xref: /openbmc/linux/net/mptcp/protocol.c (revision 360823a09426347ea8f232b0b0b5156d0aed0302)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 
111 		mptcp_sockopt_sync(msk, msk->first);
112 	}
113 
114 	return msk->first;
115 }
116 
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 	sk_drops_add(sk, skb);
120 	__kfree_skb(skb);
121 }
122 
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
124 {
125 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
126 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
127 }
128 
mptcp_rmem_charge(struct sock * sk,int size)129 static void mptcp_rmem_charge(struct sock *sk, int size)
130 {
131 	mptcp_rmem_fwd_alloc_add(sk, -size);
132 }
133 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
135 			       struct sk_buff *from)
136 {
137 	bool fragstolen;
138 	int delta;
139 
140 	if (MPTCP_SKB_CB(from)->offset ||
141 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
142 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
143 		return false;
144 
145 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
146 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
147 		 to->len, MPTCP_SKB_CB(from)->end_seq);
148 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
149 
150 	/* note the fwd memory can reach a negative value after accounting
151 	 * for the delta, but the later skb free will restore a non
152 	 * negative one
153 	 */
154 	atomic_add(delta, &sk->sk_rmem_alloc);
155 	mptcp_rmem_charge(sk, delta);
156 	kfree_skb_partial(from, fragstolen);
157 
158 	return true;
159 }
160 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)161 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
162 				   struct sk_buff *from)
163 {
164 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
165 		return false;
166 
167 	return mptcp_try_coalesce((struct sock *)msk, to, from);
168 }
169 
__mptcp_rmem_reclaim(struct sock * sk,int amount)170 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
171 {
172 	amount >>= PAGE_SHIFT;
173 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
174 	__sk_mem_reduce_allocated(sk, amount);
175 }
176 
mptcp_rmem_uncharge(struct sock * sk,int size)177 static void mptcp_rmem_uncharge(struct sock *sk, int size)
178 {
179 	struct mptcp_sock *msk = mptcp_sk(sk);
180 	int reclaimable;
181 
182 	mptcp_rmem_fwd_alloc_add(sk, size);
183 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
184 
185 	/* see sk_mem_uncharge() for the rationale behind the following schema */
186 	if (unlikely(reclaimable >= PAGE_SIZE))
187 		__mptcp_rmem_reclaim(sk, reclaimable);
188 }
189 
mptcp_rfree(struct sk_buff * skb)190 static void mptcp_rfree(struct sk_buff *skb)
191 {
192 	unsigned int len = skb->truesize;
193 	struct sock *sk = skb->sk;
194 
195 	atomic_sub(len, &sk->sk_rmem_alloc);
196 	mptcp_rmem_uncharge(sk, len);
197 }
198 
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)199 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
200 {
201 	skb_orphan(skb);
202 	skb->sk = sk;
203 	skb->destructor = mptcp_rfree;
204 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
205 	mptcp_rmem_charge(sk, skb->truesize);
206 }
207 
208 /* "inspired" by tcp_data_queue_ofo(), main differences:
209  * - use mptcp seqs
210  * - don't cope with sacks
211  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)212 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
213 {
214 	struct sock *sk = (struct sock *)msk;
215 	struct rb_node **p, *parent;
216 	u64 seq, end_seq, max_seq;
217 	struct sk_buff *skb1;
218 
219 	seq = MPTCP_SKB_CB(skb)->map_seq;
220 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
221 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
222 
223 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
224 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
225 	if (after64(end_seq, max_seq)) {
226 		/* out of window */
227 		mptcp_drop(sk, skb);
228 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
229 			 (unsigned long long)end_seq - (unsigned long)max_seq,
230 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
231 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
232 		return;
233 	}
234 
235 	p = &msk->out_of_order_queue.rb_node;
236 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
237 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
238 		rb_link_node(&skb->rbnode, NULL, p);
239 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
240 		msk->ooo_last_skb = skb;
241 		goto end;
242 	}
243 
244 	/* with 2 subflows, adding at end of ooo queue is quite likely
245 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
246 	 */
247 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
248 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
249 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
250 		return;
251 	}
252 
253 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
254 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
255 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
256 		parent = &msk->ooo_last_skb->rbnode;
257 		p = &parent->rb_right;
258 		goto insert;
259 	}
260 
261 	/* Find place to insert this segment. Handle overlaps on the way. */
262 	parent = NULL;
263 	while (*p) {
264 		parent = *p;
265 		skb1 = rb_to_skb(parent);
266 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
267 			p = &parent->rb_left;
268 			continue;
269 		}
270 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
271 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
272 				/* All the bits are present. Drop. */
273 				mptcp_drop(sk, skb);
274 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
275 				return;
276 			}
277 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
278 				/* partial overlap:
279 				 *     |     skb      |
280 				 *  |     skb1    |
281 				 * continue traversing
282 				 */
283 			} else {
284 				/* skb's seq == skb1's seq and skb covers skb1.
285 				 * Replace skb1 with skb.
286 				 */
287 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
288 						&msk->out_of_order_queue);
289 				mptcp_drop(sk, skb1);
290 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
291 				goto merge_right;
292 			}
293 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
294 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
295 			return;
296 		}
297 		p = &parent->rb_right;
298 	}
299 
300 insert:
301 	/* Insert segment into RB tree. */
302 	rb_link_node(&skb->rbnode, parent, p);
303 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
304 
305 merge_right:
306 	/* Remove other segments covered by skb. */
307 	while ((skb1 = skb_rb_next(skb)) != NULL) {
308 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
309 			break;
310 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
311 		mptcp_drop(sk, skb1);
312 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
313 	}
314 	/* If there is no skb after us, we are the last_skb ! */
315 	if (!skb1)
316 		msk->ooo_last_skb = skb;
317 
318 end:
319 	skb_condense(skb);
320 	mptcp_set_owner_r(skb, sk);
321 }
322 
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)323 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
324 {
325 	struct mptcp_sock *msk = mptcp_sk(sk);
326 	int amt, amount;
327 
328 	if (size <= msk->rmem_fwd_alloc)
329 		return true;
330 
331 	size -= msk->rmem_fwd_alloc;
332 	amt = sk_mem_pages(size);
333 	amount = amt << PAGE_SHIFT;
334 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
335 		return false;
336 
337 	mptcp_rmem_fwd_alloc_add(sk, amount);
338 	return true;
339 }
340 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)341 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
342 			     struct sk_buff *skb, unsigned int offset,
343 			     size_t copy_len)
344 {
345 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
346 	struct sock *sk = (struct sock *)msk;
347 	struct sk_buff *tail;
348 	bool has_rxtstamp;
349 
350 	__skb_unlink(skb, &ssk->sk_receive_queue);
351 
352 	skb_ext_reset(skb);
353 	skb_orphan(skb);
354 
355 	/* try to fetch required memory from subflow */
356 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
357 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
358 		goto drop;
359 	}
360 
361 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
362 
363 	/* the skb map_seq accounts for the skb offset:
364 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
365 	 * value
366 	 */
367 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
368 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
369 	MPTCP_SKB_CB(skb)->offset = offset;
370 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
371 
372 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
373 		/* in sequence */
374 		msk->bytes_received += copy_len;
375 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
376 		tail = skb_peek_tail(&sk->sk_receive_queue);
377 		if (tail && mptcp_try_coalesce(sk, tail, skb))
378 			return true;
379 
380 		mptcp_set_owner_r(skb, sk);
381 		__skb_queue_tail(&sk->sk_receive_queue, skb);
382 		return true;
383 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
384 		mptcp_data_queue_ofo(msk, skb);
385 		return false;
386 	}
387 
388 	/* old data, keep it simple and drop the whole pkt, sender
389 	 * will retransmit as needed, if needed.
390 	 */
391 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
392 drop:
393 	mptcp_drop(sk, skb);
394 	return false;
395 }
396 
mptcp_stop_rtx_timer(struct sock * sk)397 static void mptcp_stop_rtx_timer(struct sock *sk)
398 {
399 	struct inet_connection_sock *icsk = inet_csk(sk);
400 
401 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
402 	mptcp_sk(sk)->timer_ival = 0;
403 }
404 
mptcp_close_wake_up(struct sock * sk)405 static void mptcp_close_wake_up(struct sock *sk)
406 {
407 	if (sock_flag(sk, SOCK_DEAD))
408 		return;
409 
410 	sk->sk_state_change(sk);
411 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
412 	    sk->sk_state == TCP_CLOSE)
413 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
414 	else
415 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
416 }
417 
mptcp_pending_data_fin_ack(struct sock * sk)418 static bool mptcp_pending_data_fin_ack(struct sock *sk)
419 {
420 	struct mptcp_sock *msk = mptcp_sk(sk);
421 
422 	return ((1 << sk->sk_state) &
423 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
424 	       msk->write_seq == READ_ONCE(msk->snd_una);
425 }
426 
mptcp_check_data_fin_ack(struct sock * sk)427 static void mptcp_check_data_fin_ack(struct sock *sk)
428 {
429 	struct mptcp_sock *msk = mptcp_sk(sk);
430 
431 	/* Look for an acknowledged DATA_FIN */
432 	if (mptcp_pending_data_fin_ack(sk)) {
433 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
434 
435 		switch (sk->sk_state) {
436 		case TCP_FIN_WAIT1:
437 			mptcp_set_state(sk, TCP_FIN_WAIT2);
438 			break;
439 		case TCP_CLOSING:
440 		case TCP_LAST_ACK:
441 			mptcp_set_state(sk, TCP_CLOSE);
442 			break;
443 		}
444 
445 		mptcp_close_wake_up(sk);
446 	}
447 }
448 
mptcp_pending_data_fin(struct sock * sk,u64 * seq)449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
450 {
451 	struct mptcp_sock *msk = mptcp_sk(sk);
452 
453 	if (READ_ONCE(msk->rcv_data_fin) &&
454 	    ((1 << sk->sk_state) &
455 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
456 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
457 
458 		if (msk->ack_seq == rcv_data_fin_seq) {
459 			if (seq)
460 				*seq = rcv_data_fin_seq;
461 
462 			return true;
463 		}
464 	}
465 
466 	return false;
467 }
468 
mptcp_set_datafin_timeout(struct sock * sk)469 static void mptcp_set_datafin_timeout(struct sock *sk)
470 {
471 	struct inet_connection_sock *icsk = inet_csk(sk);
472 	u32 retransmits;
473 
474 	retransmits = min_t(u32, icsk->icsk_retransmits,
475 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
476 
477 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
478 }
479 
__mptcp_set_timeout(struct sock * sk,long tout)480 static void __mptcp_set_timeout(struct sock *sk, long tout)
481 {
482 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
483 }
484 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
486 {
487 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
488 
489 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
490 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
491 }
492 
mptcp_set_timeout(struct sock * sk)493 static void mptcp_set_timeout(struct sock *sk)
494 {
495 	struct mptcp_subflow_context *subflow;
496 	long tout = 0;
497 
498 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
499 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
500 	__mptcp_set_timeout(sk, tout);
501 }
502 
tcp_can_send_ack(const struct sock * ssk)503 static inline bool tcp_can_send_ack(const struct sock *ssk)
504 {
505 	return !((1 << inet_sk_state_load(ssk)) &
506 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
507 }
508 
__mptcp_subflow_send_ack(struct sock * ssk)509 void __mptcp_subflow_send_ack(struct sock *ssk)
510 {
511 	if (tcp_can_send_ack(ssk))
512 		tcp_send_ack(ssk);
513 }
514 
mptcp_subflow_send_ack(struct sock * ssk)515 static void mptcp_subflow_send_ack(struct sock *ssk)
516 {
517 	bool slow;
518 
519 	slow = lock_sock_fast(ssk);
520 	__mptcp_subflow_send_ack(ssk);
521 	unlock_sock_fast(ssk, slow);
522 }
523 
mptcp_send_ack(struct mptcp_sock * msk)524 static void mptcp_send_ack(struct mptcp_sock *msk)
525 {
526 	struct mptcp_subflow_context *subflow;
527 
528 	mptcp_for_each_subflow(msk, subflow)
529 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
530 }
531 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)532 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
533 {
534 	bool slow;
535 
536 	slow = lock_sock_fast(ssk);
537 	if (tcp_can_send_ack(ssk))
538 		tcp_cleanup_rbuf(ssk, copied);
539 	unlock_sock_fast(ssk, slow);
540 }
541 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)542 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
543 {
544 	const struct inet_connection_sock *icsk = inet_csk(ssk);
545 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
546 	const struct tcp_sock *tp = tcp_sk(ssk);
547 
548 	return (ack_pending & ICSK_ACK_SCHED) &&
549 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
550 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
551 		 (rx_empty && ack_pending &
552 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
553 }
554 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)555 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
556 {
557 	int old_space = READ_ONCE(msk->old_wspace);
558 	struct mptcp_subflow_context *subflow;
559 	struct sock *sk = (struct sock *)msk;
560 	int space =  __mptcp_space(sk);
561 	bool cleanup, rx_empty;
562 
563 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
564 	rx_empty = !__mptcp_rmem(sk) && copied;
565 
566 	mptcp_for_each_subflow(msk, subflow) {
567 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
568 
569 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
570 			mptcp_subflow_cleanup_rbuf(ssk, copied);
571 	}
572 }
573 
mptcp_check_data_fin(struct sock * sk)574 static bool mptcp_check_data_fin(struct sock *sk)
575 {
576 	struct mptcp_sock *msk = mptcp_sk(sk);
577 	u64 rcv_data_fin_seq;
578 	bool ret = false;
579 
580 	/* Need to ack a DATA_FIN received from a peer while this side
581 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
582 	 * msk->rcv_data_fin was set when parsing the incoming options
583 	 * at the subflow level and the msk lock was not held, so this
584 	 * is the first opportunity to act on the DATA_FIN and change
585 	 * the msk state.
586 	 *
587 	 * If we are caught up to the sequence number of the incoming
588 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
589 	 * not caught up, do nothing and let the recv code send DATA_ACK
590 	 * when catching up.
591 	 */
592 
593 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
594 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
595 		WRITE_ONCE(msk->rcv_data_fin, 0);
596 
597 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
598 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
599 
600 		switch (sk->sk_state) {
601 		case TCP_ESTABLISHED:
602 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
603 			break;
604 		case TCP_FIN_WAIT1:
605 			mptcp_set_state(sk, TCP_CLOSING);
606 			break;
607 		case TCP_FIN_WAIT2:
608 			mptcp_set_state(sk, TCP_CLOSE);
609 			break;
610 		default:
611 			/* Other states not expected */
612 			WARN_ON_ONCE(1);
613 			break;
614 		}
615 
616 		ret = true;
617 		if (!__mptcp_check_fallback(msk))
618 			mptcp_send_ack(msk);
619 		mptcp_close_wake_up(sk);
620 	}
621 	return ret;
622 }
623 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)624 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
625 {
626 	if (READ_ONCE(msk->allow_infinite_fallback)) {
627 		MPTCP_INC_STATS(sock_net(ssk),
628 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
629 		mptcp_do_fallback(ssk);
630 	} else {
631 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
632 		mptcp_subflow_reset(ssk);
633 	}
634 }
635 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)636 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
637 					   struct sock *ssk,
638 					   unsigned int *bytes)
639 {
640 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
641 	struct sock *sk = (struct sock *)msk;
642 	unsigned int moved = 0;
643 	bool more_data_avail;
644 	struct tcp_sock *tp;
645 	bool done = false;
646 	int sk_rbuf;
647 
648 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
649 
650 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
651 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
652 
653 		if (unlikely(ssk_rbuf > sk_rbuf)) {
654 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
655 			sk_rbuf = ssk_rbuf;
656 		}
657 	}
658 
659 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
660 	tp = tcp_sk(ssk);
661 	do {
662 		u32 map_remaining, offset;
663 		u32 seq = tp->copied_seq;
664 		struct sk_buff *skb;
665 		bool fin;
666 
667 		/* try to move as much data as available */
668 		map_remaining = subflow->map_data_len -
669 				mptcp_subflow_get_map_offset(subflow);
670 
671 		skb = skb_peek(&ssk->sk_receive_queue);
672 		if (!skb) {
673 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
674 			 * a different CPU can have already processed the pending
675 			 * data, stop here or we can enter an infinite loop
676 			 */
677 			if (!moved)
678 				done = true;
679 			break;
680 		}
681 
682 		if (__mptcp_check_fallback(msk)) {
683 			/* Under fallback skbs have no MPTCP extension and TCP could
684 			 * collapse them between the dummy map creation and the
685 			 * current dequeue. Be sure to adjust the map size.
