xref: /openbmc/linux/arch/sparc/include/asm/viking.h (revision 4b4193256c8d3bc3a5397b5cd9494c2ad386317d)
1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * viking.h:  Defines specific to the GNU/Viking MBUS module.
4   *            This is SRMMU stuff.
5   *
6   * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
7   */
8  #ifndef _SPARC_VIKING_H
9  #define _SPARC_VIKING_H
10  
11  #include <asm/asi.h>
12  #include <asm/mxcc.h>
13  #include <asm/pgtable.h>
14  #include <asm/pgtsrmmu.h>
15  
16  /* Bits in the SRMMU control register for GNU/Viking modules.
17   *
18   * -----------------------------------------------------------
19   * |impl-vers| RSV |TC|AC|SP|BM|PC|MBM|SB|IC|DC|PSO|RSV|NF|ME|
20   * -----------------------------------------------------------
21   *  31     24 23-17 16 15 14 13 12 11  10  9  8  7  6-2  1  0
22   *
23   * TC: Tablewalk Cacheable -- 0 = Twalks are not cacheable in E-cache
24   *                            1 = Twalks are cacheable in E-cache
25   *
26   * GNU/Viking will only cache tablewalks in the E-cache (mxcc) if present
27   * and never caches them internally (or so states the docs).  Therefore
28   * for machines lacking an E-cache (ie. in MBUS mode) this bit must
29   * remain cleared.
30   *
31   * AC: Alternate Cacheable -- 0 = Passthru physical accesses not cacheable
32   *                            1 = Passthru physical accesses cacheable
33   *
34   * This indicates whether accesses are cacheable when no cachable bit
35   * is present in the pte when the processor is in boot-mode or the
36   * access does not need pte's for translation (ie. pass-thru ASI's).
37   * "Cachable" is only referring to E-cache (if present) and not the
38   * on chip split I/D caches of the GNU/Viking.
39   *
40   * SP: SnooP Enable -- 0 = bus snooping off, 1 = bus snooping on
41   *
42   * This enables snooping on the GNU/Viking bus.  This must be on
43   * for the hardware cache consistency mechanisms of the GNU/Viking
44   * to work at all.  On non-mxcc GNU/Viking modules the split I/D
45   * caches will snoop regardless of whether they are enabled, this
46   * takes care of the case where the I or D or both caches are turned
47   * off yet still contain valid data.  Note also that this bit does
48   * not affect GNU/Viking store-buffer snoops, those happen if the
49   * store-buffer is enabled no matter what.
50   *
51   * BM: Boot Mode -- 0 = not in boot mode, 1 = in boot mode
52   *
53   * This indicates whether the GNU/Viking is in boot-mode or not,
54   * if it is then all instruction fetch physical addresses are
55   * computed as 0xff0000000 + low 28 bits of requested address.
56   * GNU/Viking boot-mode does not affect data accesses.  Also,
57   * in boot mode instruction accesses bypass the split on chip I/D
58   * caches, they may be cached by the GNU/MXCC if present and enabled.
59   *
60   * MBM: MBus Mode -- 0 = not in MBus mode, 1 = in MBus mode
61   *
62   * This indicated the GNU/Viking configuration present.  If in
63   * MBUS mode, the GNU/Viking lacks a GNU/MXCC E-cache.  If it is
64   * not then the GNU/Viking is on a module VBUS connected directly
65   * to a GNU/MXCC cache controller.  The GNU/MXCC can be thus connected
66   * to either an GNU/MBUS (sun4m) or the packet-switched GNU/XBus (sun4d).
67   *
68   * SB: StoreBuffer enable -- 0 = store buffer off, 1 = store buffer on
69   *
70   * The GNU/Viking store buffer allows the chip to continue execution
71   * after a store even if the data cannot be placed in one of the
72   * caches during that cycle.  If disabled, all stores operations
73   * occur synchronously.
