1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103
104 #include <asm/pgalloc.h>
105 #include <linux/uaccess.h>
106 #include <asm/mmu_context.h>
107 #include <asm/cacheflush.h>
108 #include <asm/tlbflush.h>
109
110 #include <trace/events/sched.h>
111
112 #define CREATE_TRACE_POINTS
113 #include <trace/events/task.h>
114
115 /*
116 * Minimum number of threads to boot the kernel
117 */
118 #define MIN_THREADS 20
119
120 /*
121 * Maximum number of threads
122 */
123 #define MAX_THREADS FUTEX_TID_MASK
124
125 /*
126 * Protected counters by write_lock_irq(&tasklist_lock)
127 */
128 unsigned long total_forks; /* Handle normal Linux uptimes. */
129 int nr_threads; /* The idle threads do not count.. */
130
131 static int max_threads; /* tunable limit on nr_threads */
132
133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
134
135 static const char * const resident_page_types[] = {
136 NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
145
146 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)147 int lockdep_tasklist_lock_is_held(void)
148 {
149 return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153
nr_processes(void)154 int nr_processes(void)
155 {
156 int cpu;
157 int total = 0;
158
159 for_each_possible_cpu(cpu)
160 total += per_cpu(process_counts, cpu);
161
162 return total;
163 }
164
arch_release_task_struct(struct task_struct * tsk)165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171
alloc_task_struct_node(int node)172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176
free_task_struct(struct task_struct * tsk)177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184
185 /*
186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187 * kmemcache based allocator.
188 */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190
191 # ifdef CONFIG_VMAP_STACK
192 /*
193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194 * flush. Try to minimize the number of calls by caching stacks.
195 */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198
199 struct vm_stack {
200 struct rcu_head rcu;
201 struct vm_struct *stack_vm_area;
202 };
203
try_release_thread_stack_to_cache(struct vm_struct * vm)204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 {
206 unsigned int i;
207
208 for (i = 0; i < NR_CACHED_STACKS; i++) {
209 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
210 continue;
211 return true;
212 }
213 return false;
214 }
215
thread_stack_free_rcu(struct rcu_head * rh)216 static void thread_stack_free_rcu(struct rcu_head *rh)
217 {
218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
219
220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 return;
222
223 vfree(vm_stack);
224 }
225
thread_stack_delayed_free(struct task_struct * tsk)226 static void thread_stack_delayed_free(struct task_struct *tsk)
227 {
228 struct vm_stack *vm_stack = tsk->stack;
229
230 vm_stack->stack_vm_area = tsk->stack_vm_area;
231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 }
233
free_vm_stack_cache(unsigned int cpu)234 static int free_vm_stack_cache(unsigned int cpu)
235 {
236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 int i;
238
239 for (i = 0; i < NR_CACHED_STACKS; i++) {
240 struct vm_struct *vm_stack = cached_vm_stacks[i];
241
242 if (!vm_stack)
243 continue;
244
245 vfree(vm_stack->addr);
246 cached_vm_stacks[i] = NULL;
247 }
248
249 return 0;
250 }
251
memcg_charge_kernel_stack(struct vm_struct * vm)252 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 {
254 int i;
255 int ret;
256 int nr_charged = 0;
257
258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
259
260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
262 if (ret)
263 goto err;
264 nr_charged++;
265 }
266 return 0;
267 err:
268 for (i = 0; i < nr_charged; i++)
269 memcg_kmem_uncharge_page(vm->pages[i], 0);
270 return ret;
271 }
272
alloc_thread_stack_node(struct task_struct * tsk,int node)273 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
274 {
275 struct vm_struct *vm;
276 void *stack;
277 int i;
278
279 for (i = 0; i < NR_CACHED_STACKS; i++) {
280 struct vm_struct *s;
281
282 s = this_cpu_xchg(cached_stacks[i], NULL);
283
284 if (!s)
285 continue;
286
287 /* Reset stack metadata. */
288 kasan_unpoison_range(s->addr, THREAD_SIZE);
289
290 stack = kasan_reset_tag(s->addr);
291
292 /* Clear stale pointers from reused stack. */
293 memset(stack, 0, THREAD_SIZE);
294
295 if (memcg_charge_kernel_stack(s)) {
296 vfree(s->addr);
297 return -ENOMEM;
298 }
299
300 tsk->stack_vm_area = s;
301 tsk->stack = stack;
302 return 0;
303 }
304
305 /*
306 * Allocated stacks are cached and later reused by new threads,
307 * so memcg accounting is performed manually on assigning/releasing
308 * stacks to tasks. Drop __GFP_ACCOUNT.
309 */
310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 VMALLOC_START, VMALLOC_END,
312 THREADINFO_GFP & ~__GFP_ACCOUNT,
313 PAGE_KERNEL,
314 0, node, __builtin_return_address(0));
315 if (!stack)
316 return -ENOMEM;
317
318 vm = find_vm_area(stack);
319 if (memcg_charge_kernel_stack(vm)) {
320 vfree(stack);
321 return -ENOMEM;
322 }
323 /*
324 * We can't call find_vm_area() in interrupt context, and
325 * free_thread_stack() can be called in interrupt context,
326 * so cache the vm_struct.
327 */
328 tsk->stack_vm_area = vm;
329 stack = kasan_reset_tag(stack);
330 tsk->stack = stack;
331 return 0;
332 }
333
free_thread_stack(struct task_struct * tsk)334 static void free_thread_stack(struct task_struct *tsk)
335 {
336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
337 thread_stack_delayed_free(tsk);
338
339 tsk->stack = NULL;
340 tsk->stack_vm_area = NULL;
341 }
342
343 # else /* !CONFIG_VMAP_STACK */
344
thread_stack_free_rcu(struct rcu_head * rh)345 static void thread_stack_free_rcu(struct rcu_head *rh)
346 {
347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
348 }
349
thread_stack_delayed_free(struct task_struct * tsk)350 static void thread_stack_delayed_free(struct task_struct *tsk)
351 {
352 struct rcu_head *rh = tsk->stack;
353
354 call_rcu(rh, thread_stack_free_rcu);
355 }
356
alloc_thread_stack_node(struct task_struct * tsk,int node)357 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
358 {
359 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
360 THREAD_SIZE_ORDER);
361
362 if (likely(page)) {
363 tsk->stack = kasan_reset_tag(page_address(page));
364 return 0;
365 }
366 return -ENOMEM;
367 }
368
free_thread_stack(struct task_struct * tsk)369 static void free_thread_stack(struct task_struct *tsk)
370 {
371 thread_stack_delayed_free(tsk);
372 tsk->stack = NULL;
373 }
374
375 # endif /* CONFIG_VMAP_STACK */
376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
377
378 static struct kmem_cache *thread_stack_cache;
379
thread_stack_free_rcu(struct rcu_head * rh)380 static void thread_stack_free_rcu(struct rcu_head *rh)
381 {
382 kmem_cache_free(thread_stack_cache, rh);
383 }
384
thread_stack_delayed_free(struct task_struct * tsk)385 static void thread_stack_delayed_free(struct task_struct *tsk)
386 {
387 struct rcu_head *rh = tsk->stack;
388
389 call_rcu(rh, thread_stack_free_rcu);
390 }
391
alloc_thread_stack_node(struct task_struct * tsk,int node)392 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
393 {
