1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 return READ_ONCE(msk->wnd_end);
56 }
57
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 if (sk->sk_prot == &tcpv6_prot)
62 return &inet6_stream_ops;
63 #endif
64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 return &inet_stream_ops;
66 }
67
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 struct mptcp_subflow_context *subflow;
71 struct sock *sk = (struct sock *)msk;
72 struct socket *ssock;
73 int err;
74
75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 if (err)
77 return err;
78
79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 WRITE_ONCE(msk->first, ssock->sk);
81 subflow = mptcp_subflow_ctx(ssock->sk);
82 list_add(&subflow->node, &msk->conn_list);
83 sock_hold(ssock->sk);
84 subflow->request_mptcp = 1;
85 subflow->subflow_id = msk->subflow_id++;
86
87 /* This is the first subflow, always with id 0 */
88 WRITE_ONCE(subflow->local_id, 0);
89 mptcp_sock_graft(msk->first, sk->sk_socket);
90 iput(SOCK_INODE(ssock));
91
92 return 0;
93 }
94
95 /* If the MPC handshake is not started, returns the first subflow,
96 * eventually allocating it.
97 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 struct sock *sk = (struct sock *)msk;
101 int ret;
102
103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 return ERR_PTR(-EINVAL);
105
106 if (!msk->first) {
107 ret = __mptcp_socket_create(msk);
108 if (ret)
109 return ERR_PTR(ret);
110
111 mptcp_sockopt_sync(msk, msk->first);
112 }
113
114 return msk->first;
115 }
116
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 sk_drops_add(sk, skb);
120 __kfree_skb(skb);
121 }
122
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
124 {
125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
126 mptcp_sk(sk)->rmem_fwd_alloc + size);
127 }
128
mptcp_rmem_charge(struct sock * sk,int size)129 static void mptcp_rmem_charge(struct sock *sk, int size)
130 {
131 mptcp_rmem_fwd_alloc_add(sk, -size);
132 }
133
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
135 struct sk_buff *from)
136 {
137 bool fragstolen;
138 int delta;
139
140 if (MPTCP_SKB_CB(from)->offset ||
141 !skb_try_coalesce(to, from, &fragstolen, &delta))
142 return false;
143
144 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
145 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
146 to->len, MPTCP_SKB_CB(from)->end_seq);
147 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
148
149 /* note the fwd memory can reach a negative value after accounting
150 * for the delta, but the later skb free will restore a non
151 * negative one
152 */
153 atomic_add(delta, &sk->sk_rmem_alloc);
154 mptcp_rmem_charge(sk, delta);
155 kfree_skb_partial(from, fragstolen);
156
157 return true;
158 }
159
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)160 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
161 struct sk_buff *from)
162 {
163 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
164 return false;
165
166 return mptcp_try_coalesce((struct sock *)msk, to, from);
167 }
168
__mptcp_rmem_reclaim(struct sock * sk,int amount)169 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
170 {
171 amount >>= PAGE_SHIFT;
172 mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
173 __sk_mem_reduce_allocated(sk, amount);
174 }
175
mptcp_rmem_uncharge(struct sock * sk,int size)176 static void mptcp_rmem_uncharge(struct sock *sk, int size)
177 {
178 struct mptcp_sock *msk = mptcp_sk(sk);
179 int reclaimable;
180
181 mptcp_rmem_fwd_alloc_add(sk, size);
182 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
183
184 /* see sk_mem_uncharge() for the rationale behind the following schema */
185 if (unlikely(reclaimable >= PAGE_SIZE))
186 __mptcp_rmem_reclaim(sk, reclaimable);
187 }
188
mptcp_rfree(struct sk_buff * skb)189 static void mptcp_rfree(struct sk_buff *skb)
190 {
191 unsigned int len = skb->truesize;
192 struct sock *sk = skb->sk;
193
194 atomic_sub(len, &sk->sk_rmem_alloc);
195 mptcp_rmem_uncharge(sk, len);
196 }
197
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)198 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
199 {
200 skb_orphan(skb);
201 skb->sk = sk;
202 skb->destructor = mptcp_rfree;
203 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
204 mptcp_rmem_charge(sk, skb->truesize);
205 }
206
207 /* "inspired" by tcp_data_queue_ofo(), main differences:
208 * - use mptcp seqs
209 * - don't cope with sacks
210 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)211 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
212 {
213 struct sock *sk = (struct sock *)msk;
214 struct rb_node **p, *parent;
215 u64 seq, end_seq, max_seq;
216 struct sk_buff *skb1;
217
218 seq = MPTCP_SKB_CB(skb)->map_seq;
219 end_seq = MPTCP_SKB_CB(skb)->end_seq;
220 max_seq = atomic64_read(&msk->rcv_wnd_sent);
221
222 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
223 RB_EMPTY_ROOT(&msk->out_of_order_queue));
224 if (after64(end_seq, max_seq)) {
225 /* out of window */
226 mptcp_drop(sk, skb);
227 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
228 (unsigned long long)end_seq - (unsigned long)max_seq,
229 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
230 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
231 return;
232 }
233
234 p = &msk->out_of_order_queue.rb_node;
235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
236 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
237 rb_link_node(&skb->rbnode, NULL, p);
238 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
239 msk->ooo_last_skb = skb;
240 goto end;
241 }
242
243 /* with 2 subflows, adding at end of ooo queue is quite likely
244 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
245 */
246 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
249 return;
250 }
251
252 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
253 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
255 parent = &msk->ooo_last_skb->rbnode;
256 p = &parent->rb_right;
257 goto insert;
258 }
259
260 /* Find place to insert this segment. Handle overlaps on the way. */
261 parent = NULL;
262 while (*p) {
263 parent = *p;
264 skb1 = rb_to_skb(parent);
265 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
266 p = &parent->rb_left;
267 continue;
268 }
269 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
271 /* All the bits are present. Drop. */
272 mptcp_drop(sk, skb);
273 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
274 return;
275 }
276 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
277 /* partial overlap:
278 * | skb |
279 * | skb1 |
280 * continue traversing
281 */
282 } else {
283 /* skb's seq == skb1's seq and skb covers skb1.
284 * Replace skb1 with skb.
285 */
286 rb_replace_node(&skb1->rbnode, &skb->rbnode,
287 &msk->out_of_order_queue);
288 mptcp_drop(sk, skb1);
289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
290 goto merge_right;
291 }
292 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
293 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
294 return;
295 }
296 p = &parent->rb_right;
297 }
298
299 insert:
300 /* Insert segment into RB tree. */
301 rb_link_node(&skb->rbnode, parent, p);
302 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
303
304 merge_right:
305 /* Remove other segments covered by skb. */
306 while ((skb1 = skb_rb_next(skb)) != NULL) {
307 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
308 break;
309 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
310 mptcp_drop(sk, skb1);
311 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
312 }
313 /* If there is no skb after us, we are the last_skb ! */
314 if (!skb1)
315 msk->ooo_last_skb = skb;
316
317 end:
318 skb_condense(skb);
319 mptcp_set_owner_r(skb, sk);
320 }
321
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)322 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
323 {
324 struct mptcp_sock *msk = mptcp_sk(sk);
325 int amt, amount;
326
327 if (size <= msk->rmem_fwd_alloc)
328 return true;
329
330 size -= msk->rmem_fwd_alloc;
331 amt = sk_mem_pages(size);
332 amount = amt << PAGE_SHIFT;
333 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
334 return false;
335
336 mptcp_rmem_fwd_alloc_add(sk, amount);
337 return true;
338 }
339
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
341 struct sk_buff *skb, unsigned int offset,
342 size_t copy_len)
343 {
344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
345 struct sock *sk = (struct sock *)msk;
346 struct sk_buff *tail;
347 bool has_rxtstamp;
348
349 __skb_unlink(skb, &ssk->sk_receive_queue);
350
351 skb_ext_reset(skb);
352 skb_orphan(skb);
353
354 /* try to fetch required memory from subflow */
355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
356 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
357 goto drop;
358 }
359
360 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
361
362 /* the skb map_seq accounts for the skb offset:
363 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
364 * value
365 */
366 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
367 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
368 MPTCP_SKB_CB(skb)->offset = offset;
369 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
370
371 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
372 /* in sequence */
373 msk->bytes_received += copy_len;
374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
375 tail = skb_peek_tail(&sk->sk_receive_queue);
376 if (tail && mptcp_try_coalesce(sk, tail, skb))
377 return true;
378
379 mptcp_set_owner_r(skb, sk);
380 __skb_queue_tail(&sk->sk_receive_queue, skb);
381 return true;
382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
383 mptcp_data_queue_ofo(msk, skb);
384 return false;
385 }
386
387 /* old data, keep it simple and drop the whole pkt, sender
388 * will retransmit as needed, if needed.
389 */
390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
391 drop:
392 mptcp_drop(sk, skb);
393 return false;
394 }
395
mptcp_stop_rtx_timer(struct sock * sk)396 static void mptcp_stop_rtx_timer(struct sock *sk)
397 {
398 struct inet_connection_sock *icsk = inet_csk(sk);
399
400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
401 mptcp_sk(sk)->timer_ival = 0;
402 }
403
mptcp_close_wake_up(struct sock * sk)404 static void mptcp_close_wake_up(struct sock *sk)
405 {
406 if (sock_flag(sk, SOCK_DEAD))
407 return;
408
409 sk->sk_state_change(sk);
410 if (sk->sk_shutdown == SHUTDOWN_MASK ||
411 sk->sk_state == TCP_CLOSE)
412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
413 else
414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
415 }
416
mptcp_pending_data_fin_ack(struct sock * sk)417 static bool mptcp_pending_data_fin_ack(struct sock *sk)
418 {
419 struct mptcp_sock *msk = mptcp_sk(sk);
420
421 return ((1 << sk->sk_state) &
422 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
423 msk->write_seq == READ_ONCE(msk->snd_una);
424 }
425
mptcp_check_data_fin_ack(struct sock * sk)426 static void mptcp_check_data_fin_ack(struct sock *sk)
427 {
428 struct mptcp_sock *msk = mptcp_sk(sk);
429
430 /* Look for an acknowledged DATA_FIN */
431 if (mptcp_pending_data_fin_ack(sk)) {
432 WRITE_ONCE(msk->snd_data_fin_enable, 0);
433
434 switch (sk->sk_state) {
435 case TCP_FIN_WAIT1:
436 mptcp_set_state(sk, TCP_FIN_WAIT2);
437 break;
438 case TCP_CLOSING:
439 case TCP_LAST_ACK:
440 mptcp_set_state(sk, TCP_CLOSE);
441 break;
442 }
443
444 mptcp_close_wake_up(sk);
445 }
446 }
447
mptcp_pending_data_fin(struct sock * sk,u64 * seq)448 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
449 {
450 struct mptcp_sock *msk = mptcp_sk(sk);
451
452 if (READ_ONCE(msk->rcv_data_fin) &&
453 ((1 << sk->sk_state) &
454 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
455 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
456
457 if (msk->ack_seq == rcv_data_fin_seq) {
458 if (seq)
459 *seq = rcv_data_fin_seq;
460
461 return true;
462 }
463 }
464
465 return false;
466 }
467
mptcp_set_datafin_timeout(struct sock * sk)468 static void mptcp_set_datafin_timeout(struct sock *sk)
469 {
470 struct inet_connection_sock *icsk = inet_csk(sk);
471 u32 retransmits;
472
473 retransmits = min_t(u32, icsk->icsk_retransmits,
474 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
475
476 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
477 }
478
__mptcp_set_timeout(struct sock * sk,long tout)479 static void __mptcp_set_timeout(struct sock *sk, long tout)
480 {
481 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
482 }
483
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)484 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
485 {
486 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
487
488 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
489 inet_csk(ssk)->icsk_timeout - jiffies : 0;
490 }
491
mptcp_set_timeout(struct sock * sk)492 static void mptcp_set_timeout(struct sock *sk)
493 {
494 struct mptcp_subflow_context *subflow;
495 long tout = 0;
496
497 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
498 tout = max(tout, mptcp_timeout_from_subflow(subflow));
499 __mptcp_set_timeout(sk, tout);
500 }
501
tcp_can_send_ack(const struct sock * ssk)502 static inline bool tcp_can_send_ack(const struct sock *ssk)
503 {
504 return !((1 << inet_sk_state_load(ssk)) &
505 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
506 }
507
__mptcp_subflow_send_ack(struct sock * ssk)508 void __mptcp_subflow_send_ack(struct sock *ssk)
509 {
510 if (tcp_can_send_ack(ssk))
511 tcp_send_ack(ssk);
512 }
513
mptcp_subflow_send_ack(struct sock * ssk)514 static void mptcp_subflow_send_ack(struct sock *ssk)
515 {
516 bool slow;
517
518 slow = lock_sock_fast(ssk);
519 __mptcp_subflow_send_ack(ssk);
520 unlock_sock_fast(ssk, slow);
521 }
522
mptcp_send_ack(struct mptcp_sock * msk)523 static void mptcp_send_ack(struct mptcp_sock *msk)
524 {
525 struct mptcp_subflow_context *subflow;
526
527 mptcp_for_each_subflow(msk, subflow)
528 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
529 }
530
mptcp_subflow_cleanup_rbuf(struct sock * ssk)531 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
532 {
533 bool slow;
534
535 slow = lock_sock_fast(ssk);
536 if (tcp_can_send_ack(ssk))
537 tcp_cleanup_rbuf(ssk, 1);
538 unlock_sock_fast(ssk, slow);
539 }
540
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)541 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
542 {
543 const struct inet_connection_sock *icsk = inet_csk(ssk);
544 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
545 const struct tcp_sock *tp = tcp_sk(ssk);
546
547 return (ack_pending & ICSK_ACK_SCHED) &&
548 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
549 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
550 (rx_empty && ack_pending &
551 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
552 }
553
mptcp_cleanup_rbuf(struct mptcp_sock * msk)554 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
555 {
556 int old_space = READ_ONCE(msk->old_wspace);
557 struct mptcp_subflow_context *subflow;
558 struct sock *sk = (struct sock *)msk;
559 int space = __mptcp_space(sk);
560 bool cleanup, rx_empty;
561
562 cleanup = (space > 0) && (space >= (old_space << 1));
563 rx_empty = !__mptcp_rmem(sk);
564
565 mptcp_for_each_subflow(msk, subflow) {
566 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
567
568 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
569 mptcp_subflow_cleanup_rbuf(ssk);
570 }
571 }
572
mptcp_check_data_fin(struct sock * sk)573 static bool mptcp_check_data_fin(struct sock *sk)
574 {
575 struct mptcp_sock *msk = mptcp_sk(sk);
576 u64 rcv_data_fin_seq;
577 bool ret = false;
578
579 /* Need to ack a DATA_FIN received from a peer while this side
580 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
581 * msk->rcv_data_fin was set when parsing the incoming options
582 * at the subflow level and the msk lock was not held, so this
583 * is the first opportunity to act on the DATA_FIN and change
584 * the msk state.
585 *
586 * If we are caught up to the sequence number of the incoming
587 * DATA_FIN, send the DATA_ACK now and do state transition. If
588 * not caught up, do nothing and let the recv code send DATA_ACK
589 * when catching up.
