1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41
42 #include <asm/tlb.h>
43 #include <asm/pgalloc.h>
44 #include "internal.h"
45 #include "swap.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
49
50 /*
51 * By default, transparent hugepage support is disabled in order to avoid
52 * risking an increased memory footprint for applications that are not
53 * guaranteed to benefit from it. When transparent hugepage support is
54 * enabled, it is for all mappings, and khugepaged scans all mappings.
55 * Defrag is invoked by khugepaged hugepage allocations and by page faults
56 * for all hugepage allocations.
57 */
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #endif
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 #endif
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68
69 static struct shrinker deferred_split_shrinker;
70
71 static atomic_t huge_zero_refcount;
72 struct page *huge_zero_page __read_mostly;
73 unsigned long huge_zero_pfn __read_mostly = ~0UL;
74
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags,bool smaps,bool in_pf,bool enforce_sysfs)75 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
76 bool smaps, bool in_pf, bool enforce_sysfs)
77 {
78 if (!vma->vm_mm) /* vdso */
79 return false;
80
81 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
82 return false;
83
84 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
85 if (vma_is_dax(vma))
86 return in_pf;
87
88 /*
89 * Special VMA and hugetlb VMA.
90 * Must be checked after dax since some dax mappings may have
91 * VM_MIXEDMAP set.
92 */
93 if (vm_flags & VM_NO_KHUGEPAGED)
94 return false;
95
96 /*
97 * Check alignment for file vma and size for both file and anon vma.
98 *
99 * Skip the check for page fault. Huge fault does the check in fault
100 * handlers. And this check is not suitable for huge PUD fault.
101 */
102 if (!in_pf &&
103 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
104 return false;
105
106 /*
107 * Enabled via shmem mount options or sysfs settings.
108 * Must be done before hugepage flags check since shmem has its
109 * own flags.
110 */
111 if (!in_pf && shmem_file(vma->vm_file))
112 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
113 !enforce_sysfs, vma->vm_mm, vm_flags);
114
115 /* Enforce sysfs THP requirements as necessary */
116 if (enforce_sysfs &&
117 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
118 !hugepage_flags_always())))
119 return false;
120
121 /* Only regular file is valid */
122 if (!in_pf && file_thp_enabled(vma))
123 return true;
124
125 if (!vma_is_anonymous(vma))
126 return false;
127
128 if (vma_is_temporary_stack(vma))
129 return false;
130
131 /*
132 * THPeligible bit of smaps should show 1 for proper VMAs even
133 * though anon_vma is not initialized yet.
134 *
135 * Allow page fault since anon_vma may be not initialized until
136 * the first page fault.
137 */
138 if (!vma->anon_vma)
139 return (smaps || in_pf);
140
141 return true;
142 }
143
get_huge_zero_page(void)144 static bool get_huge_zero_page(void)
145 {
146 struct page *zero_page;
147 retry:
148 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
149 return true;
150
151 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
152 HPAGE_PMD_ORDER);
153 if (!zero_page) {
154 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
155 return false;
156 }
157 preempt_disable();
158 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
159 preempt_enable();
160 __free_pages(zero_page, compound_order(zero_page));
161 goto retry;
162 }
163 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
164
165 /* We take additional reference here. It will be put back by shrinker */
166 atomic_set(&huge_zero_refcount, 2);
167 preempt_enable();
168 count_vm_event(THP_ZERO_PAGE_ALLOC);
169 return true;
170 }
171
put_huge_zero_page(void)172 static void put_huge_zero_page(void)
173 {
174 /*
175 * Counter should never go to zero here. Only shrinker can put
176 * last reference.
177 */
178 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
179 }
180
mm_get_huge_zero_page(struct mm_struct * mm)181 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
182 {
183 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
184 return READ_ONCE(huge_zero_page);
185
186 if (!get_huge_zero_page())
187 return NULL;
188
189 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
190 put_huge_zero_page();
191
192 return READ_ONCE(huge_zero_page);
193 }
194
mm_put_huge_zero_page(struct mm_struct * mm)195 void mm_put_huge_zero_page(struct mm_struct *mm)
196 {
197 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
198 put_huge_zero_page();
199 }
200
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)201 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
202 struct shrink_control *sc)
203 {
204 /* we can free zero page only if last reference remains */
205 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
206 }
207
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)208 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
209 struct shrink_control *sc)
210 {
211 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
212 struct page *zero_page = xchg(&huge_zero_page, NULL);
213 BUG_ON(zero_page == NULL);
214 WRITE_ONCE(huge_zero_pfn, ~0UL);
215 __free_pages(zero_page, compound_order(zero_page));
216 return HPAGE_PMD_NR;
217 }
218
219 return 0;
220 }
221
222 static struct shrinker huge_zero_page_shrinker = {
223 .count_objects = shrink_huge_zero_page_count,
224 .scan_objects = shrink_huge_zero_page_scan,
225 .seeks = DEFAULT_SEEKS,
226 };
227
228 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)229 static ssize_t enabled_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
231 {
232 const char *output;
233
234 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
235 output = "[always] madvise never";
236 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
237 &transparent_hugepage_flags))
238 output = "always [madvise] never";
239 else
240 output = "always madvise [never]";
241
242 return sysfs_emit(buf, "%s\n", output);
243 }
244
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)245 static ssize_t enabled_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
248 {
249 ssize_t ret = count;
250
251 if (sysfs_streq(buf, "always")) {
252 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
253 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
254 } else if (sysfs_streq(buf, "madvise")) {
255 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
256 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 } else if (sysfs_streq(buf, "never")) {
258 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 } else
261 ret = -EINVAL;
262
263 if (ret > 0) {
264 int err = start_stop_khugepaged();
265 if (err)
266 ret = err;
267 }
268 return ret;
269 }
270
271 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
272
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)273 ssize_t single_hugepage_flag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf,
275 enum transparent_hugepage_flag flag)
276 {
277 return sysfs_emit(buf, "%d\n",
278 !!test_bit(flag, &transparent_hugepage_flags));
279 }
280
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)281 ssize_t single_hugepage_flag_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count,
284 enum transparent_hugepage_flag flag)
285 {
286 unsigned long value;
287 int ret;
288
289 ret = kstrtoul(buf, 10, &value);
290 if (ret < 0)
291 return ret;
292 if (value > 1)
293 return -EINVAL;
294
295 if (value)
296 set_bit(flag, &transparent_hugepage_flags);
297 else
298 clear_bit(flag, &transparent_hugepage_flags);
299
300 return count;
301 }
302
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)303 static ssize_t defrag_show(struct kobject *kobj,
304 struct kobj_attribute *attr, char *buf)
305 {
306 const char *output;
307
308 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
309 &transparent_hugepage_flags))
310 output = "[always] defer defer+madvise madvise never";
311 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
312 &transparent_hugepage_flags))
313 output = "always [defer] defer+madvise madvise never";
314 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
315 &transparent_hugepage_flags))
316 output = "always defer [defer+madvise] madvise never";
317 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
318 &transparent_hugepage_flags))
319 output = "always defer defer+madvise [madvise] never";
320 else
321 output = "always defer defer+madvise madvise [never]";
322
323 return sysfs_emit(buf, "%s\n", output);
324 }
325
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)326 static ssize_t defrag_store(struct kobject *kobj,
327 struct kobj_attribute *attr,
328 const char *buf, size_t count)
329 {
330 if (sysfs_streq(buf, "always")) {
331 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
332 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
333 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
334 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
335 } else if (sysfs_streq(buf, "defer+madvise")) {
336 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
337 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
338 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
339 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
340 } else if (sysfs_streq(buf, "defer")) {
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
345 } else if (sysfs_streq(buf, "madvise")) {
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
350 } else if (sysfs_streq(buf, "never")) {
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
354 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
355 } else
356 return -EINVAL;
357
358 return count;
359 }
360 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
361
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)362 static ssize_t use_zero_page_show(struct kobject *kobj,
363 struct kobj_attribute *attr, char *buf)
364 {
365 return single_hugepage_flag_show(kobj, attr, buf,
366 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
367 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)368 static ssize_t use_zero_page_store(struct kobject *kobj,
369 struct kobj_attribute *attr, const char *buf, size_t count)
370 {
371 return single_hugepage_flag_store(kobj, attr, buf, count,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 }
374 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
375
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)376 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
377 struct kobj_attribute *attr, char *buf)
378 {
379 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
380 }
381 static struct kobj_attribute hpage_pmd_size_attr =
382 __ATTR_RO(hpage_pmd_size);
383
384 static struct attribute *hugepage_attr[] = {
385 &enabled_attr.attr,
386 &defrag_attr.attr,
387 &use_zero_page_attr.attr,
388 &hpage_pmd_size_attr.attr,
389 #ifdef CONFIG_SHMEM
390 &shmem_enabled_attr.attr,
391 #endif
392 NULL,
393 };
394
395 static const struct attribute_group hugepage_attr_group = {
396 .attrs = hugepage_attr,
397 };
398
hugepage_init_sysfs(struct kobject ** hugepage_kobj)399 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
400 {
401 int err;
402
403 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
404 if (unlikely(!*hugepage_kobj)) {
405 pr_err("failed to create transparent hugepage kobject\n");
406 return -ENOMEM;
407 }
408
409 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
410 if (err) {
411 pr_err("failed to register transparent hugepage group\n");
412 goto delete_obj;
413 }
414
415 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
416 if (err) {
417 pr_err("failed to register transparent hugepage group\n");
418 goto remove_hp_group;
419 }
420
421 return 0;
422
423 remove_hp_group:
424 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
425 delete_obj:
426 kobject_put(*hugepage_kobj);
427 return err;
428 }
429
hugepage_exit_sysfs(struct kobject * hugepage_kobj)430 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
431 {
432 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
433 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
434 kobject_put(hugepage_kobj);
435 }
436 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)437 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
438 {
439 return 0;
440 }
441
hugepage_exit_sysfs(struct kobject * hugepage_kobj)442 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
443 {
444 }
445 #endif /* CONFIG_SYSFS */
446
hugepage_init(void)447 static int __init hugepage_init(void)
448 {
449 int err;
450 struct kobject *hugepage_kobj;
451
452 if (!has_transparent_hugepage()) {
453 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
454 return -EINVAL;
455 }
456
457 /*
458 * hugepages can't be allocated by the buddy allocator
459 */
460 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
461 /*
462 * we use page->mapping and page->index in second tail page
463 * as list_head: assuming THP order >= 2
464 */
465 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
466
467 err = hugepage_init_sysfs(&hugepage_kobj);
468 if (err)
469 goto err_sysfs;
470
471 err = khugepaged_init();
472 if (err)
473 goto err_slab;
474
475 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
476 if (err)
477 goto err_hzp_shrinker;
478 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
479 if (err)
480 goto err_split_shrinker;
481
482 /*
483 * By default disable transparent hugepages on smaller systems,
484 * where the extra memory used could hurt more than TLB overhead
485 * is likely to save. The admin can still enable it through /sys.
