1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 return READ_ONCE(msk->wnd_end);
56 }
57
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 if (sk->sk_prot == &tcpv6_prot)
62 return &inet6_stream_ops;
63 #endif
64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 return &inet_stream_ops;
66 }
67
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 struct mptcp_subflow_context *subflow;
71 struct sock *sk = (struct sock *)msk;
72 struct socket *ssock;
73 int err;
74
75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 if (err)
77 return err;
78
79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 WRITE_ONCE(msk->first, ssock->sk);
81 subflow = mptcp_subflow_ctx(ssock->sk);
82 list_add(&subflow->node, &msk->conn_list);
83 sock_hold(ssock->sk);
84 subflow->request_mptcp = 1;
85 subflow->subflow_id = msk->subflow_id++;
86
87 /* This is the first subflow, always with id 0 */
88 WRITE_ONCE(subflow->local_id, 0);
89 mptcp_sock_graft(msk->first, sk->sk_socket);
90 iput(SOCK_INODE(ssock));
91
92 return 0;
93 }
94
95 /* If the MPC handshake is not started, returns the first subflow,
96 * eventually allocating it.
97 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 struct sock *sk = (struct sock *)msk;
101 int ret;
102
103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 return ERR_PTR(-EINVAL);
105
106 if (!msk->first) {
107 ret = __mptcp_socket_create(msk);
108 if (ret)
109 return ERR_PTR(ret);
110
111 mptcp_sockopt_sync(msk, msk->first);
112 }
113
114 return msk->first;
115 }
116
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 sk_drops_add(sk, skb);
120 __kfree_skb(skb);
121 }
122
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
124 {
125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
126 mptcp_sk(sk)->rmem_fwd_alloc + size);
127 }
128
mptcp_rmem_charge(struct sock * sk,int size)129 static void mptcp_rmem_charge(struct sock *sk, int size)
130 {
131 mptcp_rmem_fwd_alloc_add(sk, -size);
132 }
133
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
135 struct sk_buff *from)
136 {
137 bool fragstolen;
138 int delta;
139
140 if (MPTCP_SKB_CB(from)->offset ||
141 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
142 !skb_try_coalesce(to, from, &fragstolen, &delta))
143 return false;
144
145 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
146 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
147 to->len, MPTCP_SKB_CB(from)->end_seq);
148 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
149
150 /* note the fwd memory can reach a negative value after accounting
151 * for the delta, but the later skb free will restore a non
152 * negative one
153 */
154 atomic_add(delta, &sk->sk_rmem_alloc);
155 mptcp_rmem_charge(sk, delta);
156 kfree_skb_partial(from, fragstolen);
157
158 return true;
159 }
160
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)161 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
162 struct sk_buff *from)
163 {
164 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
165 return false;
166
167 return mptcp_try_coalesce((struct sock *)msk, to, from);
168 }
169
__mptcp_rmem_reclaim(struct sock * sk,int amount)170 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
171 {
172 amount >>= PAGE_SHIFT;
173 mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
174 __sk_mem_reduce_allocated(sk, amount);
175 }
176
mptcp_rmem_uncharge(struct sock * sk,int size)177 static void mptcp_rmem_uncharge(struct sock *sk, int size)
178 {
179 struct mptcp_sock *msk = mptcp_sk(sk);
180 int reclaimable;
181
182 mptcp_rmem_fwd_alloc_add(sk, size);
183 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
184
185 /* see sk_mem_uncharge() for the rationale behind the following schema */
186 if (unlikely(reclaimable >= PAGE_SIZE))
187 __mptcp_rmem_reclaim(sk, reclaimable);
188 }
189
mptcp_rfree(struct sk_buff * skb)190 static void mptcp_rfree(struct sk_buff *skb)
191 {
192 unsigned int len = skb->truesize;
193 struct sock *sk = skb->sk;
194
195 atomic_sub(len, &sk->sk_rmem_alloc);
196 mptcp_rmem_uncharge(sk, len);
197 }
198
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)199 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
200 {
201 skb_orphan(skb);
202 skb->sk = sk;
203 skb->destructor = mptcp_rfree;
204 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
205 mptcp_rmem_charge(sk, skb->truesize);
206 }
207
208 /* "inspired" by tcp_data_queue_ofo(), main differences:
209 * - use mptcp seqs
210 * - don't cope with sacks
211 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)212 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
213 {
214 struct sock *sk = (struct sock *)msk;
215 struct rb_node **p, *parent;
216 u64 seq, end_seq, max_seq;
217 struct sk_buff *skb1;
218
219 seq = MPTCP_SKB_CB(skb)->map_seq;
220 end_seq = MPTCP_SKB_CB(skb)->end_seq;
221 max_seq = atomic64_read(&msk->rcv_wnd_sent);
222
223 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
224 RB_EMPTY_ROOT(&msk->out_of_order_queue));
225 if (after64(end_seq, max_seq)) {
226 /* out of window */
227 mptcp_drop(sk, skb);
228 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
229 (unsigned long long)end_seq - (unsigned long)max_seq,
230 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
232 return;
233 }
234
235 p = &msk->out_of_order_queue.rb_node;
236 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
237 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
238 rb_link_node(&skb->rbnode, NULL, p);
239 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
240 msk->ooo_last_skb = skb;
241 goto end;
242 }
243
244 /* with 2 subflows, adding at end of ooo queue is quite likely
245 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
246 */
247 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
250 return;
251 }
252
253 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
254 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
255 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
256 parent = &msk->ooo_last_skb->rbnode;
257 p = &parent->rb_right;
258 goto insert;
259 }
260
261 /* Find place to insert this segment. Handle overlaps on the way. */
262 parent = NULL;
263 while (*p) {
264 parent = *p;
265 skb1 = rb_to_skb(parent);
266 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
267 p = &parent->rb_left;
268 continue;
269 }
270 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
271 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
272 /* All the bits are present. Drop. */
273 mptcp_drop(sk, skb);
274 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
275 return;
276 }
277 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
278 /* partial overlap:
279 * | skb |
280 * | skb1 |
281 * continue traversing
282 */
283 } else {
284 /* skb's seq == skb1's seq and skb covers skb1.
285 * Replace skb1 with skb.
286 */
287 rb_replace_node(&skb1->rbnode, &skb->rbnode,
288 &msk->out_of_order_queue);
289 mptcp_drop(sk, skb1);
290 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
291 goto merge_right;
292 }
293 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
294 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
295 return;
296 }
297 p = &parent->rb_right;
298 }
299
300 insert:
301 /* Insert segment into RB tree. */
302 rb_link_node(&skb->rbnode, parent, p);
303 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
304
305 merge_right:
306 /* Remove other segments covered by skb. */
307 while ((skb1 = skb_rb_next(skb)) != NULL) {
308 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
309 break;
310 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
311 mptcp_drop(sk, skb1);
312 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
313 }
314 /* If there is no skb after us, we are the last_skb ! */
315 if (!skb1)
316 msk->ooo_last_skb = skb;
317
318 end:
319 skb_condense(skb);
320 mptcp_set_owner_r(skb, sk);
321 }
322
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)323 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
324 {
325 struct mptcp_sock *msk = mptcp_sk(sk);
326 int amt, amount;
327
328 if (size <= msk->rmem_fwd_alloc)
329 return true;
330
331 size -= msk->rmem_fwd_alloc;
332 amt = sk_mem_pages(size);
333 amount = amt << PAGE_SHIFT;
334 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
335 return false;
336
337 mptcp_rmem_fwd_alloc_add(sk, amount);
338 return true;
339 }
340
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)341 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
342 struct sk_buff *skb, unsigned int offset,
343 size_t copy_len)
344 {
345 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
346 struct sock *sk = (struct sock *)msk;
347 struct sk_buff *tail;
348 bool has_rxtstamp;
349
350 __skb_unlink(skb, &ssk->sk_receive_queue);
351
352 skb_ext_reset(skb);
353 skb_orphan(skb);
354
355 /* try to fetch required memory from subflow */
356 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
357 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
358 goto drop;
359 }
360
361 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
362
363 /* the skb map_seq accounts for the skb offset:
364 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
365 * value
366 */
367 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
368 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
369 MPTCP_SKB_CB(skb)->offset = offset;
370 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
371
372 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
373 /* in sequence */
374 msk->bytes_received += copy_len;
375 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
376 tail = skb_peek_tail(&sk->sk_receive_queue);
377 if (tail && mptcp_try_coalesce(sk, tail, skb))
378 return true;
379
380 mptcp_set_owner_r(skb, sk);
381 __skb_queue_tail(&sk->sk_receive_queue, skb);
382 return true;
383 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
384 mptcp_data_queue_ofo(msk, skb);
385 return false;
386 }
387
388 /* old data, keep it simple and drop the whole pkt, sender
389 * will retransmit as needed, if needed.
390 */
391 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
392 drop:
393 mptcp_drop(sk, skb);
394 return false;
395 }
396
mptcp_stop_rtx_timer(struct sock * sk)397 static void mptcp_stop_rtx_timer(struct sock *sk)
398 {
399 struct inet_connection_sock *icsk = inet_csk(sk);
400
401 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
402 mptcp_sk(sk)->timer_ival = 0;
403 }
404
mptcp_close_wake_up(struct sock * sk)405 static void mptcp_close_wake_up(struct sock *sk)
406 {
407 if (sock_flag(sk, SOCK_DEAD))
408 return;
409
410 sk->sk_state_change(sk);
411 if (sk->sk_shutdown == SHUTDOWN_MASK ||
412 sk->sk_state == TCP_CLOSE)
413 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
414 else
415 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
416 }
417
mptcp_pending_data_fin_ack(struct sock * sk)418 static bool mptcp_pending_data_fin_ack(struct sock *sk)
419 {
420 struct mptcp_sock *msk = mptcp_sk(sk);
421
422 return ((1 << sk->sk_state) &
423 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
424 msk->write_seq == READ_ONCE(msk->snd_una);
425 }
426
mptcp_check_data_fin_ack(struct sock * sk)427 static void mptcp_check_data_fin_ack(struct sock *sk)
428 {
429 struct mptcp_sock *msk = mptcp_sk(sk);
430
431 /* Look for an acknowledged DATA_FIN */
432 if (mptcp_pending_data_fin_ack(sk)) {
433 WRITE_ONCE(msk->snd_data_fin_enable, 0);
434
435 switch (sk->sk_state) {
436 case TCP_FIN_WAIT1:
437 mptcp_set_state(sk, TCP_FIN_WAIT2);
438 break;
439 case TCP_CLOSING:
440 case TCP_LAST_ACK:
441 mptcp_set_state(sk, TCP_CLOSE);
442 break;
443 }
444
445 mptcp_close_wake_up(sk);
446 }
447 }
448
mptcp_pending_data_fin(struct sock * sk,u64 * seq)449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
450 {
451 struct mptcp_sock *msk = mptcp_sk(sk);
452
453 if (READ_ONCE(msk->rcv_data_fin) &&
454 ((1 << sk->sk_state) &
455 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
456 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
457
458 if (msk->ack_seq == rcv_data_fin_seq) {
459 if (seq)
460 *seq = rcv_data_fin_seq;
461
462 return true;
463 }
464 }
465
466 return false;
467 }
468
mptcp_set_datafin_timeout(struct sock * sk)469 static void mptcp_set_datafin_timeout(struct sock *sk)
470 {
471 struct inet_connection_sock *icsk = inet_csk(sk);
472 u32 retransmits;
473
474 retransmits = min_t(u32, icsk->icsk_retransmits,
475 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
476
477 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
478 }
479
__mptcp_set_timeout(struct sock * sk,long tout)480 static void __mptcp_set_timeout(struct sock *sk, long tout)
481 {
482 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
483 }
484
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
486 {
487 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
488
489 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
490 inet_csk(ssk)->icsk_timeout - jiffies : 0;
491 }
492
mptcp_set_timeout(struct sock * sk)493 static void mptcp_set_timeout(struct sock *sk)
494 {
495 struct mptcp_subflow_context *subflow;
496 long tout = 0;
497
498 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
499 tout = max(tout, mptcp_timeout_from_subflow(subflow));
500 __mptcp_set_timeout(sk, tout);
501 }
502
tcp_can_send_ack(const struct sock * ssk)503 static inline bool tcp_can_send_ack(const struct sock *ssk)
504 {
505 return !((1 << inet_sk_state_load(ssk)) &
506 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
507 }
508
__mptcp_subflow_send_ack(struct sock * ssk)509 void __mptcp_subflow_send_ack(struct sock *ssk)
510 {
511 if (tcp_can_send_ack(ssk))
512 tcp_send_ack(ssk);
513 }
514
mptcp_subflow_send_ack(struct sock * ssk)515 static void mptcp_subflow_send_ack(struct sock *ssk)
516 {
517 bool slow;
518
519 slow = lock_sock_fast(ssk);
520 __mptcp_subflow_send_ack(ssk);
521 unlock_sock_fast(ssk, slow);
522 }
523
mptcp_send_ack(struct mptcp_sock * msk)524 static void mptcp_send_ack(struct mptcp_sock *msk)
525 {
526 struct mptcp_subflow_context *subflow;
527
528 mptcp_for_each_subflow(msk, subflow)
529 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
530 }
531
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)532 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
533 {
534 bool slow;
535
536 slow = lock_sock_fast(ssk);
537 if (tcp_can_send_ack(ssk))
538 tcp_cleanup_rbuf(ssk, copied);
539 unlock_sock_fast(ssk, slow);
540 }
541
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)542 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
543 {
544 const struct inet_connection_sock *icsk = inet_csk(ssk);
545 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
546 const struct tcp_sock *tp = tcp_sk(ssk);
547
548 return (ack_pending & ICSK_ACK_SCHED) &&
549 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
550 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
551 (rx_empty && ack_pending &
552 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
553 }
554
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)555 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
556 {
557 int old_space = READ_ONCE(msk->old_wspace);
558 struct mptcp_subflow_context *subflow;
559 struct sock *sk = (struct sock *)msk;
560 int space = __mptcp_space(sk);
561 bool cleanup, rx_empty;
562
563 cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
564 rx_empty = !__mptcp_rmem(sk) && copied;
565
566 mptcp_for_each_subflow(msk, subflow) {
567 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
568
569 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
570 mptcp_subflow_cleanup_rbuf(ssk, copied);
571 }
572 }
573
mptcp_check_data_fin(struct sock * sk)574 static bool mptcp_check_data_fin(struct sock *sk)
575 {
576 struct mptcp_sock *msk = mptcp_sk(sk);
577 u64 rcv_data_fin_seq;
578 bool ret = false;
579
580 /* Need to ack a DATA_FIN received from a peer while this side
581 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
582 * msk->rcv_data_fin was set when parsing the incoming options
583 * at the subflow level and the msk lock was not held, so this
584 * is the first opportunity to act on the DATA_FIN and change
585 * the msk state.
586 *
587 * If we are caught up to the sequence number of the incoming
588 * DATA_FIN, send the DATA_ACK now and do state transition. If
589 * not caught up, do nothing and let the recv code send DATA_ACK
590 * when catching up.