590 */
591
592 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
593 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
594 WRITE_ONCE(msk->rcv_data_fin, 0);
595
596 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
597 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
598
599 switch (sk->sk_state) {
600 case TCP_ESTABLISHED:
601 mptcp_set_state(sk, TCP_CLOSE_WAIT);
602 break;
603 case TCP_FIN_WAIT1:
604 mptcp_set_state(sk, TCP_CLOSING);
605 break;
606 case TCP_FIN_WAIT2:
607 mptcp_set_state(sk, TCP_CLOSE);
608 break;
609 default:
610 /* Other states not expected */
611 WARN_ON_ONCE(1);
612 break;
613 }
614
615 ret = true;
616 if (!__mptcp_check_fallback(msk))
617 mptcp_send_ack(msk);
618 mptcp_close_wake_up(sk);
619 }
620 return ret;
621 }
622
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)623 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
624 {
625 if (READ_ONCE(msk->allow_infinite_fallback)) {
626 MPTCP_INC_STATS(sock_net(ssk),
627 MPTCP_MIB_DSSCORRUPTIONFALLBACK);
628 mptcp_do_fallback(ssk);
629 } else {
630 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
631 mptcp_subflow_reset(ssk);
632 }
633 }
634
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
636 struct sock *ssk,
637 unsigned int *bytes)
638 {
639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
640 struct sock *sk = (struct sock *)msk;
641 unsigned int moved = 0;
642 bool more_data_avail;
643 struct tcp_sock *tp;
644 bool done = false;
645 int sk_rbuf;
646
647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
648
649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
651
652 if (unlikely(ssk_rbuf > sk_rbuf)) {
653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
654 sk_rbuf = ssk_rbuf;
655 }
656 }
657
658 pr_debug("msk=%p ssk=%p\n", msk, ssk);
659 tp = tcp_sk(ssk);
660 do {
661 u32 map_remaining, offset;
662 u32 seq = tp->copied_seq;
663 struct sk_buff *skb;
664 bool fin;
665
666 /* try to move as much data as available */
667 map_remaining = subflow->map_data_len -
668 mptcp_subflow_get_map_offset(subflow);
669
670 skb = skb_peek(&ssk->sk_receive_queue);
671 if (!skb) {
672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
673 * a different CPU can have already processed the pending
674 * data, stop here or we can enter an infinite loop
675 */
676 if (!moved)
677 done = true;
678 break;
679 }
680
681 if (__mptcp_check_fallback(msk)) {
682 /* Under fallback skbs have no MPTCP extension and TCP could
683 * collapse them between the dummy map creation and the
684 * current dequeue. Be sure to adjust the map size.
685 */
686 map_remaining = skb->len;
687 subflow->map_data_len = skb->len;
688 }
689
690 offset = seq - TCP_SKB_CB(skb)->seq;
691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
692 if (fin) {
693 done = true;
694 seq++;
695 }
696
697 if (offset < skb->len) {
698 size_t len = skb->len - offset;
699
700 if (tp->urg_data)
701 done = true;
702
703 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
704 moved += len;
705 seq += len;
706
707 if (unlikely(map_remaining < len)) {
708 DEBUG_NET_WARN_ON_ONCE(1);
709 mptcp_dss_corruption(msk, ssk);
710 }
711 } else {
712 if (unlikely(!fin)) {
713 DEBUG_NET_WARN_ON_ONCE(1);
714 mptcp_dss_corruption(msk, ssk);
715 }
716
717 sk_eat_skb(ssk, skb);
718 done = true;
719 }
720
721 WRITE_ONCE(tp->copied_seq, seq);
722 more_data_avail = mptcp_subflow_data_available(ssk);
723
724 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
725 done = true;
726 break;
727 }
728 } while (more_data_avail);
729
730 *bytes += moved;
731 return done;
732 }
733
__mptcp_ofo_queue(struct mptcp_sock * msk)734 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
735 {
736 struct sock *sk = (struct sock *)msk;
737 struct sk_buff *skb, *tail;
738 bool moved = false;
739 struct rb_node *p;
740 u64 end_seq;
741
742 p = rb_first(&msk->out_of_order_queue);
743 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
744 while (p) {
745 skb = rb_to_skb(p);
746 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
747 break;
748
749 p = rb_next(p);
750 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
751
752 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
753 msk->ack_seq))) {
754 mptcp_drop(sk, skb);
755 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
756 continue;
757 }
758
759 end_seq = MPTCP_SKB_CB(skb)->end_seq;
760 tail = skb_peek_tail(&sk->sk_receive_queue);
761 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
762 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
763
764 /* skip overlapping data, if any */
765 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
766 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
767 delta);
768 MPTCP_SKB_CB(skb)->offset += delta;
769 MPTCP_SKB_CB(skb)->map_seq += delta;
770 __skb_queue_tail(&sk->sk_receive_queue, skb);
771 }
772 msk->bytes_received += end_seq - msk->ack_seq;
773 msk->ack_seq = end_seq;
774 moved = true;
775 }
776 return moved;
777 }
778
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)779 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
780 {
781 int err = sock_error(ssk);
782 int ssk_state;
783
784 if (!err)
785 return false;
786
787 /* only propagate errors on fallen-back sockets or
788 * on MPC connect
789 */
790 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
791 return false;
792
793 /* We need to propagate only transition to CLOSE state.
794 * Orphaned socket will see such state change via
795 * subflow_sched_work_if_closed() and that path will properly
796 * destroy the msk as needed.
797 */
798 ssk_state = inet_sk_state_load(ssk);
799 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
800 mptcp_set_state(sk, ssk_state);
801 WRITE_ONCE(sk->sk_err, -err);
802
803 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
804 smp_wmb();
805 sk_error_report(sk);
806 return true;
807 }
808
__mptcp_error_report(struct sock * sk)809 void __mptcp_error_report(struct sock *sk)
810 {
811 struct mptcp_subflow_context *subflow;
812 struct mptcp_sock *msk = mptcp_sk(sk);
813
814 mptcp_for_each_subflow(msk, subflow)
815 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
816 break;
817 }
818
819 /* In most cases we will be able to lock the mptcp socket. If its already
820 * owned, we need to defer to the work queue to avoid ABBA deadlock.
821 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)822 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
823 {
824 struct sock *sk = (struct sock *)msk;
825 unsigned int moved = 0;
826
827 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
828 __mptcp_ofo_queue(msk);
829 if (unlikely(ssk->sk_err)) {
830 if (!sock_owned_by_user(sk))
831 __mptcp_error_report(sk);
832 else
833 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
834 }
835
836 /* If the moves have caught up with the DATA_FIN sequence number
837 * it's time to ack the DATA_FIN and change socket state, but
838 * this is not a good place to change state. Let the workqueue
839 * do it.
840 */
841 if (mptcp_pending_data_fin(sk, NULL))
842 mptcp_schedule_work(sk);
843 return moved > 0;
844 }
845
mptcp_data_ready(struct sock * sk,struct sock * ssk)846 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
847 {
848 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
849 struct mptcp_sock *msk = mptcp_sk(sk);
850 int sk_rbuf, ssk_rbuf;
851
852 /* The peer can send data while we are shutting down this
853 * subflow at msk destruction time, but we must avoid enqueuing
854 * more data to the msk receive queue
855 */
856 if (unlikely(subflow->disposable))
857 return;
858
859 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
860 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
861 if (unlikely(ssk_rbuf > sk_rbuf))
862 sk_rbuf = ssk_rbuf;
863
864 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
865 if (__mptcp_rmem(sk) > sk_rbuf)
866 return;
867
868 /* Wake-up the reader only for in-sequence data */
869 mptcp_data_lock(sk);
870 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
871 sk->sk_data_ready(sk);
872 mptcp_data_unlock(sk);
873 }
874
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)875 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
876 {
877 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
878 WRITE_ONCE(msk->allow_infinite_fallback, false);
879 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
880 }
881
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)882 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
883 {
884 struct sock *sk = (struct sock *)msk;
885
886 if (sk->sk_state != TCP_ESTABLISHED)
887 return false;
888
889 /* attach to msk socket only after we are sure we will deal with it
890 * at close time
891 */
892 if (sk->sk_socket && !ssk->sk_socket)
893 mptcp_sock_graft(ssk, sk->sk_socket);
894
895 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
896 mptcp_sockopt_sync_locked(msk, ssk);
897 mptcp_subflow_joined(msk, ssk);
898 mptcp_stop_tout_timer(sk);
899 __mptcp_propagate_sndbuf(sk, ssk);
900 return true;
901 }
902
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)903 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
904 {
905 struct mptcp_subflow_context *tmp, *subflow;
906 struct mptcp_sock *msk = mptcp_sk(sk);
907
908 list_for_each_entry_safe(subflow, tmp, join_list, node) {
909 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
910 bool slow = lock_sock_fast(ssk);
911
912 list_move_tail(&subflow->node, &msk->conn_list);
913 if (!__mptcp_finish_join(msk, ssk))
914 mptcp_subflow_reset(ssk);
915 unlock_sock_fast(ssk, slow);
916 }
917 }
918
mptcp_rtx_timer_pending(struct sock * sk)919 static bool mptcp_rtx_timer_pending(struct sock *sk)
920 {
921 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
922 }
923
mptcp_reset_rtx_timer(struct sock * sk)924 static void mptcp_reset_rtx_timer(struct sock *sk)
925 {
926 struct inet_connection_sock *icsk = inet_csk(sk);
927 unsigned long tout;
928
929 /* prevent rescheduling on close */
930 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
931 return;
932
933 tout = mptcp_sk(sk)->timer_ival;
934 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
935 }
936
mptcp_schedule_work(struct sock * sk)937 bool mptcp_schedule_work(struct sock *sk)
938 {
939 if (inet_sk_state_load(sk) != TCP_CLOSE &&
940 schedule_work(&mptcp_sk(sk)->work)) {
941 /* each subflow already holds a reference to the sk, and the
942 * workqueue is invoked by a subflow, so sk can't go away here.
943 */
944 sock_hold(sk);
945 return true;
946 }
947 return false;
948 }
949
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)950 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
951 {
952 struct mptcp_subflow_context *subflow;
953
954 msk_owned_by_me(msk);
955
956 mptcp_for_each_subflow(msk, subflow) {
957 if (READ_ONCE(subflow->data_avail))
958 return mptcp_subflow_tcp_sock(subflow);
959 }
960
961 return NULL;
962 }
963
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)964 static bool mptcp_skb_can_collapse_to(u64 write_seq,
965 const struct sk_buff *skb,
966 const struct mptcp_ext *mpext)
967 {
968 if (!tcp_skb_can_collapse_to(skb))
969 return false;
970
971 /* can collapse only if MPTCP level sequence is in order and this
972 * mapping has not been xmitted yet
973 */
974 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
975 !mpext->frozen;
976 }
977
978 /* we can append data to the given data frag if:
979 * - there is space available in the backing page_frag
980 * - the data frag tail matches the current page_frag free offset
981 * - the data frag end sequence number matches the current write seq
982 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)983 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
984 const struct page_frag *pfrag,
985 const struct mptcp_data_frag *df)
986 {
987 return df && pfrag->page == df->page &&
988 pfrag->size - pfrag->offset > 0 &&
989 pfrag->offset == (df->offset + df->data_len) &&
990 df->data_seq + df->data_len == msk->write_seq;
991 }
992
dfrag_uncharge(struct sock * sk,int len)993 static void dfrag_uncharge(struct sock *sk, int len)
994 {
995 sk_mem_uncharge(sk, len);
996 sk_wmem_queued_add(sk, -len);
997 }
998
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)999 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1000 {
1001 int len = dfrag->data_len + dfrag->overhead;
1002
1003 list_del(&dfrag->list);
1004 dfrag_uncharge(sk, len);
1005 put_page(dfrag->page);
1006 }
1007
__mptcp_clean_una(struct sock * sk)1008 static void __mptcp_clean_una(struct sock *sk)
1009 {
1010 struct mptcp_sock *msk = mptcp_sk(sk);
1011 struct mptcp_data_frag *dtmp, *dfrag;
1012 u64 snd_una;
1013
1014 snd_una = msk->snd_una;
1015 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1016 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1017 break;
1018
1019 if (unlikely(dfrag == msk->first_pending)) {
1020 /* in recovery mode can see ack after the current snd head */
1021 if (WARN_ON_ONCE(!msk->recovery))
1022 break;
1023
1024 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1025 }
1026
1027 dfrag_clear(sk, dfrag);
1028 }
1029
1030 dfrag = mptcp_rtx_head(sk);
1031 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1032 u64 delta = snd_una - dfrag->data_seq;
1033
1034 /* prevent wrap around in recovery mode */
1035 if (unlikely(delta > dfrag->already_sent)) {
1036 if (WARN_ON_ONCE(!msk->recovery))
1037 goto out;
1038 if (WARN_ON_ONCE(delta > dfrag->data_len))
1039 goto out;
1040 dfrag->already_sent += delta - dfrag->already_sent;
1041 }
1042
1043 dfrag->data_seq += delta;
1044 dfrag->offset += delta;
1045 dfrag->data_len -= delta;
1046 dfrag->already_sent -= delta;
1047
1048 dfrag_uncharge(sk, delta);
1049 }
1050
1051 /* all retransmitted data acked, recovery completed */
1052 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1053 msk->recovery = false;
1054
1055 out:
1056 if (snd_una == READ_ONCE(msk->snd_nxt) &&
1057 snd_una == READ_ONCE(msk->write_seq)) {
1058 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1059 mptcp_stop_rtx_timer(sk);
1060 } else {
1061 mptcp_reset_rtx_timer(sk);
1062 }
1063 }
1064
__mptcp_clean_una_wakeup(struct sock * sk)1065 static void __mptcp_clean_una_wakeup(struct sock *sk)
1066 {
1067 lockdep_assert_held_once(&sk->sk_lock.slock);
1068
1069 __mptcp_clean_una(sk);
1070 mptcp_write_space(sk);
1071 }
1072
mptcp_clean_una_wakeup(struct sock * sk)1073 static void mptcp_clean_una_wakeup(struct sock *sk)
1074 {
1075 mptcp_data_lock(sk);
1076 __mptcp_clean_una_wakeup(sk);
1077 mptcp_data_unlock(sk);
1078 }
1079
mptcp_enter_memory_pressure(struct sock * sk)1080 static void mptcp_enter_memory_pressure(struct sock *sk)
1081 {
1082 struct mptcp_subflow_context *subflow;
1083 struct mptcp_sock *msk = mptcp_sk(sk);
1084 bool first = true;
1085
1086 mptcp_for_each_subflow(msk, subflow) {
1087 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1088
1089 if (first)
1090 tcp_enter_memory_pressure(ssk);
1091 sk_stream_moderate_sndbuf(ssk);
1092
1093 first = false;
1094 }
1095 __mptcp_sync_sndbuf(sk);
1096 }
1097
1098 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1099 * data
1100 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1101 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1102 {
1103 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1104 pfrag, sk->sk_allocation)))
1105 return true;
1106
1107 mptcp_enter_memory_pressure(sk);
1108 return false;
1109 }
1110
1111 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1112 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1113 int orig_offset)
1114 {
1115 int offset = ALIGN(orig_offset, sizeof(long));
1116 struct mptcp_data_frag *dfrag;
1117
1118 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1119 dfrag->data_len = 0;
1120 dfrag->data_seq = msk->write_seq;
1121 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1122 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1123 dfrag->already_sent = 0;
1124 dfrag->page = pfrag->page;
1125
1126 return dfrag;
1127 }
1128
1129 struct mptcp_sendmsg_info {
1130 int mss_now;
1131 int size_goal;
1132 u16 limit;
1133 u16 sent;
1134 unsigned int flags;
1135 bool data_lock_held;
1136 };
1137
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1138 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1139 u64 data_seq, int avail_size)
1140 {
1141 u64 window_end = mptcp_wnd_end(msk);
1142 u64 mptcp_snd_wnd;
1143
1144 if (__mptcp_check_fallback(msk))
1145 return avail_size;
1146
1147 mptcp_snd_wnd = window_end - data_seq;
1148 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1149
1150 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1151 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1152 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1153 }
1154
1155 return avail_size;
1156 }
1157
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1158 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1159 {
1160 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1161
1162 if (!mpext)
1163 return false;
1164 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1165 return true;
1166 }
1167
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1168 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1169 {
1170 struct sk_buff *skb;
1171
1172 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1173 if (likely(skb)) {
1174 if (likely(__mptcp_add_ext(skb, gfp))) {
1175 skb_reserve(skb, MAX_TCP_HEADER);
1176 skb->ip_summed = CHECKSUM_PARTIAL;
1177 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1178 return skb;
1179 }
1180 __kfree_skb(skb);
1181 } else {
1182 mptcp_enter_memory_pressure(sk);
1183 }
1184 return NULL;
1185 }
1186
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1187 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1188 {
1189 struct sk_buff *skb;
1190
1191 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1192 if (!skb)
1193 return NULL;
1194
1195 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1196 tcp_skb_entail(ssk, skb);
1197 return skb;
1198 }
1199 tcp_skb_tsorted_anchor_cleanup(skb);
1200 kfree_skb(skb);
1201 return NULL;
1202 }
1203
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1204 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1205 {
1206 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1207
1208 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1209 }
1210
1211 /* note: this always recompute the csum on the whole skb, even
1212 * if we just appended a single frag. More status info needed
1213 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1214 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1215 {
1216 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1217 __wsum csum = ~csum_unfold(mpext->csum);
1218 int offset = skb->len - added;
1219
1220 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1221 }
1222
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1223 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1224 struct sock *ssk,
1225 struct mptcp_ext *mpext)
1226 {
1227 if (!mpext)
1228 return;
1229
1230 mpext->infinite_map = 1;
1231 mpext->data_len = 0;
1232
1233 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1234 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1235 pr_fallback(msk);
1236 mptcp_do_fallback(ssk);
1237 }
1238
1239 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1240
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1241 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1242 struct mptcp_data_frag *dfrag,
1243 struct mptcp_sendmsg_info *info)
1244 {
1245 u64 data_seq = dfrag->data_seq + info->sent;
1246 int offset = dfrag->offset + info->sent;
1247 struct mptcp_sock *msk = mptcp_sk(sk);
1248 bool zero_window_probe = false;
1249 struct mptcp_ext *mpext = NULL;
1250 bool can_coalesce = false;
1251 bool reuse_skb = true;
1252 struct sk_buff *skb;
1253 size_t copy;
1254 int i;
1255
1256 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1257 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1258
1259 if (WARN_ON_ONCE(info->sent > info->limit ||
1260 info->limit > dfrag->data_len))
1261 return 0;
1262
1263 if (unlikely(!__tcp_can_send(ssk)))
1264 return -EAGAIN;
1265
1266 /* compute send limit */
1267 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1268 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1269 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1270 copy = info->size_goal;
1271
1272 skb = tcp_write_queue_tail(ssk);
1273 if (skb && copy > skb->len) {
1274 /* Limit the write to the size available in the
1275 * current skb, if any, so that we create at most a new skb.