486 */
487 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
488 transparent_hugepage_flags = 0;
489 return 0;
490 }
491
492 err = start_stop_khugepaged();
493 if (err)
494 goto err_khugepaged;
495
496 return 0;
497 err_khugepaged:
498 unregister_shrinker(&deferred_split_shrinker);
499 err_split_shrinker:
500 unregister_shrinker(&huge_zero_page_shrinker);
501 err_hzp_shrinker:
502 khugepaged_destroy();
503 err_slab:
504 hugepage_exit_sysfs(hugepage_kobj);
505 err_sysfs:
506 return err;
507 }
508 subsys_initcall(hugepage_init);
509
setup_transparent_hugepage(char * str)510 static int __init setup_transparent_hugepage(char *str)
511 {
512 int ret = 0;
513 if (!str)
514 goto out;
515 if (!strcmp(str, "always")) {
516 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
517 &transparent_hugepage_flags);
518 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
519 &transparent_hugepage_flags);
520 ret = 1;
521 } else if (!strcmp(str, "madvise")) {
522 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
523 &transparent_hugepage_flags);
524 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
525 &transparent_hugepage_flags);
526 ret = 1;
527 } else if (!strcmp(str, "never")) {
528 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
529 &transparent_hugepage_flags);
530 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
531 &transparent_hugepage_flags);
532 ret = 1;
533 }
534 out:
535 if (!ret)
536 pr_warn("transparent_hugepage= cannot parse, ignored\n");
537 return ret;
538 }
539 __setup("transparent_hugepage=", setup_transparent_hugepage);
540
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)541 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
542 {
543 if (likely(vma->vm_flags & VM_WRITE))
544 pmd = pmd_mkwrite(pmd, vma);
545 return pmd;
546 }
547
548 #ifdef CONFIG_MEMCG
549 static inline
get_deferred_split_queue(struct folio * folio)550 struct deferred_split *get_deferred_split_queue(struct folio *folio)
551 {
552 struct mem_cgroup *memcg = folio_memcg(folio);
553 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
554
555 if (memcg)
556 return &memcg->deferred_split_queue;
557 else
558 return &pgdat->deferred_split_queue;
559 }
560 #else
561 static inline
get_deferred_split_queue(struct folio * folio)562 struct deferred_split *get_deferred_split_queue(struct folio *folio)
563 {
564 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
565
566 return &pgdat->deferred_split_queue;
567 }
568 #endif
569
folio_prep_large_rmappable(struct folio * folio)570 void folio_prep_large_rmappable(struct folio *folio)
571 {
572 if (!folio || !folio_test_large(folio))
573 return;
574 folio_set_large_rmappable(folio);
575 }
576
is_transparent_hugepage(struct folio * folio)577 static inline bool is_transparent_hugepage(struct folio *folio)
578 {
579 if (!folio_test_large(folio))
580 return false;
581
582 return is_huge_zero_page(&folio->page) ||
583 folio_test_large_rmappable(folio);
584 }
585
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)586 static unsigned long __thp_get_unmapped_area(struct file *filp,
587 unsigned long addr, unsigned long len,
588 loff_t off, unsigned long flags, unsigned long size)
589 {
590 loff_t off_end = off + len;
591 loff_t off_align = round_up(off, size);
592 unsigned long len_pad, ret;
593
594 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
595 return 0;
596
597 if (off_end <= off_align || (off_end - off_align) < size)
598 return 0;
599
600 len_pad = len + size;
601 if (len_pad < len || (off + len_pad) < off)
602 return 0;
603
604 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
605 off >> PAGE_SHIFT, flags);
606
607 /*
608 * The failure might be due to length padding. The caller will retry
609 * without the padding.
610 */
611 if (IS_ERR_VALUE(ret))
612 return 0;
613
614 /*
615 * Do not try to align to THP boundary if allocation at the address
616 * hint succeeds.
617 */
618 if (ret == addr)
619 return addr;
620
621 ret += (off - ret) & (size - 1);
622 return ret;
623 }
624
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)625 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
626 unsigned long len, unsigned long pgoff, unsigned long flags)
627 {
628 unsigned long ret;
629 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
630
631 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
632 if (ret)
633 return ret;
634
635 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
636 }
637 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
638
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)639 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
640 struct page *page, gfp_t gfp)
641 {
642 struct vm_area_struct *vma = vmf->vma;
643 struct folio *folio = page_folio(page);
644 pgtable_t pgtable;
645 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
646 vm_fault_t ret = 0;
647
648 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
649
650 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
651 folio_put(folio);
652 count_vm_event(THP_FAULT_FALLBACK);
653 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
654 return VM_FAULT_FALLBACK;
655 }
656 folio_throttle_swaprate(folio, gfp);
657
658 pgtable = pte_alloc_one(vma->vm_mm);
659 if (unlikely(!pgtable)) {
660 ret = VM_FAULT_OOM;
661 goto release;
662 }
663
664 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
665 /*
666 * The memory barrier inside __folio_mark_uptodate makes sure that
667 * clear_huge_page writes become visible before the set_pmd_at()
668 * write.
669 */
670 __folio_mark_uptodate(folio);
671
672 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
673 if (unlikely(!pmd_none(*vmf->pmd))) {
674 goto unlock_release;
675 } else {
676 pmd_t entry;
677
678 ret = check_stable_address_space(vma->vm_mm);
679 if (ret)
680 goto unlock_release;
681
682 /* Deliver the page fault to userland */
683 if (userfaultfd_missing(vma)) {
684 spin_unlock(vmf->ptl);
685 folio_put(folio);
686 pte_free(vma->vm_mm, pgtable);
687 ret = handle_userfault(vmf, VM_UFFD_MISSING);
688 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
689 return ret;
690 }
691
692 entry = mk_huge_pmd(page, vma->vm_page_prot);
693 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
694 folio_add_new_anon_rmap(folio, vma, haddr);
695 folio_add_lru_vma(folio, vma);
696 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
697 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
698 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
699 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
700 mm_inc_nr_ptes(vma->vm_mm);
701 spin_unlock(vmf->ptl);
702 count_vm_event(THP_FAULT_ALLOC);
703 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
704 }
705
706 return 0;
707 unlock_release:
708 spin_unlock(vmf->ptl);
709 release:
710 if (pgtable)
711 pte_free(vma->vm_mm, pgtable);
712 folio_put(folio);
713 return ret;
714
715 }
716
717 /*
718 * always: directly stall for all thp allocations
719 * defer: wake kswapd and fail if not immediately available
720 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
721 * fail if not immediately available
722 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
723 * available
724 * never: never stall for any thp allocation
725 */
vma_thp_gfp_mask(struct vm_area_struct * vma)726 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
727 {
728 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
729
730 /* Always do synchronous compaction */
731 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
732 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
733
734 /* Kick kcompactd and fail quickly */
735 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
736 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
737
738 /* Synchronous compaction if madvised, otherwise kick kcompactd */
739 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
740 return GFP_TRANSHUGE_LIGHT |
741 (vma_madvised ? __GFP_DIRECT_RECLAIM :
742 __GFP_KSWAPD_RECLAIM);
743
744 /* Only do synchronous compaction if madvised */
745 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
746 return GFP_TRANSHUGE_LIGHT |
747 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
748
749 return GFP_TRANSHUGE_LIGHT;
750 }
751
752 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)753 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
754 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
755 struct page *zero_page)
756 {
757 pmd_t entry;
758 if (!pmd_none(*pmd))
759 return;
760 entry = mk_pmd(zero_page, vma->vm_page_prot);
761 entry = pmd_mkhuge(entry);
762 pgtable_trans_huge_deposit(mm, pmd, pgtable);
763 set_pmd_at(mm, haddr, pmd, entry);
764 mm_inc_nr_ptes(mm);
765 }
766
do_huge_pmd_anonymous_page(struct vm_fault * vmf)767 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
768 {
769 struct vm_area_struct *vma = vmf->vma;
770 gfp_t gfp;
771 struct folio *folio;
772 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
773
774 if (!transhuge_vma_suitable(vma, haddr))
775 return VM_FAULT_FALLBACK;
776 if (unlikely(anon_vma_prepare(vma)))
777 return VM_FAULT_OOM;
778 khugepaged_enter_vma(vma, vma->vm_flags);
779
780 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
781 !mm_forbids_zeropage(vma->vm_mm) &&
782 transparent_hugepage_use_zero_page()) {
783 pgtable_t pgtable;
784 struct page *zero_page;
785 vm_fault_t ret;
786 pgtable = pte_alloc_one(vma->vm_mm);
787 if (unlikely(!pgtable))
788 return VM_FAULT_OOM;
789 zero_page = mm_get_huge_zero_page(vma->vm_mm);
790 if (unlikely(!zero_page)) {
791 pte_free(vma->vm_mm, pgtable);
792 count_vm_event(THP_FAULT_FALLBACK);
793 return VM_FAULT_FALLBACK;
794 }
795 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
796 ret = 0;
797 if (pmd_none(*vmf->pmd)) {
798 ret = check_stable_address_space(vma->vm_mm);
799 if (ret) {
800 spin_unlock(vmf->ptl);
801 pte_free(vma->vm_mm, pgtable);
802 } else if (userfaultfd_missing(vma)) {
803 spin_unlock(vmf->ptl);
804 pte_free(vma->vm_mm, pgtable);
805 ret = handle_userfault(vmf, VM_UFFD_MISSING);
806 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
807 } else {
808 set_huge_zero_page(pgtable, vma->vm_mm, vma,
809 haddr, vmf->pmd, zero_page);
810 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
811 spin_unlock(vmf->ptl);
812 }
813 } else {
814 spin_unlock(vmf->ptl);
815 pte_free(vma->vm_mm, pgtable);
816 }
817 return ret;
818 }
819 gfp = vma_thp_gfp_mask(vma);
820 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
821 if (unlikely(!folio)) {
822 count_vm_event(THP_FAULT_FALLBACK);
823 return VM_FAULT_FALLBACK;
824 }
825 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
826 }
827
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)828 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
829 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
830 pgtable_t pgtable)
831 {
832 struct mm_struct *mm = vma->vm_mm;
833 pmd_t entry;
834 spinlock_t *ptl;
835
836 ptl = pmd_lock(mm, pmd);
837 if (!pmd_none(*pmd)) {
838 if (write) {
839 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
840 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
841 goto out_unlock;
842 }
843 entry = pmd_mkyoung(*pmd);
844 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
845 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
846 update_mmu_cache_pmd(vma, addr, pmd);
847 }
848
849 goto out_unlock;
850 }
851
852 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
853 if (pfn_t_devmap(pfn))
854 entry = pmd_mkdevmap(entry);
855 if (write) {
856 entry = pmd_mkyoung(pmd_mkdirty(entry));
857 entry = maybe_pmd_mkwrite(entry, vma);
858 }
859
860 if (pgtable) {
861 pgtable_trans_huge_deposit(mm, pmd, pgtable);
862 mm_inc_nr_ptes(mm);
863 pgtable = NULL;
864 }
865
866 set_pmd_at(mm, addr, pmd, entry);
867 update_mmu_cache_pmd(vma, addr, pmd);
868
869 out_unlock:
870 spin_unlock(ptl);
871 if (pgtable)
872 pte_free(mm, pgtable);
873 }
874
875 /**
876 * vmf_insert_pfn_pmd - insert a pmd size pfn
877 * @vmf: Structure describing the fault
878 * @pfn: pfn to insert
879 * @write: whether it's a write fault
880 *
881 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
882 *
883 * Return: vm_fault_t value.
884 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)885 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
886 {
887 unsigned long addr = vmf->address & PMD_MASK;
888 struct vm_area_struct *vma = vmf->vma;
889 pgprot_t pgprot = vma->vm_page_prot;
890 pgtable_t pgtable = NULL;
891
892 /*
893 * If we had pmd_special, we could avoid all these restrictions,
894 * but we need to be consistent with PTEs and architectures that
895 * can't support a 'special' bit.
896 */
897 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
898 !pfn_t_devmap(pfn));
899 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
900 (VM_PFNMAP|VM_MIXEDMAP));
901 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
902
903 if (addr < vma->vm_start || addr >= vma->vm_end)
904 return VM_FAULT_SIGBUS;
905
906 if (arch_needs_pgtable_deposit()) {
907 pgtable = pte_alloc_one(vma->vm_mm);
908 if (!pgtable)
909 return VM_FAULT_OOM;
910 }
911
912 track_pfn_insert(vma, &pgprot, pfn);
913
914 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
915 return VM_FAULT_NOPAGE;
916 }
917 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
918
919 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)920 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
921 {
922 if (likely(vma->vm_flags & VM_WRITE))
923 pud = pud_mkwrite(pud);
924 return pud;
925 }
926
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)927 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
928 pud_t *pud, pfn_t pfn, bool write)
929 {
930 struct mm_struct *mm = vma->vm_mm;
931 pgprot_t prot = vma->vm_page_prot;
932 pud_t entry;
933 spinlock_t *ptl;
934
935 ptl = pud_lock(mm, pud);
936 if (!pud_none(*pud)) {
937 if (write) {
938 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
939 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
940 goto out_unlock;
941 }
942 entry = pud_mkyoung(*pud);
943 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
944 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
945 update_mmu_cache_pud(vma, addr, pud);
946 }
947 goto out_unlock;
948 }
949
950 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
951 if (pfn_t_devmap(pfn))
952 entry = pud_mkdevmap(entry);
953 if (write) {
954 entry = pud_mkyoung(pud_mkdirty(entry));
955 entry = maybe_pud_mkwrite(entry, vma);
956 }
957 set_pud_at(mm, addr, pud, entry);
958 update_mmu_cache_pud(vma, addr, pud);
959
960 out_unlock:
961 spin_unlock(ptl);
962 }
963
964 /**
965 * vmf_insert_pfn_pud - insert a pud size pfn
966 * @vmf: Structure describing the fault
967 * @pfn: pfn to insert
968 * @write: whether it's a write fault
969 *
970 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
971 *
972 * Return: vm_fault_t value.