591 */
592
593 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
594 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
595 WRITE_ONCE(msk->rcv_data_fin, 0);
596
597 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
598 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
599
600 switch (sk->sk_state) {
601 case TCP_ESTABLISHED:
602 mptcp_set_state(sk, TCP_CLOSE_WAIT);
603 break;
604 case TCP_FIN_WAIT1:
605 mptcp_set_state(sk, TCP_CLOSING);
606 break;
607 case TCP_FIN_WAIT2:
608 mptcp_set_state(sk, TCP_CLOSE);
609 break;
610 default:
611 /* Other states not expected */
612 WARN_ON_ONCE(1);
613 break;
614 }
615
616 ret = true;
617 if (!__mptcp_check_fallback(msk))
618 mptcp_send_ack(msk);
619 mptcp_close_wake_up(sk);
620 }
621 return ret;
622 }
623
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)624 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
625 {
626 if (READ_ONCE(msk->allow_infinite_fallback)) {
627 MPTCP_INC_STATS(sock_net(ssk),
628 MPTCP_MIB_DSSCORRUPTIONFALLBACK);
629 mptcp_do_fallback(ssk);
630 } else {
631 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
632 mptcp_subflow_reset(ssk);
633 }
634 }
635
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)636 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
637 struct sock *ssk,
638 unsigned int *bytes)
639 {
640 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
641 struct sock *sk = (struct sock *)msk;
642 unsigned int moved = 0;
643 bool more_data_avail;
644 struct tcp_sock *tp;
645 bool done = false;
646 int sk_rbuf;
647
648 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
649
650 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
651 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
652
653 if (unlikely(ssk_rbuf > sk_rbuf)) {
654 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
655 sk_rbuf = ssk_rbuf;
656 }
657 }
658
659 pr_debug("msk=%p ssk=%p\n", msk, ssk);
660 tp = tcp_sk(ssk);
661 do {
662 u32 map_remaining, offset;
663 u32 seq = tp->copied_seq;
664 struct sk_buff *skb;
665 bool fin;
666
667 /* try to move as much data as available */
668 map_remaining = subflow->map_data_len -
669 mptcp_subflow_get_map_offset(subflow);
670
671 skb = skb_peek(&ssk->sk_receive_queue);
672 if (!skb) {
673 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
674 * a different CPU can have already processed the pending
675 * data, stop here or we can enter an infinite loop
676 */
677 if (!moved)
678 done = true;
679 break;
680 }
681
682 if (__mptcp_check_fallback(msk)) {
683 /* Under fallback skbs have no MPTCP extension and TCP could
684 * collapse them between the dummy map creation and the
685 * current dequeue. Be sure to adjust the map size.
686 */
687 map_remaining = skb->len;
688 subflow->map_data_len = skb->len;
689 }
690
691 offset = seq - TCP_SKB_CB(skb)->seq;
692 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
693 if (fin) {
694 done = true;
695 seq++;
696 }
697
698 if (offset < skb->len) {
699 size_t len = skb->len - offset;
700
701 if (tp->urg_data)
702 done = true;
703
704 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
705 moved += len;
706 seq += len;
707
708 if (unlikely(map_remaining < len)) {
709 DEBUG_NET_WARN_ON_ONCE(1);
710 mptcp_dss_corruption(msk, ssk);
711 }
712 } else {
713 if (unlikely(!fin)) {
714 DEBUG_NET_WARN_ON_ONCE(1);
715 mptcp_dss_corruption(msk, ssk);
716 }
717
718 sk_eat_skb(ssk, skb);
719 done = true;
720 }
721
722 WRITE_ONCE(tp->copied_seq, seq);
723 more_data_avail = mptcp_subflow_data_available(ssk);
724
725 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
726 done = true;
727 break;
728 }
729 } while (more_data_avail);
730
731 *bytes += moved;
732 return done;
733 }
734
__mptcp_ofo_queue(struct mptcp_sock * msk)735 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
736 {
737 struct sock *sk = (struct sock *)msk;
738 struct sk_buff *skb, *tail;
739 bool moved = false;
740 struct rb_node *p;
741 u64 end_seq;
742
743 p = rb_first(&msk->out_of_order_queue);
744 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
745 while (p) {
746 skb = rb_to_skb(p);
747 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
748 break;
749
750 p = rb_next(p);
751 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
752
753 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
754 msk->ack_seq))) {
755 mptcp_drop(sk, skb);
756 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
757 continue;
758 }
759
760 end_seq = MPTCP_SKB_CB(skb)->end_seq;
761 tail = skb_peek_tail(&sk->sk_receive_queue);
762 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
763 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
764
765 /* skip overlapping data, if any */
766 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
767 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
768 delta);
769 MPTCP_SKB_CB(skb)->offset += delta;
770 MPTCP_SKB_CB(skb)->map_seq += delta;
771 __skb_queue_tail(&sk->sk_receive_queue, skb);
772 }
773 msk->bytes_received += end_seq - msk->ack_seq;
774 msk->ack_seq = end_seq;
775 moved = true;
776 }
777 return moved;
778 }
779
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)780 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
781 {
782 int err = sock_error(ssk);
783 int ssk_state;
784
785 if (!err)
786 return false;
787
788 /* only propagate errors on fallen-back sockets or
789 * on MPC connect
790 */
791 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
792 return false;
793
794 /* We need to propagate only transition to CLOSE state.
795 * Orphaned socket will see such state change via
796 * subflow_sched_work_if_closed() and that path will properly
797 * destroy the msk as needed.
798 */
799 ssk_state = inet_sk_state_load(ssk);
800 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
801 mptcp_set_state(sk, ssk_state);
802 WRITE_ONCE(sk->sk_err, -err);
803
804 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
805 smp_wmb();
806 sk_error_report(sk);
807 return true;
808 }
809
__mptcp_error_report(struct sock * sk)810 void __mptcp_error_report(struct sock *sk)
811 {
812 struct mptcp_subflow_context *subflow;
813 struct mptcp_sock *msk = mptcp_sk(sk);
814
815 mptcp_for_each_subflow(msk, subflow)
816 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
817 break;
818 }
819
820 /* In most cases we will be able to lock the mptcp socket. If its already
821 * owned, we need to defer to the work queue to avoid ABBA deadlock.
822 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)823 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
824 {
825 struct sock *sk = (struct sock *)msk;
826 unsigned int moved = 0;
827
828 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
829 __mptcp_ofo_queue(msk);
830 if (unlikely(ssk->sk_err)) {
831 if (!sock_owned_by_user(sk))
832 __mptcp_error_report(sk);
833 else
834 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
835 }
836
837 /* If the moves have caught up with the DATA_FIN sequence number
838 * it's time to ack the DATA_FIN and change socket state, but
839 * this is not a good place to change state. Let the workqueue
840 * do it.
841 */
842 if (mptcp_pending_data_fin(sk, NULL))
843 mptcp_schedule_work(sk);
844 return moved > 0;
845 }
846
mptcp_data_ready(struct sock * sk,struct sock * ssk)847 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
848 {
849 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
850 struct mptcp_sock *msk = mptcp_sk(sk);
851 int sk_rbuf, ssk_rbuf;
852
853 /* The peer can send data while we are shutting down this
854 * subflow at msk destruction time, but we must avoid enqueuing
855 * more data to the msk receive queue
856 */
857 if (unlikely(subflow->disposable))
858 return;
859
860 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
861 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
862 if (unlikely(ssk_rbuf > sk_rbuf))
863 sk_rbuf = ssk_rbuf;
864
865 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
866 if (__mptcp_rmem(sk) > sk_rbuf)
867 return;
868
869 /* Wake-up the reader only for in-sequence data */
870 mptcp_data_lock(sk);
871 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
872 sk->sk_data_ready(sk);
873 mptcp_data_unlock(sk);
874 }
875
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)876 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
877 {
878 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
879 WRITE_ONCE(msk->allow_infinite_fallback, false);
880 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
881 }
882
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)883 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
884 {
885 struct sock *sk = (struct sock *)msk;
886
887 if (sk->sk_state != TCP_ESTABLISHED)
888 return false;
889
890 /* attach to msk socket only after we are sure we will deal with it
891 * at close time
892 */
893 if (sk->sk_socket && !ssk->sk_socket)
894 mptcp_sock_graft(ssk, sk->sk_socket);
895
896 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
897 mptcp_sockopt_sync_locked(msk, ssk);
898 mptcp_subflow_joined(msk, ssk);
899 mptcp_stop_tout_timer(sk);
900 __mptcp_propagate_sndbuf(sk, ssk);
901 return true;
902 }
903
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)904 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
905 {
906 struct mptcp_subflow_context *tmp, *subflow;
907 struct mptcp_sock *msk = mptcp_sk(sk);
908
909 list_for_each_entry_safe(subflow, tmp, join_list, node) {
910 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
911 bool slow = lock_sock_fast(ssk);
912
913 list_move_tail(&subflow->node, &msk->conn_list);
914 if (!__mptcp_finish_join(msk, ssk))
915 mptcp_subflow_reset(ssk);
916 unlock_sock_fast(ssk, slow);
917 }
918 }
919
mptcp_rtx_timer_pending(struct sock * sk)920 static bool mptcp_rtx_timer_pending(struct sock *sk)
921 {
922 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
923 }
924
mptcp_reset_rtx_timer(struct sock * sk)925 static void mptcp_reset_rtx_timer(struct sock *sk)
926 {
927 struct inet_connection_sock *icsk = inet_csk(sk);
928 unsigned long tout;
929
930 /* prevent rescheduling on close */
931 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
932 return;
933
934 tout = mptcp_sk(sk)->timer_ival;
935 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
936 }
937
mptcp_schedule_work(struct sock * sk)938 bool mptcp_schedule_work(struct sock *sk)
939 {
940 if (inet_sk_state_load(sk) != TCP_CLOSE &&
941 schedule_work(&mptcp_sk(sk)->work)) {
942 /* each subflow already holds a reference to the sk, and the
943 * workqueue is invoked by a subflow, so sk can't go away here.
944 */
945 sock_hold(sk);
946 return true;
947 }
948 return false;
949 }
950
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)951 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
952 {
953 struct mptcp_subflow_context *subflow;
954
955 msk_owned_by_me(msk);
956
957 mptcp_for_each_subflow(msk, subflow) {
958 if (READ_ONCE(subflow->data_avail))
959 return mptcp_subflow_tcp_sock(subflow);
960 }
961
962 return NULL;
963 }
964
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)965 static bool mptcp_skb_can_collapse_to(u64 write_seq,
966 const struct sk_buff *skb,
967 const struct mptcp_ext *mpext)
968 {
969 if (!tcp_skb_can_collapse_to(skb))
970 return false;
971
972 /* can collapse only if MPTCP level sequence is in order and this
973 * mapping has not been xmitted yet
974 */
975 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
976 !mpext->frozen;
977 }
978
979 /* we can append data to the given data frag if:
980 * - there is space available in the backing page_frag
981 * - the data frag tail matches the current page_frag free offset
982 * - the data frag end sequence number matches the current write seq
983 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)984 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
985 const struct page_frag *pfrag,
986 const struct mptcp_data_frag *df)
987 {
988 return df && pfrag->page == df->page &&
989 pfrag->size - pfrag->offset > 0 &&
990 pfrag->offset == (df->offset + df->data_len) &&
991 df->data_seq + df->data_len == msk->write_seq;
992 }
993
dfrag_uncharge(struct sock * sk,int len)994 static void dfrag_uncharge(struct sock *sk, int len)
995 {
996 sk_mem_uncharge(sk, len);
997 sk_wmem_queued_add(sk, -len);
998 }
999
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1000 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1001 {
1002 int len = dfrag->data_len + dfrag->overhead;
1003
1004 list_del(&dfrag->list);
1005 dfrag_uncharge(sk, len);
1006 put_page(dfrag->page);
1007 }
1008
__mptcp_clean_una(struct sock * sk)1009 static void __mptcp_clean_una(struct sock *sk)
1010 {
1011 struct mptcp_sock *msk = mptcp_sk(sk);
1012 struct mptcp_data_frag *dtmp, *dfrag;
1013 u64 snd_una;
1014
1015 snd_una = msk->snd_una;
1016 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1017 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1018 break;
1019
1020 if (unlikely(dfrag == msk->first_pending)) {
1021 /* in recovery mode can see ack after the current snd head */
1022 if (WARN_ON_ONCE(!msk->recovery))
1023 break;
1024
1025 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1026 }
1027
1028 dfrag_clear(sk, dfrag);
1029 }
1030
1031 dfrag = mptcp_rtx_head(sk);
1032 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1033 u64 delta = snd_una - dfrag->data_seq;
1034
1035 /* prevent wrap around in recovery mode */
1036 if (unlikely(delta > dfrag->already_sent)) {
1037 if (WARN_ON_ONCE(!msk->recovery))
1038 goto out;
1039 if (WARN_ON_ONCE(delta > dfrag->data_len))
1040 goto out;
1041 dfrag->already_sent += delta - dfrag->already_sent;
1042 }
1043
1044 dfrag->data_seq += delta;
1045 dfrag->offset += delta;
1046 dfrag->data_len -= delta;
1047 dfrag->already_sent -= delta;
1048
1049 dfrag_uncharge(sk, delta);
1050 }
1051
1052 /* all retransmitted data acked, recovery completed */
1053 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1054 msk->recovery = false;
1055
1056 out:
1057 if (snd_una == READ_ONCE(msk->snd_nxt) &&
1058 snd_una == READ_ONCE(msk->write_seq)) {
1059 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1060 mptcp_stop_rtx_timer(sk);
1061 } else {
1062 mptcp_reset_rtx_timer(sk);
1063 }
1064 }
1065
__mptcp_clean_una_wakeup(struct sock * sk)1066 static void __mptcp_clean_una_wakeup(struct sock *sk)
1067 {
1068 lockdep_assert_held_once(&sk->sk_lock.slock);
1069
1070 __mptcp_clean_una(sk);
1071 mptcp_write_space(sk);
1072 }
1073
mptcp_clean_una_wakeup(struct sock * sk)1074 static void mptcp_clean_una_wakeup(struct sock *sk)
1075 {
1076 mptcp_data_lock(sk);
1077 __mptcp_clean_una_wakeup(sk);
1078 mptcp_data_unlock(sk);
1079 }
1080
mptcp_enter_memory_pressure(struct sock * sk)1081 static void mptcp_enter_memory_pressure(struct sock *sk)
1082 {
1083 struct mptcp_subflow_context *subflow;
1084 struct mptcp_sock *msk = mptcp_sk(sk);
1085 bool first = true;
1086
1087 mptcp_for_each_subflow(msk, subflow) {
1088 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1089
1090 if (first)
1091 tcp_enter_memory_pressure(ssk);
1092 sk_stream_moderate_sndbuf(ssk);
1093
1094 first = false;
1095 }
1096 __mptcp_sync_sndbuf(sk);
1097 }
1098
1099 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1100 * data
1101 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1102 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1103 {
1104 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1105 pfrag, sk->sk_allocation)))
1106 return true;
1107
1108 mptcp_enter_memory_pressure(sk);
1109 return false;
1110 }
1111
1112 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1113 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1114 int orig_offset)
1115 {
1116 int offset = ALIGN(orig_offset, sizeof(long));
1117 struct mptcp_data_frag *dfrag;
1118
1119 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1120 dfrag->data_len = 0;
1121 dfrag->data_seq = msk->write_seq;
1122 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1123 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1124 dfrag->already_sent = 0;
1125 dfrag->page = pfrag->page;
1126
1127 return dfrag;
1128 }
1129
1130 struct mptcp_sendmsg_info {
1131 int mss_now;
1132 int size_goal;
1133 u16 limit;
1134 u16 sent;
1135 unsigned int flags;
1136 bool data_lock_held;
1137 };
1138
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1139 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1140 u64 data_seq, int avail_size)
1141 {
1142 u64 window_end = mptcp_wnd_end(msk);
1143 u64 mptcp_snd_wnd;
1144
1145 if (__mptcp_check_fallback(msk))
1146 return avail_size;
1147
1148 mptcp_snd_wnd = window_end - data_seq;
1149 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1150
1151 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1152 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1153 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1154 }
1155
1156 return avail_size;
1157 }
1158
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1159 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1160 {
1161 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1162
1163 if (!mpext)
1164 return false;
1165 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1166 return true;
1167 }
1168
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1169 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1170 {
1171 struct sk_buff *skb;
1172
1173 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1174 if (likely(skb)) {
1175 if (likely(__mptcp_add_ext(skb, gfp))) {
1176 skb_reserve(skb, MAX_TCP_HEADER);
1177 skb->ip_summed = CHECKSUM_PARTIAL;
1178 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1179 return skb;
1180 }
1181 __kfree_skb(skb);
1182 } else {
1183 mptcp_enter_memory_pressure(sk);
1184 }
1185 return NULL;
1186 }
1187
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1188 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1189 {
1190 struct sk_buff *skb;
1191
1192 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1193 if (!skb)
1194 return NULL;
1195
1196 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1197 tcp_skb_entail(ssk, skb);
1198 return skb;
1199 }
1200 tcp_skb_tsorted_anchor_cleanup(skb);
1201 kfree_skb(skb);
1202 return NULL;
1203 }
1204
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1205 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1206 {
1207 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1208
1209 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1210 }
1211
1212 /* note: this always recompute the csum on the whole skb, even
1213 * if we just appended a single frag. More status info needed
1214 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1215 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1216 {
1217 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1218 __wsum csum = ~csum_unfold(mpext->csum);
1219 int offset = skb->len - added;
1220
1221 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1222 }
1223
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1224 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1225 struct sock *ssk,
1226 struct mptcp_ext *mpext)
1227 {
1228 if (!mpext)
1229 return;
1230
1231 mpext->infinite_map = 1;
1232 mpext->data_len = 0;
1233
1234 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1235 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1236 pr_fallback(msk);
1237 mptcp_do_fallback(ssk);
1238 }
1239
1240 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1241
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1242 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1243 struct mptcp_data_frag *dfrag,
1244 struct mptcp_sendmsg_info *info)
1245 {
1246 u64 data_seq = dfrag->data_seq + info->sent;
1247 int offset = dfrag->offset + info->sent;
1248 struct mptcp_sock *msk = mptcp_sk(sk);
1249 bool zero_window_probe = false;
1250 struct mptcp_ext *mpext = NULL;
1251 bool can_coalesce = false;
1252 bool reuse_skb = true;
1253 struct sk_buff *skb;
1254 size_t copy;
1255 int i;
1256
1257 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1258 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1259
1260 if (WARN_ON_ONCE(info->sent > info->limit ||
1261 info->limit > dfrag->data_len))
1262 return 0;
1263
1264 if (unlikely(!__tcp_can_send(ssk)))
1265 return -EAGAIN;
1266
1267 /* compute send limit */
1268 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1269 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1270 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1271 copy = info->size_goal;
1272
1273 skb = tcp_write_queue_tail(ssk);
1274 if (skb && copy > skb->len) {
1275 /* Limit the write to the size available in the
1276 * current skb, if any, so that we create at most a new skb.