686 			 */
687 			map_remaining = skb->len;
688 			subflow->map_data_len = skb->len;
689 		}
690 
691 		offset = seq - TCP_SKB_CB(skb)->seq;
692 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
693 		if (fin) {
694 			done = true;
695 			seq++;
696 		}
697 
698 		if (offset < skb->len) {
699 			size_t len = skb->len - offset;
700 
701 			if (tp->urg_data)
702 				done = true;
703 
704 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
705 				moved += len;
706 			seq += len;
707 
708 			if (unlikely(map_remaining < len)) {
709 				DEBUG_NET_WARN_ON_ONCE(1);
710 				mptcp_dss_corruption(msk, ssk);
711 			}
712 		} else {
713 			if (unlikely(!fin)) {
714 				DEBUG_NET_WARN_ON_ONCE(1);
715 				mptcp_dss_corruption(msk, ssk);
716 			}
717 
718 			sk_eat_skb(ssk, skb);
719 			done = true;
720 		}
721 
722 		WRITE_ONCE(tp->copied_seq, seq);
723 		more_data_avail = mptcp_subflow_data_available(ssk);
724 
725 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
726 			done = true;
727 			break;
728 		}
729 	} while (more_data_avail);
730 
731 	*bytes += moved;
732 	return done;
733 }
734 
__mptcp_ofo_queue(struct mptcp_sock * msk)735 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
736 {
737 	struct sock *sk = (struct sock *)msk;
738 	struct sk_buff *skb, *tail;
739 	bool moved = false;
740 	struct rb_node *p;
741 	u64 end_seq;
742 
743 	p = rb_first(&msk->out_of_order_queue);
744 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
745 	while (p) {
746 		skb = rb_to_skb(p);
747 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
748 			break;
749 
750 		p = rb_next(p);
751 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
752 
753 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
754 				      msk->ack_seq))) {
755 			mptcp_drop(sk, skb);
756 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
757 			continue;
758 		}
759 
760 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
761 		tail = skb_peek_tail(&sk->sk_receive_queue);
762 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
763 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
764 
765 			/* skip overlapping data, if any */
766 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
767 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
768 				 delta);
769 			MPTCP_SKB_CB(skb)->offset += delta;
770 			MPTCP_SKB_CB(skb)->map_seq += delta;
771 			__skb_queue_tail(&sk->sk_receive_queue, skb);
772 		}
773 		msk->bytes_received += end_seq - msk->ack_seq;
774 		msk->ack_seq = end_seq;
775 		moved = true;
776 	}
777 	return moved;
778 }
779 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)780 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
781 {
782 	int err = sock_error(ssk);
783 	int ssk_state;
784 
785 	if (!err)
786 		return false;
787 
788 	/* only propagate errors on fallen-back sockets or
789 	 * on MPC connect
790 	 */
791 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
792 		return false;
793 
794 	/* We need to propagate only transition to CLOSE state.
795 	 * Orphaned socket will see such state change via
796 	 * subflow_sched_work_if_closed() and that path will properly
797 	 * destroy the msk as needed.
798 	 */
799 	ssk_state = inet_sk_state_load(ssk);
800 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
801 		mptcp_set_state(sk, ssk_state);
802 	WRITE_ONCE(sk->sk_err, -err);
803 
804 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
805 	smp_wmb();
806 	sk_error_report(sk);
807 	return true;
808 }
809 
__mptcp_error_report(struct sock * sk)810 void __mptcp_error_report(struct sock *sk)
811 {
812 	struct mptcp_subflow_context *subflow;
813 	struct mptcp_sock *msk = mptcp_sk(sk);
814 
815 	mptcp_for_each_subflow(msk, subflow)
816 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
817 			break;
818 }
819 
820 /* In most cases we will be able to lock the mptcp socket.  If its already
821  * owned, we need to defer to the work queue to avoid ABBA deadlock.
822  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)823 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
824 {
825 	struct sock *sk = (struct sock *)msk;
826 	unsigned int moved = 0;
827 
828 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
829 	__mptcp_ofo_queue(msk);
830 	if (unlikely(ssk->sk_err)) {
831 		if (!sock_owned_by_user(sk))
832 			__mptcp_error_report(sk);
833 		else
834 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
835 	}
836 
837 	/* If the moves have caught up with the DATA_FIN sequence number
838 	 * it's time to ack the DATA_FIN and change socket state, but
839 	 * this is not a good place to change state. Let the workqueue
840 	 * do it.
841 	 */
842 	if (mptcp_pending_data_fin(sk, NULL))
843 		mptcp_schedule_work(sk);
844 	return moved > 0;
845 }
846 
mptcp_data_ready(struct sock * sk,struct sock * ssk)847 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
848 {
849 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
850 	struct mptcp_sock *msk = mptcp_sk(sk);
851 	int sk_rbuf, ssk_rbuf;
852 
853 	/* The peer can send data while we are shutting down this
854 	 * subflow at msk destruction time, but we must avoid enqueuing
855 	 * more data to the msk receive queue
856 	 */
857 	if (unlikely(subflow->disposable))
858 		return;
859 
860 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
861 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
862 	if (unlikely(ssk_rbuf > sk_rbuf))
863 		sk_rbuf = ssk_rbuf;
864 
865 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
866 	if (__mptcp_rmem(sk) > sk_rbuf)
867 		return;
868 
869 	/* Wake-up the reader only for in-sequence data */
870 	mptcp_data_lock(sk);
871 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
872 		sk->sk_data_ready(sk);
873 	mptcp_data_unlock(sk);
874 }
875 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)876 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
877 {
878 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
879 	WRITE_ONCE(msk->allow_infinite_fallback, false);
880 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
881 }
882 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)883 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
884 {
885 	struct sock *sk = (struct sock *)msk;
886 
887 	if (sk->sk_state != TCP_ESTABLISHED)
888 		return false;
889 
890 	/* attach to msk socket only after we are sure we will deal with it
891 	 * at close time
892 	 */
893 	if (sk->sk_socket && !ssk->sk_socket)
894 		mptcp_sock_graft(ssk, sk->sk_socket);
895 
896 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
897 	mptcp_sockopt_sync_locked(msk, ssk);
898 	mptcp_subflow_joined(msk, ssk);
899 	mptcp_stop_tout_timer(sk);
900 	__mptcp_propagate_sndbuf(sk, ssk);
901 	return true;
902 }
903 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)904 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
905 {
906 	struct mptcp_subflow_context *tmp, *subflow;
907 	struct mptcp_sock *msk = mptcp_sk(sk);
908 
909 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
910 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
911 		bool slow = lock_sock_fast(ssk);
912 
913 		list_move_tail(&subflow->node, &msk->conn_list);
914 		if (!__mptcp_finish_join(msk, ssk))
915 			mptcp_subflow_reset(ssk);
916 		unlock_sock_fast(ssk, slow);
917 	}
918 }
919 
mptcp_rtx_timer_pending(struct sock * sk)920 static bool mptcp_rtx_timer_pending(struct sock *sk)
921 {
922 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
923 }
924 
mptcp_reset_rtx_timer(struct sock * sk)925 static void mptcp_reset_rtx_timer(struct sock *sk)
926 {
927 	struct inet_connection_sock *icsk = inet_csk(sk);
928 	unsigned long tout;
929 
930 	/* prevent rescheduling on close */
931 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
932 		return;
933 
934 	tout = mptcp_sk(sk)->timer_ival;
935 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
936 }
937 
mptcp_schedule_work(struct sock * sk)938 bool mptcp_schedule_work(struct sock *sk)
939 {
940 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
941 	    schedule_work(&mptcp_sk(sk)->work)) {
942 		/* each subflow already holds a reference to the sk, and the
943 		 * workqueue is invoked by a subflow, so sk can't go away here.
944 		 */
945 		sock_hold(sk);
946 		return true;
947 	}
948 	return false;
949 }
950 
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)951 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
952 {
953 	struct mptcp_subflow_context *subflow;
954 
955 	msk_owned_by_me(msk);
956 
957 	mptcp_for_each_subflow(msk, subflow) {
958 		if (READ_ONCE(subflow->data_avail))
959 			return mptcp_subflow_tcp_sock(subflow);
960 	}
961 
962 	return NULL;
963 }
964 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)965 static bool mptcp_skb_can_collapse_to(u64 write_seq,
966 				      const struct sk_buff *skb,
967 				      const struct mptcp_ext *mpext)
968 {
969 	if (!tcp_skb_can_collapse_to(skb))
970 		return false;
971 
972 	/* can collapse only if MPTCP level sequence is in order and this
973 	 * mapping has not been xmitted yet
974 	 */
975 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
976 	       !mpext->frozen;
977 }
978 
979 /* we can append data to the given data frag if:
980  * - there is space available in the backing page_frag
981  * - the data frag tail matches the current page_frag free offset
982  * - the data frag end sequence number matches the current write seq
983  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)984 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
985 				       const struct page_frag *pfrag,
986 				       const struct mptcp_data_frag *df)
987 {
988 	return df && pfrag->page == df->page &&
989 		pfrag->size - pfrag->offset > 0 &&
990 		pfrag->offset == (df->offset + df->data_len) &&
991 		df->data_seq + df->data_len == msk->write_seq;
992 }
993 
dfrag_uncharge(struct sock * sk,int len)994 static void dfrag_uncharge(struct sock *sk, int len)
995 {
996 	sk_mem_uncharge(sk, len);
997 	sk_wmem_queued_add(sk, -len);
998 }
999 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1000 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1001 {
1002 	int len = dfrag->data_len + dfrag->overhead;
1003 
1004 	list_del(&dfrag->list);
1005 	dfrag_uncharge(sk, len);
1006 	put_page(dfrag->page);
1007 }
1008 
__mptcp_clean_una(struct sock * sk)1009 static void __mptcp_clean_una(struct sock *sk)
1010 {
1011 	struct mptcp_sock *msk = mptcp_sk(sk);
1012 	struct mptcp_data_frag *dtmp, *dfrag;
1013 	u64 snd_una;
1014 
1015 	snd_una = msk->snd_una;
1016 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1017 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1018 			break;
1019 
1020 		if (unlikely(dfrag == msk->first_pending)) {
1021 			/* in recovery mode can see ack after the current snd head */
1022 			if (WARN_ON_ONCE(!msk->recovery))
1023 				break;
1024 
1025 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1026 		}
1027 
1028 		dfrag_clear(sk, dfrag);
1029 	}
1030 
1031 	dfrag = mptcp_rtx_head(sk);
1032 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1033 		u64 delta = snd_una - dfrag->data_seq;
1034 
1035 		/* prevent wrap around in recovery mode */
1036 		if (unlikely(delta > dfrag->already_sent)) {
1037 			if (WARN_ON_ONCE(!msk->recovery))
1038 				goto out;
1039 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1040 				goto out;
1041 			dfrag->already_sent += delta - dfrag->already_sent;
1042 		}
1043 
1044 		dfrag->data_seq += delta;
1045 		dfrag->offset += delta;
1046 		dfrag->data_len -= delta;
1047 		dfrag->already_sent -= delta;
1048 
1049 		dfrag_uncharge(sk, delta);
1050 	}
1051 
1052 	/* all retransmitted data acked, recovery completed */
1053 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1054 		msk->recovery = false;
1055 
1056 out:
1057 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1058 	    snd_una == READ_ONCE(msk->write_seq)) {
1059 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1060 			mptcp_stop_rtx_timer(sk);
1061 	} else {
1062 		mptcp_reset_rtx_timer(sk);
1063 	}
1064 }
1065 
__mptcp_clean_una_wakeup(struct sock * sk)1066 static void __mptcp_clean_una_wakeup(struct sock *sk)
1067 {
1068 	lockdep_assert_held_once(&sk->sk_lock.slock);
1069 
1070 	__mptcp_clean_una(sk);
1071 	mptcp_write_space(sk);
1072 }
1073 
mptcp_clean_una_wakeup(struct sock * sk)1074 static void mptcp_clean_una_wakeup(struct sock *sk)
1075 {
1076 	mptcp_data_lock(sk);
1077 	__mptcp_clean_una_wakeup(sk);
1078 	mptcp_data_unlock(sk);
1079 }
1080 
mptcp_enter_memory_pressure(struct sock * sk)1081 static void mptcp_enter_memory_pressure(struct sock *sk)
1082 {
1083 	struct mptcp_subflow_context *subflow;
1084 	struct mptcp_sock *msk = mptcp_sk(sk);
1085 	bool first = true;
1086 
1087 	mptcp_for_each_subflow(msk, subflow) {
1088 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1089 
1090 		if (first)
1091 			tcp_enter_memory_pressure(ssk);
1092 		sk_stream_moderate_sndbuf(ssk);
1093 
1094 		first = false;
1095 	}
1096 	__mptcp_sync_sndbuf(sk);
1097 }
1098 
1099 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1100  * data
1101  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1102 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1103 {
1104 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1105 					pfrag, sk->sk_allocation)))
1106 		return true;
1107 
1108 	mptcp_enter_memory_pressure(sk);
1109 	return false;
1110 }
1111 
1112 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1113 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1114 		      int orig_offset)
1115 {
1116 	int offset = ALIGN(orig_offset, sizeof(long));
1117 	struct mptcp_data_frag *dfrag;
1118 
1119 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1120 	dfrag->data_len = 0;
1121 	dfrag->data_seq = msk->write_seq;
1122 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1123 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1124 	dfrag->already_sent = 0;
1125 	dfrag->page = pfrag->page;
1126 
1127 	return dfrag;
1128 }
1129 
1130 struct mptcp_sendmsg_info {
1131 	int mss_now;
1132 	int size_goal;
1133 	u16 limit;
1134 	u16 sent;
1135 	unsigned int flags;
1136 	bool data_lock_held;
1137 };
1138 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1139 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1140 				    u64 data_seq, int avail_size)
1141 {
1142 	u64 window_end = mptcp_wnd_end(msk);
1143 	u64 mptcp_snd_wnd;
1144 
1145 	if (__mptcp_check_fallback(msk))
1146 		return avail_size;
1147 
1148 	mptcp_snd_wnd = window_end - data_seq;
1149 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1150 
1151 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1152 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1153 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1154 	}
1155 
1156 	return avail_size;
1157 }
1158 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1159 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1160 {
1161 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1162 
1163 	if (!mpext)
1164 		return false;
1165 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1166 	return true;
1167 }
1168 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1169 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1170 {
1171 	struct sk_buff *skb;
1172 
1173 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1174 	if (likely(skb)) {
1175 		if (likely(__mptcp_add_ext(skb, gfp))) {
1176 			skb_reserve(skb, MAX_TCP_HEADER);
1177 			skb->ip_summed = CHECKSUM_PARTIAL;
1178 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1179 			return skb;
1180 		}
1181 		__kfree_skb(skb);
1182 	} else {
1183 		mptcp_enter_memory_pressure(sk);
1184 	}
1185 	return NULL;
1186 }
1187 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1188 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1189 {
1190 	struct sk_buff *skb;
1191 
1192 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1193 	if (!skb)
1194 		return NULL;
1195 
1196 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1197 		tcp_skb_entail(ssk, skb);
1198 		return skb;
1199 	}
1200 	tcp_skb_tsorted_anchor_cleanup(skb);
1201 	kfree_skb(skb);
1202 	return NULL;
1203 }
1204 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1205 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1206 {
1207 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1208 
1209 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1210 }
1211 
1212 /* note: this always recompute the csum on the whole skb, even
1213  * if we just appended a single frag. More status info needed
1214  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1215 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1216 {
1217 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1218 	__wsum csum = ~csum_unfold(mpext->csum);
1219 	int offset = skb->len - added;
1220 
1221 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1222 }
1223 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1224 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1225 				      struct sock *ssk,
1226 				      struct mptcp_ext *mpext)
1227 {
1228 	if (!mpext)
1229 		return;
1230 
1231 	mpext->infinite_map = 1;
1232 	mpext->data_len = 0;
1233 
1234 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1235 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1236 	pr_fallback(msk);
1237 	mptcp_do_fallback(ssk);
1238 }
1239 
1240 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1241 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1242 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1243 			      struct mptcp_data_frag *dfrag,
1244 			      struct mptcp_sendmsg_info *info)
1245 {
1246 	u64 data_seq = dfrag->data_seq + info->sent;
1247 	int offset = dfrag->offset + info->sent;
1248 	struct mptcp_sock *msk = mptcp_sk(sk);
1249 	bool zero_window_probe = false;
1250 	struct mptcp_ext *mpext = NULL;
1251 	bool can_coalesce = false;
1252 	bool reuse_skb = true;
1253 	struct sk_buff *skb;
1254 	size_t copy;
1255 	int i;
1256 
1257 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1258 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1259 
1260 	if (WARN_ON_ONCE(info->sent > info->limit ||
1261 			 info->limit > dfrag->data_len))
1262 		return 0;
1263 
1264 	if (unlikely(!__tcp_can_send(ssk)))
1265 		return -EAGAIN;
1266 
1267 	/* compute send limit */
1268 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1269 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1270 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1271 	copy = info->size_goal;
1272 
1273 	skb = tcp_write_queue_tail(ssk);
1274 	if (skb && copy > skb->len) {
1275 		/* Limit the write to the size available in the
1276 		 * current skb, if any, so that we create at most a new skb.