973 */
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)974 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
975 {
976 unsigned long addr = vmf->address & PUD_MASK;
977 struct vm_area_struct *vma = vmf->vma;
978 pgprot_t pgprot = vma->vm_page_prot;
979
980 /*
981 * If we had pud_special, we could avoid all these restrictions,
982 * but we need to be consistent with PTEs and architectures that
983 * can't support a 'special' bit.
984 */
985 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
986 !pfn_t_devmap(pfn));
987 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
988 (VM_PFNMAP|VM_MIXEDMAP));
989 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
990
991 if (addr < vma->vm_start || addr >= vma->vm_end)
992 return VM_FAULT_SIGBUS;
993
994 track_pfn_insert(vma, &pgprot, pfn);
995
996 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
997 return VM_FAULT_NOPAGE;
998 }
999 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1000 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1001
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1002 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1003 pmd_t *pmd, bool write)
1004 {
1005 pmd_t _pmd;
1006
1007 _pmd = pmd_mkyoung(*pmd);
1008 if (write)
1009 _pmd = pmd_mkdirty(_pmd);
1010 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1011 pmd, _pmd, write))
1012 update_mmu_cache_pmd(vma, addr, pmd);
1013 }
1014
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1015 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1016 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1017 {
1018 unsigned long pfn = pmd_pfn(*pmd);
1019 struct mm_struct *mm = vma->vm_mm;
1020 struct page *page;
1021 int ret;
1022
1023 assert_spin_locked(pmd_lockptr(mm, pmd));
1024
1025 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1026 return NULL;
1027
1028 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1029 /* pass */;
1030 else
1031 return NULL;
1032
1033 if (flags & FOLL_TOUCH)
1034 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1035
1036 /*
1037 * device mapped pages can only be returned if the
1038 * caller will manage the page reference count.
1039 */
1040 if (!(flags & (FOLL_GET | FOLL_PIN)))
1041 return ERR_PTR(-EEXIST);
1042
1043 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1044 *pgmap = get_dev_pagemap(pfn, *pgmap);
1045 if (!*pgmap)
1046 return ERR_PTR(-EFAULT);
1047 page = pfn_to_page(pfn);
1048 ret = try_grab_folio(page_folio(page), 1, flags);
1049 if (ret)
1050 page = ERR_PTR(ret);
1051
1052 return page;
1053 }
1054
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1055 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1057 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1058 {
1059 spinlock_t *dst_ptl, *src_ptl;
1060 struct page *src_page;
1061 pmd_t pmd;
1062 pgtable_t pgtable = NULL;
1063 int ret = -ENOMEM;
1064
1065 /* Skip if can be re-fill on fault */
1066 if (!vma_is_anonymous(dst_vma))
1067 return 0;
1068
1069 pgtable = pte_alloc_one(dst_mm);
1070 if (unlikely(!pgtable))
1071 goto out;
1072
1073 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1074 src_ptl = pmd_lockptr(src_mm, src_pmd);
1075 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1076
1077 ret = -EAGAIN;
1078 pmd = *src_pmd;
1079
1080 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1081 if (unlikely(is_swap_pmd(pmd))) {
1082 swp_entry_t entry = pmd_to_swp_entry(pmd);
1083
1084 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1085 if (!is_readable_migration_entry(entry)) {
1086 entry = make_readable_migration_entry(
1087 swp_offset(entry));
1088 pmd = swp_entry_to_pmd(entry);
1089 if (pmd_swp_soft_dirty(*src_pmd))
1090 pmd = pmd_swp_mksoft_dirty(pmd);
1091 if (pmd_swp_uffd_wp(*src_pmd))
1092 pmd = pmd_swp_mkuffd_wp(pmd);
1093 set_pmd_at(src_mm, addr, src_pmd, pmd);
1094 }
1095 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1096 mm_inc_nr_ptes(dst_mm);
1097 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1098 if (!userfaultfd_wp(dst_vma))
1099 pmd = pmd_swp_clear_uffd_wp(pmd);
1100 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1101 ret = 0;
1102 goto out_unlock;
1103 }
1104 #endif
1105
1106 if (unlikely(!pmd_trans_huge(pmd))) {
1107 pte_free(dst_mm, pgtable);
1108 goto out_unlock;
1109 }
1110 /*
1111 * When page table lock is held, the huge zero pmd should not be
1112 * under splitting since we don't split the page itself, only pmd to
1113 * a page table.
1114 */
1115 if (is_huge_zero_pmd(pmd)) {
1116 /*
1117 * get_huge_zero_page() will never allocate a new page here,
1118 * since we already have a zero page to copy. It just takes a
1119 * reference.
1120 */
1121 mm_get_huge_zero_page(dst_mm);
1122 goto out_zero_page;
1123 }
1124
1125 src_page = pmd_page(pmd);
1126 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1127
1128 get_page(src_page);
1129 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1130 /* Page maybe pinned: split and retry the fault on PTEs. */
1131 put_page(src_page);
1132 pte_free(dst_mm, pgtable);
1133 spin_unlock(src_ptl);
1134 spin_unlock(dst_ptl);
1135 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1136 return -EAGAIN;
1137 }
1138 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1139 out_zero_page:
1140 mm_inc_nr_ptes(dst_mm);
1141 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1142 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1143 if (!userfaultfd_wp(dst_vma))
1144 pmd = pmd_clear_uffd_wp(pmd);
1145 pmd = pmd_mkold(pmd_wrprotect(pmd));
1146 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1147
1148 ret = 0;
1149 out_unlock:
1150 spin_unlock(src_ptl);
1151 spin_unlock(dst_ptl);
1152 out:
1153 return ret;
1154 }
1155
1156 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1157 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1158 pud_t *pud, bool write)
1159 {
1160 pud_t _pud;
1161
1162 _pud = pud_mkyoung(*pud);
1163 if (write)
1164 _pud = pud_mkdirty(_pud);
1165 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1166 pud, _pud, write))
1167 update_mmu_cache_pud(vma, addr, pud);
1168 }
1169
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1170 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1171 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1172 {
1173 unsigned long pfn = pud_pfn(*pud);
1174 struct mm_struct *mm = vma->vm_mm;
1175 struct page *page;
1176 int ret;
1177
1178 assert_spin_locked(pud_lockptr(mm, pud));
1179
1180 if (flags & FOLL_WRITE && !pud_write(*pud))
1181 return NULL;
1182
1183 if (pud_present(*pud) && pud_devmap(*pud))
1184 /* pass */;
1185 else
1186 return NULL;
1187
1188 if (flags & FOLL_TOUCH)
1189 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1190
1191 /*
1192 * device mapped pages can only be returned if the
1193 * caller will manage the page reference count.
1194 *
1195 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1196 */
1197 if (!(flags & (FOLL_GET | FOLL_PIN)))
1198 return ERR_PTR(-EEXIST);
1199
1200 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1201 *pgmap = get_dev_pagemap(pfn, *pgmap);
1202 if (!*pgmap)
1203 return ERR_PTR(-EFAULT);
1204 page = pfn_to_page(pfn);
1205
1206 ret = try_grab_folio(page_folio(page), 1, flags);
1207 if (ret)
1208 page = ERR_PTR(ret);
1209
1210 return page;
1211 }
1212
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1213 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1214 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1215 struct vm_area_struct *vma)
1216 {
1217 spinlock_t *dst_ptl, *src_ptl;
1218 pud_t pud;
1219 int ret;
1220
1221 dst_ptl = pud_lock(dst_mm, dst_pud);
1222 src_ptl = pud_lockptr(src_mm, src_pud);
1223 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1224
1225 ret = -EAGAIN;
1226 pud = *src_pud;
1227 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1228 goto out_unlock;
1229
1230 /*
1231 * When page table lock is held, the huge zero pud should not be
1232 * under splitting since we don't split the page itself, only pud to
1233 * a page table.
1234 */
1235 if (is_huge_zero_pud(pud)) {
1236 /* No huge zero pud yet */
1237 }
1238
1239 /*
1240 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1241 * and split if duplicating fails.
1242 */
1243 pudp_set_wrprotect(src_mm, addr, src_pud);
1244 pud = pud_mkold(pud_wrprotect(pud));
1245 set_pud_at(dst_mm, addr, dst_pud, pud);
1246
1247 ret = 0;
1248 out_unlock:
1249 spin_unlock(src_ptl);
1250 spin_unlock(dst_ptl);
1251 return ret;
1252 }
1253
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1254 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1255 {
1256 bool write = vmf->flags & FAULT_FLAG_WRITE;
1257
1258 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1259 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1260 goto unlock;
1261
1262 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1263 unlock:
1264 spin_unlock(vmf->ptl);
1265 }
1266 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1267
huge_pmd_set_accessed(struct vm_fault * vmf)1268 void huge_pmd_set_accessed(struct vm_fault *vmf)
1269 {
1270 bool write = vmf->flags & FAULT_FLAG_WRITE;
1271
1272 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1273 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1274 goto unlock;
1275
1276 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1277
1278 unlock:
1279 spin_unlock(vmf->ptl);
1280 }
1281
do_huge_pmd_wp_page(struct vm_fault * vmf)1282 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1283 {
1284 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1285 struct vm_area_struct *vma = vmf->vma;
1286 struct folio *folio;
1287 struct page *page;
1288 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1289 pmd_t orig_pmd = vmf->orig_pmd;
1290
1291 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1292 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1293
1294 if (is_huge_zero_pmd(orig_pmd))
1295 goto fallback;
1296
1297 spin_lock(vmf->ptl);
1298
1299 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1300 spin_unlock(vmf->ptl);
1301 return 0;
1302 }
1303
1304 page = pmd_page(orig_pmd);
1305 folio = page_folio(page);
1306 VM_BUG_ON_PAGE(!PageHead(page), page);
1307
1308 /* Early check when only holding the PT lock. */
1309 if (PageAnonExclusive(page))
1310 goto reuse;
1311
1312 if (!folio_trylock(folio)) {
1313 folio_get(folio);
1314 spin_unlock(vmf->ptl);
1315 folio_lock(folio);
1316 spin_lock(vmf->ptl);
1317 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1318 spin_unlock(vmf->ptl);
1319 folio_unlock(folio);
1320 folio_put(folio);
1321 return 0;
1322 }
1323 folio_put(folio);
1324 }
1325
1326 /* Recheck after temporarily dropping the PT lock. */
1327 if (PageAnonExclusive(page)) {
1328 folio_unlock(folio);
1329 goto reuse;
1330 }
1331
1332 /*
1333 * See do_wp_page(): we can only reuse the folio exclusively if
1334 * there are no additional references. Note that we always drain
1335 * the LRU cache immediately after adding a THP.