394 unsigned long *stack;
395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
396 stack = kasan_reset_tag(stack);
397 tsk->stack = stack;
398 return stack ? 0 : -ENOMEM;
399 }
400
free_thread_stack(struct task_struct * tsk)401 static void free_thread_stack(struct task_struct *tsk)
402 {
403 thread_stack_delayed_free(tsk);
404 tsk->stack = NULL;
405 }
406
thread_stack_cache_init(void)407 void thread_stack_cache_init(void)
408 {
409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
410 THREAD_SIZE, THREAD_SIZE, 0, 0,
411 THREAD_SIZE, NULL);
412 BUG_ON(thread_stack_cache == NULL);
413 }
414
415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
417
alloc_thread_stack_node(struct task_struct * tsk,int node)418 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
419 {
420 unsigned long *stack;
421
422 stack = arch_alloc_thread_stack_node(tsk, node);
423 tsk->stack = stack;
424 return stack ? 0 : -ENOMEM;
425 }
426
free_thread_stack(struct task_struct * tsk)427 static void free_thread_stack(struct task_struct *tsk)
428 {
429 arch_free_thread_stack(tsk);
430 tsk->stack = NULL;
431 }
432
433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
434
435 /* SLAB cache for signal_struct structures (tsk->signal) */
436 static struct kmem_cache *signal_cachep;
437
438 /* SLAB cache for sighand_struct structures (tsk->sighand) */
439 struct kmem_cache *sighand_cachep;
440
441 /* SLAB cache for files_struct structures (tsk->files) */
442 struct kmem_cache *files_cachep;
443
444 /* SLAB cache for fs_struct structures (tsk->fs) */
445 struct kmem_cache *fs_cachep;
446
447 /* SLAB cache for vm_area_struct structures */
448 static struct kmem_cache *vm_area_cachep;
449
450 /* SLAB cache for mm_struct structures (tsk->mm) */
451 static struct kmem_cache *mm_cachep;
452
453 #ifdef CONFIG_PER_VMA_LOCK
454
455 /* SLAB cache for vm_area_struct.lock */
456 static struct kmem_cache *vma_lock_cachep;
457
vma_lock_alloc(struct vm_area_struct * vma)458 static bool vma_lock_alloc(struct vm_area_struct *vma)
459 {
460 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
461 if (!vma->vm_lock)
462 return false;
463
464 init_rwsem(&vma->vm_lock->lock);
465 vma->vm_lock_seq = -1;
466
467 return true;
468 }
469
vma_lock_free(struct vm_area_struct * vma)470 static inline void vma_lock_free(struct vm_area_struct *vma)
471 {
472 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
473 }
474
475 #else /* CONFIG_PER_VMA_LOCK */
476
vma_lock_alloc(struct vm_area_struct * vma)477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)478 static inline void vma_lock_free(struct vm_area_struct *vma) {}
479
480 #endif /* CONFIG_PER_VMA_LOCK */
481
vm_area_alloc(struct mm_struct * mm)482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
483 {
484 struct vm_area_struct *vma;
485
486 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 if (!vma)
488 return NULL;
489
490 vma_init(vma, mm);
491 if (!vma_lock_alloc(vma)) {
492 kmem_cache_free(vm_area_cachep, vma);
493 return NULL;
494 }
495
496 return vma;
497 }
498
vm_area_dup(struct vm_area_struct * orig)499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
500 {
501 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
502
503 if (!new)
504 return NULL;
505
506 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
507 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
508 /*
509 * orig->shared.rb may be modified concurrently, but the clone
510 * will be reinitialized.
511 */
512 data_race(memcpy(new, orig, sizeof(*new)));
513 if (!vma_lock_alloc(new)) {
514 kmem_cache_free(vm_area_cachep, new);
515 return NULL;
516 }
517 INIT_LIST_HEAD(&new->anon_vma_chain);
518 vma_numab_state_init(new);
519 dup_anon_vma_name(orig, new);
520
521 return new;
522 }
523
__vm_area_free(struct vm_area_struct * vma)524 void __vm_area_free(struct vm_area_struct *vma)
525 {
526 vma_numab_state_free(vma);
527 free_anon_vma_name(vma);
528 vma_lock_free(vma);
529 kmem_cache_free(vm_area_cachep, vma);
530 }
531
532 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)533 static void vm_area_free_rcu_cb(struct rcu_head *head)
534 {
535 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
536 vm_rcu);
537
538 /* The vma should not be locked while being destroyed. */
539 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
540 __vm_area_free(vma);
541 }
542 #endif
543
vm_area_free(struct vm_area_struct * vma)544 void vm_area_free(struct vm_area_struct *vma)
545 {
546 #ifdef CONFIG_PER_VMA_LOCK
547 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
548 #else
549 __vm_area_free(vma);
550 #endif
551 }
552
account_kernel_stack(struct task_struct * tsk,int account)553 static void account_kernel_stack(struct task_struct *tsk, int account)
554 {
555 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
556 struct vm_struct *vm = task_stack_vm_area(tsk);
557 int i;
558
559 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
560 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
561 account * (PAGE_SIZE / 1024));
562 } else {
563 void *stack = task_stack_page(tsk);
564
565 /* All stack pages are in the same node. */
566 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
567 account * (THREAD_SIZE / 1024));
568 }
569 }
570
exit_task_stack_account(struct task_struct * tsk)571 void exit_task_stack_account(struct task_struct *tsk)
572 {
573 account_kernel_stack(tsk, -1);
574
575 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
576 struct vm_struct *vm;
577 int i;
578
579 vm = task_stack_vm_area(tsk);
580 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
581 memcg_kmem_uncharge_page(vm->pages[i], 0);
582 }
583 }
584
release_task_stack(struct task_struct * tsk)585 static void release_task_stack(struct task_struct *tsk)
586 {
587 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
588 return; /* Better to leak the stack than to free prematurely */
589
590 free_thread_stack(tsk);
591 }
592
593 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)594 void put_task_stack(struct task_struct *tsk)
595 {
596 if (refcount_dec_and_test(&tsk->stack_refcount))
597 release_task_stack(tsk);
598 }
599 #endif
600
free_task(struct task_struct * tsk)601 void free_task(struct task_struct *tsk)
602 {
603 #ifdef CONFIG_SECCOMP
604 WARN_ON_ONCE(tsk->seccomp.filter);
605 #endif
606 release_user_cpus_ptr(tsk);
607 scs_release(tsk);
608
609 #ifndef CONFIG_THREAD_INFO_IN_TASK
610 /*
611 * The task is finally done with both the stack and thread_info,
612 * so free both.
613 */
614 release_task_stack(tsk);
615 #else
616 /*
617 * If the task had a separate stack allocation, it should be gone
618 * by now.
619 */
620 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
621 #endif
622 rt_mutex_debug_task_free(tsk);
623 ftrace_graph_exit_task(tsk);
624 arch_release_task_struct(tsk);
625 if (tsk->flags & PF_KTHREAD)
626 free_kthread_struct(tsk);
627 bpf_task_storage_free(tsk);
628 free_task_struct(tsk);
629 }
630 EXPORT_SYMBOL(free_task);
631
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
633 {
634 struct file *exe_file;
635
636 exe_file = get_mm_exe_file(oldmm);
637 RCU_INIT_POINTER(mm->exe_file, exe_file);
638 /*
639 * We depend on the oldmm having properly denied write access to the
640 * exe_file already.
