xref: /openbmc/linux/crypto/ecc.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1  /*
2   * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3   * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4   *
5   * Redistribution and use in source and binary forms, with or without
6   * modification, are permitted provided that the following conditions are
7   * met:
8   *  * Redistributions of source code must retain the above copyright
9   *   notice, this list of conditions and the following disclaimer.
10   *  * Redistributions in binary form must reproduce the above copyright
11   *    notice, this list of conditions and the following disclaimer in the
12   *    documentation and/or other materials provided with the distribution.
13   *
14   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15   * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16   * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17   * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18   * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20   * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21   * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22   * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24   * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25   */
26  
27  #include <crypto/ecc_curve.h>
28  #include <linux/module.h>
29  #include <linux/random.h>
30  #include <linux/slab.h>
31  #include <linux/swab.h>
32  #include <linux/fips.h>
33  #include <crypto/ecdh.h>
34  #include <crypto/rng.h>
35  #include <crypto/internal/ecc.h>
36  #include <asm/unaligned.h>
37  #include <linux/ratelimit.h>
38  
39  #include "ecc_curve_defs.h"
40  
41  typedef struct {
42  	u64 m_low;
43  	u64 m_high;
44  } uint128_t;
45  
46  /* Returns curv25519 curve param */
ecc_get_curve25519(void)47  const struct ecc_curve *ecc_get_curve25519(void)
48  {
49  	return &ecc_25519;
50  }
51  EXPORT_SYMBOL(ecc_get_curve25519);
52  
ecc_get_curve(unsigned int curve_id)53  const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
54  {
55  	switch (curve_id) {
56  	/* In FIPS mode only allow P256 and higher */
57  	case ECC_CURVE_NIST_P192:
58  		return fips_enabled ? NULL : &nist_p192;
59  	case ECC_CURVE_NIST_P256:
60  		return &nist_p256;
61  	case ECC_CURVE_NIST_P384:
62  		return &nist_p384;
63  	default:
64  		return NULL;
65  	}
66  }
67  EXPORT_SYMBOL(ecc_get_curve);
68  
ecc_digits_from_bytes(const u8 * in,unsigned int nbytes,u64 * out,unsigned int ndigits)69  void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
70  			   u64 *out, unsigned int ndigits)
71  {
72  	int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64));
73  	unsigned int o = nbytes & 7;
74  	__be64 msd = 0;
75  
76  	/* diff > 0: not enough input bytes: set most significant digits to 0 */
77  	if (diff > 0) {
78  		ndigits -= diff;
79  		memset(&out[ndigits - 1], 0, diff * sizeof(u64));
80  	}
81  
82  	if (o) {
83  		memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
84  		out[--ndigits] = be64_to_cpu(msd);
85  		in += o;
86  	}
87  	ecc_swap_digits(in, out, ndigits);
88  }
89  EXPORT_SYMBOL(ecc_digits_from_bytes);
90  
ecc_alloc_digits_space(unsigned int ndigits)91  static u64 *ecc_alloc_digits_space(unsigned int ndigits)
92  {
93  	size_t len = ndigits * sizeof(u64);
94  
95  	if (!len)
96  		return NULL;
97  
98  	return kmalloc(len, GFP_KERNEL);
99  }
100  
ecc_free_digits_space(u64 * space)101  static void ecc_free_digits_space(u64 *space)
102  {
103  	kfree_sensitive(space);
104  }
105  
ecc_alloc_point(unsigned int ndigits)106  struct ecc_point *ecc_alloc_point(unsigned int ndigits)
107  {
108  	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
109  
110  	if (!p)
111  		return NULL;
112  
113  	p->x = ecc_alloc_digits_space(ndigits);
114  	if (!p->x)
115  		goto err_alloc_x;
116  
117  	p->y = ecc_alloc_digits_space(ndigits);
118  	if (!p->y)
119  		goto err_alloc_y;
120  
121  	p->ndigits = ndigits;
122  
123  	return p;
124  
125  err_alloc_y:
126  	ecc_free_digits_space(p->x);
127  err_alloc_x:
128  	kfree(p);
129  	return NULL;
130  }
131  EXPORT_SYMBOL(ecc_alloc_point);
132  
ecc_free_point(struct ecc_point * p)133  void ecc_free_point(struct ecc_point *p)
134  {
135  	if (!p)
136  		return;
137  
138  	kfree_sensitive(p->x);
139  	kfree_sensitive(p->y);
140  	kfree_sensitive(p);
141  }
142  EXPORT_SYMBOL(ecc_free_point);
143  
vli_clear(u64 * vli,unsigned int ndigits)144  static void vli_clear(u64 *vli, unsigned int ndigits)
145  {
146  	int i;
147  
148  	for (i = 0; i < ndigits; i++)
149  		vli[i] = 0;
150  }
151  
152  /* Returns true if vli == 0, false otherwise. */
vli_is_zero(const u64 * vli,unsigned int ndigits)153  bool vli_is_zero(const u64 *vli, unsigned int ndigits)
154  {
155  	int i;
156  
157  	for (i = 0; i < ndigits; i++) {
158  		if (vli[i])
159  			return false;
160  	}
161  
162  	return true;
163  }
164  EXPORT_SYMBOL(vli_is_zero);
165  
166  /* Returns nonzero if bit of vli is set. */
vli_test_bit(const u64 * vli,unsigned int bit)167  static u64 vli_test_bit(const u64 *vli, unsigned int bit)
168  {
169  	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
170  }
171  
vli_is_negative(const u64 * vli,unsigned int ndigits)172  static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
173  {
174  	return vli_test_bit(vli, ndigits * 64 - 1);
175  }
176  
177  /* Counts the number of 64-bit "digits" in vli. */
vli_num_digits(const u64 * vli,unsigned int ndigits)178  static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
179  {
180  	int i;
181  
182  	/* Search from the end until we find a non-zero digit.
183  	 * We do it in reverse because we expect that most digits will
184  	 * be nonzero.
185  	 */
186  	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
187  
188  	return (i + 1);
189  }
190  
191  /* Counts the number of bits required for vli. */
vli_num_bits(const u64 * vli,unsigned int ndigits)192  unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
193  {
194  	unsigned int i, num_digits;
195  	u64 digit;
196  
197  	num_digits = vli_num_digits(vli, ndigits);
198  	if (num_digits == 0)
199  		return 0;
200  
201  	digit = vli[num_digits - 1];
202  	for (i = 0; digit; i++)
203  		digit >>= 1;
204  
205  	return ((num_digits - 1) * 64 + i);
206  }
207  EXPORT_SYMBOL(vli_num_bits);
208  
209  /* Set dest from unaligned bit string src. */
vli_from_be64(u64 * dest,const void * src,unsigned int ndigits)210  void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
211  {
212  	int i;
213  	const u64 *from = src;
214  
215  	for (i = 0; i < ndigits; i++)
216  		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
217  }
218  EXPORT_SYMBOL(vli_from_be64);
219  
vli_from_le64(u64 * dest,const void * src,unsigned int ndigits)220  void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
221  {
222  	int i;
223  	const u64 *from = src;
224  
225  	for (i = 0; i < ndigits; i++)
226  		dest[i] = get_unaligned_le64(&from[i]);
227  }
228  EXPORT_SYMBOL(vli_from_le64);
229  
230  /* Sets dest = src. */
vli_set(u64 * dest,const u64 * src,unsigned int ndigits)231  static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
232  {
233  	int i;
234  
235  	for (i = 0; i < ndigits; i++)
236  		dest[i] = src[i];
237  }
238  
239  /* Returns sign of left - right. */
vli_cmp(const u64 * left,const u64 * right,unsigned int ndigits)240  int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
241  {
242  	int i;
243  
244  	for (i = ndigits - 1; i >= 0; i--) {
245  		if (left[i] > right[i])
246  			return 1;
247  		else if (left[i] < right[i])
248  			return -1;
249  	}
250  
251  	return 0;
252  }
253  EXPORT_SYMBOL(vli_cmp);
254  
255  /* Computes result = in << c, returning carry. Can modify in place
256   * (if result == in). 0 < shift < 64.
