1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
37 #include "ioctl.h"
38 #include "file.h"
39 #include "super.h"
40
41 /* simple helper to fault in pages and copy. This should go away
42 * and be replaced with calls into generic code.
43 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 struct page **prepared_pages,
46 struct iov_iter *i)
47 {
48 size_t copied = 0;
49 size_t total_copied = 0;
50 int pg = 0;
51 int offset = offset_in_page(pos);
52
53 while (write_bytes > 0) {
54 size_t count = min_t(size_t,
55 PAGE_SIZE - offset, write_bytes);
56 struct page *page = prepared_pages[pg];
57 /*
58 * Copy data from userspace to the current page
59 */
60 copied = copy_page_from_iter_atomic(page, offset, count, i);
61
62 /* Flush processor's dcache for this page */
63 flush_dcache_page(page);
64
65 /*
66 * if we get a partial write, we can end up with
67 * partially up to date pages. These add
68 * a lot of complexity, so make sure they don't
69 * happen by forcing this copy to be retried.
70 *
71 * The rest of the btrfs_file_write code will fall
72 * back to page at a time copies after we return 0.
73 */
74 if (unlikely(copied < count)) {
75 if (!PageUptodate(page)) {
76 iov_iter_revert(i, copied);
77 copied = 0;
78 }
79 if (!copied)
80 break;
81 }
82
83 write_bytes -= copied;
84 total_copied += copied;
85 offset += copied;
86 if (offset == PAGE_SIZE) {
87 pg++;
88 offset = 0;
89 }
90 }
91 return total_copied;
92 }
93
94 /*
95 * unlocks pages after btrfs_file_write is done with them
96 */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 struct page **pages, size_t num_pages,
99 u64 pos, u64 copied)
100 {
101 size_t i;
102 u64 block_start = round_down(pos, fs_info->sectorsize);
103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104
105 ASSERT(block_len <= U32_MAX);
106 for (i = 0; i < num_pages; i++) {
107 /* page checked is some magic around finding pages that
108 * have been modified without going through btrfs_set_page_dirty
109 * clear it here. There should be no need to mark the pages
110 * accessed as prepare_pages should have marked them accessed
111 * in prepare_pages via find_or_create_page()
112 */
113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 block_len);
115 unlock_page(pages[i]);
116 put_page(pages[i]);
117 }
118 }
119
120 /*
121 * After btrfs_copy_from_user(), update the following things for delalloc:
122 * - Mark newly dirtied pages as DELALLOC in the io tree.
123 * Used to advise which range is to be written back.
124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125 * - Update inode size for past EOF write
126 */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 size_t num_pages, loff_t pos, size_t write_bytes,
129 struct extent_state **cached, bool noreserve)
130 {
131 struct btrfs_fs_info *fs_info = inode->root->fs_info;
132 int err = 0;
133 int i;
134 u64 num_bytes;
135 u64 start_pos;
136 u64 end_of_last_block;
137 u64 end_pos = pos + write_bytes;
138 loff_t isize = i_size_read(&inode->vfs_inode);
139 unsigned int extra_bits = 0;
140
141 if (write_bytes == 0)
142 return 0;
143
144 if (noreserve)
145 extra_bits |= EXTENT_NORESERVE;
146
147 start_pos = round_down(pos, fs_info->sectorsize);
148 num_bytes = round_up(write_bytes + pos - start_pos,
149 fs_info->sectorsize);
150 ASSERT(num_bytes <= U32_MAX);
151
152 end_of_last_block = start_pos + num_bytes - 1;
153
154 /*
155 * The pages may have already been dirty, clear out old accounting so
156 * we can set things up properly
157 */
158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160 cached);
161
162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163 extra_bits, cached);
164 if (err)
165 return err;
166
167 for (i = 0; i < num_pages; i++) {
168 struct page *p = pages[i];
169
170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173 }
174
175 /*
176 * we've only changed i_size in ram, and we haven't updated
177 * the disk i_size. There is no need to log the inode
178 * at this time.
179 */
180 if (end_pos > isize)
181 i_size_write(&inode->vfs_inode, end_pos);
182 return 0;
183 }
184
185 /*
186 * this is very complex, but the basic idea is to drop all extents
187 * in the range start - end. hint_block is filled in with a block number
188 * that would be a good hint to the block allocator for this file.
189 *
190 * If an extent intersects the range but is not entirely inside the range
191 * it is either truncated or split. Anything entirely inside the range
192 * is deleted from the tree.
193 *
194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195 * to deal with that. We set the field 'bytes_found' of the arguments structure
196 * with the number of allocated bytes found in the target range, so that the
197 * caller can update the inode's number of bytes in an atomic way when
198 * replacing extents in a range to avoid races with stat(2).
199 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root, struct btrfs_inode *inode,
202 struct btrfs_drop_extents_args *args)
203 {
204 struct btrfs_fs_info *fs_info = root->fs_info;
205 struct extent_buffer *leaf;
206 struct btrfs_file_extent_item *fi;
207 struct btrfs_ref ref = { 0 };
208 struct btrfs_key key;
209 struct btrfs_key new_key;
210 u64 ino = btrfs_ino(inode);
211 u64 search_start = args->start;
212 u64 disk_bytenr = 0;
213 u64 num_bytes = 0;
214 u64 extent_offset = 0;
215 u64 extent_end = 0;
216 u64 last_end = args->start;
217 int del_nr = 0;
218 int del_slot = 0;
219 int extent_type;
220 int recow;
221 int ret;
222 int modify_tree = -1;
223 int update_refs;
224 int found = 0;
225 struct btrfs_path *path = args->path;
226
227 args->bytes_found = 0;
228 args->extent_inserted = false;
229
230 /* Must always have a path if ->replace_extent is true */
231 ASSERT(!(args->replace_extent && !args->path));
232
233 if (!path) {
234 path = btrfs_alloc_path();
235 if (!path) {
236 ret = -ENOMEM;
237 goto out;
238 }
239 }
240
241 if (args->drop_cache)
242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243
244 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
245 modify_tree = 0;
246
247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248 while (1) {
249 recow = 0;
250 ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 search_start, modify_tree);
252 if (ret < 0)
253 break;
254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 leaf = path->nodes[0];
256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 if (key.objectid == ino &&
258 key.type == BTRFS_EXTENT_DATA_KEY)
259 path->slots[0]--;
260 }
261 ret = 0;
262 next_slot:
263 leaf = path->nodes[0];
264 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 BUG_ON(del_nr > 0);
266 ret = btrfs_next_leaf(root, path);
267 if (ret < 0)
268 break;
269 if (ret > 0) {
270 ret = 0;
271 break;
272 }
273 leaf = path->nodes[0];
274 recow = 1;
275 }
276
277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278
279 if (key.objectid > ino)
280 break;
281 if (WARN_ON_ONCE(key.objectid < ino) ||
282 key.type < BTRFS_EXTENT_DATA_KEY) {
283 ASSERT(del_nr == 0);
284 path->slots[0]++;
285 goto next_slot;
286 }
287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288 break;
289
290 fi = btrfs_item_ptr(leaf, path->slots[0],
291 struct btrfs_file_extent_item);
292 extent_type = btrfs_file_extent_type(leaf, fi);
293
294 if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 extent_offset = btrfs_file_extent_offset(leaf, fi);
299 extent_end = key.offset +
300 btrfs_file_extent_num_bytes(leaf, fi);
301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 extent_end = key.offset +
303 btrfs_file_extent_ram_bytes(leaf, fi);
304 } else {
305 /* can't happen */
306 BUG();
307 }
308
309 /*
310 * Don't skip extent items representing 0 byte lengths. They
311 * used to be created (bug) if while punching holes we hit
312 * -ENOSPC condition. So if we find one here, just ensure we
313 * delete it, otherwise we would insert a new file extent item
314 * with the same key (offset) as that 0 bytes length file
315 * extent item in the call to setup_items_for_insert() later
316 * in this function.
317 */
318 if (extent_end == key.offset && extent_end >= search_start) {
319 last_end = extent_end;
320 goto delete_extent_item;
321 }
322
323 if (extent_end <= search_start) {
324 path->slots[0]++;
325 goto next_slot;
326 }
327
328 found = 1;
329 search_start = max(key.offset, args->start);
330 if (recow || !modify_tree) {
331 modify_tree = -1;
332 btrfs_release_path(path);
333 continue;
334 }
335
336 /*
337 * | - range to drop - |
338 * | -------- extent -------- |
339 */
340 if (args->start > key.offset && args->end < extent_end) {
341 BUG_ON(del_nr > 0);
342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343 ret = -EOPNOTSUPP;
344 break;
345 }
346
347 memcpy(&new_key, &key, sizeof(new_key));
348 new_key.offset = args->start;
349 ret = btrfs_duplicate_item(trans, root, path,
350 &new_key);
351 if (ret == -EAGAIN) {
352 btrfs_release_path(path);
353 continue;
354 }
355 if (ret < 0)
356 break;
357
358 leaf = path->nodes[0];
359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 struct btrfs_file_extent_item);
361 btrfs_set_file_extent_num_bytes(leaf, fi,
362 args->start - key.offset);
363
364 fi = btrfs_item_ptr(leaf, path->slots[0],
365 struct btrfs_file_extent_item);
366
367 extent_offset += args->start - key.offset;
368 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 btrfs_set_file_extent_num_bytes(leaf, fi,
370 extent_end - args->start);
371 btrfs_mark_buffer_dirty(trans, leaf);
372
373 if (update_refs && disk_bytenr > 0) {
374 btrfs_init_generic_ref(&ref,
375 BTRFS_ADD_DELAYED_REF,
376 disk_bytenr, num_bytes, 0);
377 btrfs_init_data_ref(&ref,
378 root->root_key.objectid,
379 new_key.objectid,
380 args->start - extent_offset,
381 0, false);
382 ret = btrfs_inc_extent_ref(trans, &ref);
383 if (ret) {
384 btrfs_abort_transaction(trans, ret);
385 break;
386 }
387 }
388 key.offset = args->start;
389 }
390 /*
391 * From here on out we will have actually dropped something, so
392 * last_end can be updated.
393 */
394 last_end = extent_end;
395
396 /*
397 * | ---- range to drop ----- |
398 * | -------- extent -------- |
399 */
400 if (args->start <= key.offset && args->end < extent_end) {
401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402 ret = -EOPNOTSUPP;
403 break;
404 }
405
406 memcpy(&new_key, &key, sizeof(new_key));
407 new_key.offset = args->end;
408 btrfs_set_item_key_safe(trans, path, &new_key);
409
410 extent_offset += args->end - key.offset;
411 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 btrfs_set_file_extent_num_bytes(leaf, fi,
413 extent_end - args->end);
414 btrfs_mark_buffer_dirty(trans, leaf);
415 if (update_refs && disk_bytenr > 0)
416 args->bytes_found += args->end - key.offset;
417 break;
418 }
419
420 search_start = extent_end;
421 /*
422 * | ---- range to drop ----- |
423 * | -------- extent -------- |
424 */
425 if (args->start > key.offset && args->end >= extent_end) {
426 BUG_ON(del_nr > 0);
427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428 ret = -EOPNOTSUPP;
429 break;
430 }
431
432 btrfs_set_file_extent_num_bytes(leaf, fi,
433 args->start - key.offset);
434 btrfs_mark_buffer_dirty(trans, leaf);
435 if (update_refs && disk_bytenr > 0)
436 args->bytes_found += extent_end - args->start;
437 if (args->end == extent_end)
438 break;
439
440 path->slots[0]++;
441 goto next_slot;
442 }
443
444 /*
445 * | ---- range to drop ----- |
446 * | ------ extent ------ |
447 */
448 if (args->start <= key.offset && args->end >= extent_end) {
449 delete_extent_item:
450 if (del_nr == 0) {
451 del_slot = path->slots[0];
452 del_nr = 1;
453 } else {
454 BUG_ON(del_slot + del_nr != path->slots[0]);
455 del_nr++;
456 }
457
458 if (update_refs &&
459 extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 args->bytes_found += extent_end - key.offset;
461 extent_end = ALIGN(extent_end,
462 fs_info->sectorsize);
463 } else if (update_refs && disk_bytenr > 0) {
464 btrfs_init_generic_ref(&ref,
465 BTRFS_DROP_DELAYED_REF,
466 disk_bytenr, num_bytes, 0);
467 btrfs_init_data_ref(&ref,
468 root->root_key.objectid,
469 key.objectid,
470 key.offset - extent_offset, 0,
471 false);
472 ret = btrfs_free_extent(trans, &ref);
473 if (ret) {
474 btrfs_abort_transaction(trans, ret);
475 break;
476 }
477 args->bytes_found += extent_end - key.offset;
478 }
479
480 if (args->end == extent_end)
481 break;
482
483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 path->slots[0]++;
485 goto next_slot;
486 }
487
488 ret = btrfs_del_items(trans, root, path, del_slot,
489 del_nr);
490 if (ret) {
491 btrfs_abort_transaction(trans, ret);
492 break;
493 }
494
495 del_nr = 0;
496 del_slot = 0;
497
498 btrfs_release_path(path);
499 continue;
500 }
501
502 BUG();
503 }
504
505 if (!ret && del_nr > 0) {
506 /*
507 * Set path->slots[0] to first slot, so that after the delete
508 * if items are move off from our leaf to its immediate left or
509 * right neighbor leafs, we end up with a correct and adjusted
510 * path->slots[0] for our insertion (if args->replace_extent).
511 */
512 path->slots[0] = del_slot;
513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514 if (ret)
515 btrfs_abort_transaction(trans, ret);
516 }
517
518 leaf = path->nodes[0];
519 /*
520 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 * which case it unlocked our path, so check path->locks[0] matches a
522 * write lock.