1277 * Explicitly tells TCP internals to avoid collapsing on later
1278 * queue management operation, to avoid breaking the ext <->
1279 * SSN association set here
1280 */
1281 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1282 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1283 TCP_SKB_CB(skb)->eor = 1;
1284 tcp_mark_push(tcp_sk(ssk), skb);
1285 goto alloc_skb;
1286 }
1287
1288 i = skb_shinfo(skb)->nr_frags;
1289 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1290 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1291 tcp_mark_push(tcp_sk(ssk), skb);
1292 goto alloc_skb;
1293 }
1294
1295 copy -= skb->len;
1296 } else {
1297 alloc_skb:
1298 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1299 if (!skb)
1300 return -ENOMEM;
1301
1302 i = skb_shinfo(skb)->nr_frags;
1303 reuse_skb = false;
1304 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1305 }
1306
1307 /* Zero window and all data acked? Probe. */
1308 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1309 if (copy == 0) {
1310 u64 snd_una = READ_ONCE(msk->snd_una);
1311
1312 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1313 tcp_remove_empty_skb(ssk);
1314 return 0;
1315 }
1316
1317 zero_window_probe = true;
1318 data_seq = snd_una - 1;
1319 copy = 1;
1320 }
1321
1322 copy = min_t(size_t, copy, info->limit - info->sent);
1323 if (!sk_wmem_schedule(ssk, copy)) {
1324 tcp_remove_empty_skb(ssk);
1325 return -ENOMEM;
1326 }
1327
1328 if (can_coalesce) {
1329 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1330 } else {
1331 get_page(dfrag->page);
1332 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1333 }
1334
1335 skb->len += copy;
1336 skb->data_len += copy;
1337 skb->truesize += copy;
1338 sk_wmem_queued_add(ssk, copy);
1339 sk_mem_charge(ssk, copy);
1340 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1341 TCP_SKB_CB(skb)->end_seq += copy;
1342 tcp_skb_pcount_set(skb, 0);
1343
1344 /* on skb reuse we just need to update the DSS len */
1345 if (reuse_skb) {
1346 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1347 mpext->data_len += copy;
1348 goto out;
1349 }
1350
1351 memset(mpext, 0, sizeof(*mpext));
1352 mpext->data_seq = data_seq;
1353 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1354 mpext->data_len = copy;
1355 mpext->use_map = 1;
1356 mpext->dsn64 = 1;
1357
1358 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1359 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1360 mpext->dsn64);
1361
1362 if (zero_window_probe) {
1363 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1364 mpext->frozen = 1;
1365 if (READ_ONCE(msk->csum_enabled))
1366 mptcp_update_data_checksum(skb, copy);
1367 tcp_push_pending_frames(ssk);
1368 return 0;
1369 }
1370 out:
1371 if (READ_ONCE(msk->csum_enabled))
1372 mptcp_update_data_checksum(skb, copy);
1373 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1374 mptcp_update_infinite_map(msk, ssk, mpext);
1375 trace_mptcp_sendmsg_frag(mpext);
1376 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1377 return copy;
1378 }
1379
1380 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1381 sizeof(struct tcphdr) - \
1382 MAX_TCP_OPTION_SPACE - \
1383 sizeof(struct ipv6hdr) - \
1384 sizeof(struct frag_hdr))
1385
1386 struct subflow_send_info {
1387 struct sock *ssk;
1388 u64 linger_time;
1389 };
1390
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1391 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1392 {
1393 if (!subflow->stale)
1394 return;
1395
1396 subflow->stale = 0;
1397 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1398 }
1399
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1400 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1401 {
1402 if (unlikely(subflow->stale)) {
1403 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1404
1405 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1406 return false;
1407
1408 mptcp_subflow_set_active(subflow);
1409 }
1410 return __mptcp_subflow_active(subflow);
1411 }
1412
1413 #define SSK_MODE_ACTIVE 0
1414 #define SSK_MODE_BACKUP 1
1415 #define SSK_MODE_MAX 2
1416
1417 /* implement the mptcp packet scheduler;
1418 * returns the subflow that will transmit the next DSS
1419 * additionally updates the rtx timeout
1420 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1421 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1422 {
1423 struct subflow_send_info send_info[SSK_MODE_MAX];
1424 struct mptcp_subflow_context *subflow;
1425 struct sock *sk = (struct sock *)msk;
1426 u32 pace, burst, wmem;
1427 int i, nr_active = 0;
1428 struct sock *ssk;
1429 u64 linger_time;
1430 long tout = 0;
1431
1432 /* pick the subflow with the lower wmem/wspace ratio */
1433 for (i = 0; i < SSK_MODE_MAX; ++i) {
1434 send_info[i].ssk = NULL;
1435 send_info[i].linger_time = -1;
1436 }
1437
1438 mptcp_for_each_subflow(msk, subflow) {
1439 bool backup = subflow->backup || subflow->request_bkup;
1440
1441 trace_mptcp_subflow_get_send(subflow);
1442 ssk = mptcp_subflow_tcp_sock(subflow);
1443 if (!mptcp_subflow_active(subflow))
1444 continue;
1445
1446 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1447 nr_active += !backup;
1448 pace = subflow->avg_pacing_rate;
1449 if (unlikely(!pace)) {
1450 /* init pacing rate from socket */
1451 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1452 pace = subflow->avg_pacing_rate;
1453 if (!pace)
1454 continue;
1455 }
1456
1457 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1458 if (linger_time < send_info[backup].linger_time) {
1459 send_info[backup].ssk = ssk;
1460 send_info[backup].linger_time = linger_time;
1461 }
1462 }
1463 __mptcp_set_timeout(sk, tout);
1464
1465 /* pick the best backup if no other subflow is active */
1466 if (!nr_active)
1467 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1468
1469 /* According to the blest algorithm, to avoid HoL blocking for the
1470 * faster flow, we need to:
1471 * - estimate the faster flow linger time
1472 * - use the above to estimate the amount of byte transferred
1473 * by the faster flow
1474 * - check that the amount of queued data is greter than the above,
1475 * otherwise do not use the picked, slower, subflow
1476 * We select the subflow with the shorter estimated time to flush
1477 * the queued mem, which basically ensure the above. We just need
1478 * to check that subflow has a non empty cwin.
1479 */
1480 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1481 if (!ssk || !sk_stream_memory_free(ssk))
1482 return NULL;
1483
1484 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1485 wmem = READ_ONCE(ssk->sk_wmem_queued);
1486 if (!burst)
1487 return ssk;
1488
1489 subflow = mptcp_subflow_ctx(ssk);
1490 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1491 READ_ONCE(ssk->sk_pacing_rate) * burst,
1492 burst + wmem);
1493 msk->snd_burst = burst;
1494 return ssk;
1495 }
1496
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1497 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1498 {
1499 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1500 release_sock(ssk);
1501 }
1502
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1503 static void mptcp_update_post_push(struct mptcp_sock *msk,
1504 struct mptcp_data_frag *dfrag,
1505 u32 sent)
1506 {
1507 u64 snd_nxt_new = dfrag->data_seq;
1508
1509 dfrag->already_sent += sent;
1510
1511 msk->snd_burst -= sent;
1512
1513 snd_nxt_new += dfrag->already_sent;
1514
1515 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1516 * is recovering after a failover. In that event, this re-sends
1517 * old segments.
1518 *
1519 * Thus compute snd_nxt_new candidate based on
1520 * the dfrag->data_seq that was sent and the data
1521 * that has been handed to the subflow for transmission
1522 * and skip update in case it was old dfrag.
1523 */
1524 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1525 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1526 msk->snd_nxt = snd_nxt_new;
1527 }
1528 }
1529
mptcp_check_and_set_pending(struct sock * sk)1530 void mptcp_check_and_set_pending(struct sock *sk)
1531 {
1532 if (mptcp_send_head(sk)) {
1533 mptcp_data_lock(sk);
1534 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1535 mptcp_data_unlock(sk);
1536 }
1537 }
1538
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1539 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1540 struct mptcp_sendmsg_info *info)
1541 {
1542 struct mptcp_sock *msk = mptcp_sk(sk);
1543 struct mptcp_data_frag *dfrag;
1544 int len, copied = 0, err = 0;
1545
1546 while ((dfrag = mptcp_send_head(sk))) {
1547 info->sent = dfrag->already_sent;
1548 info->limit = dfrag->data_len;
1549 len = dfrag->data_len - dfrag->already_sent;
1550 while (len > 0) {
1551 int ret = 0;
1552
1553 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1554 if (ret <= 0) {
1555 err = copied ? : ret;
1556 goto out;
1557 }
1558
1559 info->sent += ret;
1560 copied += ret;
1561 len -= ret;
1562
1563 mptcp_update_post_push(msk, dfrag, ret);
1564 }
1565 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1566
1567 if (msk->snd_burst <= 0 ||
1568 !sk_stream_memory_free(ssk) ||
1569 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1570 err = copied;
1571 goto out;
1572 }
1573 mptcp_set_timeout(sk);
1574 }
1575 err = copied;
1576
1577 out:
1578 return err;
1579 }
1580
__mptcp_push_pending(struct sock * sk,unsigned int flags)1581 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1582 {
1583 struct sock *prev_ssk = NULL, *ssk = NULL;
1584 struct mptcp_sock *msk = mptcp_sk(sk);
1585 struct mptcp_sendmsg_info info = {
1586 .flags = flags,
1587 };
1588 bool do_check_data_fin = false;
1589 int push_count = 1;
1590
1591 while (mptcp_send_head(sk) && (push_count > 0)) {
1592 struct mptcp_subflow_context *subflow;
1593 int ret = 0;
1594
1595 if (mptcp_sched_get_send(msk))
1596 break;
1597
1598 push_count = 0;
1599
1600 mptcp_for_each_subflow(msk, subflow) {
1601 if (READ_ONCE(subflow->scheduled)) {
1602 mptcp_subflow_set_scheduled(subflow, false);
1603
1604 prev_ssk = ssk;
1605 ssk = mptcp_subflow_tcp_sock(subflow);
1606 if (ssk != prev_ssk) {
1607 /* First check. If the ssk has changed since
1608 * the last round, release prev_ssk
1609 */
1610 if (prev_ssk)
1611 mptcp_push_release(prev_ssk, &info);
1612
1613 /* Need to lock the new subflow only if different
1614 * from the previous one, otherwise we are still
1615 * helding the relevant lock
1616 */
1617 lock_sock(ssk);
1618 }
1619
1620 push_count++;
1621
1622 ret = __subflow_push_pending(sk, ssk, &info);
1623 if (ret <= 0) {
1624 if (ret != -EAGAIN ||
1625 (1 << ssk->sk_state) &
1626 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1627 push_count--;
1628 continue;
1629 }
1630 do_check_data_fin = true;
1631 }
1632 }
1633 }
1634
1635 /* at this point we held the socket lock for the last subflow we used */
1636 if (ssk)
1637 mptcp_push_release(ssk, &info);
1638
1639 /* ensure the rtx timer is running */
1640 if (!mptcp_rtx_timer_pending(sk))
1641 mptcp_reset_rtx_timer(sk);
1642 if (do_check_data_fin)
1643 mptcp_check_send_data_fin(sk);
1644 }
1645
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1646 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1647 {
1648 struct mptcp_sock *msk = mptcp_sk(sk);
1649 struct mptcp_sendmsg_info info = {
1650 .data_lock_held = true,
1651 };
1652 bool keep_pushing = true;
1653 struct sock *xmit_ssk;
1654 int copied = 0;
1655
1656 info.flags = 0;
1657 while (mptcp_send_head(sk) && keep_pushing) {
1658 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1659 int ret = 0;
1660
1661 /* check for a different subflow usage only after
1662 * spooling the first chunk of data
1663 */
1664 if (first) {
1665 mptcp_subflow_set_scheduled(subflow, false);
1666 ret = __subflow_push_pending(sk, ssk, &info);
1667 first = false;
1668 if (ret <= 0)
1669 break;
1670 copied += ret;
1671 continue;
1672 }
1673
1674 if (mptcp_sched_get_send(msk))
1675 goto out;
1676
1677 if (READ_ONCE(subflow->scheduled)) {
1678 mptcp_subflow_set_scheduled(subflow, false);
1679 ret = __subflow_push_pending(sk, ssk, &info);
1680 if (ret <= 0)
1681 keep_pushing = false;
1682 copied += ret;
1683 }
1684
1685 mptcp_for_each_subflow(msk, subflow) {
1686 if (READ_ONCE(subflow->scheduled)) {
1687 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1688 if (xmit_ssk != ssk) {
1689 mptcp_subflow_delegate(subflow,
1690 MPTCP_DELEGATE_SEND);
1691 keep_pushing = false;
1692 }
1693 }
1694 }
1695 }
1696
1697 out:
1698 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1699 * not going to flush it via release_sock()
1700 */
1701 if (copied) {
1702 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1703 info.size_goal);
1704 if (!mptcp_rtx_timer_pending(sk))
1705 mptcp_reset_rtx_timer(sk);
1706
1707 if (msk->snd_data_fin_enable &&
1708 msk->snd_nxt + 1 == msk->write_seq)
1709 mptcp_schedule_work(sk);
1710 }
1711 }
1712
mptcp_set_nospace(struct sock * sk)1713 static void mptcp_set_nospace(struct sock *sk)
1714 {
1715 /* enable autotune */
1716 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1717
1718 /* will be cleared on avail space */
1719 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1720 }
1721
1722 static int mptcp_disconnect(struct sock *sk, int flags);
1723
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1724 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1725 size_t len, int *copied_syn)
1726 {
1727 unsigned int saved_flags = msg->msg_flags;
1728 struct mptcp_sock *msk = mptcp_sk(sk);
1729 struct sock *ssk;
1730 int ret;
1731
1732 /* on flags based fastopen the mptcp is supposed to create the
1733 * first subflow right now. Otherwise we are in the defer_connect
1734 * path, and the first subflow must be already present.