1277 		 * Explicitly tells TCP internals to avoid collapsing on later
1278 		 * queue management operation, to avoid breaking the ext <->
1279 		 * SSN association set here
1280 		 */
1281 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1282 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1283 			TCP_SKB_CB(skb)->eor = 1;
1284 			tcp_mark_push(tcp_sk(ssk), skb);
1285 			goto alloc_skb;
1286 		}
1287 
1288 		i = skb_shinfo(skb)->nr_frags;
1289 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1290 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1291 			tcp_mark_push(tcp_sk(ssk), skb);
1292 			goto alloc_skb;
1293 		}
1294 
1295 		copy -= skb->len;
1296 	} else {
1297 alloc_skb:
1298 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1299 		if (!skb)
1300 			return -ENOMEM;
1301 
1302 		i = skb_shinfo(skb)->nr_frags;
1303 		reuse_skb = false;
1304 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1305 	}
1306 
1307 	/* Zero window and all data acked? Probe. */
1308 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1309 	if (copy == 0) {
1310 		u64 snd_una = READ_ONCE(msk->snd_una);
1311 
1312 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1313 			tcp_remove_empty_skb(ssk);
1314 			return 0;
1315 		}
1316 
1317 		zero_window_probe = true;
1318 		data_seq = snd_una - 1;
1319 		copy = 1;
1320 	}
1321 
1322 	copy = min_t(size_t, copy, info->limit - info->sent);
1323 	if (!sk_wmem_schedule(ssk, copy)) {
1324 		tcp_remove_empty_skb(ssk);
1325 		return -ENOMEM;
1326 	}
1327 
1328 	if (can_coalesce) {
1329 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1330 	} else {
1331 		get_page(dfrag->page);
1332 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1333 	}
1334 
1335 	skb->len += copy;
1336 	skb->data_len += copy;
1337 	skb->truesize += copy;
1338 	sk_wmem_queued_add(ssk, copy);
1339 	sk_mem_charge(ssk, copy);
1340 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1341 	TCP_SKB_CB(skb)->end_seq += copy;
1342 	tcp_skb_pcount_set(skb, 0);
1343 
1344 	/* on skb reuse we just need to update the DSS len */
1345 	if (reuse_skb) {
1346 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1347 		mpext->data_len += copy;
1348 		goto out;
1349 	}
1350 
1351 	memset(mpext, 0, sizeof(*mpext));
1352 	mpext->data_seq = data_seq;
1353 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1354 	mpext->data_len = copy;
1355 	mpext->use_map = 1;
1356 	mpext->dsn64 = 1;
1357 
1358 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1359 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1360 		 mpext->dsn64);
1361 
1362 	if (zero_window_probe) {
1363 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1364 		mpext->frozen = 1;
1365 		if (READ_ONCE(msk->csum_enabled))
1366 			mptcp_update_data_checksum(skb, copy);
1367 		tcp_push_pending_frames(ssk);
1368 		return 0;
1369 	}
1370 out:
1371 	if (READ_ONCE(msk->csum_enabled))
1372 		mptcp_update_data_checksum(skb, copy);
1373 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1374 		mptcp_update_infinite_map(msk, ssk, mpext);
1375 	trace_mptcp_sendmsg_frag(mpext);
1376 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1377 	return copy;
1378 }
1379 
1380 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1381 					 sizeof(struct tcphdr) - \
1382 					 MAX_TCP_OPTION_SPACE - \
1383 					 sizeof(struct ipv6hdr) - \
1384 					 sizeof(struct frag_hdr))
1385 
1386 struct subflow_send_info {
1387 	struct sock *ssk;
1388 	u64 linger_time;
1389 };
1390 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1391 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1392 {
1393 	if (!subflow->stale)
1394 		return;
1395 
1396 	subflow->stale = 0;
1397 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1398 }
1399 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1400 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1401 {
1402 	if (unlikely(subflow->stale)) {
1403 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1404 
1405 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1406 			return false;
1407 
1408 		mptcp_subflow_set_active(subflow);
1409 	}
1410 	return __mptcp_subflow_active(subflow);
1411 }
1412 
1413 #define SSK_MODE_ACTIVE	0
1414 #define SSK_MODE_BACKUP	1
1415 #define SSK_MODE_MAX	2
1416 
1417 /* implement the mptcp packet scheduler;
1418  * returns the subflow that will transmit the next DSS
1419  * additionally updates the rtx timeout
1420  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1421 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1422 {
1423 	struct subflow_send_info send_info[SSK_MODE_MAX];
1424 	struct mptcp_subflow_context *subflow;
1425 	struct sock *sk = (struct sock *)msk;
1426 	u32 pace, burst, wmem;
1427 	int i, nr_active = 0;
1428 	struct sock *ssk;
1429 	u64 linger_time;
1430 	long tout = 0;
1431 
1432 	/* pick the subflow with the lower wmem/wspace ratio */
1433 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1434 		send_info[i].ssk = NULL;
1435 		send_info[i].linger_time = -1;
1436 	}
1437 
1438 	mptcp_for_each_subflow(msk, subflow) {
1439 		bool backup = subflow->backup || subflow->request_bkup;
1440 
1441 		trace_mptcp_subflow_get_send(subflow);
1442 		ssk =  mptcp_subflow_tcp_sock(subflow);
1443 		if (!mptcp_subflow_active(subflow))
1444 			continue;
1445 
1446 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1447 		nr_active += !backup;
1448 		pace = subflow->avg_pacing_rate;
1449 		if (unlikely(!pace)) {
1450 			/* init pacing rate from socket */
1451 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1452 			pace = subflow->avg_pacing_rate;
1453 			if (!pace)
1454 				continue;
1455 		}
1456 
1457 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1458 		if (linger_time < send_info[backup].linger_time) {
1459 			send_info[backup].ssk = ssk;
1460 			send_info[backup].linger_time = linger_time;
1461 		}
1462 	}
1463 	__mptcp_set_timeout(sk, tout);
1464 
1465 	/* pick the best backup if no other subflow is active */
1466 	if (!nr_active)
1467 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1468 
1469 	/* According to the blest algorithm, to avoid HoL blocking for the
1470 	 * faster flow, we need to:
1471 	 * - estimate the faster flow linger time
1472 	 * - use the above to estimate the amount of byte transferred
1473 	 *   by the faster flow
1474 	 * - check that the amount of queued data is greter than the above,
1475 	 *   otherwise do not use the picked, slower, subflow
1476 	 * We select the subflow with the shorter estimated time to flush
1477 	 * the queued mem, which basically ensure the above. We just need
1478 	 * to check that subflow has a non empty cwin.
1479 	 */
1480 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1481 	if (!ssk || !sk_stream_memory_free(ssk))
1482 		return NULL;
1483 
1484 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1485 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1486 	if (!burst)
1487 		return ssk;
1488 
1489 	subflow = mptcp_subflow_ctx(ssk);
1490 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1491 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1492 					   burst + wmem);
1493 	msk->snd_burst = burst;
1494 	return ssk;
1495 }
1496 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1497 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1498 {
1499 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1500 	release_sock(ssk);
1501 }
1502 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1503 static void mptcp_update_post_push(struct mptcp_sock *msk,
1504 				   struct mptcp_data_frag *dfrag,
1505 				   u32 sent)
1506 {
1507 	u64 snd_nxt_new = dfrag->data_seq;
1508 
1509 	dfrag->already_sent += sent;
1510 
1511 	msk->snd_burst -= sent;
1512 
1513 	snd_nxt_new += dfrag->already_sent;
1514 
1515 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1516 	 * is recovering after a failover. In that event, this re-sends
1517 	 * old segments.
1518 	 *
1519 	 * Thus compute snd_nxt_new candidate based on
1520 	 * the dfrag->data_seq that was sent and the data
1521 	 * that has been handed to the subflow for transmission
1522 	 * and skip update in case it was old dfrag.
1523 	 */
1524 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1525 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1526 		msk->snd_nxt = snd_nxt_new;
1527 	}
1528 }
1529 
mptcp_check_and_set_pending(struct sock * sk)1530 void mptcp_check_and_set_pending(struct sock *sk)
1531 {
1532 	if (mptcp_send_head(sk)) {
1533 		mptcp_data_lock(sk);
1534 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1535 		mptcp_data_unlock(sk);
1536 	}
1537 }
1538 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1539 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1540 				  struct mptcp_sendmsg_info *info)
1541 {
1542 	struct mptcp_sock *msk = mptcp_sk(sk);
1543 	struct mptcp_data_frag *dfrag;
1544 	int len, copied = 0, err = 0;
1545 
1546 	while ((dfrag = mptcp_send_head(sk))) {
1547 		info->sent = dfrag->already_sent;
1548 		info->limit = dfrag->data_len;
1549 		len = dfrag->data_len - dfrag->already_sent;
1550 		while (len > 0) {
1551 			int ret = 0;
1552 
1553 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1554 			if (ret <= 0) {
1555 				err = copied ? : ret;
1556 				goto out;
1557 			}
1558 
1559 			info->sent += ret;
1560 			copied += ret;
1561 			len -= ret;
1562 
1563 			mptcp_update_post_push(msk, dfrag, ret);
1564 		}
1565 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1566 
1567 		if (msk->snd_burst <= 0 ||
1568 		    !sk_stream_memory_free(ssk) ||
1569 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1570 			err = copied;
1571 			goto out;
1572 		}
1573 		mptcp_set_timeout(sk);
1574 	}
1575 	err = copied;
1576 
1577 out:
1578 	return err;
1579 }
1580 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1581 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1582 {
1583 	struct sock *prev_ssk = NULL, *ssk = NULL;
1584 	struct mptcp_sock *msk = mptcp_sk(sk);
1585 	struct mptcp_sendmsg_info info = {
1586 				.flags = flags,
1587 	};
1588 	bool do_check_data_fin = false;
1589 	int push_count = 1;
1590 
1591 	while (mptcp_send_head(sk) && (push_count > 0)) {
1592 		struct mptcp_subflow_context *subflow;
1593 		int ret = 0;
1594 
1595 		if (mptcp_sched_get_send(msk))
1596 			break;
1597 
1598 		push_count = 0;
1599 
1600 		mptcp_for_each_subflow(msk, subflow) {
1601 			if (READ_ONCE(subflow->scheduled)) {
1602 				mptcp_subflow_set_scheduled(subflow, false);
1603 
1604 				prev_ssk = ssk;
1605 				ssk = mptcp_subflow_tcp_sock(subflow);
1606 				if (ssk != prev_ssk) {
1607 					/* First check. If the ssk has changed since
1608 					 * the last round, release prev_ssk
1609 					 */
1610 					if (prev_ssk)
1611 						mptcp_push_release(prev_ssk, &info);
1612 
1613 					/* Need to lock the new subflow only if different
1614 					 * from the previous one, otherwise we are still
1615 					 * helding the relevant lock
1616 					 */
1617 					lock_sock(ssk);
1618 				}
1619 
1620 				push_count++;
1621 
1622 				ret = __subflow_push_pending(sk, ssk, &info);
1623 				if (ret <= 0) {
1624 					if (ret != -EAGAIN ||
1625 					    (1 << ssk->sk_state) &
1626 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1627 						push_count--;
1628 					continue;
1629 				}
1630 				do_check_data_fin = true;
1631 			}
1632 		}
1633 	}
1634 
1635 	/* at this point we held the socket lock for the last subflow we used */
1636 	if (ssk)
1637 		mptcp_push_release(ssk, &info);
1638 
1639 	/* ensure the rtx timer is running */
1640 	if (!mptcp_rtx_timer_pending(sk))
1641 		mptcp_reset_rtx_timer(sk);
1642 	if (do_check_data_fin)
1643 		mptcp_check_send_data_fin(sk);
1644 }
1645 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1646 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1647 {
1648 	struct mptcp_sock *msk = mptcp_sk(sk);
1649 	struct mptcp_sendmsg_info info = {
1650 		.data_lock_held = true,
1651 	};
1652 	bool keep_pushing = true;
1653 	struct sock *xmit_ssk;
1654 	int copied = 0;
1655 
1656 	info.flags = 0;
1657 	while (mptcp_send_head(sk) && keep_pushing) {
1658 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1659 		int ret = 0;
1660 
1661 		/* check for a different subflow usage only after
1662 		 * spooling the first chunk of data
1663 		 */
1664 		if (first) {
1665 			mptcp_subflow_set_scheduled(subflow, false);
1666 			ret = __subflow_push_pending(sk, ssk, &info);
1667 			first = false;
1668 			if (ret <= 0)
1669 				break;
1670 			copied += ret;
1671 			continue;
1672 		}
1673 
1674 		if (mptcp_sched_get_send(msk))
1675 			goto out;
1676 
1677 		if (READ_ONCE(subflow->scheduled)) {
1678 			mptcp_subflow_set_scheduled(subflow, false);
1679 			ret = __subflow_push_pending(sk, ssk, &info);
1680 			if (ret <= 0)
1681 				keep_pushing = false;
1682 			copied += ret;
1683 		}
1684 
1685 		mptcp_for_each_subflow(msk, subflow) {
1686 			if (READ_ONCE(subflow->scheduled)) {
1687 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1688 				if (xmit_ssk != ssk) {
1689 					mptcp_subflow_delegate(subflow,
1690 							       MPTCP_DELEGATE_SEND);
1691 					keep_pushing = false;
1692 				}
1693 			}
1694 		}
1695 	}
1696 
1697 out:
1698 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1699 	 * not going to flush it via release_sock()
1700 	 */
1701 	if (copied) {
1702 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1703 			 info.size_goal);
1704 		if (!mptcp_rtx_timer_pending(sk))
1705 			mptcp_reset_rtx_timer(sk);
1706 
1707 		if (msk->snd_data_fin_enable &&
1708 		    msk->snd_nxt + 1 == msk->write_seq)
1709 			mptcp_schedule_work(sk);
1710 	}
1711 }
1712 
mptcp_set_nospace(struct sock * sk)1713 static void mptcp_set_nospace(struct sock *sk)
1714 {
1715 	/* enable autotune */
1716 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1717 
1718 	/* will be cleared on avail space */
1719 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1720 }
1721 
1722 static int mptcp_disconnect(struct sock *sk, int flags);
1723 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1724 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1725 				  size_t len, int *copied_syn)
1726 {
1727 	unsigned int saved_flags = msg->msg_flags;
1728 	struct mptcp_sock *msk = mptcp_sk(sk);
1729 	struct sock *ssk;
1730 	int ret;
1731 
1732 	/* on flags based fastopen the mptcp is supposed to create the
1733 	 * first subflow right now. Otherwise we are in the defer_connect
1734 	 * path, and the first subflow must be already present.