523 */
524 if (!ret && args->replace_extent &&
525 path->locks[0] == BTRFS_WRITE_LOCK &&
526 btrfs_leaf_free_space(leaf) >=
527 sizeof(struct btrfs_item) + args->extent_item_size) {
528
529 key.objectid = ino;
530 key.type = BTRFS_EXTENT_DATA_KEY;
531 key.offset = args->start;
532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 struct btrfs_key slot_key;
534
535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 path->slots[0]++;
538 }
539 btrfs_setup_item_for_insert(trans, root, path, &key,
540 args->extent_item_size);
541 args->extent_inserted = true;
542 }
543
544 if (!args->path)
545 btrfs_free_path(path);
546 else if (!args->extent_inserted)
547 btrfs_release_path(path);
548 out:
549 args->drop_end = found ? min(args->end, last_end) : args->end;
550
551 return ret;
552 }
553
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)554 static int extent_mergeable(struct extent_buffer *leaf, int slot,
555 u64 objectid, u64 bytenr, u64 orig_offset,
556 u64 *start, u64 *end)
557 {
558 struct btrfs_file_extent_item *fi;
559 struct btrfs_key key;
560 u64 extent_end;
561
562 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
563 return 0;
564
565 btrfs_item_key_to_cpu(leaf, &key, slot);
566 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
567 return 0;
568
569 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
570 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
571 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
572 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
573 btrfs_file_extent_compression(leaf, fi) ||
574 btrfs_file_extent_encryption(leaf, fi) ||
575 btrfs_file_extent_other_encoding(leaf, fi))
576 return 0;
577
578 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
579 if ((*start && *start != key.offset) || (*end && *end != extent_end))
580 return 0;
581
582 *start = key.offset;
583 *end = extent_end;
584 return 1;
585 }
586
587 /*
588 * Mark extent in the range start - end as written.
589 *
590 * This changes extent type from 'pre-allocated' to 'regular'. If only
591 * part of extent is marked as written, the extent will be split into
592 * two or three.
593 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
595 struct btrfs_inode *inode, u64 start, u64 end)
596 {
597 struct btrfs_root *root = inode->root;
598 struct extent_buffer *leaf;
599 struct btrfs_path *path;
600 struct btrfs_file_extent_item *fi;
601 struct btrfs_ref ref = { 0 };
602 struct btrfs_key key;
603 struct btrfs_key new_key;
604 u64 bytenr;
605 u64 num_bytes;
606 u64 extent_end;
607 u64 orig_offset;
608 u64 other_start;
609 u64 other_end;
610 u64 split;
611 int del_nr = 0;
612 int del_slot = 0;
613 int recow;
614 int ret = 0;
615 u64 ino = btrfs_ino(inode);
616
617 path = btrfs_alloc_path();
618 if (!path)
619 return -ENOMEM;
620 again:
621 recow = 0;
622 split = start;
623 key.objectid = ino;
624 key.type = BTRFS_EXTENT_DATA_KEY;
625 key.offset = split;
626
627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628 if (ret < 0)
629 goto out;
630 if (ret > 0 && path->slots[0] > 0)
631 path->slots[0]--;
632
633 leaf = path->nodes[0];
634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 if (key.objectid != ino ||
636 key.type != BTRFS_EXTENT_DATA_KEY) {
637 ret = -EINVAL;
638 btrfs_abort_transaction(trans, ret);
639 goto out;
640 }
641 fi = btrfs_item_ptr(leaf, path->slots[0],
642 struct btrfs_file_extent_item);
643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 ret = -EINVAL;
645 btrfs_abort_transaction(trans, ret);
646 goto out;
647 }
648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 if (key.offset > start || extent_end < end) {
650 ret = -EINVAL;
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 }
654
655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 memcpy(&new_key, &key, sizeof(new_key));
659
660 if (start == key.offset && end < extent_end) {
661 other_start = 0;
662 other_end = start;
663 if (extent_mergeable(leaf, path->slots[0] - 1,
664 ino, bytenr, orig_offset,
665 &other_start, &other_end)) {
666 new_key.offset = end;
667 btrfs_set_item_key_safe(trans, path, &new_key);
668 fi = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_file_extent_item);
670 btrfs_set_file_extent_generation(leaf, fi,
671 trans->transid);
672 btrfs_set_file_extent_num_bytes(leaf, fi,
673 extent_end - end);
674 btrfs_set_file_extent_offset(leaf, fi,
675 end - orig_offset);
676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 struct btrfs_file_extent_item);
678 btrfs_set_file_extent_generation(leaf, fi,
679 trans->transid);
680 btrfs_set_file_extent_num_bytes(leaf, fi,
681 end - other_start);
682 btrfs_mark_buffer_dirty(trans, leaf);
683 goto out;
684 }
685 }
686
687 if (start > key.offset && end == extent_end) {
688 other_start = end;
689 other_end = 0;
690 if (extent_mergeable(leaf, path->slots[0] + 1,
691 ino, bytenr, orig_offset,
692 &other_start, &other_end)) {
693 fi = btrfs_item_ptr(leaf, path->slots[0],
694 struct btrfs_file_extent_item);
695 btrfs_set_file_extent_num_bytes(leaf, fi,
696 start - key.offset);
697 btrfs_set_file_extent_generation(leaf, fi,
698 trans->transid);
699 path->slots[0]++;
700 new_key.offset = start;
701 btrfs_set_item_key_safe(trans, path, &new_key);
702
703 fi = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_file_extent_item);
705 btrfs_set_file_extent_generation(leaf, fi,
706 trans->transid);
707 btrfs_set_file_extent_num_bytes(leaf, fi,
708 other_end - start);
709 btrfs_set_file_extent_offset(leaf, fi,
710 start - orig_offset);
711 btrfs_mark_buffer_dirty(trans, leaf);
712 goto out;
713 }
714 }
715
716 while (start > key.offset || end < extent_end) {
717 if (key.offset == start)
718 split = end;
719
720 new_key.offset = split;
721 ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 if (ret == -EAGAIN) {
723 btrfs_release_path(path);
724 goto again;
725 }
726 if (ret < 0) {
727 btrfs_abort_transaction(trans, ret);
728 goto out;
729 }
730
731 leaf = path->nodes[0];
732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 struct btrfs_file_extent_item);
734 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 btrfs_set_file_extent_num_bytes(leaf, fi,
736 split - key.offset);
737
738 fi = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
740
741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 btrfs_set_file_extent_num_bytes(leaf, fi,
744 extent_end - split);
745 btrfs_mark_buffer_dirty(trans, leaf);
746
747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 num_bytes, 0);
749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 orig_offset, 0, false);
751 ret = btrfs_inc_extent_ref(trans, &ref);
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
756
757 if (split == start) {
758 key.offset = start;
759 } else {
760 if (start != key.offset) {
761 ret = -EINVAL;
762 btrfs_abort_transaction(trans, ret);
763 goto out;
764 }
765 path->slots[0]--;
766 extent_end = end;
767 }
768 recow = 1;
769 }
770
771 other_start = end;
772 other_end = 0;
773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 num_bytes, 0);
775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 0, false);
777 if (extent_mergeable(leaf, path->slots[0] + 1,
778 ino, bytenr, orig_offset,
779 &other_start, &other_end)) {
780 if (recow) {
781 btrfs_release_path(path);
782 goto again;
783 }
784 extent_end = other_end;
785 del_slot = path->slots[0] + 1;
786 del_nr++;
787 ret = btrfs_free_extent(trans, &ref);
788 if (ret) {
789 btrfs_abort_transaction(trans, ret);
790 goto out;
791 }
792 }
793 other_start = 0;
794 other_end = start;
795 if (extent_mergeable(leaf, path->slots[0] - 1,
796 ino, bytenr, orig_offset,
797 &other_start, &other_end)) {
798 if (recow) {
799 btrfs_release_path(path);
800 goto again;
801 }
802 key.offset = other_start;
803 del_slot = path->slots[0];
804 del_nr++;
805 ret = btrfs_free_extent(trans, &ref);
806 if (ret) {
807 btrfs_abort_transaction(trans, ret);
808 goto out;
809 }
810 }
811 if (del_nr == 0) {
812 fi = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_file_extent_item);
814 btrfs_set_file_extent_type(leaf, fi,
815 BTRFS_FILE_EXTENT_REG);
816 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 btrfs_mark_buffer_dirty(trans, leaf);
818 } else {
819 fi = btrfs_item_ptr(leaf, del_slot - 1,
820 struct btrfs_file_extent_item);
821 btrfs_set_file_extent_type(leaf, fi,
822 BTRFS_FILE_EXTENT_REG);
823 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 btrfs_set_file_extent_num_bytes(leaf, fi,
825 extent_end - key.offset);
826 btrfs_mark_buffer_dirty(trans, leaf);
827
828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829 if (ret < 0) {
830 btrfs_abort_transaction(trans, ret);
831 goto out;
832 }
833 }
834 out:
835 btrfs_free_path(path);
836 return ret;
837 }
838
839 /*
840 * on error we return an unlocked page and the error value
841 * on success we return a locked page and 0
842 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)843 static int prepare_uptodate_page(struct inode *inode,
844 struct page *page, u64 pos,
845 bool force_uptodate)
846 {
847 struct folio *folio = page_folio(page);
848 int ret = 0;
849
850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 !PageUptodate(page)) {
852 ret = btrfs_read_folio(NULL, folio);
853 if (ret)
854 return ret;
855 lock_page(page);
856 if (!PageUptodate(page)) {
857 unlock_page(page);
858 return -EIO;
859 }
860
861 /*
862 * Since btrfs_read_folio() will unlock the folio before it
863 * returns, there is a window where btrfs_release_folio() can be
864 * called to release the page. Here we check both inode
865 * mapping and PagePrivate() to make sure the page was not
866 * released.
867 *
868 * The private flag check is essential for subpage as we need
869 * to store extra bitmap using page->private.
870 */
871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872 unlock_page(page);
873 return -EAGAIN;
874 }
875 }
876 return 0;
877 }
878
get_prepare_fgp_flags(bool nowait)879 static fgf_t get_prepare_fgp_flags(bool nowait)
880 {
881 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882
883 if (nowait)
884 fgp_flags |= FGP_NOWAIT;
885
886 return fgp_flags;
887 }
888
get_prepare_gfp_flags(struct inode * inode,bool nowait)889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890 {
891 gfp_t gfp;
892
893 gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 if (nowait) {
895 gfp &= ~__GFP_DIRECT_RECLAIM;
896 gfp |= GFP_NOWAIT;
897 }
898
899 return gfp;
900 }
901
902 /*
903 * this just gets pages into the page cache and locks them down.
904 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 size_t num_pages, loff_t pos,
907 size_t write_bytes, bool force_uptodate,
908 bool nowait)
909 {
910 int i;
911 unsigned long index = pos >> PAGE_SHIFT;
912 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
914 int err = 0;
915 int faili;
916
917 for (i = 0; i < num_pages; i++) {
918 again:
919 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 fgp_flags, mask | __GFP_WRITE);
921 if (!pages[i]) {
922 faili = i - 1;
923 if (nowait)
924 err = -EAGAIN;
925 else
926 err = -ENOMEM;
927 goto fail;
928 }
929
930 err = set_page_extent_mapped(pages[i]);
931 if (err < 0) {
932 faili = i;
933 goto fail;
934 }
935
936 if (i == 0)
937 err = prepare_uptodate_page(inode, pages[i], pos,
938 force_uptodate);
939 if (!err && i == num_pages - 1)
940 err = prepare_uptodate_page(inode, pages[i],
941 pos + write_bytes, false);
942 if (err) {
943 put_page(pages[i]);
944 if (!nowait && err == -EAGAIN) {
945 err = 0;
946 goto again;
947 }
948 faili = i - 1;
949 goto fail;
950 }
951 wait_on_page_writeback(pages[i]);
952 }
953
954 return 0;
955 fail:
956 while (faili >= 0) {
957 unlock_page(pages[faili]);
958 put_page(pages[faili]);
959 faili--;
960 }
961 return err;
962
963 }
964
965 /*
966 * This function locks the extent and properly waits for data=ordered extents
967 * to finish before allowing the pages to be modified if need.
968 *
969 * The return value:
970 * 1 - the extent is locked
971 * 0 - the extent is not locked, and everything is OK
972 * -EAGAIN - need re-prepare the pages
973 * the other < 0 number - Something wrong happens
974 */
975 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 size_t num_pages, loff_t pos,
978 size_t write_bytes,
979 u64 *lockstart, u64 *lockend, bool nowait,
980 struct extent_state **cached_state)
981 {
982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 u64 start_pos;
984 u64 last_pos;
985 int i;
986 int ret = 0;
987
988 start_pos = round_down(pos, fs_info->sectorsize);
989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990
991 if (start_pos < inode->vfs_inode.i_size) {
992 struct btrfs_ordered_extent *ordered;
993
994 if (nowait) {
995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 cached_state)) {
997 for (i = 0; i < num_pages; i++) {
998 unlock_page(pages[i]);
999 put_page(pages[i]);
1000 pages[i] = NULL;
1001 }
1002
1003 return -EAGAIN;
1004 }
1005 } else {
1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 }
1008
1009 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 last_pos - start_pos + 1);
1011 if (ordered &&
1012 ordered->file_offset + ordered->num_bytes > start_pos &&
1013 ordered->file_offset <= last_pos) {
1014 unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 cached_state);
1016 for (i = 0; i < num_pages; i++) {
1017 unlock_page(pages[i]);
1018 put_page(pages[i]);
1019 }
1020 btrfs_start_ordered_extent(ordered);
1021 btrfs_put_ordered_extent(ordered);
1022 return -EAGAIN;
1023 }
1024 if (ordered)
1025 btrfs_put_ordered_extent(ordered);
1026
1027 *lockstart = start_pos;
1028 *lockend = last_pos;
1029 ret = 1;
1030 }
1031
1032 /*
1033 * We should be called after prepare_pages() which should have locked
1034 * all pages in the range.
1035 */
1036 for (i = 0; i < num_pages; i++)
1037 WARN_ON(!PageLocked(pages[i]));
1038
1039 return ret;
1040 }
1041
1042 /*
1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044 *
1045 * @pos: File offset.
1046 * @write_bytes: The length to write, will be updated to the nocow writeable
1047 * range.
1048 *
1049 * This function will flush ordered extents in the range to ensure proper
1050 * nocow checks.
1051 *
1052 * Return:
1053 * > 0 If we can nocow, and updates @write_bytes.
1054 * 0 If we can't do a nocow write.
1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1056 * root is in progress.
1057 * < 0 If an error happened.
