xref: /openbmc/linux/drivers/mmc/core/mmc_ops.c (revision 51f5b305)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
24 #define MMC_OP_COND_PERIOD_US		(4 * 1000) /* 4ms */
25 #define MMC_OP_COND_TIMEOUT_MS		1000 /* 1s */
26 
27 static const u8 tuning_blk_pattern_4bit[] = {
28 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36 };
37 
38 static const u8 tuning_blk_pattern_8bit[] = {
39 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55 };
56 
57 struct mmc_busy_data {
58 	struct mmc_card *card;
59 	bool retry_crc_err;
60 	enum mmc_busy_cmd busy_cmd;
61 };
62 
63 struct mmc_op_cond_busy_data {
64 	struct mmc_host *host;
65 	u32 ocr;
66 	struct mmc_command *cmd;
67 };
68 
__mmc_send_status(struct mmc_card * card,u32 * status,unsigned int retries)69 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70 {
71 	int err;
72 	struct mmc_command cmd = {};
73 
74 	cmd.opcode = MMC_SEND_STATUS;
75 	if (!mmc_host_is_spi(card->host))
76 		cmd.arg = card->rca << 16;
77 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78 
79 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
80 	if (err)
81 		return err;
82 
83 	/* NOTE: callers are required to understand the difference
84 	 * between "native" and SPI format status words!
85 	 */
86 	if (status)
87 		*status = cmd.resp[0];
88 
89 	return 0;
90 }
91 EXPORT_SYMBOL_GPL(__mmc_send_status);
92 
mmc_send_status(struct mmc_card * card,u32 * status)93 int mmc_send_status(struct mmc_card *card, u32 *status)
94 {
95 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96 }
97 EXPORT_SYMBOL_GPL(mmc_send_status);
98 
_mmc_select_card(struct mmc_host * host,struct mmc_card * card)99 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100 {
101 	struct mmc_command cmd = {};
102 
103 	cmd.opcode = MMC_SELECT_CARD;
104 
105 	if (card) {
106 		cmd.arg = card->rca << 16;
107 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 	} else {
109 		cmd.arg = 0;
110 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 	}
112 
113 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
114 }
115 
mmc_select_card(struct mmc_card * card)116 int mmc_select_card(struct mmc_card *card)
117 {
118 
119 	return _mmc_select_card(card->host, card);
120 }
121 
mmc_deselect_cards(struct mmc_host * host)122 int mmc_deselect_cards(struct mmc_host *host)
123 {
124 	return _mmc_select_card(host, NULL);
125 }
126 
127 /*
128  * Write the value specified in the device tree or board code into the optional
129  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130  * drive strength of the DAT and CMD outputs. The actual meaning of a given
131  * value is hardware dependant.
132  * The presence of the DSR register can be determined from the CSD register,
133  * bit 76.
134  */
mmc_set_dsr(struct mmc_host * host)135 int mmc_set_dsr(struct mmc_host *host)
136 {
137 	struct mmc_command cmd = {};
138 
139 	cmd.opcode = MMC_SET_DSR;
140 
141 	cmd.arg = (host->dsr << 16) | 0xffff;
142 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
143 
144 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
145 }
146 
mmc_go_idle(struct mmc_host * host)147 int mmc_go_idle(struct mmc_host *host)
148 {
149 	int err;
150 	struct mmc_command cmd = {};
151 
152 	/*
153 	 * Non-SPI hosts need to prevent chipselect going active during
154 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
155 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
156 	 *
157 	 * SPI hosts ignore ios.chip_select; it's managed according to
158 	 * rules that must accommodate non-MMC slaves which this layer
159 	 * won't even know about.
