ack it. We clear the raw status enable bit during mask here and
874 	 * set the bit on unmask so the interrupt can't latch into the hardware
875 	 * while it's masked.
876 	 */
877 	if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK)
878 		val &= ~BIT(g->intr_raw_status_bit);
879 
880 	val &= ~BIT(g->intr_enable_bit);
881 	msm_writel_intr_cfg(val, pctrl, g);
882 
883 	clear_bit(d->hwirq, pctrl->enabled_irqs);
884 
885 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
886 }
887 
msm_gpio_irq_unmask(struct irq_data * d)888 static void msm_gpio_irq_unmask(struct irq_data *d)
889 {
890 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
891 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
892 	const struct msm_pingroup *g;
893 	unsigned long flags;
894 	u32 val;
895 
896 	if (d->parent_data)
897 		irq_chip_unmask_parent(d);
898 
899 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
900 		return;
901 
902 	g = &pctrl->soc->groups[d->hwirq];
903 
904 	raw_spin_lock_irqsave(&pctrl->lock, flags);
905 
906 	val = msm_readl_intr_cfg(pctrl, g);
907 	val |= BIT(g->intr_raw_status_bit);
908 	val |= BIT(g->intr_enable_bit);
909 	msm_writel_intr_cfg(val, pctrl, g);
910 
911 	set_bit(d->hwirq, pctrl->enabled_irqs);
912 
913 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
914 }
915 
msm_gpio_irq_enable(struct irq_data * d)916 static void msm_gpio_irq_enable(struct irq_data *d)
917 {
918 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
919 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
920 
921 	gpiochip_enable_irq(gc, d->hwirq);
922 
923 	if (d->parent_data)
924 		irq_chip_enable_parent(d);
925 
926 	if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
927 		msm_gpio_irq_unmask(d);
928 }
929 
msm_gpio_irq_disable(struct irq_data * d)930 static void msm_gpio_irq_disable(struct irq_data *d)
931 {
932 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
933 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
934 
935 	if (d->parent_data)
936 		irq_chip_disable_parent(d);
937 
938 	if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
939 		msm_gpio_irq_mask(d);
940 
941 	gpiochip_disable_irq(gc, d->hwirq);
942 }
943 
944 /**
945  * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent.
946  * @d: The irq dta.
947  *
948  * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are
949  * normally handled by the parent irqchip.  The logic here is slightly
950  * different due to what's easy to do with our parent, but in principle it's
951  * the same.
952  */
msm_gpio_update_dual_edge_parent(struct irq_data * d)953 static void msm_gpio_update_dual_edge_parent(struct irq_data *d)
954 {
955 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
956 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
957 	const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
958 	int loop_limit = 100;
959 	unsigned int val;
960 	unsigned int type;
961 
962 	/* Read the value and make a guess about what edge we need to catch */
963 	val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
964 	type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;
965 
966 	do {
967 		/* Set the parent to catch the next edge */
968 		irq_chip_set_type_parent(d, type);
969 
970 		/*
971 		 * Possibly the line changed between when we last read "val"
972 		 * (and decided what edge we needed) and when set the edge.
973 		 * If the value didn't change (or changed and then changed
974 		 * back) then we're done.
