xref: /openbmc/u-boot/lib/bzip2/bzlib_blocksort.c (revision 6905f4d3c7be46fed4859f51f0a8f9a1107c22e7)
1  
2  /*-------------------------------------------------------------*/
3  /*--- Block sorting machinery                               ---*/
4  /*---                                           blocksort.c ---*/
5  /*-------------------------------------------------------------*/
6  
7  /*--
8    This file is a part of bzip2 and/or libbzip2, a program and
9    library for lossless, block-sorting data compression.
10  
11    Copyright (C) 1996-2002 Julian R Seward.  All rights reserved.
12  
13    Redistribution and use in source and binary forms, with or without
14    modification, are permitted provided that the following conditions
15    are met:
16  
17    1. Redistributions of source code must retain the above copyright
18       notice, this list of conditions and the following disclaimer.
19  
20    2. The origin of this software must not be misrepresented; you must
21       not claim that you wrote the original software.  If you use this
22       software in a product, an acknowledgment in the product
23       documentation would be appreciated but is not required.
24  
25    3. Altered source versions must be plainly marked as such, and must
26       not be misrepresented as being the original software.
27  
28    4. The name of the author may not be used to endorse or promote
29       products derived from this software without specific prior written
30       permission.
31  
32    THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
33    OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
34    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35    ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
36    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
38    GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
39    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
40    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
41    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
42    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43  
44    Julian Seward, Cambridge, UK.
45    jseward@acm.org
46    bzip2/libbzip2 version 1.0.6 of 6 September 2010
47    Copyright (C) 1996-2010 Julian Seward <jseward@bzip.org>
48  
49    This program is based on (at least) the work of:
50       Mike Burrows
51       David Wheeler
52       Peter Fenwick
53       Alistair Moffat
54       Radford Neal
55       Ian H. Witten
56       Robert Sedgewick
57       Jon L. Bentley
58  
59    For more information on these sources, see the manual.
60  --*/
61  
62  #include "bzlib_private.h"
63  
64  /*---------------------------------------------*/
65  /*--- Fallback O(N log(N)^2) sorting        ---*/
66  /*--- algorithm, for repetitive blocks      ---*/
67  /*---------------------------------------------*/
68  
69  /*---------------------------------------------*/
70  static
71  __inline__
fallbackSimpleSort(UInt32 * fmap,UInt32 * eclass,Int32 lo,Int32 hi)72  void fallbackSimpleSort ( UInt32* fmap,
73                            UInt32* eclass,
74                            Int32   lo,
75                            Int32   hi )
76  {
77     Int32 i, j, tmp;
78     UInt32 ec_tmp;
79  
80     if (lo == hi) return;
81  
82     if (hi - lo > 3) {
83        for ( i = hi-4; i >= lo; i-- ) {
84           tmp = fmap[i];
85           ec_tmp = eclass[tmp];
86           for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 )
87              fmap[j-4] = fmap[j];
88           fmap[j-4] = tmp;
89        }
90     }
91  
92     for ( i = hi-1; i >= lo; i-- ) {
93        tmp = fmap[i];
94        ec_tmp = eclass[tmp];
95        for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ )
96           fmap[j-1] = fmap[j];
97        fmap[j-1] = tmp;
98     }
99  }
100  
101  
102  /*---------------------------------------------*/
103  #define fswap(zz1, zz2) \
104     { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
105  
106  #define fvswap(zzp1, zzp2, zzn)       \
107  {                                     \
108     Int32 yyp1 = (zzp1);               \
109     Int32 yyp2 = (zzp2);               \
110     Int32 yyn  = (zzn);                \
111     while (yyn > 0) {                  \
112        fswap(fmap[yyp1], fmap[yyp2]);  \
113        yyp1++; yyp2++; yyn--;          \
114     }                                  \
115  }
116  
117  
118  #define fmin(a,b) ((a) < (b)) ? (a) : (b)
119  
120  #define fpush(lz,hz) { stackLo[sp] = lz; \
121                         stackHi[sp] = hz; \
122                         sp++; }
123  
124  #define fpop(lz,hz) { sp--;              \
125                        lz = stackLo[sp];  \
126                        hz = stackHi[sp]; }
127  
128  #define FALLBACK_QSORT_SMALL_THRESH 10
129  #define FALLBACK_QSORT_STACK_SIZE   100
130  
131  
132  static
fallbackQSort3(UInt32 * fmap,UInt32 * eclass,Int32 loSt,Int32 hiSt)133  void fallbackQSort3 ( UInt32* fmap,
134                        UInt32* eclass,
135                        Int32   loSt,
136                        Int32   hiSt )
137  {
138     Int32 unLo, unHi, ltLo, gtHi, n, m;
139     Int32 sp, lo, hi;
140     UInt32 med, r, r3;
141     Int32 stackLo[FALLBACK_QSORT_STACK_SIZE];
142     Int32 stackHi[FALLBACK_QSORT_STACK_SIZE];
143  
144     r = 0;
145  
146     sp = 0;
147     fpush ( loSt, hiSt );
148  
149     while (sp > 0) {
150  
151        AssertH ( sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004 );
152  
153        fpop ( lo, hi );
154        if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
155           fallbackSimpleSort ( fmap, eclass, lo, hi );
156           continue;
157        }
158  
159        /* Random partitioning.  Median of 3 sometimes fails to
160           avoid bad cases.  Median of 9 seems to help but
161           looks rather expensive.  This too seems to work but
162           is cheaper.  Guidance for the magic constants
163           7621 and 32768 is taken from Sedgewick's algorithms
164           book, chapter 35.