257   */
vli_lshift(u64 * result,const u64 * in,unsigned int shift,unsigned int ndigits)258  static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
259  		      unsigned int ndigits)
260  {
261  	u64 carry = 0;
262  	int i;
263  
264  	for (i = 0; i < ndigits; i++) {
265  		u64 temp = in[i];
266  
267  		result[i] = (temp << shift) | carry;
268  		carry = temp >> (64 - shift);
269  	}
270  
271  	return carry;
272  }
273  
274  /* Computes vli = vli >> 1. */
vli_rshift1(u64 * vli,unsigned int ndigits)275  static void vli_rshift1(u64 *vli, unsigned int ndigits)
276  {
277  	u64 *end = vli;
278  	u64 carry = 0;
279  
280  	vli += ndigits;
281  
282  	while (vli-- > end) {
283  		u64 temp = *vli;
284  		*vli = (temp >> 1) | carry;
285  		carry = temp << 63;
286  	}
287  }
288  
289  /* Computes result = left + right, returning carry. Can modify in place. */
vli_add(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)290  static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
291  		   unsigned int ndigits)
292  {
293  	u64 carry = 0;
294  	int i;
295  
296  	for (i = 0; i < ndigits; i++) {
297  		u64 sum;
298  
299  		sum = left[i] + right[i] + carry;
300  		if (sum != left[i])
301  			carry = (sum < left[i]);
302  
303  		result[i] = sum;
304  	}
305  
306  	return carry;
307  }
308  
309  /* Computes result = left + right, returning carry. Can modify in place. */
vli_uadd(u64 * result,const u64 * left,u64 right,unsigned int ndigits)310  static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
311  		    unsigned int ndigits)
312  {
313  	u64 carry = right;
314  	int i;
315  
316  	for (i = 0; i < ndigits; i++) {
317  		u64 sum;
318  
319  		sum = left[i] + carry;
320  		if (sum != left[i])
321  			carry = (sum < left[i]);
322  		else
323  			carry = !!carry;
324  
325  		result[i] = sum;
326  	}
327  
328  	return carry;
329  }
330  
331  /* Computes result = left - right, returning borrow. Can modify in place. */
vli_sub(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)332  u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
333  		   unsigned int ndigits)
334  {
335  	u64 borrow = 0;
336  	int i;
337  
338  	for (i = 0; i < ndigits; i++) {
339  		u64 diff;
340  
341  		diff = left[i] - right[i] - borrow;
342  		if (diff != left[i])
343  			borrow = (diff > left[i]);
344  
345  		result[i] = diff;
346  	}
347  
348  	return borrow;
349  }
350  EXPORT_SYMBOL(vli_sub);
351  
352  /* Computes result = left - right, returning borrow. Can modify in place. */
vli_usub(u64 * result,const u64 * left,u64 right,unsigned int ndigits)353  static u64 vli_usub(u64 *result, const u64 *left, u64 right,
354  	     unsigned int ndigits)
355  {
356  	u64 borrow = right;
357  	int i;
358  
359  	for (i = 0; i < ndigits; i++) {
360  		u64 diff;
361  
362  		diff = left[i] - borrow;
363  		if (diff != left[i])
364  			borrow = (diff > left[i]);
365  
366  		result[i] = diff;
367  	}
368  
369  	return borrow;
370  }
371  
mul_64_64(u64 left,u64 right)372  static uint128_t mul_64_64(u64 left, u64 right)
373  {
374  	uint128_t result;
375  #if defined(CONFIG_ARCH_SUPPORTS_INT128)
376  	unsigned __int128 m = (unsigned __int128)left * right;
377  
378  	result.m_low  = m;
379  	result.m_high = m >> 64;
380  #else
381  	u64 a0 = left & 0xffffffffull;
382  	u64 a1 = left >> 32;
383  	u64 b0 = right & 0xffffffffull;
384  	u64 b1 = right >> 32;
385  	u64 m0 = a0 * b0;
386  	u64 m1 = a0 * b1;
387  	u64 m2 = a1 * b0;
388  	u64 m3 = a1 * b1;
389  
390  	m2 += (m0 >> 32);
391  	m2 += m1;
392  
393  	/* Overflow */
394  	if (m2 < m1)
395  		m3 += 0x100000000ull;
396  
397  	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
398  	result.m_high = m3 + (m2 >> 32);
399  #endif
400  	return result;
401  }
402  
add_128_128(uint128_t a,uint128_t b)403  static uint128_t add_128_128(uint128_t a, uint128_t b)
404  {
405  	uint128_t result;
406  
407  	result.m_low = a.m_low + b.m_low;
408  	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
409  
410  	return result;
411  }
412  
vli_mult(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)413  static void vli_mult(u64 *result, const u64 *left, const u64 *right,
414  		     unsigned int ndigits)
415  {
416  	uint128_t r01 = { 0, 0 };
417  	u64 r2 = 0;
418  	unsigned int i, k;
419  
420  	/* Compute each digit of result in sequence, maintaining the
421  	 * carries.
422  	 */
423  	for (k = 0; k < ndigits * 2 - 1; k++) {
424  		unsigned int min;
425  
426  		if (k < ndigits)
427  			min = 0;
428  		else
429  			min = (k + 1) - ndigits;
430  
431  		for (i = min; i <= k && i < ndigits; i++) {
432  			uint128_t product;
433  
434  			product = mul_64_64(left[i], right[k - i]);
435  
436  			r01 = add_128_128(r01, product);
437  			r2 += (r01.m_high < product.m_high);
438  		}
439  
440  		result[k] = r01.m_low;
441  		r01.m_low = r01.m_high;
442  		r01.m_high = r2;
443  		r2 = 0;
444  	}
445  
446  	result[ndigits * 2 - 1] = r01.m_low;
447  }
448  
449  /* Compute product = left * right, for a small right value. */
vli_umult(u64 * result,const u64 * left,u32 right,unsigned int ndigits)450  static void vli_umult(u64 *result, const u64 *left, u32 right,
451  		      unsigned int ndigits)
452  {
453  	uint128_t r01 = { 0 };
454  	unsigned int k;
455  
456  	for (k = 0; k < ndigits; k++) {
457  		uint128_t product;
458  
459  		product = mul_64_64(left[k], right);
460  		r01 = add_128_128(r01, product);
461  		/* no carry */
462  		result[k] = r01.m_low;
463  		r01.m_low = r01.m_high;
464  		r01.m_high = 0;
465  	}
466  	result[k] = r01.m_low;
467  	for (++k; k < ndigits * 2; k++)
468  		result[k] = 0;
469  }
470  
vli_square(u64 * result,const u64 * left,unsigned int ndigits)471  static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
472  {
473  	uint128_t r01 = { 0, 0 };
474  	u64 r2 = 0;
475  	int i, k;
476  
477  	for (k = 0; k < ndigits * 2 - 1; k++) {
478  		unsigned int min;
479  
480  		if (k < ndigits)
481  			min = 0;
482  		else
483  			min = (k + 1) - ndigits;
484  
485  		for (i = min; i <= k && i <= k - i; i++) {
486  			uint128_t product;
487  
488  			product = mul_64_64(left[i], left[k - i]);
489  
490  			if (i < k - i) {
491  				r2 += product.m_high >> 63;
492  				product.m_high = (product.m_high << 1) |
493  						 (product.m_low >> 63);
494  				product.m_low <<= 1;
495  			}
496  
497  			r01 = add_128_128(r01, product);
498  			r2 += (r01.m_high < product.m_high);
499  		}
500  
501  		result[k] = r01.m_low;
502  		r01.m_low = r01.m_high;
503  		r01.m_high = r2;
504  		r2 = 0;
505  	}
506  
507  	result[ndigits * 2 - 1] = r01.m_low;
508  }
509  
510  /* Computes result = (left + right) % mod.