1735 * Since the defer_connect flag is cleared after the first succsful
1736 * fastopen attempt, no need to check for additional subflow status.
1737 */
1738 if (msg->msg_flags & MSG_FASTOPEN) {
1739 ssk = __mptcp_nmpc_sk(msk);
1740 if (IS_ERR(ssk))
1741 return PTR_ERR(ssk);
1742 }
1743 if (!msk->first)
1744 return -EINVAL;
1745
1746 ssk = msk->first;
1747
1748 lock_sock(ssk);
1749 msg->msg_flags |= MSG_DONTWAIT;
1750 msk->fastopening = 1;
1751 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1752 msk->fastopening = 0;
1753 msg->msg_flags = saved_flags;
1754 release_sock(ssk);
1755
1756 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1757 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1758 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1759 msg->msg_namelen, msg->msg_flags, 1);
1760
1761 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1762 * case of any error, except timeout or signal
1763 */
1764 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1765 *copied_syn = 0;
1766 } else if (ret && ret != -EINPROGRESS) {
1767 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1768 * __inet_stream_connect() can fail, due to looking check,
1769 * see mptcp_disconnect().
1770 * Attempt it again outside the problematic scope.
1771 */
1772 if (!mptcp_disconnect(sk, 0)) {
1773 sk->sk_disconnects++;
1774 sk->sk_socket->state = SS_UNCONNECTED;
1775 }
1776 }
1777 inet_clear_bit(DEFER_CONNECT, sk);
1778
1779 return ret;
1780 }
1781
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1782 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1783 {
1784 struct mptcp_sock *msk = mptcp_sk(sk);
1785 struct page_frag *pfrag;
1786 size_t copied = 0;
1787 int ret = 0;
1788 long timeo;
1789
1790 /* silently ignore everything else */
1791 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1792
1793 lock_sock(sk);
1794
1795 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1796 msg->msg_flags & MSG_FASTOPEN)) {
1797 int copied_syn = 0;
1798
1799 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1800 copied += copied_syn;
1801 if (ret == -EINPROGRESS && copied_syn > 0)
1802 goto out;
1803 else if (ret)
1804 goto do_error;
1805 }
1806
1807 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1808
1809 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1810 ret = sk_stream_wait_connect(sk, &timeo);
1811 if (ret)
1812 goto do_error;
1813 }
1814
1815 ret = -EPIPE;
1816 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1817 goto do_error;
1818
1819 pfrag = sk_page_frag(sk);
1820
1821 while (msg_data_left(msg)) {
1822 int total_ts, frag_truesize = 0;
1823 struct mptcp_data_frag *dfrag;
1824 bool dfrag_collapsed;
1825 size_t psize, offset;
1826
1827 /* reuse tail pfrag, if possible, or carve a new one from the
1828 * page allocator
1829 */
1830 dfrag = mptcp_pending_tail(sk);
1831 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1832 if (!dfrag_collapsed) {
1833 if (!sk_stream_memory_free(sk))
1834 goto wait_for_memory;
1835
1836 if (!mptcp_page_frag_refill(sk, pfrag))
1837 goto wait_for_memory;
1838
1839 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1840 frag_truesize = dfrag->overhead;
1841 }
1842
1843 /* we do not bound vs wspace, to allow a single packet.
1844 * memory accounting will prevent execessive memory usage
1845 * anyway
1846 */
1847 offset = dfrag->offset + dfrag->data_len;
1848 psize = pfrag->size - offset;
1849 psize = min_t(size_t, psize, msg_data_left(msg));
1850 total_ts = psize + frag_truesize;
1851
1852 if (!sk_wmem_schedule(sk, total_ts))
1853 goto wait_for_memory;
1854
1855 if (copy_page_from_iter(dfrag->page, offset, psize,
1856 &msg->msg_iter) != psize) {
1857 ret = -EFAULT;
1858 goto do_error;
1859 }
1860
1861 /* data successfully copied into the write queue */
1862 sk_forward_alloc_add(sk, -total_ts);
1863 copied += psize;
1864 dfrag->data_len += psize;
1865 frag_truesize += psize;
1866 pfrag->offset += frag_truesize;
1867 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1868
1869 /* charge data on mptcp pending queue to the msk socket
1870 * Note: we charge such data both to sk and ssk
1871 */
1872 sk_wmem_queued_add(sk, frag_truesize);
1873 if (!dfrag_collapsed) {
1874 get_page(dfrag->page);
1875 list_add_tail(&dfrag->list, &msk->rtx_queue);
1876 if (!msk->first_pending)
1877 WRITE_ONCE(msk->first_pending, dfrag);
1878 }
1879 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1880 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1881 !dfrag_collapsed);
1882
1883 continue;
1884
1885 wait_for_memory:
1886 mptcp_set_nospace(sk);
1887 __mptcp_push_pending(sk, msg->msg_flags);
1888 ret = sk_stream_wait_memory(sk, &timeo);
1889 if (ret)
1890 goto do_error;
1891 }
1892
1893 if (copied)
1894 __mptcp_push_pending(sk, msg->msg_flags);
1895
1896 out:
1897 release_sock(sk);
1898 return copied;
1899
1900 do_error:
1901 if (copied)
1902 goto out;
1903
1904 copied = sk_stream_error(sk, msg->msg_flags, ret);
1905 goto out;
1906 }
1907
1908 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1909
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1910 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1911 struct msghdr *msg,
1912 size_t len, int flags,
1913 struct scm_timestamping_internal *tss,
1914 int *cmsg_flags)
1915 {
1916 struct sk_buff *skb, *tmp;
1917 int copied = 0;
1918
1919 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1920 u32 offset = MPTCP_SKB_CB(skb)->offset;
1921 u32 data_len = skb->len - offset;
1922 u32 count = min_t(size_t, len - copied, data_len);
1923 int err;
1924
1925 if (!(flags & MSG_TRUNC)) {
1926 err = skb_copy_datagram_msg(skb, offset, msg, count);
1927 if (unlikely(err < 0)) {
1928 if (!copied)
1929 return err;
1930 break;
1931 }
1932 }
1933
1934 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1935 tcp_update_recv_tstamps(skb, tss);
1936 *cmsg_flags |= MPTCP_CMSG_TS;
1937 }
1938
1939 copied += count;
1940
1941 if (count < data_len) {
1942 if (!(flags & MSG_PEEK)) {
1943 MPTCP_SKB_CB(skb)->offset += count;
1944 MPTCP_SKB_CB(skb)->map_seq += count;
1945 msk->bytes_consumed += count;
1946 }
1947 break;
1948 }
1949
1950 if (!(flags & MSG_PEEK)) {
1951 /* we will bulk release the skb memory later */
1952 skb->destructor = NULL;
1953 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1954 __skb_unlink(skb, &msk->receive_queue);
1955 __kfree_skb(skb);
1956 msk->bytes_consumed += count;
1957 }
1958
1959 if (copied >= len)
1960 break;
1961 }
1962
1963 mptcp_rcv_space_adjust(msk, copied);
1964 return copied;
1965 }
1966
1967 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1968 *
1969 * Only difference: Use highest rtt estimate of the subflows in use.
1970 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1971 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1972 {
1973 struct mptcp_subflow_context *subflow;
1974 struct sock *sk = (struct sock *)msk;
1975 u8 scaling_ratio = U8_MAX;
1976 u32 time, advmss = 1;
1977 u64 rtt_us, mstamp;
1978
1979 msk_owned_by_me(msk);
1980
1981 if (copied <= 0)
1982 return;
1983
1984 if (!msk->rcvspace_init)
1985 mptcp_rcv_space_init(msk, msk->first);
1986
1987 msk->rcvq_space.copied += copied;
1988
1989 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1990 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1991
1992 rtt_us = msk->rcvq_space.rtt_us;
1993 if (rtt_us && time < (rtt_us >> 3))
1994 return;
1995
1996 rtt_us = 0;
1997 mptcp_for_each_subflow(msk, subflow) {
1998 const struct tcp_sock *tp;
1999 u64 sf_rtt_us;
2000 u32 sf_advmss;
2001
2002 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2003
2004 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2005 sf_advmss = READ_ONCE(tp->advmss);
2006
2007 rtt_us = max(sf_rtt_us, rtt_us);
2008 advmss = max(sf_advmss, advmss);
2009 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2010 }
2011
2012 msk->rcvq_space.rtt_us = rtt_us;
2013 msk->scaling_ratio = scaling_ratio;
2014 if (time < (rtt_us >> 3) || rtt_us == 0)
2015 return;
2016
2017 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2018 goto new_measure;
2019
2020 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2021 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2022 u64 rcvwin, grow;
2023 int rcvbuf;
2024
2025 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2026
2027 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2028
2029 do_div(grow, msk->rcvq_space.space);
2030 rcvwin += (grow << 1);
2031
2032 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2033 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2034
2035 if (rcvbuf > sk->sk_rcvbuf) {
2036 u32 window_clamp;
2037
2038 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2039 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2040
2041 /* Make subflows follow along. If we do not do this, we
2042 * get drops at subflow level if skbs can't be moved to
2043 * the mptcp rx queue fast enough (announced rcv_win can
2044 * exceed ssk->sk_rcvbuf).
2045 */
2046 mptcp_for_each_subflow(msk, subflow) {
2047 struct sock *ssk;
2048 bool slow;
2049
2050 ssk = mptcp_subflow_tcp_sock(subflow);
2051 slow = lock_sock_fast(ssk);
2052 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2053 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2054 if (tcp_can_send_ack(ssk))
2055 tcp_cleanup_rbuf(ssk, 1);
2056 unlock_sock_fast(ssk, slow);
2057 }
2058 }
2059 }
2060
2061 msk->rcvq_space.space = msk->rcvq_space.copied;
2062 new_measure:
2063 msk->rcvq_space.copied = 0;
2064 msk->rcvq_space.time = mstamp;
2065 }
2066
__mptcp_update_rmem(struct sock * sk)2067 static void __mptcp_update_rmem(struct sock *sk)
2068 {
2069 struct mptcp_sock *msk = mptcp_sk(sk);
2070
2071 if (!msk->rmem_released)
2072 return;
2073
2074 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2075 mptcp_rmem_uncharge(sk, msk->rmem_released);
2076 WRITE_ONCE(msk->rmem_released, 0);
2077 }
2078
__mptcp_splice_receive_queue(struct sock * sk)2079 static void __mptcp_splice_receive_queue(struct sock *sk)
2080 {
2081 struct mptcp_sock *msk = mptcp_sk(sk);
2082
2083 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2084 }
2085
__mptcp_move_skbs(struct mptcp_sock * msk)2086 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2087 {
2088 struct sock *sk = (struct sock *)msk;
2089 unsigned int moved = 0;
2090 bool ret, done;
2091
2092 do {
2093 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2094 bool slowpath;
2095
2096 /* we can have data pending in the subflows only if the msk
2097 * receive buffer was full at subflow_data_ready() time,
2098 * that is an unlikely slow path.
2099 */
2100 if (likely(!ssk))
2101 break;
2102
2103 slowpath = lock_sock_fast(ssk);
2104 mptcp_data_lock(sk);
2105 __mptcp_update_rmem(sk);
2106 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2107 mptcp_data_unlock(sk);
2108
2109 if (unlikely(ssk->sk_err))
2110 __mptcp_error_report(sk);
2111 unlock_sock_fast(ssk, slowpath);
2112 } while (!done);
2113
2114 /* acquire the data lock only if some input data is pending */
2115 ret = moved > 0;
2116 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2117 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2118 mptcp_data_lock(sk);
2119 __mptcp_update_rmem(sk);
2120 ret |= __mptcp_ofo_queue(msk);
2121 __mptcp_splice_receive_queue(sk);
2122 mptcp_data_unlock(sk);
2123 }
2124 if (ret)
2125 mptcp_check_data_fin((struct sock *)msk);
2126 return !skb_queue_empty(&msk->receive_queue);
2127 }
2128
mptcp_inq_hint(const struct sock * sk)2129 static unsigned int mptcp_inq_hint(const struct sock *sk)
2130 {
2131 const struct mptcp_sock *msk = mptcp_sk(sk);
2132 const struct sk_buff *skb;
2133
2134 skb = skb_peek(&msk->receive_queue);
2135 if (skb) {
2136 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2137
2138 if (hint_val >= INT_MAX)
2139 return INT_MAX;
2140
2141 return (unsigned int)hint_val;
2142 }
2143
2144 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2145 return 1;
2146
2147 return 0;
2148 }
2149
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2150 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2151 int flags, int *addr_len)
2152 {
2153 struct mptcp_sock *msk = mptcp_sk(sk);
2154 struct scm_timestamping_internal tss;
2155 int copied = 0, cmsg_flags = 0;
2156 int target;
2157 long timeo;
2158
2159 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2160 if (unlikely(flags & MSG_ERRQUEUE))
2161 return inet_recv_error(sk, msg, len, addr_len);
2162
2163 lock_sock(sk);
2164 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2165 copied = -ENOTCONN;
2166 goto out_err;
2167 }
2168
2169 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2170
2171 len = min_t(size_t, len, INT_MAX);
2172 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2173
2174 if (unlikely(msk->recvmsg_inq))
2175 cmsg_flags = MPTCP_CMSG_INQ;
2176
2177 while (copied < len) {
2178 int err, bytes_read;
2179
2180 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2181 if (unlikely(bytes_read < 0)) {
2182 if (!copied)
2183 copied = bytes_read;
2184 goto out_err;
2185 }
2186
2187 copied += bytes_read;
2188
2189 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2190 continue;
2191
2192 /* only the master socket status is relevant here. The exit
2193 * conditions mirror closely tcp_recvmsg()
2194 */
2195 if (copied >= target)
2196 break;
2197
2198 if (copied) {
2199 if (sk->sk_err ||
2200 sk->sk_state == TCP_CLOSE ||
2201 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2202 !timeo ||
2203 signal_pending(current))
2204 break;
2205 } else {
2206 if (sk->sk_err) {
2207 copied = sock_error(sk);
2208 break;
2209 }
2210
2211 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2212 /* race breaker: the shutdown could be after the
2213 * previous receive queue check
2214 */
2215 if (__mptcp_move_skbs(msk))
2216 continue;
2217 break;
2218 }
2219
2220 if (sk->sk_state == TCP_CLOSE) {
2221 copied = -ENOTCONN;
2222 break;
2223 }
2224
2225 if (!timeo) {
2226 copied = -EAGAIN;
2227 break;
2228 }
2229
2230 if (signal_pending(current)) {
2231 copied = sock_intr_errno(timeo);
2232 break;
2233 }
2234 }
2235
2236 pr_debug("block timeout %ld\n", timeo);
2237 mptcp_cleanup_rbuf(msk, copied);
2238 err = sk_wait_data(sk, &timeo, NULL);
2239 if (err < 0) {
2240 err = copied ? : err;
2241 goto out_err;
2242 }
2243 }
2244
2245 mptcp_cleanup_rbuf(msk, copied);
2246
2247 out_err:
2248 if (cmsg_flags && copied >= 0) {
2249 if (cmsg_flags & MPTCP_CMSG_TS)
2250 tcp_recv_timestamp(msg, sk, &tss);
2251
2252 if (cmsg_flags & MPTCP_CMSG_INQ) {
2253 unsigned int inq = mptcp_inq_hint(sk);
2254
2255 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2256 }
2257 }
2258
2259 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2260 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2261 skb_queue_empty(&msk->receive_queue), copied);
2262
2263 release_sock(sk);
2264 return copied;
2265 }
2266
mptcp_retransmit_timer(struct timer_list * t)2267 static void mptcp_retransmit_timer(struct timer_list *t)
2268 {
2269 struct inet_connection_sock *icsk = from_timer(icsk, t,
2270 icsk_retransmit_timer);
2271 struct sock *sk = &icsk->icsk_inet.sk;
2272 struct mptcp_sock *msk = mptcp_sk(sk);
2273
2274 bh_lock_sock(sk);
2275 if (!sock_owned_by_user(sk)) {
2276 /* we need a process context to retransmit */
2277 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2278 mptcp_schedule_work(sk);
2279 } else {
2280 /* delegate our work to tcp_release_cb() */
2281 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2282 }
2283 bh_unlock_sock(sk);
2284 sock_put(sk);
2285 }
2286
mptcp_tout_timer(struct timer_list * t)2287 static void mptcp_tout_timer(struct timer_list *t)
2288 {
2289 struct sock *sk = from_timer(sk, t, sk_timer);
2290
2291 mptcp_schedule_work(sk);
2292 sock_put(sk);
2293 }
2294
2295 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2296 * level.