641 */
642 if (exe_file && deny_write_access(exe_file))
643 pr_warn_once("deny_write_access() failed in %s\n", __func__);
644 }
645
646 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)647 static __latent_entropy int dup_mmap(struct mm_struct *mm,
648 struct mm_struct *oldmm)
649 {
650 struct vm_area_struct *mpnt, *tmp;
651 int retval;
652 unsigned long charge = 0;
653 LIST_HEAD(uf);
654 VMA_ITERATOR(old_vmi, oldmm, 0);
655 VMA_ITERATOR(vmi, mm, 0);
656
657 uprobe_start_dup_mmap();
658 if (mmap_write_lock_killable(oldmm)) {
659 retval = -EINTR;
660 goto fail_uprobe_end;
661 }
662 flush_cache_dup_mm(oldmm);
663 uprobe_dup_mmap(oldmm, mm);
664 /*
665 * Not linked in yet - no deadlock potential:
666 */
667 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
668
669 /* No ordering required: file already has been exposed. */
670 dup_mm_exe_file(mm, oldmm);
671
672 mm->total_vm = oldmm->total_vm;
673 mm->data_vm = oldmm->data_vm;
674 mm->exec_vm = oldmm->exec_vm;
675 mm->stack_vm = oldmm->stack_vm;
676
677 retval = ksm_fork(mm, oldmm);
678 if (retval)
679 goto out;
680 khugepaged_fork(mm, oldmm);
681
682 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
683 if (retval)
684 goto out;
685
686 mt_clear_in_rcu(vmi.mas.tree);
687 for_each_vma(old_vmi, mpnt) {
688 struct file *file;
689
690 vma_start_write(mpnt);
691 if (mpnt->vm_flags & VM_DONTCOPY) {
692 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
693 continue;
694 }
695 charge = 0;
696 /*
697 * Don't duplicate many vmas if we've been oom-killed (for
698 * example)
699 */
700 if (fatal_signal_pending(current)) {
701 retval = -EINTR;
702 goto loop_out;
703 }
704 if (mpnt->vm_flags & VM_ACCOUNT) {
705 unsigned long len = vma_pages(mpnt);
706
707 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
708 goto fail_nomem;
709 charge = len;
710 }
711 tmp = vm_area_dup(mpnt);
712 if (!tmp)
713 goto fail_nomem;
714 retval = vma_dup_policy(mpnt, tmp);
715 if (retval)
716 goto fail_nomem_policy;
717 tmp->vm_mm = mm;
718 retval = dup_userfaultfd(tmp, &uf);
719 if (retval)
720 goto fail_nomem_anon_vma_fork;
721 if (tmp->vm_flags & VM_WIPEONFORK) {
722 /*
723 * VM_WIPEONFORK gets a clean slate in the child.
724 * Don't prepare anon_vma until fault since we don't
725 * copy page for current vma.
726 */
727 tmp->anon_vma = NULL;
728 } else if (anon_vma_fork(tmp, mpnt))
729 goto fail_nomem_anon_vma_fork;
730 vm_flags_clear(tmp, VM_LOCKED_MASK);
731 file = tmp->vm_file;
732 if (file) {
733 struct address_space *mapping = file->f_mapping;
734
735 get_file(file);
736 i_mmap_lock_write(mapping);
737 if (tmp->vm_flags & VM_SHARED)
738 mapping_allow_writable(mapping);
739 flush_dcache_mmap_lock(mapping);
740 /* insert tmp into the share list, just after mpnt */
741 vma_interval_tree_insert_after(tmp, mpnt,
742 &mapping->i_mmap);
743 flush_dcache_mmap_unlock(mapping);
744 i_mmap_unlock_write(mapping);
745 }
746
747 /*
748 * Copy/update hugetlb private vma information.
749 */
750 if (is_vm_hugetlb_page(tmp))
751 hugetlb_dup_vma_private(tmp);
752
753 /* Link the vma into the MT */
754 if (vma_iter_bulk_store(&vmi, tmp))
755 goto fail_nomem_vmi_store;
756
757 mm->map_count++;
758 if (!(tmp->vm_flags & VM_WIPEONFORK))
759 retval = copy_page_range(tmp, mpnt);
760
761 if (tmp->vm_ops && tmp->vm_ops->open)
762 tmp->vm_ops->open(tmp);
763
764 if (retval)
765 goto loop_out;
766 }
767 /* a new mm has just been created */
768 retval = arch_dup_mmap(oldmm, mm);
769 loop_out:
770 vma_iter_free(&vmi);
771 if (!retval)
772 mt_set_in_rcu(vmi.mas.tree);
773 out:
774 mmap_write_unlock(mm);
775 flush_tlb_mm(oldmm);
776 mmap_write_unlock(oldmm);
777 dup_userfaultfd_complete(&uf);
778 fail_uprobe_end:
779 uprobe_end_dup_mmap();
780 return retval;
781
782 fail_nomem_vmi_store:
783 unlink_anon_vmas(tmp);
784 fail_nomem_anon_vma_fork:
785 mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787 vm_area_free(tmp);
788 fail_nomem:
789 retval = -ENOMEM;
790 vm_unacct_memory(charge);
791 goto loop_out;
792 }
793
mm_alloc_pgd(struct mm_struct * mm)794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796 mm->pgd = pgd_alloc(mm);
797 if (unlikely(!mm->pgd))
798 return -ENOMEM;
799 return 0;
800 }
801
mm_free_pgd(struct mm_struct * mm)802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804 pgd_free(mm, mm->pgd);
805 }
806 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809 mmap_write_lock(oldmm);
810 dup_mm_exe_file(mm, oldmm);
811 mmap_write_unlock(oldmm);
812 return 0;
813 }
814 #define mm_alloc_pgd(mm) (0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817
check_mm(struct mm_struct * mm)818 static void check_mm(struct mm_struct *mm)
819 {
820 int i;
821
822 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823 "Please make sure 'struct resident_page_types[]' is updated as well");
824
825 for (i = 0; i < NR_MM_COUNTERS; i++) {
826 long x = percpu_counter_sum(&mm->rss_stat[i]);
827
828 if (unlikely(x))
829 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830 mm, resident_page_types[i], x);
831 }
832
833 if (mm_pgtables_bytes(mm))
834 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835 mm_pgtables_bytes(mm));
836
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841
842 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
844
do_check_lazy_tlb(void * arg)845 static void do_check_lazy_tlb(void *arg)
846 {
847 struct mm_struct *mm = arg;
848
849 WARN_ON_ONCE(current->active_mm == mm);
850 }
851
do_shoot_lazy_tlb(void * arg)852 static void do_shoot_lazy_tlb(void *arg)
853 {
854 struct mm_struct *mm = arg;
855
856 if (current->active_mm == mm) {
857 WARN_ON_ONCE(current->mm);
858 current->active_mm = &init_mm;
859 switch_mm(mm, &init_mm, current);
860 }
861 }
862
cleanup_lazy_tlbs(struct mm_struct * mm)863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866 /*
867 * In this case, lazy tlb mms are refounted and would not reach
868 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869 */
870 return;
871 }
872
873 /*
874 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875 * requires lazy mm users to switch to another mm when the refcount
876 * drops to zero, before the mm is freed. This requires IPIs here to
877 * switch kernel threads to init_mm.
878 *
879 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880 * switch with the final userspace teardown TLB flush which leaves the
881 * mm lazy on this CPU but no others, reducing the need for additional
882 * IPIs here. There are cases where a final IPI is still required here,
883 * such as the final mmdrop being performed on a different CPU than the
884 * one exiting, or kernel threads using the mm when userspace exits.
885 *
886 * IPI overheads have not found to be expensive, but they could be
887 * reduced in a number of possible ways, for example (roughly
888 * increasing order of complexity):
889 * - The last lazy reference created by exit_mm() could instead switch
890 * to init_mm, however it's probable this will run on the same CPU
891 * immediately afterwards, so this may not reduce IPIs much.
892 * - A batch of mms requiring IPIs could be gathered and freed at once.
893 * - CPUs store active_mm where it can be remotely checked without a
894 * lock, to filter out false-positives in the cpumask.
895 * - After mm_users or mm_count reaches zero, switching away from the
896 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
897 * with some batching or delaying of the final IPIs.
898 * - A delayed freeing and RCU-like quiescing sequence based on mm
899 * switching to avoid IPIs completely.
900 */
901 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905
906 /*
907 * Called when the last reference to the mm
908 * is dropped: either by a lazy thread or by
909 * mmput. Free the page directory and the mm.