511   * Assumes that left < mod and right < mod, result != mod.
512   */
vli_mod_add(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)513  static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
514  			const u64 *mod, unsigned int ndigits)
515  {
516  	u64 carry;
517  
518  	carry = vli_add(result, left, right, ndigits);
519  
520  	/* result > mod (result = mod + remainder), so subtract mod to
521  	 * get remainder.
522  	 */
523  	if (carry || vli_cmp(result, mod, ndigits) >= 0)
524  		vli_sub(result, result, mod, ndigits);
525  }
526  
527  /* Computes result = (left - right) % mod.
528   * Assumes that left < mod and right < mod, result != mod.
529   */
vli_mod_sub(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)530  static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
531  			const u64 *mod, unsigned int ndigits)
532  {
533  	u64 borrow = vli_sub(result, left, right, ndigits);
534  
535  	/* In this case, p_result == -diff == (max int) - diff.
536  	 * Since -x % d == d - x, we can get the correct result from
537  	 * result + mod (with overflow).
538  	 */
539  	if (borrow)
540  		vli_add(result, result, mod, ndigits);
541  }
542  
543  /*
544   * Computes result = product % mod
545   * for special form moduli: p = 2^k-c, for small c (note the minus sign)
546   *
547   * References:
548   * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
549   * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
550   * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
551   */
vli_mmod_special(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)552  static void vli_mmod_special(u64 *result, const u64 *product,
553  			      const u64 *mod, unsigned int ndigits)
554  {
555  	u64 c = -mod[0];
556  	u64 t[ECC_MAX_DIGITS * 2];
557  	u64 r[ECC_MAX_DIGITS * 2];
558  
559  	vli_set(r, product, ndigits * 2);
560  	while (!vli_is_zero(r + ndigits, ndigits)) {
561  		vli_umult(t, r + ndigits, c, ndigits);
562  		vli_clear(r + ndigits, ndigits);
563  		vli_add(r, r, t, ndigits * 2);
564  	}
565  	vli_set(t, mod, ndigits);
566  	vli_clear(t + ndigits, ndigits);
567  	while (vli_cmp(r, t, ndigits * 2) >= 0)
568  		vli_sub(r, r, t, ndigits * 2);
569  	vli_set(result, r, ndigits);
570  }
571  
572  /*
573   * Computes result = product % mod
574   * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
575   * where k-1 does not fit into qword boundary by -1 bit (such as 255).
576  
577   * References (loosely based on):
578   * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
579   * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
580   * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
581   *
582   * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
583   * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
584   * Algorithm 10.25 Fast reduction for special form moduli
585   */
vli_mmod_special2(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)586  static void vli_mmod_special2(u64 *result, const u64 *product,
587  			       const u64 *mod, unsigned int ndigits)
588  {
589  	u64 c2 = mod[0] * 2;
590  	u64 q[ECC_MAX_DIGITS];
591  	u64 r[ECC_MAX_DIGITS * 2];
592  	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
593  	int carry; /* last bit that doesn't fit into q */
594  	int i;
595  
596  	vli_set(m, mod, ndigits);
597  	vli_clear(m + ndigits, ndigits);
598  
599  	vli_set(r, product, ndigits);
600  	/* q and carry are top bits */
601  	vli_set(q, product + ndigits, ndigits);
602  	vli_clear(r + ndigits, ndigits);
603  	carry = vli_is_negative(r, ndigits);
604  	if (carry)
605  		r[ndigits - 1] &= (1ull << 63) - 1;
606  	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
607  		u64 qc[ECC_MAX_DIGITS * 2];
608  
609  		vli_umult(qc, q, c2, ndigits);
610  		if (carry)
611  			vli_uadd(qc, qc, mod[0], ndigits * 2);
612  		vli_set(q, qc + ndigits, ndigits);
613  		vli_clear(qc + ndigits, ndigits);
614  		carry = vli_is_negative(qc, ndigits);
615  		if (carry)
616  			qc[ndigits - 1] &= (1ull << 63) - 1;
617  		if (i & 1)
618  			vli_sub(r, r, qc, ndigits * 2);
619  		else
620  			vli_add(r, r, qc, ndigits * 2);
621  	}
622  	while (vli_is_negative(r, ndigits * 2))
623  		vli_add(r, r, m, ndigits * 2);
624  	while (vli_cmp(r, m, ndigits * 2) >= 0)
625  		vli_sub(r, r, m, ndigits * 2);
626  
627  	vli_set(result, r, ndigits);
628  }
629  
630  /*
631   * Computes result = product % mod, where product is 2N words long.
632   * Reference: Ken MacKay's micro-ecc.
633   * Currently only designed to work for curve_p or curve_n.
634   */
vli_mmod_slow(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)635  static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
636  			  unsigned int ndigits)
637  {
638  	u64 mod_m[2 * ECC_MAX_DIGITS];
639  	u64 tmp[2 * ECC_MAX_DIGITS];
640  	u64 *v[2] = { tmp, product };
641  	u64 carry = 0;
642  	unsigned int i;
643  	/* Shift mod so its highest set bit is at the maximum position. */
644  	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
645  	int word_shift = shift / 64;
646  	int bit_shift = shift % 64;
647  
648  	vli_clear(mod_m, word_shift);
649  	if (bit_shift > 0) {
650  		for (i = 0; i < ndigits; ++i) {
651  			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
652  			carry = mod[i] >> (64 - bit_shift);
653  		}
654  	} else
655  		vli_set(mod_m + word_shift, mod, ndigits);
656  
657  	for (i = 1; shift >= 0; --shift) {
658  		u64 borrow = 0;
659  		unsigned int j;
660  
661  		for (j = 0; j < ndigits * 2; ++j) {
662  			u64 diff = v[i][j] - mod_m[j] - borrow;
663  
664  			if (diff != v[i][j])
665  				borrow = (diff > v[i][j]);
666  			v[1 - i][j] = diff;
667  		}
668  		i = !(i ^ borrow); /* Swap the index if there was no borrow */
669  		vli_rshift1(mod_m, ndigits);
670  		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
671  		vli_rshift1(mod_m + ndigits, ndigits);
672  	}
673  	vli_set(result, v[i], ndigits);
674  }
675  
676  /* Computes result = product % mod using Barrett's reduction with precomputed
677   * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
678   * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
679   * boundary.
680   *
681   * Reference:
682   * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
683   * 2.4.1 Barrett's algorithm. Algorithm 2.5.