160 	 */
161 	if (!mmc_host_is_spi(host)) {
162 		mmc_set_chip_select(host, MMC_CS_HIGH);
163 		mmc_delay(1);
164 	}
165 
166 	cmd.opcode = MMC_GO_IDLE_STATE;
167 	cmd.arg = 0;
168 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
169 
170 	err = mmc_wait_for_cmd(host, &cmd, 0);
171 
172 	mmc_delay(1);
173 
174 	if (!mmc_host_is_spi(host)) {
175 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
176 		mmc_delay(1);
177 	}
178 
179 	host->use_spi_crc = 0;
180 
181 	return err;
182 }
183 
__mmc_send_op_cond_cb(void * cb_data,bool * busy)184 static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
185 {
186 	struct mmc_op_cond_busy_data *data = cb_data;
187 	struct mmc_host *host = data->host;
188 	struct mmc_command *cmd = data->cmd;
189 	u32 ocr = data->ocr;
190 	int err = 0;
191 
192 	err = mmc_wait_for_cmd(host, cmd, 0);
193 	if (err)
194 		return err;
195 
196 	if (mmc_host_is_spi(host)) {
197 		if (!(cmd->resp[0] & R1_SPI_IDLE)) {
198 			*busy = false;
199 			return 0;
200 		}
201 	} else {
202 		if (cmd->resp[0] & MMC_CARD_BUSY) {
203 			*busy = false;
204 			return 0;
205 		}
206 	}
207 
208 	*busy = true;
209 
210 	/*
211 	 * According to eMMC specification v5.1 section 6.4.3, we
212 	 * should issue CMD1 repeatedly in the idle state until
213 	 * the eMMC is ready. Otherwise some eMMC devices seem to enter
214 	 * the inactive mode after mmc_init_card() issued CMD0 when
215 	 * the eMMC device is busy.
216 	 */
217 	if (!ocr && !mmc_host_is_spi(host))
218 		cmd->arg = cmd->resp[0] | BIT(30);
219 
220 	return 0;
221 }
222 
mmc_send_op_cond(struct mmc_host * host,u32 ocr,u32 * rocr)223 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
224 {
225 	struct mmc_command cmd = {};
226 	int err = 0;
227 	struct mmc_op_cond_busy_data cb_data = {
228 		.host = host,
229 		.ocr = ocr,
230 		.cmd = &cmd
231 	};
232 
233 	cmd.opcode = MMC_SEND_OP_COND;
234 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
235 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
236 
237 	err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
238 				  MMC_OP_COND_TIMEOUT_MS,
239 				  &__mmc_send_op_cond_cb, &cb_data);
240 	if (err)
241 		return err;
242 
243 	if (rocr && !mmc_host_is_spi(host))
244 		*rocr = cmd.resp[0];
245 
246 	return err;
247 }
248 
mmc_set_relative_addr(struct mmc_card * card)249 int mmc_set_relative_addr(struct mmc_card *card)
250 {
251 	struct mmc_command cmd = {};
252 
253 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
254 	cmd.arg = card->rca << 16;
255 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
256 
257 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
258 }
259 
260 static int
mmc_send_cxd_native(struct mmc_host * host,u32 arg,u32 * cxd,int opcode)261 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
262 {
263 	int err;
264 	struct mmc_command cmd = {};
265 
266 	cmd.opcode = opcode;
267 	cmd.arg = arg;
268 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
269 
270 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
271 	if (err)
272 		return err;
273 
274 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
275 
276 	return 0;
277 }
278 
279 /*
280  * NOTE: void *buf, caller for the buf is required to use DMA-capable
281  * buffer or on-stack buffer (with some overhead in callee).
282  */
mmc_send_adtc_data(struct mmc_card * card,struct mmc_host * host,u32 opcode,u32 args,void * buf,unsigned len)283 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
284 		       u32 args, void *buf, unsigned len)
285 {
286 	struct mmc_request mrq = {};
287 	struct mmc_command cmd = {};
288 	struct mmc_data data = {};
289 	struct scatterlist sg;
290 
291 	mrq.cmd = &cmd;
292 	mrq.data = &data;
293 
294 	cmd.opcode = opcode;
295 	cmd.arg = args;
296 
297 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
298 	 * rely on callers to never use this with "native" calls for reading
299 	 * CSD or CID.  Native versions of those commands use the R2 type,
300 	 * not R1 plus a data block.