1276 * Explicitly tells TCP internals to avoid collapsing on later
1277 * queue management operation, to avoid breaking the ext <->
1278 * SSN association set here
1279 */
1280 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1281 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1282 TCP_SKB_CB(skb)->eor = 1;
1283 tcp_mark_push(tcp_sk(ssk), skb);
1284 goto alloc_skb;
1285 }
1286
1287 i = skb_shinfo(skb)->nr_frags;
1288 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1289 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1290 tcp_mark_push(tcp_sk(ssk), skb);
1291 goto alloc_skb;
1292 }
1293
1294 copy -= skb->len;
1295 } else {
1296 alloc_skb:
1297 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1298 if (!skb)
1299 return -ENOMEM;
1300
1301 i = skb_shinfo(skb)->nr_frags;
1302 reuse_skb = false;
1303 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1304 }
1305
1306 /* Zero window and all data acked? Probe. */
1307 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1308 if (copy == 0) {
1309 u64 snd_una = READ_ONCE(msk->snd_una);
1310
1311 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1312 tcp_remove_empty_skb(ssk);
1313 return 0;
1314 }
1315
1316 zero_window_probe = true;
1317 data_seq = snd_una - 1;
1318 copy = 1;
1319 }
1320
1321 copy = min_t(size_t, copy, info->limit - info->sent);
1322 if (!sk_wmem_schedule(ssk, copy)) {
1323 tcp_remove_empty_skb(ssk);
1324 return -ENOMEM;
1325 }
1326
1327 if (can_coalesce) {
1328 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1329 } else {
1330 get_page(dfrag->page);
1331 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1332 }
1333
1334 skb->len += copy;
1335 skb->data_len += copy;
1336 skb->truesize += copy;
1337 sk_wmem_queued_add(ssk, copy);
1338 sk_mem_charge(ssk, copy);
1339 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1340 TCP_SKB_CB(skb)->end_seq += copy;
1341 tcp_skb_pcount_set(skb, 0);
1342
1343 /* on skb reuse we just need to update the DSS len */
1344 if (reuse_skb) {
1345 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1346 mpext->data_len += copy;
1347 goto out;
1348 }
1349
1350 memset(mpext, 0, sizeof(*mpext));
1351 mpext->data_seq = data_seq;
1352 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1353 mpext->data_len = copy;
1354 mpext->use_map = 1;
1355 mpext->dsn64 = 1;
1356
1357 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1358 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1359 mpext->dsn64);
1360
1361 if (zero_window_probe) {
1362 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1363 mpext->frozen = 1;
1364 if (READ_ONCE(msk->csum_enabled))
1365 mptcp_update_data_checksum(skb, copy);
1366 tcp_push_pending_frames(ssk);
1367 return 0;
1368 }
1369 out:
1370 if (READ_ONCE(msk->csum_enabled))
1371 mptcp_update_data_checksum(skb, copy);
1372 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1373 mptcp_update_infinite_map(msk, ssk, mpext);
1374 trace_mptcp_sendmsg_frag(mpext);
1375 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1376 return copy;
1377 }
1378
1379 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1380 sizeof(struct tcphdr) - \
1381 MAX_TCP_OPTION_SPACE - \
1382 sizeof(struct ipv6hdr) - \
1383 sizeof(struct frag_hdr))
1384
1385 struct subflow_send_info {
1386 struct sock *ssk;
1387 u64 linger_time;
1388 };
1389
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1390 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1391 {
1392 if (!subflow->stale)
1393 return;
1394
1395 subflow->stale = 0;
1396 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1397 }
1398
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1399 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1400 {
1401 if (unlikely(subflow->stale)) {
1402 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1403
1404 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1405 return false;
1406
1407 mptcp_subflow_set_active(subflow);
1408 }
1409 return __mptcp_subflow_active(subflow);
1410 }
1411
1412 #define SSK_MODE_ACTIVE 0
1413 #define SSK_MODE_BACKUP 1
1414 #define SSK_MODE_MAX 2
1415
1416 /* implement the mptcp packet scheduler;
1417 * returns the subflow that will transmit the next DSS
1418 * additionally updates the rtx timeout
1419 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1420 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1421 {
1422 struct subflow_send_info send_info[SSK_MODE_MAX];
1423 struct mptcp_subflow_context *subflow;
1424 struct sock *sk = (struct sock *)msk;
1425 u32 pace, burst, wmem;
1426 int i, nr_active = 0;
1427 struct sock *ssk;
1428 u64 linger_time;
1429 long tout = 0;
1430
1431 /* pick the subflow with the lower wmem/wspace ratio */
1432 for (i = 0; i < SSK_MODE_MAX; ++i) {
1433 send_info[i].ssk = NULL;
1434 send_info[i].linger_time = -1;
1435 }
1436
1437 mptcp_for_each_subflow(msk, subflow) {
1438 bool backup = subflow->backup || subflow->request_bkup;
1439
1440 trace_mptcp_subflow_get_send(subflow);
1441 ssk = mptcp_subflow_tcp_sock(subflow);
1442 if (!mptcp_subflow_active(subflow))
1443 continue;
1444
1445 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1446 nr_active += !backup;
1447 pace = subflow->avg_pacing_rate;
1448 if (unlikely(!pace)) {
1449 /* init pacing rate from socket */
1450 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1451 pace = subflow->avg_pacing_rate;
1452 if (!pace)
1453 continue;
1454 }
1455
1456 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1457 if (linger_time < send_info[backup].linger_time) {
1458 send_info[backup].ssk = ssk;
1459 send_info[backup].linger_time = linger_time;
1460 }
1461 }
1462 __mptcp_set_timeout(sk, tout);
1463
1464 /* pick the best backup if no other subflow is active */
1465 if (!nr_active)
1466 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1467
1468 /* According to the blest algorithm, to avoid HoL blocking for the
1469 * faster flow, we need to:
1470 * - estimate the faster flow linger time
1471 * - use the above to estimate the amount of byte transferred
1472 * by the faster flow
1473 * - check that the amount of queued data is greter than the above,
1474 * otherwise do not use the picked, slower, subflow
1475 * We select the subflow with the shorter estimated time to flush
1476 * the queued mem, which basically ensure the above. We just need
1477 * to check that subflow has a non empty cwin.
1478 */
1479 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1480 if (!ssk || !sk_stream_memory_free(ssk))
1481 return NULL;
1482
1483 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1484 wmem = READ_ONCE(ssk->sk_wmem_queued);
1485 if (!burst)
1486 return ssk;
1487
1488 subflow = mptcp_subflow_ctx(ssk);
1489 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1490 READ_ONCE(ssk->sk_pacing_rate) * burst,
1491 burst + wmem);
1492 msk->snd_burst = burst;
1493 return ssk;
1494 }
1495
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1496 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1497 {
1498 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1499 release_sock(ssk);
1500 }
1501
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1502 static void mptcp_update_post_push(struct mptcp_sock *msk,
1503 struct mptcp_data_frag *dfrag,
1504 u32 sent)
1505 {
1506 u64 snd_nxt_new = dfrag->data_seq;
1507
1508 dfrag->already_sent += sent;
1509
1510 msk->snd_burst -= sent;
1511
1512 snd_nxt_new += dfrag->already_sent;
1513
1514 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1515 * is recovering after a failover. In that event, this re-sends
1516 * old segments.
1517 *
1518 * Thus compute snd_nxt_new candidate based on
1519 * the dfrag->data_seq that was sent and the data
1520 * that has been handed to the subflow for transmission
1521 * and skip update in case it was old dfrag.
1522 */
1523 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1524 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1525 msk->snd_nxt = snd_nxt_new;
1526 }
1527 }
1528
mptcp_check_and_set_pending(struct sock * sk)1529 void mptcp_check_and_set_pending(struct sock *sk)
1530 {
1531 if (mptcp_send_head(sk)) {
1532 mptcp_data_lock(sk);
1533 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1534 mptcp_data_unlock(sk);
1535 }
1536 }
1537
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1538 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1539 struct mptcp_sendmsg_info *info)
1540 {
1541 struct mptcp_sock *msk = mptcp_sk(sk);
1542 struct mptcp_data_frag *dfrag;
1543 int len, copied = 0, err = 0;
1544
1545 while ((dfrag = mptcp_send_head(sk))) {
1546 info->sent = dfrag->already_sent;
1547 info->limit = dfrag->data_len;
1548 len = dfrag->data_len - dfrag->already_sent;
1549 while (len > 0) {
1550 int ret = 0;
1551
1552 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1553 if (ret <= 0) {
1554 err = copied ? : ret;
1555 goto out;
1556 }
1557
1558 info->sent += ret;
1559 copied += ret;
1560 len -= ret;
1561
1562 mptcp_update_post_push(msk, dfrag, ret);
1563 }
1564 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1565
1566 if (msk->snd_burst <= 0 ||
1567 !sk_stream_memory_free(ssk) ||
1568 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1569 err = copied;
1570 goto out;
1571 }
1572 mptcp_set_timeout(sk);
1573 }
1574 err = copied;
1575
1576 out:
1577 return err;
1578 }
1579
__mptcp_push_pending(struct sock * sk,unsigned int flags)1580 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1581 {
1582 struct sock *prev_ssk = NULL, *ssk = NULL;
1583 struct mptcp_sock *msk = mptcp_sk(sk);
1584 struct mptcp_sendmsg_info info = {
1585 .flags = flags,
1586 };
1587 bool do_check_data_fin = false;
1588 int push_count = 1;
1589
1590 while (mptcp_send_head(sk) && (push_count > 0)) {
1591 struct mptcp_subflow_context *subflow;
1592 int ret = 0;
1593
1594 if (mptcp_sched_get_send(msk))
1595 break;
1596
1597 push_count = 0;
1598
1599 mptcp_for_each_subflow(msk, subflow) {
1600 if (READ_ONCE(subflow->scheduled)) {
1601 mptcp_subflow_set_scheduled(subflow, false);
1602
1603 prev_ssk = ssk;
1604 ssk = mptcp_subflow_tcp_sock(subflow);
1605 if (ssk != prev_ssk) {
1606 /* First check. If the ssk has changed since
1607 * the last round, release prev_ssk
1608 */
1609 if (prev_ssk)
1610 mptcp_push_release(prev_ssk, &info);
1611
1612 /* Need to lock the new subflow only if different
1613 * from the previous one, otherwise we are still
1614 * helding the relevant lock
1615 */
1616 lock_sock(ssk);
1617 }
1618
1619 push_count++;
1620
1621 ret = __subflow_push_pending(sk, ssk, &info);
1622 if (ret <= 0) {
1623 if (ret != -EAGAIN ||
1624 (1 << ssk->sk_state) &
1625 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1626 push_count--;
1627 continue;
1628 }
1629 do_check_data_fin = true;
1630 }
1631 }
1632 }
1633
1634 /* at this point we held the socket lock for the last subflow we used */
1635 if (ssk)
1636 mptcp_push_release(ssk, &info);
1637
1638 /* ensure the rtx timer is running */
1639 if (!mptcp_rtx_timer_pending(sk))
1640 mptcp_reset_rtx_timer(sk);
1641 if (do_check_data_fin)
1642 mptcp_check_send_data_fin(sk);
1643 }
1644
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1645 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1646 {
1647 struct mptcp_sock *msk = mptcp_sk(sk);
1648 struct mptcp_sendmsg_info info = {
1649 .data_lock_held = true,
1650 };
1651 bool keep_pushing = true;
1652 struct sock *xmit_ssk;
1653 int copied = 0;
1654
1655 info.flags = 0;
1656 while (mptcp_send_head(sk) && keep_pushing) {
1657 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1658 int ret = 0;
1659
1660 /* check for a different subflow usage only after
1661 * spooling the first chunk of data
1662 */
1663 if (first) {
1664 mptcp_subflow_set_scheduled(subflow, false);
1665 ret = __subflow_push_pending(sk, ssk, &info);
1666 first = false;
1667 if (ret <= 0)
1668 break;
1669 copied += ret;
1670 continue;
1671 }
1672
1673 if (mptcp_sched_get_send(msk))
1674 goto out;
1675
1676 if (READ_ONCE(subflow->scheduled)) {
1677 mptcp_subflow_set_scheduled(subflow, false);
1678 ret = __subflow_push_pending(sk, ssk, &info);
1679 if (ret <= 0)
1680 keep_pushing = false;
1681 copied += ret;
1682 }
1683
1684 mptcp_for_each_subflow(msk, subflow) {
1685 if (READ_ONCE(subflow->scheduled)) {
1686 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1687 if (xmit_ssk != ssk) {
1688 mptcp_subflow_delegate(subflow,
1689 MPTCP_DELEGATE_SEND);
1690 keep_pushing = false;
1691 }
1692 }
1693 }
1694 }
1695
1696 out:
1697 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1698 * not going to flush it via release_sock()
1699 */
1700 if (copied) {
1701 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1702 info.size_goal);
1703 if (!mptcp_rtx_timer_pending(sk))
1704 mptcp_reset_rtx_timer(sk);
1705
1706 if (msk->snd_data_fin_enable &&
1707 msk->snd_nxt + 1 == msk->write_seq)
1708 mptcp_schedule_work(sk);
1709 }
1710 }
1711
mptcp_set_nospace(struct sock * sk)1712 static void mptcp_set_nospace(struct sock *sk)
1713 {
1714 /* enable autotune */
1715 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1716
1717 /* will be cleared on avail space */
1718 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1719 }
1720
1721 static int mptcp_disconnect(struct sock *sk, int flags);
1722
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1723 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1724 size_t len, int *copied_syn)
1725 {
1726 unsigned int saved_flags = msg->msg_flags;
1727 struct mptcp_sock *msk = mptcp_sk(sk);
1728 struct sock *ssk;
1729 int ret;
1730
1731 /* on flags based fastopen the mptcp is supposed to create the
1732 * first subflow right now. Otherwise we are in the defer_connect
1733 * path, and the first subflow must be already present.