910 */
__mmdrop(struct mm_struct * mm)911 void __mmdrop(struct mm_struct *mm)
912 {
913 BUG_ON(mm == &init_mm);
914 WARN_ON_ONCE(mm == current->mm);
915
916 /* Ensure no CPUs are using this as their lazy tlb mm */
917 cleanup_lazy_tlbs(mm);
918
919 WARN_ON_ONCE(mm == current->active_mm);
920 mm_free_pgd(mm);
921 destroy_context(mm);
922 mmu_notifier_subscriptions_destroy(mm);
923 check_mm(mm);
924 put_user_ns(mm->user_ns);
925 mm_pasid_drop(mm);
926 mm_destroy_cid(mm);
927 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928
929 free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932
mmdrop_async_fn(struct work_struct * work)933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935 struct mm_struct *mm;
936
937 mm = container_of(work, struct mm_struct, async_put_work);
938 __mmdrop(mm);
939 }
940
mmdrop_async(struct mm_struct * mm)941 static void mmdrop_async(struct mm_struct *mm)
942 {
943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945 schedule_work(&mm->async_put_work);
946 }
947 }
948
free_signal_struct(struct signal_struct * sig)949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951 taskstats_tgid_free(sig);
952 sched_autogroup_exit(sig);
953 /*
954 * __mmdrop is not safe to call from softirq context on x86 due to
955 * pgd_dtor so postpone it to the async context
956 */
957 if (sig->oom_mm)
958 mmdrop_async(sig->oom_mm);
959 kmem_cache_free(signal_cachep, sig);
960 }
961
put_signal_struct(struct signal_struct * sig)962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964 if (refcount_dec_and_test(&sig->sigcnt))
965 free_signal_struct(sig);
966 }
967
__put_task_struct(struct task_struct * tsk)968 void __put_task_struct(struct task_struct *tsk)
969 {
970 WARN_ON(!tsk->exit_state);
971 WARN_ON(refcount_read(&tsk->usage));
972 WARN_ON(tsk == current);
973
974 io_uring_free(tsk);
975 cgroup_free(tsk);
976 task_numa_free(tsk, true);
977 security_task_free(tsk);
978 exit_creds(tsk);
979 delayacct_tsk_free(tsk);
980 put_signal_struct(tsk->signal);
981 sched_core_free(tsk);
982 free_task(tsk);
983 }
984 EXPORT_SYMBOL_GPL(__put_task_struct);
985
__put_task_struct_rcu_cb(struct rcu_head * rhp)986 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
987 {
988 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
989
990 __put_task_struct(task);
991 }
992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
993
arch_task_cache_init(void)994 void __init __weak arch_task_cache_init(void) { }
995
996 /*
997 * set_max_threads
998 */
set_max_threads(unsigned int max_threads_suggested)999 static void set_max_threads(unsigned int max_threads_suggested)
1000 {
1001 u64 threads;
1002 unsigned long nr_pages = totalram_pages();
1003
1004 /*
1005 * The number of threads shall be limited such that the thread
1006 * structures may only consume a small part of the available memory.
1007 */
1008 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009 threads = MAX_THREADS;
1010 else
1011 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012 (u64) THREAD_SIZE * 8UL);
1013
1014 if (threads > max_threads_suggested)
1015 threads = max_threads_suggested;
1016
1017 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018 }
1019
1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021 /* Initialized by the architecture: */
1022 int arch_task_struct_size __read_mostly;
1023 #endif
1024
1025 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1026 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027 {
1028 /* Fetch thread_struct whitelist for the architecture. */
1029 arch_thread_struct_whitelist(offset, size);
1030
1031 /*
1032 * Handle zero-sized whitelist or empty thread_struct, otherwise
1033 * adjust offset to position of thread_struct in task_struct.
1034 */
1035 if (unlikely(*size == 0))
1036 *offset = 0;
1037 else
1038 *offset += offsetof(struct task_struct, thread);
1039 }
1040 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1041
fork_init(void)1042 void __init fork_init(void)
1043 {
1044 int i;
1045 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1046 #ifndef ARCH_MIN_TASKALIGN
1047 #define ARCH_MIN_TASKALIGN 0
1048 #endif
1049 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1050 unsigned long useroffset, usersize;
1051
1052 /* create a slab on which task_structs can be allocated */
1053 task_struct_whitelist(&useroffset, &usersize);
1054 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1055 arch_task_struct_size, align,
1056 SLAB_PANIC|SLAB_ACCOUNT,
1057 useroffset, usersize, NULL);
1058 #endif
1059
1060 /* do the arch specific task caches init */
1061 arch_task_cache_init();
1062
1063 set_max_threads(MAX_THREADS);
1064
1065 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1066 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1067 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1068 init_task.signal->rlim[RLIMIT_NPROC];
1069
1070 for (i = 0; i < UCOUNT_COUNTS; i++)
1071 init_user_ns.ucount_max[i] = max_threads/2;
1072
1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1076 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1077
1078 #ifdef CONFIG_VMAP_STACK
1079 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1080 NULL, free_vm_stack_cache);
1081 #endif
1082
1083 scs_init();
1084
1085 lockdep_init_task(&init_task);
1086 uprobes_init();
1087 }
1088
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1089 int __weak arch_dup_task_struct(struct task_struct *dst,
1090 struct task_struct *src)
1091 {
1092 *dst = *src;
1093 return 0;
1094 }
1095
set_task_stack_end_magic(struct task_struct * tsk)1096 void set_task_stack_end_magic(struct task_struct *tsk)
1097 {
1098 unsigned long *stackend;
1099
1100 stackend = end_of_stack(tsk);
1101 *stackend = STACK_END_MAGIC; /* for overflow detection */
1102 }
1103
dup_task_struct(struct task_struct * orig,int node)1104 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1105 {
1106 struct task_struct *tsk;
1107 int err;
1108
1109 if (node == NUMA_NO_NODE)
1110 node = tsk_fork_get_node(orig);
1111 tsk = alloc_task_struct_node(node);
1112 if (!tsk)
1113 return NULL;
1114
1115 err = arch_dup_task_struct(tsk, orig);
1116 if (err)
1117 goto free_tsk;
1118
1119 err = alloc_thread_stack_node(tsk, node);
1120 if (err)
1121 goto free_tsk;
1122
1123 #ifdef CONFIG_THREAD_INFO_IN_TASK
1124 refcount_set(&tsk->stack_refcount, 1);
1125 #endif
1126 account_kernel_stack(tsk, 1);
1127
1128 err = scs_prepare(tsk, node);
1129 if (err)
1130 goto free_stack;
1131
1132 #ifdef CONFIG_SECCOMP
1133 /*
1134 * We must handle setting up seccomp filters once we're under
1135 * the sighand lock in case orig has changed between now and
1136 * then. Until then, filter must be NULL to avoid messing up
1137 * the usage counts on the error path calling free_task.
1138 */
1139 tsk->seccomp.filter = NULL;
1140 #endif
1141
1142 setup_thread_stack(tsk, orig);
1143 clear_user_return_notifier(tsk);
1144 clear_tsk_need_resched(tsk);
1145 set_task_stack_end_magic(tsk);
1146 clear_syscall_work_syscall_user_dispatch(tsk);
1147
1148 #ifdef CONFIG_STACKPROTECTOR
1149 tsk->stack_canary = get_random_canary();
1150 #endif
1151 if (orig->cpus_ptr == &orig->cpus_mask)
1152 tsk->cpus_ptr = &tsk->cpus_mask;
1153 dup_user_cpus_ptr(tsk, orig, node);
1154
1155 /*
1156 * One for the user space visible state that goes away when reaped.
1157 * One for the scheduler.