301 	 */
302 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
303 
304 	data.blksz = len;
305 	data.blocks = 1;
306 	data.flags = MMC_DATA_READ;
307 	data.sg = &sg;
308 	data.sg_len = 1;
309 
310 	sg_init_one(&sg, buf, len);
311 
312 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
313 		/*
314 		 * The spec states that CSR and CID accesses have a timeout
315 		 * of 64 clock cycles.
316 		 */
317 		data.timeout_ns = 0;
318 		data.timeout_clks = 64;
319 	} else
320 		mmc_set_data_timeout(&data, card);
321 
322 	mmc_wait_for_req(host, &mrq);
323 
324 	if (cmd.error)
325 		return cmd.error;
326 	if (data.error)
327 		return data.error;
328 
329 	return 0;
330 }
331 
mmc_spi_send_cxd(struct mmc_host * host,u32 * cxd,u32 opcode)332 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
333 {
334 	int ret, i;
335 	__be32 *cxd_tmp;
336 
337 	cxd_tmp = kzalloc(16, GFP_KERNEL);
338 	if (!cxd_tmp)
339 		return -ENOMEM;
340 
341 	ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
342 	if (ret)
343 		goto err;
344 
345 	for (i = 0; i < 4; i++)
346 		cxd[i] = be32_to_cpu(cxd_tmp[i]);
347 
348 err:
349 	kfree(cxd_tmp);
350 	return ret;
351 }
352 
mmc_send_csd(struct mmc_card * card,u32 * csd)353 int mmc_send_csd(struct mmc_card *card, u32 *csd)
354 {
355 	if (mmc_host_is_spi(card->host))
356 		return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
357 
358 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
359 				MMC_SEND_CSD);
360 }
361 
mmc_send_cid(struct mmc_host * host,u32 * cid)362 int mmc_send_cid(struct mmc_host *host, u32 *cid)
363 {
364 	if (mmc_host_is_spi(host))
365 		return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
366 
367 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
368 }
369 
mmc_get_ext_csd(struct mmc_card * card,u8 ** new_ext_csd)370 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
371 {
372 	int err;
373 	u8 *ext_csd;
374 
375 	if (!card || !new_ext_csd)
376 		return -EINVAL;
377 
378 	if (!mmc_can_ext_csd(card))
379 		return -EOPNOTSUPP;
380 
381 	/*
382 	 * As the ext_csd is so large and mostly unused, we don't store the
383 	 * raw block in mmc_card.
384 	 */
385 	ext_csd = kzalloc(512, GFP_KERNEL);
386 	if (!ext_csd)
387 		return -ENOMEM;
388 
389 	err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
390 				512);
391 	if (err)
392 		kfree(ext_csd);
393 	else
394 		*new_ext_csd = ext_csd;
395 
396 	return err;
397 }
398 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
399 
mmc_spi_read_ocr(struct mmc_host * host,int highcap,u32 * ocrp)400 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
401 {
402 	struct mmc_command cmd = {};
403 	int err;
404 
405 	cmd.opcode = MMC_SPI_READ_OCR;
406 	cmd.arg = highcap ? (1 << 30) : 0;
407 	cmd.flags = MMC_RSP_SPI_R3;
408 
409 	err = mmc_wait_for_cmd(host, &cmd, 0);
410 
411 	*ocrp = cmd.resp[1];
412 	return err;
413 }
414 
mmc_spi_set_crc(struct mmc_host * host,int use_crc)415 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
416 {
417 	struct mmc_command cmd = {};
418 	int err;
419 
420 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
421 	cmd.flags = MMC_RSP_SPI_R1;
422 	cmd.arg = use_crc;
423 
424 	err = mmc_wait_for_cmd(host, &cmd, 0);
425 	if (!err)
426 		host->use_spi_crc = use_crc;
427 	return err;
428 }
429 
mmc_switch_status_error(struct mmc_host * host,u32 status)430 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
431 {
432 	if (mmc_host_is_spi(host)) {
433 		if (status & R1_SPI_ILLEGAL_COMMAND)
434 			return -EBADMSG;
435 	} else {
436 		if (R1_STATUS(status))
437 			pr_warn("%s: unexpected status %#x after switch\n",
438 				mmc_hostname(host), status);
439 		if (status & R1_SWITCH_ERROR)
440 			return -EBADMSG;
441 	}
442 	return 0;
443 }
444 