2297 *
2298 * A backup subflow is returned only if that is the only kind available.
2299 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2300 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2301 {
2302 struct sock *backup = NULL, *pick = NULL;
2303 struct mptcp_subflow_context *subflow;
2304 int min_stale_count = INT_MAX;
2305
2306 mptcp_for_each_subflow(msk, subflow) {
2307 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2308
2309 if (!__mptcp_subflow_active(subflow))
2310 continue;
2311
2312 /* still data outstanding at TCP level? skip this */
2313 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2314 mptcp_pm_subflow_chk_stale(msk, ssk);
2315 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2316 continue;
2317 }
2318
2319 if (subflow->backup || subflow->request_bkup) {
2320 if (!backup)
2321 backup = ssk;
2322 continue;
2323 }
2324
2325 if (!pick)
2326 pick = ssk;
2327 }
2328
2329 if (pick)
2330 return pick;
2331
2332 /* use backup only if there are no progresses anywhere */
2333 return min_stale_count > 1 ? backup : NULL;
2334 }
2335
__mptcp_retransmit_pending_data(struct sock * sk)2336 bool __mptcp_retransmit_pending_data(struct sock *sk)
2337 {
2338 struct mptcp_data_frag *cur, *rtx_head;
2339 struct mptcp_sock *msk = mptcp_sk(sk);
2340
2341 if (__mptcp_check_fallback(msk))
2342 return false;
2343
2344 /* the closing socket has some data untransmitted and/or unacked:
2345 * some data in the mptcp rtx queue has not really xmitted yet.
2346 * keep it simple and re-inject the whole mptcp level rtx queue
2347 */
2348 mptcp_data_lock(sk);
2349 __mptcp_clean_una_wakeup(sk);
2350 rtx_head = mptcp_rtx_head(sk);
2351 if (!rtx_head) {
2352 mptcp_data_unlock(sk);
2353 return false;
2354 }
2355
2356 msk->recovery_snd_nxt = msk->snd_nxt;
2357 msk->recovery = true;
2358 mptcp_data_unlock(sk);
2359
2360 msk->first_pending = rtx_head;
2361 msk->snd_burst = 0;
2362
2363 /* be sure to clear the "sent status" on all re-injected fragments */
2364 list_for_each_entry(cur, &msk->rtx_queue, list) {
2365 if (!cur->already_sent)
2366 break;
2367 cur->already_sent = 0;
2368 }
2369
2370 return true;
2371 }
2372
2373 /* flags for __mptcp_close_ssk() */
2374 #define MPTCP_CF_PUSH BIT(1)
2375 #define MPTCP_CF_FASTCLOSE BIT(2)
2376
2377 /* be sure to send a reset only if the caller asked for it, also
2378 * clean completely the subflow status when the subflow reaches
2379 * TCP_CLOSE state
2380 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2381 static void __mptcp_subflow_disconnect(struct sock *ssk,
2382 struct mptcp_subflow_context *subflow,
2383 unsigned int flags)
2384 {
2385 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2386 (flags & MPTCP_CF_FASTCLOSE)) {
2387 /* The MPTCP code never wait on the subflow sockets, TCP-level
2388 * disconnect should never fail
2389 */
2390 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2391 mptcp_subflow_ctx_reset(subflow);
2392 } else {
2393 tcp_shutdown(ssk, SEND_SHUTDOWN);
2394 }
2395 }
2396
2397 /* subflow sockets can be either outgoing (connect) or incoming
2398 * (accept).
2399 *
2400 * Outgoing subflows use in-kernel sockets.
2401 * Incoming subflows do not have their own 'struct socket' allocated,
2402 * so we need to use tcp_close() after detaching them from the mptcp
2403 * parent socket.
2404 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2405 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2406 struct mptcp_subflow_context *subflow,
2407 unsigned int flags)
2408 {
2409 struct mptcp_sock *msk = mptcp_sk(sk);
2410 bool dispose_it, need_push = false;
2411
2412 /* If the first subflow moved to a close state before accept, e.g. due
2413 * to an incoming reset or listener shutdown, the subflow socket is
2414 * already deleted by inet_child_forget() and the mptcp socket can't
2415 * survive too.
2416 */
2417 if (msk->in_accept_queue && msk->first == ssk &&
2418 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2419 /* ensure later check in mptcp_worker() will dispose the msk */
2420 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2421 sock_set_flag(sk, SOCK_DEAD);
2422 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2423 mptcp_subflow_drop_ctx(ssk);
2424 goto out_release;
2425 }
2426
2427 dispose_it = msk->free_first || ssk != msk->first;
2428 if (dispose_it)
2429 list_del(&subflow->node);
2430
2431 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2432
2433 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2434 /* be sure to force the tcp_close path
2435 * to generate the egress reset
2436 */
2437 ssk->sk_lingertime = 0;
2438 sock_set_flag(ssk, SOCK_LINGER);
2439 subflow->send_fastclose = 1;
2440 }
2441
2442 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2443 if (!dispose_it) {
2444 __mptcp_subflow_disconnect(ssk, subflow, flags);
2445 release_sock(ssk);
2446
2447 goto out;
2448 }
2449
2450 subflow->disposable = 1;
2451
2452 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2453 * the ssk has been already destroyed, we just need to release the
2454 * reference owned by msk;
2455 */
2456 if (!inet_csk(ssk)->icsk_ulp_ops) {
2457 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2458 kfree_rcu(subflow, rcu);
2459 } else {
2460 /* otherwise tcp will dispose of the ssk and subflow ctx */
2461 __tcp_close(ssk, 0);
2462
2463 /* close acquired an extra ref */
2464 __sock_put(ssk);
2465 }
2466
2467 out_release:
2468 __mptcp_subflow_error_report(sk, ssk);
2469 release_sock(ssk);
2470
2471 sock_put(ssk);
2472
2473 if (ssk == msk->first)
2474 WRITE_ONCE(msk->first, NULL);
2475
2476 out:
2477 __mptcp_sync_sndbuf(sk);
2478 if (need_push)
2479 __mptcp_push_pending(sk, 0);
2480
2481 /* Catch every 'all subflows closed' scenario, including peers silently
2482 * closing them, e.g. due to timeout.
2483 * For established sockets, allow an additional timeout before closing,
2484 * as the protocol can still create more subflows.
2485 */
2486 if (list_is_singular(&msk->conn_list) && msk->first &&
2487 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2488 if (sk->sk_state != TCP_ESTABLISHED ||
2489 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2490 mptcp_set_state(sk, TCP_CLOSE);
2491 mptcp_close_wake_up(sk);
2492 } else {
2493 mptcp_start_tout_timer(sk);
2494 }
2495 }
2496 }
2497
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2498 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2499 struct mptcp_subflow_context *subflow)
2500 {
2501 /* The first subflow can already be closed and still in the list */
2502 if (subflow->close_event_done)
2503 return;
2504
2505 subflow->close_event_done = true;
2506
2507 if (sk->sk_state == TCP_ESTABLISHED)
2508 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2509
2510 /* subflow aborted before reaching the fully_established status
2511 * attempt the creation of the next subflow
2512 */
2513 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2514
2515 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2516 }
2517
mptcp_sync_mss(struct sock * sk,u32 pmtu)2518 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2519 {
2520 return 0;
2521 }
2522
__mptcp_close_subflow(struct sock * sk)2523 static void __mptcp_close_subflow(struct sock *sk)
2524 {
2525 struct mptcp_subflow_context *subflow, *tmp;
2526 struct mptcp_sock *msk = mptcp_sk(sk);
2527
2528 might_sleep();
2529
2530 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2531 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2532 int ssk_state = inet_sk_state_load(ssk);
2533
2534 if (ssk_state != TCP_CLOSE &&
2535 (ssk_state != TCP_CLOSE_WAIT ||
2536 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2537 continue;
2538
2539 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2540 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2541 continue;
2542
2543 mptcp_close_ssk(sk, ssk, subflow);
2544 }
2545
2546 }
2547
mptcp_close_tout_expired(const struct sock * sk)2548 static bool mptcp_close_tout_expired(const struct sock *sk)
2549 {
2550 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2551 sk->sk_state == TCP_CLOSE)
2552 return false;
2553
2554 return time_after32(tcp_jiffies32,
2555 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2556 }
2557
mptcp_check_fastclose(struct mptcp_sock * msk)2558 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2559 {
2560 struct mptcp_subflow_context *subflow, *tmp;
2561 struct sock *sk = (struct sock *)msk;
2562
2563 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2564 return;
2565
2566 mptcp_token_destroy(msk);
2567
2568 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2569 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2570 bool slow;
2571
2572 slow = lock_sock_fast(tcp_sk);
2573 if (tcp_sk->sk_state != TCP_CLOSE) {
2574 tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2575 tcp_set_state(tcp_sk, TCP_CLOSE);
2576 }
2577 unlock_sock_fast(tcp_sk, slow);
2578 }
2579
2580 /* Mirror the tcp_reset() error propagation */
2581 switch (sk->sk_state) {
2582 case TCP_SYN_SENT:
2583 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2584 break;
2585 case TCP_CLOSE_WAIT:
2586 WRITE_ONCE(sk->sk_err, EPIPE);
2587 break;
2588 case TCP_CLOSE:
2589 return;
2590 default:
2591 WRITE_ONCE(sk->sk_err, ECONNRESET);
2592 }
2593
2594 mptcp_set_state(sk, TCP_CLOSE);
2595 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2596 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2597 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2598
2599 /* the calling mptcp_worker will properly destroy the socket */
2600 if (sock_flag(sk, SOCK_DEAD))
2601 return;
2602
2603 sk->sk_state_change(sk);
2604 sk_error_report(sk);
2605 }
2606
__mptcp_retrans(struct sock * sk)2607 static void __mptcp_retrans(struct sock *sk)
2608 {
2609 struct mptcp_sock *msk = mptcp_sk(sk);
2610 struct mptcp_subflow_context *subflow;
2611 struct mptcp_sendmsg_info info = {};
2612 struct mptcp_data_frag *dfrag;
2613 struct sock *ssk;
2614 int ret, err;
2615 u16 len = 0;
2616
2617 mptcp_clean_una_wakeup(sk);
2618
2619 /* first check ssk: need to kick "stale" logic */
2620 err = mptcp_sched_get_retrans(msk);
2621 dfrag = mptcp_rtx_head(sk);
2622 if (!dfrag) {
2623 if (mptcp_data_fin_enabled(msk)) {
2624 struct inet_connection_sock *icsk = inet_csk(sk);
2625
2626 icsk->icsk_retransmits++;
2627 mptcp_set_datafin_timeout(sk);
2628 mptcp_send_ack(msk);
2629
2630 goto reset_timer;
2631 }
2632
2633 if (!mptcp_send_head(sk))
2634 return;
2635
2636 goto reset_timer;
2637 }
2638
2639 if (err)
2640 goto reset_timer;
2641
2642 mptcp_for_each_subflow(msk, subflow) {
2643 if (READ_ONCE(subflow->scheduled)) {
2644 u16 copied = 0;
2645
2646 mptcp_subflow_set_scheduled(subflow, false);
2647
2648 ssk = mptcp_subflow_tcp_sock(subflow);
2649
2650 lock_sock(ssk);
2651
2652 /* limit retransmission to the bytes already sent on some subflows */
2653 info.sent = 0;
2654 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2655 dfrag->already_sent;
2656 while (info.sent < info.limit) {
2657 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2658 if (ret <= 0)
2659 break;
2660
2661 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2662 copied += ret;
2663 info.sent += ret;
2664 }
2665 if (copied) {
2666 len = max(copied, len);
2667 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2668 info.size_goal);
2669 WRITE_ONCE(msk->allow_infinite_fallback, false);
2670 }
2671
2672 release_sock(ssk);
2673 }
2674 }
2675
2676 msk->bytes_retrans += len;
2677 dfrag->already_sent = max(dfrag->already_sent, len);
2678
2679 reset_timer:
2680 mptcp_check_and_set_pending(sk);
2681
2682 if (!mptcp_rtx_timer_pending(sk))
2683 mptcp_reset_rtx_timer(sk);
2684 }
2685
2686 /* schedule the timeout timer for the relevant event: either close timeout
2687 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2688 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2689 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2690 {
2691 struct sock *sk = (struct sock *)msk;
2692 unsigned long timeout, close_timeout;
2693
2694 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2695 return;
2696
2697 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2698 tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2699
2700 /* the close timeout takes precedence on the fail one, and here at least one of
2701 * them is active
2702 */
2703 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2704
2705 sk_reset_timer(sk, &sk->sk_timer, timeout);
2706 }
2707
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2708 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2709 {
2710 struct sock *ssk = msk->first;
2711 bool slow;
2712
2713 if (!ssk)
2714 return;
2715
2716 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2717
2718 slow = lock_sock_fast(ssk);
2719 mptcp_subflow_reset(ssk);
2720 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2721 unlock_sock_fast(ssk, slow);
2722 }
2723
mptcp_do_fastclose(struct sock * sk)2724 static void mptcp_do_fastclose(struct sock *sk)
2725 {
2726 struct mptcp_subflow_context *subflow, *tmp;
2727 struct mptcp_sock *msk = mptcp_sk(sk);
2728
2729 mptcp_set_state(sk, TCP_CLOSE);
2730 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2731 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2732 subflow, MPTCP_CF_FASTCLOSE);
2733 }
2734