1336 */
1337 if (folio_ref_count(folio) >
1338 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1339 goto unlock_fallback;
1340 if (folio_test_swapcache(folio))
1341 folio_free_swap(folio);
1342 if (folio_ref_count(folio) == 1) {
1343 pmd_t entry;
1344
1345 page_move_anon_rmap(page, vma);
1346 folio_unlock(folio);
1347 reuse:
1348 if (unlikely(unshare)) {
1349 spin_unlock(vmf->ptl);
1350 return 0;
1351 }
1352 entry = pmd_mkyoung(orig_pmd);
1353 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1355 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1356 spin_unlock(vmf->ptl);
1357 return 0;
1358 }
1359
1360 unlock_fallback:
1361 folio_unlock(folio);
1362 spin_unlock(vmf->ptl);
1363 fallback:
1364 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1365 return VM_FAULT_FALLBACK;
1366 }
1367
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1368 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1369 unsigned long addr, pmd_t pmd)
1370 {
1371 struct page *page;
1372
1373 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1374 return false;
1375
1376 /* Don't touch entries that are not even readable (NUMA hinting). */
1377 if (pmd_protnone(pmd))
1378 return false;
1379
1380 /* Do we need write faults for softdirty tracking? */
1381 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1382 return false;
1383
1384 /* Do we need write faults for uffd-wp tracking? */
1385 if (userfaultfd_huge_pmd_wp(vma, pmd))
1386 return false;
1387
1388 if (!(vma->vm_flags & VM_SHARED)) {
1389 /* See can_change_pte_writable(). */
1390 page = vm_normal_page_pmd(vma, addr, pmd);
1391 return page && PageAnon(page) && PageAnonExclusive(page);
1392 }
1393
1394 /* See can_change_pte_writable(). */
1395 return pmd_dirty(pmd);
1396 }
1397
1398 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)1399 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1400 struct vm_area_struct *vma,
1401 unsigned int flags)
1402 {
1403 /* If the pmd is writable, we can write to the page. */
1404 if (pmd_write(pmd))
1405 return true;
1406
1407 /* Maybe FOLL_FORCE is set to override it? */
1408 if (!(flags & FOLL_FORCE))
1409 return false;
1410
1411 /* But FOLL_FORCE has no effect on shared mappings */
1412 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1413 return false;
1414
1415 /* ... or read-only private ones */
1416 if (!(vma->vm_flags & VM_MAYWRITE))
1417 return false;
1418
1419 /* ... or already writable ones that just need to take a write fault */
1420 if (vma->vm_flags & VM_WRITE)
1421 return false;
1422
1423 /*
1424 * See can_change_pte_writable(): we broke COW and could map the page
1425 * writable if we have an exclusive anonymous page ...
1426 */
1427 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1428 return false;
1429
1430 /* ... and a write-fault isn't required for other reasons. */
1431 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1432 return false;
1433 return !userfaultfd_huge_pmd_wp(vma, pmd);
1434 }
1435
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1436 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1437 unsigned long addr,
1438 pmd_t *pmd,
1439 unsigned int flags)
1440 {
1441 struct mm_struct *mm = vma->vm_mm;
1442 struct page *page;
1443 int ret;
1444
1445 assert_spin_locked(pmd_lockptr(mm, pmd));
1446
1447 page = pmd_page(*pmd);
1448 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1449
1450 if ((flags & FOLL_WRITE) &&
1451 !can_follow_write_pmd(*pmd, page, vma, flags))
1452 return NULL;
1453
1454 /* Avoid dumping huge zero page */
1455 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1456 return ERR_PTR(-EFAULT);
1457
1458 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1459 return NULL;
1460
1461 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1462 return ERR_PTR(-EMLINK);
1463
1464 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1465 !PageAnonExclusive(page), page);
1466
1467 ret = try_grab_folio(page_folio(page), 1, flags);
1468 if (ret)
1469 return ERR_PTR(ret);
1470
1471 if (flags & FOLL_TOUCH)
1472 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1473
1474 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1475 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1476
1477 return page;
1478 }
1479
1480 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1481 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1482 {
1483 struct vm_area_struct *vma = vmf->vma;
1484 pmd_t oldpmd = vmf->orig_pmd;
1485 pmd_t pmd;
1486 struct page *page;
1487 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1488 int page_nid = NUMA_NO_NODE;
1489 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1490 bool migrated = false, writable = false;
1491 int flags = 0;
1492
1493 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1494 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1495 spin_unlock(vmf->ptl);
1496 return 0;
1497 }
1498
1499 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1500
1501 /*
1502 * Detect now whether the PMD could be writable; this information
1503 * is only valid while holding the PT lock.
1504 */
1505 writable = pmd_write(pmd);
1506 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1507 can_change_pmd_writable(vma, vmf->address, pmd))
1508 writable = true;
1509
1510 page = vm_normal_page_pmd(vma, haddr, pmd);
1511 if (!page)
1512 goto out_map;
1513
1514 /* See similar comment in do_numa_page for explanation */
1515 if (!writable)
1516 flags |= TNF_NO_GROUP;
1517
1518 page_nid = page_to_nid(page);
1519 /*
1520 * For memory tiering mode, cpupid of slow memory page is used
1521 * to record page access time. So use default value.
1522 */
1523 if (node_is_toptier(page_nid))
1524 last_cpupid = page_cpupid_last(page);
1525 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1526 &flags);
1527
1528 if (target_nid == NUMA_NO_NODE) {
1529 put_page(page);
1530 goto out_map;
1531 }
1532
1533 spin_unlock(vmf->ptl);
1534 writable = false;
1535
1536 migrated = migrate_misplaced_page(page, vma, target_nid);
1537 if (migrated) {
1538 flags |= TNF_MIGRATED;
1539 page_nid = target_nid;
1540 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1541 return 0;
1542 }
1543
1544 flags |= TNF_MIGRATE_FAIL;
1545 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1546 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1547 spin_unlock(vmf->ptl);
1548 return 0;
1549 }
1550 out_map:
1551 /* Restore the PMD */
1552 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1553 pmd = pmd_mkyoung(pmd);
1554 if (writable)
1555 pmd = pmd_mkwrite(pmd, vma);
1556 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1557 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1558 spin_unlock(vmf->ptl);
1559
1560 if (page_nid != NUMA_NO_NODE)
1561 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1562 return 0;
1563 }
1564
1565 /*
1566 * Return true if we do MADV_FREE successfully on entire pmd page.
1567 * Otherwise, return false.
1568 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1569 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1570 pmd_t *pmd, unsigned long addr, unsigned long next)
1571 {
1572 spinlock_t *ptl;
1573 pmd_t orig_pmd;
1574 struct folio *folio;
1575 struct mm_struct *mm = tlb->mm;
1576 bool ret = false;
1577
1578 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1579
1580 ptl = pmd_trans_huge_lock(pmd, vma);
1581 if (!ptl)
1582 goto out_unlocked;
1583
1584 orig_pmd = *pmd;
1585 if (is_huge_zero_pmd(orig_pmd))
1586 goto out;
1587
1588 if (unlikely(!pmd_present(orig_pmd))) {
1589 VM_BUG_ON(thp_migration_supported() &&
1590 !is_pmd_migration_entry(orig_pmd));
1591 goto out;
1592 }
1593
1594 folio = pfn_folio(pmd_pfn(orig_pmd));
1595 /*
1596 * If other processes are mapping this folio, we couldn't discard
1597 * the folio unless they all do MADV_FREE so let's skip the folio.
1598 */
1599 if (folio_estimated_sharers(folio) != 1)
1600 goto out;
1601
1602 if (!folio_trylock(folio))
1603 goto out;
1604
1605 /*
1606 * If user want to discard part-pages of THP, split it so MADV_FREE
1607 * will deactivate only them.
1608 */
1609 if (next - addr != HPAGE_PMD_SIZE) {
1610 folio_get(folio);
1611 spin_unlock(ptl);
1612 split_folio(folio);
1613 folio_unlock(folio);
1614 folio_put(folio);
1615 goto out_unlocked;
1616 }
1617
1618 if (folio_test_dirty(folio))
1619 folio_clear_dirty(folio);
1620 folio_unlock(folio);
1621
1622 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1623 pmdp_invalidate(vma, addr, pmd);
1624 orig_pmd = pmd_mkold(orig_pmd);
1625 orig_pmd = pmd_mkclean(orig_pmd);
1626
1627 set_pmd_at(mm, addr, pmd, orig_pmd);
1628 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1629 }
1630
1631 folio_mark_lazyfree(folio);
1632 ret = true;
1633 out:
1634 spin_unlock(ptl);
1635 out_unlocked:
1636 return ret;
1637 }
1638
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1639 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1640 {
1641 pgtable_t pgtable;
1642
1643 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1644 pte_free(mm, pgtable);
1645 mm_dec_nr_ptes(mm);
1646 }
1647
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1648 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1649 pmd_t *pmd, unsigned long addr)
1650 {
1651 pmd_t orig_pmd;
1652 spinlock_t *ptl;
1653
1654 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1655
1656 ptl = __pmd_trans_huge_lock(pmd, vma);
1657 if (!ptl)
1658 return 0;
1659 /*
1660 * For architectures like ppc64 we look at deposited pgtable
1661 * when calling pmdp_huge_get_and_clear. So do the
1662 * pgtable_trans_huge_withdraw after finishing pmdp related
1663 * operations.
1664 */
1665 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1666 tlb->fullmm);
1667 arch_check_zapped_pmd(vma, orig_pmd);
1668 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1669 if (vma_is_special_huge(vma)) {
1670 if (arch_needs_pgtable_deposit())
1671 zap_deposited_table(tlb->mm, pmd);
1672 spin_unlock(ptl);
1673 } else if (is_huge_zero_pmd(orig_pmd)) {
1674 zap_deposited_table(tlb->mm, pmd);
1675 spin_unlock(ptl);
1676 } else {
1677 struct page *page = NULL;
1678 int flush_needed = 1;
1679
1680 if (pmd_present(orig_pmd)) {
1681 page = pmd_page(orig_pmd);
1682 page_remove_rmap(page, vma, true);
1683 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1684 VM_BUG_ON_PAGE(!PageHead(page), page);
1685 } else if (thp_migration_supported()) {
1686 swp_entry_t entry;
1687
1688 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1689 entry = pmd_to_swp_entry(orig_pmd);
1690 page = pfn_swap_entry_to_page(entry);
1691 flush_needed = 0;
1692 } else
1693 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1694
1695 if (PageAnon(page)) {
1696 zap_deposited_table(tlb->mm, pmd);
1697 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1698 } else {
1699 if (arch_needs_pgtable_deposit())
1700 zap_deposited_table(tlb->mm, pmd);
1701 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1702 }
1703
1704 spin_unlock(ptl);
1705 if (flush_needed)
1706 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1707 }
1708 return 1;
1709 }
1710
1711 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1712 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1713 spinlock_t *old_pmd_ptl,
1714 struct vm_area_struct *vma)
1715 {
1716 /*
1717 * With split pmd lock we also need to move preallocated
1718 * PTE page table if new_pmd is on different PMD page table.
1719 *
1720 * We also don't deposit and withdraw tables for file pages.
1721 */
1722 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1723 }
1724 #endif
1725
move_soft_dirty_pmd(pmd_t pmd)1726 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1727 {
1728 #ifdef CONFIG_MEM_SOFT_DIRTY
1729 if (unlikely(is_pmd_migration_entry(pmd)))
1730 pmd = pmd_swp_mksoft_dirty(pmd);
1731 else if (pmd_present(pmd))
1732 pmd = pmd_mksoft_dirty(pmd);
1733 #endif
1734 return pmd;
1735 }
1736
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1737 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1738 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1739 {
1740 spinlock_t *old_ptl, *new_ptl;
1741 pmd_t pmd;
1742 struct mm_struct *mm = vma->vm_mm;
1743 bool force_flush = false;
1744
1745 /*
1746 * The destination pmd shouldn't be established, free_pgtables()
1747 * should have released it; but move_page_tables() might have already
1748 * inserted a page table, if racing against shmem/file collapse.
1749 */
1750 if (!pmd_none(*new_pmd)) {
1751 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1752 return false;
1753 }
1754
1755 /*
1756 * We don't have to worry about the ordering of src and dst
1757 * ptlocks because exclusive mmap_lock prevents deadlock.