1735 	 * Since the defer_connect flag is cleared after the first succsful
1736 	 * fastopen attempt, no need to check for additional subflow status.
1737 	 */
1738 	if (msg->msg_flags & MSG_FASTOPEN) {
1739 		ssk = __mptcp_nmpc_sk(msk);
1740 		if (IS_ERR(ssk))
1741 			return PTR_ERR(ssk);
1742 	}
1743 	if (!msk->first)
1744 		return -EINVAL;
1745 
1746 	ssk = msk->first;
1747 
1748 	lock_sock(ssk);
1749 	msg->msg_flags |= MSG_DONTWAIT;
1750 	msk->fastopening = 1;
1751 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1752 	msk->fastopening = 0;
1753 	msg->msg_flags = saved_flags;
1754 	release_sock(ssk);
1755 
1756 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1757 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1758 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1759 					    msg->msg_namelen, msg->msg_flags, 1);
1760 
1761 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1762 		 * case of any error, except timeout or signal
1763 		 */
1764 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1765 			*copied_syn = 0;
1766 	} else if (ret && ret != -EINPROGRESS) {
1767 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1768 		 * __inet_stream_connect() can fail, due to looking check,
1769 		 * see mptcp_disconnect().
1770 		 * Attempt it again outside the problematic scope.
1771 		 */
1772 		if (!mptcp_disconnect(sk, 0)) {
1773 			sk->sk_disconnects++;
1774 			sk->sk_socket->state = SS_UNCONNECTED;
1775 		}
1776 	}
1777 	inet_clear_bit(DEFER_CONNECT, sk);
1778 
1779 	return ret;
1780 }
1781 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1782 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1783 {
1784 	struct mptcp_sock *msk = mptcp_sk(sk);
1785 	struct page_frag *pfrag;
1786 	size_t copied = 0;
1787 	int ret = 0;
1788 	long timeo;
1789 
1790 	/* silently ignore everything else */
1791 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1792 
1793 	lock_sock(sk);
1794 
1795 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1796 		     msg->msg_flags & MSG_FASTOPEN)) {
1797 		int copied_syn = 0;
1798 
1799 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1800 		copied += copied_syn;
1801 		if (ret == -EINPROGRESS && copied_syn > 0)
1802 			goto out;
1803 		else if (ret)
1804 			goto do_error;
1805 	}
1806 
1807 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1808 
1809 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1810 		ret = sk_stream_wait_connect(sk, &timeo);
1811 		if (ret)
1812 			goto do_error;
1813 	}
1814 
1815 	ret = -EPIPE;
1816 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1817 		goto do_error;
1818 
1819 	pfrag = sk_page_frag(sk);
1820 
1821 	while (msg_data_left(msg)) {
1822 		int total_ts, frag_truesize = 0;
1823 		struct mptcp_data_frag *dfrag;
1824 		bool dfrag_collapsed;
1825 		size_t psize, offset;
1826 
1827 		/* reuse tail pfrag, if possible, or carve a new one from the
1828 		 * page allocator
1829 		 */
1830 		dfrag = mptcp_pending_tail(sk);
1831 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1832 		if (!dfrag_collapsed) {
1833 			if (!sk_stream_memory_free(sk))
1834 				goto wait_for_memory;
1835 
1836 			if (!mptcp_page_frag_refill(sk, pfrag))
1837 				goto wait_for_memory;
1838 
1839 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1840 			frag_truesize = dfrag->overhead;
1841 		}
1842 
1843 		/* we do not bound vs wspace, to allow a single packet.
1844 		 * memory accounting will prevent execessive memory usage
1845 		 * anyway
1846 		 */
1847 		offset = dfrag->offset + dfrag->data_len;
1848 		psize = pfrag->size - offset;
1849 		psize = min_t(size_t, psize, msg_data_left(msg));
1850 		total_ts = psize + frag_truesize;
1851 
1852 		if (!sk_wmem_schedule(sk, total_ts))
1853 			goto wait_for_memory;
1854 
1855 		if (copy_page_from_iter(dfrag->page, offset, psize,
1856 					&msg->msg_iter) != psize) {
1857 			ret = -EFAULT;
1858 			goto do_error;
1859 		}
1860 
1861 		/* data successfully copied into the write queue */
1862 		sk_forward_alloc_add(sk, -total_ts);
1863 		copied += psize;
1864 		dfrag->data_len += psize;
1865 		frag_truesize += psize;
1866 		pfrag->offset += frag_truesize;
1867 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1868 
1869 		/* charge data on mptcp pending queue to the msk socket
1870 		 * Note: we charge such data both to sk and ssk
1871 		 */
1872 		sk_wmem_queued_add(sk, frag_truesize);
1873 		if (!dfrag_collapsed) {
1874 			get_page(dfrag->page);
1875 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1876 			if (!msk->first_pending)
1877 				WRITE_ONCE(msk->first_pending, dfrag);
1878 		}
1879 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1880 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1881 			 !dfrag_collapsed);
1882 
1883 		continue;
1884 
1885 wait_for_memory:
1886 		mptcp_set_nospace(sk);
1887 		__mptcp_push_pending(sk, msg->msg_flags);
1888 		ret = sk_stream_wait_memory(sk, &timeo);
1889 		if (ret)
1890 			goto do_error;
1891 	}
1892 
1893 	if (copied)
1894 		__mptcp_push_pending(sk, msg->msg_flags);
1895 
1896 out:
1897 	release_sock(sk);
1898 	return copied;
1899 
1900 do_error:
1901 	if (copied)
1902 		goto out;
1903 
1904 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1905 	goto out;
1906 }
1907 
1908 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1909 
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1910 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1911 				struct msghdr *msg,
1912 				size_t len, int flags,
1913 				struct scm_timestamping_internal *tss,
1914 				int *cmsg_flags)
1915 {
1916 	struct sk_buff *skb, *tmp;
1917 	int copied = 0;
1918 
1919 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1920 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1921 		u32 data_len = skb->len - offset;
1922 		u32 count = min_t(size_t, len - copied, data_len);
1923 		int err;
1924 
1925 		if (!(flags & MSG_TRUNC)) {
1926 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1927 			if (unlikely(err < 0)) {
1928 				if (!copied)
1929 					return err;
1930 				break;
1931 			}
1932 		}
1933 
1934 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1935 			tcp_update_recv_tstamps(skb, tss);
1936 			*cmsg_flags |= MPTCP_CMSG_TS;
1937 		}
1938 
1939 		copied += count;
1940 
1941 		if (count < data_len) {
1942 			if (!(flags & MSG_PEEK)) {
1943 				MPTCP_SKB_CB(skb)->offset += count;
1944 				MPTCP_SKB_CB(skb)->map_seq += count;
1945 				msk->bytes_consumed += count;
1946 			}
1947 			break;
1948 		}
1949 
1950 		if (!(flags & MSG_PEEK)) {
1951 			/* we will bulk release the skb memory later */
1952 			skb->destructor = NULL;
1953 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1954 			__skb_unlink(skb, &msk->receive_queue);
1955 			__kfree_skb(skb);
1956 			msk->bytes_consumed += count;
1957 		}
1958 
1959 		if (copied >= len)
1960 			break;
1961 	}
1962 
1963 	mptcp_rcv_space_adjust(msk, copied);
1964 	return copied;
1965 }
1966 
1967 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1968  *
1969  * Only difference: Use highest rtt estimate of the subflows in use.
1970  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1971 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1972 {
1973 	struct mptcp_subflow_context *subflow;
1974 	struct sock *sk = (struct sock *)msk;
1975 	u8 scaling_ratio = U8_MAX;
1976 	u32 time, advmss = 1;
1977 	u64 rtt_us, mstamp;
1978 
1979 	msk_owned_by_me(msk);
1980 
1981 	if (copied <= 0)
1982 		return;
1983 
1984 	if (!msk->rcvspace_init)
1985 		mptcp_rcv_space_init(msk, msk->first);
1986 
1987 	msk->rcvq_space.copied += copied;
1988 
1989 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1990 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1991 
1992 	rtt_us = msk->rcvq_space.rtt_us;
1993 	if (rtt_us && time < (rtt_us >> 3))
1994 		return;
1995 
1996 	rtt_us = 0;
1997 	mptcp_for_each_subflow(msk, subflow) {
1998 		const struct tcp_sock *tp;
1999 		u64 sf_rtt_us;
2000 		u32 sf_advmss;
2001 
2002 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2003 
2004 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2005 		sf_advmss = READ_ONCE(tp->advmss);
2006 
2007 		rtt_us = max(sf_rtt_us, rtt_us);
2008 		advmss = max(sf_advmss, advmss);
2009 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2010 	}
2011 
2012 	msk->rcvq_space.rtt_us = rtt_us;
2013 	msk->scaling_ratio = scaling_ratio;
2014 	if (time < (rtt_us >> 3) || rtt_us == 0)
2015 		return;
2016 
2017 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2018 		goto new_measure;
2019 
2020 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2021 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2022 		u64 rcvwin, grow;
2023 		int rcvbuf;
2024 
2025 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2026 
2027 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2028 
2029 		do_div(grow, msk->rcvq_space.space);
2030 		rcvwin += (grow << 1);
2031 
2032 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2033 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2034 
2035 		if (rcvbuf > sk->sk_rcvbuf) {
2036 			u32 window_clamp;
2037 
2038 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2039 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2040 
2041 			/* Make subflows follow along.  If we do not do this, we
2042 			 * get drops at subflow level if skbs can't be moved to
2043 			 * the mptcp rx queue fast enough (announced rcv_win can
2044 			 * exceed ssk->sk_rcvbuf).
2045 			 */
2046 			mptcp_for_each_subflow(msk, subflow) {
2047 				struct sock *ssk;
2048 				bool slow;
2049 
2050 				ssk = mptcp_subflow_tcp_sock(subflow);
2051 				slow = lock_sock_fast(ssk);
2052 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2053 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2054 				if (tcp_can_send_ack(ssk))
2055 					tcp_cleanup_rbuf(ssk, 1);
2056 				unlock_sock_fast(ssk, slow);
2057 			}
2058 		}
2059 	}
2060 
2061 	msk->rcvq_space.space = msk->rcvq_space.copied;
2062 new_measure:
2063 	msk->rcvq_space.copied = 0;
2064 	msk->rcvq_space.time = mstamp;
2065 }
2066 
__mptcp_update_rmem(struct sock * sk)2067 static void __mptcp_update_rmem(struct sock *sk)
2068 {
2069 	struct mptcp_sock *msk = mptcp_sk(sk);
2070 
2071 	if (!msk->rmem_released)
2072 		return;
2073 
2074 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2075 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2076 	WRITE_ONCE(msk->rmem_released, 0);
2077 }
2078 
__mptcp_splice_receive_queue(struct sock * sk)2079 static void __mptcp_splice_receive_queue(struct sock *sk)
2080 {
2081 	struct mptcp_sock *msk = mptcp_sk(sk);
2082 
2083 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2084 }
2085 
__mptcp_move_skbs(struct mptcp_sock * msk)2086 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2087 {
2088 	struct sock *sk = (struct sock *)msk;
2089 	unsigned int moved = 0;
2090 	bool ret, done;
2091 
2092 	do {
2093 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2094 		bool slowpath;
2095 
2096 		/* we can have data pending in the subflows only if the msk
2097 		 * receive buffer was full at subflow_data_ready() time,
2098 		 * that is an unlikely slow path.
2099 		 */
2100 		if (likely(!ssk))
2101 			break;
2102 
2103 		slowpath = lock_sock_fast(ssk);
2104 		mptcp_data_lock(sk);
2105 		__mptcp_update_rmem(sk);
2106 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2107 		mptcp_data_unlock(sk);
2108 
2109 		if (unlikely(ssk->sk_err))
2110 			__mptcp_error_report(sk);
2111 		unlock_sock_fast(ssk, slowpath);
2112 	} while (!done);
2113 
2114 	/* acquire the data lock only if some input data is pending */
2115 	ret = moved > 0;
2116 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2117 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2118 		mptcp_data_lock(sk);
2119 		__mptcp_update_rmem(sk);
2120 		ret |= __mptcp_ofo_queue(msk);
2121 		__mptcp_splice_receive_queue(sk);
2122 		mptcp_data_unlock(sk);
2123 	}
2124 	if (ret)
2125 		mptcp_check_data_fin((struct sock *)msk);
2126 	return !skb_queue_empty(&msk->receive_queue);
2127 }
2128 
mptcp_inq_hint(const struct sock * sk)2129 static unsigned int mptcp_inq_hint(const struct sock *sk)
2130 {
2131 	const struct mptcp_sock *msk = mptcp_sk(sk);
2132 	const struct sk_buff *skb;
2133 
2134 	skb = skb_peek(&msk->receive_queue);
2135 	if (skb) {
2136 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2137 
2138 		if (hint_val >= INT_MAX)
2139 			return INT_MAX;
2140 
2141 		return (unsigned int)hint_val;
2142 	}
2143 
2144 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2145 		return 1;
2146 
2147 	return 0;
2148 }
2149 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2150 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2151 			 int flags, int *addr_len)
2152 {
2153 	struct mptcp_sock *msk = mptcp_sk(sk);
2154 	struct scm_timestamping_internal tss;
2155 	int copied = 0, cmsg_flags = 0;
2156 	int target;
2157 	long timeo;
2158 
2159 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2160 	if (unlikely(flags & MSG_ERRQUEUE))
2161 		return inet_recv_error(sk, msg, len, addr_len);
2162 
2163 	lock_sock(sk);
2164 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2165 		copied = -ENOTCONN;
2166 		goto out_err;
2167 	}
2168 
2169 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2170 
2171 	len = min_t(size_t, len, INT_MAX);
2172 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2173 
2174 	if (unlikely(msk->recvmsg_inq))
2175 		cmsg_flags = MPTCP_CMSG_INQ;
2176 
2177 	while (copied < len) {
2178 		int err, bytes_read;
2179 
2180 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2181 		if (unlikely(bytes_read < 0)) {
2182 			if (!copied)
2183 				copied = bytes_read;
2184 			goto out_err;
2185 		}
2186 
2187 		copied += bytes_read;
2188 
2189 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2190 			continue;
2191 
2192 		/* only the master socket status is relevant here. The exit
2193 		 * conditions mirror closely tcp_recvmsg()
2194 		 */
2195 		if (copied >= target)
2196 			break;
2197 
2198 		if (copied) {
2199 			if (sk->sk_err ||
2200 			    sk->sk_state == TCP_CLOSE ||
2201 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2202 			    !timeo ||
2203 			    signal_pending(current))
2204 				break;
2205 		} else {
2206 			if (sk->sk_err) {
2207 				copied = sock_error(sk);
2208 				break;
2209 			}
2210 
2211 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2212 				/* race breaker: the shutdown could be after the
2213 				 * previous receive queue check
2214 				 */
2215 				if (__mptcp_move_skbs(msk))
2216 					continue;
2217 				break;
2218 			}
2219 
2220 			if (sk->sk_state == TCP_CLOSE) {
2221 				copied = -ENOTCONN;
2222 				break;
2223 			}
2224 
2225 			if (!timeo) {
2226 				copied = -EAGAIN;
2227 				break;
2228 			}
2229 
2230 			if (signal_pending(current)) {
2231 				copied = sock_intr_errno(timeo);
2232 				break;
2233 			}
2234 		}
2235 
2236 		pr_debug("block timeout %ld\n", timeo);
2237 		mptcp_cleanup_rbuf(msk, copied);
2238 		err = sk_wait_data(sk, &timeo, NULL);
2239 		if (err < 0) {
2240 			err = copied ? : err;
2241 			goto out_err;
2242 		}
2243 	}
2244 
2245 	mptcp_cleanup_rbuf(msk, copied);
2246 
2247 out_err:
2248 	if (cmsg_flags && copied >= 0) {
2249 		if (cmsg_flags & MPTCP_CMSG_TS)
2250 			tcp_recv_timestamp(msg, sk, &tss);
2251 
2252 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2253 			unsigned int inq = mptcp_inq_hint(sk);
2254 
2255 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2256 		}
2257 	}
2258 
2259 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2260 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2261 		 skb_queue_empty(&msk->receive_queue), copied);
2262 
2263 	release_sock(sk);
2264 	return copied;
2265 }
2266 
mptcp_retransmit_timer(struct timer_list * t)2267 static void mptcp_retransmit_timer(struct timer_list *t)
2268 {
2269 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2270 						       icsk_retransmit_timer);
2271 	struct sock *sk = &icsk->icsk_inet.sk;
2272 	struct mptcp_sock *msk = mptcp_sk(sk);
2273 
2274 	bh_lock_sock(sk);
2275 	if (!sock_owned_by_user(sk)) {
2276 		/* we need a process context to retransmit */
2277 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2278 			mptcp_schedule_work(sk);
2279 	} else {
2280 		/* delegate our work to tcp_release_cb() */
2281 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2282 	}
2283 	bh_unlock_sock(sk);
2284 	sock_put(sk);
2285 }
2286 
mptcp_tout_timer(struct timer_list * t)2287 static void mptcp_tout_timer(struct timer_list *t)
2288 {
2289 	struct sock *sk = from_timer(sk, t, sk_timer);
2290 
2291 	mptcp_schedule_work(sk);
2292 	sock_put(sk);
2293 }
2294 
2295 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2296  * level.