684   */
vli_mmod_barrett(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)685  static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
686  			     unsigned int ndigits)
687  {
688  	u64 q[ECC_MAX_DIGITS * 2];
689  	u64 r[ECC_MAX_DIGITS * 2];
690  	const u64 *mu = mod + ndigits;
691  
692  	vli_mult(q, product + ndigits, mu, ndigits);
693  	if (mu[ndigits])
694  		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
695  	vli_mult(r, mod, q + ndigits, ndigits);
696  	vli_sub(r, product, r, ndigits * 2);
697  	while (!vli_is_zero(r + ndigits, ndigits) ||
698  	       vli_cmp(r, mod, ndigits) != -1) {
699  		u64 carry;
700  
701  		carry = vli_sub(r, r, mod, ndigits);
702  		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
703  	}
704  	vli_set(result, r, ndigits);
705  }
706  
707  /* Computes p_result = p_product % curve_p.
708   * See algorithm 5 and 6 from
709   * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
710   */
vli_mmod_fast_192(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)711  static void vli_mmod_fast_192(u64 *result, const u64 *product,
712  			      const u64 *curve_prime, u64 *tmp)
713  {
714  	const unsigned int ndigits = 3;
715  	int carry;
716  
717  	vli_set(result, product, ndigits);
718  
719  	vli_set(tmp, &product[3], ndigits);
720  	carry = vli_add(result, result, tmp, ndigits);
721  
722  	tmp[0] = 0;
723  	tmp[1] = product[3];
724  	tmp[2] = product[4];
725  	carry += vli_add(result, result, tmp, ndigits);
726  
727  	tmp[0] = tmp[1] = product[5];
728  	tmp[2] = 0;
729  	carry += vli_add(result, result, tmp, ndigits);
730  
731  	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
732  		carry -= vli_sub(result, result, curve_prime, ndigits);
733  }
734  
735  /* Computes result = product % curve_prime
736   * from http://www.nsa.gov/ia/_files/nist-routines.pdf
737   */
vli_mmod_fast_256(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)738  static void vli_mmod_fast_256(u64 *result, const u64 *product,
739  			      const u64 *curve_prime, u64 *tmp)
740  {
741  	int carry;
742  	const unsigned int ndigits = 4;
743  
744  	/* t */
745  	vli_set(result, product, ndigits);
746  
747  	/* s1 */
748  	tmp[0] = 0;
749  	tmp[1] = product[5] & 0xffffffff00000000ull;
750  	tmp[2] = product[6];
751  	tmp[3] = product[7];
752  	carry = vli_lshift(tmp, tmp, 1, ndigits);
753  	carry += vli_add(result, result, tmp, ndigits);
754  
755  	/* s2 */
756  	tmp[1] = product[6] << 32;
757  	tmp[2] = (product[6] >> 32) | (product[7] << 32);
758  	tmp[3] = product[7] >> 32;
759  	carry += vli_lshift(tmp, tmp, 1, ndigits);
760  	carry += vli_add(result, result, tmp, ndigits);
761  
762  	/* s3 */
763  	tmp[0] = product[4];
764  	tmp[1] = product[5] & 0xffffffff;
765  	tmp[2] = 0;
766  	tmp[3] = product[7];
767  	carry += vli_add(result, result, tmp, ndigits);
768  
769  	/* s4 */
770  	tmp[0] = (product[4] >> 32) | (product[5] << 32);
771  	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
772  	tmp[2] = product[7];
773  	tmp[3] = (product[6] >> 32) | (product[4] << 32);
774  	carry += vli_add(result, result, tmp, ndigits);
775  
776  	/* d1 */
777  	tmp[0] = (product[5] >> 32) | (product[6] << 32);
778  	tmp[1] = (product[6] >> 32);
779  	tmp[2] = 0;
780  	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
781  	carry -= vli_sub(result, result, tmp, ndigits);
782  
783  	/* d2 */
784  	tmp[0] = product[6];
785  	tmp[1] = product[7];
786  	tmp[2] = 0;
787  	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
788  	carry -= vli_sub(result, result, tmp, ndigits);
789  
790  	/* d3 */
791  	tmp[0] = (product[6] >> 32) | (product[7] << 32);
792  	tmp[1] = (product[7] >> 32) | (product[4] << 32);
793  	tmp[2] = (product[4] >> 32) | (product[5] << 32);
794  	tmp[3] = (product[6] << 32);
795  	carry -= vli_sub(result, result, tmp, ndigits);
796  
797  	/* d4 */
798  	tmp[0] = product[7];
799  	tmp[1] = product[4] & 0xffffffff00000000ull;
800  	tmp[2] = product[5];
801  	tmp[3] = product[6] & 0xffffffff00000000ull;
802  	carry -= vli_sub(result, result, tmp, ndigits);
803  
804  	if (carry < 0) {
805  		do {
806  			carry += vli_add(result, result, curve_prime, ndigits);
807  		} while (carry < 0);
808  	} else {
809  		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
810  			carry -= vli_sub(result, result, curve_prime, ndigits);
811  	}
812  }
813  
814  #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
815  #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
816  #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
817  
818  /* Computes result = product % curve_prime
819   * from "Mathematical routines for the NIST prime elliptic curves"
820   */
vli_mmod_fast_384(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)821  static void vli_mmod_fast_384(u64 *result, const u64 *product,
822  				const u64 *curve_prime, u64 *tmp)
823  {
824  	int carry;
825  	const unsigned int ndigits = 6;
826  
827  	/* t */
828  	vli_set(result, product, ndigits);
829  
830  	/* s1 */
831  	tmp[0] = 0;		// 0 || 0
832  	tmp[1] = 0;		// 0 || 0
833  	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
834  	tmp[3] = product[11]>>32;	// 0 ||a23
835  	tmp[4] = 0;		// 0 || 0
836  	tmp[5] = 0;		// 0 || 0
837  	carry = vli_lshift(tmp, tmp, 1, ndigits);
838  	carry += vli_add(result, result, tmp, ndigits);
839  
840  	/* s2 */
841  	tmp[0] = product[6];	//a13||a12
842  	tmp[1] = product[7];	//a15||a14
843  	tmp[2] = product[8];	//a17||a16
844  	tmp[3] = product[9];	//a19||a18
845  	tmp[4] = product[10];	//a21||a20
846  	tmp[5] = product[11];	//a23||a22
847  	carry += vli_add(result, result, tmp, ndigits);
848  
849  	/* s3 */
850  	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
851  	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
852  	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
853  	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
854  	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
855  	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
856  	carry += vli_add(result, result, tmp, ndigits);
857  
858  	/* s4 */
859  	tmp[0] = AND64H(product[11]);	//a23|| 0
860  	tmp[1] = (product[10]<<32);	//a20|| 0
861  	tmp[2] = product[6];	//a13||a12
862  	tmp[3] = product[7];	//a15||a14
863  	tmp[4] = product[8];	//a17||a16
864  	tmp[5] = product[9];	//a19||a18
865  	carry += vli_add(result, result, tmp, ndigits);
866  
867  	/* s5 */
868  	tmp[0] = 0;		//  0|| 0
869  	tmp[1] = 0;		//  0|| 0
870  	tmp[2] = product[10];	//a21||a20
871  	tmp[3] = product[11];	//a23||a22
872  	tmp[4] = 0;		//  0|| 0
873  	tmp[5] = 0;		//  0|| 0
874  	carry += vli_add(result, result, tmp, ndigits);
875  
876  	/* s6 */
877  	tmp[0] = AND64L(product[10]);	// 0 ||a20
878  	tmp[1] = AND64H(product[10]);	//a21|| 0
879  	tmp[2] = product[11];	//a23||a22
880  	tmp[3] = 0;		// 0 || 0
881  	tmp[4] = 0;		// 0 || 0
882  	tmp[5] = 0;		// 0 || 0
883  	carry += vli_add(result, result, tmp, ndigits);
884  
885  	/* d1 */
886  	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
887  	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
888  	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
889  	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
890  	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
891  	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
892  	carry -= vli_sub(result, result, tmp, ndigits);
893  
894  	/* d2 */
895  	tmp[0] = (product[10]<<32);	//a20|| 0
896  	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
897  	tmp[2] = (product[11]>>32);	// 0 ||a23
898  	tmp[3] = 0;		// 0 || 0
899  	tmp[4] = 0;		// 0 || 0
900  	tmp[5] = 0;		// 0 || 0
901  	carry -= vli_sub(result, result, tmp, ndigits);
902  
903  	/* d3 */
904  	tmp[0] = 0;		// 0 || 0
905  	tmp[1] = AND64H(product[11]);	//a23|| 0
906  	tmp[2] = product[11]>>32;	// 0 ||a23
907  	tmp[3] = 0;		// 0 || 0
908  	tmp[4] = 0;		// 0 || 0
909  	tmp[5] = 0;		// 0 || 0
910  	carry -= vli_sub(result, result, tmp, ndigits);
911  
912  	if (carry < 0) {
913  		do {
914  			carry += vli_add(result, result, curve_prime, ndigits);
915  		} while (carry < 0);
916  	} else {
917  		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
918  			carry -= vli_sub(result, result, curve_prime, ndigits);
919  	}
920  
921  }
922  
923  #undef SL32OR32
924  #undef AND64H
925  #undef AND64L
926  
927  /* Computes result = product % curve_prime for different curve_primes.