1058 *
1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 size_t *write_bytes, bool nowait)
1063 {
1064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 struct btrfs_root *root = inode->root;
1066 struct extent_state *cached_state = NULL;
1067 u64 lockstart, lockend;
1068 u64 num_bytes;
1069 int ret;
1070
1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 return 0;
1073
1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075 return -EAGAIN;
1076
1077 lockstart = round_down(pos, fs_info->sectorsize);
1078 lockend = round_up(pos + *write_bytes,
1079 fs_info->sectorsize) - 1;
1080 num_bytes = lockend - lockstart + 1;
1081
1082 if (nowait) {
1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 &cached_state)) {
1085 btrfs_drew_write_unlock(&root->snapshot_lock);
1086 return -EAGAIN;
1087 }
1088 } else {
1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 &cached_state);
1091 }
1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 NULL, NULL, NULL, nowait, false);
1094 if (ret <= 0)
1095 btrfs_drew_write_unlock(&root->snapshot_lock);
1096 else
1097 *write_bytes = min_t(size_t, *write_bytes ,
1098 num_bytes - pos + lockstart);
1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100
1101 return ret;
1102 }
1103
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105 {
1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107 }
1108
update_time_for_write(struct inode * inode)1109 static void update_time_for_write(struct inode *inode)
1110 {
1111 struct timespec64 now, ctime;
1112
1113 if (IS_NOCMTIME(inode))
1114 return;
1115
1116 now = current_time(inode);
1117 if (!timespec64_equal(&inode->i_mtime, &now))
1118 inode->i_mtime = now;
1119
1120 ctime = inode_get_ctime(inode);
1121 if (!timespec64_equal(&ctime, &now))
1122 inode_set_ctime_to_ts(inode, now);
1123
1124 if (IS_I_VERSION(inode))
1125 inode_inc_iversion(inode);
1126 }
1127
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1129 size_t count)
1130 {
1131 struct file *file = iocb->ki_filp;
1132 struct inode *inode = file_inode(file);
1133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1134 loff_t pos = iocb->ki_pos;
1135 int ret;
1136 loff_t oldsize;
1137
1138 /*
1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1140 * prealloc flags, as without those flags we always have to COW. We will
1141 * later check if we can really COW into the target range (using
1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1143 */
1144 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1146 return -EAGAIN;
1147
1148 ret = file_remove_privs(file);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * We reserve space for updating the inode when we reserve space for the
1154 * extent we are going to write, so we will enospc out there. We don't
1155 * need to start yet another transaction to update the inode as we will
1156 * update the inode when we finish writing whatever data we write.
1157 */
1158 update_time_for_write(inode);
1159
1160 oldsize = i_size_read(inode);
1161 if (pos > oldsize) {
1162 /* Expand hole size to cover write data, preventing empty gap */
1163 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1164
1165 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1166 if (ret)
1167 return ret;
1168 }
1169
1170 return 0;
1171 }
1172
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1173 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1174 struct iov_iter *i)
1175 {
1176 struct file *file = iocb->ki_filp;
1177 loff_t pos;
1178 struct inode *inode = file_inode(file);
1179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1180 struct page **pages = NULL;
1181 struct extent_changeset *data_reserved = NULL;
1182 u64 release_bytes = 0;
1183 u64 lockstart;
1184 u64 lockend;
1185 size_t num_written = 0;
1186 int nrptrs;
1187 ssize_t ret;
1188 bool only_release_metadata = false;
1189 bool force_page_uptodate = false;
1190 loff_t old_isize = i_size_read(inode);
1191 unsigned int ilock_flags = 0;
1192 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1193 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1194
1195 if (nowait)
1196 ilock_flags |= BTRFS_ILOCK_TRY;
1197
1198 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1199 if (ret < 0)
1200 return ret;
1201
1202 ret = generic_write_checks(iocb, i);
1203 if (ret <= 0)
1204 goto out;
1205
1206 ret = btrfs_write_check(iocb, i, ret);
1207 if (ret < 0)
1208 goto out;
1209
1210 pos = iocb->ki_pos;
1211 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1212 PAGE_SIZE / (sizeof(struct page *)));
1213 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1214 nrptrs = max(nrptrs, 8);
1215 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1216 if (!pages) {
1217 ret = -ENOMEM;
1218 goto out;
1219 }
1220
1221 while (iov_iter_count(i) > 0) {
1222 struct extent_state *cached_state = NULL;
1223 size_t offset = offset_in_page(pos);
1224 size_t sector_offset;
1225 size_t write_bytes = min(iov_iter_count(i),
1226 nrptrs * (size_t)PAGE_SIZE -
1227 offset);
1228 size_t num_pages;
1229 size_t reserve_bytes;
1230 size_t dirty_pages;
1231 size_t copied;
1232 size_t dirty_sectors;
1233 size_t num_sectors;
1234 int extents_locked;
1235
1236 /*
1237 * Fault pages before locking them in prepare_pages
1238 * to avoid recursive lock
1239 */
1240 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1241 ret = -EFAULT;
1242 break;
1243 }
1244
1245 only_release_metadata = false;
1246 sector_offset = pos & (fs_info->sectorsize - 1);
1247
1248 extent_changeset_release(data_reserved);
1249 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1250 &data_reserved, pos,
1251 write_bytes, nowait);
1252 if (ret < 0) {
1253 int can_nocow;
1254
1255 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1256 ret = -EAGAIN;
1257 break;
1258 }
1259
1260 /*
1261 * If we don't have to COW at the offset, reserve
1262 * metadata only. write_bytes may get smaller than
1263 * requested here.
1264 */
1265 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1266 &write_bytes, nowait);
1267 if (can_nocow < 0)
1268 ret = can_nocow;
1269 if (can_nocow > 0)
1270 ret = 0;
1271 if (ret)
1272 break;
1273 only_release_metadata = true;
1274 }
1275
1276 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1277 WARN_ON(num_pages > nrptrs);
1278 reserve_bytes = round_up(write_bytes + sector_offset,
1279 fs_info->sectorsize);
1280 WARN_ON(reserve_bytes == 0);
1281 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1282 reserve_bytes,
1283 reserve_bytes, nowait);
1284 if (ret) {
1285 if (!only_release_metadata)
1286 btrfs_free_reserved_data_space(BTRFS_I(inode),
1287 data_reserved, pos,
1288 write_bytes);
1289 else
1290 btrfs_check_nocow_unlock(BTRFS_I(inode));
1291
1292 if (nowait && ret == -ENOSPC)
1293 ret = -EAGAIN;
1294 break;
1295 }
1296
1297 release_bytes = reserve_bytes;
1298 again:
1299 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1300 if (ret) {
1301 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1302 break;
1303 }
1304
1305 /*
1306 * This is going to setup the pages array with the number of
1307 * pages we want, so we don't really need to worry about the
1308 * contents of pages from loop to loop
1309 */
1310 ret = prepare_pages(inode, pages, num_pages,
1311 pos, write_bytes, force_page_uptodate, false);
1312 if (ret) {
1313 btrfs_delalloc_release_extents(BTRFS_I(inode),
1314 reserve_bytes);
1315 break;
1316 }
1317
1318 extents_locked = lock_and_cleanup_extent_if_need(
1319 BTRFS_I(inode), pages,
1320 num_pages, pos, write_bytes, &lockstart,
1321 &lockend, nowait, &cached_state);
1322 if (extents_locked < 0) {
1323 if (!nowait && extents_locked == -EAGAIN)
1324 goto again;
1325
1326 btrfs_delalloc_release_extents(BTRFS_I(inode),
1327 reserve_bytes);
1328 ret = extents_locked;
1329 break;
1330 }
1331
1332 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1333
1334 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1335 dirty_sectors = round_up(copied + sector_offset,
1336 fs_info->sectorsize);
1337 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1338
1339 /*
1340 * if we have trouble faulting in the pages, fall
1341 * back to one page at a time
1342 */
1343 if (copied < write_bytes)
1344 nrptrs = 1;
1345
1346 if (copied == 0) {
1347 force_page_uptodate = true;
1348 dirty_sectors = 0;
1349 dirty_pages = 0;
1350 } else {
1351 force_page_uptodate = false;
1352 dirty_pages = DIV_ROUND_UP(copied + offset,
1353 PAGE_SIZE);
1354 }
1355
1356 if (num_sectors > dirty_sectors) {
1357 /* release everything except the sectors we dirtied */
1358 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1359 if (only_release_metadata) {
1360 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1361 release_bytes, true);
1362 } else {
1363 u64 __pos;
1364
1365 __pos = round_down(pos,
1366 fs_info->sectorsize) +
1367 (dirty_pages << PAGE_SHIFT);
1368 btrfs_delalloc_release_space(BTRFS_I(inode),
1369 data_reserved, __pos,
1370 release_bytes, true);
1371 }
1372 }
1373
1374 release_bytes = round_up(copied + sector_offset,
1375 fs_info->sectorsize);
1376
1377 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1378 dirty_pages, pos, copied,
1379 &cached_state, only_release_metadata);
1380
1381 /*
1382 * If we have not locked the extent range, because the range's
1383 * start offset is >= i_size, we might still have a non-NULL
1384 * cached extent state, acquired while marking the extent range
1385 * as delalloc through btrfs_dirty_pages(). Therefore free any
1386 * possible cached extent state to avoid a memory leak.
1387 */
1388 if (extents_locked)
1389 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1390 lockend, &cached_state);
1391 else
1392 free_extent_state(cached_state);
1393
1394 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1395 if (ret) {
1396 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1397 break;
1398 }
1399
1400 release_bytes = 0;
1401 if (only_release_metadata)
1402 btrfs_check_nocow_unlock(BTRFS_I(inode));
1403
1404 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1405
1406 cond_resched();
1407
1408 pos += copied;
1409 num_written += copied;
1410 }
1411
1412 kfree(pages);
1413
1414 if (release_bytes) {
1415 if (only_release_metadata) {
1416 btrfs_check_nocow_unlock(BTRFS_I(inode));
1417 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1418 release_bytes, true);
1419 } else {
1420 btrfs_delalloc_release_space(BTRFS_I(inode),
1421 data_reserved,
1422 round_down(pos, fs_info->sectorsize),
1423 release_bytes, true);
1424 }
1425 }
1426
1427 extent_changeset_free(data_reserved);
1428 if (num_written > 0) {
1429 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1430 iocb->ki_pos += num_written;
1431 }
1432 out:
1433 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1434 return num_written ? num_written : ret;
1435 }
1436
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1437 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1438 const struct iov_iter *iter, loff_t offset)
1439 {
1440 const u32 blocksize_mask = fs_info->sectorsize - 1;
1441
1442 if (offset & blocksize_mask)
1443 return -EINVAL;
1444
1445 if (iov_iter_alignment(iter) & blocksize_mask)
1446 return -EINVAL;
1447
1448 return 0;
1449 }
1450
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1451 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1452 {
1453 struct file *file = iocb->ki_filp;
1454 struct inode *inode = file_inode(file);
1455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1456 loff_t pos;
1457 ssize_t written = 0;
1458 ssize_t written_buffered;
1459 size_t prev_left = 0;
1460 loff_t endbyte;
1461 ssize_t err;
1462 unsigned int ilock_flags = 0;
1463 struct iomap_dio *dio;
1464
1465 if (iocb->ki_flags & IOCB_NOWAIT)
1466 ilock_flags |= BTRFS_ILOCK_TRY;
1467
1468 /*
1469 * If the write DIO is within EOF, use a shared lock and also only if
1470 * security bits will likely not be dropped by file_remove_privs() called
1471 * from btrfs_write_check(). Either will need to be rechecked after the
1472 * lock was acquired.
1473 */
1474 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1475 ilock_flags |= BTRFS_ILOCK_SHARED;
1476
1477 relock:
1478 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1479 if (err < 0)
1480 return err;
1481
1482 /* Shared lock cannot be used with security bits set. */
1483 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1484 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1485 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1486 goto relock;
1487 }
1488
1489 err = generic_write_checks(iocb, from);
1490 if (err <= 0) {
1491 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1492 return err;
1493 }
1494
1495 err = btrfs_write_check(iocb, from, err);
1496 if (err < 0) {
1497 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1498 goto out;
1499 }
1500
1501 pos = iocb->ki_pos;
1502 /*
1503 * Re-check since file size may have changed just before taking the
1504 * lock or pos may have changed because of O_APPEND in generic_write_check()
1505 */
1506 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1507 pos + iov_iter_count(from) > i_size_read(inode)) {
1508 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1509 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1510 goto relock;
1511 }
1512
1513 if (check_direct_IO(fs_info, from, pos)) {
1514 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1515 goto buffered;
1516 }
1517
1518 /*
1519 * The iov_iter can be mapped to the same file range we are writing to.
1520 * If that's the case, then we will deadlock in the iomap code, because
1521 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1522 * an ordered extent, and after that it will fault in the pages that the
1523 * iov_iter refers to. During the fault in we end up in the readahead
1524 * pages code (starting at btrfs_readahead()), which will lock the range,
1525 * find that ordered extent and then wait for it to complete (at
1526 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1527 * obviously the ordered extent can never complete as we didn't submit
1528 * yet the respective bio(s). This always happens when the buffer is
1529 * memory mapped to the same file range, since the iomap DIO code always
1530 * invalidates pages in the target file range (after starting and waiting
1531 * for any writeback).
1532 *
1533 * So here we disable page faults in the iov_iter and then retry if we
1534 * got -EFAULT, faulting in the pages before the retry.
1535 */
1536 again:
1537 from->nofault = true;
1538 dio = btrfs_dio_write(iocb, from, written);
1539 from->nofault = false;
1540
1541 if (IS_ERR_OR_NULL(dio)) {
1542 err = PTR_ERR_OR_ZERO(dio);
1543 } else {
1544 /*
1545 * If we have a synchoronous write, we must make sure the fsync
1546 * triggered by the iomap_dio_complete() call below doesn't
1547 * deadlock on the inode lock - we are already holding it and we
1548 * can't call it after unlocking because we may need to complete
1549 * partial writes due to the input buffer (or parts of it) not
1550 * being already faulted in.
1551 */
1552 ASSERT(current->journal_info == NULL);
1553 current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB;
1554 err = iomap_dio_complete(dio);
1555 current->journal_info = NULL;
1556 }
1557
1558 /* No increment (+=) because iomap returns a cumulative value. */
1559 if (err > 0)
1560 written = err;
1561
1562 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1563 const size_t left = iov_iter_count(from);
1564 /*
1565 * We have more data left to write. Try to fault in as many as
1566 * possible of the remainder pages and retry. We do this without
1567 * releasing and locking again the inode, to prevent races with
1568 * truncate.
1569 *
1570 * Also, in case the iov refers to pages in the file range of the
1571 * file we want to write to (due to a mmap), we could enter an
1572 * infinite loop if we retry after faulting the pages in, since
1573 * iomap will invalidate any pages in the range early on, before
1574 * it tries to fault in the pages of the iov. So we keep track of
1575 * how much was left of iov in the previous EFAULT and fallback
1576 * to buffered IO in case we haven't made any progress.
1577 */
1578 if (left == prev_left) {
1579 err = -ENOTBLK;
1580 } else {
1581 fault_in_iov_iter_readable(from, left);
1582 prev_left = left;
1583 goto again;
1584 }
1585 }
1586
1587 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1588
1589 /*
1590 * If 'err' is -ENOTBLK or we have not written all data, then it means
1591 * we must fallback to buffered IO.