1158 */
1159 refcount_set(&tsk->rcu_users, 2);
1160 /* One for the rcu users */
1161 refcount_set(&tsk->usage, 1);
1162 #ifdef CONFIG_BLK_DEV_IO_TRACE
1163 tsk->btrace_seq = 0;
1164 #endif
1165 tsk->splice_pipe = NULL;
1166 tsk->task_frag.page = NULL;
1167 tsk->wake_q.next = NULL;
1168 tsk->worker_private = NULL;
1169
1170 kcov_task_init(tsk);
1171 kmsan_task_create(tsk);
1172 kmap_local_fork(tsk);
1173
1174 #ifdef CONFIG_FAULT_INJECTION
1175 tsk->fail_nth = 0;
1176 #endif
1177
1178 #ifdef CONFIG_BLK_CGROUP
1179 tsk->throttle_disk = NULL;
1180 tsk->use_memdelay = 0;
1181 #endif
1182
1183 #ifdef CONFIG_IOMMU_SVA
1184 tsk->pasid_activated = 0;
1185 #endif
1186
1187 #ifdef CONFIG_MEMCG
1188 tsk->active_memcg = NULL;
1189 #endif
1190
1191 #ifdef CONFIG_CPU_SUP_INTEL
1192 tsk->reported_split_lock = 0;
1193 #endif
1194
1195 #ifdef CONFIG_SCHED_MM_CID
1196 tsk->mm_cid = -1;
1197 tsk->last_mm_cid = -1;
1198 tsk->mm_cid_active = 0;
1199 tsk->migrate_from_cpu = -1;
1200 #endif
1201 return tsk;
1202
1203 free_stack:
1204 exit_task_stack_account(tsk);
1205 free_thread_stack(tsk);
1206 free_tsk:
1207 free_task_struct(tsk);
1208 return NULL;
1209 }
1210
1211 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1212
1213 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1214
coredump_filter_setup(char * s)1215 static int __init coredump_filter_setup(char *s)
1216 {
1217 default_dump_filter =
1218 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1219 MMF_DUMP_FILTER_MASK;
1220 return 1;
1221 }
1222
1223 __setup("coredump_filter=", coredump_filter_setup);
1224
1225 #include <linux/init_task.h>
1226
mm_init_aio(struct mm_struct * mm)1227 static void mm_init_aio(struct mm_struct *mm)
1228 {
1229 #ifdef CONFIG_AIO
1230 spin_lock_init(&mm->ioctx_lock);
1231 mm->ioctx_table = NULL;
1232 #endif
1233 }
1234
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1235 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1236 struct task_struct *p)
1237 {
1238 #ifdef CONFIG_MEMCG
1239 if (mm->owner == p)
1240 WRITE_ONCE(mm->owner, NULL);
1241 #endif
1242 }
1243
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1244 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1245 {
1246 #ifdef CONFIG_MEMCG
1247 mm->owner = p;
1248 #endif
1249 }
1250
mm_init_uprobes_state(struct mm_struct * mm)1251 static void mm_init_uprobes_state(struct mm_struct *mm)
1252 {
1253 #ifdef CONFIG_UPROBES
1254 mm->uprobes_state.xol_area = NULL;
1255 #endif
1256 }
1257
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1258 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1259 struct user_namespace *user_ns)
1260 {
1261 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1262 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1263 atomic_set(&mm->mm_users, 1);
1264 atomic_set(&mm->mm_count, 1);
1265 seqcount_init(&mm->write_protect_seq);
1266 mmap_init_lock(mm);
1267 INIT_LIST_HEAD(&mm->mmlist);
1268 #ifdef CONFIG_PER_VMA_LOCK
1269 mm->mm_lock_seq = 0;
1270 #endif
1271 mm_pgtables_bytes_init(mm);
1272 mm->map_count = 0;
1273 mm->locked_vm = 0;
1274 atomic64_set(&mm->pinned_vm, 0);
1275 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1276 spin_lock_init(&mm->page_table_lock);
1277 spin_lock_init(&mm->arg_lock);
1278 mm_init_cpumask(mm);
1279 mm_init_aio(mm);
1280 mm_init_owner(mm, p);
1281 mm_pasid_init(mm);
1282 RCU_INIT_POINTER(mm->exe_file, NULL);
1283 mmu_notifier_subscriptions_init(mm);
1284 init_tlb_flush_pending(mm);
1285 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1286 mm->pmd_huge_pte = NULL;
1287 #endif
1288 mm_init_uprobes_state(mm);
1289 hugetlb_count_init(mm);
1290
1291 if (current->mm) {
1292 mm->flags = mmf_init_flags(current->mm->flags);
1293 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1294 } else {
1295 mm->flags = default_dump_filter;
1296 mm->def_flags = 0;
1297 }
1298
1299 if (mm_alloc_pgd(mm))
1300 goto fail_nopgd;
1301
1302 if (init_new_context(p, mm))
1303 goto fail_nocontext;
1304
1305 if (mm_alloc_cid(mm))
1306 goto fail_cid;
1307
1308 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1309 NR_MM_COUNTERS))
1310 goto fail_pcpu;
1311
1312 mm->user_ns = get_user_ns(user_ns);
1313 lru_gen_init_mm(mm);
1314 return mm;
1315
1316 fail_pcpu:
1317 mm_destroy_cid(mm);
1318 fail_cid:
1319 destroy_context(mm);
1320 fail_nocontext:
1321 mm_free_pgd(mm);
1322 fail_nopgd:
1323 free_mm(mm);
1324 return NULL;
1325 }
1326
1327 /*
1328 * Allocate and initialize an mm_struct.
1329 */
mm_alloc(void)1330 struct mm_struct *mm_alloc(void)
1331 {
1332 struct mm_struct *mm;
1333
1334 mm = allocate_mm();
1335 if (!mm)
1336 return NULL;
1337
1338 memset(mm, 0, sizeof(*mm));
1339 return mm_init(mm, current, current_user_ns());
1340 }
1341
__mmput(struct mm_struct * mm)1342 static inline void __mmput(struct mm_struct *mm)
1343 {
1344 VM_BUG_ON(atomic_read(&mm->mm_users));
1345
1346 uprobe_clear_state(mm);
1347 exit_aio(mm);
1348 ksm_exit(mm);
1349 khugepaged_exit(mm); /* must run before exit_mmap */
1350 exit_mmap(mm);
1351 mm_put_huge_zero_page(mm);
1352 set_mm_exe_file(mm, NULL);
1353 if (!list_empty(&mm->mmlist)) {
1354 spin_lock(&mmlist_lock);
1355 list_del(&mm->mmlist);
1356 spin_unlock(&mmlist_lock);
1357 }
1358 if (mm->binfmt)
1359 module_put(mm->binfmt->module);
1360 lru_gen_del_mm(mm);
1361 mmdrop(mm);
1362 }
1363
1364 /*
1365 * Decrement the use count and release all resources for an mm.
1366 */
mmput(struct mm_struct * mm)1367 void mmput(struct mm_struct *mm)
1368 {
1369 might_sleep();
1370
1371 if (atomic_dec_and_test(&mm->mm_users))
1372 __mmput(mm);
1373 }
1374 EXPORT_SYMBOL_GPL(mmput);
1375
1376 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1377 static void mmput_async_fn(struct work_struct *work)
1378 {
1379 struct mm_struct *mm = container_of(work, struct mm_struct,
1380 async_put_work);
1381
1382 __mmput(mm);
1383 }
1384
mmput_async(struct mm_struct * mm)1385 void mmput_async(struct mm_struct *mm)
1386 {
1387 if (atomic_dec_and_test(&mm->mm_users)) {
1388 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1389 schedule_work(&mm->async_put_work);
1390 }
1391 }
1392 EXPORT_SYMBOL_GPL(mmput_async);
1393 #endif
1394
1395 /**
1396 * set_mm_exe_file - change a reference to the mm's executable file
1397 *
1398 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399 *
1400 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401 * invocations: in mmput() nobody alive left, in execve it happens before
1402 * the new mm is made visible to anyone.
1403 *
1404 * Can only fail if new_exe_file != NULL.
1405 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 {
1408 struct file *old_exe_file;
1409
1410 /*
1411 * It is safe to dereference the exe_file without RCU as
1412 * this function is only called if nobody else can access
1413 * this mm -- see comment above for justification.
1414 */
1415 old_exe_file = rcu_dereference_raw(mm->exe_file);
1416
1417 if (new_exe_file) {
1418 /*
1419 * We expect the caller (i.e., sys_execve) to already denied
1420 * write access, so this is unlikely to fail.