928   *
929   * Note that curve_primes are distinguished just by heuristic check and
930   * not by complete conformance check.
931   */
vli_mmod_fast(u64 * result,u64 * product,const struct ecc_curve * curve)932  static bool vli_mmod_fast(u64 *result, u64 *product,
933  			  const struct ecc_curve *curve)
934  {
935  	u64 tmp[2 * ECC_MAX_DIGITS];
936  	const u64 *curve_prime = curve->p;
937  	const unsigned int ndigits = curve->g.ndigits;
938  
939  	/* All NIST curves have name prefix 'nist_' */
940  	if (strncmp(curve->name, "nist_", 5) != 0) {
941  		/* Try to handle Pseudo-Marsenne primes. */
942  		if (curve_prime[ndigits - 1] == -1ull) {
943  			vli_mmod_special(result, product, curve_prime,
944  					 ndigits);
945  			return true;
946  		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
947  			   curve_prime[ndigits - 2] == 0) {
948  			vli_mmod_special2(result, product, curve_prime,
949  					  ndigits);
950  			return true;
951  		}
952  		vli_mmod_barrett(result, product, curve_prime, ndigits);
953  		return true;
954  	}
955  
956  	switch (ndigits) {
957  	case 3:
958  		vli_mmod_fast_192(result, product, curve_prime, tmp);
959  		break;
960  	case 4:
961  		vli_mmod_fast_256(result, product, curve_prime, tmp);
962  		break;
963  	case 6:
964  		vli_mmod_fast_384(result, product, curve_prime, tmp);
965  		break;
966  	default:
967  		pr_err_ratelimited("ecc: unsupported digits size!\n");
968  		return false;
969  	}
970  
971  	return true;
972  }
973  
974  /* Computes result = (left * right) % mod.
975   * Assumes that mod is big enough curve order.
976   */
vli_mod_mult_slow(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)977  void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
978  		       const u64 *mod, unsigned int ndigits)
979  {
980  	u64 product[ECC_MAX_DIGITS * 2];
981  
982  	vli_mult(product, left, right, ndigits);
983  	vli_mmod_slow(result, product, mod, ndigits);
984  }
985  EXPORT_SYMBOL(vli_mod_mult_slow);
986  
987  /* Computes result = (left * right) % curve_prime. */
vli_mod_mult_fast(u64 * result,const u64 * left,const u64 * right,const struct ecc_curve * curve)988  static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
989  			      const struct ecc_curve *curve)
990  {
991  	u64 product[2 * ECC_MAX_DIGITS];
992  
993  	vli_mult(product, left, right, curve->g.ndigits);
994  	vli_mmod_fast(result, product, curve);
995  }
996  
997  /* Computes result = left^2 % curve_prime. */
vli_mod_square_fast(u64 * result,const u64 * left,const struct ecc_curve * curve)998  static void vli_mod_square_fast(u64 *result, const u64 *left,
999  				const struct ecc_curve *curve)
1000  {
1001  	u64 product[2 * ECC_MAX_DIGITS];
1002  
1003  	vli_square(product, left, curve->g.ndigits);
1004  	vli_mmod_fast(result, product, curve);
1005  }
1006  
1007  #define EVEN(vli) (!(vli[0] & 1))
1008  /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1009   * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1010   * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1011   */
vli_mod_inv(u64 * result,const u64 * input,const u64 * mod,unsigned int ndigits)1012  void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
1013  			unsigned int ndigits)
1014  {
1015  	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1016  	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
1017  	u64 carry;
1018  	int cmp_result;
1019  
1020  	if (vli_is_zero(input, ndigits)) {
1021  		vli_clear(result, ndigits);
1022  		return;
1023  	}
1024  
1025  	vli_set(a, input, ndigits);
1026  	vli_set(b, mod, ndigits);
1027  	vli_clear(u, ndigits);
1028  	u[0] = 1;
1029  	vli_clear(v, ndigits);
1030  
1031  	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1032  		carry = 0;
1033  
1034  		if (EVEN(a)) {
1035  			vli_rshift1(a, ndigits);
1036  
1037  			if (!EVEN(u))
1038  				carry = vli_add(u, u, mod, ndigits);
1039  
1040  			vli_rshift1(u, ndigits);
1041  			if (carry)
1042  				u[ndigits - 1] |= 0x8000000000000000ull;
1043  		} else if (EVEN(b)) {
1044  			vli_rshift1(b, ndigits);
1045  
1046  			if (!EVEN(v))
1047  				carry = vli_add(v, v, mod, ndigits);
1048  
1049  			vli_rshift1(v, ndigits);
1050  			if (carry)
1051  				v[ndigits - 1] |= 0x8000000000000000ull;
1052  		} else if (cmp_result > 0) {
1053  			vli_sub(a, a, b, ndigits);
1054  			vli_rshift1(a, ndigits);
1055  
1056  			if (vli_cmp(u, v, ndigits) < 0)
1057  				vli_add(u, u, mod, ndigits);
1058  
1059  			vli_sub(u, u, v, ndigits);
1060  			if (!EVEN(u))
1061  				carry = vli_add(u, u, mod, ndigits);
1062  
1063  			vli_rshift1(u, ndigits);
1064  			if (carry)
1065  				u[ndigits - 1] |= 0x8000000000000000ull;
1066  		} else {
1067  			vli_sub(b, b, a, ndigits);
1068  			vli_rshift1(b, ndigits);
1069  
1070  			if (vli_cmp(v, u, ndigits) < 0)
1071  				vli_add(v, v, mod, ndigits);
1072  
1073  			vli_sub(v, v, u, ndigits);
1074  			if (!EVEN(v))
1075  				carry = vli_add(v, v, mod, ndigits);
1076  
1077  			vli_rshift1(v, ndigits);
1078  			if (carry)
1079  				v[ndigits - 1] |= 0x8000000000000000ull;
1080  		}
1081  	}
1082  
1083  	vli_set(result, u, ndigits);
1084  }
1085  EXPORT_SYMBOL(vli_mod_inv);
1086  
1087  /* ------ Point operations ------ */
1088  
1089  /* Returns true if p_point is the point at infinity, false otherwise. */
ecc_point_is_zero(const struct ecc_point * point)1090  bool ecc_point_is_zero(const struct ecc_point *point)
1091  {
1092  	return (vli_is_zero(point->x, point->ndigits) &&
1093  		vli_is_zero(point->y, point->ndigits));
1094  }
1095  EXPORT_SYMBOL(ecc_point_is_zero);
1096  
1097  /* Point multiplication algorithm using Montgomery's ladder with co-Z
1098   * coordinates. From https://eprint.iacr.org/2011/338.pdf
1099   */
1100  
1101  /* Double in place */
ecc_point_double_jacobian(u64 * x1,u64 * y1,u64 * z1,const struct ecc_curve * curve)1102  static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1103  					const struct ecc_curve *curve)
1104  {
1105  	/* t1 = x, t2 = y, t3 = z */
1106  	u64 t4[ECC_MAX_DIGITS];
1107  	u64 t5[ECC_MAX_DIGITS];
1108  	const u64 *curve_prime = curve->p;
1109  	const unsigned int ndigits = curve->g.ndigits;
1110  
1111  	if (vli_is_zero(z1, ndigits))
1112  		return;
1113  
1114  	/* t4 = y1^2 */
1115  	vli_mod_square_fast(t4, y1, curve);
1116  	/* t5 = x1*y1^2 = A */
1117  	vli_mod_mult_fast(t5, x1, t4, curve);
1118  	/* t4 = y1^4 */
1119  	vli_mod_square_fast(t4, t4, curve);
1120  	/* t2 = y1*z1 = z3 */
1121  	vli_mod_mult_fast(y1, y1, z1, curve);
1122  	/* t3 = z1^2 */
1123  	vli_mod_square_fast(z1, z1, curve);
1124  
1125  	/* t1 = x1 + z1^2 */
1126  	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1127  	/* t3 = 2*z1^2 */