1592 */
1593 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1594 goto out;
1595
1596 buffered:
1597 /*
1598 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1599 * it must retry the operation in a context where blocking is acceptable,
1600 * because even if we end up not blocking during the buffered IO attempt
1601 * below, we will block when flushing and waiting for the IO.
1602 */
1603 if (iocb->ki_flags & IOCB_NOWAIT) {
1604 err = -EAGAIN;
1605 goto out;
1606 }
1607
1608 pos = iocb->ki_pos;
1609 written_buffered = btrfs_buffered_write(iocb, from);
1610 if (written_buffered < 0) {
1611 err = written_buffered;
1612 goto out;
1613 }
1614 /*
1615 * Ensure all data is persisted. We want the next direct IO read to be
1616 * able to read what was just written.
1617 */
1618 endbyte = pos + written_buffered - 1;
1619 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1620 if (err)
1621 goto out;
1622 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1623 if (err)
1624 goto out;
1625 written += written_buffered;
1626 iocb->ki_pos = pos + written_buffered;
1627 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1628 endbyte >> PAGE_SHIFT);
1629 out:
1630 return err < 0 ? err : written;
1631 }
1632
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1633 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1634 const struct btrfs_ioctl_encoded_io_args *encoded)
1635 {
1636 struct file *file = iocb->ki_filp;
1637 struct inode *inode = file_inode(file);
1638 loff_t count;
1639 ssize_t ret;
1640
1641 btrfs_inode_lock(BTRFS_I(inode), 0);
1642 count = encoded->len;
1643 ret = generic_write_checks_count(iocb, &count);
1644 if (ret == 0 && count != encoded->len) {
1645 /*
1646 * The write got truncated by generic_write_checks_count(). We
1647 * can't do a partial encoded write.
1648 */
1649 ret = -EFBIG;
1650 }
1651 if (ret || encoded->len == 0)
1652 goto out;
1653
1654 ret = btrfs_write_check(iocb, from, encoded->len);
1655 if (ret < 0)
1656 goto out;
1657
1658 ret = btrfs_do_encoded_write(iocb, from, encoded);
1659 out:
1660 btrfs_inode_unlock(BTRFS_I(inode), 0);
1661 return ret;
1662 }
1663
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1664 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1665 const struct btrfs_ioctl_encoded_io_args *encoded)
1666 {
1667 struct file *file = iocb->ki_filp;
1668 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1669 ssize_t num_written, num_sync;
1670
1671 /*
1672 * If the fs flips readonly due to some impossible error, although we
1673 * have opened a file as writable, we have to stop this write operation
1674 * to ensure consistency.
1675 */
1676 if (BTRFS_FS_ERROR(inode->root->fs_info))
1677 return -EROFS;
1678
1679 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1680 return -EOPNOTSUPP;
1681
1682 if (encoded) {
1683 num_written = btrfs_encoded_write(iocb, from, encoded);
1684 num_sync = encoded->len;
1685 } else if (iocb->ki_flags & IOCB_DIRECT) {
1686 num_written = btrfs_direct_write(iocb, from);
1687 num_sync = num_written;
1688 } else {
1689 num_written = btrfs_buffered_write(iocb, from);
1690 num_sync = num_written;
1691 }
1692
1693 btrfs_set_inode_last_sub_trans(inode);
1694
1695 if (num_sync > 0) {
1696 num_sync = generic_write_sync(iocb, num_sync);
1697 if (num_sync < 0)
1698 num_written = num_sync;
1699 }
1700
1701 return num_written;
1702 }
1703
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1704 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1705 {
1706 return btrfs_do_write_iter(iocb, from, NULL);
1707 }
1708
btrfs_release_file(struct inode * inode,struct file * filp)1709 int btrfs_release_file(struct inode *inode, struct file *filp)
1710 {
1711 struct btrfs_file_private *private = filp->private_data;
1712
1713 if (private) {
1714 kfree(private->filldir_buf);
1715 free_extent_state(private->llseek_cached_state);
1716 kfree(private);
1717 filp->private_data = NULL;
1718 }
1719
1720 /*
1721 * Set by setattr when we are about to truncate a file from a non-zero
1722 * size to a zero size. This tries to flush down new bytes that may
1723 * have been written if the application were using truncate to replace
1724 * a file in place.
1725 */
1726 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1727 &BTRFS_I(inode)->runtime_flags))
1728 filemap_flush(inode->i_mapping);
1729 return 0;
1730 }
1731
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1732 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1733 {
1734 int ret;
1735 struct blk_plug plug;
1736
1737 /*
1738 * This is only called in fsync, which would do synchronous writes, so
1739 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1740 * multiple disks using raid profile, a large IO can be split to
1741 * several segments of stripe length (currently 64K).
1742 */
1743 blk_start_plug(&plug);
1744 ret = btrfs_fdatawrite_range(inode, start, end);
1745 blk_finish_plug(&plug);
1746
1747 return ret;
1748 }
1749
skip_inode_logging(const struct btrfs_log_ctx * ctx)1750 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1751 {
1752 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1753 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1754
1755 if (btrfs_inode_in_log(inode, fs_info->generation) &&
1756 list_empty(&ctx->ordered_extents))
1757 return true;
1758
1759 /*
1760 * If we are doing a fast fsync we can not bail out if the inode's
1761 * last_trans is <= then the last committed transaction, because we only
1762 * update the last_trans of the inode during ordered extent completion,
1763 * and for a fast fsync we don't wait for that, we only wait for the
1764 * writeback to complete.
1765 */
1766 if (inode->last_trans <= fs_info->last_trans_committed &&
1767 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1768 list_empty(&ctx->ordered_extents)))
1769 return true;
1770
1771 return false;
1772 }
1773
1774 /*
1775 * fsync call for both files and directories. This logs the inode into
1776 * the tree log instead of forcing full commits whenever possible.
1777 *
1778 * It needs to call filemap_fdatawait so that all ordered extent updates are
1779 * in the metadata btree are up to date for copying to the log.
1780 *
1781 * It drops the inode mutex before doing the tree log commit. This is an
1782 * important optimization for directories because holding the mutex prevents
1783 * new operations on the dir while we write to disk.
1784 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1785 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1786 {
1787 struct dentry *dentry = file_dentry(file);
1788 struct inode *inode = d_inode(dentry);
1789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1790 struct btrfs_root *root = BTRFS_I(inode)->root;
1791 struct btrfs_trans_handle *trans;
1792 struct btrfs_log_ctx ctx;
1793 int ret = 0, err;
1794 u64 len;
1795 bool full_sync;
1796 bool skip_ilock = false;
1797
1798 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1799 skip_ilock = true;
1800 current->journal_info = NULL;
1801 lockdep_assert_held(&inode->i_rwsem);
1802 }
1803
1804 trace_btrfs_sync_file(file, datasync);
1805
1806 btrfs_init_log_ctx(&ctx, inode);
1807
1808 /*
1809 * Always set the range to a full range, otherwise we can get into
1810 * several problems, from missing file extent items to represent holes
1811 * when not using the NO_HOLES feature, to log tree corruption due to
1812 * races between hole detection during logging and completion of ordered
1813 * extents outside the range, to missing checksums due to ordered extents
1814 * for which we flushed only a subset of their pages.
1815 */
1816 start = 0;
1817 end = LLONG_MAX;
1818 len = (u64)LLONG_MAX + 1;
1819
1820 /*
1821 * We write the dirty pages in the range and wait until they complete
1822 * out of the ->i_mutex. If so, we can flush the dirty pages by
1823 * multi-task, and make the performance up. See
1824 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1825 */
1826 ret = start_ordered_ops(inode, start, end);
1827 if (ret)
1828 goto out;
1829
1830 if (skip_ilock)
1831 down_write(&BTRFS_I(inode)->i_mmap_lock);
1832 else
1833 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1834
1835 atomic_inc(&root->log_batch);
1836
1837 /*
1838 * Before we acquired the inode's lock and the mmap lock, someone may
1839 * have dirtied more pages in the target range. We need to make sure
1840 * that writeback for any such pages does not start while we are logging
1841 * the inode, because if it does, any of the following might happen when
1842 * we are not doing a full inode sync:
1843 *
1844 * 1) We log an extent after its writeback finishes but before its
1845 * checksums are added to the csum tree, leading to -EIO errors
1846 * when attempting to read the extent after a log replay.
1847 *
1848 * 2) We can end up logging an extent before its writeback finishes.
1849 * Therefore after the log replay we will have a file extent item
1850 * pointing to an unwritten extent (and no data checksums as well).
1851 *
1852 * So trigger writeback for any eventual new dirty pages and then we
1853 * wait for all ordered extents to complete below.
1854 */
1855 ret = start_ordered_ops(inode, start, end);
1856 if (ret) {
1857 if (skip_ilock)
1858 up_write(&BTRFS_I(inode)->i_mmap_lock);
1859 else
1860 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1861 goto out;
1862 }
1863
1864 /*
1865 * Always check for the full sync flag while holding the inode's lock,
1866 * to avoid races with other tasks. The flag must be either set all the
1867 * time during logging or always off all the time while logging.
1868 * We check the flag here after starting delalloc above, because when
1869 * running delalloc the full sync flag may be set if we need to drop
1870 * extra extent map ranges due to temporary memory allocation failures.
1871 */
1872 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1873 &BTRFS_I(inode)->runtime_flags);
1874
1875 /*
1876 * We have to do this here to avoid the priority inversion of waiting on
1877 * IO of a lower priority task while holding a transaction open.
1878 *
1879 * For a full fsync we wait for the ordered extents to complete while
1880 * for a fast fsync we wait just for writeback to complete, and then
1881 * attach the ordered extents to the transaction so that a transaction
1882 * commit waits for their completion, to avoid data loss if we fsync,
1883 * the current transaction commits before the ordered extents complete
1884 * and a power failure happens right after that.
1885 *
1886 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1887 * logical address recorded in the ordered extent may change. We need
1888 * to wait for the IO to stabilize the logical address.
1889 */
1890 if (full_sync || btrfs_is_zoned(fs_info)) {
1891 ret = btrfs_wait_ordered_range(inode, start, len);
1892 } else {
1893 /*
1894 * Get our ordered extents as soon as possible to avoid doing
1895 * checksum lookups in the csum tree, and use instead the
1896 * checksums attached to the ordered extents.
1897 */
1898 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1899 &ctx.ordered_extents);
1900 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1901 }
1902
1903 if (ret)
1904 goto out_release_extents;
1905
1906 atomic_inc(&root->log_batch);
1907
1908 smp_mb();
1909 if (skip_inode_logging(&ctx)) {
1910 /*
1911 * We've had everything committed since the last time we were
1912 * modified so clear this flag in case it was set for whatever
1913 * reason, it's no longer relevant.
1914 */
1915 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1916 &BTRFS_I(inode)->runtime_flags);
1917 /*
1918 * An ordered extent might have started before and completed
1919 * already with io errors, in which case the inode was not
1920 * updated and we end up here. So check the inode's mapping
1921 * for any errors that might have happened since we last
1922 * checked called fsync.
1923 */
1924 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1925 goto out_release_extents;
1926 }
1927
1928 /*
1929 * We use start here because we will need to wait on the IO to complete
1930 * in btrfs_sync_log, which could require joining a transaction (for
1931 * example checking cross references in the nocow path). If we use join
1932 * here we could get into a situation where we're waiting on IO to
1933 * happen that is blocked on a transaction trying to commit. With start
1934 * we inc the extwriter counter, so we wait for all extwriters to exit
1935 * before we start blocking joiners. This comment is to keep somebody
1936 * from thinking they are super smart and changing this to
1937 * btrfs_join_transaction *cough*Josef*cough*.
1938 */
1939 trans = btrfs_start_transaction(root, 0);
1940 if (IS_ERR(trans)) {
1941 ret = PTR_ERR(trans);
1942 goto out_release_extents;
1943 }
1944 trans->in_fsync = true;
1945
1946 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1947 btrfs_release_log_ctx_extents(&ctx);
1948 if (ret < 0) {
1949 /* Fallthrough and commit/free transaction. */
1950 ret = BTRFS_LOG_FORCE_COMMIT;
1951 }
1952
1953 /* we've logged all the items and now have a consistent
1954 * version of the file in the log. It is possible that
1955 * someone will come in and modify the file, but that's
1956 * fine because the log is consistent on disk, and we
1957 * have references to all of the file's extents
1958 *
1959 * It is possible that someone will come in and log the
1960 * file again, but that will end up using the synchronization
1961 * inside btrfs_sync_log to keep things safe.
1962 */
1963 if (skip_ilock)
1964 up_write(&BTRFS_I(inode)->i_mmap_lock);
1965 else
1966 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1967
1968 if (ret == BTRFS_NO_LOG_SYNC) {
1969 ret = btrfs_end_transaction(trans);
1970 goto out;
1971 }
1972
1973 /* We successfully logged the inode, attempt to sync the log. */
1974 if (!ret) {
1975 ret = btrfs_sync_log(trans, root, &ctx);
1976 if (!ret) {
1977 ret = btrfs_end_transaction(trans);
1978 goto out;
1979 }
1980 }
1981
1982 /*
1983 * At this point we need to commit the transaction because we had
1984 * btrfs_need_log_full_commit() or some other error.
1985 *
1986 * If we didn't do a full sync we have to stop the trans handle, wait on
1987 * the ordered extents, start it again and commit the transaction. If
1988 * we attempt to wait on the ordered extents here we could deadlock with
1989 * something like fallocate() that is holding the extent lock trying to
1990 * start a transaction while some other thread is trying to commit the
1991 * transaction while we (fsync) are currently holding the transaction
1992 * open.
1993 */
1994 if (!full_sync) {
1995 ret = btrfs_end_transaction(trans);
1996 if (ret)
1997 goto out;
1998 ret = btrfs_wait_ordered_range(inode, start, len);
1999 if (ret)
2000 goto out;
2001
2002 /*
2003 * This is safe to use here because we're only interested in
2004 * making sure the transaction that had the ordered extents is
2005 * committed. We aren't waiting on anything past this point,
2006 * we're purely getting the transaction and committing it.
2007 */
2008 trans = btrfs_attach_transaction_barrier(root);
2009 if (IS_ERR(trans)) {
2010 ret = PTR_ERR(trans);
2011
2012 /*
2013 * We committed the transaction and there's no currently
2014 * running transaction, this means everything we care
2015 * about made it to disk and we are done.