165        */
166        r = ((r * 7621) + 1) % 32768;
167        r3 = r % 3;
168        if (r3 == 0) med = eclass[fmap[lo]]; else
169        if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else
170                     med = eclass[fmap[hi]];
171  
172        unLo = ltLo = lo;
173        unHi = gtHi = hi;
174  
175        while (1) {
176           while (1) {
177              if (unLo > unHi) break;
178              n = (Int32)eclass[fmap[unLo]] - (Int32)med;
179              if (n == 0) {
180                 fswap(fmap[unLo], fmap[ltLo]);
181                 ltLo++; unLo++;
182                 continue;
183              };
184              if (n > 0) break;
185              unLo++;
186           }
187           while (1) {
188              if (unLo > unHi) break;
189              n = (Int32)eclass[fmap[unHi]] - (Int32)med;
190              if (n == 0) {
191                 fswap(fmap[unHi], fmap[gtHi]);
192                 gtHi--; unHi--;
193                 continue;
194              };
195              if (n < 0) break;
196              unHi--;
197           }
198           if (unLo > unHi) break;
199           fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
200        }
201  
202        AssertD ( unHi == unLo-1, "fallbackQSort3(2)" );
203  
204        if (gtHi < ltLo) continue;
205  
206        n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n);
207        m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m);
208  
209        n = lo + unLo - ltLo - 1;
210        m = hi - (gtHi - unHi) + 1;
211  
212        if (n - lo > hi - m) {
213           fpush ( lo, n );
214           fpush ( m, hi );
215        } else {
216           fpush ( m, hi );
217           fpush ( lo, n );
218        }
219     }
220  }
221  
222  #undef fmin
223  #undef fpush
224  #undef fpop
225  #undef fswap
226  #undef fvswap
227  #undef FALLBACK_QSORT_SMALL_THRESH
228  #undef FALLBACK_QSORT_STACK_SIZE
229  
230  
231  /*---------------------------------------------*/
232  /* Pre:
233        nblock > 0
234        eclass exists for [0 .. nblock-1]
235        ((UChar*)eclass) [0 .. nblock-1] holds block
236        ptr exists for [0 .. nblock-1]
237  
238     Post:
239        ((UChar*)eclass) [0 .. nblock-1] holds block
240        All other areas of eclass destroyed
241        fmap [0 .. nblock-1] holds sorted order
242        bhtab [ 0 .. 2+(nblock/32) ] destroyed
243  */
244  
245  #define       SET_BH(zz)  bhtab[(zz) >> 5] |= (1 << ((zz) & 31))
246  #define     CLEAR_BH(zz)  bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31))
247  #define     ISSET_BH(zz)  (bhtab[(zz) >> 5] & (1 << ((zz) & 31)))
248  #define      WORD_BH(zz)  bhtab[(zz) >> 5]
249  #define UNALIGNED_BH(zz)  ((zz) & 0x01f)
250  
251  static
fallbackSort(UInt32 * fmap,UInt32 * eclass,UInt32 * bhtab,Int32 nblock,Int32 verb)252  void fallbackSort ( UInt32* fmap,
253                      UInt32* eclass,
254                      UInt32* bhtab,
255                      Int32   nblock,
256                      Int32   verb )
257  {
258     Int32 ftab[257];
259     Int32 ftabCopy[256];
260     Int32 H, i, j, k, l, r, cc, cc1;
261     Int32 nNotDone;
262     Int32 nBhtab;
263     UChar* eclass8 = (UChar*)eclass;
264  
265     /*--
266        Initial 1-char radix sort to generate
267        initial fmap and initial BH bits.
268     --*/
269     if (verb >= 4)
270        VPrintf0 ( "        bucket sorting ...\n" );
271     for (i = 0; i < 257;    i++) ftab[i] = 0;
272     for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
273     for (i = 0; i < 256;    i++) ftabCopy[i] = ftab[i];
274     for (i = 1; i < 257;    i++) ftab[i] += ftab[i-1];
275  
276     for (i = 0; i < nblock; i++) {
277        j = eclass8[i];
278        k = ftab[j] - 1;
279        ftab[j] = k;
280        fmap[k] = i;
281     }
282  
283     nBhtab = 2 + (nblock / 32);
284     for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
285     for (i = 0; i < 256; i++) SET_BH(ftab[i]);