2297  *
2298  * A backup subflow is returned only if that is the only kind available.
2299  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2300 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2301 {
2302 	struct sock *backup = NULL, *pick = NULL;
2303 	struct mptcp_subflow_context *subflow;
2304 	int min_stale_count = INT_MAX;
2305 
2306 	mptcp_for_each_subflow(msk, subflow) {
2307 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2308 
2309 		if (!__mptcp_subflow_active(subflow))
2310 			continue;
2311 
2312 		/* still data outstanding at TCP level? skip this */
2313 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2314 			mptcp_pm_subflow_chk_stale(msk, ssk);
2315 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2316 			continue;
2317 		}
2318 
2319 		if (subflow->backup || subflow->request_bkup) {
2320 			if (!backup)
2321 				backup = ssk;
2322 			continue;
2323 		}
2324 
2325 		if (!pick)
2326 			pick = ssk;
2327 	}
2328 
2329 	if (pick)
2330 		return pick;
2331 
2332 	/* use backup only if there are no progresses anywhere */
2333 	return min_stale_count > 1 ? backup : NULL;
2334 }
2335 
__mptcp_retransmit_pending_data(struct sock * sk)2336 bool __mptcp_retransmit_pending_data(struct sock *sk)
2337 {
2338 	struct mptcp_data_frag *cur, *rtx_head;
2339 	struct mptcp_sock *msk = mptcp_sk(sk);
2340 
2341 	if (__mptcp_check_fallback(msk))
2342 		return false;
2343 
2344 	/* the closing socket has some data untransmitted and/or unacked:
2345 	 * some data in the mptcp rtx queue has not really xmitted yet.
2346 	 * keep it simple and re-inject the whole mptcp level rtx queue
2347 	 */
2348 	mptcp_data_lock(sk);
2349 	__mptcp_clean_una_wakeup(sk);
2350 	rtx_head = mptcp_rtx_head(sk);
2351 	if (!rtx_head) {
2352 		mptcp_data_unlock(sk);
2353 		return false;
2354 	}
2355 
2356 	msk->recovery_snd_nxt = msk->snd_nxt;
2357 	msk->recovery = true;
2358 	mptcp_data_unlock(sk);
2359 
2360 	msk->first_pending = rtx_head;
2361 	msk->snd_burst = 0;
2362 
2363 	/* be sure to clear the "sent status" on all re-injected fragments */
2364 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2365 		if (!cur->already_sent)
2366 			break;
2367 		cur->already_sent = 0;
2368 	}
2369 
2370 	return true;
2371 }
2372 
2373 /* flags for __mptcp_close_ssk() */
2374 #define MPTCP_CF_PUSH		BIT(1)
2375 #define MPTCP_CF_FASTCLOSE	BIT(2)
2376 
2377 /* be sure to send a reset only if the caller asked for it, also
2378  * clean completely the subflow status when the subflow reaches
2379  * TCP_CLOSE state
2380  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2381 static void __mptcp_subflow_disconnect(struct sock *ssk,
2382 				       struct mptcp_subflow_context *subflow,
2383 				       unsigned int flags)
2384 {
2385 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2386 	    (flags & MPTCP_CF_FASTCLOSE)) {
2387 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2388 		 * disconnect should never fail
2389 		 */
2390 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2391 		mptcp_subflow_ctx_reset(subflow);
2392 	} else {
2393 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2394 	}
2395 }
2396 
2397 /* subflow sockets can be either outgoing (connect) or incoming
2398  * (accept).
2399  *
2400  * Outgoing subflows use in-kernel sockets.
2401  * Incoming subflows do not have their own 'struct socket' allocated,
2402  * so we need to use tcp_close() after detaching them from the mptcp
2403  * parent socket.
2404  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2405 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2406 			      struct mptcp_subflow_context *subflow,
2407 			      unsigned int flags)
2408 {
2409 	struct mptcp_sock *msk = mptcp_sk(sk);
2410 	bool dispose_it, need_push = false;
2411 
2412 	/* If the first subflow moved to a close state before accept, e.g. due
2413 	 * to an incoming reset or listener shutdown, the subflow socket is
2414 	 * already deleted by inet_child_forget() and the mptcp socket can't
2415 	 * survive too.
2416 	 */
2417 	if (msk->in_accept_queue && msk->first == ssk &&
2418 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2419 		/* ensure later check in mptcp_worker() will dispose the msk */
2420 		mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2421 		sock_set_flag(sk, SOCK_DEAD);
2422 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2423 		mptcp_subflow_drop_ctx(ssk);
2424 		goto out_release;
2425 	}
2426 
2427 	dispose_it = msk->free_first || ssk != msk->first;
2428 	if (dispose_it)
2429 		list_del(&subflow->node);
2430 
2431 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2432 
2433 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2434 		/* be sure to force the tcp_close path
2435 		 * to generate the egress reset
2436 		 */
2437 		ssk->sk_lingertime = 0;
2438 		sock_set_flag(ssk, SOCK_LINGER);
2439 		subflow->send_fastclose = 1;
2440 	}
2441 
2442 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2443 	if (!dispose_it) {
2444 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2445 		release_sock(ssk);
2446 
2447 		goto out;
2448 	}
2449 
2450 	subflow->disposable = 1;
2451 
2452 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2453 	 * the ssk has been already destroyed, we just need to release the
2454 	 * reference owned by msk;
2455 	 */
2456 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2457 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2458 		kfree_rcu(subflow, rcu);
2459 	} else {
2460 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2461 		__tcp_close(ssk, 0);
2462 
2463 		/* close acquired an extra ref */
2464 		__sock_put(ssk);
2465 	}
2466 
2467 out_release:
2468 	__mptcp_subflow_error_report(sk, ssk);
2469 	release_sock(ssk);
2470 
2471 	sock_put(ssk);
2472 
2473 	if (ssk == msk->first)
2474 		WRITE_ONCE(msk->first, NULL);
2475 
2476 out:
2477 	__mptcp_sync_sndbuf(sk);
2478 	if (need_push)
2479 		__mptcp_push_pending(sk, 0);
2480 
2481 	/* Catch every 'all subflows closed' scenario, including peers silently
2482 	 * closing them, e.g. due to timeout.
2483 	 * For established sockets, allow an additional timeout before closing,
2484 	 * as the protocol can still create more subflows.
2485 	 */
2486 	if (list_is_singular(&msk->conn_list) && msk->first &&
2487 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2488 		if (sk->sk_state != TCP_ESTABLISHED ||
2489 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2490 			mptcp_set_state(sk, TCP_CLOSE);
2491 			mptcp_close_wake_up(sk);
2492 		} else {
2493 			mptcp_start_tout_timer(sk);
2494 		}
2495 	}
2496 }
2497 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2498 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2499 		     struct mptcp_subflow_context *subflow)
2500 {
2501 	/* The first subflow can already be closed and still in the list */
2502 	if (subflow->close_event_done)
2503 		return;
2504 
2505 	subflow->close_event_done = true;
2506 
2507 	if (sk->sk_state == TCP_ESTABLISHED)
2508 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2509 
2510 	/* subflow aborted before reaching the fully_established status
2511 	 * attempt the creation of the next subflow
2512 	 */
2513 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2514 
2515 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2516 }
2517 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2518 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2519 {
2520 	return 0;
2521 }
2522 
__mptcp_close_subflow(struct sock * sk)2523 static void __mptcp_close_subflow(struct sock *sk)
2524 {
2525 	struct mptcp_subflow_context *subflow, *tmp;
2526 	struct mptcp_sock *msk = mptcp_sk(sk);
2527 
2528 	might_sleep();
2529 
2530 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2531 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2532 		int ssk_state = inet_sk_state_load(ssk);
2533 
2534 		if (ssk_state != TCP_CLOSE &&
2535 		    (ssk_state != TCP_CLOSE_WAIT ||
2536 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2537 			continue;
2538 
2539 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2540 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2541 			continue;
2542 
2543 		mptcp_close_ssk(sk, ssk, subflow);
2544 	}
2545 
2546 }
2547 
mptcp_close_tout_expired(const struct sock * sk)2548 static bool mptcp_close_tout_expired(const struct sock *sk)
2549 {
2550 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2551 	    sk->sk_state == TCP_CLOSE)
2552 		return false;
2553 
2554 	return time_after32(tcp_jiffies32,
2555 		  inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2556 }
2557 
mptcp_check_fastclose(struct mptcp_sock * msk)2558 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2559 {
2560 	struct mptcp_subflow_context *subflow, *tmp;
2561 	struct sock *sk = (struct sock *)msk;
2562 
2563 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2564 		return;
2565 
2566 	mptcp_token_destroy(msk);
2567 
2568 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2569 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2570 		bool slow;
2571 
2572 		slow = lock_sock_fast(tcp_sk);
2573 		if (tcp_sk->sk_state != TCP_CLOSE) {
2574 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2575 			tcp_set_state(tcp_sk, TCP_CLOSE);
2576 		}
2577 		unlock_sock_fast(tcp_sk, slow);
2578 	}
2579 
2580 	/* Mirror the tcp_reset() error propagation */
2581 	switch (sk->sk_state) {
2582 	case TCP_SYN_SENT:
2583 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2584 		break;
2585 	case TCP_CLOSE_WAIT:
2586 		WRITE_ONCE(sk->sk_err, EPIPE);
2587 		break;
2588 	case TCP_CLOSE:
2589 		return;
2590 	default:
2591 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2592 	}
2593 
2594 	mptcp_set_state(sk, TCP_CLOSE);
2595 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2596 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2597 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2598 
2599 	/* the calling mptcp_worker will properly destroy the socket */
2600 	if (sock_flag(sk, SOCK_DEAD))
2601 		return;
2602 
2603 	sk->sk_state_change(sk);
2604 	sk_error_report(sk);
2605 }
2606 
__mptcp_retrans(struct sock * sk)2607 static void __mptcp_retrans(struct sock *sk)
2608 {
2609 	struct mptcp_sock *msk = mptcp_sk(sk);
2610 	struct mptcp_subflow_context *subflow;
2611 	struct mptcp_sendmsg_info info = {};
2612 	struct mptcp_data_frag *dfrag;
2613 	struct sock *ssk;
2614 	int ret, err;
2615 	u16 len = 0;
2616 
2617 	mptcp_clean_una_wakeup(sk);
2618 
2619 	/* first check ssk: need to kick "stale" logic */
2620 	err = mptcp_sched_get_retrans(msk);
2621 	dfrag = mptcp_rtx_head(sk);
2622 	if (!dfrag) {
2623 		if (mptcp_data_fin_enabled(msk)) {
2624 			struct inet_connection_sock *icsk = inet_csk(sk);
2625 
2626 			icsk->icsk_retransmits++;
2627 			mptcp_set_datafin_timeout(sk);
2628 			mptcp_send_ack(msk);
2629 
2630 			goto reset_timer;
2631 		}
2632 
2633 		if (!mptcp_send_head(sk))
2634 			return;
2635 
2636 		goto reset_timer;
2637 	}
2638 
2639 	if (err)
2640 		goto reset_timer;
2641 
2642 	mptcp_for_each_subflow(msk, subflow) {
2643 		if (READ_ONCE(subflow->scheduled)) {
2644 			u16 copied = 0;
2645 
2646 			mptcp_subflow_set_scheduled(subflow, false);
2647 
2648 			ssk = mptcp_subflow_tcp_sock(subflow);
2649 
2650 			lock_sock(ssk);
2651 
2652 			/* limit retransmission to the bytes already sent on some subflows */
2653 			info.sent = 0;
2654 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2655 								    dfrag->already_sent;
2656 			while (info.sent < info.limit) {
2657 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2658 				if (ret <= 0)
2659 					break;
2660 
2661 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2662 				copied += ret;
2663 				info.sent += ret;
2664 			}
2665 			if (copied) {
2666 				len = max(copied, len);
2667 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2668 					 info.size_goal);
2669 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2670 			}
2671 
2672 			release_sock(ssk);
2673 		}
2674 	}
2675 
2676 	msk->bytes_retrans += len;
2677 	dfrag->already_sent = max(dfrag->already_sent, len);
2678 
2679 reset_timer:
2680 	mptcp_check_and_set_pending(sk);
2681 
2682 	if (!mptcp_rtx_timer_pending(sk))
2683 		mptcp_reset_rtx_timer(sk);
2684 }
2685 
2686 /* schedule the timeout timer for the relevant event: either close timeout
2687  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2688  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2689 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2690 {
2691 	struct sock *sk = (struct sock *)msk;
2692 	unsigned long timeout, close_timeout;
2693 
2694 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2695 		return;
2696 
2697 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2698 			tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2699 
2700 	/* the close timeout takes precedence on the fail one, and here at least one of
2701 	 * them is active
2702 	 */
2703 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2704 
2705 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2706 }
2707 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2708 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2709 {
2710 	struct sock *ssk = msk->first;
2711 	bool slow;
2712 
2713 	if (!ssk)
2714 		return;
2715 
2716 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2717 
2718 	slow = lock_sock_fast(ssk);
2719 	mptcp_subflow_reset(ssk);
2720 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2721 	unlock_sock_fast(ssk, slow);
2722 }
2723 
mptcp_do_fastclose(struct sock * sk)2724 static void mptcp_do_fastclose(struct sock *sk)
2725 {
2726 	struct mptcp_subflow_context *subflow, *tmp;
2727 	struct mptcp_sock *msk = mptcp_sk(sk);
2728 
2729 	mptcp_set_state(sk, TCP_CLOSE);
2730 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2731 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2732 				  subflow, MPTCP_CF_FASTCLOSE);