1128  	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1129  	/* t3 = x1 - z1^2 */
1130  	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1131  	/* t1 = x1^2 - z1^4 */
1132  	vli_mod_mult_fast(x1, x1, z1, curve);
1133  
1134  	/* t3 = 2*(x1^2 - z1^4) */
1135  	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1136  	/* t1 = 3*(x1^2 - z1^4) */
1137  	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1138  	if (vli_test_bit(x1, 0)) {
1139  		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1140  
1141  		vli_rshift1(x1, ndigits);
1142  		x1[ndigits - 1] |= carry << 63;
1143  	} else {
1144  		vli_rshift1(x1, ndigits);
1145  	}
1146  	/* t1 = 3/2*(x1^2 - z1^4) = B */
1147  
1148  	/* t3 = B^2 */
1149  	vli_mod_square_fast(z1, x1, curve);
1150  	/* t3 = B^2 - A */
1151  	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1152  	/* t3 = B^2 - 2A = x3 */
1153  	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1154  	/* t5 = A - x3 */
1155  	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1156  	/* t1 = B * (A - x3) */
1157  	vli_mod_mult_fast(x1, x1, t5, curve);
1158  	/* t4 = B * (A - x3) - y1^4 = y3 */
1159  	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1160  
1161  	vli_set(x1, z1, ndigits);
1162  	vli_set(z1, y1, ndigits);
1163  	vli_set(y1, t4, ndigits);
1164  }
1165  
1166  /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(u64 * x1,u64 * y1,u64 * z,const struct ecc_curve * curve)1167  static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1168  {
1169  	u64 t1[ECC_MAX_DIGITS];
1170  
1171  	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1172  	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1173  	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1174  	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1175  }
1176  
1177  /* P = (x1, y1) => 2P, (x2, y2) => P' */
xycz_initial_double(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * p_initial_z,const struct ecc_curve * curve)1178  static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1179  				u64 *p_initial_z, const struct ecc_curve *curve)
1180  {
1181  	u64 z[ECC_MAX_DIGITS];
1182  	const unsigned int ndigits = curve->g.ndigits;
1183  
1184  	vli_set(x2, x1, ndigits);
1185  	vli_set(y2, y1, ndigits);
1186  
1187  	vli_clear(z, ndigits);
1188  	z[0] = 1;
1189  
1190  	if (p_initial_z)
1191  		vli_set(z, p_initial_z, ndigits);
1192  
1193  	apply_z(x1, y1, z, curve);
1194  
1195  	ecc_point_double_jacobian(x1, y1, z, curve);
1196  
1197  	apply_z(x2, y2, z, curve);
1198  }
1199  
1200  /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1201   * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1202   * or P => P', Q => P + Q
1203   */
xycz_add(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1204  static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1205  			const struct ecc_curve *curve)
1206  {
1207  	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1208  	u64 t5[ECC_MAX_DIGITS];
1209  	const u64 *curve_prime = curve->p;
1210  	const unsigned int ndigits = curve->g.ndigits;
1211  
1212  	/* t5 = x2 - x1 */
1213  	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1214  	/* t5 = (x2 - x1)^2 = A */
1215  	vli_mod_square_fast(t5, t5, curve);
1216  	/* t1 = x1*A = B */
1217  	vli_mod_mult_fast(x1, x1, t5, curve);
1218  	/* t3 = x2*A = C */
1219  	vli_mod_mult_fast(x2, x2, t5, curve);
1220  	/* t4 = y2 - y1 */
1221  	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1222  	/* t5 = (y2 - y1)^2 = D */
1223  	vli_mod_square_fast(t5, y2, curve);
1224  
1225  	/* t5 = D - B */
1226  	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1227  	/* t5 = D - B - C = x3 */
1228  	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1229  	/* t3 = C - B */
1230  	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1231  	/* t2 = y1*(C - B) */
1232  	vli_mod_mult_fast(y1, y1, x2, curve);
1233  	/* t3 = B - x3 */
1234  	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1235  	/* t4 = (y2 - y1)*(B - x3) */
1236  	vli_mod_mult_fast(y2, y2, x2, curve);
1237  	/* t4 = y3 */
1238  	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1239  
1240  	vli_set(x2, t5, ndigits);
1241  }
1242  
1243  /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1244   * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1245   * or P => P - Q, Q => P + Q
1246   */
xycz_add_c(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1247  static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1248  			const struct ecc_curve *curve)
1249  {
1250  	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1251  	u64 t5[ECC_MAX_DIGITS];
1252  	u64 t6[ECC_MAX_DIGITS];
1253  	u64 t7[ECC_MAX_DIGITS];
1254  	const u64 *curve_prime = curve->p;
1255  	const unsigned int ndigits = curve->g.ndigits;
1256  
1257  	/* t5 = x2 - x1 */
1258  	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1259  	/* t5 = (x2 - x1)^2 = A */
1260  	vli_mod_square_fast(t5, t5, curve);
1261  	/* t1 = x1*A = B */
1262  	vli_mod_mult_fast(x1, x1, t5, curve);
1263  	/* t3 = x2*A = C */
1264  	vli_mod_mult_fast(x2, x2, t5, curve);
1265  	/* t4 = y2 + y1 */
1266  	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1267  	/* t4 = y2 - y1 */
1268  	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1269  
1270  	/* t6 = C - B */
1271  	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1272  	/* t2 = y1 * (C - B) */
1273  	vli_mod_mult_fast(y1, y1, t6, curve);
1274  	/* t6 = B + C */
1275  	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1276  	/* t3 = (y2 - y1)^2 */
1277  	vli_mod_square_fast(x2, y2, curve);
1278  	/* t3 = x3 */
1279  	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1280  
1281  	/* t7 = B - x3 */
1282  	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1283  	/* t4 = (y2 - y1)*(B - x3) */
1284  	vli_mod_mult_fast(y2, y2, t7, curve);
1285  	/* t4 = y3 */
1286  	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1287  
1288  	/* t7 = (y2 + y1)^2 = F */
1289  	vli_mod_square_fast(t7, t5, curve);
1290  	/* t7 = x3' */
1291  	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1292  	/* t6 = x3' - B */
1293  	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1294  	/* t6 = (y2 + y1)*(x3' - B) */
1295  	vli_mod_mult_fast(t6, t6, t5, curve);
1296  	/* t2 = y3' */
1297  	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1298  
1299  	vli_set(x1, t7, ndigits);
1300  }
1301  
ecc_point_mult(struct ecc_point * result,const struct ecc_point * point,const u64 * scalar,u64 * initial_z,const struct ecc_curve * curve,unsigned int ndigits)1302  static void ecc_point_mult(struct ecc_point *result,
1303  			   const struct ecc_point *point, const u64 *scalar,