286  
287     /*--
288        Inductively refine the buckets.  Kind-of an
289        "exponential radix sort" (!), inspired by the
290        Manber-Myers suffix array construction algorithm.
291     --*/
292  
293     /*-- set sentinel bits for block-end detection --*/
294     for (i = 0; i < 32; i++) {
295        SET_BH(nblock + 2*i);
296        CLEAR_BH(nblock + 2*i + 1);
297     }
298  
299     /*-- the log(N) loop --*/
300     H = 1;
301     while (1) {
302  
303        if (verb >= 4)
304           VPrintf1 ( "        depth %6d has ", H );
305  
306        j = 0;
307        for (i = 0; i < nblock; i++) {
308           if (ISSET_BH(i)) j = i;
309           k = fmap[i] - H; if (k < 0) k += nblock;
310           eclass[k] = j;
311        }
312  
313        nNotDone = 0;
314        r = -1;
315        while (1) {
316  
317  	 /*-- find the next non-singleton bucket --*/
318           k = r + 1;
319           while (ISSET_BH(k) && UNALIGNED_BH(k)) k++;
320           if (ISSET_BH(k)) {
321              while (WORD_BH(k) == 0xffffffff) k += 32;
322              while (ISSET_BH(k)) k++;
323           }
324           l = k - 1;
325           if (l >= nblock) break;
326           while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++;
327           if (!ISSET_BH(k)) {
328              while (WORD_BH(k) == 0x00000000) k += 32;
329              while (!ISSET_BH(k)) k++;
330           }
331           r = k - 1;
332           if (r >= nblock) break;
333  
334           /*-- now [l, r] bracket current bucket --*/
335           if (r > l) {
336              nNotDone += (r - l + 1);
337              fallbackQSort3 ( fmap, eclass, l, r );
338  
339              /*-- scan bucket and generate header bits-- */
340              cc = -1;
341              for (i = l; i <= r; i++) {
342                 cc1 = eclass[fmap[i]];
343                 if (cc != cc1) { SET_BH(i); cc = cc1; };
344              }
345           }
346        }
347  
348        if (verb >= 4)
349           VPrintf1 ( "%6d unresolved strings\n", nNotDone );
350  
351        H *= 2;
352        if (H > nblock || nNotDone == 0) break;
353     }
354  
355     /*--
356        Reconstruct the original block in
357        eclass8 [0 .. nblock-1], since the
358        previous phase destroyed it.
359     --*/
360     if (verb >= 4)
361        VPrintf0 ( "        reconstructing block ...\n" );
362     j = 0;
363     for (i = 0; i < nblock; i++) {
364        while (ftabCopy[j] == 0) j++;
365        ftabCopy[j]--;
366        eclass8[fmap[i]] = (UChar)j;
367     }
368     AssertH ( j < 256, 1005 );
369  }
370  
371  #undef       SET_BH
372  #undef     CLEAR_BH
373  #undef     ISSET_BH
374  #undef      WORD_BH
375  #undef UNALIGNED_BH
376  
377  
378  /*---------------------------------------------*/
379  /*--- The main, O(N^2 log(N)) sorting       ---*/
380  /*--- algorithm.  Faster for "normal"       ---*/
381  /*--- non-repetitive blocks.                ---*/
382  /*---------------------------------------------*/
383  
384  /*---------------------------------------------*/
385  static
386  __inline__
mainGtU(UInt32 i1,UInt32 i2,UChar * block,UInt16 * quadrant,UInt32 nblock,Int32 * budget)387  Bool mainGtU ( UInt32  i1,
388                 UInt32  i2,
389                 UChar*  block,
390                 UInt16* quadrant,
391                 UInt32  nblock,
392                 Int32*  budget )
393  {
394     Int32  k;
395     UChar  c1, c2;
396     UInt16 s1, s2;
397  
398     AssertD ( i1 != i2, "mainGtU" );
399     /* 1 */
400     c1 = block[i1]; c2 = block[i2];
401     if (c1 != c2) return (c1 > c2);
402     i1++; i2++;
403     /* 2 */
404     c1 = block[i1]; c2 = block[i2];
405     if (c1 != c2) return (c1 > c2);
406     i1++; i2++;
407     /* 3 */
408     c1 = block[i1]; c2 = block[i2];
409     if (c1 != c2) return (c1 > c2);
410     i1++; i2++;
411     /* 4 */
412     c1 = block[i1]; c2 = block[i2];
413     if (c1 != c2) return (c1 > c2);
414     i1++; i2++;
415     /* 5 */
416     c1 = block[i1]; c2 = block[i2];
417     if (c1 != c2) return (c1 > c2);
418     i1++; i2++;
419     /* 6 */
420     c1 = block[i1]; c2 = block[i2];
421     if (c1 != c2) return (c1 > c2);
422     i1++; i2++;
423     /* 7 */
424     c1 = block[i1]; c2 = block[i2];
425     if (c1 != c2) return (c1 > c2);
426     i1++; i2++;
427     /* 8 */
428     c1 = block[i1]; c2 = block[i2];
429     if (c1 != c2) return (c1 > c2);
430     i1++; i2++;
431     /* 9 */
432     c1 = block[i1]; c2 = block[i2];
433     if (c1 != c2) return (c1 > c2);
434     i1++; i2++;
435     /* 10 */
436     c1 = block[i1]; c2 = block[i2];
437     if (c1 != c2) return (c1 > c2);
438     i1++; i2++;
439     /* 11 */
440     c1 = block[i1]; c2 = block[i2];