975 		 */
976 		val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
977 		if (type == IRQ_TYPE_EDGE_RISING) {
978 			if (!val)
979 				return;
980 			type = IRQ_TYPE_EDGE_FALLING;
981 		} else if (type == IRQ_TYPE_EDGE_FALLING) {
982 			if (val)
983 				return;
984 			type = IRQ_TYPE_EDGE_RISING;
985 		}
986 	} while (loop_limit-- > 0);
987 	dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n");
988 }
989 
msm_gpio_irq_ack(struct irq_data * d)990 static void msm_gpio_irq_ack(struct irq_data *d)
991 {
992 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
993 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
994 	const struct msm_pingroup *g;
995 	unsigned long flags;
996 
997 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
998 		if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
999 			msm_gpio_update_dual_edge_parent(d);
1000 		return;
1001 	}
1002 
1003 	g = &pctrl->soc->groups[d->hwirq];
1004 
1005 	raw_spin_lock_irqsave(&pctrl->lock, flags);
1006 
1007 	msm_ack_intr_status(pctrl, g);
1008 
1009 	if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1010 		msm_gpio_update_dual_edge_pos(pctrl, g, d);
1011 
1012 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1013 }
1014 
msm_gpio_irq_eoi(struct irq_data * d)1015 static void msm_gpio_irq_eoi(struct irq_data *d)
1016 {
1017 	d = d->parent_data;
1018 
1019 	if (d)
1020 		d->chip->irq_eoi(d);
1021 }
1022 
msm_gpio_needs_dual_edge_parent_workaround(struct irq_data * d,unsigned int type)1023 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d,
1024 						       unsigned int type)
1025 {
1026 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1027 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1028 
1029 	return type == IRQ_TYPE_EDGE_BOTH &&
1030 	       pctrl->soc->wakeirq_dual_edge_errata && d->parent_data &&
1031 	       test_bit(d->hwirq, pctrl->skip_wake_irqs);
1032 }
1033 
msm_gpio_irq_set_type(struct irq_data * d,unsigned int type)1034 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type)
1035 {
1036 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1037 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1038 	const struct msm_pingroup *g;
1039 	u32 intr_target_mask = GENMASK(2, 0);
1040 	unsigned long flags;
1041 	u32 val, oldval;
1042 
1043 	if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) {
1044 		set_bit(d->hwirq, pctrl->dual_edge_irqs);
1045 		irq_set_handler_locked(d, handle_fasteoi_ack_irq);
1046 		msm_gpio_update_dual_edge_parent(d);
1047 		return 0;
1048 	}
1049 
1050 	if (d->parent_data)
1051 		irq_chip_set_type_parent(d, type);
1052 
1053 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
1054 		clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1055 		irq_set_handler_locked(d, handle_fasteoi_irq);
1056 		return 0;
1057 	}
1058 
1059 	g = &pctrl->soc->groups[d->hwirq];
1060 
1061 	raw_spin_lock_irqsave(&pctrl->lock, flags);
1062 
1063 	/*
1064 	 * For hw without possibility of detecting both edges
1065 	 */
1066 	if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH)
1067 		set_bit(d->hwirq, pctrl->dual_edge_irqs);
1068 	else
1069 		clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1070 
1071 	/* Route interrupts to application cpu.
1072 	 * With intr_target_use_scm interrupts are routed to
1073 	 * application cpu using scm calls.
1074 	 */
1075 	if (g->intr_target_width)
1076 		intr_target_mask = GENMASK(g->intr_target_width - 1, 0);
1077 
1078 	if (pctrl->intr_target_use_scm) {
1079 		u32 addr = pctrl->phys_base[0] + g->intr_target_reg;
1080 		int ret;
1081 
1082 		qcom_scm_io_readl(addr, &val);
1083 		val &= ~(intr_target_mask << g->intr_target_bit);
1084 		val |= g->intr_target_kpss_val << g->intr_target_bit;
1085 
1086 		ret = qcom_scm_io_writel(addr, val);
1087 		if (ret)
1088 			dev_err(pctrl->dev,
1089 				"Failed routing %lu interrupt to Apps proc",
1090 				d->hwirq);
1091 	} else {
1092 		val = msm_readl_intr_target(pctrl, g);
1093 		val &= ~(intr_target_mask << g->intr_target_bit);
1094 		val |= g->intr_target_kpss_val << g->intr_target_bit;
1095 		msm_writel_intr_target(val, pctrl, g);
1096 	}
1097 
1098 	/* Update configuration for gpio.
1099 	 * RAW_STATUS_EN is left on for all gpio irqs. Due to the
1100 	 * internal circuitry of TLMM, toggling the RAW_STATUS
1101 	 * could cause the INTR_STATUS to be set for EDGE interrupts.