445 /* Caller must hold re-tuning */
mmc_switch_status(struct mmc_card * card,bool crc_err_fatal)446 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
447 {
448 	u32 status;
449 	int err;
450 
451 	err = mmc_send_status(card, &status);
452 	if (!crc_err_fatal && err == -EILSEQ)
453 		return 0;
454 	if (err)
455 		return err;
456 
457 	return mmc_switch_status_error(card->host, status);
458 }
459 
mmc_busy_cb(void * cb_data,bool * busy)460 static int mmc_busy_cb(void *cb_data, bool *busy)
461 {
462 	struct mmc_busy_data *data = cb_data;
463 	struct mmc_host *host = data->card->host;
464 	u32 status = 0;
465 	int err;
466 
467 	if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
468 		*busy = host->ops->card_busy(host);
469 		return 0;
470 	}
471 
472 	err = mmc_send_status(data->card, &status);
473 	if (data->retry_crc_err && err == -EILSEQ) {
474 		*busy = true;
475 		return 0;
476 	}
477 	if (err)
478 		return err;
479 
480 	switch (data->busy_cmd) {
481 	case MMC_BUSY_CMD6:
482 		err = mmc_switch_status_error(host, status);
483 		break;
484 	case MMC_BUSY_ERASE:
485 		err = R1_STATUS(status) ? -EIO : 0;
486 		break;
487 	case MMC_BUSY_HPI:
488 	case MMC_BUSY_EXTR_SINGLE:
489 	case MMC_BUSY_IO:
490 		break;
491 	default:
492 		err = -EINVAL;
493 	}
494 
495 	if (err)
496 		return err;
497 
498 	*busy = !mmc_ready_for_data(status);
499 	return 0;
500 }
501 
__mmc_poll_for_busy(struct mmc_host * host,unsigned int period_us,unsigned int timeout_ms,int (* busy_cb)(void * cb_data,bool * busy),void * cb_data)502 int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
503 			unsigned int timeout_ms,
504 			int (*busy_cb)(void *cb_data, bool *busy),
505 			void *cb_data)
506 {
507 	int err;
508 	unsigned long timeout;
509 	unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
510 	bool expired = false;
511 	bool busy = false;
512 
513 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
514 	do {
515 		/*
516 		 * Due to the possibility of being preempted while polling,
517 		 * check the expiration time first.
518 		 */
519 		expired = time_after(jiffies, timeout);
520 
521 		err = (*busy_cb)(cb_data, &busy);
522 		if (err)
523 			return err;
524 
525 		/* Timeout if the device still remains busy. */
526 		if (expired && busy) {
527 			pr_err("%s: Card stuck being busy! %s\n",
528 				mmc_hostname(host), __func__);
529 			return -ETIMEDOUT;
530 		}
531 
532 		/* Throttle the polling rate to avoid hogging the CPU. */
533 		if (busy) {
534 			usleep_range(udelay, udelay * 2);
535 			if (udelay < udelay_max)
536 				udelay *= 2;
537 		}
538 	} while (busy);
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
543 
mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,bool retry_crc_err,enum mmc_busy_cmd busy_cmd)544 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
545 		      bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
546 {
547 	struct mmc_host *host = card->host;
548 	struct mmc_busy_data cb_data;
549 
550 	cb_data.card = card;
551 	cb_data.retry_crc_err = retry_crc_err;
552 	cb_data.busy_cmd = busy_cmd;
553 
554 	return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
555 }
556 EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
557 
mmc_prepare_busy_cmd(struct mmc_host * host,struct mmc_command * cmd,unsigned int timeout_ms)558 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
559 			  unsigned int timeout_ms)
560 {
561 	/*
562 	 * If the max_busy_timeout of the host is specified, make sure it's
563 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
564 	 * the host to avoid HW busy detection, by converting to a R1 response
565 	 * instead of a R1B. Note, some hosts requires R1B, which also means
566 	 * they are on their own when it comes to deal with the busy timeout.