1421 */
1422 if (unlikely(deny_write_access(new_exe_file)))
1423 return -EACCES;
1424 get_file(new_exe_file);
1425 }
1426 rcu_assign_pointer(mm->exe_file, new_exe_file);
1427 if (old_exe_file) {
1428 allow_write_access(old_exe_file);
1429 fput(old_exe_file);
1430 }
1431 return 0;
1432 }
1433
1434 /**
1435 * replace_mm_exe_file - replace a reference to the mm's executable file
1436 *
1437 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1438 *
1439 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1440 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1441 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1442 {
1443 struct vm_area_struct *vma;
1444 struct file *old_exe_file;
1445 int ret = 0;
1446
1447 /* Forbid mm->exe_file change if old file still mapped. */
1448 old_exe_file = get_mm_exe_file(mm);
1449 if (old_exe_file) {
1450 VMA_ITERATOR(vmi, mm, 0);
1451 mmap_read_lock(mm);
1452 for_each_vma(vmi, vma) {
1453 if (!vma->vm_file)
1454 continue;
1455 if (path_equal(&vma->vm_file->f_path,
1456 &old_exe_file->f_path)) {
1457 ret = -EBUSY;
1458 break;
1459 }
1460 }
1461 mmap_read_unlock(mm);
1462 fput(old_exe_file);
1463 if (ret)
1464 return ret;
1465 }
1466
1467 ret = deny_write_access(new_exe_file);
1468 if (ret)
1469 return -EACCES;
1470 get_file(new_exe_file);
1471
1472 /* set the new file */
1473 mmap_write_lock(mm);
1474 old_exe_file = rcu_dereference_raw(mm->exe_file);
1475 rcu_assign_pointer(mm->exe_file, new_exe_file);
1476 mmap_write_unlock(mm);
1477
1478 if (old_exe_file) {
1479 allow_write_access(old_exe_file);
1480 fput(old_exe_file);
1481 }
1482 return 0;
1483 }
1484
1485 /**
1486 * get_mm_exe_file - acquire a reference to the mm's executable file
1487 *
1488 * Returns %NULL if mm has no associated executable file.
1489 * User must release file via fput().
1490 */
get_mm_exe_file(struct mm_struct * mm)1491 struct file *get_mm_exe_file(struct mm_struct *mm)
1492 {
1493 struct file *exe_file;
1494
1495 rcu_read_lock();
1496 exe_file = rcu_dereference(mm->exe_file);
1497 if (exe_file && !get_file_rcu(exe_file))
1498 exe_file = NULL;
1499 rcu_read_unlock();
1500 return exe_file;
1501 }
1502
1503 /**
1504 * get_task_exe_file - acquire a reference to the task's executable file
1505 *
1506 * Returns %NULL if task's mm (if any) has no associated executable file or
1507 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1508 * User must release file via fput().
1509 */
get_task_exe_file(struct task_struct * task)1510 struct file *get_task_exe_file(struct task_struct *task)
1511 {
1512 struct file *exe_file = NULL;
1513 struct mm_struct *mm;
1514
1515 task_lock(task);
1516 mm = task->mm;
1517 if (mm) {
1518 if (!(task->flags & PF_KTHREAD))
1519 exe_file = get_mm_exe_file(mm);
1520 }
1521 task_unlock(task);
1522 return exe_file;
1523 }
1524
1525 /**
1526 * get_task_mm - acquire a reference to the task's mm
1527 *
1528 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1529 * this kernel workthread has transiently adopted a user mm with use_mm,
1530 * to do its AIO) is not set and if so returns a reference to it, after
1531 * bumping up the use count. User must release the mm via mmput()
1532 * after use. Typically used by /proc and ptrace.
1533 */
get_task_mm(struct task_struct * task)1534 struct mm_struct *get_task_mm(struct task_struct *task)
1535 {
1536 struct mm_struct *mm;
1537
1538 task_lock(task);
1539 mm = task->mm;
1540 if (mm) {
1541 if (task->flags & PF_KTHREAD)
1542 mm = NULL;
1543 else
1544 mmget(mm);
1545 }
1546 task_unlock(task);
1547 return mm;
1548 }
1549 EXPORT_SYMBOL_GPL(get_task_mm);
1550
mm_access(struct task_struct * task,unsigned int mode)1551 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1552 {
1553 struct mm_struct *mm;
1554 int err;
1555
1556 err = down_read_killable(&task->signal->exec_update_lock);
1557 if (err)
1558 return ERR_PTR(err);
1559
1560 mm = get_task_mm(task);
1561 if (mm && mm != current->mm &&
1562 !ptrace_may_access(task, mode)) {
1563 mmput(mm);
1564 mm = ERR_PTR(-EACCES);
1565 }
1566 up_read(&task->signal->exec_update_lock);
1567
1568 return mm;
1569 }
1570
complete_vfork_done(struct task_struct * tsk)1571 static void complete_vfork_done(struct task_struct *tsk)
1572 {
1573 struct completion *vfork;
1574
1575 task_lock(tsk);
1576 vfork = tsk->vfork_done;
1577 if (likely(vfork)) {
1578 tsk->vfork_done = NULL;
1579 complete(vfork);
1580 }
1581 task_unlock(tsk);
1582 }
1583
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1584 static int wait_for_vfork_done(struct task_struct *child,
1585 struct completion *vfork)
1586 {
1587 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1588 int killed;
1589
1590 cgroup_enter_frozen();
1591 killed = wait_for_completion_state(vfork, state);
1592 cgroup_leave_frozen(false);
1593
1594 if (killed) {
1595 task_lock(child);
1596 child->vfork_done = NULL;
1597 task_unlock(child);
1598 }
1599
1600 put_task_struct(child);
1601 return killed;
1602 }
1603
1604 /* Please note the differences between mmput and mm_release.
1605 * mmput is called whenever we stop holding onto a mm_struct,
1606 * error success whatever.
1607 *
1608 * mm_release is called after a mm_struct has been removed
1609 * from the current process.
1610 *
1611 * This difference is important for error handling, when we
1612 * only half set up a mm_struct for a new process and need to restore
1613 * the old one. Because we mmput the new mm_struct before
1614 * restoring the old one. . .
1615 * Eric Biederman 10 January 1998
1616 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1617 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1618 {
1619 uprobe_free_utask(tsk);
1620
1621 /* Get rid of any cached register state */
1622 deactivate_mm(tsk, mm);
1623
1624 /*
1625 * Signal userspace if we're not exiting with a core dump
1626 * because we want to leave the value intact for debugging
1627 * purposes.
1628 */
1629 if (tsk->clear_child_tid) {
1630 if (atomic_read(&mm->mm_users) > 1) {
1631 /*
1632 * We don't check the error code - if userspace has
1633 * not set up a proper pointer then tough luck.
1634 */
1635 put_user(0, tsk->clear_child_tid);
1636 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1637 1, NULL, NULL, 0, 0);
1638 }
1639 tsk->clear_child_tid = NULL;
1640 }
1641
1642 /*
1643 * All done, finally we can wake up parent and return this mm to him.
1644 * Also kthread_stop() uses this completion for synchronization.
1645 */
1646 if (tsk->vfork_done)
1647 complete_vfork_done(tsk);
1648 }
1649
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1650 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1651 {
1652 futex_exit_release(tsk);
1653 mm_release(tsk, mm);
1654 }
1655
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1656 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1657 {
1658 futex_exec_release(tsk);
1659 mm_release(tsk, mm);
1660 }
1661
1662 /**
1663 * dup_mm() - duplicates an existing mm structure
1664 * @tsk: the task_struct with which the new mm will be associated.
1665 * @oldmm: the mm to duplicate.
1666 *
1667 * Allocates a new mm structure and duplicates the provided @oldmm structure
1668 * content into it.
1669 *
1670 * Return: the duplicated mm or NULL on failure.