1102 	 */
1103 	val = oldval = msm_readl_intr_cfg(pctrl, g);
1104 	val |= BIT(g->intr_raw_status_bit);
1105 	if (g->intr_detection_width == 2) {
1106 		val &= ~(3 << g->intr_detection_bit);
1107 		val &= ~(1 << g->intr_polarity_bit);
1108 		switch (type) {
1109 		case IRQ_TYPE_EDGE_RISING:
1110 			val |= 1 << g->intr_detection_bit;
1111 			val |= BIT(g->intr_polarity_bit);
1112 			break;
1113 		case IRQ_TYPE_EDGE_FALLING:
1114 			val |= 2 << g->intr_detection_bit;
1115 			val |= BIT(g->intr_polarity_bit);
1116 			break;
1117 		case IRQ_TYPE_EDGE_BOTH:
1118 			val |= 3 << g->intr_detection_bit;
1119 			val |= BIT(g->intr_polarity_bit);
1120 			break;
1121 		case IRQ_TYPE_LEVEL_LOW:
1122 			break;
1123 		case IRQ_TYPE_LEVEL_HIGH:
1124 			val |= BIT(g->intr_polarity_bit);
1125 			break;
1126 		}
1127 	} else if (g->intr_detection_width == 1) {
1128 		val &= ~(1 << g->intr_detection_bit);
1129 		val &= ~(1 << g->intr_polarity_bit);
1130 		switch (type) {
1131 		case IRQ_TYPE_EDGE_RISING:
1132 			val |= BIT(g->intr_detection_bit);
1133 			val |= BIT(g->intr_polarity_bit);
1134 			break;
1135 		case IRQ_TYPE_EDGE_FALLING:
1136 			val |= BIT(g->intr_detection_bit);
1137 			break;
1138 		case IRQ_TYPE_EDGE_BOTH:
1139 			val |= BIT(g->intr_detection_bit);
1140 			val |= BIT(g->intr_polarity_bit);
1141 			break;
1142 		case IRQ_TYPE_LEVEL_LOW:
1143 			break;
1144 		case IRQ_TYPE_LEVEL_HIGH:
1145 			val |= BIT(g->intr_polarity_bit);
1146 			break;
1147 		}
1148 	} else {
1149 		BUG();
1150 	}
1151 	msm_writel_intr_cfg(val, pctrl, g);
1152 
1153 	/*
1154 	 * The first time we set RAW_STATUS_EN it could trigger an interrupt.
1155 	 * Clear the interrupt.  This is safe because we have
1156 	 * IRQCHIP_SET_TYPE_MASKED. When changing the interrupt type, we could
1157 	 * also still have a non-matching interrupt latched, so clear whenever
1158 	 * making changes to the interrupt configuration.
1159 	 */
1160 	if (val != oldval)
1161 		msm_ack_intr_status(pctrl, g);
1162 
1163 	if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1164 		msm_gpio_update_dual_edge_pos(pctrl, g, d);
1165 
1166 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1167 
1168 	if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
1169 		irq_set_handler_locked(d, handle_level_irq);
1170 	else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
1171 		irq_set_handler_locked(d, handle_edge_irq);
1172 
1173 	return 0;
1174 }
1175 
msm_gpio_irq_set_wake(struct irq_data * d,unsigned int on)1176 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
1177 {
1178 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1179 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1180 
1181 	/*
1182 	 * While they may not wake up when the TLMM is powered off,
1183 	 * some GPIOs would like to wakeup the system from suspend
1184 	 * when TLMM is powered on. To allow that, enable the GPIO
1185 	 * summary line to be wakeup capable at GIC.
1186 	 */
1187 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1188 		return irq_chip_set_wake_parent(d, on);
1189 
1190 	return irq_set_irq_wake(pctrl->irq, on);
1191 }
1192 
msm_gpio_irq_reqres(struct irq_data * d)1193 static int msm_gpio_irq_reqres(struct irq_data *d)
1194 {
1195 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1196 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1197 	int ret;
1198 
1199 	if (!try_module_get(gc->owner))
1200 		return -ENODEV;
1201 
1202 	ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq);
1203 	if (ret)
1204 		goto out;
1205 	msm_gpio_direction_input(gc, d->hwirq);
1206 
1207 	if (gpiochip_lock_as_irq(gc, d->hwirq)) {
1208 		dev_err(gc->parent,
1209 			"unable to lock HW IRQ %lu for IRQ\n",
1210 			d->hwirq);
1211 		ret = -EINVAL;
1212 		goto out;
1213 	}
1214 
1215 	/*
1216 	 * The disable / clear-enable workaround we do in msm_pinmux_set_mux()
1217 	 * only works if disable is not lazy since we only clear any bogus
1218 	 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY.