1734 * Since the defer_connect flag is cleared after the first succsful
1735 * fastopen attempt, no need to check for additional subflow status.
1736 */
1737 if (msg->msg_flags & MSG_FASTOPEN) {
1738 ssk = __mptcp_nmpc_sk(msk);
1739 if (IS_ERR(ssk))
1740 return PTR_ERR(ssk);
1741 }
1742 if (!msk->first)
1743 return -EINVAL;
1744
1745 ssk = msk->first;
1746
1747 lock_sock(ssk);
1748 msg->msg_flags |= MSG_DONTWAIT;
1749 msk->fastopening = 1;
1750 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1751 msk->fastopening = 0;
1752 msg->msg_flags = saved_flags;
1753 release_sock(ssk);
1754
1755 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1756 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1757 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1758 msg->msg_namelen, msg->msg_flags, 1);
1759
1760 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1761 * case of any error, except timeout or signal
1762 */
1763 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1764 *copied_syn = 0;
1765 } else if (ret && ret != -EINPROGRESS) {
1766 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1767 * __inet_stream_connect() can fail, due to looking check,
1768 * see mptcp_disconnect().
1769 * Attempt it again outside the problematic scope.
1770 */
1771 if (!mptcp_disconnect(sk, 0))
1772 sk->sk_socket->state = SS_UNCONNECTED;
1773 }
1774 inet_clear_bit(DEFER_CONNECT, sk);
1775
1776 return ret;
1777 }
1778
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1779 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1780 {
1781 struct mptcp_sock *msk = mptcp_sk(sk);
1782 struct page_frag *pfrag;
1783 size_t copied = 0;
1784 int ret = 0;
1785 long timeo;
1786
1787 /* silently ignore everything else */
1788 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1789
1790 lock_sock(sk);
1791
1792 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1793 msg->msg_flags & MSG_FASTOPEN)) {
1794 int copied_syn = 0;
1795
1796 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1797 copied += copied_syn;
1798 if (ret == -EINPROGRESS && copied_syn > 0)
1799 goto out;
1800 else if (ret)
1801 goto do_error;
1802 }
1803
1804 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1805
1806 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1807 ret = sk_stream_wait_connect(sk, &timeo);
1808 if (ret)
1809 goto do_error;
1810 }
1811
1812 ret = -EPIPE;
1813 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1814 goto do_error;
1815
1816 pfrag = sk_page_frag(sk);
1817
1818 while (msg_data_left(msg)) {
1819 int total_ts, frag_truesize = 0;
1820 struct mptcp_data_frag *dfrag;
1821 bool dfrag_collapsed;
1822 size_t psize, offset;
1823
1824 /* reuse tail pfrag, if possible, or carve a new one from the
1825 * page allocator
1826 */
1827 dfrag = mptcp_pending_tail(sk);
1828 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1829 if (!dfrag_collapsed) {
1830 if (!sk_stream_memory_free(sk))
1831 goto wait_for_memory;
1832
1833 if (!mptcp_page_frag_refill(sk, pfrag))
1834 goto wait_for_memory;
1835
1836 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1837 frag_truesize = dfrag->overhead;
1838 }
1839
1840 /* we do not bound vs wspace, to allow a single packet.
1841 * memory accounting will prevent execessive memory usage
1842 * anyway
1843 */
1844 offset = dfrag->offset + dfrag->data_len;
1845 psize = pfrag->size - offset;
1846 psize = min_t(size_t, psize, msg_data_left(msg));
1847 total_ts = psize + frag_truesize;
1848
1849 if (!sk_wmem_schedule(sk, total_ts))
1850 goto wait_for_memory;
1851
1852 if (copy_page_from_iter(dfrag->page, offset, psize,
1853 &msg->msg_iter) != psize) {
1854 ret = -EFAULT;
1855 goto do_error;
1856 }
1857
1858 /* data successfully copied into the write queue */
1859 sk_forward_alloc_add(sk, -total_ts);
1860 copied += psize;
1861 dfrag->data_len += psize;
1862 frag_truesize += psize;
1863 pfrag->offset += frag_truesize;
1864 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1865
1866 /* charge data on mptcp pending queue to the msk socket
1867 * Note: we charge such data both to sk and ssk
1868 */
1869 sk_wmem_queued_add(sk, frag_truesize);
1870 if (!dfrag_collapsed) {
1871 get_page(dfrag->page);
1872 list_add_tail(&dfrag->list, &msk->rtx_queue);
1873 if (!msk->first_pending)
1874 WRITE_ONCE(msk->first_pending, dfrag);
1875 }
1876 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1877 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1878 !dfrag_collapsed);
1879
1880 continue;
1881
1882 wait_for_memory:
1883 mptcp_set_nospace(sk);
1884 __mptcp_push_pending(sk, msg->msg_flags);
1885 ret = sk_stream_wait_memory(sk, &timeo);
1886 if (ret)
1887 goto do_error;
1888 }
1889
1890 if (copied)
1891 __mptcp_push_pending(sk, msg->msg_flags);
1892
1893 out:
1894 release_sock(sk);
1895 return copied;
1896
1897 do_error:
1898 if (copied)
1899 goto out;
1900
1901 copied = sk_stream_error(sk, msg->msg_flags, ret);
1902 goto out;
1903 }
1904
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1905 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1906 struct msghdr *msg,
1907 size_t len, int flags,
1908 struct scm_timestamping_internal *tss,
1909 int *cmsg_flags)
1910 {
1911 struct sk_buff *skb, *tmp;
1912 int copied = 0;
1913
1914 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1915 u32 offset = MPTCP_SKB_CB(skb)->offset;
1916 u32 data_len = skb->len - offset;
1917 u32 count = min_t(size_t, len - copied, data_len);
1918 int err;
1919
1920 if (!(flags & MSG_TRUNC)) {
1921 err = skb_copy_datagram_msg(skb, offset, msg, count);
1922 if (unlikely(err < 0)) {
1923 if (!copied)
1924 return err;
1925 break;
1926 }
1927 }
1928
1929 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1930 tcp_update_recv_tstamps(skb, tss);
1931 *cmsg_flags |= MPTCP_CMSG_TS;
1932 }
1933
1934 copied += count;
1935
1936 if (count < data_len) {
1937 if (!(flags & MSG_PEEK)) {
1938 MPTCP_SKB_CB(skb)->offset += count;
1939 MPTCP_SKB_CB(skb)->map_seq += count;
1940 msk->bytes_consumed += count;
1941 }
1942 break;
1943 }
1944
1945 if (!(flags & MSG_PEEK)) {
1946 /* we will bulk release the skb memory later */
1947 skb->destructor = NULL;
1948 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1949 __skb_unlink(skb, &msk->receive_queue);
1950 __kfree_skb(skb);
1951 msk->bytes_consumed += count;
1952 }
1953
1954 if (copied >= len)
1955 break;
1956 }
1957
1958 return copied;
1959 }
1960
1961 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1962 *
1963 * Only difference: Use highest rtt estimate of the subflows in use.
1964 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1965 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1966 {
1967 struct mptcp_subflow_context *subflow;
1968 struct sock *sk = (struct sock *)msk;
1969 u8 scaling_ratio = U8_MAX;
1970 u32 time, advmss = 1;
1971 u64 rtt_us, mstamp;
1972
1973 msk_owned_by_me(msk);
1974
1975 if (copied <= 0)
1976 return;
1977
1978 if (!msk->rcvspace_init)
1979 mptcp_rcv_space_init(msk, msk->first);
1980
1981 msk->rcvq_space.copied += copied;
1982
1983 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1984 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1985
1986 rtt_us = msk->rcvq_space.rtt_us;
1987 if (rtt_us && time < (rtt_us >> 3))
1988 return;
1989
1990 rtt_us = 0;
1991 mptcp_for_each_subflow(msk, subflow) {
1992 const struct tcp_sock *tp;
1993 u64 sf_rtt_us;
1994 u32 sf_advmss;
1995
1996 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1997
1998 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1999 sf_advmss = READ_ONCE(tp->advmss);
2000
2001 rtt_us = max(sf_rtt_us, rtt_us);
2002 advmss = max(sf_advmss, advmss);
2003 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2004 }
2005
2006 msk->rcvq_space.rtt_us = rtt_us;
2007 msk->scaling_ratio = scaling_ratio;
2008 if (time < (rtt_us >> 3) || rtt_us == 0)
2009 return;
2010
2011 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2012 goto new_measure;
2013
2014 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2015 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2016 u64 rcvwin, grow;
2017 int rcvbuf;
2018
2019 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2020
2021 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2022
2023 do_div(grow, msk->rcvq_space.space);
2024 rcvwin += (grow << 1);
2025
2026 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2027 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2028
2029 if (rcvbuf > sk->sk_rcvbuf) {
2030 u32 window_clamp;
2031
2032 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2033 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2034
2035 /* Make subflows follow along. If we do not do this, we
2036 * get drops at subflow level if skbs can't be moved to
2037 * the mptcp rx queue fast enough (announced rcv_win can
2038 * exceed ssk->sk_rcvbuf).
2039 */
2040 mptcp_for_each_subflow(msk, subflow) {
2041 struct sock *ssk;
2042 bool slow;
2043
2044 ssk = mptcp_subflow_tcp_sock(subflow);
2045 slow = lock_sock_fast(ssk);
2046 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2047 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2048 tcp_cleanup_rbuf(ssk, 1);
2049 unlock_sock_fast(ssk, slow);
2050 }
2051 }
2052 }
2053
2054 msk->rcvq_space.space = msk->rcvq_space.copied;
2055 new_measure:
2056 msk->rcvq_space.copied = 0;
2057 msk->rcvq_space.time = mstamp;
2058 }
2059
__mptcp_update_rmem(struct sock * sk)2060 static void __mptcp_update_rmem(struct sock *sk)
2061 {
2062 struct mptcp_sock *msk = mptcp_sk(sk);
2063
2064 if (!msk->rmem_released)
2065 return;
2066
2067 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2068 mptcp_rmem_uncharge(sk, msk->rmem_released);
2069 WRITE_ONCE(msk->rmem_released, 0);
2070 }
2071
__mptcp_splice_receive_queue(struct sock * sk)2072 static void __mptcp_splice_receive_queue(struct sock *sk)
2073 {
2074 struct mptcp_sock *msk = mptcp_sk(sk);
2075
2076 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2077 }
2078
__mptcp_move_skbs(struct mptcp_sock * msk)2079 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2080 {
2081 struct sock *sk = (struct sock *)msk;
2082 unsigned int moved = 0;
2083 bool ret, done;
2084
2085 do {
2086 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2087 bool slowpath;
2088
2089 /* we can have data pending in the subflows only if the msk
2090 * receive buffer was full at subflow_data_ready() time,
2091 * that is an unlikely slow path.
2092 */
2093 if (likely(!ssk))
2094 break;
2095
2096 slowpath = lock_sock_fast(ssk);
2097 mptcp_data_lock(sk);
2098 __mptcp_update_rmem(sk);
2099 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2100 mptcp_data_unlock(sk);
2101
2102 if (unlikely(ssk->sk_err))
2103 __mptcp_error_report(sk);
2104 unlock_sock_fast(ssk, slowpath);
2105 } while (!done);
2106
2107 /* acquire the data lock only if some input data is pending */
2108 ret = moved > 0;
2109 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2110 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2111 mptcp_data_lock(sk);
2112 __mptcp_update_rmem(sk);
2113 ret |= __mptcp_ofo_queue(msk);
2114 __mptcp_splice_receive_queue(sk);
2115 mptcp_data_unlock(sk);
2116 }
2117 if (ret)
2118 mptcp_check_data_fin((struct sock *)msk);
2119 return !skb_queue_empty(&msk->receive_queue);
2120 }
2121
mptcp_inq_hint(const struct sock * sk)2122 static unsigned int mptcp_inq_hint(const struct sock *sk)
2123 {
2124 const struct mptcp_sock *msk = mptcp_sk(sk);
2125 const struct sk_buff *skb;
2126
2127 skb = skb_peek(&msk->receive_queue);
2128 if (skb) {
2129 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2130
2131 if (hint_val >= INT_MAX)
2132 return INT_MAX;
2133
2134 return (unsigned int)hint_val;
2135 }
2136
2137 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2138 return 1;
2139
2140 return 0;
2141 }
2142
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2143 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2144 int flags, int *addr_len)
2145 {
2146 struct mptcp_sock *msk = mptcp_sk(sk);
2147 struct scm_timestamping_internal tss;
2148 int copied = 0, cmsg_flags = 0;
2149 int target;
2150 long timeo;
2151
2152 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2153 if (unlikely(flags & MSG_ERRQUEUE))
2154 return inet_recv_error(sk, msg, len, addr_len);
2155
2156 lock_sock(sk);
2157 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2158 copied = -ENOTCONN;
2159 goto out_err;
2160 }
2161
2162 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2163
2164 len = min_t(size_t, len, INT_MAX);
2165 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2166
2167 if (unlikely(msk->recvmsg_inq))
2168 cmsg_flags = MPTCP_CMSG_INQ;
2169
2170 while (copied < len) {
2171 int bytes_read;
2172
2173 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2174 if (unlikely(bytes_read < 0)) {
2175 if (!copied)
2176 copied = bytes_read;
2177 goto out_err;
2178 }
2179
2180 copied += bytes_read;
2181
2182 /* be sure to advertise window change */
2183 mptcp_cleanup_rbuf(msk);
2184
2185 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2186 continue;
2187
2188 /* only the master socket status is relevant here. The exit
2189 * conditions mirror closely tcp_recvmsg()
2190 */
2191 if (copied >= target)
2192 break;
2193
2194 if (copied) {
2195 if (sk->sk_err ||
2196 sk->sk_state == TCP_CLOSE ||
2197 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2198 !timeo ||
2199 signal_pending(current))
2200 break;
2201 } else {
2202 if (sk->sk_err) {
2203 copied = sock_error(sk);
2204 break;
2205 }
2206
2207 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2208 /* race breaker: the shutdown could be after the
2209 * previous receive queue check
2210 */
2211 if (__mptcp_move_skbs(msk))
2212 continue;
2213 break;
2214 }
2215
2216 if (sk->sk_state == TCP_CLOSE) {
2217 copied = -ENOTCONN;
2218 break;
2219 }
2220
2221 if (!timeo) {
2222 copied = -EAGAIN;
2223 break;
2224 }
2225
2226 if (signal_pending(current)) {
2227 copied = sock_intr_errno(timeo);
2228 break;
2229 }
2230 }
2231
2232 pr_debug("block timeout %ld\n", timeo);
2233 sk_wait_data(sk, &timeo, NULL);
2234 }
2235
2236 out_err:
2237 if (cmsg_flags && copied >= 0) {
2238 if (cmsg_flags & MPTCP_CMSG_TS)
2239 tcp_recv_timestamp(msg, sk, &tss);
2240
2241 if (cmsg_flags & MPTCP_CMSG_INQ) {
2242 unsigned int inq = mptcp_inq_hint(sk);
2243
2244 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2245 }
2246 }
2247
2248 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2249 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2250 skb_queue_empty(&msk->receive_queue), copied);
2251 if (!(flags & MSG_PEEK))
2252 mptcp_rcv_space_adjust(msk, copied);
2253
2254 release_sock(sk);
2255 return copied;
2256 }
2257
mptcp_retransmit_timer(struct timer_list * t)2258 static void mptcp_retransmit_timer(struct timer_list *t)
2259 {
2260 struct inet_connection_sock *icsk = from_timer(icsk, t,
2261 icsk_retransmit_timer);
2262 struct sock *sk = &icsk->icsk_inet.sk;
2263 struct mptcp_sock *msk = mptcp_sk(sk);
2264
2265 bh_lock_sock(sk);
2266 if (!sock_owned_by_user(sk)) {
2267 /* we need a process context to retransmit */
2268 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2269 mptcp_schedule_work(sk);
2270 } else {
2271 /* delegate our work to tcp_release_cb() */
2272 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2273 }
2274 bh_unlock_sock(sk);
2275 sock_put(sk);
2276 }
2277
mptcp_tout_timer(struct timer_list * t)2278 static void mptcp_tout_timer(struct timer_list *t)
2279 {
2280 struct sock *sk = from_timer(sk, t, sk_timer);
2281
2282 mptcp_schedule_work(sk);
2283 sock_put(sk);
2284 }
2285
2286 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2287 * level.