567 	 */
568 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
569 	    (timeout_ms > host->max_busy_timeout)) {
570 		cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
571 		return false;
572 	}
573 
574 	cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
575 	cmd->busy_timeout = timeout_ms;
576 	return true;
577 }
578 EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
579 
580 /**
581  *	__mmc_switch - modify EXT_CSD register
582  *	@card: the MMC card associated with the data transfer
583  *	@set: cmd set values
584  *	@index: EXT_CSD register index
585  *	@value: value to program into EXT_CSD register
586  *	@timeout_ms: timeout (ms) for operation performed by register write,
587  *                   timeout of zero implies maximum possible timeout
588  *	@timing: new timing to change to
589  *	@send_status: send status cmd to poll for busy
590  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
591  *	@retries: number of retries
592  *
593  *	Modifies the EXT_CSD register for selected card.
594  */
__mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms,unsigned char timing,bool send_status,bool retry_crc_err,unsigned int retries)595 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
596 		unsigned int timeout_ms, unsigned char timing,
597 		bool send_status, bool retry_crc_err, unsigned int retries)
598 {
599 	struct mmc_host *host = card->host;
600 	int err;
601 	struct mmc_command cmd = {};
602 	bool use_r1b_resp;
603 	unsigned char old_timing = host->ios.timing;
604 
605 	mmc_retune_hold(host);
606 
607 	if (!timeout_ms) {
608 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
609 			mmc_hostname(host));
610 		timeout_ms = card->ext_csd.generic_cmd6_time;
611 	}
612 
613 	cmd.opcode = MMC_SWITCH;
614 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
615 		  (index << 16) |
616 		  (value << 8) |
617 		  set;
618 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
619 
620 	err = mmc_wait_for_cmd(host, &cmd, retries);
621 	if (err)
622 		goto out;
623 
624 	/*If SPI or used HW busy detection above, then we don't need to poll. */
625 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
626 		mmc_host_is_spi(host))
627 		goto out_tim;
628 
629 	/*
630 	 * If the host doesn't support HW polling via the ->card_busy() ops and
631 	 * when it's not allowed to poll by using CMD13, then we need to rely on
632 	 * waiting the stated timeout to be sufficient.
633 	 */
634 	if (!send_status && !host->ops->card_busy) {
635 		mmc_delay(timeout_ms);
636 		goto out_tim;
637 	}
638 
639 	/* Let's try to poll to find out when the command is completed. */
640 	err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
641 	if (err)
642 		goto out;
643 
644 out_tim:
645 	/* Switch to new timing before check switch status. */
646 	if (timing)
647 		mmc_set_timing(host, timing);
648 
649 	if (send_status) {
650 		err = mmc_switch_status(card, true);
651 		if (err && timing)
652 			mmc_set_timing(host, old_timing);
653 	}
654 out:
655 	mmc_retune_release(host);
656 
657 	return err;
658 }
659 
mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms)660 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
661 		unsigned int timeout_ms)
662 {
663 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
664 			    true, false, MMC_CMD_RETRIES);
665 }
666 EXPORT_SYMBOL_GPL(mmc_switch);
667 
mmc_send_tuning(struct mmc_host * host,u32 opcode,int * cmd_error)668 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
669 {
670 	struct mmc_request mrq = {};
671 	struct mmc_command cmd = {};
672 	struct mmc_data data = {};
673 	struct scatterlist sg;
674 	struct mmc_ios *ios = &host->ios;