441     if (c1 != c2) return (c1 > c2);
442     i1++; i2++;
443     /* 12 */
444     c1 = block[i1]; c2 = block[i2];
445     if (c1 != c2) return (c1 > c2);
446     i1++; i2++;
447  
448     k = nblock + 8;
449  
450     do {
451        /* 1 */
452        c1 = block[i1]; c2 = block[i2];
453        if (c1 != c2) return (c1 > c2);
454        s1 = quadrant[i1]; s2 = quadrant[i2];
455        if (s1 != s2) return (s1 > s2);
456        i1++; i2++;
457        /* 2 */
458        c1 = block[i1]; c2 = block[i2];
459        if (c1 != c2) return (c1 > c2);
460        s1 = quadrant[i1]; s2 = quadrant[i2];
461        if (s1 != s2) return (s1 > s2);
462        i1++; i2++;
463        /* 3 */
464        c1 = block[i1]; c2 = block[i2];
465        if (c1 != c2) return (c1 > c2);
466        s1 = quadrant[i1]; s2 = quadrant[i2];
467        if (s1 != s2) return (s1 > s2);
468        i1++; i2++;
469        /* 4 */
470        c1 = block[i1]; c2 = block[i2];
471        if (c1 != c2) return (c1 > c2);
472        s1 = quadrant[i1]; s2 = quadrant[i2];
473        if (s1 != s2) return (s1 > s2);
474        i1++; i2++;
475        /* 5 */
476        c1 = block[i1]; c2 = block[i2];
477        if (c1 != c2) return (c1 > c2);
478        s1 = quadrant[i1]; s2 = quadrant[i2];
479        if (s1 != s2) return (s1 > s2);
480        i1++; i2++;
481        /* 6 */
482        c1 = block[i1]; c2 = block[i2];
483        if (c1 != c2) return (c1 > c2);
484        s1 = quadrant[i1]; s2 = quadrant[i2];
485        if (s1 != s2) return (s1 > s2);
486        i1++; i2++;
487        /* 7 */
488        c1 = block[i1]; c2 = block[i2];
489        if (c1 != c2) return (c1 > c2);
490        s1 = quadrant[i1]; s2 = quadrant[i2];
491        if (s1 != s2) return (s1 > s2);
492        i1++; i2++;
493        /* 8 */
494        c1 = block[i1]; c2 = block[i2];
495        if (c1 != c2) return (c1 > c2);
496        s1 = quadrant[i1]; s2 = quadrant[i2];
497        if (s1 != s2) return (s1 > s2);
498        i1++; i2++;
499  
500        if (i1 >= nblock) i1 -= nblock;
501        if (i2 >= nblock) i2 -= nblock;
502  
503        k -= 8;
504        (*budget)--;
505     }
506        while (k >= 0);
507  
508     return False;
509  }
510  
511  
512  /*---------------------------------------------*/
513  /*--
514     Knuth's increments seem to work better
515     than Incerpi-Sedgewick here.  Possibly
516     because the number of elems to sort is
517     usually small, typically <= 20.
518  --*/
519  static
520  Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
521                     9841, 29524, 88573, 265720,
522                     797161, 2391484 };
523  
524  static
mainSimpleSort(UInt32 * ptr,UChar * block,UInt16 * quadrant,Int32 nblock,Int32 lo,Int32 hi,Int32 d,Int32 * budget)525  void mainSimpleSort ( UInt32* ptr,
526                        UChar*  block,
527                        UInt16* quadrant,
528                        Int32   nblock,
529                        Int32   lo,
530                        Int32   hi,
531                        Int32   d,
532                        Int32*  budget )
533  {
534     Int32 i, j, h, bigN, hp;
535     UInt32 v;
536  
537     bigN = hi - lo + 1;
538     if (bigN < 2) return;
539  
540     hp = 0;
541     while (incs[hp] < bigN) hp++;
542     hp--;
543  
544     for (; hp >= 0; hp--) {
545        h = incs[hp];
546  
547        i = lo + h;
548        while (True) {
549  
550           /*-- copy 1 --*/
551           if (i > hi) break;
552           v = ptr[i];
553           j = i;
554           while ( mainGtU (
555                      ptr[j-h]+d, v+d, block, quadrant, nblock, budget
556                   ) ) {
557              ptr[j] = ptr[j-h];
558              j = j - h;
559              if (j <= (lo + h - 1)) break;
560           }
561           ptr[j] = v;
562           i++;
563  
564           /*-- copy 2 --*/
565           if (i > hi) break;
566           v = ptr[i];
567           j = i;
568           while ( mainGtU (
569                      ptr[j-h]+d, v+d, block, quadrant, nblock, budget
570                   ) ) {
571              ptr[j] = ptr[j-h];
572              j = j - h;
573              if (j <= (lo + h - 1)) break;
574           }
575           ptr[j] = v;
576           i++;
577  
578           /*-- copy 3 --*/
579           if (i > hi) break;
580           v = ptr[i];
581           j = i;
582           while ( mainGtU (
583                      ptr[j-h]+d, v+d, block, quadrant, nblock, budget
584                   ) ) {
585              ptr[j] = ptr[j-h];
586              j = j - h;
587              if (j <= (lo + h - 1)) break;
588           }
589           ptr[j] = v;
590           i++;
591  
592           if (*budget < 0) return;