2288 *
2289 * A backup subflow is returned only if that is the only kind available.
2290 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2291 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2292 {
2293 struct sock *backup = NULL, *pick = NULL;
2294 struct mptcp_subflow_context *subflow;
2295 int min_stale_count = INT_MAX;
2296
2297 mptcp_for_each_subflow(msk, subflow) {
2298 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2299
2300 if (!__mptcp_subflow_active(subflow))
2301 continue;
2302
2303 /* still data outstanding at TCP level? skip this */
2304 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2305 mptcp_pm_subflow_chk_stale(msk, ssk);
2306 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2307 continue;
2308 }
2309
2310 if (subflow->backup || subflow->request_bkup) {
2311 if (!backup)
2312 backup = ssk;
2313 continue;
2314 }
2315
2316 if (!pick)
2317 pick = ssk;
2318 }
2319
2320 if (pick)
2321 return pick;
2322
2323 /* use backup only if there are no progresses anywhere */
2324 return min_stale_count > 1 ? backup : NULL;
2325 }
2326
__mptcp_retransmit_pending_data(struct sock * sk)2327 bool __mptcp_retransmit_pending_data(struct sock *sk)
2328 {
2329 struct mptcp_data_frag *cur, *rtx_head;
2330 struct mptcp_sock *msk = mptcp_sk(sk);
2331
2332 if (__mptcp_check_fallback(msk))
2333 return false;
2334
2335 /* the closing socket has some data untransmitted and/or unacked:
2336 * some data in the mptcp rtx queue has not really xmitted yet.
2337 * keep it simple and re-inject the whole mptcp level rtx queue
2338 */
2339 mptcp_data_lock(sk);
2340 __mptcp_clean_una_wakeup(sk);
2341 rtx_head = mptcp_rtx_head(sk);
2342 if (!rtx_head) {
2343 mptcp_data_unlock(sk);
2344 return false;
2345 }
2346
2347 msk->recovery_snd_nxt = msk->snd_nxt;
2348 msk->recovery = true;
2349 mptcp_data_unlock(sk);
2350
2351 msk->first_pending = rtx_head;
2352 msk->snd_burst = 0;
2353
2354 /* be sure to clear the "sent status" on all re-injected fragments */
2355 list_for_each_entry(cur, &msk->rtx_queue, list) {
2356 if (!cur->already_sent)
2357 break;
2358 cur->already_sent = 0;
2359 }
2360
2361 return true;
2362 }
2363
2364 /* flags for __mptcp_close_ssk() */
2365 #define MPTCP_CF_PUSH BIT(1)
2366 #define MPTCP_CF_FASTCLOSE BIT(2)
2367
2368 /* be sure to send a reset only if the caller asked for it, also
2369 * clean completely the subflow status when the subflow reaches
2370 * TCP_CLOSE state
2371 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2372 static void __mptcp_subflow_disconnect(struct sock *ssk,
2373 struct mptcp_subflow_context *subflow,
2374 unsigned int flags)
2375 {
2376 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2377 (flags & MPTCP_CF_FASTCLOSE)) {
2378 /* The MPTCP code never wait on the subflow sockets, TCP-level
2379 * disconnect should never fail
2380 */
2381 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2382 mptcp_subflow_ctx_reset(subflow);
2383 } else {
2384 tcp_shutdown(ssk, SEND_SHUTDOWN);
2385 }
2386 }
2387
2388 /* subflow sockets can be either outgoing (connect) or incoming
2389 * (accept).
2390 *
2391 * Outgoing subflows use in-kernel sockets.
2392 * Incoming subflows do not have their own 'struct socket' allocated,
2393 * so we need to use tcp_close() after detaching them from the mptcp
2394 * parent socket.
2395 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2396 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2397 struct mptcp_subflow_context *subflow,
2398 unsigned int flags)
2399 {
2400 struct mptcp_sock *msk = mptcp_sk(sk);
2401 bool dispose_it, need_push = false;
2402
2403 /* If the first subflow moved to a close state before accept, e.g. due
2404 * to an incoming reset or listener shutdown, the subflow socket is
2405 * already deleted by inet_child_forget() and the mptcp socket can't
2406 * survive too.
2407 */
2408 if (msk->in_accept_queue && msk->first == ssk &&
2409 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2410 /* ensure later check in mptcp_worker() will dispose the msk */
2411 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2412 sock_set_flag(sk, SOCK_DEAD);
2413 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2414 mptcp_subflow_drop_ctx(ssk);
2415 goto out_release;
2416 }
2417
2418 dispose_it = msk->free_first || ssk != msk->first;
2419 if (dispose_it)
2420 list_del(&subflow->node);
2421
2422 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2423
2424 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2425 /* be sure to force the tcp_close path
2426 * to generate the egress reset
2427 */
2428 ssk->sk_lingertime = 0;
2429 sock_set_flag(ssk, SOCK_LINGER);
2430 subflow->send_fastclose = 1;
2431 }
2432
2433 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2434 if (!dispose_it) {
2435 __mptcp_subflow_disconnect(ssk, subflow, flags);
2436 release_sock(ssk);
2437
2438 goto out;
2439 }
2440
2441 subflow->disposable = 1;
2442
2443 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2444 * the ssk has been already destroyed, we just need to release the
2445 * reference owned by msk;
2446 */
2447 if (!inet_csk(ssk)->icsk_ulp_ops) {
2448 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2449 kfree_rcu(subflow, rcu);
2450 } else {
2451 /* otherwise tcp will dispose of the ssk and subflow ctx */
2452 __tcp_close(ssk, 0);
2453
2454 /* close acquired an extra ref */
2455 __sock_put(ssk);
2456 }
2457
2458 out_release:
2459 __mptcp_subflow_error_report(sk, ssk);
2460 release_sock(ssk);
2461
2462 sock_put(ssk);
2463
2464 if (ssk == msk->first)
2465 WRITE_ONCE(msk->first, NULL);
2466
2467 out:
2468 __mptcp_sync_sndbuf(sk);
2469 if (need_push)
2470 __mptcp_push_pending(sk, 0);
2471
2472 /* Catch every 'all subflows closed' scenario, including peers silently
2473 * closing them, e.g. due to timeout.
2474 * For established sockets, allow an additional timeout before closing,
2475 * as the protocol can still create more subflows.
2476 */
2477 if (list_is_singular(&msk->conn_list) && msk->first &&
2478 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2479 if (sk->sk_state != TCP_ESTABLISHED ||
2480 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2481 mptcp_set_state(sk, TCP_CLOSE);
2482 mptcp_close_wake_up(sk);
2483 } else {
2484 mptcp_start_tout_timer(sk);
2485 }
2486 }
2487 }
2488
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2489 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2490 struct mptcp_subflow_context *subflow)
2491 {
2492 /* The first subflow can already be closed and still in the list */
2493 if (subflow->close_event_done)
2494 return;
2495
2496 subflow->close_event_done = true;
2497
2498 if (sk->sk_state == TCP_ESTABLISHED)
2499 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2500
2501 /* subflow aborted before reaching the fully_established status
2502 * attempt the creation of the next subflow
2503 */
2504 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2505
2506 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2507 }
2508
mptcp_sync_mss(struct sock * sk,u32 pmtu)2509 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2510 {
2511 return 0;
2512 }
2513
__mptcp_close_subflow(struct sock * sk)2514 static void __mptcp_close_subflow(struct sock *sk)
2515 {
2516 struct mptcp_subflow_context *subflow, *tmp;
2517 struct mptcp_sock *msk = mptcp_sk(sk);
2518
2519 might_sleep();
2520
2521 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2522 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2523 int ssk_state = inet_sk_state_load(ssk);
2524
2525 if (ssk_state != TCP_CLOSE &&
2526 (ssk_state != TCP_CLOSE_WAIT ||
2527 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2528 continue;
2529
2530 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2531 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2532 continue;
2533
2534 mptcp_close_ssk(sk, ssk, subflow);
2535 }
2536
2537 }
2538
mptcp_close_tout_expired(const struct sock * sk)2539 static bool mptcp_close_tout_expired(const struct sock *sk)
2540 {
2541 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2542 sk->sk_state == TCP_CLOSE)
2543 return false;
2544
2545 return time_after32(tcp_jiffies32,
2546 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2547 }
2548
mptcp_check_fastclose(struct mptcp_sock * msk)2549 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2550 {
2551 struct mptcp_subflow_context *subflow, *tmp;
2552 struct sock *sk = (struct sock *)msk;
2553
2554 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2555 return;
2556
2557 mptcp_token_destroy(msk);
2558
2559 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2560 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2561 bool slow;
2562
2563 slow = lock_sock_fast(tcp_sk);
2564 if (tcp_sk->sk_state != TCP_CLOSE) {
2565 tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2566 tcp_set_state(tcp_sk, TCP_CLOSE);
2567 }
2568 unlock_sock_fast(tcp_sk, slow);
2569 }
2570
2571 /* Mirror the tcp_reset() error propagation */
2572 switch (sk->sk_state) {
2573 case TCP_SYN_SENT:
2574 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2575 break;
2576 case TCP_CLOSE_WAIT:
2577 WRITE_ONCE(sk->sk_err, EPIPE);
2578 break;
2579 case TCP_CLOSE:
2580 return;
2581 default:
2582 WRITE_ONCE(sk->sk_err, ECONNRESET);
2583 }
2584
2585 mptcp_set_state(sk, TCP_CLOSE);
2586 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2587 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2588 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2589
2590 /* the calling mptcp_worker will properly destroy the socket */
2591 if (sock_flag(sk, SOCK_DEAD))
2592 return;
2593
2594 sk->sk_state_change(sk);
2595 sk_error_report(sk);
2596 }
2597
__mptcp_retrans(struct sock * sk)2598 static void __mptcp_retrans(struct sock *sk)
2599 {
2600 struct mptcp_sock *msk = mptcp_sk(sk);
2601 struct mptcp_subflow_context *subflow;
2602 struct mptcp_sendmsg_info info = {};
2603 struct mptcp_data_frag *dfrag;
2604 struct sock *ssk;
2605 int ret, err;
2606 u16 len = 0;
2607
2608 mptcp_clean_una_wakeup(sk);
2609
2610 /* first check ssk: need to kick "stale" logic */
2611 err = mptcp_sched_get_retrans(msk);
2612 dfrag = mptcp_rtx_head(sk);
2613 if (!dfrag) {
2614 if (mptcp_data_fin_enabled(msk)) {
2615 struct inet_connection_sock *icsk = inet_csk(sk);
2616
2617 icsk->icsk_retransmits++;
2618 mptcp_set_datafin_timeout(sk);
2619 mptcp_send_ack(msk);
2620
2621 goto reset_timer;
2622 }
2623
2624 if (!mptcp_send_head(sk))
2625 return;
2626
2627 goto reset_timer;
2628 }
2629
2630 if (err)
2631 goto reset_timer;
2632
2633 mptcp_for_each_subflow(msk, subflow) {
2634 if (READ_ONCE(subflow->scheduled)) {
2635 u16 copied = 0;
2636
2637 mptcp_subflow_set_scheduled(subflow, false);
2638
2639 ssk = mptcp_subflow_tcp_sock(subflow);
2640
2641 lock_sock(ssk);
2642
2643 /* limit retransmission to the bytes already sent on some subflows */
2644 info.sent = 0;
2645 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2646 dfrag->already_sent;
2647 while (info.sent < info.limit) {
2648 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2649 if (ret <= 0)
2650 break;
2651
2652 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2653 copied += ret;
2654 info.sent += ret;
2655 }
2656 if (copied) {
2657 len = max(copied, len);
2658 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2659 info.size_goal);
2660 WRITE_ONCE(msk->allow_infinite_fallback, false);
2661 }
2662
2663 release_sock(ssk);
2664 }
2665 }
2666
2667 msk->bytes_retrans += len;
2668 dfrag->already_sent = max(dfrag->already_sent, len);
2669
2670 reset_timer:
2671 mptcp_check_and_set_pending(sk);
2672
2673 if (!mptcp_rtx_timer_pending(sk))
2674 mptcp_reset_rtx_timer(sk);
2675 }
2676
2677 /* schedule the timeout timer for the relevant event: either close timeout
2678 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2679 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2680 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2681 {
2682 struct sock *sk = (struct sock *)msk;
2683 unsigned long timeout, close_timeout;
2684
2685 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2686 return;
2687
2688 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2689 TCP_TIMEWAIT_LEN;
2690
2691 /* the close timeout takes precedence on the fail one, and here at least one of
2692 * them is active
2693 */
2694 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2695
2696 sk_reset_timer(sk, &sk->sk_timer, timeout);
2697 }
2698
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2699 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2700 {
2701 struct sock *ssk = msk->first;
2702 bool slow;
2703
2704 if (!ssk)
2705 return;
2706
2707 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2708
2709 slow = lock_sock_fast(ssk);
2710 mptcp_subflow_reset(ssk);
2711 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2712 unlock_sock_fast(ssk, slow);
2713 }
2714
mptcp_do_fastclose(struct sock * sk)2715 static void mptcp_do_fastclose(struct sock *sk)
2716 {
2717 struct mptcp_subflow_context *subflow, *tmp;
2718 struct mptcp_sock *msk = mptcp_sk(sk);
2719
2720 mptcp_set_state(sk, TCP_CLOSE);
2721 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2722 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2723 subflow, MPTCP_CF_FASTCLOSE);
2724 }
2725