675 	const u8 *tuning_block_pattern;
676 	int size, err = 0;
677 	u8 *data_buf;
678 
679 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
680 		tuning_block_pattern = tuning_blk_pattern_8bit;
681 		size = sizeof(tuning_blk_pattern_8bit);
682 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
683 		tuning_block_pattern = tuning_blk_pattern_4bit;
684 		size = sizeof(tuning_blk_pattern_4bit);
685 	} else
686 		return -EINVAL;
687 
688 	data_buf = kzalloc(size, GFP_KERNEL);
689 	if (!data_buf)
690 		return -ENOMEM;
691 
692 	mrq.cmd = &cmd;
693 	mrq.data = &data;
694 
695 	cmd.opcode = opcode;
696 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
697 
698 	data.blksz = size;
699 	data.blocks = 1;
700 	data.flags = MMC_DATA_READ;
701 
702 	/*
703 	 * According to the tuning specs, Tuning process
704 	 * is normally shorter 40 executions of CMD19,
705 	 * and timeout value should be shorter than 150 ms
706 	 */
707 	data.timeout_ns = 150 * NSEC_PER_MSEC;
708 
709 	data.sg = &sg;
710 	data.sg_len = 1;
711 	sg_init_one(&sg, data_buf, size);
712 
713 	mmc_wait_for_req(host, &mrq);
714 
715 	if (cmd_error)
716 		*cmd_error = cmd.error;
717 
718 	if (cmd.error) {
719 		err = cmd.error;
720 		goto out;
721 	}
722 
723 	if (data.error) {
724 		err = data.error;
725 		goto out;
726 	}
727 
728 	if (memcmp(data_buf, tuning_block_pattern, size))
729 		err = -EIO;
730 
731 out:
732 	kfree(data_buf);
733 	return err;
734 }
735 EXPORT_SYMBOL_GPL(mmc_send_tuning);
736 
mmc_send_abort_tuning(struct mmc_host * host,u32 opcode)737 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
738 {
739 	struct mmc_command cmd = {};
740 
741 	/*
742 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
743 	 * command, but SD specification does not, so do nothing unless it is
744 	 * eMMC.
745 	 */
746 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
747 		return 0;
748 
749 	cmd.opcode = MMC_STOP_TRANSMISSION;
750 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
751 
752 	/*
753 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
754 	 * on the tuning timeout i.e. 150ms.
755 	 */
756 	cmd.busy_timeout = 150;
757 
758 	return mmc_wait_for_cmd(host, &cmd, 0);
759 }
760 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
761 
762 static int
mmc_send_bus_test(struct mmc_card * card,struct mmc_host * host,u8 opcode,u8 len)763 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
764 		  u8 len)
765 {
766 	struct mmc_request mrq = {};
767 	struct mmc_command cmd = {};
768 	struct mmc_data data = {};
769 	struct scatterlist sg;
770 	u8 *data_buf;
771 	u8 *test_buf;
772 	int i, err;
773 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
774 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
775 
776 	/* dma onto stack is unsafe/nonportable, but callers to this
777 	 * routine normally provide temporary on-stack buffers ...
778 	 */
779 	data_buf = kmalloc(len, GFP_KERNEL);
780 	if (!data_buf)
781 		return -ENOMEM;
782 
783 	if (len == 8)
784 		test_buf = testdata_8bit;
785 	else if (len == 4)
786 		test_buf = testdata_4bit;
787 	else {
788 		pr_err("%s: Invalid bus_width %d\n",
789 		       mmc_hostname(host), len);
790 		kfree(data_buf);
791 		return -EINVAL;
792 	}
793 
794 	if (opcode == MMC_BUS_TEST_W)
795 		memcpy(data_buf, test_buf, len);
796 
797 	mrq.cmd = &cmd;
798 	mrq.data = &data;
799 	cmd.opcode = opcode;
800 	cmd.arg = 0;
801 
802 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
803 	 * rely on callers to never use this with "native" calls for reading
804 	 * CSD or CID.  Native versions of those commands use the R2 type,
805 	 * not R1 plus a data block.