1758 */
1759 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1760 if (old_ptl) {
1761 new_ptl = pmd_lockptr(mm, new_pmd);
1762 if (new_ptl != old_ptl)
1763 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1764 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1765 if (pmd_present(pmd))
1766 force_flush = true;
1767 VM_BUG_ON(!pmd_none(*new_pmd));
1768
1769 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1770 pgtable_t pgtable;
1771 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1772 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1773 }
1774 pmd = move_soft_dirty_pmd(pmd);
1775 set_pmd_at(mm, new_addr, new_pmd, pmd);
1776 if (force_flush)
1777 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1778 if (new_ptl != old_ptl)
1779 spin_unlock(new_ptl);
1780 spin_unlock(old_ptl);
1781 return true;
1782 }
1783 return false;
1784 }
1785
1786 /*
1787 * Returns
1788 * - 0 if PMD could not be locked
1789 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1790 * or if prot_numa but THP migration is not supported
1791 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1792 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1793 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1794 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1795 unsigned long cp_flags)
1796 {
1797 struct mm_struct *mm = vma->vm_mm;
1798 spinlock_t *ptl;
1799 pmd_t oldpmd, entry;
1800 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1801 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1802 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1803 int ret = 1;
1804
1805 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1806
1807 if (prot_numa && !thp_migration_supported())
1808 return 1;
1809
1810 ptl = __pmd_trans_huge_lock(pmd, vma);
1811 if (!ptl)
1812 return 0;
1813
1814 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1815 if (is_swap_pmd(*pmd)) {
1816 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1817 struct page *page = pfn_swap_entry_to_page(entry);
1818 pmd_t newpmd;
1819
1820 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1821 if (is_writable_migration_entry(entry)) {
1822 /*
1823 * A protection check is difficult so
1824 * just be safe and disable write
1825 */
1826 if (PageAnon(page))
1827 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1828 else
1829 entry = make_readable_migration_entry(swp_offset(entry));
1830 newpmd = swp_entry_to_pmd(entry);
1831 if (pmd_swp_soft_dirty(*pmd))
1832 newpmd = pmd_swp_mksoft_dirty(newpmd);
1833 } else {
1834 newpmd = *pmd;
1835 }
1836
1837 if (uffd_wp)
1838 newpmd = pmd_swp_mkuffd_wp(newpmd);
1839 else if (uffd_wp_resolve)
1840 newpmd = pmd_swp_clear_uffd_wp(newpmd);
1841 if (!pmd_same(*pmd, newpmd))
1842 set_pmd_at(mm, addr, pmd, newpmd);
1843 goto unlock;
1844 }
1845 #endif
1846
1847 if (prot_numa) {
1848 struct page *page;
1849 bool toptier;
1850 /*
1851 * Avoid trapping faults against the zero page. The read-only
1852 * data is likely to be read-cached on the local CPU and
1853 * local/remote hits to the zero page are not interesting.
1854 */
1855 if (is_huge_zero_pmd(*pmd))
1856 goto unlock;
1857
1858 if (pmd_protnone(*pmd))
1859 goto unlock;
1860
1861 page = pmd_page(*pmd);
1862 toptier = node_is_toptier(page_to_nid(page));
1863 /*
1864 * Skip scanning top tier node if normal numa
1865 * balancing is disabled
1866 */
1867 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1868 toptier)
1869 goto unlock;
1870
1871 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1872 !toptier)
1873 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1874 }
1875 /*
1876 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1877 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1878 * which is also under mmap_read_lock(mm):
1879 *
1880 * CPU0: CPU1:
1881 * change_huge_pmd(prot_numa=1)
1882 * pmdp_huge_get_and_clear_notify()
1883 * madvise_dontneed()
1884 * zap_pmd_range()
1885 * pmd_trans_huge(*pmd) == 0 (without ptl)
1886 * // skip the pmd
1887 * set_pmd_at();
1888 * // pmd is re-established
1889 *
1890 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1891 * which may break userspace.
1892 *
1893 * pmdp_invalidate_ad() is required to make sure we don't miss
1894 * dirty/young flags set by hardware.
1895 */
1896 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1897
1898 entry = pmd_modify(oldpmd, newprot);
1899 if (uffd_wp)
1900 entry = pmd_mkuffd_wp(entry);
1901 else if (uffd_wp_resolve)
1902 /*
1903 * Leave the write bit to be handled by PF interrupt
1904 * handler, then things like COW could be properly
1905 * handled.
1906 */
1907 entry = pmd_clear_uffd_wp(entry);
1908
1909 /* See change_pte_range(). */
1910 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1911 can_change_pmd_writable(vma, addr, entry))
1912 entry = pmd_mkwrite(entry, vma);
1913
1914 ret = HPAGE_PMD_NR;
1915 set_pmd_at(mm, addr, pmd, entry);
1916
1917 if (huge_pmd_needs_flush(oldpmd, entry))
1918 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1919 unlock:
1920 spin_unlock(ptl);
1921 return ret;
1922 }
1923
1924 /*
1925 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1926 *
1927 * Note that if it returns page table lock pointer, this routine returns without
1928 * unlocking page table lock. So callers must unlock it.
1929 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1930 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1931 {
1932 spinlock_t *ptl;
1933 ptl = pmd_lock(vma->vm_mm, pmd);
1934 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1935 pmd_devmap(*pmd)))
1936 return ptl;
1937 spin_unlock(ptl);
1938 return NULL;
1939 }
1940
1941 /*
1942 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1943 *
1944 * Note that if it returns page table lock pointer, this routine returns without
1945 * unlocking page table lock. So callers must unlock it.
1946 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1947 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1948 {
1949 spinlock_t *ptl;
1950
1951 ptl = pud_lock(vma->vm_mm, pud);
1952 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1953 return ptl;
1954 spin_unlock(ptl);
1955 return NULL;
1956 }
1957
1958 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1959 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1960 pud_t *pud, unsigned long addr)
1961 {
1962 spinlock_t *ptl;
1963
1964 ptl = __pud_trans_huge_lock(pud, vma);
1965 if (!ptl)
1966 return 0;
1967
1968 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
1969 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1970 if (vma_is_special_huge(vma)) {
1971 spin_unlock(ptl);
1972 /* No zero page support yet */
1973 } else {
1974 /* No support for anonymous PUD pages yet */
1975 BUG();
1976 }
1977 return 1;
1978 }
1979
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1980 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1981 unsigned long haddr)
1982 {
1983 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1984 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1985 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1986 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1987
1988 count_vm_event(THP_SPLIT_PUD);
1989
1990 pudp_huge_clear_flush(vma, haddr, pud);
1991 }
1992
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1993 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1994 unsigned long address)
1995 {
1996 spinlock_t *ptl;
1997 struct mmu_notifier_range range;
1998
1999 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2000 address & HPAGE_PUD_MASK,
2001 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2002 mmu_notifier_invalidate_range_start(&range);
2003 ptl = pud_lock(vma->vm_mm, pud);
2004 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2005 goto out;
2006 __split_huge_pud_locked(vma, pud, range.start);
2007
2008 out:
2009 spin_unlock(ptl);
2010 mmu_notifier_invalidate_range_end(&range);
2011 }
2012 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2013
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2014 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2015 unsigned long haddr, pmd_t *pmd)
2016 {
2017 struct mm_struct *mm = vma->vm_mm;
2018 pgtable_t pgtable;
2019 pmd_t _pmd, old_pmd;
2020 unsigned long addr;
2021 pte_t *pte;
2022 int i;
2023
2024 /*
2025 * Leave pmd empty until pte is filled note that it is fine to delay
2026 * notification until mmu_notifier_invalidate_range_end() as we are
2027 * replacing a zero pmd write protected page with a zero pte write
2028 * protected page.
2029 *
2030 * See Documentation/mm/mmu_notifier.rst
2031 */
2032 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2033
2034 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2035 pmd_populate(mm, &_pmd, pgtable);
2036
2037 pte = pte_offset_map(&_pmd, haddr);
2038 VM_BUG_ON(!pte);
2039 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2040 pte_t entry;
2041
2042 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2043 entry = pte_mkspecial(entry);
2044 if (pmd_uffd_wp(old_pmd))
2045 entry = pte_mkuffd_wp(entry);
2046 VM_BUG_ON(!pte_none(ptep_get(pte)));
2047 set_pte_at(mm, addr, pte, entry);
2048 pte++;
2049 }
2050 pte_unmap(pte - 1);
2051 smp_wmb(); /* make pte visible before pmd */
2052 pmd_populate(mm, pmd, pgtable);
2053 }
2054
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2055 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2056 unsigned long haddr, bool freeze)
2057 {
2058 struct mm_struct *mm = vma->vm_mm;
2059 struct page *page;
2060 pgtable_t pgtable;
2061 pmd_t old_pmd, _pmd;
2062 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2063 bool anon_exclusive = false, dirty = false;
2064 unsigned long addr;
2065 pte_t *pte;
2066 int i;
2067
2068 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2069 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2070 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2071 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2072 && !pmd_devmap(*pmd));
2073
2074 count_vm_event(THP_SPLIT_PMD);
2075
2076 if (!vma_is_anonymous(vma)) {
2077 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2078 /*
2079 * We are going to unmap this huge page. So
2080 * just go ahead and zap it
2081 */
2082 if (arch_needs_pgtable_deposit())
2083 zap_deposited_table(mm, pmd);
2084 if (vma_is_special_huge(vma))
2085 return;
2086 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2087 swp_entry_t entry;
2088
2089 entry = pmd_to_swp_entry(old_pmd);
2090 page = pfn_swap_entry_to_page(entry);
2091 } else {
2092 page = pmd_page(old_pmd);
2093 if (!PageDirty(page) && pmd_dirty(old_pmd))
2094 set_page_dirty(page);
2095 if (!PageReferenced(page) && pmd_young(old_pmd))
2096 SetPageReferenced(page);
2097 page_remove_rmap(page, vma, true);
2098 put_page(page);
2099 }
2100 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2101 return;
2102 }
2103
2104 if (is_huge_zero_pmd(*pmd)) {
2105 /*
2106 * FIXME: Do we want to invalidate secondary mmu by calling
2107 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2108 * inside __split_huge_pmd() ?
2109 *
2110 * We are going from a zero huge page write protected to zero
2111 * small page also write protected so it does not seems useful
2112 * to invalidate secondary mmu at this time.
2113 */
2114 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2115 }
2116
2117 pmd_migration = is_pmd_migration_entry(*pmd);
2118 if (unlikely(pmd_migration)) {
2119 swp_entry_t entry;
2120
2121 old_pmd = *pmd;
2122 entry = pmd_to_swp_entry(old_pmd);
2123 page = pfn_swap_entry_to_page(entry);
2124 write = is_writable_migration_entry(entry);
2125 if (PageAnon(page))
2126 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2127 young = is_migration_entry_young(entry);
2128 dirty = is_migration_entry_dirty(entry);
2129 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2130 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2131 } else {
2132 /*
2133 * Up to this point the pmd is present and huge and userland has
2134 * the whole access to the hugepage during the split (which
2135 * happens in place). If we overwrite the pmd with the not-huge
2136 * version pointing to the pte here (which of course we could if
2137 * all CPUs were bug free), userland could trigger a small page
2138 * size TLB miss on the small sized TLB while the hugepage TLB
2139 * entry is still established in the huge TLB. Some CPU doesn't
2140 * like that. See
2141 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2142 * 383 on page 105. Intel should be safe but is also warns that
2143 * it's only safe if the permission and cache attributes of the
2144 * two entries loaded in the two TLB is identical (which should
2145 * be the case here). But it is generally safer to never allow
2146 * small and huge TLB entries for the same virtual address to be
2147 * loaded simultaneously. So instead of doing "pmd_populate();
2148 * flush_pmd_tlb_range();" we first mark the current pmd
2149 * notpresent (atomically because here the pmd_trans_huge must
2150 * remain set at all times on the pmd until the split is
2151 * complete for this pmd), then we flush the SMP TLB and finally
2152 * we write the non-huge version of the pmd entry with
2153 * pmd_populate.