593        }
594     }
595  }
596  
597  
598  /*---------------------------------------------*/
599  /*--
600     The following is an implementation of
601     an elegant 3-way quicksort for strings,
602     described in a paper "Fast Algorithms for
603     Sorting and Searching Strings", by Robert
604     Sedgewick and Jon L. Bentley.
605  --*/
606  
607  #define mswap(zz1, zz2) \
608     { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
609  
610  #define mvswap(zzp1, zzp2, zzn)       \
611  {                                     \
612     Int32 yyp1 = (zzp1);               \
613     Int32 yyp2 = (zzp2);               \
614     Int32 yyn  = (zzn);                \
615     while (yyn > 0) {                  \
616        mswap(ptr[yyp1], ptr[yyp2]);    \
617        yyp1++; yyp2++; yyn--;          \
618     }                                  \
619  }
620  
621  static
622  __inline__
mmed3(UChar a,UChar b,UChar c)623  UChar mmed3 ( UChar a, UChar b, UChar c )
624  {
625     UChar t;
626     if (a > b) { t = a; a = b; b = t; };
627     if (b > c) {
628        b = c;
629        if (a > b) b = a;
630     }
631     return b;
632  }
633  
634  #define mmin(a,b) ((a) < (b)) ? (a) : (b)
635  
636  #define mpush(lz,hz,dz) { stackLo[sp] = lz; \
637                            stackHi[sp] = hz; \
638                            stackD [sp] = dz; \
639                            sp++; }
640  
641  #define mpop(lz,hz,dz) { sp--;             \
642                           lz = stackLo[sp]; \
643                           hz = stackHi[sp]; \
644                           dz = stackD [sp]; }
645  
646  
647  #define mnextsize(az) (nextHi[az]-nextLo[az])
648  
649  #define mnextswap(az,bz)                                        \
650     { Int32 tz;                                                  \
651       tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
652       tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
653       tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; }
654  
655  
656  #define MAIN_QSORT_SMALL_THRESH 20
657  #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
658  #define MAIN_QSORT_STACK_SIZE 100
659  
660  static
mainQSort3(UInt32 * ptr,UChar * block,UInt16 * quadrant,Int32 nblock,Int32 loSt,Int32 hiSt,Int32 dSt,Int32 * budget)661  void mainQSort3 ( UInt32* ptr,
662                    UChar*  block,
663                    UInt16* quadrant,
664                    Int32   nblock,
665                    Int32   loSt,
666                    Int32   hiSt,
667                    Int32   dSt,
668                    Int32*  budget )
669  {
670     Int32 unLo, unHi, ltLo, gtHi, n, m, med;
671     Int32 sp, lo, hi, d;
672  
673     Int32 stackLo[MAIN_QSORT_STACK_SIZE];
674     Int32 stackHi[MAIN_QSORT_STACK_SIZE];
675     Int32 stackD [MAIN_QSORT_STACK_SIZE];
676  
677     Int32 nextLo[3];
678     Int32 nextHi[3];
679     Int32 nextD [3];
680  
681     sp = 0;
682     mpush ( loSt, hiSt, dSt );
683  
684     while (sp > 0) {
685  
686        AssertH ( sp < MAIN_QSORT_STACK_SIZE - 2, 1001 );
687  
688        mpop ( lo, hi, d );
689        if (hi - lo < MAIN_QSORT_SMALL_THRESH ||
690            d > MAIN_QSORT_DEPTH_THRESH) {
691           mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget );
692           if (*budget < 0) return;
693           continue;
694        }
695  
696        med = (Int32)
697              mmed3 ( block[ptr[ lo         ]+d],
698                      block[ptr[ hi         ]+d],
699                      block[ptr[ (lo+hi)>>1 ]+d] );
700  
701        unLo = ltLo = lo;
702        unHi = gtHi = hi;
703  
704        while (True) {
705           while (True) {
706              if (unLo > unHi) break;
707              n = ((Int32)block[ptr[unLo]+d]) - med;
708              if (n == 0) {
709                 mswap(ptr[unLo], ptr[ltLo]);
710                 ltLo++; unLo++; continue;
711              };
712              if (n >  0) break;
713              unLo++;
714           }
715           while (True) {
716              if (unLo > unHi) break;
717              n = ((Int32)block[ptr[unHi]+d]) - med;
718              if (n == 0) {
719                 mswap(ptr[unHi], ptr[gtHi]);
720                 gtHi--; unHi--; continue;
721              };
722              if (n <  0) break;
723              unHi--;
724           }
725           if (unLo > unHi) break;
726           mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--;
727        }
728  
729        AssertD ( unHi == unLo-1, "mainQSort3(2)" );
730  
731        if (gtHi < ltLo) {