mptcp_worker(struct work_struct * work)2726 static void mptcp_worker(struct work_struct *work)
2727 {
2728 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2729 struct sock *sk = (struct sock *)msk;
2730 unsigned long fail_tout;
2731 int state;
2732
2733 lock_sock(sk);
2734 state = sk->sk_state;
2735 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2736 goto unlock;
2737
2738 mptcp_check_fastclose(msk);
2739
2740 mptcp_pm_nl_work(msk);
2741
2742 mptcp_check_send_data_fin(sk);
2743 mptcp_check_data_fin_ack(sk);
2744 mptcp_check_data_fin(sk);
2745
2746 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2747 __mptcp_close_subflow(sk);
2748
2749 if (mptcp_close_tout_expired(sk)) {
2750 mptcp_do_fastclose(sk);
2751 mptcp_close_wake_up(sk);
2752 }
2753
2754 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2755 __mptcp_destroy_sock(sk);
2756 goto unlock;
2757 }
2758
2759 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2760 __mptcp_retrans(sk);
2761
2762 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2763 if (fail_tout && time_after(jiffies, fail_tout))
2764 mptcp_mp_fail_no_response(msk);
2765
2766 unlock:
2767 release_sock(sk);
2768 sock_put(sk);
2769 }
2770
__mptcp_init_sock(struct sock * sk)2771 static void __mptcp_init_sock(struct sock *sk)
2772 {
2773 struct mptcp_sock *msk = mptcp_sk(sk);
2774
2775 INIT_LIST_HEAD(&msk->conn_list);
2776 INIT_LIST_HEAD(&msk->join_list);
2777 INIT_LIST_HEAD(&msk->rtx_queue);
2778 INIT_WORK(&msk->work, mptcp_worker);
2779 __skb_queue_head_init(&msk->receive_queue);
2780 msk->out_of_order_queue = RB_ROOT;
2781 msk->first_pending = NULL;
2782 msk->rmem_fwd_alloc = 0;
2783 WRITE_ONCE(msk->rmem_released, 0);
2784 msk->timer_ival = TCP_RTO_MIN;
2785 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2786
2787 WRITE_ONCE(msk->first, NULL);
2788 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2789 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2790 WRITE_ONCE(msk->allow_infinite_fallback, true);
2791 msk->recovery = false;
2792 msk->subflow_id = 1;
2793
2794 mptcp_pm_data_init(msk);
2795
2796 /* re-use the csk retrans timer for MPTCP-level retrans */
2797 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2798 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2799 }
2800
mptcp_ca_reset(struct sock * sk)2801 static void mptcp_ca_reset(struct sock *sk)
2802 {
2803 struct inet_connection_sock *icsk = inet_csk(sk);
2804
2805 tcp_assign_congestion_control(sk);
2806 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2807
2808 /* no need to keep a reference to the ops, the name will suffice */
2809 tcp_cleanup_congestion_control(sk);
2810 icsk->icsk_ca_ops = NULL;
2811 }
2812
mptcp_init_sock(struct sock * sk)2813 static int mptcp_init_sock(struct sock *sk)
2814 {
2815 struct net *net = sock_net(sk);
2816 int ret;
2817
2818 __mptcp_init_sock(sk);
2819
2820 if (!mptcp_is_enabled(net))
2821 return -ENOPROTOOPT;
2822
2823 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2824 return -ENOMEM;
2825
2826 rcu_read_lock();
2827 ret = mptcp_init_sched(mptcp_sk(sk),
2828 mptcp_sched_find(mptcp_get_scheduler(net)));
2829 rcu_read_unlock();
2830 if (ret)
2831 return ret;
2832
2833 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2834
2835 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2836 * propagate the correct value
2837 */
2838 mptcp_ca_reset(sk);
2839
2840 sk_sockets_allocated_inc(sk);
2841 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2842 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2843
2844 return 0;
2845 }
2846
__mptcp_clear_xmit(struct sock * sk)2847 static void __mptcp_clear_xmit(struct sock *sk)
2848 {
2849 struct mptcp_sock *msk = mptcp_sk(sk);
2850 struct mptcp_data_frag *dtmp, *dfrag;
2851
2852 WRITE_ONCE(msk->first_pending, NULL);
2853 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2854 dfrag_clear(sk, dfrag);
2855 }
2856
mptcp_cancel_work(struct sock * sk)2857 void mptcp_cancel_work(struct sock *sk)
2858 {
2859 struct mptcp_sock *msk = mptcp_sk(sk);
2860
2861 if (cancel_work_sync(&msk->work))
2862 __sock_put(sk);
2863 }
2864
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2865 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2866 {
2867 lock_sock(ssk);
2868
2869 switch (ssk->sk_state) {
2870 case TCP_LISTEN:
2871 if (!(how & RCV_SHUTDOWN))
2872 break;
2873 fallthrough;
2874 case TCP_SYN_SENT:
2875 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2876 break;
2877 default:
2878 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2879 pr_debug("Fallback\n");
2880 ssk->sk_shutdown |= how;
2881 tcp_shutdown(ssk, how);
2882
2883 /* simulate the data_fin ack reception to let the state
2884 * machine move forward
2885 */
2886 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2887 mptcp_schedule_work(sk);
2888 } else {
2889 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2890 tcp_send_ack(ssk);
2891 if (!mptcp_rtx_timer_pending(sk))
2892 mptcp_reset_rtx_timer(sk);
2893 }
2894 break;
2895 }
2896
2897 release_sock(ssk);
2898 }
2899
mptcp_set_state(struct sock * sk,int state)2900 void mptcp_set_state(struct sock *sk, int state)
2901 {
2902 int oldstate = sk->sk_state;
2903
2904 switch (state) {
2905 case TCP_ESTABLISHED:
2906 if (oldstate != TCP_ESTABLISHED)
2907 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2908 break;
2909 case TCP_CLOSE_WAIT:
2910 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2911 * MPTCP "accepted" sockets will be created later on. So no
2912 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2913 */
2914 break;
2915 default:
2916 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2917 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2918 }
2919
2920 inet_sk_state_store(sk, state);
2921 }
2922
2923 static const unsigned char new_state[16] = {
2924 /* current state: new state: action: */
2925 [0 /* (Invalid) */] = TCP_CLOSE,
2926 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2927 [TCP_SYN_SENT] = TCP_CLOSE,
2928 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2929 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2930 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2931 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2932 [TCP_CLOSE] = TCP_CLOSE,
2933 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2934 [TCP_LAST_ACK] = TCP_LAST_ACK,
2935 [TCP_LISTEN] = TCP_CLOSE,
2936 [TCP_CLOSING] = TCP_CLOSING,
2937 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2938 };
2939
mptcp_close_state(struct sock * sk)2940 static int mptcp_close_state(struct sock *sk)
2941 {
2942 int next = (int)new_state[sk->sk_state];
2943 int ns = next & TCP_STATE_MASK;
2944
2945 mptcp_set_state(sk, ns);
2946
2947 return next & TCP_ACTION_FIN;
2948 }
2949
mptcp_check_send_data_fin(struct sock * sk)2950 static void mptcp_check_send_data_fin(struct sock *sk)
2951 {
2952 struct mptcp_subflow_context *subflow;
2953 struct mptcp_sock *msk = mptcp_sk(sk);
2954
2955 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2956 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2957 msk->snd_nxt, msk->write_seq);
2958
2959 /* we still need to enqueue subflows or not really shutting down,
2960 * skip this
2961 */
2962 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2963 mptcp_send_head(sk))
2964 return;
2965
2966 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2967
2968 mptcp_for_each_subflow(msk, subflow) {
2969 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2970
2971 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2972 }
2973 }
2974
__mptcp_wr_shutdown(struct sock * sk)2975 static void __mptcp_wr_shutdown(struct sock *sk)
2976 {
2977 struct mptcp_sock *msk = mptcp_sk(sk);
2978
2979 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2980 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2981 !!mptcp_send_head(sk));
2982
2983 /* will be ignored by fallback sockets */
2984 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2985 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2986
2987 mptcp_check_send_data_fin(sk);
2988 }
2989
__mptcp_destroy_sock(struct sock * sk)2990 static void __mptcp_destroy_sock(struct sock *sk)
2991 {
2992 struct mptcp_sock *msk = mptcp_sk(sk);
2993
2994 pr_debug("msk=%p\n", msk);
2995
2996 might_sleep();
2997
2998 mptcp_stop_rtx_timer(sk);
2999 sk_stop_timer(sk, &sk->sk_timer);
3000 msk->pm.status = 0;
3001 mptcp_release_sched(msk);
3002
3003 sk->sk_prot->destroy(sk);
3004
3005 WARN_ON_ONCE(msk->rmem_fwd_alloc);
3006 WARN_ON_ONCE(msk->rmem_released);
3007 sk_stream_kill_queues(sk);
3008 xfrm_sk_free_policy(sk);
3009
3010 sock_put(sk);
3011 }
3012
__mptcp_unaccepted_force_close(struct sock * sk)3013 void __mptcp_unaccepted_force_close(struct sock *sk)
3014 {
3015 sock_set_flag(sk, SOCK_DEAD);
3016 mptcp_do_fastclose(sk);
3017 __mptcp_destroy_sock(sk);
3018 }
3019
mptcp_check_readable(struct sock * sk)3020 static __poll_t mptcp_check_readable(struct sock *sk)
3021 {
3022 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3023 }
3024
mptcp_check_listen_stop(struct sock * sk)3025 static void mptcp_check_listen_stop(struct sock *sk)
3026 {
3027 struct sock *ssk;
3028
3029 if (inet_sk_state_load(sk) != TCP_LISTEN)
3030 return;
3031
3032 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3033 ssk = mptcp_sk(sk)->first;
3034 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3035 return;
3036
3037 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3038 tcp_set_state(ssk, TCP_CLOSE);
3039 mptcp_subflow_queue_clean(sk, ssk);
3040 inet_csk_listen_stop(ssk);
3041 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3042 release_sock(ssk);
3043 }
3044
__mptcp_close(struct sock * sk,long timeout)3045 bool __mptcp_close(struct sock *sk, long timeout)
3046 {
3047 struct mptcp_subflow_context *subflow;
3048 struct mptcp_sock *msk = mptcp_sk(sk);
3049 bool do_cancel_work = false;
3050 int subflows_alive = 0;
3051
3052 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3053
3054 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3055 mptcp_check_listen_stop(sk);
3056 mptcp_set_state(sk, TCP_CLOSE);
3057 goto cleanup;
3058 }
3059
3060 if (mptcp_data_avail(msk) || timeout < 0) {
3061 /* If the msk has read data, or the caller explicitly ask it,
3062 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3063 */
3064 mptcp_do_fastclose(sk);
3065 timeout = 0;
3066 } else if (mptcp_close_state(sk)) {
3067 __mptcp_wr_shutdown(sk);
3068 }
3069
3070 sk_stream_wait_close(sk, timeout);
3071
3072 cleanup:
3073 /* orphan all the subflows */
3074 mptcp_for_each_subflow(msk, subflow) {
3075 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3076 bool slow = lock_sock_fast_nested(ssk);
3077
3078 subflows_alive += ssk->sk_state != TCP_CLOSE;
3079
3080 /* since the close timeout takes precedence on the fail one,
3081 * cancel the latter
3082 */
3083 if (ssk == msk->first)
3084 subflow->fail_tout = 0;
3085
3086 /* detach from the parent socket, but allow data_ready to
3087 * push incoming data into the mptcp stack, to properly ack it
3088 */
3089 ssk->sk_socket = NULL;
3090 ssk->sk_wq = NULL;
3091 unlock_sock_fast(ssk, slow);
3092 }
3093 sock_orphan(sk);
3094
3095 /* all the subflows are closed, only timeout can change the msk
3096 * state, let's not keep resources busy for no reasons
3097 */
3098 if (subflows_alive == 0)
3099 mptcp_set_state(sk, TCP_CLOSE);
3100
3101 sock_hold(sk);
3102 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3103 if (msk->token)
3104 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3105
3106 if (sk->sk_state == TCP_CLOSE) {
3107 __mptcp_destroy_sock(sk);
3108 do_cancel_work = true;
3109 } else {
3110 mptcp_start_tout_timer(sk);
3111 }
3112
3113 return do_cancel_work;
3114 }
3115
mptcp_close(struct sock * sk,long timeout)3116 static void mptcp_close(struct sock *sk, long timeout)
3117 {
3118 bool do_cancel_work;
3119
3120 lock_sock(sk);
3121
3122 do_cancel_work = __mptcp_close(sk, timeout);
3123 release_sock(sk);
3124 if (do_cancel_work)
3125 mptcp_cancel_work(sk);
3126
3127 sock_put(sk);
3128 }
3129
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3130 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3131 {
3132 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3133 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3134 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3135
3136 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3137 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3138
3139 if (msk6 && ssk6) {
3140 msk6->saddr = ssk6->saddr;
3141 msk6->flow_label = ssk6->flow_label;
3142 }
3143 #endif
3144
3145 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3146 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3147 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3148 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3149 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3150 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3151 }
3152
mptcp_disconnect(struct sock * sk,int flags)3153 static int mptcp_disconnect(struct sock *sk, int flags)
3154 {
3155 struct mptcp_sock *msk = mptcp_sk(sk);
3156
3157 /* We are on the fastopen error path. We can't call straight into the
3158 * subflows cleanup code due to lock nesting (we are already under
3159 * msk->firstsocket lock).