1671 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1672 static struct mm_struct *dup_mm(struct task_struct *tsk,
1673 struct mm_struct *oldmm)
1674 {
1675 struct mm_struct *mm;
1676 int err;
1677
1678 mm = allocate_mm();
1679 if (!mm)
1680 goto fail_nomem;
1681
1682 memcpy(mm, oldmm, sizeof(*mm));
1683
1684 if (!mm_init(mm, tsk, mm->user_ns))
1685 goto fail_nomem;
1686
1687 err = dup_mmap(mm, oldmm);
1688 if (err)
1689 goto free_pt;
1690
1691 mm->hiwater_rss = get_mm_rss(mm);
1692 mm->hiwater_vm = mm->total_vm;
1693
1694 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1695 goto free_pt;
1696
1697 return mm;
1698
1699 free_pt:
1700 /* don't put binfmt in mmput, we haven't got module yet */
1701 mm->binfmt = NULL;
1702 mm_init_owner(mm, NULL);
1703 mmput(mm);
1704
1705 fail_nomem:
1706 return NULL;
1707 }
1708
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1709 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1710 {
1711 struct mm_struct *mm, *oldmm;
1712
1713 tsk->min_flt = tsk->maj_flt = 0;
1714 tsk->nvcsw = tsk->nivcsw = 0;
1715 #ifdef CONFIG_DETECT_HUNG_TASK
1716 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1717 tsk->last_switch_time = 0;
1718 #endif
1719
1720 tsk->mm = NULL;
1721 tsk->active_mm = NULL;
1722
1723 /*
1724 * Are we cloning a kernel thread?
1725 *
1726 * We need to steal a active VM for that..
1727 */
1728 oldmm = current->mm;
1729 if (!oldmm)
1730 return 0;
1731
1732 if (clone_flags & CLONE_VM) {
1733 mmget(oldmm);
1734 mm = oldmm;
1735 } else {
1736 mm = dup_mm(tsk, current->mm);
1737 if (!mm)
1738 return -ENOMEM;
1739 }
1740
1741 tsk->mm = mm;
1742 tsk->active_mm = mm;
1743 sched_mm_cid_fork(tsk);
1744 return 0;
1745 }
1746
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1747 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1748 {
1749 struct fs_struct *fs = current->fs;
1750 if (clone_flags & CLONE_FS) {
1751 /* tsk->fs is already what we want */
1752 spin_lock(&fs->lock);
1753 if (fs->in_exec) {
1754 spin_unlock(&fs->lock);
1755 return -EAGAIN;
1756 }
1757 fs->users++;
1758 spin_unlock(&fs->lock);
1759 return 0;
1760 }
1761 tsk->fs = copy_fs_struct(fs);
1762 if (!tsk->fs)
1763 return -ENOMEM;
1764 return 0;
1765 }
1766
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1767 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1768 int no_files)
1769 {
1770 struct files_struct *oldf, *newf;
1771
1772 /*
1773 * A background process may not have any files ...
1774 */
1775 oldf = current->files;
1776 if (!oldf)
1777 return 0;
1778
1779 if (no_files) {
1780 tsk->files = NULL;
1781 return 0;
1782 }
1783
1784 if (clone_flags & CLONE_FILES) {
1785 atomic_inc(&oldf->count);
1786 return 0;
1787 }
1788
1789 newf = dup_fd(oldf, NULL);
1790 if (IS_ERR(newf))
1791 return PTR_ERR(newf);
1792
1793 tsk->files = newf;
1794 return 0;
1795 }
1796
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1797 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1798 {
1799 struct sighand_struct *sig;
1800
1801 if (clone_flags & CLONE_SIGHAND) {
1802 refcount_inc(¤t->sighand->count);
1803 return 0;
1804 }
1805 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1806 RCU_INIT_POINTER(tsk->sighand, sig);
1807 if (!sig)
1808 return -ENOMEM;
1809
1810 refcount_set(&sig->count, 1);
1811 spin_lock_irq(¤t->sighand->siglock);
1812 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1813 spin_unlock_irq(¤t->sighand->siglock);
1814
1815 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1816 if (clone_flags & CLONE_CLEAR_SIGHAND)
1817 flush_signal_handlers(tsk, 0);
1818
1819 return 0;
1820 }
1821
__cleanup_sighand(struct sighand_struct * sighand)1822 void __cleanup_sighand(struct sighand_struct *sighand)
1823 {
1824 if (refcount_dec_and_test(&sighand->count)) {
1825 signalfd_cleanup(sighand);
1826 /*
1827 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1828 * without an RCU grace period, see __lock_task_sighand().
1829 */
1830 kmem_cache_free(sighand_cachep, sighand);
1831 }
1832 }
1833
1834 /*
1835 * Initialize POSIX timer handling for a thread group.
1836 */
posix_cpu_timers_init_group(struct signal_struct * sig)1837 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1838 {
1839 struct posix_cputimers *pct = &sig->posix_cputimers;
1840 unsigned long cpu_limit;
1841
1842 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1843 posix_cputimers_group_init(pct, cpu_limit);
1844 }
1845
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1846 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1847 {
1848 struct signal_struct *sig;
1849
1850 if (clone_flags & CLONE_THREAD)
1851 return 0;
1852
1853 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1854 tsk->signal = sig;
1855 if (!sig)
1856 return -ENOMEM;
1857
1858 sig->nr_threads = 1;
1859 sig->quick_threads = 1;
1860 atomic_set(&sig->live, 1);
1861 refcount_set(&sig->sigcnt, 1);
1862
1863 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1864 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1865 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1866
1867 init_waitqueue_head(&sig->wait_chldexit);
1868 sig->curr_target = tsk;
1869 init_sigpending(&sig->shared_pending);
1870 INIT_HLIST_HEAD(&sig->multiprocess);
1871 seqlock_init(&sig->stats_lock);
1872 prev_cputime_init(&sig->prev_cputime);
1873
1874 #ifdef CONFIG_POSIX_TIMERS
1875 INIT_LIST_HEAD(&sig->posix_timers);
1876 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1877 sig->real_timer.function = it_real_fn;
1878 #endif
1879
1880 task_lock(current->group_leader);
1881 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1882 task_unlock(current->group_leader);
1883
1884 posix_cpu_timers_init_group(sig);
1885
1886 tty_audit_fork(sig);
1887 sched_autogroup_fork(sig);
1888
1889 sig->oom_score_adj = current->signal->oom_score_adj;
1890 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1891
1892 mutex_init(&sig->cred_guard_mutex);
1893 init_rwsem(&sig->exec_update_lock);
1894
1895 return 0;
1896 }
1897
copy_seccomp(struct task_struct * p)1898 static void copy_seccomp(struct task_struct *p)
1899 {
1900 #ifdef CONFIG_SECCOMP
1901 /*
1902 * Must be called with sighand->lock held, which is common to
1903 * all threads in the group. Holding cred_guard_mutex is not
1904 * needed because this new task is not yet running and cannot
1905 * be racing exec.
1906 */
1907 assert_spin_locked(¤t->sighand->siglock);
1908
1909 /* Ref-count the new filter user, and assign it. */
1910 get_seccomp_filter(current);
1911 p->seccomp = current->seccomp;
1912
1913 /*
1914 * Explicitly enable no_new_privs here in case it got set
1915 * between the task_struct being duplicated and holding the
1916 * sighand lock. The seccomp state and nnp must be in sync.
1917 */
1918 if (task_no_new_privs(current))
1919 task_set_no_new_privs(p);
1920
1921 /*
1922 * If the parent gained a seccomp mode after copying thread
1923 * flags and between before we held the sighand lock, we have
1924 * to manually enable the seccomp thread flag here.