2733 }
2734 
mptcp_worker(struct work_struct * work)2735 static void mptcp_worker(struct work_struct *work)
2736 {
2737 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2738 	struct sock *sk = (struct sock *)msk;
2739 	unsigned long fail_tout;
2740 	int state;
2741 
2742 	lock_sock(sk);
2743 	state = sk->sk_state;
2744 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2745 		goto unlock;
2746 
2747 	mptcp_check_fastclose(msk);
2748 
2749 	mptcp_pm_nl_work(msk);
2750 
2751 	mptcp_check_send_data_fin(sk);
2752 	mptcp_check_data_fin_ack(sk);
2753 	mptcp_check_data_fin(sk);
2754 
2755 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2756 		__mptcp_close_subflow(sk);
2757 
2758 	if (mptcp_close_tout_expired(sk)) {
2759 		mptcp_do_fastclose(sk);
2760 		mptcp_close_wake_up(sk);
2761 	}
2762 
2763 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2764 		__mptcp_destroy_sock(sk);
2765 		goto unlock;
2766 	}
2767 
2768 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2769 		__mptcp_retrans(sk);
2770 
2771 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2772 	if (fail_tout && time_after(jiffies, fail_tout))
2773 		mptcp_mp_fail_no_response(msk);
2774 
2775 unlock:
2776 	release_sock(sk);
2777 	sock_put(sk);
2778 }
2779 
__mptcp_init_sock(struct sock * sk)2780 static void __mptcp_init_sock(struct sock *sk)
2781 {
2782 	struct mptcp_sock *msk = mptcp_sk(sk);
2783 
2784 	INIT_LIST_HEAD(&msk->conn_list);
2785 	INIT_LIST_HEAD(&msk->join_list);
2786 	INIT_LIST_HEAD(&msk->rtx_queue);
2787 	INIT_WORK(&msk->work, mptcp_worker);
2788 	__skb_queue_head_init(&msk->receive_queue);
2789 	msk->out_of_order_queue = RB_ROOT;
2790 	msk->first_pending = NULL;
2791 	msk->rmem_fwd_alloc = 0;
2792 	WRITE_ONCE(msk->rmem_released, 0);
2793 	msk->timer_ival = TCP_RTO_MIN;
2794 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2795 
2796 	WRITE_ONCE(msk->first, NULL);
2797 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2798 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2799 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2800 	msk->recovery = false;
2801 	msk->subflow_id = 1;
2802 
2803 	mptcp_pm_data_init(msk);
2804 
2805 	/* re-use the csk retrans timer for MPTCP-level retrans */
2806 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2807 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2808 }
2809 
mptcp_ca_reset(struct sock * sk)2810 static void mptcp_ca_reset(struct sock *sk)
2811 {
2812 	struct inet_connection_sock *icsk = inet_csk(sk);
2813 
2814 	tcp_assign_congestion_control(sk);
2815 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2816 
2817 	/* no need to keep a reference to the ops, the name will suffice */
2818 	tcp_cleanup_congestion_control(sk);
2819 	icsk->icsk_ca_ops = NULL;
2820 }
2821 
mptcp_init_sock(struct sock * sk)2822 static int mptcp_init_sock(struct sock *sk)
2823 {
2824 	struct net *net = sock_net(sk);
2825 	int ret;
2826 
2827 	__mptcp_init_sock(sk);
2828 
2829 	if (!mptcp_is_enabled(net))
2830 		return -ENOPROTOOPT;
2831 
2832 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2833 		return -ENOMEM;
2834 
2835 	rcu_read_lock();
2836 	ret = mptcp_init_sched(mptcp_sk(sk),
2837 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2838 	rcu_read_unlock();
2839 	if (ret)
2840 		return ret;
2841 
2842 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2843 
2844 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2845 	 * propagate the correct value
2846 	 */
2847 	mptcp_ca_reset(sk);
2848 
2849 	sk_sockets_allocated_inc(sk);
2850 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2851 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2852 
2853 	return 0;
2854 }
2855 
__mptcp_clear_xmit(struct sock * sk)2856 static void __mptcp_clear_xmit(struct sock *sk)
2857 {
2858 	struct mptcp_sock *msk = mptcp_sk(sk);
2859 	struct mptcp_data_frag *dtmp, *dfrag;
2860 
2861 	WRITE_ONCE(msk->first_pending, NULL);
2862 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2863 		dfrag_clear(sk, dfrag);
2864 }
2865 
mptcp_cancel_work(struct sock * sk)2866 void mptcp_cancel_work(struct sock *sk)
2867 {
2868 	struct mptcp_sock *msk = mptcp_sk(sk);
2869 
2870 	if (cancel_work_sync(&msk->work))
2871 		__sock_put(sk);
2872 }
2873 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2874 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2875 {
2876 	lock_sock(ssk);
2877 
2878 	switch (ssk->sk_state) {
2879 	case TCP_LISTEN:
2880 		if (!(how & RCV_SHUTDOWN))
2881 			break;
2882 		fallthrough;
2883 	case TCP_SYN_SENT:
2884 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2885 		break;
2886 	default:
2887 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2888 			pr_debug("Fallback\n");
2889 			ssk->sk_shutdown |= how;
2890 			tcp_shutdown(ssk, how);
2891 
2892 			/* simulate the data_fin ack reception to let the state
2893 			 * machine move forward
2894 			 */
2895 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2896 			mptcp_schedule_work(sk);
2897 		} else {
2898 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2899 			tcp_send_ack(ssk);
2900 			if (!mptcp_rtx_timer_pending(sk))
2901 				mptcp_reset_rtx_timer(sk);
2902 		}
2903 		break;
2904 	}
2905 
2906 	release_sock(ssk);
2907 }
2908 
mptcp_set_state(struct sock * sk,int state)2909 void mptcp_set_state(struct sock *sk, int state)
2910 {
2911 	int oldstate = sk->sk_state;
2912 
2913 	switch (state) {
2914 	case TCP_ESTABLISHED:
2915 		if (oldstate != TCP_ESTABLISHED)
2916 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2917 		break;
2918 	case TCP_CLOSE_WAIT:
2919 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2920 		 * MPTCP "accepted" sockets will be created later on. So no
2921 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2922 		 */
2923 		break;
2924 	default:
2925 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2926 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2927 	}
2928 
2929 	inet_sk_state_store(sk, state);
2930 }
2931 
2932 static const unsigned char new_state[16] = {
2933 	/* current state:     new state:      action:	*/
2934 	[0 /* (Invalid) */] = TCP_CLOSE,
2935 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2936 	[TCP_SYN_SENT]      = TCP_CLOSE,
2937 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2938 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2939 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2940 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2941 	[TCP_CLOSE]         = TCP_CLOSE,
2942 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2943 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2944 	[TCP_LISTEN]        = TCP_CLOSE,
2945 	[TCP_CLOSING]       = TCP_CLOSING,
2946 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2947 };
2948 
mptcp_close_state(struct sock * sk)2949 static int mptcp_close_state(struct sock *sk)
2950 {
2951 	int next = (int)new_state[sk->sk_state];
2952 	int ns = next & TCP_STATE_MASK;
2953 
2954 	mptcp_set_state(sk, ns);
2955 
2956 	return next & TCP_ACTION_FIN;
2957 }
2958 
mptcp_check_send_data_fin(struct sock * sk)2959 static void mptcp_check_send_data_fin(struct sock *sk)
2960 {
2961 	struct mptcp_subflow_context *subflow;
2962 	struct mptcp_sock *msk = mptcp_sk(sk);
2963 
2964 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2965 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2966 		 msk->snd_nxt, msk->write_seq);
2967 
2968 	/* we still need to enqueue subflows or not really shutting down,
2969 	 * skip this
2970 	 */
2971 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2972 	    mptcp_send_head(sk))
2973 		return;
2974 
2975 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2976 
2977 	mptcp_for_each_subflow(msk, subflow) {
2978 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2979 
2980 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2981 	}
2982 }
2983 
__mptcp_wr_shutdown(struct sock * sk)2984 static void __mptcp_wr_shutdown(struct sock *sk)
2985 {
2986 	struct mptcp_sock *msk = mptcp_sk(sk);
2987 
2988 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2989 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2990 		 !!mptcp_send_head(sk));
2991 
2992 	/* will be ignored by fallback sockets */
2993 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2994 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2995 
2996 	mptcp_check_send_data_fin(sk);
2997 }
2998 
__mptcp_destroy_sock(struct sock * sk)2999 static void __mptcp_destroy_sock(struct sock *sk)
3000 {
3001 	struct mptcp_sock *msk = mptcp_sk(sk);
3002 
3003 	pr_debug("msk=%p\n", msk);
3004 
3005 	might_sleep();
3006 
3007 	mptcp_stop_rtx_timer(sk);
3008 	sk_stop_timer(sk, &sk->sk_timer);
3009 	msk->pm.status = 0;
3010 	mptcp_release_sched(msk);
3011 
3012 	sk->sk_prot->destroy(sk);
3013 
3014 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
3015 	WARN_ON_ONCE(msk->rmem_released);
3016 	sk_stream_kill_queues(sk);
3017 	xfrm_sk_free_policy(sk);
3018 
3019 	sock_put(sk);
3020 }
3021 
__mptcp_unaccepted_force_close(struct sock * sk)3022 void __mptcp_unaccepted_force_close(struct sock *sk)
3023 {
3024 	sock_set_flag(sk, SOCK_DEAD);
3025 	mptcp_do_fastclose(sk);
3026 	__mptcp_destroy_sock(sk);
3027 }
3028 
mptcp_check_readable(struct sock * sk)3029 static __poll_t mptcp_check_readable(struct sock *sk)
3030 {
3031 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3032 }
3033 
mptcp_check_listen_stop(struct sock * sk)3034 static void mptcp_check_listen_stop(struct sock *sk)
3035 {
3036 	struct sock *ssk;
3037 
3038 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3039 		return;
3040 
3041 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3042 	ssk = mptcp_sk(sk)->first;
3043 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3044 		return;
3045 
3046 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3047 	tcp_set_state(ssk, TCP_CLOSE);
3048 	mptcp_subflow_queue_clean(sk, ssk);
3049 	inet_csk_listen_stop(ssk);
3050 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3051 	release_sock(ssk);
3052 }
3053 
__mptcp_close(struct sock * sk,long timeout)3054 bool __mptcp_close(struct sock *sk, long timeout)
3055 {
3056 	struct mptcp_subflow_context *subflow;
3057 	struct mptcp_sock *msk = mptcp_sk(sk);
3058 	bool do_cancel_work = false;
3059 	int subflows_alive = 0;
3060 
3061 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3062 
3063 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3064 		mptcp_check_listen_stop(sk);
3065 		mptcp_set_state(sk, TCP_CLOSE);
3066 		goto cleanup;
3067 	}
3068 
3069 	if (mptcp_data_avail(msk) || timeout < 0) {
3070 		/* If the msk has read data, or the caller explicitly ask it,
3071 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3072 		 */
3073 		mptcp_do_fastclose(sk);
3074 		timeout = 0;
3075 	} else if (mptcp_close_state(sk)) {
3076 		__mptcp_wr_shutdown(sk);
3077 	}
3078 
3079 	sk_stream_wait_close(sk, timeout);
3080 
3081 cleanup:
3082 	/* orphan all the subflows */
3083 	mptcp_for_each_subflow(msk, subflow) {
3084 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3085 		bool slow = lock_sock_fast_nested(ssk);
3086 
3087 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3088 
3089 		/* since the close timeout takes precedence on the fail one,
3090 		 * cancel the latter
3091 		 */
3092 		if (ssk == msk->first)
3093 			subflow->fail_tout = 0;
3094 
3095 		/* detach from the parent socket, but allow data_ready to
3096 		 * push incoming data into the mptcp stack, to properly ack it
3097 		 */
3098 		ssk->sk_socket = NULL;
3099 		ssk->sk_wq = NULL;
3100 		unlock_sock_fast(ssk, slow);
3101 	}
3102 	sock_orphan(sk);
3103 
3104 	/* all the subflows are closed, only timeout can change the msk
3105 	 * state, let's not keep resources busy for no reasons
3106 	 */
3107 	if (subflows_alive == 0)
3108 		mptcp_set_state(sk, TCP_CLOSE);
3109 
3110 	sock_hold(sk);
3111 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3112 	if (msk->token)
3113 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3114 
3115 	if (sk->sk_state == TCP_CLOSE) {
3116 		__mptcp_destroy_sock(sk);
3117 		do_cancel_work = true;
3118 	} else {
3119 		mptcp_start_tout_timer(sk);
3120 	}
3121 
3122 	return do_cancel_work;
3123 }
3124 
mptcp_close(struct sock * sk,long timeout)3125 static void mptcp_close(struct sock *sk, long timeout)
3126 {
3127 	bool do_cancel_work;
3128 
3129 	lock_sock(sk);
3130 
3131 	do_cancel_work = __mptcp_close(sk, timeout);
3132 	release_sock(sk);
3133 	if (do_cancel_work)
3134 		mptcp_cancel_work(sk);
3135 
3136 	sock_put(sk);
3137 }
3138 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3139 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3140 {
3141 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3142 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3143 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3144 
3145 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3146 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3147 
3148 	if (msk6 && ssk6) {
3149 		msk6->saddr = ssk6->saddr;
3150 		msk6->flow_label = ssk6->flow_label;
3151 	}
3152 #endif
3153 
3154 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3155 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3156 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3157 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3158 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3159 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3160 }
3161 
mptcp_disconnect(struct sock * sk,int flags)3162 static int mptcp_disconnect(struct sock *sk, int flags)
3163 {
3164 	struct mptcp_sock *msk = mptcp_sk(sk);
3165 
3166 	/* We are on the fastopen error path. We can't call straight into the
3167 	 * subflows cleanup code due to lock nesting (we are already under
3168 	 * msk->firstsocket lock).