74   *
75   * IC: Instruction Cache -- 0 = off, 1 = on
76   * DC: Data Cache -- 0 = off, 1 = 0n
77   *
78   * These bits enable the on-cpu GNU/Viking split I/D caches.  Note,
79   * as mentioned above, these caches will snoop the bus in GNU/MBUS
80   * configurations even when disabled to avoid data corruption.
81   *
82   * NF: No Fault -- 0 = faults generate traps, 1 = faults don't trap
83   * ME: MMU enable -- 0 = mmu not translating, 1 = mmu translating
84   *
85   */
86  
87  #define VIKING_MMUENABLE    0x00000001
88  #define VIKING_NOFAULT      0x00000002
89  #define VIKING_PSO          0x00000080
90  #define VIKING_DCENABLE     0x00000100   /* Enable data cache */
91  #define VIKING_ICENABLE     0x00000200   /* Enable instruction cache */
92  #define VIKING_SBENABLE     0x00000400   /* Enable store buffer */
93  #define VIKING_MMODE        0x00000800   /* MBUS mode */
94  #define VIKING_PCENABLE     0x00001000   /* Enable parity checking */
95  #define VIKING_BMODE        0x00002000
96  #define VIKING_SPENABLE     0x00004000   /* Enable bus cache snooping */
97  #define VIKING_ACENABLE     0x00008000   /* Enable alternate caching */
98  #define VIKING_TCENABLE     0x00010000   /* Enable table-walks to be cached */
99  #define VIKING_DPENABLE     0x00040000   /* Enable the data prefetcher */
100  
101  /*
102   * GNU/Viking Breakpoint Action Register fields.
103   */
104  #define VIKING_ACTION_MIX   0x00001000   /* Enable multiple instructions */
105  
106  /*
107   * GNU/Viking Cache Tags.
108   */
109  #define VIKING_PTAG_VALID   0x01000000   /* Cache block is valid */
110  #define VIKING_PTAG_DIRTY   0x00010000   /* Block has been modified */
111  #define VIKING_PTAG_SHARED  0x00000100   /* Shared with some other cache */
112  
113  #ifndef __ASSEMBLY__
114  
viking_flush_icache(void)115  static inline void viking_flush_icache(void)
116  {
117  	__asm__ __volatile__("sta %%g0, [%%g0] %0\n\t"
118  			     : /* no outputs */
119  			     : "i" (ASI_M_IC_FLCLEAR)
120  			     : "memory");
121  }
122  
viking_flush_dcache(void)123  static inline void viking_flush_dcache(void)
124  {
125  	__asm__ __volatile__("sta %%g0, [%%g0] %0\n\t"
126  			     : /* no outputs */
127  			     : "i" (ASI_M_DC_FLCLEAR)
128  			     : "memory");
129  }
130  
viking_unlock_icache(void)131  static inline void viking_unlock_icache(void)
132  {
133  	__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
134  			     : /* no outputs */
135  			     : "r" (0x80000000), "i" (ASI_M_IC_FLCLEAR)
136  			     : "memory");
137  }
138  
viking_unlock_dcache(void)139  static inline void viking_unlock_dcache(void)
140  {
141  	__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
142  			     : /* no outputs */
143  			     : "r" (0x80000000), "i" (ASI_M_DC_FLCLEAR)
144  			     : "memory");
145  }
146  
viking_set_bpreg(unsigned long regval)147  static inline void viking_set_bpreg(unsigned long regval)
148  {
149  	__asm__ __volatile__("sta %0, [%%g0] %1\n\t"
150  			     : /* no outputs */
151  			     : "r" (regval), "i" (ASI_M_ACTION)
152  			     : "memory");
153  }
154  
viking_get_bpreg(void)155  static inline unsigned long viking_get_bpreg(void)