mptcp_worker(struct work_struct * work)2735 static void mptcp_worker(struct work_struct *work)
2736 {
2737 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2738 struct sock *sk = (struct sock *)msk;
2739 unsigned long fail_tout;
2740 int state;
2741
2742 lock_sock(sk);
2743 state = sk->sk_state;
2744 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2745 goto unlock;
2746
2747 mptcp_check_fastclose(msk);
2748
2749 mptcp_pm_nl_work(msk);
2750
2751 mptcp_check_send_data_fin(sk);
2752 mptcp_check_data_fin_ack(sk);
2753 mptcp_check_data_fin(sk);
2754
2755 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2756 __mptcp_close_subflow(sk);
2757
2758 if (mptcp_close_tout_expired(sk)) {
2759 mptcp_do_fastclose(sk);
2760 mptcp_close_wake_up(sk);
2761 }
2762
2763 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2764 __mptcp_destroy_sock(sk);
2765 goto unlock;
2766 }
2767
2768 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2769 __mptcp_retrans(sk);
2770
2771 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2772 if (fail_tout && time_after(jiffies, fail_tout))
2773 mptcp_mp_fail_no_response(msk);
2774
2775 unlock:
2776 release_sock(sk);
2777 sock_put(sk);
2778 }
2779
__mptcp_init_sock(struct sock * sk)2780 static void __mptcp_init_sock(struct sock *sk)
2781 {
2782 struct mptcp_sock *msk = mptcp_sk(sk);
2783
2784 INIT_LIST_HEAD(&msk->conn_list);
2785 INIT_LIST_HEAD(&msk->join_list);
2786 INIT_LIST_HEAD(&msk->rtx_queue);
2787 INIT_WORK(&msk->work, mptcp_worker);
2788 __skb_queue_head_init(&msk->receive_queue);
2789 msk->out_of_order_queue = RB_ROOT;
2790 msk->first_pending = NULL;
2791 msk->rmem_fwd_alloc = 0;
2792 WRITE_ONCE(msk->rmem_released, 0);
2793 msk->timer_ival = TCP_RTO_MIN;
2794 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2795
2796 WRITE_ONCE(msk->first, NULL);
2797 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2798 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2799 WRITE_ONCE(msk->allow_infinite_fallback, true);
2800 msk->recovery = false;
2801 msk->subflow_id = 1;
2802
2803 mptcp_pm_data_init(msk);
2804
2805 /* re-use the csk retrans timer for MPTCP-level retrans */
2806 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2807 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2808 }
2809
mptcp_ca_reset(struct sock * sk)2810 static void mptcp_ca_reset(struct sock *sk)
2811 {
2812 struct inet_connection_sock *icsk = inet_csk(sk);
2813
2814 tcp_assign_congestion_control(sk);
2815 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2816
2817 /* no need to keep a reference to the ops, the name will suffice */
2818 tcp_cleanup_congestion_control(sk);
2819 icsk->icsk_ca_ops = NULL;
2820 }
2821
mptcp_init_sock(struct sock * sk)2822 static int mptcp_init_sock(struct sock *sk)
2823 {
2824 struct net *net = sock_net(sk);
2825 int ret;
2826
2827 __mptcp_init_sock(sk);
2828
2829 if (!mptcp_is_enabled(net))
2830 return -ENOPROTOOPT;
2831
2832 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2833 return -ENOMEM;
2834
2835 rcu_read_lock();
2836 ret = mptcp_init_sched(mptcp_sk(sk),
2837 mptcp_sched_find(mptcp_get_scheduler(net)));
2838 rcu_read_unlock();
2839 if (ret)
2840 return ret;
2841
2842 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2843
2844 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2845 * propagate the correct value
2846 */
2847 mptcp_ca_reset(sk);
2848
2849 sk_sockets_allocated_inc(sk);
2850 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2851 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2852
2853 return 0;
2854 }
2855
__mptcp_clear_xmit(struct sock * sk)2856 static void __mptcp_clear_xmit(struct sock *sk)
2857 {
2858 struct mptcp_sock *msk = mptcp_sk(sk);
2859 struct mptcp_data_frag *dtmp, *dfrag;
2860
2861 WRITE_ONCE(msk->first_pending, NULL);
2862 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2863 dfrag_clear(sk, dfrag);
2864 }
2865
mptcp_cancel_work(struct sock * sk)2866 void mptcp_cancel_work(struct sock *sk)
2867 {
2868 struct mptcp_sock *msk = mptcp_sk(sk);
2869
2870 if (cancel_work_sync(&msk->work))
2871 __sock_put(sk);
2872 }
2873
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2874 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2875 {
2876 lock_sock(ssk);
2877
2878 switch (ssk->sk_state) {
2879 case TCP_LISTEN:
2880 if (!(how & RCV_SHUTDOWN))
2881 break;
2882 fallthrough;
2883 case TCP_SYN_SENT:
2884 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2885 break;
2886 default:
2887 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2888 pr_debug("Fallback\n");
2889 ssk->sk_shutdown |= how;
2890 tcp_shutdown(ssk, how);
2891
2892 /* simulate the data_fin ack reception to let the state
2893 * machine move forward
2894 */
2895 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2896 mptcp_schedule_work(sk);
2897 } else {
2898 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2899 tcp_send_ack(ssk);
2900 if (!mptcp_rtx_timer_pending(sk))
2901 mptcp_reset_rtx_timer(sk);
2902 }
2903 break;
2904 }
2905
2906 release_sock(ssk);
2907 }
2908
mptcp_set_state(struct sock * sk,int state)2909 void mptcp_set_state(struct sock *sk, int state)
2910 {
2911 int oldstate = sk->sk_state;
2912
2913 switch (state) {
2914 case TCP_ESTABLISHED:
2915 if (oldstate != TCP_ESTABLISHED)
2916 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2917 break;
2918 case TCP_CLOSE_WAIT:
2919 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2920 * MPTCP "accepted" sockets will be created later on. So no
2921 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2922 */
2923 break;
2924 default:
2925 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2926 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2927 }
2928
2929 inet_sk_state_store(sk, state);
2930 }
2931
2932 static const unsigned char new_state[16] = {
2933 /* current state: new state: action: */
2934 [0 /* (Invalid) */] = TCP_CLOSE,
2935 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2936 [TCP_SYN_SENT] = TCP_CLOSE,
2937 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2938 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2939 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2940 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2941 [TCP_CLOSE] = TCP_CLOSE,
2942 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2943 [TCP_LAST_ACK] = TCP_LAST_ACK,
2944 [TCP_LISTEN] = TCP_CLOSE,
2945 [TCP_CLOSING] = TCP_CLOSING,
2946 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2947 };
2948
mptcp_close_state(struct sock * sk)2949 static int mptcp_close_state(struct sock *sk)
2950 {
2951 int next = (int)new_state[sk->sk_state];
2952 int ns = next & TCP_STATE_MASK;
2953
2954 mptcp_set_state(sk, ns);
2955
2956 return next & TCP_ACTION_FIN;
2957 }
2958
mptcp_check_send_data_fin(struct sock * sk)2959 static void mptcp_check_send_data_fin(struct sock *sk)
2960 {
2961 struct mptcp_subflow_context *subflow;
2962 struct mptcp_sock *msk = mptcp_sk(sk);
2963
2964 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2965 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2966 msk->snd_nxt, msk->write_seq);
2967
2968 /* we still need to enqueue subflows or not really shutting down,
2969 * skip this
2970 */
2971 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2972 mptcp_send_head(sk))
2973 return;
2974
2975 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2976
2977 mptcp_for_each_subflow(msk, subflow) {
2978 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2979
2980 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2981 }
2982 }
2983
__mptcp_wr_shutdown(struct sock * sk)2984 static void __mptcp_wr_shutdown(struct sock *sk)
2985 {
2986 struct mptcp_sock *msk = mptcp_sk(sk);
2987
2988 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2989 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2990 !!mptcp_send_head(sk));
2991
2992 /* will be ignored by fallback sockets */
2993 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2994 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2995
2996 mptcp_check_send_data_fin(sk);
2997 }
2998
__mptcp_destroy_sock(struct sock * sk)2999 static void __mptcp_destroy_sock(struct sock *sk)
3000 {
3001 struct mptcp_sock *msk = mptcp_sk(sk);
3002
3003 pr_debug("msk=%p\n", msk);
3004
3005 might_sleep();
3006
3007 mptcp_stop_rtx_timer(sk);
3008 sk_stop_timer(sk, &sk->sk_timer);
3009 msk->pm.status = 0;
3010 mptcp_release_sched(msk);
3011
3012 sk->sk_prot->destroy(sk);
3013
3014 WARN_ON_ONCE(msk->rmem_fwd_alloc);
3015 WARN_ON_ONCE(msk->rmem_released);
3016 sk_stream_kill_queues(sk);
3017 xfrm_sk_free_policy(sk);
3018
3019 sock_put(sk);
3020 }
3021
__mptcp_unaccepted_force_close(struct sock * sk)3022 void __mptcp_unaccepted_force_close(struct sock *sk)
3023 {
3024 sock_set_flag(sk, SOCK_DEAD);
3025 mptcp_do_fastclose(sk);
3026 __mptcp_destroy_sock(sk);
3027 }
3028
mptcp_check_readable(struct sock * sk)3029 static __poll_t mptcp_check_readable(struct sock *sk)
3030 {
3031 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3032 }
3033
mptcp_check_listen_stop(struct sock * sk)3034 static void mptcp_check_listen_stop(struct sock *sk)
3035 {
3036 struct sock *ssk;
3037
3038 if (inet_sk_state_load(sk) != TCP_LISTEN)
3039 return;
3040
3041 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3042 ssk = mptcp_sk(sk)->first;
3043 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3044 return;
3045
3046 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3047 tcp_set_state(ssk, TCP_CLOSE);
3048 mptcp_subflow_queue_clean(sk, ssk);
3049 inet_csk_listen_stop(ssk);
3050 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3051 release_sock(ssk);
3052 }
3053
__mptcp_close(struct sock * sk,long timeout)3054 bool __mptcp_close(struct sock *sk, long timeout)
3055 {
3056 struct mptcp_subflow_context *subflow;
3057 struct mptcp_sock *msk = mptcp_sk(sk);
3058 bool do_cancel_work = false;
3059 int subflows_alive = 0;
3060
3061 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3062
3063 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3064 mptcp_check_listen_stop(sk);
3065 mptcp_set_state(sk, TCP_CLOSE);
3066 goto cleanup;
3067 }
3068
3069 if (mptcp_data_avail(msk) || timeout < 0) {
3070 /* If the msk has read data, or the caller explicitly ask it,
3071 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3072 */
3073 mptcp_do_fastclose(sk);
3074 timeout = 0;
3075 } else if (mptcp_close_state(sk)) {
3076 __mptcp_wr_shutdown(sk);
3077 }
3078
3079 sk_stream_wait_close(sk, timeout);
3080
3081 cleanup:
3082 /* orphan all the subflows */
3083 mptcp_for_each_subflow(msk, subflow) {
3084 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3085 bool slow = lock_sock_fast_nested(ssk);
3086
3087 subflows_alive += ssk->sk_state != TCP_CLOSE;
3088
3089 /* since the close timeout takes precedence on the fail one,
3090 * cancel the latter
3091 */
3092 if (ssk == msk->first)
3093 subflow->fail_tout = 0;
3094
3095 /* detach from the parent socket, but allow data_ready to
3096 * push incoming data into the mptcp stack, to properly ack it
3097 */
3098 ssk->sk_socket = NULL;
3099 ssk->sk_wq = NULL;
3100 unlock_sock_fast(ssk, slow);
3101 }
3102 sock_orphan(sk);
3103
3104 /* all the subflows are closed, only timeout can change the msk
3105 * state, let's not keep resources busy for no reasons
3106 */
3107 if (subflows_alive == 0)
3108 mptcp_set_state(sk, TCP_CLOSE);
3109
3110 sock_hold(sk);
3111 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3112 if (msk->token)
3113 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3114
3115 if (sk->sk_state == TCP_CLOSE) {
3116 __mptcp_destroy_sock(sk);
3117 do_cancel_work = true;
3118 } else {
3119 mptcp_start_tout_timer(sk);
3120 }
3121
3122 return do_cancel_work;
3123 }
3124
mptcp_close(struct sock * sk,long timeout)3125 static void mptcp_close(struct sock *sk, long timeout)
3126 {
3127 bool do_cancel_work;
3128
3129 lock_sock(sk);
3130
3131 do_cancel_work = __mptcp_close(sk, timeout);
3132 release_sock(sk);
3133 if (do_cancel_work)
3134 mptcp_cancel_work(sk);
3135
3136 sock_put(sk);
3137 }
3138
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3139 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3140 {
3141 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3142 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3143 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3144
3145 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3146 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3147
3148 if (msk6 && ssk6) {
3149 msk6->saddr = ssk6->saddr;
3150 msk6->flow_label = ssk6->flow_label;
3151 }
3152 #endif
3153
3154 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3155 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3156 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3157 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3158 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3159 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3160 }
3161
mptcp_disconnect(struct sock * sk,int flags)3162 static int mptcp_disconnect(struct sock *sk, int flags)
3163 {
3164 struct mptcp_sock *msk = mptcp_sk(sk);
3165
3166 /* We are on the fastopen error path. We can't call straight into the
3167 * subflows cleanup code due to lock nesting (we are already under
3168 * msk->firstsocket lock).