2154 */
2155 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2156 page = pmd_page(old_pmd);
2157 if (pmd_dirty(old_pmd)) {
2158 dirty = true;
2159 SetPageDirty(page);
2160 }
2161 write = pmd_write(old_pmd);
2162 young = pmd_young(old_pmd);
2163 soft_dirty = pmd_soft_dirty(old_pmd);
2164 uffd_wp = pmd_uffd_wp(old_pmd);
2165
2166 VM_BUG_ON_PAGE(!page_count(page), page);
2167
2168 /*
2169 * Without "freeze", we'll simply split the PMD, propagating the
2170 * PageAnonExclusive() flag for each PTE by setting it for
2171 * each subpage -- no need to (temporarily) clear.
2172 *
2173 * With "freeze" we want to replace mapped pages by
2174 * migration entries right away. This is only possible if we
2175 * managed to clear PageAnonExclusive() -- see
2176 * set_pmd_migration_entry().
2177 *
2178 * In case we cannot clear PageAnonExclusive(), split the PMD
2179 * only and let try_to_migrate_one() fail later.
2180 *
2181 * See page_try_share_anon_rmap(): invalidate PMD first.
2182 */
2183 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2184 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2185 freeze = false;
2186 if (!freeze)
2187 page_ref_add(page, HPAGE_PMD_NR - 1);
2188 }
2189
2190 /*
2191 * Withdraw the table only after we mark the pmd entry invalid.
2192 * This's critical for some architectures (Power).
2193 */
2194 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2195 pmd_populate(mm, &_pmd, pgtable);
2196
2197 pte = pte_offset_map(&_pmd, haddr);
2198 VM_BUG_ON(!pte);
2199 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2200 pte_t entry;
2201 /*
2202 * Note that NUMA hinting access restrictions are not
2203 * transferred to avoid any possibility of altering
2204 * permissions across VMAs.
2205 */
2206 if (freeze || pmd_migration) {
2207 swp_entry_t swp_entry;
2208 if (write)
2209 swp_entry = make_writable_migration_entry(
2210 page_to_pfn(page + i));
2211 else if (anon_exclusive)
2212 swp_entry = make_readable_exclusive_migration_entry(
2213 page_to_pfn(page + i));
2214 else
2215 swp_entry = make_readable_migration_entry(
2216 page_to_pfn(page + i));
2217 if (young)
2218 swp_entry = make_migration_entry_young(swp_entry);
2219 if (dirty)
2220 swp_entry = make_migration_entry_dirty(swp_entry);
2221 entry = swp_entry_to_pte(swp_entry);
2222 if (soft_dirty)
2223 entry = pte_swp_mksoft_dirty(entry);
2224 if (uffd_wp)
2225 entry = pte_swp_mkuffd_wp(entry);
2226 } else {
2227 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2228 if (write)
2229 entry = pte_mkwrite(entry, vma);
2230 if (anon_exclusive)
2231 SetPageAnonExclusive(page + i);
2232 if (!young)
2233 entry = pte_mkold(entry);
2234 /* NOTE: this may set soft-dirty too on some archs */
2235 if (dirty)
2236 entry = pte_mkdirty(entry);
2237 if (soft_dirty)
2238 entry = pte_mksoft_dirty(entry);
2239 if (uffd_wp)
2240 entry = pte_mkuffd_wp(entry);
2241 page_add_anon_rmap(page + i, vma, addr, RMAP_NONE);
2242 }
2243 VM_BUG_ON(!pte_none(ptep_get(pte)));
2244 set_pte_at(mm, addr, pte, entry);
2245 pte++;
2246 }
2247 pte_unmap(pte - 1);
2248
2249 if (!pmd_migration)
2250 page_remove_rmap(page, vma, true);
2251 if (freeze)
2252 put_page(page);
2253
2254 smp_wmb(); /* make pte visible before pmd */
2255 pmd_populate(mm, pmd, pgtable);
2256 }
2257
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2258 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2259 unsigned long address, bool freeze, struct folio *folio)
2260 {
2261 spinlock_t *ptl;
2262 struct mmu_notifier_range range;
2263
2264 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2265 address & HPAGE_PMD_MASK,
2266 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2267 mmu_notifier_invalidate_range_start(&range);
2268 ptl = pmd_lock(vma->vm_mm, pmd);
2269
2270 /*
2271 * If caller asks to setup a migration entry, we need a folio to check
2272 * pmd against. Otherwise we can end up replacing wrong folio.
2273 */
2274 VM_BUG_ON(freeze && !folio);
2275 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2276
2277 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2278 is_pmd_migration_entry(*pmd)) {
2279 /*
2280 * It's safe to call pmd_page when folio is set because it's
2281 * guaranteed that pmd is present.
2282 */
2283 if (folio && folio != page_folio(pmd_page(*pmd)))
2284 goto out;
2285 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2286 }
2287
2288 out:
2289 spin_unlock(ptl);
2290 mmu_notifier_invalidate_range_end(&range);
2291 }
2292
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2293 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2294 bool freeze, struct folio *folio)
2295 {
2296 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2297
2298 if (!pmd)
2299 return;
2300
2301 __split_huge_pmd(vma, pmd, address, freeze, folio);
2302 }
2303
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2304 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2305 {
2306 /*
2307 * If the new address isn't hpage aligned and it could previously
2308 * contain an hugepage: check if we need to split an huge pmd.
2309 */
2310 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2311 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2312 ALIGN(address, HPAGE_PMD_SIZE)))
2313 split_huge_pmd_address(vma, address, false, NULL);
2314 }
2315
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2316 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2317 unsigned long start,
2318 unsigned long end,
2319 long adjust_next)
2320 {
2321 /* Check if we need to split start first. */
2322 split_huge_pmd_if_needed(vma, start);
2323
2324 /* Check if we need to split end next. */
2325 split_huge_pmd_if_needed(vma, end);
2326
2327 /*
2328 * If we're also updating the next vma vm_start,
2329 * check if we need to split it.
2330 */
2331 if (adjust_next > 0) {
2332 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2333 unsigned long nstart = next->vm_start;
2334 nstart += adjust_next;
2335 split_huge_pmd_if_needed(next, nstart);
2336 }
2337 }
2338
unmap_folio(struct folio * folio)2339 static void unmap_folio(struct folio *folio)
2340 {
2341 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2342 TTU_SYNC;
2343
2344 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2345
2346 /*
2347 * Anon pages need migration entries to preserve them, but file
2348 * pages can simply be left unmapped, then faulted back on demand.
2349 * If that is ever changed (perhaps for mlock), update remap_page().
2350 */
2351 if (folio_test_anon(folio))
2352 try_to_migrate(folio, ttu_flags);
2353 else
2354 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2355 }
2356
remap_page(struct folio * folio,unsigned long nr)2357 static void remap_page(struct folio *folio, unsigned long nr)
2358 {
2359 int i = 0;
2360
2361 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2362 if (!folio_test_anon(folio))
2363 return;
2364 for (;;) {
2365 remove_migration_ptes(folio, folio, true);
2366 i += folio_nr_pages(folio);
2367 if (i >= nr)
2368 break;
2369 folio = folio_next(folio);
2370 }
2371 }
2372
lru_add_page_tail(struct page * head,struct page * tail,struct lruvec * lruvec,struct list_head * list)2373 static void lru_add_page_tail(struct page *head, struct page *tail,
2374 struct lruvec *lruvec, struct list_head *list)
2375 {
2376 VM_BUG_ON_PAGE(!PageHead(head), head);
2377 VM_BUG_ON_PAGE(PageCompound(tail), head);
2378 VM_BUG_ON_PAGE(PageLRU(tail), head);
2379 lockdep_assert_held(&lruvec->lru_lock);
2380
2381 if (list) {
2382 /* page reclaim is reclaiming a huge page */
2383 VM_WARN_ON(PageLRU(head));
2384 get_page(tail);
2385 list_add_tail(&tail->lru, list);
2386 } else {
2387 /* head is still on lru (and we have it frozen) */
2388 VM_WARN_ON(!PageLRU(head));
2389 if (PageUnevictable(tail))
2390 tail->mlock_count = 0;
2391 else
2392 list_add_tail(&tail->lru, &head->lru);
2393 SetPageLRU(tail);
2394 }
2395 }
2396
__split_huge_page_tail(struct folio * folio,int tail,struct lruvec * lruvec,struct list_head * list)2397 static void __split_huge_page_tail(struct folio *folio, int tail,
2398 struct lruvec *lruvec, struct list_head *list)
2399 {
2400 struct page *head = &folio->page;
2401 struct page *page_tail = head + tail;
2402 /*
2403 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2404 * Don't pass it around before clear_compound_head().
2405 */
2406 struct folio *new_folio = (struct folio *)page_tail;
2407
2408 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2409
2410 /*
2411 * Clone page flags before unfreezing refcount.
2412 *
2413 * After successful get_page_unless_zero() might follow flags change,
2414 * for example lock_page() which set PG_waiters.
2415 *
2416 * Note that for mapped sub-pages of an anonymous THP,
2417 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2418 * the migration entry instead from where remap_page() will restore it.
2419 * We can still have PG_anon_exclusive set on effectively unmapped and
2420 * unreferenced sub-pages of an anonymous THP: we can simply drop
2421 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2422 */
2423 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2424 page_tail->flags |= (head->flags &
2425 ((1L << PG_referenced) |
2426 (1L << PG_swapbacked) |
2427 (1L << PG_swapcache) |
2428 (1L << PG_mlocked) |
2429 (1L << PG_uptodate) |
2430 (1L << PG_active) |
2431 (1L << PG_workingset) |
2432 (1L << PG_locked) |
2433 (1L << PG_unevictable) |
2434 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2435 (1L << PG_arch_2) |
2436 (1L << PG_arch_3) |
2437 #endif
2438 (1L << PG_dirty) |
2439 LRU_GEN_MASK | LRU_REFS_MASK));
2440
2441 /* ->mapping in first and second tail page is replaced by other uses */
2442 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2443 page_tail);
2444 page_tail->mapping = head->mapping;
2445 page_tail->index = head->index + tail;
2446
2447 /*
2448 * page->private should not be set in tail pages. Fix up and warn once
2449 * if private is unexpectedly set.
2450 */
2451 if (unlikely(page_tail->private)) {
2452 VM_WARN_ON_ONCE_PAGE(true, page_tail);
2453 page_tail->private = 0;
2454 }
2455 if (folio_test_swapcache(folio))
2456 new_folio->swap.val = folio->swap.val + tail;
2457
2458 /* Page flags must be visible before we make the page non-compound. */
2459 smp_wmb();
2460
2461 /*
2462 * Clear PageTail before unfreezing page refcount.
2463 *
2464 * After successful get_page_unless_zero() might follow put_page()
2465 * which needs correct compound_head().
2466 */
2467 clear_compound_head(page_tail);
2468
2469 /* Finally unfreeze refcount. Additional reference from page cache. */
2470 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2471 PageSwapCache(head)));
2472
2473 if (page_is_young(head))
2474 set_page_young(page_tail);
2475 if (page_is_idle(head))
2476 set_page_idle(page_tail);
2477
2478 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2479
2480 /*
2481 * always add to the tail because some iterators expect new
2482 * pages to show after the currently processed elements - e.g.