2016 */
2017 if (ret == -ENOENT)
2018 ret = 0;
2019 goto out;
2020 }
2021 }
2022
2023 ret = btrfs_commit_transaction(trans);
2024 out:
2025 ASSERT(list_empty(&ctx.list));
2026 ASSERT(list_empty(&ctx.conflict_inodes));
2027 err = file_check_and_advance_wb_err(file);
2028 if (!ret)
2029 ret = err;
2030 return ret > 0 ? -EIO : ret;
2031
2032 out_release_extents:
2033 btrfs_release_log_ctx_extents(&ctx);
2034 if (skip_ilock)
2035 up_write(&BTRFS_I(inode)->i_mmap_lock);
2036 else
2037 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2038 goto out;
2039 }
2040
2041 static const struct vm_operations_struct btrfs_file_vm_ops = {
2042 .fault = filemap_fault,
2043 .map_pages = filemap_map_pages,
2044 .page_mkwrite = btrfs_page_mkwrite,
2045 };
2046
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2047 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2048 {
2049 struct address_space *mapping = filp->f_mapping;
2050
2051 if (!mapping->a_ops->read_folio)
2052 return -ENOEXEC;
2053
2054 file_accessed(filp);
2055 vma->vm_ops = &btrfs_file_vm_ops;
2056
2057 return 0;
2058 }
2059
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2060 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2061 int slot, u64 start, u64 end)
2062 {
2063 struct btrfs_file_extent_item *fi;
2064 struct btrfs_key key;
2065
2066 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2067 return 0;
2068
2069 btrfs_item_key_to_cpu(leaf, &key, slot);
2070 if (key.objectid != btrfs_ino(inode) ||
2071 key.type != BTRFS_EXTENT_DATA_KEY)
2072 return 0;
2073
2074 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2075
2076 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2077 return 0;
2078
2079 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2080 return 0;
2081
2082 if (key.offset == end)
2083 return 1;
2084 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2085 return 1;
2086 return 0;
2087 }
2088
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2089 static int fill_holes(struct btrfs_trans_handle *trans,
2090 struct btrfs_inode *inode,
2091 struct btrfs_path *path, u64 offset, u64 end)
2092 {
2093 struct btrfs_fs_info *fs_info = trans->fs_info;
2094 struct btrfs_root *root = inode->root;
2095 struct extent_buffer *leaf;
2096 struct btrfs_file_extent_item *fi;
2097 struct extent_map *hole_em;
2098 struct btrfs_key key;
2099 int ret;
2100
2101 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2102 goto out;
2103
2104 key.objectid = btrfs_ino(inode);
2105 key.type = BTRFS_EXTENT_DATA_KEY;
2106 key.offset = offset;
2107
2108 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2109 if (ret <= 0) {
2110 /*
2111 * We should have dropped this offset, so if we find it then
2112 * something has gone horribly wrong.
2113 */
2114 if (ret == 0)
2115 ret = -EINVAL;
2116 return ret;
2117 }
2118
2119 leaf = path->nodes[0];
2120 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2121 u64 num_bytes;
2122
2123 path->slots[0]--;
2124 fi = btrfs_item_ptr(leaf, path->slots[0],
2125 struct btrfs_file_extent_item);
2126 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2127 end - offset;
2128 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2129 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2130 btrfs_set_file_extent_offset(leaf, fi, 0);
2131 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2132 btrfs_mark_buffer_dirty(trans, leaf);
2133 goto out;
2134 }
2135
2136 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2137 u64 num_bytes;
2138
2139 key.offset = offset;
2140 btrfs_set_item_key_safe(trans, path, &key);
2141 fi = btrfs_item_ptr(leaf, path->slots[0],
2142 struct btrfs_file_extent_item);
2143 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2144 offset;
2145 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2146 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2147 btrfs_set_file_extent_offset(leaf, fi, 0);
2148 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2149 btrfs_mark_buffer_dirty(trans, leaf);
2150 goto out;
2151 }
2152 btrfs_release_path(path);
2153
2154 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2155 end - offset);
2156 if (ret)
2157 return ret;
2158
2159 out:
2160 btrfs_release_path(path);
2161
2162 hole_em = alloc_extent_map();
2163 if (!hole_em) {
2164 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2165 btrfs_set_inode_full_sync(inode);
2166 } else {
2167 hole_em->start = offset;
2168 hole_em->len = end - offset;
2169 hole_em->ram_bytes = hole_em->len;
2170 hole_em->orig_start = offset;
2171
2172 hole_em->block_start = EXTENT_MAP_HOLE;
2173 hole_em->block_len = 0;
2174 hole_em->orig_block_len = 0;
2175 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2176 hole_em->generation = trans->transid;
2177
2178 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2179 free_extent_map(hole_em);
2180 if (ret)
2181 btrfs_set_inode_full_sync(inode);
2182 }
2183
2184 return 0;
2185 }
2186
2187 /*
2188 * Find a hole extent on given inode and change start/len to the end of hole
2189 * extent.(hole/vacuum extent whose em->start <= start &&
2190 * em->start + em->len > start)
2191 * When a hole extent is found, return 1 and modify start/len.
2192 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2193 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2194 {
2195 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2196 struct extent_map *em;
2197 int ret = 0;
2198
2199 em = btrfs_get_extent(inode, NULL, 0,
2200 round_down(*start, fs_info->sectorsize),
2201 round_up(*len, fs_info->sectorsize));
2202 if (IS_ERR(em))
2203 return PTR_ERR(em);
2204
2205 /* Hole or vacuum extent(only exists in no-hole mode) */
2206 if (em->block_start == EXTENT_MAP_HOLE) {
2207 ret = 1;
2208 *len = em->start + em->len > *start + *len ?
2209 0 : *start + *len - em->start - em->len;
2210 *start = em->start + em->len;
2211 }
2212 free_extent_map(em);
2213 return ret;
2214 }
2215
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2216 static void btrfs_punch_hole_lock_range(struct inode *inode,
2217 const u64 lockstart,
2218 const u64 lockend,
2219 struct extent_state **cached_state)
2220 {
2221 /*
2222 * For subpage case, if the range is not at page boundary, we could
2223 * have pages at the leading/tailing part of the range.
2224 * This could lead to dead loop since filemap_range_has_page()
2225 * will always return true.
2226 * So here we need to do extra page alignment for
2227 * filemap_range_has_page().
2228 *
2229 * And do not decrease page_lockend right now, as it can be 0.
2230 */
2231 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2232 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE);
2233
2234 while (1) {
2235 truncate_pagecache_range(inode, lockstart, lockend);
2236
2237 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2238 cached_state);
2239 /* The same page or adjacent pages. */
2240 if (page_lockend <= page_lockstart)
2241 break;
2242 /*
2243 * We can't have ordered extents in the range, nor dirty/writeback
2244 * pages, because we have locked the inode's VFS lock in exclusive
2245 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2246 * we have flushed all delalloc in the range and we have waited
2247 * for any ordered extents in the range to complete.
2248 * We can race with anyone reading pages from this range, so after
2249 * locking the range check if we have pages in the range, and if
2250 * we do, unlock the range and retry.
2251 */
2252 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2253 page_lockend - 1))
2254 break;
2255
2256 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2257 cached_state);
2258 }
2259
2260 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2261 }
2262
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2263 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2264 struct btrfs_inode *inode,
2265 struct btrfs_path *path,
2266 struct btrfs_replace_extent_info *extent_info,
2267 const u64 replace_len,
2268 const u64 bytes_to_drop)
2269 {
2270 struct btrfs_fs_info *fs_info = trans->fs_info;
2271 struct btrfs_root *root = inode->root;
2272 struct btrfs_file_extent_item *extent;
2273 struct extent_buffer *leaf;
2274 struct btrfs_key key;
2275 int slot;
2276 struct btrfs_ref ref = { 0 };
2277 int ret;
2278
2279 if (replace_len == 0)
2280 return 0;
2281
2282 if (extent_info->disk_offset == 0 &&
2283 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2284 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2285 return 0;
2286 }
2287
2288 key.objectid = btrfs_ino(inode);
2289 key.type = BTRFS_EXTENT_DATA_KEY;
2290 key.offset = extent_info->file_offset;
2291 ret = btrfs_insert_empty_item(trans, root, path, &key,
2292 sizeof(struct btrfs_file_extent_item));
2293 if (ret)
2294 return ret;
2295 leaf = path->nodes[0];
2296 slot = path->slots[0];
2297 write_extent_buffer(leaf, extent_info->extent_buf,
2298 btrfs_item_ptr_offset(leaf, slot),
2299 sizeof(struct btrfs_file_extent_item));
2300 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2301 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2302 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2303 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2304 if (extent_info->is_new_extent)
2305 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2306 btrfs_mark_buffer_dirty(trans, leaf);
2307 btrfs_release_path(path);
2308
2309 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2310 replace_len);
2311 if (ret)
2312 return ret;
2313
2314 /* If it's a hole, nothing more needs to be done. */
2315 if (extent_info->disk_offset == 0) {
2316 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2317 return 0;
2318 }
2319
2320 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2321
2322 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2323 key.objectid = extent_info->disk_offset;
2324 key.type = BTRFS_EXTENT_ITEM_KEY;
2325 key.offset = extent_info->disk_len;
2326 ret = btrfs_alloc_reserved_file_extent(trans, root,
2327 btrfs_ino(inode),
2328 extent_info->file_offset,
2329 extent_info->qgroup_reserved,
2330 &key);
2331 } else {
2332 u64 ref_offset;
2333
2334 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2335 extent_info->disk_offset,
2336 extent_info->disk_len, 0);
2337 ref_offset = extent_info->file_offset - extent_info->data_offset;
2338 btrfs_init_data_ref(&ref, root->root_key.objectid,
2339 btrfs_ino(inode), ref_offset, 0, false);
2340 ret = btrfs_inc_extent_ref(trans, &ref);
2341 }
2342
2343 extent_info->insertions++;
2344
2345 return ret;
2346 }
2347
2348 /*
2349 * The respective range must have been previously locked, as well as the inode.
2350 * The end offset is inclusive (last byte of the range).
2351 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2352 * the file range with an extent.
2353 * When not punching a hole, we don't want to end up in a state where we dropped
2354 * extents without inserting a new one, so we must abort the transaction to avoid
2355 * a corruption.
2356 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2357 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2358 struct btrfs_path *path, const u64 start,
2359 const u64 end,
2360 struct btrfs_replace_extent_info *extent_info,
2361 struct btrfs_trans_handle **trans_out)
2362 {
2363 struct btrfs_drop_extents_args drop_args = { 0 };
2364 struct btrfs_root *root = inode->root;
2365 struct btrfs_fs_info *fs_info = root->fs_info;
2366 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2367 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2368 struct btrfs_trans_handle *trans = NULL;
2369 struct btrfs_block_rsv *rsv;
2370 unsigned int rsv_count;
2371 u64 cur_offset;
2372 u64 len = end - start;
2373 int ret = 0;
2374
2375 if (end <= start)
2376 return -EINVAL;
2377
2378 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2379 if (!rsv) {
2380 ret = -ENOMEM;
2381 goto out;
2382 }
2383 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2384 rsv->failfast = true;
2385
2386 /*
2387 * 1 - update the inode
2388 * 1 - removing the extents in the range
2389 * 1 - adding the hole extent if no_holes isn't set or if we are
2390 * replacing the range with a new extent
2391 */
2392 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2393 rsv_count = 3;
2394 else
2395 rsv_count = 2;
2396
2397 trans = btrfs_start_transaction(root, rsv_count);
2398 if (IS_ERR(trans)) {
2399 ret = PTR_ERR(trans);
2400 trans = NULL;
2401 goto out_free;
2402 }
2403
2404 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2405 min_size, false);
2406 if (WARN_ON(ret))
2407 goto out_trans;
2408 trans->block_rsv = rsv;
2409
2410 cur_offset = start;
2411 drop_args.path = path;
2412 drop_args.end = end + 1;
2413 drop_args.drop_cache = true;
2414 while (cur_offset < end) {
2415 drop_args.start = cur_offset;
2416 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2417 /* If we are punching a hole decrement the inode's byte count */
2418 if (!extent_info)
2419 btrfs_update_inode_bytes(inode, 0,
2420 drop_args.bytes_found);
2421 if (ret != -ENOSPC) {
2422 /*
2423 * The only time we don't want to abort is if we are
2424 * attempting to clone a partial inline extent, in which
2425 * case we'll get EOPNOTSUPP. However if we aren't
2426 * clone we need to abort no matter what, because if we
2427 * got EOPNOTSUPP via prealloc then we messed up and
2428 * need to abort.
2429 */
2430 if (ret &&
2431 (ret != -EOPNOTSUPP ||
2432 (extent_info && extent_info->is_new_extent)))
2433 btrfs_abort_transaction(trans, ret);
2434 break;
2435 }
2436
2437 trans->block_rsv = &fs_info->trans_block_rsv;
2438
2439 if (!extent_info && cur_offset < drop_args.drop_end &&
2440 cur_offset < ino_size) {
2441 ret = fill_holes(trans, inode, path, cur_offset,
2442 drop_args.drop_end);
2443 if (ret) {
2444 /*
2445 * If we failed then we didn't insert our hole
2446 * entries for the area we dropped, so now the
2447 * fs is corrupted, so we must abort the
2448 * transaction.
2449 */
2450 btrfs_abort_transaction(trans, ret);
2451 break;
2452 }
2453 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2454 /*
2455 * We are past the i_size here, but since we didn't
2456 * insert holes we need to clear the mapped area so we
2457 * know to not set disk_i_size in this area until a new
2458 * file extent is inserted here.
2459 */
2460 ret = btrfs_inode_clear_file_extent_range(inode,
2461 cur_offset,
2462 drop_args.drop_end - cur_offset);
2463 if (ret) {
2464 /*
2465 * We couldn't clear our area, so we could
2466 * presumably adjust up and corrupt the fs, so
2467 * we need to abort.
2468 */
2469 btrfs_abort_transaction(trans, ret);
2470 break;
2471 }
2472 }
2473
2474 if (extent_info &&
2475 drop_args.drop_end > extent_info->file_offset) {
2476 u64 replace_len = drop_args.drop_end -
2477 extent_info->file_offset;
2478
2479 ret = btrfs_insert_replace_extent(trans, inode, path,
2480 extent_info, replace_len,
2481 drop_args.bytes_found);
2482 if (ret) {
2483 btrfs_abort_transaction(trans, ret);
2484 break;
2485 }
2486 extent_info->data_len -= replace_len;
2487 extent_info->data_offset += replace_len;
2488 extent_info->file_offset += replace_len;
2489 }
2490
2491 /*
2492 * We are releasing our handle on the transaction, balance the
2493 * dirty pages of the btree inode and flush delayed items, and
2494 * then get a new transaction handle, which may now point to a
2495 * new transaction in case someone else may have committed the
2496 * transaction we used to replace/drop file extent items. So
2497 * bump the inode's iversion and update mtime and ctime except
2498 * if we are called from a dedupe context. This is because a
2499 * power failure/crash may happen after the transaction is
2500 * committed and before we finish replacing/dropping all the
2501 * file extent items we need.