3169 */
3170 if (msk->fastopening)
3171 return -EBUSY;
3172
3173 mptcp_check_listen_stop(sk);
3174 mptcp_set_state(sk, TCP_CLOSE);
3175
3176 mptcp_stop_rtx_timer(sk);
3177 mptcp_stop_tout_timer(sk);
3178
3179 if (msk->token)
3180 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3181
3182 /* msk->subflow is still intact, the following will not free the first
3183 * subflow
3184 */
3185 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3186 WRITE_ONCE(msk->flags, 0);
3187 msk->cb_flags = 0;
3188 msk->recovery = false;
3189 msk->can_ack = false;
3190 msk->fully_established = false;
3191 msk->rcv_data_fin = false;
3192 msk->snd_data_fin_enable = false;
3193 msk->rcv_fastclose = false;
3194 msk->use_64bit_ack = false;
3195 msk->bytes_consumed = 0;
3196 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3197 mptcp_pm_data_reset(msk);
3198 mptcp_ca_reset(sk);
3199 msk->bytes_acked = 0;
3200 msk->bytes_received = 0;
3201 msk->bytes_sent = 0;
3202 msk->bytes_retrans = 0;
3203 msk->rcvspace_init = 0;
3204
3205 WRITE_ONCE(sk->sk_shutdown, 0);
3206 sk_error_report(sk);
3207 return 0;
3208 }
3209
3210 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3211 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3212 {
3213 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3214
3215 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3216 }
3217
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3218 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3219 {
3220 const struct ipv6_pinfo *np = inet6_sk(sk);
3221 struct ipv6_txoptions *opt;
3222 struct ipv6_pinfo *newnp;
3223
3224 newnp = inet6_sk(newsk);
3225
3226 rcu_read_lock();
3227 opt = rcu_dereference(np->opt);
3228 if (opt) {
3229 opt = ipv6_dup_options(newsk, opt);
3230 if (!opt)
3231 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3232 }
3233 RCU_INIT_POINTER(newnp->opt, opt);
3234 rcu_read_unlock();
3235 }
3236 #endif
3237
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3238 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3239 {
3240 struct ip_options_rcu *inet_opt, *newopt = NULL;
3241 const struct inet_sock *inet = inet_sk(sk);
3242 struct inet_sock *newinet;
3243
3244 newinet = inet_sk(newsk);
3245
3246 rcu_read_lock();
3247 inet_opt = rcu_dereference(inet->inet_opt);
3248 if (inet_opt) {
3249 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3250 inet_opt->opt.optlen, GFP_ATOMIC);
3251 if (newopt)
3252 memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3253 inet_opt->opt.optlen);
3254 else
3255 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3256 }
3257 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3258 rcu_read_unlock();
3259 }
3260
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3261 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3262 const struct mptcp_options_received *mp_opt,
3263 struct sock *ssk,
3264 struct request_sock *req)
3265 {
3266 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3267 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3268 struct mptcp_subflow_context *subflow;
3269 struct mptcp_sock *msk;
3270
3271 if (!nsk)
3272 return NULL;
3273
3274 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3275 if (nsk->sk_family == AF_INET6)
3276 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3277 #endif
3278
3279 __mptcp_init_sock(nsk);
3280
3281 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3282 if (nsk->sk_family == AF_INET6)
3283 mptcp_copy_ip6_options(nsk, sk);
3284 else
3285 #endif
3286 mptcp_copy_ip_options(nsk, sk);
3287
3288 msk = mptcp_sk(nsk);
3289 msk->local_key = subflow_req->local_key;
3290 msk->token = subflow_req->token;
3291 msk->in_accept_queue = 1;
3292 WRITE_ONCE(msk->fully_established, false);
3293 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3294 WRITE_ONCE(msk->csum_enabled, true);
3295
3296 msk->write_seq = subflow_req->idsn + 1;
3297 msk->snd_nxt = msk->write_seq;
3298 msk->snd_una = msk->write_seq;
3299 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3300 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3301 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3302
3303 /* passive msk is created after the first/MPC subflow */
3304 msk->subflow_id = 2;
3305
3306 sock_reset_flag(nsk, SOCK_RCU_FREE);
3307 security_inet_csk_clone(nsk, req);
3308
3309 /* this can't race with mptcp_close(), as the msk is
3310 * not yet exposted to user-space
3311 */
3312 mptcp_set_state(nsk, TCP_ESTABLISHED);
3313
3314 /* The msk maintain a ref to each subflow in the connections list */
3315 WRITE_ONCE(msk->first, ssk);
3316 subflow = mptcp_subflow_ctx(ssk);
3317 list_add(&subflow->node, &msk->conn_list);
3318 sock_hold(ssk);
3319
3320 /* new mpc subflow takes ownership of the newly
3321 * created mptcp socket
3322 */
3323 mptcp_token_accept(subflow_req, msk);
3324
3325 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3326 * uses the correct data
3327 */
3328 mptcp_copy_inaddrs(nsk, ssk);
3329 __mptcp_propagate_sndbuf(nsk, ssk);
3330
3331 mptcp_rcv_space_init(msk, ssk);
3332
3333 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3334 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3335 bh_unlock_sock(nsk);
3336
3337 /* note: the newly allocated socket refcount is 2 now */
3338 return nsk;
3339 }
3340
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3341 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3342 {
3343 const struct tcp_sock *tp = tcp_sk(ssk);
3344
3345 msk->rcvspace_init = 1;
3346 msk->rcvq_space.copied = 0;
3347 msk->rcvq_space.rtt_us = 0;
3348
3349 msk->rcvq_space.time = tp->tcp_mstamp;
3350
3351 /* initial rcv_space offering made to peer */
3352 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3353 TCP_INIT_CWND * tp->advmss);
3354 if (msk->rcvq_space.space == 0)
3355 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3356 }
3357
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3358 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3359 {
3360 struct mptcp_subflow_context *subflow, *tmp;
3361 struct sock *sk = (struct sock *)msk;
3362
3363 __mptcp_clear_xmit(sk);
3364
3365 /* join list will be eventually flushed (with rst) at sock lock release time */
3366 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3367 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3368
3369 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3370 mptcp_data_lock(sk);
3371 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3372 __skb_queue_purge(&sk->sk_receive_queue);
3373 skb_rbtree_purge(&msk->out_of_order_queue);
3374 mptcp_data_unlock(sk);
3375
3376 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3377 * inet_sock_destruct() will dispose it
3378 */
3379 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3380 WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3381 mptcp_token_destroy(msk);
3382 mptcp_pm_free_anno_list(msk);
3383 mptcp_free_local_addr_list(msk);
3384 }
3385
mptcp_destroy(struct sock * sk)3386 static void mptcp_destroy(struct sock *sk)
3387 {
3388 struct mptcp_sock *msk = mptcp_sk(sk);
3389
3390 /* allow the following to close even the initial subflow */
3391 msk->free_first = 1;
3392 mptcp_destroy_common(msk, 0);
3393 sk_sockets_allocated_dec(sk);
3394 }
3395
__mptcp_data_acked(struct sock * sk)3396 void __mptcp_data_acked(struct sock *sk)
3397 {
3398 if (!sock_owned_by_user(sk))
3399 __mptcp_clean_una(sk);
3400 else
3401 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3402
3403 if (mptcp_pending_data_fin_ack(sk))
3404 mptcp_schedule_work(sk);
3405 }
3406
__mptcp_check_push(struct sock * sk,struct sock * ssk)3407 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3408 {
3409 if (!mptcp_send_head(sk))
3410 return;
3411
3412 if (!sock_owned_by_user(sk))
3413 __mptcp_subflow_push_pending(sk, ssk, false);
3414 else
3415 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3416 }
3417
3418 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3419 BIT(MPTCP_RETRANSMIT) | \
3420 BIT(MPTCP_FLUSH_JOIN_LIST))
3421
3422 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3423 static void mptcp_release_cb(struct sock *sk)
3424 __must_hold(&sk->sk_lock.slock)
3425 {
3426 struct mptcp_sock *msk = mptcp_sk(sk);
3427
3428 for (;;) {
3429 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3430 struct list_head join_list;
3431
3432 if (!flags)
3433 break;
3434
3435 INIT_LIST_HEAD(&join_list);
3436 list_splice_init(&msk->join_list, &join_list);
3437
3438 /* the following actions acquire the subflow socket lock
3439 *
3440 * 1) can't be invoked in atomic scope
3441 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3442 * datapath acquires the msk socket spinlock while helding
3443 * the subflow socket lock
3444 */
3445 msk->cb_flags &= ~flags;
3446 spin_unlock_bh(&sk->sk_lock.slock);
3447
3448 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3449 __mptcp_flush_join_list(sk, &join_list);
3450 if (flags & BIT(MPTCP_PUSH_PENDING))
3451 __mptcp_push_pending(sk, 0);
3452 if (flags & BIT(MPTCP_RETRANSMIT))
3453 __mptcp_retrans(sk);
3454
3455 cond_resched();
3456 spin_lock_bh(&sk->sk_lock.slock);
3457 }
3458
3459 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3460 __mptcp_clean_una_wakeup(sk);
3461 if (unlikely(msk->cb_flags)) {
3462 /* be sure to sync the msk state before taking actions
3463 * depending on sk_state (MPTCP_ERROR_REPORT)
3464 * On sk release avoid actions depending on the first subflow
3465 */
3466 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3467 __mptcp_sync_state(sk, msk->pending_state);
3468 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3469 __mptcp_error_report(sk);
3470 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3471 __mptcp_sync_sndbuf(sk);
3472 }
3473
3474 __mptcp_update_rmem(sk);
3475 }
3476
3477 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3478 * TCP can't schedule delack timer before the subflow is fully established.
3479 * MPTCP uses the delack timer to do 3rd ack retransmissions
3480 */
schedule_3rdack_retransmission(struct sock * ssk)3481 static void schedule_3rdack_retransmission(struct sock *ssk)
3482 {
3483 struct inet_connection_sock *icsk = inet_csk(ssk);
3484 struct tcp_sock *tp = tcp_sk(ssk);
3485 unsigned long timeout;
3486
3487 if (mptcp_subflow_ctx(ssk)->fully_established)
3488 return;
3489
3490 /* reschedule with a timeout above RTT, as we must look only for drop */
3491 if (tp->srtt_us)
3492 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3493 else
3494 timeout = TCP_TIMEOUT_INIT;
3495 timeout += jiffies;
3496
3497 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3498 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3499 icsk->icsk_ack.timeout = timeout;
3500 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3501 }
3502
mptcp_subflow_process_delegated(struct sock * ssk,long status)3503 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3504 {
3505 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3506 struct sock *sk = subflow->conn;
3507
3508 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3509 mptcp_data_lock(sk);
3510 if (!sock_owned_by_user(sk))
3511 __mptcp_subflow_push_pending(sk, ssk, true);
3512 else
3513 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3514 mptcp_data_unlock(sk);
3515 }
3516 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3517 mptcp_data_lock(sk);
3518 if (!sock_owned_by_user(sk))
3519 __mptcp_sync_sndbuf(sk);
3520 else
3521 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3522 mptcp_data_unlock(sk);
3523 }
3524 if (status & BIT(MPTCP_DELEGATE_ACK))
3525 schedule_3rdack_retransmission(ssk);
3526 }
3527
mptcp_hash(struct sock * sk)3528 static int mptcp_hash(struct sock *sk)
3529 {
3530 /* should never be called,
3531 * we hash the TCP subflows not the master socket
3532 */
3533 WARN_ON_ONCE(1);
3534 return 0;
3535 }
3536
mptcp_unhash(struct sock * sk)3537 static void mptcp_unhash(struct sock *sk)
3538 {
3539 /* called from sk_common_release(), but nothing to do here */
3540 }
3541
mptcp_get_port(struct sock * sk,unsigned short snum)3542 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3543 {
3544 struct mptcp_sock *msk = mptcp_sk(sk);
3545
3546 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3547 if (WARN_ON_ONCE(!msk->first))
3548 return -EINVAL;
3549
3550 return inet_csk_get_port(msk->first, snum);
3551 }
3552
mptcp_finish_connect(struct sock * ssk)3553 void mptcp_finish_connect(struct sock *ssk)
3554 {
3555 struct mptcp_subflow_context *subflow;
3556 struct mptcp_sock *msk;
3557 struct sock *sk;
3558
3559 subflow = mptcp_subflow_ctx(ssk);
3560 sk = subflow->conn;
3561 msk = mptcp_sk(sk);
3562
3563 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3564
3565 subflow->map_seq = subflow->iasn;
3566 subflow->map_subflow_seq = 1;
3567
3568 /* the socket is not connected yet, no msk/subflow ops can access/race
3569 * accessing the field below
3570 */
3571 WRITE_ONCE(msk->local_key, subflow->local_key);
3572
3573 mptcp_pm_new_connection(msk, ssk, 0);
3574 }
3575
mptcp_sock_graft(struct sock * sk,struct socket * parent)3576 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3577 {
3578 write_lock_bh(&sk->sk_callback_lock);
3579 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3580 sk_set_socket(sk, parent);
3581 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3582 write_unlock_bh(&sk->sk_callback_lock);
3583 }
3584
mptcp_finish_join(struct sock * ssk)3585 bool mptcp_finish_join(struct sock *ssk)
3586 {
3587 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3588 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3589 struct sock *parent = (void *)msk;
3590 bool ret = true;
3591
3592 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3593
3594 /* mptcp socket already closing? */
3595 if (!mptcp_is_fully_established(parent)) {
3596 subflow->reset_reason = MPTCP_RST_EMPTCP;
3597 return false;
3598 }
3599
3600 /* active subflow, already present inside the conn_list */
3601 if (!list_empty(&subflow->node)) {
3602 mptcp_subflow_joined(msk, ssk);
3603 mptcp_propagate_sndbuf(parent, ssk);
3604 return true;
3605 }
3606
3607 if (!mptcp_pm_allow_new_subflow(msk))
3608 goto err_prohibited;
3609
3610 /* If we can't acquire msk socket lock here, let the release callback
3611 * handle it
3612 */
3613 mptcp_data_lock(parent);
3614 if (!sock_owned_by_user(parent)) {
3615 ret = __mptcp_finish_join(msk, ssk);
3616 if (ret) {
3617 sock_hold(ssk);
3618 list_add_tail(&subflow->node, &msk->conn_list);
3619 }
3620 } else {
3621 sock_hold(ssk);
3622 list_add_tail(&subflow->node, &msk->join_list);
3623 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3624 }
3625 mptcp_data_unlock(parent);
3626
3627 if (!ret) {
3628 err_prohibited:
3629 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3630 return false;
3631 }
3632
3633 return true;
3634 }
3635
mptcp_shutdown(struct sock * sk,int how)3636 static void mptcp_shutdown(struct sock *sk, int how)
3637 {
3638 pr_debug("sk=%p, how=%d\n", sk, how);
3639
3640 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3641 __mptcp_wr_shutdown(sk);
3642 }
3643
mptcp_forward_alloc_get(const struct sock * sk)3644 static int mptcp_forward_alloc_get(const struct sock *sk)
3645 {
3646 return READ_ONCE(sk->sk_forward_alloc) +
3647 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3648 }
3649
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3650 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3651 {
3652 const struct sock *sk = (void *)msk;
3653 u64 delta;
3654
3655 if (sk->sk_state == TCP_LISTEN)
3656 return -EINVAL;
3657
3658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3659 return 0;
3660
3661 delta = msk->write_seq - v;
3662 if (__mptcp_check_fallback(msk) && msk->first) {
3663 struct tcp_sock *tp = tcp_sk(msk->first);
3664
3665 /* the first subflow is disconnected after close - see
3666 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3667 * so ignore that status, too.
3668 */
3669 if (!((1 << msk->first->sk_state) &
3670 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3671 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3672 }
3673 if (delta > INT_MAX)
3674 delta = INT_MAX;
3675
3676 return (int)delta;
3677 }
3678
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3679 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3680 {
3681 struct mptcp_sock *msk = mptcp_sk(sk);
3682 bool slow;
3683
3684 switch (cmd) {
3685 case SIOCINQ:
3686 if (sk->sk_state == TCP_LISTEN)
3687 return -EINVAL;
3688
3689 lock_sock(sk);
3690 __mptcp_move_skbs(msk);
3691 *karg = mptcp_inq_hint(sk);
3692 release_sock(sk);
3693 break;
3694 case SIOCOUTQ:
3695 slow = lock_sock_fast(sk);
3696 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3697 unlock_sock_fast(sk, slow);
3698 break;
3699 case SIOCOUTQNSD:
3700 slow = lock_sock_fast(sk);
3701 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3702 unlock_sock_fast(sk, slow);
3703 break;
3704 default:
3705 return -ENOIOCTLCMD;
3706 }
3707
3708 return 0;
3709 }
3710
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3711 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3712 struct mptcp_subflow_context *subflow)
3713 {
3714 subflow->request_mptcp = 0;
3715 __mptcp_do_fallback(msk);
3716 }
3717
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3718 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3719 {
3720 struct mptcp_subflow_context *subflow;
3721 struct mptcp_sock *msk = mptcp_sk(sk);
3722 int err = -EINVAL;
3723 struct sock *ssk;
3724
3725 ssk = __mptcp_nmpc_sk(msk);
3726 if (IS_ERR(ssk))
3727 return PTR_ERR(ssk);
3728
3729 mptcp_set_state(sk, TCP_SYN_SENT);
3730 subflow = mptcp_subflow_ctx(ssk);
3731 #ifdef CONFIG_TCP_MD5SIG
3732 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3733 * TCP option space.