2483 * migrate_pages
2484 */
2485 lru_add_page_tail(head, page_tail, lruvec, list);
2486 }
2487
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end)2488 static void __split_huge_page(struct page *page, struct list_head *list,
2489 pgoff_t end)
2490 {
2491 struct folio *folio = page_folio(page);
2492 struct page *head = &folio->page;
2493 struct lruvec *lruvec;
2494 struct address_space *swap_cache = NULL;
2495 unsigned long offset = 0;
2496 unsigned int nr = thp_nr_pages(head);
2497 int i, nr_dropped = 0;
2498
2499 /* complete memcg works before add pages to LRU */
2500 split_page_memcg(head, nr);
2501
2502 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2503 offset = swp_offset(folio->swap);
2504 swap_cache = swap_address_space(folio->swap);
2505 xa_lock(&swap_cache->i_pages);
2506 }
2507
2508 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2509 lruvec = folio_lruvec_lock(folio);
2510
2511 ClearPageHasHWPoisoned(head);
2512
2513 for (i = nr - 1; i >= 1; i--) {
2514 __split_huge_page_tail(folio, i, lruvec, list);
2515 /* Some pages can be beyond EOF: drop them from page cache */
2516 if (head[i].index >= end) {
2517 struct folio *tail = page_folio(head + i);
2518
2519 if (shmem_mapping(head->mapping))
2520 nr_dropped++;
2521 else if (folio_test_clear_dirty(tail))
2522 folio_account_cleaned(tail,
2523 inode_to_wb(folio->mapping->host));
2524 __filemap_remove_folio(tail, NULL);
2525 folio_put(tail);
2526 } else if (!PageAnon(page)) {
2527 __xa_store(&head->mapping->i_pages, head[i].index,
2528 head + i, 0);
2529 } else if (swap_cache) {
2530 __xa_store(&swap_cache->i_pages, offset + i,
2531 head + i, 0);
2532 }
2533 }
2534
2535 ClearPageCompound(head);
2536 unlock_page_lruvec(lruvec);
2537 /* Caller disabled irqs, so they are still disabled here */
2538
2539 split_page_owner(head, nr);
2540
2541 /* See comment in __split_huge_page_tail() */
2542 if (PageAnon(head)) {
2543 /* Additional pin to swap cache */
2544 if (PageSwapCache(head)) {
2545 page_ref_add(head, 2);
2546 xa_unlock(&swap_cache->i_pages);
2547 } else {
2548 page_ref_inc(head);
2549 }
2550 } else {
2551 /* Additional pin to page cache */
2552 page_ref_add(head, 2);
2553 xa_unlock(&head->mapping->i_pages);
2554 }
2555 local_irq_enable();
2556
2557 if (nr_dropped)
2558 shmem_uncharge(head->mapping->host, nr_dropped);
2559 remap_page(folio, nr);
2560
2561 if (folio_test_swapcache(folio))
2562 split_swap_cluster(folio->swap);
2563
2564 for (i = 0; i < nr; i++) {
2565 struct page *subpage = head + i;
2566 if (subpage == page)
2567 continue;
2568 unlock_page(subpage);
2569
2570 /*
2571 * Subpages may be freed if there wasn't any mapping
2572 * like if add_to_swap() is running on a lru page that
2573 * had its mapping zapped. And freeing these pages
2574 * requires taking the lru_lock so we do the put_page
2575 * of the tail pages after the split is complete.
2576 */
2577 free_page_and_swap_cache(subpage);
2578 }
2579 }
2580
2581 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int * pextra_pins)2582 bool can_split_folio(struct folio *folio, int *pextra_pins)
2583 {
2584 int extra_pins;
2585
2586 /* Additional pins from page cache */
2587 if (folio_test_anon(folio))
2588 extra_pins = folio_test_swapcache(folio) ?
2589 folio_nr_pages(folio) : 0;
2590 else
2591 extra_pins = folio_nr_pages(folio);
2592 if (pextra_pins)
2593 *pextra_pins = extra_pins;
2594 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2595 }
2596
2597 /*
2598 * This function splits huge page into normal pages. @page can point to any
2599 * subpage of huge page to split. Split doesn't change the position of @page.
2600 *
2601 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2602 * The huge page must be locked.
2603 *
2604 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2605 *
2606 * Both head page and tail pages will inherit mapping, flags, and so on from
2607 * the hugepage.
2608 *
2609 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2610 * they are not mapped.
2611 *
2612 * Returns 0 if the hugepage is split successfully.
2613 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2614 * us.
2615 */
split_huge_page_to_list(struct page * page,struct list_head * list)2616 int split_huge_page_to_list(struct page *page, struct list_head *list)
2617 {
2618 struct folio *folio = page_folio(page);
2619 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2620 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2621 struct anon_vma *anon_vma = NULL;
2622 struct address_space *mapping = NULL;
2623 int extra_pins, ret;
2624 pgoff_t end;
2625 bool is_hzp;
2626
2627 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2628 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2629
2630 is_hzp = is_huge_zero_page(&folio->page);
2631 if (is_hzp) {
2632 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2633 return -EBUSY;
2634 }
2635
2636 if (folio_test_writeback(folio))
2637 return -EBUSY;
2638
2639 if (folio_test_anon(folio)) {
2640 /*
2641 * The caller does not necessarily hold an mmap_lock that would
2642 * prevent the anon_vma disappearing so we first we take a
2643 * reference to it and then lock the anon_vma for write. This
2644 * is similar to folio_lock_anon_vma_read except the write lock
2645 * is taken to serialise against parallel split or collapse
2646 * operations.
2647 */
2648 anon_vma = folio_get_anon_vma(folio);
2649 if (!anon_vma) {
2650 ret = -EBUSY;
2651 goto out;
2652 }
2653 end = -1;
2654 mapping = NULL;
2655 anon_vma_lock_write(anon_vma);
2656 } else {
2657 gfp_t gfp;
2658
2659 mapping = folio->mapping;
2660
2661 /* Truncated ? */
2662 if (!mapping) {
2663 ret = -EBUSY;
2664 goto out;
2665 }
2666
2667 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2668 GFP_RECLAIM_MASK);
2669
2670 if (!filemap_release_folio(folio, gfp)) {
2671 ret = -EBUSY;
2672 goto out;
2673 }
2674
2675 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2676 if (xas_error(&xas)) {
2677 ret = xas_error(&xas);
2678 goto out;
2679 }
2680
2681 anon_vma = NULL;
2682 i_mmap_lock_read(mapping);
2683
2684 /*
2685 *__split_huge_page() may need to trim off pages beyond EOF:
2686 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2687 * which cannot be nested inside the page tree lock. So note
2688 * end now: i_size itself may be changed at any moment, but
2689 * folio lock is good enough to serialize the trimming.
2690 */
2691 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2692 if (shmem_mapping(mapping))
2693 end = shmem_fallocend(mapping->host, end);
2694 }
2695
2696 /*
2697 * Racy check if we can split the page, before unmap_folio() will
2698 * split PMDs
2699 */
2700 if (!can_split_folio(folio, &extra_pins)) {
2701 ret = -EAGAIN;
2702 goto out_unlock;
2703 }
2704
2705 unmap_folio(folio);
2706
2707 /* block interrupt reentry in xa_lock and spinlock */
2708 local_irq_disable();
2709 if (mapping) {
2710 /*
2711 * Check if the folio is present in page cache.
2712 * We assume all tail are present too, if folio is there.
2713 */
2714 xas_lock(&xas);
2715 xas_reset(&xas);
2716 if (xas_load(&xas) != folio)
2717 goto fail;
2718 }
2719
2720 /* Prevent deferred_split_scan() touching ->_refcount */
2721 spin_lock(&ds_queue->split_queue_lock);
2722 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2723 if (folio_order(folio) > 1 &&
2724 !list_empty(&folio->_deferred_list)) {
2725 ds_queue->split_queue_len--;
2726 list_del_init(&folio->_deferred_list);
2727 }
2728 spin_unlock(&ds_queue->split_queue_lock);
2729 if (mapping) {
2730 int nr = folio_nr_pages(folio);
2731
2732 xas_split(&xas, folio, folio_order(folio));
2733 if (folio_test_pmd_mappable(folio)) {
2734 if (folio_test_swapbacked(folio)) {
2735 __lruvec_stat_mod_folio(folio,
2736 NR_SHMEM_THPS, -nr);
2737 } else {
2738 __lruvec_stat_mod_folio(folio,
2739 NR_FILE_THPS, -nr);
2740 filemap_nr_thps_dec(mapping);
2741 }
2742 }
2743 }
2744
2745 __split_huge_page(page, list, end);
2746 ret = 0;
2747 } else {
2748 spin_unlock(&ds_queue->split_queue_lock);
2749 fail:
2750 if (mapping)
2751 xas_unlock(&xas);
2752 local_irq_enable();
2753 remap_page(folio, folio_nr_pages(folio));
2754 ret = -EAGAIN;
2755 }
2756
2757 out_unlock:
2758 if (anon_vma) {
2759 anon_vma_unlock_write(anon_vma);
2760 put_anon_vma(anon_vma);
2761 }
2762 if (mapping)
2763 i_mmap_unlock_read(mapping);
2764 out:
2765 xas_destroy(&xas);
2766 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2767 return ret;
2768 }
2769
2770 /*
2771 * __folio_unqueue_deferred_split() is not to be called directly:
2772 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
2773 * limits its calls to those folios which may have a _deferred_list for
2774 * queueing THP splits, and that list is (racily observed to be) non-empty.
2775 *
2776 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
2777 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
2778 * might be in use on deferred_split_scan()'s unlocked on-stack list.
2779 *
2780 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
2781 * therefore important to unqueue deferred split before changing folio memcg.
2782 */
__folio_unqueue_deferred_split(struct folio * folio)2783 bool __folio_unqueue_deferred_split(struct folio *folio)
2784 {
2785 struct deferred_split *ds_queue;
2786 unsigned long flags;
2787 bool unqueued = false;
2788
2789 WARN_ON_ONCE(folio_ref_count(folio));
2790 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
2791
2792 ds_queue = get_deferred_split_queue(folio);
2793 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2794 if (!list_empty(&folio->_deferred_list)) {
2795 ds_queue->split_queue_len--;
2796 list_del_init(&folio->_deferred_list);
2797 unqueued = true;
2798 }
2799 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2800
2801 return unqueued; /* useful for debug warnings */
2802 }
2803
deferred_split_folio(struct folio * folio)2804 void deferred_split_folio(struct folio *folio)
2805 {
2806 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2807 #ifdef CONFIG_MEMCG
2808 struct mem_cgroup *memcg = folio_memcg(folio);
2809 #endif
2810 unsigned long flags;
2811
2812 /*
2813 * Order 1 folios have no space for a deferred list, but we also
2814 * won't waste much memory by not adding them to the deferred list.
2815 */
2816 if (folio_order(folio) <= 1)
2817 return;
2818
2819 /*
2820 * Exclude swapcache: originally to avoid a corrupt deferred split
2821 * queue. Nowadays that is fully prevented by mem_cgroup_swapout();
2822 * but if page reclaim is already handling the same folio, it is
2823 * unnecessary to handle it again in the shrinker, so excluding
2824 * swapcache here may still be a useful optimization.
2825 */
2826 if (folio_test_swapcache(folio))
2827 return;
2828
2829 if (!list_empty(&folio->_deferred_list))
2830 return;
2831
2832 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2833 if (list_empty(&folio->_deferred_list)) {
2834 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2835 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2836 ds_queue->split_queue_len++;
2837 #ifdef CONFIG_MEMCG
2838 if (memcg)
2839 set_shrinker_bit(memcg, folio_nid(folio),
2840 deferred_split_shrinker.id);
2841 #endif
2842 }
2843 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2844 }
2845
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2846 static unsigned long deferred_split_count(struct shrinker *shrink,
2847 struct shrink_control *sc)
2848 {
2849 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2850 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2851
2852 #ifdef CONFIG_MEMCG
2853 if (sc->memcg)
2854 ds_queue = &sc->memcg->deferred_split_queue;
2855 #endif
2856 return READ_ONCE(ds_queue->split_queue_len);
2857 }
2858
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2859 static unsigned long deferred_split_scan(struct shrinker *shrink,
2860 struct shrink_control *sc)
2861 {
2862 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2863 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2864 unsigned long flags;
2865 LIST_HEAD(list);
2866 struct folio *folio, *next;
2867 int split = 0;
2868
2869 #ifdef CONFIG_MEMCG
2870 if (sc->memcg)
2871 ds_queue = &sc->memcg->deferred_split_queue;
2872 #endif
2873
2874 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2875 /* Take pin on all head pages to avoid freeing them under us */
2876 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2877 _deferred_list) {
2878 if (folio_try_get(folio)) {
2879 list_move(&folio->_deferred_list, &list);
2880 } else {
2881 /* We lost race with folio_put() */
2882 list_del_init(&folio->_deferred_list);
2883 ds_queue->split_queue_len--;
2884 }
2885 if (!--sc->nr_to_scan)
2886 break;
2887 }
2888 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2889
2890 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2891 if (!folio_trylock(folio))
2892 goto next;
2893 /* split_huge_page() removes page from list on success */
2894 if (!split_folio(folio))
2895 split++;
2896 folio_unlock(folio);
2897 next:
2898 folio_put(folio);
2899 }
2900
2901 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2902 list_splice_tail(&list, &ds_queue->split_queue);
2903 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2904
2905 /*
2906 * Stop shrinker if we didn't split any page, but the queue is empty.