1219 	 */
1220 	irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY);
1221 
1222 	return 0;
1223 out:
1224 	module_put(gc->owner);
1225 	return ret;
1226 }
1227 
msm_gpio_irq_relres(struct irq_data * d)1228 static void msm_gpio_irq_relres(struct irq_data *d)
1229 {
1230 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1231 
1232 	gpiochip_unlock_as_irq(gc, d->hwirq);
1233 	module_put(gc->owner);
1234 }
1235 
msm_gpio_irq_set_affinity(struct irq_data * d,const struct cpumask * dest,bool force)1236 static int msm_gpio_irq_set_affinity(struct irq_data *d,
1237 				const struct cpumask *dest, bool force)
1238 {
1239 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1240 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1241 
1242 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1243 		return irq_chip_set_affinity_parent(d, dest, force);
1244 
1245 	return -EINVAL;
1246 }
1247 
msm_gpio_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1248 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1249 {
1250 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1251 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1252 
1253 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1254 		return irq_chip_set_vcpu_affinity_parent(d, vcpu_info);
1255 
1256 	return -EINVAL;
1257 }
1258 
msm_gpio_irq_handler(struct irq_desc * desc)1259 static void msm_gpio_irq_handler(struct irq_desc *desc)
1260 {
1261 	struct gpio_chip *gc = irq_desc_get_handler_data(desc);
1262 	const struct msm_pingroup *g;
1263 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1264 	struct irq_chip *chip = irq_desc_get_chip(desc);
1265 	int handled = 0;
1266 	u32 val;
1267 	int i;
1268 
1269 	chained_irq_enter(chip, desc);
1270 
1271 	/*
1272 	 * Each pin has it's own IRQ status register, so use
1273 	 * enabled_irq bitmap to limit the number of reads.
1274 	 */
1275 	for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) {
1276 		g = &pctrl->soc->groups[i];
1277 		val = msm_readl_intr_status(pctrl, g);
1278 		if (val & BIT(g->intr_status_bit)) {
1279 			generic_handle_domain_irq(gc->irq.domain, i);
1280 			handled++;
1281 		}
1282 	}
1283 
1284 	/* No interrupts were flagged */
1285 	if (handled == 0)
1286 		handle_bad_irq(desc);
1287 
1288 	chained_irq_exit(chip, desc);
1289 }
1290 
msm_gpio_wakeirq(struct gpio_chip * gc,unsigned int child,unsigned int child_type,unsigned int * parent,unsigned int * parent_type)1291 static int msm_gpio_wakeirq(struct gpio_chip *gc,
1292 			    unsigned int child,
1293 			    unsigned int child_type,
1294 			    unsigned int *parent,
1295 			    unsigned int *parent_type)
1296 {
1297 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1298 	const struct msm_gpio_wakeirq_map *map;
1299 	int i;
1300 
1301 	*parent = GPIO_NO_WAKE_IRQ;
1302 	*parent_type = IRQ_TYPE_EDGE_RISING;
1303 
1304 	for (i = 0; i < pctrl->soc->nwakeirq_map; i++) {
1305 		map = &pctrl->soc->wakeirq_map[i];
1306 		if (map->gpio == child) {
1307 			*parent = map->wakeirq;
1308 			break;
1309 		}
1310 	}
1311 
1312 	return 0;
1313 }
1314 
msm_gpio_needs_valid_mask(struct msm_pinctrl * pctrl)1315 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl)
1316 {
1317 	if (pctrl->soc->reserved_gpios)
1318 		return true;
1319 
1320 	return device_property_count_u16(pctrl->dev, "gpios") > 0;
1321 }
1322 
1323 static const struct irq_chip msm_gpio_irq_chip = {
1324 	.name			= "msmgpio",
1325 	.irq_enable		= msm_gpio_irq_enable,
1326 	.irq_disable		= msm_gpio_irq_disable,
1327 	.irq_mask		= msm_gpio_irq_mask,
1328 	.irq_unmask		= msm_gpio_irq_unmask,
1329 	.irq_ack		= msm_gpio_irq_ack,
1330 	.irq_eoi		= msm_gpio_irq_eoi,
1331 	.irq_set_type		= msm_gpio_irq_set_type,
1332 	.irq_set_wake		= msm_gpio_irq_set_wake,
1333 	.irq_request_resources	= msm_gpio_irq_reqres,