156  {
157  	unsigned long regval;
158  
159  	__asm__ __volatile__("lda [%%g0] %1, %0\n\t"
160  			     : "=r" (regval)
161  			     : "i" (ASI_M_ACTION));
162  	return regval;
163  }
164  
viking_get_dcache_ptag(int set,int block,unsigned long * data)165  static inline void viking_get_dcache_ptag(int set, int block,
166  					      unsigned long *data)
167  {
168  	unsigned long ptag = ((set & 0x7f) << 5) | ((block & 0x3) << 26) |
169  			     0x80000000;
170  	unsigned long info, page;
171  
172  	__asm__ __volatile__ ("ldda [%2] %3, %%g2\n\t"
173  			      "or %%g0, %%g2, %0\n\t"
174  			      "or %%g0, %%g3, %1\n\t"
175  			      : "=r" (info), "=r" (page)
176  			      : "r" (ptag), "i" (ASI_M_DATAC_TAG)
177  			      : "g2", "g3");
178  	data[0] = info;
179  	data[1] = page;
180  }
181  
viking_mxcc_turn_off_parity(unsigned long * mregp,unsigned long * mxcc_cregp)182  static inline void viking_mxcc_turn_off_parity(unsigned long *mregp,
183  						   unsigned long *mxcc_cregp)
184  {
185  	unsigned long mreg = *mregp;
186  	unsigned long mxcc_creg = *mxcc_cregp;
187  
188  	mreg &= ~(VIKING_PCENABLE);
189  	mxcc_creg &= ~(MXCC_CTL_PARE);
190  
191  	__asm__ __volatile__ ("set 1f, %%g2\n\t"
192  			      "andcc %%g2, 4, %%g0\n\t"
193  			      "bne 2f\n\t"
194  			      " nop\n"
195  			      "1:\n\t"
196  			      "sta %0, [%%g0] %3\n\t"
197  			      "sta %1, [%2] %4\n\t"
198  			      "b 1f\n\t"
199  			      " nop\n\t"
200  			      "nop\n"
201  			      "2:\n\t"
202  			      "sta %0, [%%g0] %3\n\t"
203  			      "sta %1, [%2] %4\n"
204  			      "1:\n\t"
205  			      : /* no output */
206  			      : "r" (mreg), "r" (mxcc_creg),
207  			        "r" (MXCC_CREG), "i" (ASI_M_MMUREGS),
208  			        "i" (ASI_M_MXCC)
209  			      : "g2", "memory", "cc");
210  	*mregp = mreg;
211  	*mxcc_cregp = mxcc_creg;
212  }
213  
viking_hwprobe(unsigned long vaddr)214  static inline unsigned long viking_hwprobe(unsigned long vaddr)
215  {
216  	unsigned long val;
217  
218  	vaddr &= PAGE_MASK;
219  	/* Probe all MMU entries. */
220  	__asm__ __volatile__("lda [%1] %2, %0\n\t"
221  			     : "=r" (val)
222  			     : "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
223  	if (!val)
224  		return 0;
225  
226  	/* Probe region. */
227  	__asm__ __volatile__("lda [%1] %2, %0\n\t"
228  			     : "=r" (val)
229  			     : "r" (vaddr | 0x200), "i" (ASI_M_FLUSH_PROBE));
230  	if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) {
231  		vaddr &= ~PGDIR_MASK;
232  		vaddr >>= PAGE_SHIFT;
233  		return val | (vaddr << 8);
234  	}
235  
236  	/* Probe segment. */
237  	__asm__ __volatile__("lda [%1] %2, %0\n\t"
238  			     : "=r" (val)
239  			     : "r" (vaddr | 0x100), "i" (ASI_M_FLUSH_PROBE));
240  	if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) {
241  		vaddr &= ~PMD_MASK;
242  		vaddr >>= PAGE_SHIFT;
243  		return val | (vaddr << 8);
244  	}
245  
246  	/* Probe page. */
247  	__asm__ __volatile__("lda [%1] %2, %0\n\t"
248  			     : "=r" (val)
249  			     : "r" (vaddr), "i" (ASI_M_FLUSH_PROBE));
250  	return val;
251  }
252  
253  #endif /* !__ASSEMBLY__ */
254  
255  #endif /* !(_SPARC_VIKING_H) */
256