3160 */
3161 if (msk->fastopening)
3162 return -EBUSY;
3163
3164 mptcp_check_listen_stop(sk);
3165 mptcp_set_state(sk, TCP_CLOSE);
3166
3167 mptcp_stop_rtx_timer(sk);
3168 mptcp_stop_tout_timer(sk);
3169
3170 if (msk->token)
3171 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3172
3173 /* msk->subflow is still intact, the following will not free the first
3174 * subflow
3175 */
3176 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3177 WRITE_ONCE(msk->flags, 0);
3178 msk->cb_flags = 0;
3179 msk->recovery = false;
3180 msk->can_ack = false;
3181 msk->fully_established = false;
3182 msk->rcv_data_fin = false;
3183 msk->snd_data_fin_enable = false;
3184 msk->rcv_fastclose = false;
3185 msk->use_64bit_ack = false;
3186 msk->bytes_consumed = 0;
3187 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3188 mptcp_pm_data_reset(msk);
3189 mptcp_ca_reset(sk);
3190 msk->bytes_acked = 0;
3191 msk->bytes_received = 0;
3192 msk->bytes_sent = 0;
3193 msk->bytes_retrans = 0;
3194 msk->rcvspace_init = 0;
3195
3196 WRITE_ONCE(sk->sk_shutdown, 0);
3197 sk_error_report(sk);
3198 return 0;
3199 }
3200
3201 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3202 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3203 {
3204 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3205
3206 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3207 }
3208
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3209 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3210 {
3211 const struct ipv6_pinfo *np = inet6_sk(sk);
3212 struct ipv6_txoptions *opt;
3213 struct ipv6_pinfo *newnp;
3214
3215 newnp = inet6_sk(newsk);
3216
3217 rcu_read_lock();
3218 opt = rcu_dereference(np->opt);
3219 if (opt) {
3220 opt = ipv6_dup_options(newsk, opt);
3221 if (!opt)
3222 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3223 }
3224 RCU_INIT_POINTER(newnp->opt, opt);
3225 rcu_read_unlock();
3226 }
3227 #endif
3228
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3229 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3230 {
3231 struct ip_options_rcu *inet_opt, *newopt = NULL;
3232 const struct inet_sock *inet = inet_sk(sk);
3233 struct inet_sock *newinet;
3234
3235 newinet = inet_sk(newsk);
3236
3237 rcu_read_lock();
3238 inet_opt = rcu_dereference(inet->inet_opt);
3239 if (inet_opt) {
3240 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3241 inet_opt->opt.optlen, GFP_ATOMIC);
3242 if (newopt)
3243 memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3244 inet_opt->opt.optlen);
3245 else
3246 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3247 }
3248 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3249 rcu_read_unlock();
3250 }
3251
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3252 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3253 const struct mptcp_options_received *mp_opt,
3254 struct sock *ssk,
3255 struct request_sock *req)
3256 {
3257 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3258 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3259 struct mptcp_subflow_context *subflow;
3260 struct mptcp_sock *msk;
3261
3262 if (!nsk)
3263 return NULL;
3264
3265 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3266 if (nsk->sk_family == AF_INET6)
3267 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3268 #endif
3269
3270 __mptcp_init_sock(nsk);
3271
3272 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3273 if (nsk->sk_family == AF_INET6)
3274 mptcp_copy_ip6_options(nsk, sk);
3275 else
3276 #endif
3277 mptcp_copy_ip_options(nsk, sk);
3278
3279 msk = mptcp_sk(nsk);
3280 msk->local_key = subflow_req->local_key;
3281 msk->token = subflow_req->token;
3282 msk->in_accept_queue = 1;
3283 WRITE_ONCE(msk->fully_established, false);
3284 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3285 WRITE_ONCE(msk->csum_enabled, true);
3286
3287 msk->write_seq = subflow_req->idsn + 1;
3288 msk->snd_nxt = msk->write_seq;
3289 msk->snd_una = msk->write_seq;
3290 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3291 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3292 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3293
3294 /* passive msk is created after the first/MPC subflow */
3295 msk->subflow_id = 2;
3296
3297 sock_reset_flag(nsk, SOCK_RCU_FREE);
3298 security_inet_csk_clone(nsk, req);
3299
3300 /* this can't race with mptcp_close(), as the msk is
3301 * not yet exposted to user-space
3302 */
3303 mptcp_set_state(nsk, TCP_ESTABLISHED);
3304
3305 /* The msk maintain a ref to each subflow in the connections list */
3306 WRITE_ONCE(msk->first, ssk);
3307 subflow = mptcp_subflow_ctx(ssk);
3308 list_add(&subflow->node, &msk->conn_list);
3309 sock_hold(ssk);
3310
3311 /* new mpc subflow takes ownership of the newly
3312 * created mptcp socket
3313 */
3314 mptcp_token_accept(subflow_req, msk);
3315
3316 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3317 * uses the correct data
3318 */
3319 mptcp_copy_inaddrs(nsk, ssk);
3320 __mptcp_propagate_sndbuf(nsk, ssk);
3321
3322 mptcp_rcv_space_init(msk, ssk);
3323
3324 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3325 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3326 bh_unlock_sock(nsk);
3327
3328 /* note: the newly allocated socket refcount is 2 now */
3329 return nsk;
3330 }
3331
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3332 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3333 {
3334 const struct tcp_sock *tp = tcp_sk(ssk);
3335
3336 msk->rcvspace_init = 1;
3337 msk->rcvq_space.copied = 0;
3338 msk->rcvq_space.rtt_us = 0;
3339
3340 msk->rcvq_space.time = tp->tcp_mstamp;
3341
3342 /* initial rcv_space offering made to peer */
3343 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3344 TCP_INIT_CWND * tp->advmss);
3345 if (msk->rcvq_space.space == 0)
3346 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3347 }
3348
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3349 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3350 {
3351 struct mptcp_subflow_context *subflow, *tmp;
3352 struct sock *sk = (struct sock *)msk;
3353
3354 __mptcp_clear_xmit(sk);
3355
3356 /* join list will be eventually flushed (with rst) at sock lock release time */
3357 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3358 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3359
3360 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3361 mptcp_data_lock(sk);
3362 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3363 __skb_queue_purge(&sk->sk_receive_queue);
3364 skb_rbtree_purge(&msk->out_of_order_queue);
3365 mptcp_data_unlock(sk);
3366
3367 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3368 * inet_sock_destruct() will dispose it
3369 */
3370 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3371 WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3372 mptcp_token_destroy(msk);
3373 mptcp_pm_free_anno_list(msk);
3374 mptcp_free_local_addr_list(msk);
3375 }
3376
mptcp_destroy(struct sock * sk)3377 static void mptcp_destroy(struct sock *sk)
3378 {
3379 struct mptcp_sock *msk = mptcp_sk(sk);
3380
3381 /* allow the following to close even the initial subflow */
3382 msk->free_first = 1;
3383 mptcp_destroy_common(msk, 0);
3384 sk_sockets_allocated_dec(sk);
3385 }
3386
__mptcp_data_acked(struct sock * sk)3387 void __mptcp_data_acked(struct sock *sk)
3388 {
3389 if (!sock_owned_by_user(sk))
3390 __mptcp_clean_una(sk);
3391 else
3392 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3393
3394 if (mptcp_pending_data_fin_ack(sk))
3395 mptcp_schedule_work(sk);
3396 }
3397
__mptcp_check_push(struct sock * sk,struct sock * ssk)3398 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3399 {
3400 if (!mptcp_send_head(sk))
3401 return;
3402
3403 if (!sock_owned_by_user(sk))
3404 __mptcp_subflow_push_pending(sk, ssk, false);
3405 else
3406 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3407 }
3408
3409 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3410 BIT(MPTCP_RETRANSMIT) | \
3411 BIT(MPTCP_FLUSH_JOIN_LIST))
3412
3413 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3414 static void mptcp_release_cb(struct sock *sk)
3415 __must_hold(&sk->sk_lock.slock)
3416 {
3417 struct mptcp_sock *msk = mptcp_sk(sk);
3418
3419 for (;;) {
3420 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3421 struct list_head join_list;
3422
3423 if (!flags)
3424 break;
3425
3426 INIT_LIST_HEAD(&join_list);
3427 list_splice_init(&msk->join_list, &join_list);
3428
3429 /* the following actions acquire the subflow socket lock
3430 *
3431 * 1) can't be invoked in atomic scope
3432 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3433 * datapath acquires the msk socket spinlock while helding
3434 * the subflow socket lock
3435 */
3436 msk->cb_flags &= ~flags;
3437 spin_unlock_bh(&sk->sk_lock.slock);
3438
3439 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3440 __mptcp_flush_join_list(sk, &join_list);
3441 if (flags & BIT(MPTCP_PUSH_PENDING))
3442 __mptcp_push_pending(sk, 0);
3443 if (flags & BIT(MPTCP_RETRANSMIT))
3444 __mptcp_retrans(sk);
3445
3446 cond_resched();
3447 spin_lock_bh(&sk->sk_lock.slock);
3448 }
3449
3450 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3451 __mptcp_clean_una_wakeup(sk);
3452 if (unlikely(msk->cb_flags)) {
3453 /* be sure to sync the msk state before taking actions
3454 * depending on sk_state (MPTCP_ERROR_REPORT)
3455 * On sk release avoid actions depending on the first subflow
3456 */
3457 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3458 __mptcp_sync_state(sk, msk->pending_state);
3459 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3460 __mptcp_error_report(sk);
3461 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3462 __mptcp_sync_sndbuf(sk);
3463 }
3464
3465 __mptcp_update_rmem(sk);
3466 }
3467
3468 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3469 * TCP can't schedule delack timer before the subflow is fully established.
3470 * MPTCP uses the delack timer to do 3rd ack retransmissions
3471 */
schedule_3rdack_retransmission(struct sock * ssk)3472 static void schedule_3rdack_retransmission(struct sock *ssk)
3473 {
3474 struct inet_connection_sock *icsk = inet_csk(ssk);
3475 struct tcp_sock *tp = tcp_sk(ssk);
3476 unsigned long timeout;
3477
3478 if (mptcp_subflow_ctx(ssk)->fully_established)
3479 return;
3480
3481 /* reschedule with a timeout above RTT, as we must look only for drop */
3482 if (tp->srtt_us)
3483 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3484 else
3485 timeout = TCP_TIMEOUT_INIT;
3486 timeout += jiffies;
3487
3488 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3489 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3490 icsk->icsk_ack.timeout = timeout;
3491 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3492 }
3493
mptcp_subflow_process_delegated(struct sock * ssk,long status)3494 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3495 {
3496 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3497 struct sock *sk = subflow->conn;
3498
3499 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3500 mptcp_data_lock(sk);
3501 if (!sock_owned_by_user(sk))
3502 __mptcp_subflow_push_pending(sk, ssk, true);
3503 else
3504 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3505 mptcp_data_unlock(sk);
3506 }
3507 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3508 mptcp_data_lock(sk);
3509 if (!sock_owned_by_user(sk))
3510 __mptcp_sync_sndbuf(sk);
3511 else
3512 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3513 mptcp_data_unlock(sk);
3514 }
3515 if (status & BIT(MPTCP_DELEGATE_ACK))
3516 schedule_3rdack_retransmission(ssk);
3517 }
3518
mptcp_hash(struct sock * sk)3519 static int mptcp_hash(struct sock *sk)
3520 {
3521 /* should never be called,
3522 * we hash the TCP subflows not the master socket
3523 */
3524 WARN_ON_ONCE(1);
3525 return 0;
3526 }
3527
mptcp_unhash(struct sock * sk)3528 static void mptcp_unhash(struct sock *sk)
3529 {
3530 /* called from sk_common_release(), but nothing to do here */
3531 }
3532
mptcp_get_port(struct sock * sk,unsigned short snum)3533 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3534 {
3535 struct mptcp_sock *msk = mptcp_sk(sk);
3536
3537 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3538 if (WARN_ON_ONCE(!msk->first))
3539 return -EINVAL;
3540
3541 return inet_csk_get_port(msk->first, snum);
3542 }
3543
mptcp_finish_connect(struct sock * ssk)3544 void mptcp_finish_connect(struct sock *ssk)
3545 {
3546 struct mptcp_subflow_context *subflow;
3547 struct mptcp_sock *msk;
3548 struct sock *sk;
3549
3550 subflow = mptcp_subflow_ctx(ssk);
3551 sk = subflow->conn;
3552 msk = mptcp_sk(sk);
3553
3554 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3555
3556 subflow->map_seq = subflow->iasn;
3557 subflow->map_subflow_seq = 1;
3558
3559 /* the socket is not connected yet, no msk/subflow ops can access/race
3560 * accessing the field below
3561 */
3562 WRITE_ONCE(msk->local_key, subflow->local_key);
3563
3564 mptcp_pm_new_connection(msk, ssk, 0);
3565 }
3566
mptcp_sock_graft(struct sock * sk,struct socket * parent)3567 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3568 {
3569 write_lock_bh(&sk->sk_callback_lock);
3570 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3571 sk_set_socket(sk, parent);
3572 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3573 write_unlock_bh(&sk->sk_callback_lock);
3574 }
3575
mptcp_finish_join(struct sock * ssk)3576 bool mptcp_finish_join(struct sock *ssk)
3577 {
3578 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3579 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3580 struct sock *parent = (void *)msk;
3581 bool ret = true;
3582
3583 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3584
3585 /* mptcp socket already closing? */
3586 if (!mptcp_is_fully_established(parent)) {
3587 subflow->reset_reason = MPTCP_RST_EMPTCP;
3588 return false;
3589 }
3590
3591 /* active subflow, already present inside the conn_list */
3592 if (!list_empty(&subflow->node)) {
3593 mptcp_subflow_joined(msk, ssk);
3594 mptcp_propagate_sndbuf(parent, ssk);
3595 return true;
3596 }
3597
3598 if (!mptcp_pm_allow_new_subflow(msk))
3599 goto err_prohibited;
3600
3601 /* If we can't acquire msk socket lock here, let the release callback
3602 * handle it
3603 */
3604 mptcp_data_lock(parent);
3605 if (!sock_owned_by_user(parent)) {
3606 ret = __mptcp_finish_join(msk, ssk);
3607 if (ret) {
3608 sock_hold(ssk);
3609 list_add_tail(&subflow->node, &msk->conn_list);
3610 }
3611 } else {
3612 sock_hold(ssk);
3613 list_add_tail(&subflow->node, &msk->join_list);
3614 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3615 }
3616 mptcp_data_unlock(parent);
3617
3618 if (!ret) {
3619 err_prohibited:
3620 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3621 return false;
3622 }
3623
3624 return true;
3625 }
3626
mptcp_shutdown(struct sock * sk,int how)3627 static void mptcp_shutdown(struct sock *sk, int how)
3628 {
3629 pr_debug("sk=%p, how=%d\n", sk, how);
3630
3631 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3632 __mptcp_wr_shutdown(sk);
3633 }
3634
mptcp_forward_alloc_get(const struct sock * sk)3635 static int mptcp_forward_alloc_get(const struct sock *sk)
3636 {
3637 return READ_ONCE(sk->sk_forward_alloc) +
3638 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3639 }
3640
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3641 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3642 {
3643 const struct sock *sk = (void *)msk;
3644 u64 delta;
3645
3646 if (sk->sk_state == TCP_LISTEN)
3647 return -EINVAL;
3648
3649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3650 return 0;
3651
3652 delta = msk->write_seq - v;
3653 if (__mptcp_check_fallback(msk) && msk->first) {
3654 struct tcp_sock *tp = tcp_sk(msk->first);
3655
3656 /* the first subflow is disconnected after close - see
3657 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3658 * so ignore that status, too.
3659 */
3660 if (!((1 << msk->first->sk_state) &
3661 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3662 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3663 }
3664 if (delta > INT_MAX)
3665 delta = INT_MAX;
3666
3667 return (int)delta;
3668 }
3669
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3670 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3671 {
3672 struct mptcp_sock *msk = mptcp_sk(sk);
3673 bool slow;
3674
3675 switch (cmd) {
3676 case SIOCINQ:
3677 if (sk->sk_state == TCP_LISTEN)
3678 return -EINVAL;
3679
3680 lock_sock(sk);
3681 __mptcp_move_skbs(msk);
3682 *karg = mptcp_inq_hint(sk);
3683 release_sock(sk);
3684 break;
3685 case SIOCOUTQ:
3686 slow = lock_sock_fast(sk);
3687 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3688 unlock_sock_fast(sk, slow);
3689 break;
3690 case SIOCOUTQNSD:
3691 slow = lock_sock_fast(sk);
3692 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3693 unlock_sock_fast(sk, slow);
3694 break;
3695 default:
3696 return -ENOIOCTLCMD;
3697 }
3698
3699 return 0;
3700 }
3701
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3702 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3703 struct mptcp_subflow_context *subflow)
3704 {
3705 subflow->request_mptcp = 0;
3706 __mptcp_do_fallback(msk);
3707 }
3708
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3709 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3710 {
3711 struct mptcp_subflow_context *subflow;
3712 struct mptcp_sock *msk = mptcp_sk(sk);
3713 int err = -EINVAL;
3714 struct sock *ssk;
3715
3716 ssk = __mptcp_nmpc_sk(msk);
3717 if (IS_ERR(ssk))
3718 return PTR_ERR(ssk);
3719
3720 mptcp_set_state(sk, TCP_SYN_SENT);
3721 subflow = mptcp_subflow_ctx(ssk);
3722 #ifdef CONFIG_TCP_MD5SIG
3723 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3724 * TCP option space.