2502 */
2503 inode_inc_iversion(&inode->vfs_inode);
2504
2505 if (!extent_info || extent_info->update_times)
2506 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2507
2508 ret = btrfs_update_inode(trans, root, inode);
2509 if (ret)
2510 break;
2511
2512 btrfs_end_transaction(trans);
2513 btrfs_btree_balance_dirty(fs_info);
2514
2515 trans = btrfs_start_transaction(root, rsv_count);
2516 if (IS_ERR(trans)) {
2517 ret = PTR_ERR(trans);
2518 trans = NULL;
2519 break;
2520 }
2521
2522 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2523 rsv, min_size, false);
2524 if (WARN_ON(ret))
2525 break;
2526 trans->block_rsv = rsv;
2527
2528 cur_offset = drop_args.drop_end;
2529 len = end - cur_offset;
2530 if (!extent_info && len) {
2531 ret = find_first_non_hole(inode, &cur_offset, &len);
2532 if (unlikely(ret < 0))
2533 break;
2534 if (ret && !len) {
2535 ret = 0;
2536 break;
2537 }
2538 }
2539 }
2540
2541 /*
2542 * If we were cloning, force the next fsync to be a full one since we
2543 * we replaced (or just dropped in the case of cloning holes when
2544 * NO_HOLES is enabled) file extent items and did not setup new extent
2545 * maps for the replacement extents (or holes).
2546 */
2547 if (extent_info && !extent_info->is_new_extent)
2548 btrfs_set_inode_full_sync(inode);
2549
2550 if (ret)
2551 goto out_trans;
2552
2553 trans->block_rsv = &fs_info->trans_block_rsv;
2554 /*
2555 * If we are using the NO_HOLES feature we might have had already an
2556 * hole that overlaps a part of the region [lockstart, lockend] and
2557 * ends at (or beyond) lockend. Since we have no file extent items to
2558 * represent holes, drop_end can be less than lockend and so we must
2559 * make sure we have an extent map representing the existing hole (the
2560 * call to __btrfs_drop_extents() might have dropped the existing extent
2561 * map representing the existing hole), otherwise the fast fsync path
2562 * will not record the existence of the hole region
2563 * [existing_hole_start, lockend].
2564 */
2565 if (drop_args.drop_end <= end)
2566 drop_args.drop_end = end + 1;
2567 /*
2568 * Don't insert file hole extent item if it's for a range beyond eof
2569 * (because it's useless) or if it represents a 0 bytes range (when
2570 * cur_offset == drop_end).
2571 */
2572 if (!extent_info && cur_offset < ino_size &&
2573 cur_offset < drop_args.drop_end) {
2574 ret = fill_holes(trans, inode, path, cur_offset,
2575 drop_args.drop_end);
2576 if (ret) {
2577 /* Same comment as above. */
2578 btrfs_abort_transaction(trans, ret);
2579 goto out_trans;
2580 }
2581 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2582 /* See the comment in the loop above for the reasoning here. */
2583 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2584 drop_args.drop_end - cur_offset);
2585 if (ret) {
2586 btrfs_abort_transaction(trans, ret);
2587 goto out_trans;
2588 }
2589
2590 }
2591 if (extent_info) {
2592 ret = btrfs_insert_replace_extent(trans, inode, path,
2593 extent_info, extent_info->data_len,
2594 drop_args.bytes_found);
2595 if (ret) {
2596 btrfs_abort_transaction(trans, ret);
2597 goto out_trans;
2598 }
2599 }
2600
2601 out_trans:
2602 if (!trans)
2603 goto out_free;
2604
2605 trans->block_rsv = &fs_info->trans_block_rsv;
2606 if (ret)
2607 btrfs_end_transaction(trans);
2608 else
2609 *trans_out = trans;
2610 out_free:
2611 btrfs_free_block_rsv(fs_info, rsv);
2612 out:
2613 return ret;
2614 }
2615
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2616 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2617 {
2618 struct inode *inode = file_inode(file);
2619 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2620 struct btrfs_root *root = BTRFS_I(inode)->root;
2621 struct extent_state *cached_state = NULL;
2622 struct btrfs_path *path;
2623 struct btrfs_trans_handle *trans = NULL;
2624 u64 lockstart;
2625 u64 lockend;
2626 u64 tail_start;
2627 u64 tail_len;
2628 u64 orig_start = offset;
2629 int ret = 0;
2630 bool same_block;
2631 u64 ino_size;
2632 bool truncated_block = false;
2633 bool updated_inode = false;
2634
2635 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2636
2637 ret = btrfs_wait_ordered_range(inode, offset, len);
2638 if (ret)
2639 goto out_only_mutex;
2640
2641 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2642 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2643 if (ret < 0)
2644 goto out_only_mutex;
2645 if (ret && !len) {
2646 /* Already in a large hole */
2647 ret = 0;
2648 goto out_only_mutex;
2649 }
2650
2651 ret = file_modified(file);
2652 if (ret)
2653 goto out_only_mutex;
2654
2655 lockstart = round_up(offset, fs_info->sectorsize);
2656 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2657 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2658 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2659 /*
2660 * We needn't truncate any block which is beyond the end of the file
2661 * because we are sure there is no data there.
2662 */
2663 /*
2664 * Only do this if we are in the same block and we aren't doing the
2665 * entire block.
2666 */
2667 if (same_block && len < fs_info->sectorsize) {
2668 if (offset < ino_size) {
2669 truncated_block = true;
2670 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2671 0);
2672 } else {
2673 ret = 0;
2674 }
2675 goto out_only_mutex;
2676 }
2677
2678 /* zero back part of the first block */
2679 if (offset < ino_size) {
2680 truncated_block = true;
2681 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2682 if (ret) {
2683 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2684 return ret;
2685 }
2686 }
2687
2688 /* Check the aligned pages after the first unaligned page,
2689 * if offset != orig_start, which means the first unaligned page
2690 * including several following pages are already in holes,
2691 * the extra check can be skipped */
2692 if (offset == orig_start) {
2693 /* after truncate page, check hole again */
2694 len = offset + len - lockstart;
2695 offset = lockstart;
2696 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2697 if (ret < 0)
2698 goto out_only_mutex;
2699 if (ret && !len) {
2700 ret = 0;
2701 goto out_only_mutex;
2702 }
2703 lockstart = offset;
2704 }
2705
2706 /* Check the tail unaligned part is in a hole */
2707 tail_start = lockend + 1;
2708 tail_len = offset + len - tail_start;
2709 if (tail_len) {
2710 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2711 if (unlikely(ret < 0))
2712 goto out_only_mutex;
2713 if (!ret) {
2714 /* zero the front end of the last page */
2715 if (tail_start + tail_len < ino_size) {
2716 truncated_block = true;
2717 ret = btrfs_truncate_block(BTRFS_I(inode),
2718 tail_start + tail_len,
2719 0, 1);
2720 if (ret)
2721 goto out_only_mutex;
2722 }
2723 }
2724 }
2725
2726 if (lockend < lockstart) {
2727 ret = 0;
2728 goto out_only_mutex;
2729 }
2730
2731 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2732
2733 path = btrfs_alloc_path();
2734 if (!path) {
2735 ret = -ENOMEM;
2736 goto out;
2737 }
2738
2739 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2740 lockend, NULL, &trans);
2741 btrfs_free_path(path);
2742 if (ret)
2743 goto out;
2744
2745 ASSERT(trans != NULL);
2746 inode_inc_iversion(inode);
2747 inode->i_mtime = inode_set_ctime_current(inode);
2748 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2749 updated_inode = true;
2750 btrfs_end_transaction(trans);
2751 btrfs_btree_balance_dirty(fs_info);
2752 out:
2753 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2754 &cached_state);
2755 out_only_mutex:
2756 if (!updated_inode && truncated_block && !ret) {
2757 /*
2758 * If we only end up zeroing part of a page, we still need to
2759 * update the inode item, so that all the time fields are
2760 * updated as well as the necessary btrfs inode in memory fields
2761 * for detecting, at fsync time, if the inode isn't yet in the
2762 * log tree or it's there but not up to date.
2763 */
2764 struct timespec64 now = inode_set_ctime_current(inode);
2765
2766 inode_inc_iversion(inode);
2767 inode->i_mtime = now;
2768 trans = btrfs_start_transaction(root, 1);
2769 if (IS_ERR(trans)) {
2770 ret = PTR_ERR(trans);
2771 } else {
2772 int ret2;
2773
2774 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2775 ret2 = btrfs_end_transaction(trans);
2776 if (!ret)
2777 ret = ret2;
2778 }
2779 }
2780 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2781 return ret;
2782 }
2783
2784 /* Helper structure to record which range is already reserved */
2785 struct falloc_range {
2786 struct list_head list;
2787 u64 start;
2788 u64 len;
2789 };
2790
2791 /*
2792 * Helper function to add falloc range
2793 *
2794 * Caller should have locked the larger range of extent containing
2795 * [start, len)
2796 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2797 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2798 {
2799 struct falloc_range *range = NULL;
2800
2801 if (!list_empty(head)) {
2802 /*
2803 * As fallocate iterates by bytenr order, we only need to check
2804 * the last range.
2805 */
2806 range = list_last_entry(head, struct falloc_range, list);
2807 if (range->start + range->len == start) {
2808 range->len += len;
2809 return 0;
2810 }
2811 }
2812
2813 range = kmalloc(sizeof(*range), GFP_KERNEL);
2814 if (!range)
2815 return -ENOMEM;
2816 range->start = start;
2817 range->len = len;
2818 list_add_tail(&range->list, head);
2819 return 0;
2820 }
2821
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2822 static int btrfs_fallocate_update_isize(struct inode *inode,
2823 const u64 end,
2824 const int mode)
2825 {
2826 struct btrfs_trans_handle *trans;
2827 struct btrfs_root *root = BTRFS_I(inode)->root;
2828 int ret;
2829 int ret2;
2830
2831 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2832 return 0;
2833
2834 trans = btrfs_start_transaction(root, 1);
2835 if (IS_ERR(trans))
2836 return PTR_ERR(trans);
2837
2838 inode_set_ctime_current(inode);
2839 i_size_write(inode, end);
2840 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2841 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2842 ret2 = btrfs_end_transaction(trans);
2843
2844 return ret ? ret : ret2;
2845 }
2846
2847 enum {
2848 RANGE_BOUNDARY_WRITTEN_EXTENT,
2849 RANGE_BOUNDARY_PREALLOC_EXTENT,
2850 RANGE_BOUNDARY_HOLE,
2851 };
2852
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2853 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2854 u64 offset)
2855 {
2856 const u64 sectorsize = inode->root->fs_info->sectorsize;
2857 struct extent_map *em;
2858 int ret;
2859
2860 offset = round_down(offset, sectorsize);
2861 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2862 if (IS_ERR(em))
2863 return PTR_ERR(em);
2864
2865 if (em->block_start == EXTENT_MAP_HOLE)
2866 ret = RANGE_BOUNDARY_HOLE;
2867 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2868 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2869 else
2870 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2871
2872 free_extent_map(em);
2873 return ret;
2874 }
2875
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2876 static int btrfs_zero_range(struct inode *inode,
2877 loff_t offset,
2878 loff_t len,
2879 const int mode)
2880 {
2881 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2882 struct extent_map *em;
2883 struct extent_changeset *data_reserved = NULL;
2884 int ret;
2885 u64 alloc_hint = 0;
2886 const u64 sectorsize = fs_info->sectorsize;
2887 u64 alloc_start = round_down(offset, sectorsize);
2888 u64 alloc_end = round_up(offset + len, sectorsize);
2889 u64 bytes_to_reserve = 0;
2890 bool space_reserved = false;
2891
2892 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2893 alloc_end - alloc_start);
2894 if (IS_ERR(em)) {
2895 ret = PTR_ERR(em);
2896 goto out;
2897 }
2898
2899 /*
2900 * Avoid hole punching and extent allocation for some cases. More cases
2901 * could be considered, but these are unlikely common and we keep things
2902 * as simple as possible for now. Also, intentionally, if the target
2903 * range contains one or more prealloc extents together with regular
2904 * extents and holes, we drop all the existing extents and allocate a
2905 * new prealloc extent, so that we get a larger contiguous disk extent.
2906 */
2907 if (em->start <= alloc_start &&
2908 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2909 const u64 em_end = em->start + em->len;
2910
2911 if (em_end >= offset + len) {
2912 /*
2913 * The whole range is already a prealloc extent,
2914 * do nothing except updating the inode's i_size if
2915 * needed.
2916 */
2917 free_extent_map(em);
2918 ret = btrfs_fallocate_update_isize(inode, offset + len,
2919 mode);
2920 goto out;
2921 }
2922 /*
2923 * Part of the range is already a prealloc extent, so operate
2924 * only on the remaining part of the range.
2925 */
2926 alloc_start = em_end;
2927 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2928 len = offset + len - alloc_start;
2929 offset = alloc_start;
2930 alloc_hint = em->block_start + em->len;
2931 }
2932 free_extent_map(em);
2933
2934 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2935 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2936 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2937 sectorsize);
2938 if (IS_ERR(em)) {
2939 ret = PTR_ERR(em);
2940 goto out;
2941 }
2942
2943 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2944 free_extent_map(em);
2945 ret = btrfs_fallocate_update_isize(inode, offset + len,
2946 mode);
2947 goto out;
2948 }
2949 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2950 free_extent_map(em);
2951 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2952 0);
2953 if (!ret)
2954 ret = btrfs_fallocate_update_isize(inode,
2955 offset + len,
2956 mode);
2957 return ret;
2958 }
2959 free_extent_map(em);
2960 alloc_start = round_down(offset, sectorsize);
2961 alloc_end = alloc_start + sectorsize;
2962 goto reserve_space;
2963 }
2964
2965 alloc_start = round_up(offset, sectorsize);
2966 alloc_end = round_down(offset + len, sectorsize);
2967
2968 /*
2969 * For unaligned ranges, check the pages at the boundaries, they might
2970 * map to an extent, in which case we need to partially zero them, or
2971 * they might map to a hole, in which case we need our allocation range
2972 * to cover them.