1304  			   u64 *initial_z, const struct ecc_curve *curve,
1305  			   unsigned int ndigits)
1306  {
1307  	/* R0 and R1 */
1308  	u64 rx[2][ECC_MAX_DIGITS];
1309  	u64 ry[2][ECC_MAX_DIGITS];
1310  	u64 z[ECC_MAX_DIGITS];
1311  	u64 sk[2][ECC_MAX_DIGITS];
1312  	u64 *curve_prime = curve->p;
1313  	int i, nb;
1314  	int num_bits;
1315  	int carry;
1316  
1317  	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1318  	vli_add(sk[1], sk[0], curve->n, ndigits);
1319  	scalar = sk[!carry];
1320  	num_bits = sizeof(u64) * ndigits * 8 + 1;
1321  
1322  	vli_set(rx[1], point->x, ndigits);
1323  	vli_set(ry[1], point->y, ndigits);
1324  
1325  	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1326  
1327  	for (i = num_bits - 2; i > 0; i--) {
1328  		nb = !vli_test_bit(scalar, i);
1329  		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1330  		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1331  	}
1332  
1333  	nb = !vli_test_bit(scalar, 0);
1334  	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1335  
1336  	/* Find final 1/Z value. */
1337  	/* X1 - X0 */
1338  	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1339  	/* Yb * (X1 - X0) */
1340  	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1341  	/* xP * Yb * (X1 - X0) */
1342  	vli_mod_mult_fast(z, z, point->x, curve);
1343  
1344  	/* 1 / (xP * Yb * (X1 - X0)) */
1345  	vli_mod_inv(z, z, curve_prime, point->ndigits);
1346  
1347  	/* yP / (xP * Yb * (X1 - X0)) */
1348  	vli_mod_mult_fast(z, z, point->y, curve);
1349  	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1350  	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1351  	/* End 1/Z calculation */
1352  
1353  	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1354  
1355  	apply_z(rx[0], ry[0], z, curve);
1356  
1357  	vli_set(result->x, rx[0], ndigits);
1358  	vli_set(result->y, ry[0], ndigits);
1359  }
1360  
1361  /* Computes R = P + Q mod p */
ecc_point_add(const struct ecc_point * result,const struct ecc_point * p,const struct ecc_point * q,const struct ecc_curve * curve)1362  static void ecc_point_add(const struct ecc_point *result,
1363  		   const struct ecc_point *p, const struct ecc_point *q,
1364  		   const struct ecc_curve *curve)
1365  {
1366  	u64 z[ECC_MAX_DIGITS];
1367  	u64 px[ECC_MAX_DIGITS];
1368  	u64 py[ECC_MAX_DIGITS];
1369  	unsigned int ndigits = curve->g.ndigits;
1370  
1371  	vli_set(result->x, q->x, ndigits);
1372  	vli_set(result->y, q->y, ndigits);
1373  	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1374  	vli_set(px, p->x, ndigits);
1375  	vli_set(py, p->y, ndigits);
1376  	xycz_add(px, py, result->x, result->y, curve);
1377  	vli_mod_inv(z, z, curve->p, ndigits);
1378  	apply_z(result->x, result->y, z, curve);
1379  }
1380  
1381  /* Computes R = u1P + u2Q mod p using Shamir's trick.
1382   * Based on: Kenneth MacKay's micro-ecc (2014).
1383   */
ecc_point_mult_shamir(const struct ecc_point * result,const u64 * u1,const struct ecc_point * p,const u64 * u2,const struct ecc_point * q,const struct ecc_curve * curve)1384  void ecc_point_mult_shamir(const struct ecc_point *result,
1385  			   const u64 *u1, const struct ecc_point *p,
1386  			   const u64 *u2, const struct ecc_point *q,
1387  			   const struct ecc_curve *curve)
1388  {
1389  	u64 z[ECC_MAX_DIGITS];
1390  	u64 sump[2][ECC_MAX_DIGITS];
1391  	u64 *rx = result->x;
1392  	u64 *ry = result->y;
1393  	unsigned int ndigits = curve->g.ndigits;
1394  	unsigned int num_bits;
1395  	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1396  	const struct ecc_point *points[4];
1397  	const struct ecc_point *point;
1398  	unsigned int idx;
1399  	int i;
1400  
1401  	ecc_point_add(&sum, p, q, curve);
1402  	points[0] = NULL;
1403  	points[1] = p;
1404  	points[2] = q;
1405  	points[3] = &sum;
1406  
1407  	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1408  	i = num_bits - 1;
1409  	idx = !!vli_test_bit(u1, i);
1410  	idx |= (!!vli_test_bit(u2, i)) << 1;
1411  	point = points[idx];
1412  
1413  	vli_set(rx, point->x, ndigits);
1414  	vli_set(ry, point->y, ndigits);
1415  	vli_clear(z + 1, ndigits - 1);
1416  	z[0] = 1;
1417  
1418  	for (--i; i >= 0; i--) {
1419  		ecc_point_double_jacobian(rx, ry, z, curve);
1420  		idx = !!vli_test_bit(u1, i);
1421  		idx |= (!!vli_test_bit(u2, i)) << 1;
1422  		point = points[idx];
1423  		if (point) {
1424  			u64 tx[ECC_MAX_DIGITS];
1425  			u64 ty[ECC_MAX_DIGITS];
1426  			u64 tz[ECC_MAX_DIGITS];
1427  
1428  			vli_set(tx, point->x, ndigits);
1429  			vli_set(ty, point->y, ndigits);
1430  			apply_z(tx, ty, z, curve);
1431  			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1432  			xycz_add(tx, ty, rx, ry, curve);
1433  			vli_mod_mult_fast(z, z, tz, curve);
1434  		}
1435  	}
1436  	vli_mod_inv(z, z, curve->p, ndigits);
1437  	apply_z(rx, ry, z, curve);
1438  }
1439  EXPORT_SYMBOL(ecc_point_mult_shamir);
1440  
__ecc_is_key_valid(const struct ecc_curve * curve,const u64 * private_key,unsigned int ndigits)1441  static int __ecc_is_key_valid(const struct ecc_curve *curve,
1442  			      const u64 *private_key, unsigned int ndigits)
1443  {
1444  	u64 one[ECC_MAX_DIGITS] = { 1, };
1445  	u64 res[ECC_MAX_DIGITS];
1446  
1447  	if (!private_key)
1448  		return -EINVAL;
1449  
1450  	if (curve->g.ndigits != ndigits)
1451  		return -EINVAL;
1452  
1453  	/* Make sure the private key is in the range [2, n-3]. */
1454  	if (vli_cmp(one, private_key, ndigits) != -1)
1455  		return -EINVAL;
1456  	vli_sub(res, curve->n, one, ndigits);
1457  	vli_sub(res, res, one, ndigits);
1458  	if (vli_cmp(res, private_key, ndigits) != 1)
1459  		return -EINVAL;
1460  
1461  	return 0;
1462  }
1463  
ecc_is_key_valid(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,unsigned int private_key_len)1464  int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1465  		     const u64 *private_key, unsigned int private_key_len)
1466  {
1467  	int nbytes;
1468  	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1469  
1470  	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1471  
1472  	if (private_key_len != nbytes)
1473  		return -EINVAL;
1474  
1475  	return __ecc_is_key_valid(curve, private_key, ndigits);
1476  }
1477  EXPORT_SYMBOL(ecc_is_key_valid);
1478  
1479  /*
1480   * ECC private keys are generated using the method of extra random bits,
1481   * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1482   *
1483   * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1484   *                         than requested
1485   * 0 <= c mod(n-1) <= n-2  and implies that
1486   * 1 <= d <= n-1
1487   *
1488   * This method generates a private key uniformly distributed in the range
1489   * [1, n-1].