3169 	 */
3170 	if (msk->fastopening)
3171 		return -EBUSY;
3172 
3173 	mptcp_check_listen_stop(sk);
3174 	mptcp_set_state(sk, TCP_CLOSE);
3175 
3176 	mptcp_stop_rtx_timer(sk);
3177 	mptcp_stop_tout_timer(sk);
3178 
3179 	if (msk->token)
3180 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3181 
3182 	/* msk->subflow is still intact, the following will not free the first
3183 	 * subflow
3184 	 */
3185 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3186 	WRITE_ONCE(msk->flags, 0);
3187 	msk->cb_flags = 0;
3188 	msk->recovery = false;
3189 	msk->can_ack = false;
3190 	msk->fully_established = false;
3191 	msk->rcv_data_fin = false;
3192 	msk->snd_data_fin_enable = false;
3193 	msk->rcv_fastclose = false;
3194 	msk->use_64bit_ack = false;
3195 	msk->bytes_consumed = 0;
3196 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3197 	mptcp_pm_data_reset(msk);
3198 	mptcp_ca_reset(sk);
3199 	msk->bytes_acked = 0;
3200 	msk->bytes_received = 0;
3201 	msk->bytes_sent = 0;
3202 	msk->bytes_retrans = 0;
3203 	msk->rcvspace_init = 0;
3204 
3205 	WRITE_ONCE(sk->sk_shutdown, 0);
3206 	sk_error_report(sk);
3207 	return 0;
3208 }
3209 
3210 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3211 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3212 {
3213 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3214 
3215 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3216 }
3217 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3218 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3219 {
3220 	const struct ipv6_pinfo *np = inet6_sk(sk);
3221 	struct ipv6_txoptions *opt;
3222 	struct ipv6_pinfo *newnp;
3223 
3224 	newnp = inet6_sk(newsk);
3225 
3226 	rcu_read_lock();
3227 	opt = rcu_dereference(np->opt);
3228 	if (opt) {
3229 		opt = ipv6_dup_options(newsk, opt);
3230 		if (!opt)
3231 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3232 	}
3233 	RCU_INIT_POINTER(newnp->opt, opt);
3234 	rcu_read_unlock();
3235 }
3236 #endif
3237 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3238 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3239 {
3240 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3241 	const struct inet_sock *inet = inet_sk(sk);
3242 	struct inet_sock *newinet;
3243 
3244 	newinet = inet_sk(newsk);
3245 
3246 	rcu_read_lock();
3247 	inet_opt = rcu_dereference(inet->inet_opt);
3248 	if (inet_opt) {
3249 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3250 				      inet_opt->opt.optlen, GFP_ATOMIC);
3251 		if (newopt)
3252 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3253 			       inet_opt->opt.optlen);
3254 		else
3255 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3256 	}
3257 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3258 	rcu_read_unlock();
3259 }
3260 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3261 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3262 				 const struct mptcp_options_received *mp_opt,
3263 				 struct sock *ssk,
3264 				 struct request_sock *req)
3265 {
3266 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3267 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3268 	struct mptcp_subflow_context *subflow;
3269 	struct mptcp_sock *msk;
3270 
3271 	if (!nsk)
3272 		return NULL;
3273 
3274 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3275 	if (nsk->sk_family == AF_INET6)
3276 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3277 #endif
3278 
3279 	__mptcp_init_sock(nsk);
3280 
3281 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3282 	if (nsk->sk_family == AF_INET6)
3283 		mptcp_copy_ip6_options(nsk, sk);
3284 	else
3285 #endif
3286 		mptcp_copy_ip_options(nsk, sk);
3287 
3288 	msk = mptcp_sk(nsk);
3289 	msk->local_key = subflow_req->local_key;
3290 	msk->token = subflow_req->token;
3291 	msk->in_accept_queue = 1;
3292 	WRITE_ONCE(msk->fully_established, false);
3293 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3294 		WRITE_ONCE(msk->csum_enabled, true);
3295 
3296 	msk->write_seq = subflow_req->idsn + 1;
3297 	msk->snd_nxt = msk->write_seq;
3298 	msk->snd_una = msk->write_seq;
3299 	msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3300 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3301 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3302 
3303 	/* passive msk is created after the first/MPC subflow */
3304 	msk->subflow_id = 2;
3305 
3306 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3307 	security_inet_csk_clone(nsk, req);
3308 
3309 	/* this can't race with mptcp_close(), as the msk is
3310 	 * not yet exposted to user-space
3311 	 */
3312 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3313 
3314 	/* The msk maintain a ref to each subflow in the connections list */
3315 	WRITE_ONCE(msk->first, ssk);
3316 	subflow = mptcp_subflow_ctx(ssk);
3317 	list_add(&subflow->node, &msk->conn_list);
3318 	sock_hold(ssk);
3319 
3320 	/* new mpc subflow takes ownership of the newly
3321 	 * created mptcp socket
3322 	 */
3323 	mptcp_token_accept(subflow_req, msk);
3324 
3325 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3326 	 * uses the correct data
3327 	 */
3328 	mptcp_copy_inaddrs(nsk, ssk);
3329 	__mptcp_propagate_sndbuf(nsk, ssk);
3330 
3331 	mptcp_rcv_space_init(msk, ssk);
3332 
3333 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3334 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3335 	bh_unlock_sock(nsk);
3336 
3337 	/* note: the newly allocated socket refcount is 2 now */
3338 	return nsk;
3339 }
3340 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3341 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3342 {
3343 	const struct tcp_sock *tp = tcp_sk(ssk);
3344 
3345 	msk->rcvspace_init = 1;
3346 	msk->rcvq_space.copied = 0;
3347 	msk->rcvq_space.rtt_us = 0;
3348 
3349 	msk->rcvq_space.time = tp->tcp_mstamp;
3350 
3351 	/* initial rcv_space offering made to peer */
3352 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3353 				      TCP_INIT_CWND * tp->advmss);
3354 	if (msk->rcvq_space.space == 0)
3355 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3356 }
3357 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3358 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3359 {
3360 	struct mptcp_subflow_context *subflow, *tmp;
3361 	struct sock *sk = (struct sock *)msk;
3362 
3363 	__mptcp_clear_xmit(sk);
3364 
3365 	/* join list will be eventually flushed (with rst) at sock lock release time */
3366 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3367 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3368 
3369 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3370 	mptcp_data_lock(sk);
3371 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3372 	__skb_queue_purge(&sk->sk_receive_queue);
3373 	skb_rbtree_purge(&msk->out_of_order_queue);
3374 	mptcp_data_unlock(sk);
3375 
3376 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3377 	 * inet_sock_destruct() will dispose it
3378 	 */
3379 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3380 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3381 	mptcp_token_destroy(msk);
3382 	mptcp_pm_free_anno_list(msk);
3383 	mptcp_free_local_addr_list(msk);
3384 }
3385 
mptcp_destroy(struct sock * sk)3386 static void mptcp_destroy(struct sock *sk)
3387 {
3388 	struct mptcp_sock *msk = mptcp_sk(sk);
3389 
3390 	/* allow the following to close even the initial subflow */
3391 	msk->free_first = 1;
3392 	mptcp_destroy_common(msk, 0);
3393 	sk_sockets_allocated_dec(sk);
3394 }
3395 
__mptcp_data_acked(struct sock * sk)3396 void __mptcp_data_acked(struct sock *sk)
3397 {
3398 	if (!sock_owned_by_user(sk))
3399 		__mptcp_clean_una(sk);
3400 	else
3401 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3402 
3403 	if (mptcp_pending_data_fin_ack(sk))
3404 		mptcp_schedule_work(sk);
3405 }
3406 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3407 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3408 {
3409 	if (!mptcp_send_head(sk))
3410 		return;
3411 
3412 	if (!sock_owned_by_user(sk))
3413 		__mptcp_subflow_push_pending(sk, ssk, false);
3414 	else
3415 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3416 }
3417 
3418 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3419 				      BIT(MPTCP_RETRANSMIT) | \
3420 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3421 
3422 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3423 static void mptcp_release_cb(struct sock *sk)
3424 	__must_hold(&sk->sk_lock.slock)
3425 {
3426 	struct mptcp_sock *msk = mptcp_sk(sk);
3427 
3428 	for (;;) {
3429 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3430 		struct list_head join_list;
3431 
3432 		if (!flags)
3433 			break;
3434 
3435 		INIT_LIST_HEAD(&join_list);
3436 		list_splice_init(&msk->join_list, &join_list);
3437 
3438 		/* the following actions acquire the subflow socket lock
3439 		 *
3440 		 * 1) can't be invoked in atomic scope
3441 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3442 		 *    datapath acquires the msk socket spinlock while helding
3443 		 *    the subflow socket lock
3444 		 */
3445 		msk->cb_flags &= ~flags;
3446 		spin_unlock_bh(&sk->sk_lock.slock);
3447 
3448 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3449 			__mptcp_flush_join_list(sk, &join_list);
3450 		if (flags & BIT(MPTCP_PUSH_PENDING))
3451 			__mptcp_push_pending(sk, 0);
3452 		if (flags & BIT(MPTCP_RETRANSMIT))
3453 			__mptcp_retrans(sk);
3454 
3455 		cond_resched();
3456 		spin_lock_bh(&sk->sk_lock.slock);
3457 	}
3458 
3459 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3460 		__mptcp_clean_una_wakeup(sk);
3461 	if (unlikely(msk->cb_flags)) {
3462 		/* be sure to sync the msk state before taking actions
3463 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3464 		 * On sk release avoid actions depending on the first subflow
3465 		 */
3466 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3467 			__mptcp_sync_state(sk, msk->pending_state);
3468 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3469 			__mptcp_error_report(sk);
3470 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3471 			__mptcp_sync_sndbuf(sk);
3472 	}
3473 
3474 	__mptcp_update_rmem(sk);
3475 }
3476 
3477 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3478  * TCP can't schedule delack timer before the subflow is fully established.
3479  * MPTCP uses the delack timer to do 3rd ack retransmissions
3480  */
schedule_3rdack_retransmission(struct sock * ssk)3481 static void schedule_3rdack_retransmission(struct sock *ssk)
3482 {
3483 	struct inet_connection_sock *icsk = inet_csk(ssk);
3484 	struct tcp_sock *tp = tcp_sk(ssk);
3485 	unsigned long timeout;
3486 
3487 	if (mptcp_subflow_ctx(ssk)->fully_established)
3488 		return;
3489 
3490 	/* reschedule with a timeout above RTT, as we must look only for drop */
3491 	if (tp->srtt_us)
3492 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3493 	else
3494 		timeout = TCP_TIMEOUT_INIT;
3495 	timeout += jiffies;
3496 
3497 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3498 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3499 	icsk->icsk_ack.timeout = timeout;
3500 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3501 }
3502 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3503 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3504 {
3505 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3506 	struct sock *sk = subflow->conn;
3507 
3508 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3509 		mptcp_data_lock(sk);
3510 		if (!sock_owned_by_user(sk))
3511 			__mptcp_subflow_push_pending(sk, ssk, true);
3512 		else
3513 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3514 		mptcp_data_unlock(sk);
3515 	}
3516 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3517 		mptcp_data_lock(sk);
3518 		if (!sock_owned_by_user(sk))
3519 			__mptcp_sync_sndbuf(sk);
3520 		else
3521 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3522 		mptcp_data_unlock(sk);
3523 	}
3524 	if (status & BIT(MPTCP_DELEGATE_ACK))
3525 		schedule_3rdack_retransmission(ssk);
3526 }
3527 
mptcp_hash(struct sock * sk)3528 static int mptcp_hash(struct sock *sk)
3529 {
3530 	/* should never be called,
3531 	 * we hash the TCP subflows not the master socket
3532 	 */
3533 	WARN_ON_ONCE(1);
3534 	return 0;
3535 }
3536 
mptcp_unhash(struct sock * sk)3537 static void mptcp_unhash(struct sock *sk)
3538 {
3539 	/* called from sk_common_release(), but nothing to do here */
3540 }
3541 
mptcp_get_port(struct sock * sk,unsigned short snum)3542 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3543 {
3544 	struct mptcp_sock *msk = mptcp_sk(sk);
3545 
3546 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3547 	if (WARN_ON_ONCE(!msk->first))
3548 		return -EINVAL;
3549 
3550 	return inet_csk_get_port(msk->first, snum);
3551 }
3552 
mptcp_finish_connect(struct sock * ssk)3553 void mptcp_finish_connect(struct sock *ssk)
3554 {
3555 	struct mptcp_subflow_context *subflow;
3556 	struct mptcp_sock *msk;
3557 	struct sock *sk;
3558 
3559 	subflow = mptcp_subflow_ctx(ssk);
3560 	sk = subflow->conn;
3561 	msk = mptcp_sk(sk);
3562 
3563 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3564 
3565 	subflow->map_seq = subflow->iasn;
3566 	subflow->map_subflow_seq = 1;
3567 
3568 	/* the socket is not connected yet, no msk/subflow ops can access/race
3569 	 * accessing the field below
3570 	 */
3571 	WRITE_ONCE(msk->local_key, subflow->local_key);
3572 
3573 	mptcp_pm_new_connection(msk, ssk, 0);
3574 }
3575 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3576 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3577 {
3578 	write_lock_bh(&sk->sk_callback_lock);
3579 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3580 	sk_set_socket(sk, parent);
3581 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3582 	write_unlock_bh(&sk->sk_callback_lock);
3583 }
3584 
mptcp_finish_join(struct sock * ssk)3585 bool mptcp_finish_join(struct sock *ssk)
3586 {
3587 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3588 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3589 	struct sock *parent = (void *)msk;
3590 	bool ret = true;
3591 
3592 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3593 
3594 	/* mptcp socket already closing? */
3595 	if (!mptcp_is_fully_established(parent)) {
3596 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3597 		return false;
3598 	}
3599 
3600 	/* active subflow, already present inside the conn_list */
3601 	if (!list_empty(&subflow->node)) {
3602 		mptcp_subflow_joined(msk, ssk);
3603 		mptcp_propagate_sndbuf(parent, ssk);
3604 		return true;
3605 	}
3606 
3607 	if (!mptcp_pm_allow_new_subflow(msk))
3608 		goto err_prohibited;
3609 
3610 	/* If we can't acquire msk socket lock here, let the release callback
3611 	 * handle it
3612 	 */
3613 	mptcp_data_lock(parent);
3614 	if (!sock_owned_by_user(parent)) {
3615 		ret = __mptcp_finish_join(msk, ssk);
3616 		if (ret) {
3617 			sock_hold(ssk);
3618 			list_add_tail(&subflow->node, &msk->conn_list);
3619 		}
3620 	} else {
3621 		sock_hold(ssk);
3622 		list_add_tail(&subflow->node, &msk->join_list);
3623 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3624 	}
3625 	mptcp_data_unlock(parent);
3626 
3627 	if (!ret) {
3628 err_prohibited:
3629 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3630 		return false;
3631 	}
3632 
3633 	return true;
3634 }
3635 
mptcp_shutdown(struct sock * sk,int how)3636 static void mptcp_shutdown(struct sock *sk, int how)
3637 {
3638 	pr_debug("sk=%p, how=%d\n", sk, how);
3639 
3640 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3641 		__mptcp_wr_shutdown(sk);
3642 }
3643 
mptcp_forward_alloc_get(const struct sock * sk)3644 static int mptcp_forward_alloc_get(const struct sock *sk)
3645 {
3646 	return READ_ONCE(sk->sk_forward_alloc) +
3647 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3648 }
3649 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3650 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3651 {
3652 	const struct sock *sk = (void *)msk;
3653 	u64 delta;
3654 
3655 	if (sk->sk_state == TCP_LISTEN)
3656 		return -EINVAL;
3657 
3658 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3659 		return 0;
3660 
3661 	delta = msk->write_seq - v;
3662 	if (__mptcp_check_fallback(msk) && msk->first) {
3663 		struct tcp_sock *tp = tcp_sk(msk->first);
3664 
3665 		/* the first subflow is disconnected after close - see
3666 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3667 		 * so ignore that status, too.
3668 		 */
3669 		if (!((1 << msk->first->sk_state) &
3670 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3671 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3672 	}
3673 	if (delta > INT_MAX)
3674 		delta = INT_MAX;
3675 
3676 	return (int)delta;
3677 }
3678 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3679 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3680 {
3681 	struct mptcp_sock *msk = mptcp_sk(sk);
3682 	bool slow;
3683 
3684 	switch (cmd) {
3685 	case SIOCINQ:
3686 		if (sk->sk_state == TCP_LISTEN)
3687 			return -EINVAL;
3688 
3689 		lock_sock(sk);
3690 		__mptcp_move_skbs(msk);
3691 		*karg = mptcp_inq_hint(sk);
3692 		release_sock(sk);
3693 		break;
3694 	case SIOCOUTQ:
3695 		slow = lock_sock_fast(sk);
3696 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3697 		unlock_sock_fast(sk, slow);
3698 		break;
3699 	case SIOCOUTQNSD:
3700 		slow = lock_sock_fast(sk);
3701 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3702 		unlock_sock_fast(sk, slow);
3703 		break;
3704 	default:
3705 		return -ENOIOCTLCMD;
3706 	}
3707 
3708 	return 0;
3709 }
3710 
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3711 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3712 					 struct mptcp_subflow_context *subflow)
3713 {
3714 	subflow->request_mptcp = 0;
3715 	__mptcp_do_fallback(msk);
3716 }
3717 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3718 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3719 {
3720 	struct mptcp_subflow_context *subflow;
3721 	struct mptcp_sock *msk = mptcp_sk(sk);
3722 	int err = -EINVAL;
3723 	struct sock *ssk;
3724 
3725 	ssk = __mptcp_nmpc_sk(msk);
3726 	if (IS_ERR(ssk))
3727 		return PTR_ERR(ssk);
3728 
3729 	mptcp_set_state(sk, TCP_SYN_SENT);
3730 	subflow = mptcp_subflow_ctx(ssk);
3731 #ifdef CONFIG_TCP_MD5SIG
3732 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3733 	 * TCP option space.