1334 	.irq_release_resources	= msm_gpio_irq_relres,
1335 	.irq_set_affinity	= msm_gpio_irq_set_affinity,
1336 	.irq_set_vcpu_affinity	= msm_gpio_irq_set_vcpu_affinity,
1337 	.flags			= (IRQCHIP_MASK_ON_SUSPEND |
1338 				   IRQCHIP_SET_TYPE_MASKED |
1339 				   IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND |
1340 				   IRQCHIP_IMMUTABLE),
1341 };
1342 
msm_gpio_init(struct msm_pinctrl * pctrl)1343 static int msm_gpio_init(struct msm_pinctrl *pctrl)
1344 {
1345 	struct gpio_chip *chip;
1346 	struct gpio_irq_chip *girq;
1347 	int i, ret;
1348 	unsigned gpio, ngpio = pctrl->soc->ngpios;
1349 	struct device_node *np;
1350 	bool skip;
1351 
1352 	if (WARN_ON(ngpio > MAX_NR_GPIO))
1353 		return -EINVAL;
1354 
1355 	chip = &pctrl->chip;
1356 	chip->base = -1;
1357 	chip->ngpio = ngpio;
1358 	chip->label = dev_name(pctrl->dev);
1359 	chip->parent = pctrl->dev;
1360 	chip->owner = THIS_MODULE;
1361 	if (msm_gpio_needs_valid_mask(pctrl))
1362 		chip->init_valid_mask = msm_gpio_init_valid_mask;
1363 
1364 	np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0);
1365 	if (np) {
1366 		chip->irq.parent_domain = irq_find_matching_host(np,
1367 						 DOMAIN_BUS_WAKEUP);
1368 		of_node_put(np);
1369 		if (!chip->irq.parent_domain)
1370 			return -EPROBE_DEFER;
1371 		chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq;
1372 		/*
1373 		 * Let's skip handling the GPIOs, if the parent irqchip
1374 		 * is handling the direct connect IRQ of the GPIO.
1375 		 */
1376 		skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain);
1377 		for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) {
1378 			gpio = pctrl->soc->wakeirq_map[i].gpio;
1379 			set_bit(gpio, pctrl->skip_wake_irqs);
1380 		}
1381 	}
1382 
1383 	girq = &chip->irq;
1384 	gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip);
1385 	girq->parent_handler = msm_gpio_irq_handler;
1386 	girq->fwnode = dev_fwnode(pctrl->dev);
1387 	girq->num_parents = 1;
1388 	girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents),
1389 				     GFP_KERNEL);
1390 	if (!girq->parents)
1391 		return -ENOMEM;
1392 	girq->default_type = IRQ_TYPE_NONE;
1393 	girq->handler = handle_bad_irq;
1394 	girq->parents[0] = pctrl->irq;
1395 
1396 	ret = gpiochip_add_data(&pctrl->chip, pctrl);
1397 	if (ret) {
1398 		dev_err(pctrl->dev, "Failed register gpiochip\n");
1399 		return ret;
1400 	}
1401 
1402 	/*
1403 	 * For DeviceTree-supported systems, the gpio core checks the
1404 	 * pinctrl's device node for the "gpio-ranges" property.
1405 	 * If it is present, it takes care of adding the pin ranges
1406 	 * for the driver. In this case the driver can skip ahead.
1407 	 *
1408 	 * In order to remain compatible with older, existing DeviceTree
1409 	 * files which don't set the "gpio-ranges" property or systems that
1410 	 * utilize ACPI the driver has to call gpiochip_add_pin_range().
1411 	 */
1412 	if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) {
1413 		ret = gpiochip_add_pin_range(&pctrl->chip,
1414 			dev_name(pctrl->dev), 0, 0, chip->ngpio);
1415 		if (ret) {
1416 			dev_err(pctrl->dev, "Failed to add pin range\n");
1417 			gpiochip_remove(&pctrl->chip);
1418 			return ret;
1419 		}
1420 	}
1421 
1422 	return 0;
1423 }
1424 
msm_ps_hold_restart(struct sys_off_data * data)1425 static int msm_ps_hold_restart(struct sys_off_data *data)
1426 {
1427 	struct msm_pinctrl *pctrl = data->cb_data;
1428 
1429 	writel(0, pctrl->regs[0] + PS_HOLD_OFFSET);
1430 	mdelay(1000);
1431 	return NOTIFY_DONE;
1432 }
1433 
1434 static struct msm_pinctrl *poweroff_pctrl;
1435 
msm_ps_hold_poweroff(void)1436 static void msm_ps_hold_poweroff(void)
1437 {
1438 	struct sys_off_data data = {
1439 		.cb_data = poweroff_pctrl,
1440 	};
1441 
1442 	msm_ps_hold_restart(&data);
1443 }
1444 
msm_pinctrl_setup_pm_reset(struct msm_pinctrl * pctrl)1445 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl)