732           mpush(lo, hi, d+1 );
733           continue;
734        }
735  
736        n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n);
737        m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m);
738  
739        n = lo + unLo - ltLo - 1;
740        m = hi - (gtHi - unHi) + 1;
741  
742        nextLo[0] = lo;  nextHi[0] = n;   nextD[0] = d;
743        nextLo[1] = m;   nextHi[1] = hi;  nextD[1] = d;
744        nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
745  
746        if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
747        if (mnextsize(1) < mnextsize(2)) mnextswap(1,2);
748        if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
749  
750        AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" );
751        AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" );
752  
753        mpush (nextLo[0], nextHi[0], nextD[0]);
754        mpush (nextLo[1], nextHi[1], nextD[1]);
755        mpush (nextLo[2], nextHi[2], nextD[2]);
756     }
757  }
758  
759  #undef mswap
760  #undef mvswap
761  #undef mpush
762  #undef mpop
763  #undef mmin
764  #undef mnextsize
765  #undef mnextswap
766  #undef MAIN_QSORT_SMALL_THRESH
767  #undef MAIN_QSORT_DEPTH_THRESH
768  #undef MAIN_QSORT_STACK_SIZE
769  
770  
771  /*---------------------------------------------*/
772  /* Pre:
773        nblock > N_OVERSHOOT
774        block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
775        ((UChar*)block32) [0 .. nblock-1] holds block
776        ptr exists for [0 .. nblock-1]
777  
778     Post:
779        ((UChar*)block32) [0 .. nblock-1] holds block
780        All other areas of block32 destroyed
781        ftab [0 .. 65536 ] destroyed
782        ptr [0 .. nblock-1] holds sorted order
783        if (*budget < 0), sorting was abandoned
784  */
785  
786  #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
787  #define SETMASK (1 << 21)
788  #define CLEARMASK (~(SETMASK))
789  
790  static
mainSort(UInt32 * ptr,UChar * block,UInt16 * quadrant,UInt32 * ftab,Int32 nblock,Int32 verb,Int32 * budget)791  void mainSort ( UInt32* ptr,
792                  UChar*  block,
793                  UInt16* quadrant,
794                  UInt32* ftab,
795                  Int32   nblock,
796                  Int32   verb,
797                  Int32*  budget )
798  {
799     Int32  i, j, k, ss, sb;
800     Int32  runningOrder[256];
801     Bool   bigDone[256];
802     Int32  copyStart[256];
803     Int32  copyEnd  [256];
804     UChar  c1;
805     Int32  numQSorted;
806     UInt16 s;
807     if (verb >= 4) VPrintf0 ( "        main sort initialise ...\n" );
808  
809     /*-- set up the 2-byte frequency table --*/
810     for (i = 65536; i >= 0; i--) ftab[i] = 0;
811  
812     j = block[0] << 8;
813     i = nblock-1;
814     for (; i >= 3; i -= 4) {
815        quadrant[i] = 0;
816        j = (j >> 8) | ( ((UInt16)block[i]) << 8);
817        ftab[j]++;
818        quadrant[i-1] = 0;
819        j = (j >> 8) | ( ((UInt16)block[i-1]) << 8);
820        ftab[j]++;
821        quadrant[i-2] = 0;
822        j = (j >> 8) | ( ((UInt16)block[i-2]) << 8);
823        ftab[j]++;
824        quadrant[i-3] = 0;
825        j = (j >> 8) | ( ((UInt16)block[i-3]) << 8);
826        ftab[j]++;
827     }
828     for (; i >= 0; i--) {
829        quadrant[i] = 0;
830        j = (j >> 8) | ( ((UInt16)block[i]) << 8);
831        ftab[j]++;
832     }
833  
834     /*-- (emphasises close relationship of block & quadrant) --*/
835     for (i = 0; i < BZ_N_OVERSHOOT; i++) {
836        block   [nblock+i] = block[i];
837        quadrant[nblock+i] = 0;
838     }
839  
840     if (verb >= 4) VPrintf0 ( "        bucket sorting ...\n" );
841  
842     /*-- Complete the initial radix sort --*/
843     for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];
844  
845     s = block[0] << 8;
846     i = nblock-1;
847     for (; i >= 3; i -= 4) {
848        s = (s >> 8) | (block[i] << 8);
849        j = ftab[s] -1;
850        ftab[s] = j;
851        ptr[j] = i;
852        s = (s >> 8) | (block[i-1] << 8);
853        j = ftab[s] -1;
854        ftab[s] = j;
855        ptr[j] = i-1;
856        s = (s >> 8) | (block[i-2] << 8);
857        j = ftab[s] -1;
858        ftab[s] = j;
859        ptr[j] = i-2;
860        s = (s >> 8) | (block[i-3] << 8);
861        j = ftab[s] -1;
862        ftab[s] = j;
863        ptr[j] = i-3;
864     }
865     for (; i >= 0; i--) {
866        s = (s >> 8) | (block[i] << 8);
867        j = ftab[s] -1;
868        ftab[s] = j;
869        ptr[j] = i;