3734 */
3735 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3736 mptcp_subflow_early_fallback(msk, subflow);
3737 #endif
3738 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3739 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3740 mptcp_subflow_early_fallback(msk, subflow);
3741 }
3742
3743 WRITE_ONCE(msk->write_seq, subflow->idsn);
3744 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3745 WRITE_ONCE(msk->snd_una, subflow->idsn);
3746 if (likely(!__mptcp_check_fallback(msk)))
3747 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3748
3749 /* if reaching here via the fastopen/sendmsg path, the caller already
3750 * acquired the subflow socket lock, too.
3751 */
3752 if (!msk->fastopening)
3753 lock_sock(ssk);
3754
3755 /* the following mirrors closely a very small chunk of code from
3756 * __inet_stream_connect()
3757 */
3758 if (ssk->sk_state != TCP_CLOSE)
3759 goto out;
3760
3761 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3762 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3763 if (err)
3764 goto out;
3765 }
3766
3767 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3768 if (err < 0)
3769 goto out;
3770
3771 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3772
3773 out:
3774 if (!msk->fastopening)
3775 release_sock(ssk);
3776
3777 /* on successful connect, the msk state will be moved to established by
3778 * subflow_finish_connect()
3779 */
3780 if (unlikely(err)) {
3781 /* avoid leaving a dangling token in an unconnected socket */
3782 mptcp_token_destroy(msk);
3783 mptcp_set_state(sk, TCP_CLOSE);
3784 return err;
3785 }
3786
3787 mptcp_copy_inaddrs(sk, ssk);
3788 return 0;
3789 }
3790
3791 static struct proto mptcp_prot = {
3792 .name = "MPTCP",
3793 .owner = THIS_MODULE,
3794 .init = mptcp_init_sock,
3795 .connect = mptcp_connect,
3796 .disconnect = mptcp_disconnect,
3797 .close = mptcp_close,
3798 .setsockopt = mptcp_setsockopt,
3799 .getsockopt = mptcp_getsockopt,
3800 .shutdown = mptcp_shutdown,
3801 .destroy = mptcp_destroy,
3802 .sendmsg = mptcp_sendmsg,
3803 .ioctl = mptcp_ioctl,
3804 .recvmsg = mptcp_recvmsg,
3805 .release_cb = mptcp_release_cb,
3806 .hash = mptcp_hash,
3807 .unhash = mptcp_unhash,
3808 .get_port = mptcp_get_port,
3809 .forward_alloc_get = mptcp_forward_alloc_get,
3810 .sockets_allocated = &mptcp_sockets_allocated,
3811
3812 .memory_allocated = &tcp_memory_allocated,
3813 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3814
3815 .memory_pressure = &tcp_memory_pressure,
3816 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3817 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3818 .sysctl_mem = sysctl_tcp_mem,
3819 .obj_size = sizeof(struct mptcp_sock),
3820 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3821 .no_autobind = true,
3822 };
3823
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3824 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3825 {
3826 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3827 struct sock *ssk, *sk = sock->sk;
3828 int err = -EINVAL;
3829
3830 lock_sock(sk);
3831 ssk = __mptcp_nmpc_sk(msk);
3832 if (IS_ERR(ssk)) {
3833 err = PTR_ERR(ssk);
3834 goto unlock;
3835 }
3836
3837 if (sk->sk_family == AF_INET)
3838 err = inet_bind_sk(ssk, uaddr, addr_len);
3839 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3840 else if (sk->sk_family == AF_INET6)
3841 err = inet6_bind_sk(ssk, uaddr, addr_len);
3842 #endif
3843 if (!err)
3844 mptcp_copy_inaddrs(sk, ssk);
3845
3846 unlock:
3847 release_sock(sk);
3848 return err;
3849 }
3850
mptcp_listen(struct socket * sock,int backlog)3851 static int mptcp_listen(struct socket *sock, int backlog)
3852 {
3853 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3854 struct sock *sk = sock->sk;
3855 struct sock *ssk;
3856 int err;
3857
3858 pr_debug("msk=%p\n", msk);
3859
3860 lock_sock(sk);
3861
3862 err = -EINVAL;
3863 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3864 goto unlock;
3865
3866 ssk = __mptcp_nmpc_sk(msk);
3867 if (IS_ERR(ssk)) {
3868 err = PTR_ERR(ssk);
3869 goto unlock;
3870 }
3871
3872 mptcp_set_state(sk, TCP_LISTEN);
3873 sock_set_flag(sk, SOCK_RCU_FREE);
3874
3875 lock_sock(ssk);
3876 err = __inet_listen_sk(ssk, backlog);
3877 release_sock(ssk);
3878 mptcp_set_state(sk, inet_sk_state_load(ssk));
3879
3880 if (!err) {
3881 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3882 mptcp_copy_inaddrs(sk, ssk);
3883 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3884 }
3885
3886 unlock:
3887 release_sock(sk);
3888 return err;
3889 }
3890
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3891 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3892 int flags, bool kern)
3893 {
3894 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3895 struct sock *ssk, *newsk;
3896 int err;
3897
3898 pr_debug("msk=%p\n", msk);
3899
3900 /* Buggy applications can call accept on socket states other then LISTEN
3901 * but no need to allocate the first subflow just to error out.
3902 */
3903 ssk = READ_ONCE(msk->first);
3904 if (!ssk)
3905 return -EINVAL;
3906
3907 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3908 newsk = inet_csk_accept(ssk, flags, &err, kern);
3909 if (!newsk)
3910 return err;
3911
3912 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3913 if (sk_is_mptcp(newsk)) {
3914 struct mptcp_subflow_context *subflow;
3915 struct sock *new_mptcp_sock;
3916
3917 subflow = mptcp_subflow_ctx(newsk);
3918 new_mptcp_sock = subflow->conn;
3919
3920 /* is_mptcp should be false if subflow->conn is missing, see
3921 * subflow_syn_recv_sock()
3922 */
3923 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3924 tcp_sk(newsk)->is_mptcp = 0;
3925 goto tcpfallback;
3926 }
3927
3928 newsk = new_mptcp_sock;
3929 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3930
3931 newsk->sk_kern_sock = kern;
3932 lock_sock(newsk);
3933 __inet_accept(sock, newsock, newsk);
3934
3935 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3936 msk = mptcp_sk(newsk);
3937 msk->in_accept_queue = 0;
3938
3939 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3940 * This is needed so NOSPACE flag can be set from tcp stack.
3941 */
3942 mptcp_for_each_subflow(msk, subflow) {
3943 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3944
3945 if (!ssk->sk_socket)
3946 mptcp_sock_graft(ssk, newsock);
3947 }
3948
3949 /* Do late cleanup for the first subflow as necessary. Also
3950 * deal with bad peers not doing a complete shutdown.
3951 */
3952 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3953 __mptcp_close_ssk(newsk, msk->first,
3954 mptcp_subflow_ctx(msk->first), 0);
3955 if (unlikely(list_is_singular(&msk->conn_list)))
3956 mptcp_set_state(newsk, TCP_CLOSE);
3957 }
3958 } else {
3959 tcpfallback:
3960 newsk->sk_kern_sock = kern;
3961 lock_sock(newsk);
3962 __inet_accept(sock, newsock, newsk);
3963 /* we are being invoked after accepting a non-mp-capable
3964 * flow: sk is a tcp_sk, not an mptcp one.
3965 *
3966 * Hand the socket over to tcp so all further socket ops
3967 * bypass mptcp.
3968 */
3969 WRITE_ONCE(newsock->sk->sk_socket->ops,
3970 mptcp_fallback_tcp_ops(newsock->sk));
3971 }
3972 release_sock(newsk);
3973
3974 return 0;
3975 }
3976
mptcp_check_writeable(struct mptcp_sock * msk)3977 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3978 {
3979 struct sock *sk = (struct sock *)msk;
3980
3981 if (sk_stream_is_writeable(sk))
3982 return EPOLLOUT | EPOLLWRNORM;
3983
3984 mptcp_set_nospace(sk);
3985 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3986 if (sk_stream_is_writeable(sk))
3987 return EPOLLOUT | EPOLLWRNORM;
3988
3989 return 0;
3990 }
3991
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3992 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3993 struct poll_table_struct *wait)
3994 {
3995 struct sock *sk = sock->sk;
3996 struct mptcp_sock *msk;
3997 __poll_t mask = 0;
3998 u8 shutdown;
3999 int state;
4000
4001 msk = mptcp_sk(sk);
4002 sock_poll_wait(file, sock, wait);
4003
4004 state = inet_sk_state_load(sk);
4005 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4006 if (state == TCP_LISTEN) {
4007 struct sock *ssk = READ_ONCE(msk->first);
4008
4009 if (WARN_ON_ONCE(!ssk))
4010 return 0;
4011
4012 return inet_csk_listen_poll(ssk);
4013 }
4014
4015 shutdown = READ_ONCE(sk->sk_shutdown);
4016 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4017 mask |= EPOLLHUP;
4018 if (shutdown & RCV_SHUTDOWN)
4019 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4020
4021 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4022 mask |= mptcp_check_readable(sk);
4023 if (shutdown & SEND_SHUTDOWN)
4024 mask |= EPOLLOUT | EPOLLWRNORM;
4025 else
4026 mask |= mptcp_check_writeable(msk);
4027 } else if (state == TCP_SYN_SENT &&
4028 inet_test_bit(DEFER_CONNECT, sk)) {
4029 /* cf tcp_poll() note about TFO */
4030 mask |= EPOLLOUT | EPOLLWRNORM;
4031 }
4032
4033 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4034 smp_rmb();
4035 if (READ_ONCE(sk->sk_err))
4036 mask |= EPOLLERR;
4037
4038 return mask;
4039 }
4040
4041 static const struct proto_ops mptcp_stream_ops = {
4042 .family = PF_INET,
4043 .owner = THIS_MODULE,
4044 .release = inet_release,
4045 .bind = mptcp_bind,
4046 .connect = inet_stream_connect,
4047 .socketpair = sock_no_socketpair,
4048 .accept = mptcp_stream_accept,
4049 .getname = inet_getname,
4050 .poll = mptcp_poll,
4051 .ioctl = inet_ioctl,
4052 .gettstamp = sock_gettstamp,
4053 .listen = mptcp_listen,
4054 .shutdown = inet_shutdown,
4055 .setsockopt = sock_common_setsockopt,
4056 .getsockopt = sock_common_getsockopt,
4057 .sendmsg = inet_sendmsg,
4058 .recvmsg = inet_recvmsg,
4059 .mmap = sock_no_mmap,
4060 .set_rcvlowat = mptcp_set_rcvlowat,
4061 };
4062
4063 static struct inet_protosw mptcp_protosw = {
4064 .type = SOCK_STREAM,
4065 .protocol = IPPROTO_MPTCP,
4066 .prot = &mptcp_prot,
4067 .ops = &mptcp_stream_ops,
4068 .flags = INET_PROTOSW_ICSK,
4069 };
4070
mptcp_napi_poll(struct napi_struct * napi,int budget)4071 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4072 {
4073 struct mptcp_delegated_action *delegated;
4074 struct mptcp_subflow_context *subflow;
4075 int work_done = 0;
4076
4077 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4078 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4079 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4080
4081 bh_lock_sock_nested(ssk);
4082 if (!sock_owned_by_user(ssk)) {
4083 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4084 } else {
4085 /* tcp_release_cb_override already processed
4086 * the action or will do at next release_sock().
4087 * In both case must dequeue the subflow here - on the same
4088 * CPU that scheduled it.
4089 */
4090 smp_wmb();
4091 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4092 }
4093 bh_unlock_sock(ssk);
4094 sock_put(ssk);
4095
4096 if (++work_done == budget)
4097 return budget;
4098 }
4099
4100 /* always provide a 0 'work_done' argument, so that napi_complete_done
4101 * will not try accessing the NULL napi->dev ptr
4102 */
4103 napi_complete_done(napi, 0);
4104 return work_done;
4105 }
4106
mptcp_proto_init(void)4107 void __init mptcp_proto_init(void)
4108 {
4109 struct mptcp_delegated_action *delegated;
4110 int cpu;
4111
4112 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4113
4114 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4115 panic("Failed to allocate MPTCP pcpu counter\n");
4116
4117 init_dummy_netdev(&mptcp_napi_dev);
4118 for_each_possible_cpu(cpu) {
4119 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4120 INIT_LIST_HEAD(&delegated->head);
4121 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4122 mptcp_napi_poll);
4123 napi_enable(&delegated->napi);
4124 }
4125
4126 mptcp_subflow_init();
4127 mptcp_pm_init();
4128 mptcp_sched_init();
4129 mptcp_token_init();
4130
4131 if (proto_register(&mptcp_prot, 1) != 0)
4132 panic("Failed to register MPTCP proto.\n");
4133
4134 inet_register_protosw(&mptcp_protosw);
4135
4136 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4137 }
4138
4139 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4140 static const struct proto_ops mptcp_v6_stream_ops = {
4141 .family = PF_INET6,
4142 .owner = THIS_MODULE,
4143 .release = inet6_release,
4144 .bind = mptcp_bind,
4145 .connect = inet_stream_connect,
4146 .socketpair = sock_no_socketpair,
4147 .accept = mptcp_stream_accept,
4148 .getname = inet6_getname,
4149 .poll = mptcp_poll,
4150 .ioctl = inet6_ioctl,
4151 .gettstamp = sock_gettstamp,
4152 .listen = mptcp_listen,
4153 .shutdown = inet_shutdown,
4154 .setsockopt = sock_common_setsockopt,
4155 .getsockopt = sock_common_getsockopt,
4156 .sendmsg = inet6_sendmsg,
4157 .recvmsg = inet6_recvmsg,
4158 .mmap = sock_no_mmap,
4159 #ifdef CONFIG_COMPAT
4160 .compat_ioctl = inet6_compat_ioctl,
4161 #endif
4162 .set_rcvlowat = mptcp_set_rcvlowat,
4163 };
4164
4165 static struct proto mptcp_v6_prot;
4166
4167 static struct inet_protosw mptcp_v6_protosw = {
4168 .type = SOCK_STREAM,
4169 .protocol = IPPROTO_MPTCP,
4170 .prot = &mptcp_v6_prot,
4171 .ops = &mptcp_v6_stream_ops,
4172 .flags = INET_PROTOSW_ICSK,
4173 };
4174
mptcp_proto_v6_init(void)4175 int __init mptcp_proto_v6_init(void)
4176 {
4177 int err;
4178
4179 mptcp_v6_prot = mptcp_prot;
4180 strcpy(mptcp_v6_prot.name, "MPTCPv6");
4181 mptcp_v6_prot.slab = NULL;
4182 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4183 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4184
4185 err = proto_register(&mptcp_v6_prot, 1);
4186 if (err)
4187 return err;
4188
4189 err = inet6_register_protosw(&mptcp_v6_protosw);
4190 if (err)
4191 proto_unregister(&mptcp_v6_prot);
4192
4193 return err;
4194 }
4195 #endif
4196