806 	 */
807 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
808 
809 	data.blksz = len;
810 	data.blocks = 1;
811 	if (opcode == MMC_BUS_TEST_R)
812 		data.flags = MMC_DATA_READ;
813 	else
814 		data.flags = MMC_DATA_WRITE;
815 
816 	data.sg = &sg;
817 	data.sg_len = 1;
818 	mmc_set_data_timeout(&data, card);
819 	sg_init_one(&sg, data_buf, len);
820 	mmc_wait_for_req(host, &mrq);
821 	err = 0;
822 	if (opcode == MMC_BUS_TEST_R) {
823 		for (i = 0; i < len / 4; i++)
824 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
825 				err = -EIO;
826 				break;
827 			}
828 	}
829 	kfree(data_buf);
830 
831 	if (cmd.error)
832 		return cmd.error;
833 	if (data.error)
834 		return data.error;
835 
836 	return err;
837 }
838 
mmc_bus_test(struct mmc_card * card,u8 bus_width)839 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
840 {
841 	int width;
842 
843 	if (bus_width == MMC_BUS_WIDTH_8)
844 		width = 8;
845 	else if (bus_width == MMC_BUS_WIDTH_4)
846 		width = 4;
847 	else if (bus_width == MMC_BUS_WIDTH_1)
848 		return 0; /* no need for test */
849 	else
850 		return -EINVAL;
851 
852 	/*
853 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
854 	 * is a problem.  This improves chances that the test will work.
855 	 */
856 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
857 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
858 }
859 
mmc_send_hpi_cmd(struct mmc_card * card)860 static int mmc_send_hpi_cmd(struct mmc_card *card)
861 {
862 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
863 	struct mmc_host *host = card->host;
864 	bool use_r1b_resp = false;
865 	struct mmc_command cmd = {};
866 	int err;
867 
868 	cmd.opcode = card->ext_csd.hpi_cmd;
869 	cmd.arg = card->rca << 16 | 1;
870 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
871 
872 	if (cmd.opcode == MMC_STOP_TRANSMISSION)
873 		use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
874 						    busy_timeout_ms);
875 
876 	err = mmc_wait_for_cmd(host, &cmd, 0);
877 	if (err) {
878 		pr_warn("%s: HPI error %d. Command response %#x\n",
879 			mmc_hostname(host), err, cmd.resp[0]);
880 		return err;
881 	}
882 
883 	/* No need to poll when using HW busy detection. */
884 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
885 		return 0;
886 
887 	/* Let's poll to find out when the HPI request completes. */
888 	return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
889 }
890 
891 /**
892  *	mmc_interrupt_hpi - Issue for High priority Interrupt
893  *	@card: the MMC card associated with the HPI transfer
894  *
895  *	Issued High Priority Interrupt, and check for card status
896  *	until out-of prg-state.
897  */
mmc_interrupt_hpi(struct mmc_card * card)898 static int mmc_interrupt_hpi(struct mmc_card *card)
899 {
900 	int err;
901 	u32 status;
902 
903 	if (!card->ext_csd.hpi_en) {
904 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
905 		return 1;
906 	}
907 
908 	err = mmc_send_status(card, &status);
909 	if (err) {
910 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
911 		goto out;
912 	}
913 
914 	switch (R1_CURRENT_STATE(status)) {
915 	case R1_STATE_IDLE:
916 	case R1_STATE_READY:
917 	case R1_STATE_STBY:
918 	case R1_STATE_TRAN:
919 		/*
920 		 * In idle and transfer states, HPI is not needed and the caller
921 		 * can issue the next intended command immediately
922 		 */
923 		goto out;
924 	case R1_STATE_PRG:
925 		break;
926 	default:
927 		/* In all other states, it's illegal to issue HPI */
928 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
929 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
930 		err = -EINVAL;
931 		goto out;
932 	}
933 
934 	err = mmc_send_hpi_cmd(card);
935 out:
936 	return err;
937 }
938 
mmc_can_ext_csd(struct mmc_card * card)939 int mmc_can_ext_csd(struct mmc_card *card)
940 {
941 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
942 }
943 
mmc_read_bkops_status(struct mmc_card * card)944 static int mmc_read_bkops_status(struct mmc_card *card)
945 {
946 	int err;
947 	u8 *ext_csd;
948 
949 	err = mmc_get_ext_csd(card, &ext_csd);
950 	if (err)
951 		return err;
952 
953 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
954 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
955 	kfree(ext_csd);
956 	return 0;
957 }
958 
959 /**
960  *	mmc_run_bkops - Run BKOPS for supported cards
961  *	@card: MMC card to run BKOPS for
962  *
963  *	Run background operations synchronously for cards having manual BKOPS
964  *	enabled and in case it reports urgent BKOPS level.