870     }
871  
872     /*--
873        Now ftab contains the first loc of every small bucket.
874        Calculate the running order, from smallest to largest
875        big bucket.
876     --*/
877     for (i = 0; i <= 255; i++) {
878        bigDone     [i] = False;
879        runningOrder[i] = i;
880     }
881  
882     {
883        Int32 vv;
884        Int32 h = 1;
885        do h = 3 * h + 1; while (h <= 256);
886        do {
887           h = h / 3;
888           for (i = h; i <= 255; i++) {
889              vv = runningOrder[i];
890              j = i;
891              while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
892                 runningOrder[j] = runningOrder[j-h];
893                 j = j - h;
894                 if (j <= (h - 1)) goto zero;
895              }
896              zero:
897              runningOrder[j] = vv;
898           }
899        } while (h != 1);
900     }
901  
902     /*--
903        The main sorting loop.
904     --*/
905  
906     numQSorted = 0;
907  
908     for (i = 0; i <= 255; i++) {
909  
910        /*--
911           Process big buckets, starting with the least full.
912           Basically this is a 3-step process in which we call
913           mainQSort3 to sort the small buckets [ss, j], but
914           also make a big effort to avoid the calls if we can.
915        --*/
916        ss = runningOrder[i];
917  
918        /*--
919           Step 1:
920           Complete the big bucket [ss] by quicksorting
921           any unsorted small buckets [ss, j], for j != ss.
922           Hopefully previous pointer-scanning phases have already
923           completed many of the small buckets [ss, j], so
924           we don't have to sort them at all.
925        --*/
926        for (j = 0; j <= 255; j++) {
927           if (j != ss) {
928              sb = (ss << 8) + j;
929              if ( ! (ftab[sb] & SETMASK) ) {
930                 Int32 lo = ftab[sb]   & CLEARMASK;
931                 Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
932                 if (hi > lo) {
933                    if (verb >= 4)
934                       VPrintf4 ( "        qsort [0x%x, 0x%x]   "
935                                  "done %d   this %d\n",
936                                  ss, j, numQSorted, hi - lo + 1 );
937                    mainQSort3 (
938                       ptr, block, quadrant, nblock,
939                       lo, hi, BZ_N_RADIX, budget
940                    );
941                    numQSorted += (hi - lo + 1);
942                    if (*budget < 0) return;
943                 }
944              }
945              ftab[sb] |= SETMASK;
946           }
947        }
948  
949        AssertH ( !bigDone[ss], 1006 );
950  
951        /*--
952           Step 2:
953           Now scan this big bucket [ss] so as to synthesise the
954           sorted order for small buckets [t, ss] for all t,
955           including, magically, the bucket [ss,ss] too.
956           This will avoid doing Real Work in subsequent Step 1's.
957        --*/
958        {
959           for (j = 0; j <= 255; j++) {
960              copyStart[j] =  ftab[(j << 8) + ss]     & CLEARMASK;
961              copyEnd  [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
962           }
963           for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
964              k = ptr[j]-1; if (k < 0) k += nblock;
965              c1 = block[k];
966              if (!bigDone[c1])
967                 ptr[ copyStart[c1]++ ] = k;
968           }
969           for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
970              k = ptr[j]-1; if (k < 0) k += nblock;
971              c1 = block[k];
972              if (!bigDone[c1])
973                 ptr[ copyEnd[c1]-- ] = k;
974           }
975        }
976  
977        AssertH ( (copyStart[ss]-1 == copyEnd[ss])
978                  ||
979                  /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
980                     Necessity for this case is demonstrated by compressing
981                     a sequence of approximately 48.5 million of character
982                     251; 1.0.0/1.0.1 will then die here. */
983                  (copyStart[ss] == 0 && copyEnd[ss] == nblock-1),
984                  1007 )
985  
986        for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;
987  
988        /*--
989           Step 3:
990           The [ss] big bucket is now done.  Record this fact,
991           and update the quadrant descriptors.  Remember to
992           update quadrants in the overshoot area too, if
993           necessary.  The "if (i < 255)" test merely skips
994           this updating for the last bucket processed, since
995           updating for the last bucket is pointless.