2973 */
2974 if (!IS_ALIGNED(offset, sectorsize)) {
2975 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2976 offset);
2977 if (ret < 0)
2978 goto out;
2979 if (ret == RANGE_BOUNDARY_HOLE) {
2980 alloc_start = round_down(offset, sectorsize);
2981 ret = 0;
2982 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2983 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2984 if (ret)
2985 goto out;
2986 } else {
2987 ret = 0;
2988 }
2989 }
2990
2991 if (!IS_ALIGNED(offset + len, sectorsize)) {
2992 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2993 offset + len);
2994 if (ret < 0)
2995 goto out;
2996 if (ret == RANGE_BOUNDARY_HOLE) {
2997 alloc_end = round_up(offset + len, sectorsize);
2998 ret = 0;
2999 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3000 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3001 0, 1);
3002 if (ret)
3003 goto out;
3004 } else {
3005 ret = 0;
3006 }
3007 }
3008
3009 reserve_space:
3010 if (alloc_start < alloc_end) {
3011 struct extent_state *cached_state = NULL;
3012 const u64 lockstart = alloc_start;
3013 const u64 lockend = alloc_end - 1;
3014
3015 bytes_to_reserve = alloc_end - alloc_start;
3016 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3017 bytes_to_reserve);
3018 if (ret < 0)
3019 goto out;
3020 space_reserved = true;
3021 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3022 &cached_state);
3023 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3024 alloc_start, bytes_to_reserve);
3025 if (ret) {
3026 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3027 lockend, &cached_state);
3028 goto out;
3029 }
3030 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3031 alloc_end - alloc_start,
3032 i_blocksize(inode),
3033 offset + len, &alloc_hint);
3034 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3035 &cached_state);
3036 /* btrfs_prealloc_file_range releases reserved space on error */
3037 if (ret) {
3038 space_reserved = false;
3039 goto out;
3040 }
3041 }
3042 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3043 out:
3044 if (ret && space_reserved)
3045 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3046 alloc_start, bytes_to_reserve);
3047 extent_changeset_free(data_reserved);
3048
3049 return ret;
3050 }
3051
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3052 static long btrfs_fallocate(struct file *file, int mode,
3053 loff_t offset, loff_t len)
3054 {
3055 struct inode *inode = file_inode(file);
3056 struct extent_state *cached_state = NULL;
3057 struct extent_changeset *data_reserved = NULL;
3058 struct falloc_range *range;
3059 struct falloc_range *tmp;
3060 LIST_HEAD(reserve_list);
3061 u64 cur_offset;
3062 u64 last_byte;
3063 u64 alloc_start;
3064 u64 alloc_end;
3065 u64 alloc_hint = 0;
3066 u64 locked_end;
3067 u64 actual_end = 0;
3068 u64 data_space_needed = 0;
3069 u64 data_space_reserved = 0;
3070 u64 qgroup_reserved = 0;
3071 struct extent_map *em;
3072 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3073 int ret;
3074
3075 /* Do not allow fallocate in ZONED mode */
3076 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3077 return -EOPNOTSUPP;
3078
3079 alloc_start = round_down(offset, blocksize);
3080 alloc_end = round_up(offset + len, blocksize);
3081 cur_offset = alloc_start;
3082
3083 /* Make sure we aren't being give some crap mode */
3084 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3085 FALLOC_FL_ZERO_RANGE))
3086 return -EOPNOTSUPP;
3087
3088 if (mode & FALLOC_FL_PUNCH_HOLE)
3089 return btrfs_punch_hole(file, offset, len);
3090
3091 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3092
3093 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3094 ret = inode_newsize_ok(inode, offset + len);
3095 if (ret)
3096 goto out;
3097 }
3098
3099 ret = file_modified(file);
3100 if (ret)
3101 goto out;
3102
3103 /*
3104 * TODO: Move these two operations after we have checked
3105 * accurate reserved space, or fallocate can still fail but
3106 * with page truncated or size expanded.
3107 *
3108 * But that's a minor problem and won't do much harm BTW.
3109 */
3110 if (alloc_start > inode->i_size) {
3111 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3112 alloc_start);
3113 if (ret)
3114 goto out;
3115 } else if (offset + len > inode->i_size) {
3116 /*
3117 * If we are fallocating from the end of the file onward we
3118 * need to zero out the end of the block if i_size lands in the
3119 * middle of a block.
3120 */
3121 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3122 if (ret)
3123 goto out;
3124 }
3125
3126 /*
3127 * We have locked the inode at the VFS level (in exclusive mode) and we
3128 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3129 * locking the file range, flush all dealloc in the range and wait for
3130 * all ordered extents in the range to complete. After this we can lock
3131 * the file range and, due to the previous locking we did, we know there
3132 * can't be more delalloc or ordered extents in the range.
3133 */
3134 ret = btrfs_wait_ordered_range(inode, alloc_start,
3135 alloc_end - alloc_start);
3136 if (ret)
3137 goto out;
3138
3139 if (mode & FALLOC_FL_ZERO_RANGE) {
3140 ret = btrfs_zero_range(inode, offset, len, mode);
3141 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3142 return ret;
3143 }
3144
3145 locked_end = alloc_end - 1;
3146 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3147 &cached_state);
3148
3149 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3150
3151 /* First, check if we exceed the qgroup limit */
3152 while (cur_offset < alloc_end) {
3153 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3154 alloc_end - cur_offset);
3155 if (IS_ERR(em)) {
3156 ret = PTR_ERR(em);
3157 break;
3158 }
3159 last_byte = min(extent_map_end(em), alloc_end);
3160 actual_end = min_t(u64, extent_map_end(em), offset + len);
3161 last_byte = ALIGN(last_byte, blocksize);
3162 if (em->block_start == EXTENT_MAP_HOLE ||
3163 (cur_offset >= inode->i_size &&
3164 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3165 const u64 range_len = last_byte - cur_offset;
3166
3167 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3168 if (ret < 0) {
3169 free_extent_map(em);
3170 break;
3171 }
3172 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3173 &data_reserved, cur_offset, range_len);
3174 if (ret < 0) {
3175 free_extent_map(em);
3176 break;
3177 }
3178 qgroup_reserved += range_len;
3179 data_space_needed += range_len;
3180 }
3181 free_extent_map(em);
3182 cur_offset = last_byte;
3183 }
3184
3185 if (!ret && data_space_needed > 0) {
3186 /*
3187 * We are safe to reserve space here as we can't have delalloc
3188 * in the range, see above.
3189 */
3190 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3191 data_space_needed);
3192 if (!ret)
3193 data_space_reserved = data_space_needed;
3194 }
3195
3196 /*
3197 * If ret is still 0, means we're OK to fallocate.
3198 * Or just cleanup the list and exit.
3199 */
3200 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3201 if (!ret) {
3202 ret = btrfs_prealloc_file_range(inode, mode,
3203 range->start,
3204 range->len, i_blocksize(inode),
3205 offset + len, &alloc_hint);
3206 /*
3207 * btrfs_prealloc_file_range() releases space even
3208 * if it returns an error.
3209 */
3210 data_space_reserved -= range->len;
3211 qgroup_reserved -= range->len;
3212 } else if (data_space_reserved > 0) {
3213 btrfs_free_reserved_data_space(BTRFS_I(inode),
3214 data_reserved, range->start,
3215 range->len);
3216 data_space_reserved -= range->len;
3217 qgroup_reserved -= range->len;
3218 } else if (qgroup_reserved > 0) {
3219 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3220 range->start, range->len, NULL);
3221 qgroup_reserved -= range->len;
3222 }
3223 list_del(&range->list);
3224 kfree(range);
3225 }
3226 if (ret < 0)
3227 goto out_unlock;
3228
3229 /*
3230 * We didn't need to allocate any more space, but we still extended the
3231 * size of the file so we need to update i_size and the inode item.
3232 */
3233 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3234 out_unlock:
3235 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3236 &cached_state);
3237 out:
3238 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3239 extent_changeset_free(data_reserved);
3240 return ret;
3241 }
3242
3243 /*
3244 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3245 * that has unflushed and/or flushing delalloc. There might be other adjacent
3246 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3247 * looping while it gets adjacent subranges, and merging them together.
3248 */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3249 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3250 struct extent_state **cached_state,
3251 bool *search_io_tree,
3252 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3253 {
3254 u64 len = end + 1 - start;
3255 u64 delalloc_len = 0;
3256 struct btrfs_ordered_extent *oe;
3257 u64 oe_start;
3258 u64 oe_end;
3259
3260 /*
3261 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3262 * means we have delalloc (dirty pages) for which writeback has not
3263 * started yet.
3264 */
3265 if (*search_io_tree) {
3266 spin_lock(&inode->lock);
3267 if (inode->delalloc_bytes > 0) {
3268 spin_unlock(&inode->lock);
3269 *delalloc_start_ret = start;
3270 delalloc_len = count_range_bits(&inode->io_tree,
3271 delalloc_start_ret, end,
3272 len, EXTENT_DELALLOC, 1,
3273 cached_state);
3274 } else {
3275 spin_unlock(&inode->lock);
3276 }
3277 }
3278
3279 if (delalloc_len > 0) {
3280 /*
3281 * If delalloc was found then *delalloc_start_ret has a sector size
3282 * aligned value (rounded down).
3283 */
3284 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3285
3286 if (*delalloc_start_ret == start) {
3287 /* Delalloc for the whole range, nothing more to do. */
3288 if (*delalloc_end_ret == end)
3289 return true;
3290 /* Else trim our search range for ordered extents. */
3291 start = *delalloc_end_ret + 1;
3292 len = end + 1 - start;
3293 }
3294 } else {
3295 /* No delalloc, future calls don't need to search again. */
3296 *search_io_tree = false;
3297 }
3298
3299 /*
3300 * Now also check if there's any ordered extent in the range.
3301 * We do this because:
3302 *
3303 * 1) When delalloc is flushed, the file range is locked, we clear the
3304 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3305 * an ordered extent for the write. So we might just have been called
3306 * after delalloc is flushed and before the ordered extent completes
3307 * and inserts the new file extent item in the subvolume's btree;
3308 *
3309 * 2) We may have an ordered extent created by flushing delalloc for a
3310 * subrange that starts before the subrange we found marked with
3311 * EXTENT_DELALLOC in the io tree.
3312 *
3313 * We could also use the extent map tree to find such delalloc that is
3314 * being flushed, but using the ordered extents tree is more efficient
3315 * because it's usually much smaller as ordered extents are removed from
3316 * the tree once they complete. With the extent maps, we mau have them
3317 * in the extent map tree for a very long time, and they were either
3318 * created by previous writes or loaded by read operations.
3319 */
3320 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3321 if (!oe)
3322 return (delalloc_len > 0);
3323
3324 /* The ordered extent may span beyond our search range. */
3325 oe_start = max(oe->file_offset, start);
3326 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3327
3328 btrfs_put_ordered_extent(oe);
3329
3330 /* Don't have unflushed delalloc, return the ordered extent range. */
3331 if (delalloc_len == 0) {
3332 *delalloc_start_ret = oe_start;
3333 *delalloc_end_ret = oe_end;
3334 return true;
3335 }
3336
3337 /*
3338 * We have both unflushed delalloc (io_tree) and an ordered extent.
3339 * If the ranges are adjacent returned a combined range, otherwise
3340 * return the leftmost range.
3341 */
3342 if (oe_start < *delalloc_start_ret) {
3343 if (oe_end < *delalloc_start_ret)
3344 *delalloc_end_ret = oe_end;
3345 *delalloc_start_ret = oe_start;
3346 } else if (*delalloc_end_ret + 1 == oe_start) {
3347 *delalloc_end_ret = oe_end;
3348 }
3349
3350 return true;
3351 }
3352
3353 /*
3354 * Check if there's delalloc in a given range.
3355 *
3356 * @inode: The inode.
3357 * @start: The start offset of the range. It does not need to be
3358 * sector size aligned.
3359 * @end: The end offset (inclusive value) of the search range.
3360 * It does not need to be sector size aligned.
3361 * @cached_state: Extent state record used for speeding up delalloc
3362 * searches in the inode's io_tree. Can be NULL.
3363 * @delalloc_start_ret: Output argument, set to the start offset of the
3364 * subrange found with delalloc (may not be sector size
3365 * aligned).
3366 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3367 * of the subrange found with delalloc.
3368 *
3369 * Returns true if a subrange with delalloc is found within the given range, and
3370 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3371 * end offsets of the subrange.
3372 */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3373 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3374 struct extent_state **cached_state,
3375 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3376 {
3377 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3378 u64 prev_delalloc_end = 0;
3379 bool search_io_tree = true;
3380 bool ret = false;
3381
3382 while (cur_offset <= end) {
3383 u64 delalloc_start;
3384 u64 delalloc_end;
3385 bool delalloc;
3386
3387 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3388 cached_state, &search_io_tree,
3389 &delalloc_start,
3390 &delalloc_end);
3391 if (!delalloc)
3392 break;
3393
3394 if (prev_delalloc_end == 0) {
3395 /* First subrange found. */
3396 *delalloc_start_ret = max(delalloc_start, start);
3397 *delalloc_end_ret = delalloc_end;
3398 ret = true;
3399 } else if (delalloc_start == prev_delalloc_end + 1) {
3400 /* Subrange adjacent to the previous one, merge them. */
3401 *delalloc_end_ret = delalloc_end;
3402 } else {
3403 /* Subrange not adjacent to the previous one, exit. */
3404 break;
3405 }
3406
3407 prev_delalloc_end = delalloc_end;
3408 cur_offset = delalloc_end + 1;
3409 cond_resched();
3410 }
3411
3412 return ret;
3413 }
3414
3415 /*
3416 * Check if there's a hole or delalloc range in a range representing a hole (or
3417 * prealloc extent) found in the inode's subvolume btree.
3418 *
3419 * @inode: The inode.
3420 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3421 * @start: Start offset of the hole region. It does not need to be sector
3422 * size aligned.
3423 * @end: End offset (inclusive value) of the hole region. It does not
3424 * need to be sector size aligned.
3425 * @start_ret: Return parameter, used to set the start of the subrange in the
3426 * hole that matches the search criteria (seek mode), if such
3427 * subrange is found (return value of the function is true).
3428 * The value returned here may not be sector size aligned.
3429 *
3430 * Returns true if a subrange matching the given seek mode is found, and if one
3431 * is found, it updates @start_ret with the start of the subrange.