2907 * This can happen if pages were freed under us.
2908 */
2909 if (!split && list_empty(&ds_queue->split_queue))
2910 return SHRINK_STOP;
2911 return split;
2912 }
2913
2914 static struct shrinker deferred_split_shrinker = {
2915 .count_objects = deferred_split_count,
2916 .scan_objects = deferred_split_scan,
2917 .seeks = DEFAULT_SEEKS,
2918 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2919 SHRINKER_NONSLAB,
2920 };
2921
2922 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)2923 static void split_huge_pages_all(void)
2924 {
2925 struct zone *zone;
2926 struct page *page;
2927 struct folio *folio;
2928 unsigned long pfn, max_zone_pfn;
2929 unsigned long total = 0, split = 0;
2930
2931 pr_debug("Split all THPs\n");
2932 for_each_zone(zone) {
2933 if (!managed_zone(zone))
2934 continue;
2935 max_zone_pfn = zone_end_pfn(zone);
2936 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2937 int nr_pages;
2938
2939 page = pfn_to_online_page(pfn);
2940 if (!page || PageTail(page))
2941 continue;
2942 folio = page_folio(page);
2943 if (!folio_try_get(folio))
2944 continue;
2945
2946 if (unlikely(page_folio(page) != folio))
2947 goto next;
2948
2949 if (zone != folio_zone(folio))
2950 goto next;
2951
2952 if (!folio_test_large(folio)
2953 || folio_test_hugetlb(folio)
2954 || !folio_test_lru(folio))
2955 goto next;
2956
2957 total++;
2958 folio_lock(folio);
2959 nr_pages = folio_nr_pages(folio);
2960 if (!split_folio(folio))
2961 split++;
2962 pfn += nr_pages - 1;
2963 folio_unlock(folio);
2964 next:
2965 folio_put(folio);
2966 cond_resched();
2967 }
2968 }
2969
2970 pr_debug("%lu of %lu THP split\n", split, total);
2971 }
2972
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)2973 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2974 {
2975 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2976 is_vm_hugetlb_page(vma);
2977 }
2978
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end)2979 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2980 unsigned long vaddr_end)
2981 {
2982 int ret = 0;
2983 struct task_struct *task;
2984 struct mm_struct *mm;
2985 unsigned long total = 0, split = 0;
2986 unsigned long addr;
2987
2988 vaddr_start &= PAGE_MASK;
2989 vaddr_end &= PAGE_MASK;
2990
2991 /* Find the task_struct from pid */
2992 rcu_read_lock();
2993 task = find_task_by_vpid(pid);
2994 if (!task) {
2995 rcu_read_unlock();
2996 ret = -ESRCH;
2997 goto out;
2998 }
2999 get_task_struct(task);
3000 rcu_read_unlock();
3001
3002 /* Find the mm_struct */
3003 mm = get_task_mm(task);
3004 put_task_struct(task);
3005
3006 if (!mm) {
3007 ret = -EINVAL;
3008 goto out;
3009 }
3010
3011 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3012 pid, vaddr_start, vaddr_end);
3013
3014 mmap_read_lock(mm);
3015 /*
3016 * always increase addr by PAGE_SIZE, since we could have a PTE page
3017 * table filled with PTE-mapped THPs, each of which is distinct.
3018 */
3019 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3020 struct vm_area_struct *vma = vma_lookup(mm, addr);
3021 struct page *page;
3022 struct folio *folio;
3023
3024 if (!vma)
3025 break;
3026
3027 /* skip special VMA and hugetlb VMA */
3028 if (vma_not_suitable_for_thp_split(vma)) {
3029 addr = vma->vm_end;
3030 continue;
3031 }
3032
3033 /* FOLL_DUMP to ignore special (like zero) pages */
3034 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3035
3036 if (IS_ERR_OR_NULL(page))
3037 continue;
3038
3039 folio = page_folio(page);
3040 if (!is_transparent_hugepage(folio))
3041 goto next;
3042
3043 total++;
3044 if (!can_split_folio(folio, NULL))
3045 goto next;
3046
3047 if (!folio_trylock(folio))
3048 goto next;
3049
3050 if (!split_folio(folio))
3051 split++;
3052
3053 folio_unlock(folio);
3054 next:
3055 folio_put(folio);
3056 cond_resched();
3057 }
3058 mmap_read_unlock(mm);
3059 mmput(mm);
3060
3061 pr_debug("%lu of %lu THP split\n", split, total);
3062
3063 out:
3064 return ret;
3065 }
3066
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end)3067 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3068 pgoff_t off_end)
3069 {
3070 struct filename *file;
3071 struct file *candidate;
3072 struct address_space *mapping;
3073 int ret = -EINVAL;
3074 pgoff_t index;
3075 int nr_pages = 1;
3076 unsigned long total = 0, split = 0;
3077
3078 file = getname_kernel(file_path);
3079 if (IS_ERR(file))
3080 return ret;
3081
3082 candidate = file_open_name(file, O_RDONLY, 0);
3083 if (IS_ERR(candidate))
3084 goto out;
3085
3086 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3087 file_path, off_start, off_end);
3088
3089 mapping = candidate->f_mapping;
3090
3091 for (index = off_start; index < off_end; index += nr_pages) {
3092 struct folio *folio = filemap_get_folio(mapping, index);
3093
3094 nr_pages = 1;
3095 if (IS_ERR(folio))
3096 continue;
3097
3098 if (!folio_test_large(folio))
3099 goto next;
3100
3101 total++;
3102 nr_pages = folio_nr_pages(folio);
3103
3104 if (!folio_trylock(folio))
3105 goto next;
3106
3107 if (!split_folio(folio))
3108 split++;
3109
3110 folio_unlock(folio);
3111 next:
3112 folio_put(folio);
3113 cond_resched();
3114 }
3115
3116 filp_close(candidate, NULL);
3117 ret = 0;
3118
3119 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120 out:
3121 putname(file);
3122 return ret;
3123 }
3124
3125 #define MAX_INPUT_BUF_SZ 255
3126
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)3127 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128 size_t count, loff_t *ppops)
3129 {
3130 static DEFINE_MUTEX(split_debug_mutex);
3131 ssize_t ret;
3132 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133 char input_buf[MAX_INPUT_BUF_SZ];
3134 int pid;
3135 unsigned long vaddr_start, vaddr_end;
3136
3137 ret = mutex_lock_interruptible(&split_debug_mutex);
3138 if (ret)
3139 return ret;
3140
3141 ret = -EFAULT;
3142
3143 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145 goto out;
3146
3147 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3148
3149 if (input_buf[0] == '/') {
3150 char *tok;
3151 char *buf = input_buf;
3152 char file_path[MAX_INPUT_BUF_SZ];
3153 pgoff_t off_start = 0, off_end = 0;
3154 size_t input_len = strlen(input_buf);
3155
3156 tok = strsep(&buf, ",");
3157 if (tok) {
3158 strcpy(file_path, tok);
3159 } else {
3160 ret = -EINVAL;
3161 goto out;
3162 }
3163
3164 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165 if (ret != 2) {
3166 ret = -EINVAL;
3167 goto out;
3168 }
3169 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170 if (!ret)
3171 ret = input_len;
3172
3173 goto out;
3174 }
3175
3176 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177 if (ret == 1 && pid == 1) {
3178 split_huge_pages_all();
3179 ret = strlen(input_buf);
3180 goto out;
3181 } else if (ret != 3) {
3182 ret = -EINVAL;
3183 goto out;
3184 }
3185
3186 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187 if (!ret)
3188 ret = strlen(input_buf);
3189 out:
3190 mutex_unlock(&split_debug_mutex);
3191 return ret;
3192
3193 }
3194
3195 static const struct file_operations split_huge_pages_fops = {
3196 .owner = THIS_MODULE,
3197 .write = split_huge_pages_write,
3198 .llseek = no_llseek,
3199 };
3200
split_huge_pages_debugfs(void)3201 static int __init split_huge_pages_debugfs(void)
3202 {
3203 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204 &split_huge_pages_fops);
3205 return 0;
3206 }
3207 late_initcall(split_huge_pages_debugfs);
3208 #endif
3209
3210 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3211 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212 struct page *page)
3213 {
3214 struct vm_area_struct *vma = pvmw->vma;
3215 struct mm_struct *mm = vma->vm_mm;
3216 unsigned long address = pvmw->address;
3217 bool anon_exclusive;
3218 pmd_t pmdval;
3219 swp_entry_t entry;
3220 pmd_t pmdswp;
3221
3222 if (!(pvmw->pmd && !pvmw->pte))
3223 return 0;
3224
3225 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227
3228 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3229 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232 return -EBUSY;
3233 }
3234
3235 if (pmd_dirty(pmdval))
3236 set_page_dirty(page);
3237 if (pmd_write(pmdval))
3238 entry = make_writable_migration_entry(page_to_pfn(page));
3239 else if (anon_exclusive)
3240 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241 else
3242 entry = make_readable_migration_entry(page_to_pfn(page));
3243 if (pmd_young(pmdval))
3244 entry = make_migration_entry_young(entry);
3245 if (pmd_dirty(pmdval))
3246 entry = make_migration_entry_dirty(entry);
3247 pmdswp = swp_entry_to_pmd(entry);
3248 if (pmd_soft_dirty(pmdval))
3249 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250 if (pmd_uffd_wp(pmdval))
3251 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3252 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3253 page_remove_rmap(page, vma, true);
3254 put_page(page);
3255 trace_set_migration_pmd(address, pmd_val(pmdswp));
3256
3257 return 0;
3258 }
3259
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3260 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3261 {
3262 struct vm_area_struct *vma = pvmw->vma;
3263 struct mm_struct *mm = vma->vm_mm;
3264 unsigned long address = pvmw->address;
3265 unsigned long haddr = address & HPAGE_PMD_MASK;
3266 pmd_t pmde;
3267 swp_entry_t entry;
3268
3269 if (!(pvmw->pmd && !pvmw->pte))
3270 return;
3271
3272 entry = pmd_to_swp_entry(*pvmw->pmd);
3273 get_page(new);
3274 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3275 if (pmd_swp_soft_dirty(*pvmw->pmd))
3276 pmde = pmd_mksoft_dirty(pmde);
3277 if (is_writable_migration_entry(entry))
3278 pmde = pmd_mkwrite(pmde, vma);
3279 if (pmd_swp_uffd_wp(*pvmw->pmd))
3280 pmde = pmd_mkuffd_wp(pmde);
3281 if (!is_migration_entry_young(entry))
3282 pmde = pmd_mkold(pmde);
3283 /* NOTE: this may contain setting soft-dirty on some archs */
3284 if (PageDirty(new) && is_migration_entry_dirty(entry))
3285 pmde = pmd_mkdirty(pmde);
3286
3287 if (PageAnon(new)) {
3288 rmap_t rmap_flags = RMAP_COMPOUND;
3289
3290 if (!is_readable_migration_entry(entry))
3291 rmap_flags |= RMAP_EXCLUSIVE;
3292
3293 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294 } else {
3295 page_add_file_rmap(new, vma, true);
3296 }
3297 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299
3300 /* No need to invalidate - it was non-present before */
3301 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302 trace_remove_migration_pmd(address, pmd_val(pmde));
3303 }
3304 #endif
3305