996  
997           The quadrant array provides a way to incrementally
998           cache sort orderings, as they appear, so as to
999           make subsequent comparisons in fullGtU() complete
1000           faster.  For repetitive blocks this makes a big
1001           difference (but not big enough to be able to avoid
1002           the fallback sorting mechanism, exponential radix sort).
1003  
1004           The precise meaning is: at all times:
1005  
1006              for 0 <= i < nblock and 0 <= j <= nblock
1007  
1008              if block[i] != block[j],
1009  
1010                 then the relative values of quadrant[i] and
1011                      quadrant[j] are meaningless.
1012  
1013                 else {
1014                    if quadrant[i] < quadrant[j]
1015                       then the string starting at i lexicographically
1016                       precedes the string starting at j
1017  
1018                    else if quadrant[i] > quadrant[j]
1019                       then the string starting at j lexicographically
1020                       precedes the string starting at i
1021  
1022                    else
1023                       the relative ordering of the strings starting
1024                       at i and j has not yet been determined.
1025                 }
1026        --*/
1027        bigDone[ss] = True;
1028  
1029        if (i < 255) {
1030           Int32 bbStart  = ftab[ss << 8] & CLEARMASK;
1031           Int32 bbSize   = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
1032           Int32 shifts   = 0;
1033  
1034           while ((bbSize >> shifts) > 65534) shifts++;
1035  
1036           for (j = bbSize-1; j >= 0; j--) {
1037              Int32 a2update     = ptr[bbStart + j];
1038              UInt16 qVal        = (UInt16)(j >> shifts);
1039              quadrant[a2update] = qVal;
1040              if (a2update < BZ_N_OVERSHOOT)
1041                 quadrant[a2update + nblock] = qVal;
1042           }
1043           AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 );
1044        }
1045  
1046     }
1047  
1048     if (verb >= 4)
1049        VPrintf3 ( "        %d pointers, %d sorted, %d scanned\n",
1050                   nblock, numQSorted, nblock - numQSorted );
1051  }
1052  
1053  #undef BIGFREQ
1054  #undef SETMASK
1055  #undef CLEARMASK
1056  
1057  
1058  /*---------------------------------------------*/
1059  /* Pre:
1060        nblock > 0
1061        arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
1062        ((UChar*)arr2)  [0 .. nblock-1] holds block
1063        arr1 exists for [0 .. nblock-1]
1064  
1065     Post:
1066        ((UChar*)arr2) [0 .. nblock-1] holds block
1067        All other areas of block destroyed
1068        ftab [ 0 .. 65536 ] destroyed
1069        arr1 [0 .. nblock-1] holds sorted order
1070  */
BZ2_blockSort(EState * s)1071  void BZ2_blockSort ( EState* s )
1072  {
1073     UInt32* ptr    = s->ptr;
1074     UChar*  block  = s->block;
1075     UInt32* ftab   = s->ftab;
1076     Int32   nblock = s->nblock;
1077     Int32   verb   = s->verbosity;
1078     Int32   wfact  = s->workFactor;
1079     UInt16* quadrant;
1080     Int32   budget;
1081     Int32   budgetInit;
1082     Int32   i;
1083  
1084     if (nblock < 10000) {
1085        fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
1086     } else {
1087        /* Calculate the location for quadrant, remembering to get
1088           the alignment right.  Assumes that &(block[0]) is at least
1089           2-byte aligned -- this should be ok since block is really
1090           the first section of arr2.
1091        */
1092        i = nblock+BZ_N_OVERSHOOT;
1093        if (i & 1) i++;
1094        quadrant = (UInt16*)(&(block[i]));
1095  
1096        /* (wfact-1) / 3 puts the default-factor-30
1097           transition point at very roughly the same place as
1098           with v0.1 and v0.9.0.
1099           Not that it particularly matters any more, since the
1100           resulting compressed stream is now the same regardless
1101           of whether or not we use the main sort or fallback sort.
1102        */
1103        if (wfact < 1  ) wfact = 1;
1104        if (wfact > 100) wfact = 100;
1105        budgetInit = nblock * ((wfact-1) / 3);
1106        budget = budgetInit;
1107  
1108        mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget );
1109        if (verb >= 3)
1110           VPrintf3 ( "      %d work, %d block, ratio %5.2f\n",
1111                      budgetInit - budget,
1112                      nblock,
1113                      (float)(budgetInit - budget) /
1114                      (float)(nblock==0 ? 1 : nblock) );
1115        if (budget < 0) {
1116           if (verb >= 2)
1117              VPrintf0 ( "    too repetitive; using fallback"
1118                         " sorting algorithm\n" );
1119           fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
1120        }
1121     }
1122  
1123     s->origPtr = -1;
1124     for (i = 0; i < s->nblock; i++)
1125        if (ptr[i] == 0)
1126           { s->origPtr = i; break; };
1127  
1128     AssertH( s->origPtr != -1, 1003 );
1129  }
1130  
1131  
1132  /*-------------------------------------------------------------*/
1133  /*--- end                                       blocksort.c ---*/
1134  /*-------------------------------------------------------------*/
1135