965 */
mmc_run_bkops(struct mmc_card * card)966 void mmc_run_bkops(struct mmc_card *card)
967 {
968 	int err;
969 
970 	if (!card->ext_csd.man_bkops_en)
971 		return;
972 
973 	err = mmc_read_bkops_status(card);
974 	if (err) {
975 		pr_err("%s: Failed to read bkops status: %d\n",
976 		       mmc_hostname(card->host), err);
977 		return;
978 	}
979 
980 	if (!card->ext_csd.raw_bkops_status ||
981 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
982 		return;
983 
984 	mmc_retune_hold(card->host);
985 
986 	/*
987 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
988 	 * synchronously. Future wise, we may consider to start BKOPS, for less
989 	 * urgent levels by using an asynchronous background task, when idle.
990 	 */
991 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
992 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
993 	/*
994 	 * If the BKOPS timed out, the card is probably still busy in the
995 	 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
996 	 * it with a HPI command to get back into R1_STATE_TRAN.
997 	 */
998 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
999 		pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
1000 	else if (err)
1001 		pr_warn("%s: Error %d running bkops\n",
1002 			mmc_hostname(card->host), err);
1003 
1004 	mmc_retune_release(card->host);
1005 }
1006 EXPORT_SYMBOL(mmc_run_bkops);
1007 
mmc_cmdq_switch(struct mmc_card * card,bool enable)1008 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1009 {
1010 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1011 	int err;
1012 
1013 	if (!card->ext_csd.cmdq_support)
1014 		return -EOPNOTSUPP;
1015 
1016 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1017 			 val, card->ext_csd.generic_cmd6_time);
1018 	if (!err)
1019 		card->ext_csd.cmdq_en = enable;
1020 
1021 	return err;
1022 }
1023 
mmc_cmdq_enable(struct mmc_card * card)1024 int mmc_cmdq_enable(struct mmc_card *card)
1025 {
1026 	return mmc_cmdq_switch(card, true);
1027 }
1028 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1029 
mmc_cmdq_disable(struct mmc_card * card)1030 int mmc_cmdq_disable(struct mmc_card *card)
1031 {
1032 	return mmc_cmdq_switch(card, false);
1033 }
1034 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1035 
mmc_sanitize(struct mmc_card * card,unsigned int timeout_ms)1036 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1037 {
1038 	struct mmc_host *host = card->host;
1039 	int err;
1040 
1041 	if (!mmc_can_sanitize(card)) {
1042 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1043 		return -EOPNOTSUPP;
1044 	}
1045 
1046 	if (!timeout_ms)
1047 		timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1048 
1049 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1050 
1051 	mmc_retune_hold(host);
1052 
1053 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1054 			   1, timeout_ms, 0, true, false, 0);
1055 	if (err)
1056 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1057 
1058 	/*
1059 	 * If the sanitize operation timed out, the card is probably still busy
1060 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1061 	 * it with a HPI command to get back into R1_STATE_TRAN.
1062 	 */
1063 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1064 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1065 
1066 	mmc_retune_release(host);
1067 
1068 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1069 	return err;
1070 }
1071 EXPORT_SYMBOL_GPL(mmc_sanitize);
1072