3734 	 */
3735 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3736 		mptcp_subflow_early_fallback(msk, subflow);
3737 #endif
3738 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3739 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3740 		mptcp_subflow_early_fallback(msk, subflow);
3741 	}
3742 
3743 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3744 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3745 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3746 	if (likely(!__mptcp_check_fallback(msk)))
3747 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3748 
3749 	/* if reaching here via the fastopen/sendmsg path, the caller already
3750 	 * acquired the subflow socket lock, too.
3751 	 */
3752 	if (!msk->fastopening)
3753 		lock_sock(ssk);
3754 
3755 	/* the following mirrors closely a very small chunk of code from
3756 	 * __inet_stream_connect()
3757 	 */
3758 	if (ssk->sk_state != TCP_CLOSE)
3759 		goto out;
3760 
3761 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3762 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3763 		if (err)
3764 			goto out;
3765 	}
3766 
3767 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3768 	if (err < 0)
3769 		goto out;
3770 
3771 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3772 
3773 out:
3774 	if (!msk->fastopening)
3775 		release_sock(ssk);
3776 
3777 	/* on successful connect, the msk state will be moved to established by
3778 	 * subflow_finish_connect()
3779 	 */
3780 	if (unlikely(err)) {
3781 		/* avoid leaving a dangling token in an unconnected socket */
3782 		mptcp_token_destroy(msk);
3783 		mptcp_set_state(sk, TCP_CLOSE);
3784 		return err;
3785 	}
3786 
3787 	mptcp_copy_inaddrs(sk, ssk);
3788 	return 0;
3789 }
3790 
3791 static struct proto mptcp_prot = {
3792 	.name		= "MPTCP",
3793 	.owner		= THIS_MODULE,
3794 	.init		= mptcp_init_sock,
3795 	.connect	= mptcp_connect,
3796 	.disconnect	= mptcp_disconnect,
3797 	.close		= mptcp_close,
3798 	.setsockopt	= mptcp_setsockopt,
3799 	.getsockopt	= mptcp_getsockopt,
3800 	.shutdown	= mptcp_shutdown,
3801 	.destroy	= mptcp_destroy,
3802 	.sendmsg	= mptcp_sendmsg,
3803 	.ioctl		= mptcp_ioctl,
3804 	.recvmsg	= mptcp_recvmsg,
3805 	.release_cb	= mptcp_release_cb,
3806 	.hash		= mptcp_hash,
3807 	.unhash		= mptcp_unhash,
3808 	.get_port	= mptcp_get_port,
3809 	.forward_alloc_get	= mptcp_forward_alloc_get,
3810 	.sockets_allocated	= &mptcp_sockets_allocated,
3811 
3812 	.memory_allocated	= &tcp_memory_allocated,
3813 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3814 
3815 	.memory_pressure	= &tcp_memory_pressure,
3816 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3817 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3818 	.sysctl_mem	= sysctl_tcp_mem,
3819 	.obj_size	= sizeof(struct mptcp_sock),
3820 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3821 	.no_autobind	= true,
3822 };
3823 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3824 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3825 {
3826 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3827 	struct sock *ssk, *sk = sock->sk;
3828 	int err = -EINVAL;
3829 
3830 	lock_sock(sk);
3831 	ssk = __mptcp_nmpc_sk(msk);
3832 	if (IS_ERR(ssk)) {
3833 		err = PTR_ERR(ssk);
3834 		goto unlock;
3835 	}
3836 
3837 	if (sk->sk_family == AF_INET)
3838 		err = inet_bind_sk(ssk, uaddr, addr_len);
3839 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3840 	else if (sk->sk_family == AF_INET6)
3841 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3842 #endif
3843 	if (!err)
3844 		mptcp_copy_inaddrs(sk, ssk);
3845 
3846 unlock:
3847 	release_sock(sk);
3848 	return err;
3849 }
3850 
mptcp_listen(struct socket * sock,int backlog)3851 static int mptcp_listen(struct socket *sock, int backlog)
3852 {
3853 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3854 	struct sock *sk = sock->sk;
3855 	struct sock *ssk;
3856 	int err;
3857 
3858 	pr_debug("msk=%p\n", msk);
3859 
3860 	lock_sock(sk);
3861 
3862 	err = -EINVAL;
3863 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3864 		goto unlock;
3865 
3866 	ssk = __mptcp_nmpc_sk(msk);
3867 	if (IS_ERR(ssk)) {
3868 		err = PTR_ERR(ssk);
3869 		goto unlock;
3870 	}
3871 
3872 	mptcp_set_state(sk, TCP_LISTEN);
3873 	sock_set_flag(sk, SOCK_RCU_FREE);
3874 
3875 	lock_sock(ssk);
3876 	err = __inet_listen_sk(ssk, backlog);
3877 	release_sock(ssk);
3878 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3879 
3880 	if (!err) {
3881 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3882 		mptcp_copy_inaddrs(sk, ssk);
3883 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3884 	}
3885 
3886 unlock:
3887 	release_sock(sk);
3888 	return err;
3889 }
3890 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3891 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3892 			       int flags, bool kern)
3893 {
3894 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3895 	struct sock *ssk, *newsk;
3896 	int err;
3897 
3898 	pr_debug("msk=%p\n", msk);
3899 
3900 	/* Buggy applications can call accept on socket states other then LISTEN
3901 	 * but no need to allocate the first subflow just to error out.
3902 	 */
3903 	ssk = READ_ONCE(msk->first);
3904 	if (!ssk)
3905 		return -EINVAL;
3906 
3907 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3908 	newsk = inet_csk_accept(ssk, flags, &err, kern);
3909 	if (!newsk)
3910 		return err;
3911 
3912 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3913 	if (sk_is_mptcp(newsk)) {
3914 		struct mptcp_subflow_context *subflow;
3915 		struct sock *new_mptcp_sock;
3916 
3917 		subflow = mptcp_subflow_ctx(newsk);
3918 		new_mptcp_sock = subflow->conn;
3919 
3920 		/* is_mptcp should be false if subflow->conn is missing, see
3921 		 * subflow_syn_recv_sock()
3922 		 */
3923 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3924 			tcp_sk(newsk)->is_mptcp = 0;
3925 			goto tcpfallback;
3926 		}
3927 
3928 		newsk = new_mptcp_sock;
3929 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3930 
3931 		newsk->sk_kern_sock = kern;
3932 		lock_sock(newsk);
3933 		__inet_accept(sock, newsock, newsk);
3934 
3935 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3936 		msk = mptcp_sk(newsk);
3937 		msk->in_accept_queue = 0;
3938 
3939 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3940 		 * This is needed so NOSPACE flag can be set from tcp stack.
3941 		 */
3942 		mptcp_for_each_subflow(msk, subflow) {
3943 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3944 
3945 			if (!ssk->sk_socket)
3946 				mptcp_sock_graft(ssk, newsock);
3947 		}
3948 
3949 		/* Do late cleanup for the first subflow as necessary. Also
3950 		 * deal with bad peers not doing a complete shutdown.
3951 		 */
3952 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3953 			__mptcp_close_ssk(newsk, msk->first,
3954 					  mptcp_subflow_ctx(msk->first), 0);
3955 			if (unlikely(list_is_singular(&msk->conn_list)))
3956 				mptcp_set_state(newsk, TCP_CLOSE);
3957 		}
3958 	} else {
3959 tcpfallback:
3960 		newsk->sk_kern_sock = kern;
3961 		lock_sock(newsk);
3962 		__inet_accept(sock, newsock, newsk);
3963 		/* we are being invoked after accepting a non-mp-capable
3964 		 * flow: sk is a tcp_sk, not an mptcp one.
3965 		 *
3966 		 * Hand the socket over to tcp so all further socket ops
3967 		 * bypass mptcp.
3968 		 */
3969 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3970 			   mptcp_fallback_tcp_ops(newsock->sk));
3971 	}
3972 	release_sock(newsk);
3973 
3974 	return 0;
3975 }
3976 
mptcp_check_writeable(struct mptcp_sock * msk)3977 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3978 {
3979 	struct sock *sk = (struct sock *)msk;
3980 
3981 	if (sk_stream_is_writeable(sk))
3982 		return EPOLLOUT | EPOLLWRNORM;
3983 
3984 	mptcp_set_nospace(sk);
3985 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3986 	if (sk_stream_is_writeable(sk))
3987 		return EPOLLOUT | EPOLLWRNORM;
3988 
3989 	return 0;
3990 }
3991 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3992 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3993 			   struct poll_table_struct *wait)
3994 {
3995 	struct sock *sk = sock->sk;
3996 	struct mptcp_sock *msk;
3997 	__poll_t mask = 0;
3998 	u8 shutdown;
3999 	int state;
4000 
4001 	msk = mptcp_sk(sk);
4002 	sock_poll_wait(file, sock, wait);
4003 
4004 	state = inet_sk_state_load(sk);
4005 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4006 	if (state == TCP_LISTEN) {
4007 		struct sock *ssk = READ_ONCE(msk->first);
4008 
4009 		if (WARN_ON_ONCE(!ssk))
4010 			return 0;
4011 
4012 		return inet_csk_listen_poll(ssk);
4013 	}
4014 
4015 	shutdown = READ_ONCE(sk->sk_shutdown);
4016 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4017 		mask |= EPOLLHUP;
4018 	if (shutdown & RCV_SHUTDOWN)
4019 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4020 
4021 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4022 		mask |= mptcp_check_readable(sk);
4023 		if (shutdown & SEND_SHUTDOWN)
4024 			mask |= EPOLLOUT | EPOLLWRNORM;
4025 		else
4026 			mask |= mptcp_check_writeable(msk);
4027 	} else if (state == TCP_SYN_SENT &&
4028 		   inet_test_bit(DEFER_CONNECT, sk)) {
4029 		/* cf tcp_poll() note about TFO */
4030 		mask |= EPOLLOUT | EPOLLWRNORM;
4031 	}
4032 
4033 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4034 	smp_rmb();
4035 	if (READ_ONCE(sk->sk_err))
4036 		mask |= EPOLLERR;
4037 
4038 	return mask;
4039 }
4040 
4041 static const struct proto_ops mptcp_stream_ops = {
4042 	.family		   = PF_INET,
4043 	.owner		   = THIS_MODULE,
4044 	.release	   = inet_release,
4045 	.bind		   = mptcp_bind,
4046 	.connect	   = inet_stream_connect,
4047 	.socketpair	   = sock_no_socketpair,
4048 	.accept		   = mptcp_stream_accept,
4049 	.getname	   = inet_getname,
4050 	.poll		   = mptcp_poll,
4051 	.ioctl		   = inet_ioctl,
4052 	.gettstamp	   = sock_gettstamp,
4053 	.listen		   = mptcp_listen,
4054 	.shutdown	   = inet_shutdown,
4055 	.setsockopt	   = sock_common_setsockopt,
4056 	.getsockopt	   = sock_common_getsockopt,
4057 	.sendmsg	   = inet_sendmsg,
4058 	.recvmsg	   = inet_recvmsg,
4059 	.mmap		   = sock_no_mmap,
4060 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4061 };
4062 
4063 static struct inet_protosw mptcp_protosw = {
4064 	.type		= SOCK_STREAM,
4065 	.protocol	= IPPROTO_MPTCP,
4066 	.prot		= &mptcp_prot,
4067 	.ops		= &mptcp_stream_ops,
4068 	.flags		= INET_PROTOSW_ICSK,
4069 };
4070 
mptcp_napi_poll(struct napi_struct * napi,int budget)4071 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4072 {
4073 	struct mptcp_delegated_action *delegated;
4074 	struct mptcp_subflow_context *subflow;
4075 	int work_done = 0;
4076 
4077 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4078 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4079 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4080 
4081 		bh_lock_sock_nested(ssk);
4082 		if (!sock_owned_by_user(ssk)) {
4083 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4084 		} else {
4085 			/* tcp_release_cb_override already processed
4086 			 * the action or will do at next release_sock().
4087 			 * In both case must dequeue the subflow here - on the same
4088 			 * CPU that scheduled it.
4089 			 */
4090 			smp_wmb();
4091 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4092 		}
4093 		bh_unlock_sock(ssk);
4094 		sock_put(ssk);
4095 
4096 		if (++work_done == budget)
4097 			return budget;
4098 	}
4099 
4100 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4101 	 * will not try accessing the NULL napi->dev ptr
4102 	 */
4103 	napi_complete_done(napi, 0);
4104 	return work_done;
4105 }
4106 
mptcp_proto_init(void)4107 void __init mptcp_proto_init(void)
4108 {
4109 	struct mptcp_delegated_action *delegated;
4110 	int cpu;
4111 
4112 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4113 
4114 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4115 		panic("Failed to allocate MPTCP pcpu counter\n");
4116 
4117 	init_dummy_netdev(&mptcp_napi_dev);
4118 	for_each_possible_cpu(cpu) {
4119 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4120 		INIT_LIST_HEAD(&delegated->head);
4121 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4122 				  mptcp_napi_poll);
4123 		napi_enable(&delegated->napi);
4124 	}
4125 
4126 	mptcp_subflow_init();
4127 	mptcp_pm_init();
4128 	mptcp_sched_init();
4129 	mptcp_token_init();
4130 
4131 	if (proto_register(&mptcp_prot, 1) != 0)
4132 		panic("Failed to register MPTCP proto.\n");
4133 
4134 	inet_register_protosw(&mptcp_protosw);
4135 
4136 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4137 }
4138 
4139 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4140 static const struct proto_ops mptcp_v6_stream_ops = {
4141 	.family		   = PF_INET6,
4142 	.owner		   = THIS_MODULE,
4143 	.release	   = inet6_release,
4144 	.bind		   = mptcp_bind,
4145 	.connect	   = inet_stream_connect,
4146 	.socketpair	   = sock_no_socketpair,
4147 	.accept		   = mptcp_stream_accept,
4148 	.getname	   = inet6_getname,
4149 	.poll		   = mptcp_poll,
4150 	.ioctl		   = inet6_ioctl,
4151 	.gettstamp	   = sock_gettstamp,
4152 	.listen		   = mptcp_listen,
4153 	.shutdown	   = inet_shutdown,
4154 	.setsockopt	   = sock_common_setsockopt,
4155 	.getsockopt	   = sock_common_getsockopt,
4156 	.sendmsg	   = inet6_sendmsg,
4157 	.recvmsg	   = inet6_recvmsg,
4158 	.mmap		   = sock_no_mmap,
4159 #ifdef CONFIG_COMPAT
4160 	.compat_ioctl	   = inet6_compat_ioctl,
4161 #endif
4162 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4163 };
4164 
4165 static struct proto mptcp_v6_prot;
4166 
4167 static struct inet_protosw mptcp_v6_protosw = {
4168 	.type		= SOCK_STREAM,
4169 	.protocol	= IPPROTO_MPTCP,
4170 	.prot		= &mptcp_v6_prot,
4171 	.ops		= &mptcp_v6_stream_ops,
4172 	.flags		= INET_PROTOSW_ICSK,
4173 };
4174 
mptcp_proto_v6_init(void)4175 int __init mptcp_proto_v6_init(void)
4176 {
4177 	int err;
4178 
4179 	mptcp_v6_prot = mptcp_prot;
4180 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4181 	mptcp_v6_prot.slab = NULL;
4182 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4183 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4184 
4185 	err = proto_register(&mptcp_v6_prot, 1);
4186 	if (err)
4187 		return err;
4188 
4189 	err = inet6_register_protosw(&mptcp_v6_protosw);
4190 	if (err)
4191 		proto_unregister(&mptcp_v6_prot);
4192 
4193 	return err;
4194 }
4195 #endif
4196