1490   */
ecc_gen_privkey(unsigned int curve_id,unsigned int ndigits,u64 * privkey)1491  int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1492  {
1493  	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1494  	u64 priv[ECC_MAX_DIGITS];
1495  	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1496  	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1497  	int err;
1498  
1499  	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1500  	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1501  		return -EINVAL;
1502  
1503  	/*
1504  	 * FIPS 186-4 recommends that the private key should be obtained from a
1505  	 * RBG with a security strength equal to or greater than the security
1506  	 * strength associated with N.
1507  	 *
1508  	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1509  	 * ECC is 256 (N >= 512).
1510  	 *
1511  	 * This condition is met by the default RNG because it selects a favored
1512  	 * DRBG with a security strength of 256.
1513  	 */
1514  	if (crypto_get_default_rng())
1515  		return -EFAULT;
1516  
1517  	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1518  	crypto_put_default_rng();
1519  	if (err)
1520  		return err;
1521  
1522  	/* Make sure the private key is in the valid range. */
1523  	if (__ecc_is_key_valid(curve, priv, ndigits))
1524  		return -EINVAL;
1525  
1526  	ecc_swap_digits(priv, privkey, ndigits);
1527  
1528  	return 0;
1529  }
1530  EXPORT_SYMBOL(ecc_gen_privkey);
1531  
ecc_make_pub_key(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,u64 * public_key)1532  int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1533  		     const u64 *private_key, u64 *public_key)
1534  {
1535  	int ret = 0;
1536  	struct ecc_point *pk;
1537  	u64 priv[ECC_MAX_DIGITS];
1538  	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1539  
1540  	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1541  		ret = -EINVAL;
1542  		goto out;
1543  	}
1544  
1545  	ecc_swap_digits(private_key, priv, ndigits);
1546  
1547  	pk = ecc_alloc_point(ndigits);
1548  	if (!pk) {
1549  		ret = -ENOMEM;
1550  		goto out;
1551  	}
1552  
1553  	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1554  
1555  	/* SP800-56A rev 3 5.6.2.1.3 key check */
1556  	if (ecc_is_pubkey_valid_full(curve, pk)) {
1557  		ret = -EAGAIN;
1558  		goto err_free_point;
1559  	}
1560  
1561  	ecc_swap_digits(pk->x, public_key, ndigits);
1562  	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1563  
1564  err_free_point:
1565  	ecc_free_point(pk);
1566  out:
1567  	return ret;
1568  }
1569  EXPORT_SYMBOL(ecc_make_pub_key);
1570  
1571  /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
ecc_is_pubkey_valid_partial(const struct ecc_curve * curve,struct ecc_point * pk)1572  int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1573  				struct ecc_point *pk)
1574  {
1575  	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1576  
1577  	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1578  		return -EINVAL;
1579  
1580  	/* Check 1: Verify key is not the zero point. */
1581  	if (ecc_point_is_zero(pk))
1582  		return -EINVAL;
1583  
1584  	/* Check 2: Verify key is in the range [1, p-1]. */
1585  	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1586  		return -EINVAL;
1587  	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1588  		return -EINVAL;
1589  
1590  	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1591  	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1592  	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1593  	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1594  	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1595  	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1596  	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1597  	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1598  		return -EINVAL;
1599  
1600  	return 0;
1601  }
1602  EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1603  
1604  /* SP800-56A section 5.6.2.3.3 full verification */
ecc_is_pubkey_valid_full(const struct ecc_curve * curve,struct ecc_point * pk)1605  int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1606  			     struct ecc_point *pk)
1607  {
1608  	struct ecc_point *nQ;
1609  
1610  	/* Checks 1 through 3 */
1611  	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1612  
1613  	if (ret)
1614  		return ret;
1615  
1616  	/* Check 4: Verify that nQ is the zero point. */
1617  	nQ = ecc_alloc_point(pk->ndigits);
1618  	if (!nQ)
1619  		return -ENOMEM;
1620  
1621  	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1622  	if (!ecc_point_is_zero(nQ))
1623  		ret = -EINVAL;
1624  
1625  	ecc_free_point(nQ);
1626  
1627  	return ret;
1628  }
1629  EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1630  
crypto_ecdh_shared_secret(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,const u64 * public_key,u64 * secret)1631  int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1632  			      const u64 *private_key, const u64 *public_key,
1633  			      u64 *secret)
1634  {
1635  	int ret = 0;
1636  	struct ecc_point *product, *pk;
1637  	u64 priv[ECC_MAX_DIGITS];
1638  	u64 rand_z[ECC_MAX_DIGITS];
1639  	unsigned int nbytes;
1640  	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1641  
1642  	if (!private_key || !public_key || !curve ||
1643  	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1644  		ret = -EINVAL;
1645  		goto out;
1646  	}
1647  
1648  	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1649  
1650  	get_random_bytes(rand_z, nbytes);
1651  
1652  	pk = ecc_alloc_point(ndigits);
1653  	if (!pk) {
1654  		ret = -ENOMEM;
1655  		goto out;
1656  	}
1657  
1658  	ecc_swap_digits(public_key, pk->x, ndigits);
1659  	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1660  	ret = ecc_is_pubkey_valid_partial(curve, pk);
1661  	if (ret)
1662  		goto err_alloc_product;
1663  
1664  	ecc_swap_digits(private_key, priv, ndigits);
1665  
1666  	product = ecc_alloc_point(ndigits);
1667  	if (!product) {
1668  		ret = -ENOMEM;
1669  		goto err_alloc_product;
1670  	}
1671  
1672  	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1673  
1674  	if (ecc_point_is_zero(product)) {
1675  		ret = -EFAULT;
1676  		goto err_validity;
1677  	}
1678  
1679  	ecc_swap_digits(product->x, secret, ndigits);
1680  
1681  err_validity:
1682  	memzero_explicit(priv, sizeof(priv));
1683  	memzero_explicit(rand_z, sizeof(rand_z));
1684  	ecc_free_point(product);
1685  err_alloc_product:
1686  	ecc_free_point(pk);
1687  out:
1688  	return ret;
1689  }
1690  EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1691  
1692  MODULE_LICENSE("Dual BSD/GPL");
1693