1446 {
1447 	int i;
1448 	const struct pinfunction *func = pctrl->soc->functions;
1449 
1450 	for (i = 0; i < pctrl->soc->nfunctions; i++)
1451 		if (!strcmp(func[i].name, "ps_hold")) {
1452 			if (devm_register_sys_off_handler(pctrl->dev,
1453 							  SYS_OFF_MODE_RESTART,
1454 							  128,
1455 							  msm_ps_hold_restart,
1456 							  pctrl))
1457 				dev_err(pctrl->dev,
1458 					"failed to setup restart handler.\n");
1459 			poweroff_pctrl = pctrl;
1460 			pm_power_off = msm_ps_hold_poweroff;
1461 			break;
1462 		}
1463 }
1464 
msm_pinctrl_suspend(struct device * dev)1465 static __maybe_unused int msm_pinctrl_suspend(struct device *dev)
1466 {
1467 	struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1468 
1469 	return pinctrl_force_sleep(pctrl->pctrl);
1470 }
1471 
msm_pinctrl_resume(struct device * dev)1472 static __maybe_unused int msm_pinctrl_resume(struct device *dev)
1473 {
1474 	struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1475 
1476 	return pinctrl_force_default(pctrl->pctrl);
1477 }
1478 
1479 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend,
1480 		  msm_pinctrl_resume);
1481 
1482 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops);
1483 
msm_pinctrl_probe(struct platform_device * pdev,const struct msm_pinctrl_soc_data * soc_data)1484 int msm_pinctrl_probe(struct platform_device *pdev,
1485 		      const struct msm_pinctrl_soc_data *soc_data)
1486 {
1487 	struct msm_pinctrl *pctrl;
1488 	struct resource *res;
1489 	int ret;
1490 	int i;
1491 
1492 	pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL);
1493 	if (!pctrl)
1494 		return -ENOMEM;
1495 
1496 	pctrl->dev = &pdev->dev;
1497 	pctrl->soc = soc_data;
1498 	pctrl->chip = msm_gpio_template;
1499 	pctrl->intr_target_use_scm = of_device_is_compatible(
1500 					pctrl->dev->of_node,
1501 					"qcom,ipq8064-pinctrl");
1502 
1503 	raw_spin_lock_init(&pctrl->lock);
1504 
1505 	if (soc_data->tiles) {
1506 		for (i = 0; i < soc_data->ntiles; i++) {
1507 			res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1508 							   soc_data->tiles[i]);
1509 			pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res);
1510 			if (IS_ERR(pctrl->regs[i]))
1511 				return PTR_ERR(pctrl->regs[i]);
1512 		}
1513 	} else {
1514 		pctrl->regs[0] = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1515 		if (IS_ERR(pctrl->regs[0]))
1516 			return PTR_ERR(pctrl->regs[0]);
1517 
1518 		pctrl->phys_base[0] = res->start;
1519 	}
1520 
1521 	msm_pinctrl_setup_pm_reset(pctrl);
1522 
1523 	pctrl->irq = platform_get_irq(pdev, 0);
1524 	if (pctrl->irq < 0)
1525 		return pctrl->irq;
1526 
1527 	pctrl->desc.owner = THIS_MODULE;
1528 	pctrl->desc.pctlops = &msm_pinctrl_ops;
1529 	pctrl->desc.pmxops = &msm_pinmux_ops;
1530 	pctrl->desc.confops = &msm_pinconf_ops;
1531 	pctrl->desc.name = dev_name(&pdev->dev);
1532 	pctrl->desc.pins = pctrl->soc->pins;
1533 	pctrl->desc.npins = pctrl->soc->npins;
1534 
1535 	pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl);
1536 	if (IS_ERR(pctrl->pctrl)) {
1537 		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
1538 		return PTR_ERR(pctrl->pctrl);
1539 	}
1540 
1541 	ret = msm_gpio_init(pctrl);
1542 	if (ret)
1543 		return ret;
1544 
1545 	platform_set_drvdata(pdev, pctrl);
1546 
1547 	dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n");
1548 
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL(msm_pinctrl_probe);
1552 
msm_pinctrl_remove(struct platform_device * pdev)1553 void msm_pinctrl_remove(struct platform_device *pdev)
1554 {
1555 	struct msm_pinctrl *pctrl = platform_get_drvdata(pdev);
1556 
1557 	gpiochip_remove(&pctrl->chip);
1558 }
1559 EXPORT_SYMBOL(msm_pinctrl_remove);
1560 
1561 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver");
1562 MODULE_LICENSE("GPL v2");
1563