3432 */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3433 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3434 struct extent_state **cached_state,
3435 u64 start, u64 end, u64 *start_ret)
3436 {
3437 u64 delalloc_start;
3438 u64 delalloc_end;
3439 bool delalloc;
3440
3441 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3442 &delalloc_start, &delalloc_end);
3443 if (delalloc && whence == SEEK_DATA) {
3444 *start_ret = delalloc_start;
3445 return true;
3446 }
3447
3448 if (delalloc && whence == SEEK_HOLE) {
3449 /*
3450 * We found delalloc but it starts after out start offset. So we
3451 * have a hole between our start offset and the delalloc start.
3452 */
3453 if (start < delalloc_start) {
3454 *start_ret = start;
3455 return true;
3456 }
3457 /*
3458 * Delalloc range starts at our start offset.
3459 * If the delalloc range's length is smaller than our range,
3460 * then it means we have a hole that starts where the delalloc
3461 * subrange ends.
3462 */
3463 if (delalloc_end < end) {
3464 *start_ret = delalloc_end + 1;
3465 return true;
3466 }
3467
3468 /* There's delalloc for the whole range. */
3469 return false;
3470 }
3471
3472 if (!delalloc && whence == SEEK_HOLE) {
3473 *start_ret = start;
3474 return true;
3475 }
3476
3477 /*
3478 * No delalloc in the range and we are seeking for data. The caller has
3479 * to iterate to the next extent item in the subvolume btree.
3480 */
3481 return false;
3482 }
3483
find_desired_extent(struct file * file,loff_t offset,int whence)3484 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3485 {
3486 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3487 struct btrfs_file_private *private;
3488 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3489 struct extent_state *cached_state = NULL;
3490 struct extent_state **delalloc_cached_state;
3491 const loff_t i_size = i_size_read(&inode->vfs_inode);
3492 const u64 ino = btrfs_ino(inode);
3493 struct btrfs_root *root = inode->root;
3494 struct btrfs_path *path;
3495 struct btrfs_key key;
3496 u64 last_extent_end;
3497 u64 lockstart;
3498 u64 lockend;
3499 u64 start;
3500 int ret;
3501 bool found = false;
3502
3503 if (i_size == 0 || offset >= i_size)
3504 return -ENXIO;
3505
3506 /*
3507 * Quick path. If the inode has no prealloc extents and its number of
3508 * bytes used matches its i_size, then it can not have holes.
3509 */
3510 if (whence == SEEK_HOLE &&
3511 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3512 inode_get_bytes(&inode->vfs_inode) == i_size)
3513 return i_size;
3514
3515 spin_lock(&inode->lock);
3516 private = file->private_data;
3517 spin_unlock(&inode->lock);
3518
3519 if (private && private->owner_task != current) {
3520 /*
3521 * Not allocated by us, don't use it as its cached state is used
3522 * by the task that allocated it and we don't want neither to
3523 * mess with it nor get incorrect results because it reflects an
3524 * invalid state for the current task.
3525 */
3526 private = NULL;
3527 } else if (!private) {
3528 private = kzalloc(sizeof(*private), GFP_KERNEL);
3529 /*
3530 * No worries if memory allocation failed.
3531 * The private structure is used only for speeding up multiple
3532 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3533 * so everything will still be correct.
3534 */
3535 if (private) {
3536 bool free = false;
3537
3538 private->owner_task = current;
3539
3540 spin_lock(&inode->lock);
3541 if (file->private_data)
3542 free = true;
3543 else
3544 file->private_data = private;
3545 spin_unlock(&inode->lock);
3546
3547 if (free) {
3548 kfree(private);
3549 private = NULL;
3550 }
3551 }
3552 }
3553
3554 if (private)
3555 delalloc_cached_state = &private->llseek_cached_state;
3556 else
3557 delalloc_cached_state = NULL;
3558
3559 /*
3560 * offset can be negative, in this case we start finding DATA/HOLE from
3561 * the very start of the file.
3562 */
3563 start = max_t(loff_t, 0, offset);
3564
3565 lockstart = round_down(start, fs_info->sectorsize);
3566 lockend = round_up(i_size, fs_info->sectorsize);
3567 if (lockend <= lockstart)
3568 lockend = lockstart + fs_info->sectorsize;
3569 lockend--;
3570
3571 path = btrfs_alloc_path();
3572 if (!path)
3573 return -ENOMEM;
3574 path->reada = READA_FORWARD;
3575
3576 key.objectid = ino;
3577 key.type = BTRFS_EXTENT_DATA_KEY;
3578 key.offset = start;
3579
3580 last_extent_end = lockstart;
3581
3582 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3583
3584 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3585 if (ret < 0) {
3586 goto out;
3587 } else if (ret > 0 && path->slots[0] > 0) {
3588 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3589 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3590 path->slots[0]--;
3591 }
3592
3593 while (start < i_size) {
3594 struct extent_buffer *leaf = path->nodes[0];
3595 struct btrfs_file_extent_item *extent;
3596 u64 extent_end;
3597 u8 type;
3598
3599 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3600 ret = btrfs_next_leaf(root, path);
3601 if (ret < 0)
3602 goto out;
3603 else if (ret > 0)
3604 break;
3605
3606 leaf = path->nodes[0];
3607 }
3608
3609 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3610 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3611 break;
3612
3613 extent_end = btrfs_file_extent_end(path);
3614
3615 /*
3616 * In the first iteration we may have a slot that points to an
3617 * extent that ends before our start offset, so skip it.
3618 */
3619 if (extent_end <= start) {
3620 path->slots[0]++;
3621 continue;
3622 }
3623
3624 /* We have an implicit hole, NO_HOLES feature is likely set. */
3625 if (last_extent_end < key.offset) {
3626 u64 search_start = last_extent_end;
3627 u64 found_start;
3628
3629 /*
3630 * First iteration, @start matches @offset and it's
3631 * within the hole.
3632 */
3633 if (start == offset)
3634 search_start = offset;
3635
3636 found = find_desired_extent_in_hole(inode, whence,
3637 delalloc_cached_state,
3638 search_start,
3639 key.offset - 1,
3640 &found_start);
3641 if (found) {
3642 start = found_start;
3643 break;
3644 }
3645 /*
3646 * Didn't find data or a hole (due to delalloc) in the
3647 * implicit hole range, so need to analyze the extent.
3648 */
3649 }
3650
3651 extent = btrfs_item_ptr(leaf, path->slots[0],
3652 struct btrfs_file_extent_item);
3653 type = btrfs_file_extent_type(leaf, extent);
3654
3655 /*
3656 * Can't access the extent's disk_bytenr field if this is an
3657 * inline extent, since at that offset, it's where the extent
3658 * data starts.
3659 */
3660 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3661 (type == BTRFS_FILE_EXTENT_REG &&
3662 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3663 /*
3664 * Explicit hole or prealloc extent, search for delalloc.
3665 * A prealloc extent is treated like a hole.
3666 */
3667 u64 search_start = key.offset;
3668 u64 found_start;
3669
3670 /*
3671 * First iteration, @start matches @offset and it's
3672 * within the hole.
3673 */
3674 if (start == offset)
3675 search_start = offset;
3676
3677 found = find_desired_extent_in_hole(inode, whence,
3678 delalloc_cached_state,
3679 search_start,
3680 extent_end - 1,
3681 &found_start);
3682 if (found) {
3683 start = found_start;
3684 break;
3685 }
3686 /*
3687 * Didn't find data or a hole (due to delalloc) in the
3688 * implicit hole range, so need to analyze the next
3689 * extent item.
3690 */
3691 } else {
3692 /*
3693 * Found a regular or inline extent.
3694 * If we are seeking for data, adjust the start offset
3695 * and stop, we're done.
3696 */
3697 if (whence == SEEK_DATA) {
3698 start = max_t(u64, key.offset, offset);
3699 found = true;
3700 break;
3701 }
3702 /*
3703 * Else, we are seeking for a hole, check the next file
3704 * extent item.
3705 */
3706 }
3707
3708 start = extent_end;
3709 last_extent_end = extent_end;
3710 path->slots[0]++;
3711 if (fatal_signal_pending(current)) {
3712 ret = -EINTR;
3713 goto out;
3714 }
3715 cond_resched();
3716 }
3717
3718 /* We have an implicit hole from the last extent found up to i_size. */
3719 if (!found && start < i_size) {
3720 found = find_desired_extent_in_hole(inode, whence,
3721 delalloc_cached_state, start,
3722 i_size - 1, &start);
3723 if (!found)
3724 start = i_size;
3725 }
3726
3727 out:
3728 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3729 btrfs_free_path(path);
3730
3731 if (ret < 0)
3732 return ret;
3733
3734 if (whence == SEEK_DATA && start >= i_size)
3735 return -ENXIO;
3736
3737 return min_t(loff_t, start, i_size);
3738 }
3739
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3740 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3741 {
3742 struct inode *inode = file->f_mapping->host;
3743
3744 switch (whence) {
3745 default:
3746 return generic_file_llseek(file, offset, whence);
3747 case SEEK_DATA:
3748 case SEEK_HOLE:
3749 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3750 offset = find_desired_extent(file, offset, whence);
3751 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3752 break;
3753 }
3754
3755 if (offset < 0)
3756 return offset;
3757
3758 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3759 }
3760
btrfs_file_open(struct inode * inode,struct file * filp)3761 static int btrfs_file_open(struct inode *inode, struct file *filp)
3762 {
3763 int ret;
3764
3765 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3766 FMODE_CAN_ODIRECT;
3767
3768 ret = fsverity_file_open(inode, filp);
3769 if (ret)
3770 return ret;
3771 return generic_file_open(inode, filp);
3772 }
3773
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)3774 static int check_direct_read(struct btrfs_fs_info *fs_info,
3775 const struct iov_iter *iter, loff_t offset)
3776 {
3777 int ret;
3778 int i, seg;
3779
3780 ret = check_direct_IO(fs_info, iter, offset);
3781 if (ret < 0)
3782 return ret;
3783
3784 if (!iter_is_iovec(iter))
3785 return 0;
3786
3787 for (seg = 0; seg < iter->nr_segs; seg++) {
3788 for (i = seg + 1; i < iter->nr_segs; i++) {
3789 const struct iovec *iov1 = iter_iov(iter) + seg;
3790 const struct iovec *iov2 = iter_iov(iter) + i;
3791
3792 if (iov1->iov_base == iov2->iov_base)
3793 return -EINVAL;
3794 }
3795 }
3796 return 0;
3797 }
3798
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)3799 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3800 {
3801 struct inode *inode = file_inode(iocb->ki_filp);
3802 size_t prev_left = 0;
3803 ssize_t read = 0;
3804 ssize_t ret;
3805
3806 if (fsverity_active(inode))
3807 return 0;
3808
3809 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3810 return 0;
3811
3812 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3813 again:
3814 /*
3815 * This is similar to what we do for direct IO writes, see the comment
3816 * at btrfs_direct_write(), but we also disable page faults in addition
3817 * to disabling them only at the iov_iter level. This is because when
3818 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3819 * which can still trigger page fault ins despite having set ->nofault
3820 * to true of our 'to' iov_iter.
3821 *
3822 * The difference to direct IO writes is that we deadlock when trying
3823 * to lock the extent range in the inode's tree during he page reads
3824 * triggered by the fault in (while for writes it is due to waiting for
3825 * our own ordered extent). This is because for direct IO reads,
3826 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3827 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3828 */
3829 pagefault_disable();
3830 to->nofault = true;
3831 ret = btrfs_dio_read(iocb, to, read);
3832 to->nofault = false;
3833 pagefault_enable();
3834
3835 /* No increment (+=) because iomap returns a cumulative value. */
3836 if (ret > 0)
3837 read = ret;
3838
3839 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3840 const size_t left = iov_iter_count(to);
3841
3842 if (left == prev_left) {
3843 /*
3844 * We didn't make any progress since the last attempt,
3845 * fallback to a buffered read for the remainder of the
3846 * range. This is just to avoid any possibility of looping
3847 * for too long.
3848 */
3849 ret = read;
3850 } else {
3851 /*
3852 * We made some progress since the last retry or this is
3853 * the first time we are retrying. Fault in as many pages
3854 * as possible and retry.
3855 */
3856 fault_in_iov_iter_writeable(to, left);
3857 prev_left = left;
3858 goto again;
3859 }
3860 }
3861 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3862 return ret < 0 ? ret : read;
3863 }
3864
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3865 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3866 {
3867 ssize_t ret = 0;
3868
3869 if (iocb->ki_flags & IOCB_DIRECT) {
3870 ret = btrfs_direct_read(iocb, to);
3871 if (ret < 0 || !iov_iter_count(to) ||
3872 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3873 return ret;
3874 }
3875
3876 return filemap_read(iocb, to, ret);
3877 }
3878
3879 const struct file_operations btrfs_file_operations = {
3880 .llseek = btrfs_file_llseek,
3881 .read_iter = btrfs_file_read_iter,
3882 .splice_read = filemap_splice_read,
3883 .write_iter = btrfs_file_write_iter,
3884 .splice_write = iter_file_splice_write,
3885 .mmap = btrfs_file_mmap,
3886 .open = btrfs_file_open,
3887 .release = btrfs_release_file,
3888 .get_unmapped_area = thp_get_unmapped_area,
3889 .fsync = btrfs_sync_file,
3890 .fallocate = btrfs_fallocate,
3891 .unlocked_ioctl = btrfs_ioctl,
3892 #ifdef CONFIG_COMPAT
3893 .compat_ioctl = btrfs_compat_ioctl,
3894 #endif
3895 .remap_file_range = btrfs_remap_file_range,
3896 };
3897
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3898 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3899 {
3900 int ret;
3901
3902 /*
3903 * So with compression we will find and lock a dirty page and clear the
3904 * first one as dirty, setup an async extent, and immediately return
3905 * with the entire range locked but with nobody actually marked with
3906 * writeback. So we can't just filemap_write_and_wait_range() and
3907 * expect it to work since it will just kick off a thread to do the
3908 * actual work. So we need to call filemap_fdatawrite_range _again_
3909 * since it will wait on the page lock, which won't be unlocked until
3910 * after the pages have been marked as writeback and so we're good to go
3911 * from there. We have to do this otherwise we'll miss the ordered
3912 * extents and that results in badness. Please Josef, do not think you
3913 * know better and pull this out at some point in the future, it is
3914 * right and you are wrong.
3915 */
3916 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3917 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3918 &BTRFS_I(inode)->runtime_flags))
3919 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3920
3921 return ret;
3922 }
3923