3725 */
3726 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3727 mptcp_subflow_early_fallback(msk, subflow);
3728 #endif
3729 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3730 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3731 mptcp_subflow_early_fallback(msk, subflow);
3732 }
3733
3734 WRITE_ONCE(msk->write_seq, subflow->idsn);
3735 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3736 WRITE_ONCE(msk->snd_una, subflow->idsn);
3737 if (likely(!__mptcp_check_fallback(msk)))
3738 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3739
3740 /* if reaching here via the fastopen/sendmsg path, the caller already
3741 * acquired the subflow socket lock, too.
3742 */
3743 if (!msk->fastopening)
3744 lock_sock(ssk);
3745
3746 /* the following mirrors closely a very small chunk of code from
3747 * __inet_stream_connect()
3748 */
3749 if (ssk->sk_state != TCP_CLOSE)
3750 goto out;
3751
3752 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3753 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3754 if (err)
3755 goto out;
3756 }
3757
3758 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3759 if (err < 0)
3760 goto out;
3761
3762 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3763
3764 out:
3765 if (!msk->fastopening)
3766 release_sock(ssk);
3767
3768 /* on successful connect, the msk state will be moved to established by
3769 * subflow_finish_connect()
3770 */
3771 if (unlikely(err)) {
3772 /* avoid leaving a dangling token in an unconnected socket */
3773 mptcp_token_destroy(msk);
3774 mptcp_set_state(sk, TCP_CLOSE);
3775 return err;
3776 }
3777
3778 mptcp_copy_inaddrs(sk, ssk);
3779 return 0;
3780 }
3781
3782 static struct proto mptcp_prot = {
3783 .name = "MPTCP",
3784 .owner = THIS_MODULE,
3785 .init = mptcp_init_sock,
3786 .connect = mptcp_connect,
3787 .disconnect = mptcp_disconnect,
3788 .close = mptcp_close,
3789 .setsockopt = mptcp_setsockopt,
3790 .getsockopt = mptcp_getsockopt,
3791 .shutdown = mptcp_shutdown,
3792 .destroy = mptcp_destroy,
3793 .sendmsg = mptcp_sendmsg,
3794 .ioctl = mptcp_ioctl,
3795 .recvmsg = mptcp_recvmsg,
3796 .release_cb = mptcp_release_cb,
3797 .hash = mptcp_hash,
3798 .unhash = mptcp_unhash,
3799 .get_port = mptcp_get_port,
3800 .forward_alloc_get = mptcp_forward_alloc_get,
3801 .sockets_allocated = &mptcp_sockets_allocated,
3802
3803 .memory_allocated = &tcp_memory_allocated,
3804 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3805
3806 .memory_pressure = &tcp_memory_pressure,
3807 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3808 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3809 .sysctl_mem = sysctl_tcp_mem,
3810 .obj_size = sizeof(struct mptcp_sock),
3811 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3812 .no_autobind = true,
3813 };
3814
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3815 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3816 {
3817 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3818 struct sock *ssk, *sk = sock->sk;
3819 int err = -EINVAL;
3820
3821 lock_sock(sk);
3822 ssk = __mptcp_nmpc_sk(msk);
3823 if (IS_ERR(ssk)) {
3824 err = PTR_ERR(ssk);
3825 goto unlock;
3826 }
3827
3828 if (sk->sk_family == AF_INET)
3829 err = inet_bind_sk(ssk, uaddr, addr_len);
3830 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3831 else if (sk->sk_family == AF_INET6)
3832 err = inet6_bind_sk(ssk, uaddr, addr_len);
3833 #endif
3834 if (!err)
3835 mptcp_copy_inaddrs(sk, ssk);
3836
3837 unlock:
3838 release_sock(sk);
3839 return err;
3840 }
3841
mptcp_listen(struct socket * sock,int backlog)3842 static int mptcp_listen(struct socket *sock, int backlog)
3843 {
3844 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3845 struct sock *sk = sock->sk;
3846 struct sock *ssk;
3847 int err;
3848
3849 pr_debug("msk=%p\n", msk);
3850
3851 lock_sock(sk);
3852
3853 err = -EINVAL;
3854 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3855 goto unlock;
3856
3857 ssk = __mptcp_nmpc_sk(msk);
3858 if (IS_ERR(ssk)) {
3859 err = PTR_ERR(ssk);
3860 goto unlock;
3861 }
3862
3863 mptcp_set_state(sk, TCP_LISTEN);
3864 sock_set_flag(sk, SOCK_RCU_FREE);
3865
3866 lock_sock(ssk);
3867 err = __inet_listen_sk(ssk, backlog);
3868 release_sock(ssk);
3869 mptcp_set_state(sk, inet_sk_state_load(ssk));
3870
3871 if (!err) {
3872 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3873 mptcp_copy_inaddrs(sk, ssk);
3874 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3875 }
3876
3877 unlock:
3878 release_sock(sk);
3879 return err;
3880 }
3881
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3882 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3883 int flags, bool kern)
3884 {
3885 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3886 struct sock *ssk, *newsk;
3887 int err;
3888
3889 pr_debug("msk=%p\n", msk);
3890
3891 /* Buggy applications can call accept on socket states other then LISTEN
3892 * but no need to allocate the first subflow just to error out.
3893 */
3894 ssk = READ_ONCE(msk->first);
3895 if (!ssk)
3896 return -EINVAL;
3897
3898 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3899 newsk = inet_csk_accept(ssk, flags, &err, kern);
3900 if (!newsk)
3901 return err;
3902
3903 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3904 if (sk_is_mptcp(newsk)) {
3905 struct mptcp_subflow_context *subflow;
3906 struct sock *new_mptcp_sock;
3907
3908 subflow = mptcp_subflow_ctx(newsk);
3909 new_mptcp_sock = subflow->conn;
3910
3911 /* is_mptcp should be false if subflow->conn is missing, see
3912 * subflow_syn_recv_sock()
3913 */
3914 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3915 tcp_sk(newsk)->is_mptcp = 0;
3916 goto tcpfallback;
3917 }
3918
3919 newsk = new_mptcp_sock;
3920 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3921
3922 newsk->sk_kern_sock = kern;
3923 lock_sock(newsk);
3924 __inet_accept(sock, newsock, newsk);
3925
3926 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3927 msk = mptcp_sk(newsk);
3928 msk->in_accept_queue = 0;
3929
3930 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3931 * This is needed so NOSPACE flag can be set from tcp stack.
3932 */
3933 mptcp_for_each_subflow(msk, subflow) {
3934 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3935
3936 if (!ssk->sk_socket)
3937 mptcp_sock_graft(ssk, newsock);
3938 }
3939
3940 /* Do late cleanup for the first subflow as necessary. Also
3941 * deal with bad peers not doing a complete shutdown.
3942 */
3943 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3944 __mptcp_close_ssk(newsk, msk->first,
3945 mptcp_subflow_ctx(msk->first), 0);
3946 if (unlikely(list_is_singular(&msk->conn_list)))
3947 mptcp_set_state(newsk, TCP_CLOSE);
3948 }
3949 } else {
3950 tcpfallback:
3951 newsk->sk_kern_sock = kern;
3952 lock_sock(newsk);
3953 __inet_accept(sock, newsock, newsk);
3954 /* we are being invoked after accepting a non-mp-capable
3955 * flow: sk is a tcp_sk, not an mptcp one.
3956 *
3957 * Hand the socket over to tcp so all further socket ops
3958 * bypass mptcp.
3959 */
3960 WRITE_ONCE(newsock->sk->sk_socket->ops,
3961 mptcp_fallback_tcp_ops(newsock->sk));
3962 }
3963 release_sock(newsk);
3964
3965 return 0;
3966 }
3967
mptcp_check_writeable(struct mptcp_sock * msk)3968 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3969 {
3970 struct sock *sk = (struct sock *)msk;
3971
3972 if (sk_stream_is_writeable(sk))
3973 return EPOLLOUT | EPOLLWRNORM;
3974
3975 mptcp_set_nospace(sk);
3976 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3977 if (sk_stream_is_writeable(sk))
3978 return EPOLLOUT | EPOLLWRNORM;
3979
3980 return 0;
3981 }
3982
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3983 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3984 struct poll_table_struct *wait)
3985 {
3986 struct sock *sk = sock->sk;
3987 struct mptcp_sock *msk;
3988 __poll_t mask = 0;
3989 u8 shutdown;
3990 int state;
3991
3992 msk = mptcp_sk(sk);
3993 sock_poll_wait(file, sock, wait);
3994
3995 state = inet_sk_state_load(sk);
3996 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3997 if (state == TCP_LISTEN) {
3998 struct sock *ssk = READ_ONCE(msk->first);
3999
4000 if (WARN_ON_ONCE(!ssk))
4001 return 0;
4002
4003 return inet_csk_listen_poll(ssk);
4004 }
4005
4006 shutdown = READ_ONCE(sk->sk_shutdown);
4007 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4008 mask |= EPOLLHUP;
4009 if (shutdown & RCV_SHUTDOWN)
4010 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4011
4012 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4013 mask |= mptcp_check_readable(sk);
4014 if (shutdown & SEND_SHUTDOWN)
4015 mask |= EPOLLOUT | EPOLLWRNORM;
4016 else
4017 mask |= mptcp_check_writeable(msk);
4018 } else if (state == TCP_SYN_SENT &&
4019 inet_test_bit(DEFER_CONNECT, sk)) {
4020 /* cf tcp_poll() note about TFO */
4021 mask |= EPOLLOUT | EPOLLWRNORM;
4022 }
4023
4024 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4025 smp_rmb();
4026 if (READ_ONCE(sk->sk_err))
4027 mask |= EPOLLERR;
4028
4029 return mask;
4030 }
4031
4032 static const struct proto_ops mptcp_stream_ops = {
4033 .family = PF_INET,
4034 .owner = THIS_MODULE,
4035 .release = inet_release,
4036 .bind = mptcp_bind,
4037 .connect = inet_stream_connect,
4038 .socketpair = sock_no_socketpair,
4039 .accept = mptcp_stream_accept,
4040 .getname = inet_getname,
4041 .poll = mptcp_poll,
4042 .ioctl = inet_ioctl,
4043 .gettstamp = sock_gettstamp,
4044 .listen = mptcp_listen,
4045 .shutdown = inet_shutdown,
4046 .setsockopt = sock_common_setsockopt,
4047 .getsockopt = sock_common_getsockopt,
4048 .sendmsg = inet_sendmsg,
4049 .recvmsg = inet_recvmsg,
4050 .mmap = sock_no_mmap,
4051 .set_rcvlowat = mptcp_set_rcvlowat,
4052 };
4053
4054 static struct inet_protosw mptcp_protosw = {
4055 .type = SOCK_STREAM,
4056 .protocol = IPPROTO_MPTCP,
4057 .prot = &mptcp_prot,
4058 .ops = &mptcp_stream_ops,
4059 .flags = INET_PROTOSW_ICSK,
4060 };
4061
mptcp_napi_poll(struct napi_struct * napi,int budget)4062 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4063 {
4064 struct mptcp_delegated_action *delegated;
4065 struct mptcp_subflow_context *subflow;
4066 int work_done = 0;
4067
4068 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4069 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4070 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4071
4072 bh_lock_sock_nested(ssk);
4073 if (!sock_owned_by_user(ssk)) {
4074 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4075 } else {
4076 /* tcp_release_cb_override already processed
4077 * the action or will do at next release_sock().
4078 * In both case must dequeue the subflow here - on the same
4079 * CPU that scheduled it.
4080 */
4081 smp_wmb();
4082 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4083 }
4084 bh_unlock_sock(ssk);
4085 sock_put(ssk);
4086
4087 if (++work_done == budget)
4088 return budget;
4089 }
4090
4091 /* always provide a 0 'work_done' argument, so that napi_complete_done
4092 * will not try accessing the NULL napi->dev ptr
4093 */
4094 napi_complete_done(napi, 0);
4095 return work_done;
4096 }
4097
mptcp_proto_init(void)4098 void __init mptcp_proto_init(void)
4099 {
4100 struct mptcp_delegated_action *delegated;
4101 int cpu;
4102
4103 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4104
4105 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4106 panic("Failed to allocate MPTCP pcpu counter\n");
4107
4108 init_dummy_netdev(&mptcp_napi_dev);
4109 for_each_possible_cpu(cpu) {
4110 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4111 INIT_LIST_HEAD(&delegated->head);
4112 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4113 mptcp_napi_poll);
4114 napi_enable(&delegated->napi);
4115 }
4116
4117 mptcp_subflow_init();
4118 mptcp_pm_init();
4119 mptcp_sched_init();
4120 mptcp_token_init();
4121
4122 if (proto_register(&mptcp_prot, 1) != 0)
4123 panic("Failed to register MPTCP proto.\n");
4124
4125 inet_register_protosw(&mptcp_protosw);
4126
4127 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4128 }
4129
4130 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4131 static const struct proto_ops mptcp_v6_stream_ops = {
4132 .family = PF_INET6,
4133 .owner = THIS_MODULE,
4134 .release = inet6_release,
4135 .bind = mptcp_bind,
4136 .connect = inet_stream_connect,
4137 .socketpair = sock_no_socketpair,
4138 .accept = mptcp_stream_accept,
4139 .getname = inet6_getname,
4140 .poll = mptcp_poll,
4141 .ioctl = inet6_ioctl,
4142 .gettstamp = sock_gettstamp,
4143 .listen = mptcp_listen,
4144 .shutdown = inet_shutdown,
4145 .setsockopt = sock_common_setsockopt,
4146 .getsockopt = sock_common_getsockopt,
4147 .sendmsg = inet6_sendmsg,
4148 .recvmsg = inet6_recvmsg,
4149 .mmap = sock_no_mmap,
4150 #ifdef CONFIG_COMPAT
4151 .compat_ioctl = inet6_compat_ioctl,
4152 #endif
4153 .set_rcvlowat = mptcp_set_rcvlowat,
4154 };
4155
4156 static struct proto mptcp_v6_prot;
4157
4158 static struct inet_protosw mptcp_v6_protosw = {
4159 .type = SOCK_STREAM,
4160 .protocol = IPPROTO_MPTCP,
4161 .prot = &mptcp_v6_prot,
4162 .ops = &mptcp_v6_stream_ops,
4163 .flags = INET_PROTOSW_ICSK,
4164 };
4165
mptcp_proto_v6_init(void)4166 int __init mptcp_proto_v6_init(void)
4167 {
4168 int err;
4169
4170 mptcp_v6_prot = mptcp_prot;
4171 strcpy(mptcp_v6_prot.name, "MPTCPv6");
4172 mptcp_v6_prot.slab = NULL;
4173 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4174 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4175
4176 err = proto_register(&mptcp_v6_prot, 1);
4177 if (err)
4178 return err;
4179
4180 err = inet6_register_protosw(&mptcp_v6_protosw);
4181 if (err)
4182 proto_unregister(&mptcp_v6_prot);
4183
4184 return err;
4185 }
4186 #endif
4187