1925 */
1926 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1927 set_task_syscall_work(p, SECCOMP);
1928 #endif
1929 }
1930
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1931 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1932 {
1933 current->clear_child_tid = tidptr;
1934
1935 return task_pid_vnr(current);
1936 }
1937
rt_mutex_init_task(struct task_struct * p)1938 static void rt_mutex_init_task(struct task_struct *p)
1939 {
1940 raw_spin_lock_init(&p->pi_lock);
1941 #ifdef CONFIG_RT_MUTEXES
1942 p->pi_waiters = RB_ROOT_CACHED;
1943 p->pi_top_task = NULL;
1944 p->pi_blocked_on = NULL;
1945 #endif
1946 }
1947
init_task_pid_links(struct task_struct * task)1948 static inline void init_task_pid_links(struct task_struct *task)
1949 {
1950 enum pid_type type;
1951
1952 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1953 INIT_HLIST_NODE(&task->pid_links[type]);
1954 }
1955
1956 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1957 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1958 {
1959 if (type == PIDTYPE_PID)
1960 task->thread_pid = pid;
1961 else
1962 task->signal->pids[type] = pid;
1963 }
1964
rcu_copy_process(struct task_struct * p)1965 static inline void rcu_copy_process(struct task_struct *p)
1966 {
1967 #ifdef CONFIG_PREEMPT_RCU
1968 p->rcu_read_lock_nesting = 0;
1969 p->rcu_read_unlock_special.s = 0;
1970 p->rcu_blocked_node = NULL;
1971 INIT_LIST_HEAD(&p->rcu_node_entry);
1972 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1973 #ifdef CONFIG_TASKS_RCU
1974 p->rcu_tasks_holdout = false;
1975 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1976 p->rcu_tasks_idle_cpu = -1;
1977 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1978 #endif /* #ifdef CONFIG_TASKS_RCU */
1979 #ifdef CONFIG_TASKS_TRACE_RCU
1980 p->trc_reader_nesting = 0;
1981 p->trc_reader_special.s = 0;
1982 INIT_LIST_HEAD(&p->trc_holdout_list);
1983 INIT_LIST_HEAD(&p->trc_blkd_node);
1984 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1985 }
1986
pidfd_pid(const struct file * file)1987 struct pid *pidfd_pid(const struct file *file)
1988 {
1989 if (file->f_op == &pidfd_fops)
1990 return file->private_data;
1991
1992 return ERR_PTR(-EBADF);
1993 }
1994
pidfd_release(struct inode * inode,struct file * file)1995 static int pidfd_release(struct inode *inode, struct file *file)
1996 {
1997 struct pid *pid = file->private_data;
1998
1999 file->private_data = NULL;
2000 put_pid(pid);
2001 return 0;
2002 }
2003
2004 #ifdef CONFIG_PROC_FS
2005 /**
2006 * pidfd_show_fdinfo - print information about a pidfd
2007 * @m: proc fdinfo file
2008 * @f: file referencing a pidfd
2009 *
2010 * Pid:
2011 * This function will print the pid that a given pidfd refers to in the
2012 * pid namespace of the procfs instance.
2013 * If the pid namespace of the process is not a descendant of the pid
2014 * namespace of the procfs instance 0 will be shown as its pid. This is
2015 * similar to calling getppid() on a process whose parent is outside of
2016 * its pid namespace.
2017 *
2018 * NSpid:
2019 * If pid namespaces are supported then this function will also print
2020 * the pid of a given pidfd refers to for all descendant pid namespaces
2021 * starting from the current pid namespace of the instance, i.e. the
2022 * Pid field and the first entry in the NSpid field will be identical.
2023 * If the pid namespace of the process is not a descendant of the pid
2024 * namespace of the procfs instance 0 will be shown as its first NSpid
2025 * entry and no others will be shown.
2026 * Note that this differs from the Pid and NSpid fields in
2027 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2028 * the pid namespace of the procfs instance. The difference becomes
2029 * obvious when sending around a pidfd between pid namespaces from a
2030 * different branch of the tree, i.e. where no ancestral relation is
2031 * present between the pid namespaces:
2032 * - create two new pid namespaces ns1 and ns2 in the initial pid
2033 * namespace (also take care to create new mount namespaces in the
2034 * new pid namespace and mount procfs)
2035 * - create a process with a pidfd in ns1
2036 * - send pidfd from ns1 to ns2
2037 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2038 * have exactly one entry, which is 0
2039 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2040 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2041 {
2042 struct pid *pid = f->private_data;
2043 struct pid_namespace *ns;
2044 pid_t nr = -1;
2045
2046 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2047 ns = proc_pid_ns(file_inode(m->file)->i_sb);
2048 nr = pid_nr_ns(pid, ns);
2049 }
2050
2051 seq_put_decimal_ll(m, "Pid:\t", nr);
2052
2053 #ifdef CONFIG_PID_NS
2054 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2055 if (nr > 0) {
2056 int i;
2057
2058 /* If nr is non-zero it means that 'pid' is valid and that
2059 * ns, i.e. the pid namespace associated with the procfs
2060 * instance, is in the pid namespace hierarchy of pid.
2061 * Start at one below the already printed level.
2062 */
2063 for (i = ns->level + 1; i <= pid->level; i++)
2064 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2065 }
2066 #endif
2067 seq_putc(m, '\n');
2068 }
2069 #endif
2070
2071 /*
2072 * Poll support for process exit notification.
2073 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2074 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2075 {
2076 struct pid *pid = file->private_data;
2077 __poll_t poll_flags = 0;
2078
2079 poll_wait(file, &pid->wait_pidfd, pts);
2080
2081 /*
2082 * Inform pollers only when the whole thread group exits.
2083 * If the thread group leader exits before all other threads in the
2084 * group, then poll(2) should block, similar to the wait(2) family.
2085 */
2086 if (thread_group_exited(pid))
2087 poll_flags = EPOLLIN | EPOLLRDNORM;
2088
2089 return poll_flags;
2090 }
2091
2092 const struct file_operations pidfd_fops = {
2093 .release = pidfd_release,
2094 .poll = pidfd_poll,
2095 #ifdef CONFIG_PROC_FS
2096 .show_fdinfo = pidfd_show_fdinfo,
2097 #endif
2098 };
2099
2100 /**
2101 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2102 * @pid: the struct pid for which to create a pidfd
2103 * @flags: flags of the new @pidfd
2104 * @pidfd: the pidfd to return
2105 *
2106 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2107 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2108
2109 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2110 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2111 * pidfd file are prepared.
2112 *
2113 * If this function returns successfully the caller is responsible to either
2114 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2115 * order to install the pidfd into its file descriptor table or they must use
2116 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2117 * respectively.
2118 *
2119 * This function is useful when a pidfd must already be reserved but there
2120 * might still be points of failure afterwards and the caller wants to ensure
2121 * that no pidfd is leaked into its file descriptor table.
2122 *
2123 * Return: On success, a reserved pidfd is returned from the function and a new
2124 * pidfd file is returned in the last argument to the function. On
2125 * error, a negative error code is returned from the function and the
2126 * last argument remains unchanged.
2127 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2128 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2129 {
2130 int pidfd;
2131 struct file *pidfd_file;
2132
2133 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2134 return -EINVAL;
2135
2136 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2137 if (pidfd < 0)
2138 return pidfd;
2139
2140 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2141 flags | O_RDWR | O_CLOEXEC);
2142 if (IS_ERR(pidfd_file)) {
2143 put_unused_fd(pidfd);
2144 return PTR_ERR(pidfd_file);
2145 }
2146 get_pid(pid); /* held by pidfd_file now */
2147 *ret = pidfd_file;
2148 return pidfd;
2149 }
2150
2151 /**
2152 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2153 * @pid: the struct pid for which to create a pidfd
2154 * @flags: flags of the new @pidfd
2155 * @pidfd: the pidfd to return
2156 *
2157 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2158 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2159 *
2160 * The helper verifies that @pid is used as a thread group leader.
2161 *
2162 * If this function returns successfully the caller is responsible to either
2163 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2164 * order to install the pidfd into its file descriptor table or they must use
2165 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2166 * respectively.
2167 *
2168 * This function is useful when a pidfd must already be reserved but there
2169 * might still be points of failure afterwards and the caller wants to ensure
2170 * that no pidfd is leaked into its file descriptor table.
2171 *
2172 * Return: On success, a reserved pidfd is returned from the function and a new
2173 * pidfd file is returned in the last argument to the function. On
2174 * error, a negative error code is returned from the function and the
2175 * last argument remains unchanged.
2176 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2177 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2178 {
2179 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2180 return -EINVAL;
2181
2182 return __pidfd_prepare(pid, flags, ret);
2183 }
2184
__delayed_free_task(struct rcu_head * rhp)2185 static void __delayed_free_task(struct rcu_head *rhp)
2186 {
2187 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2188
2189 free_task(tsk);
2190 }
2191
delayed_free_task(struct task_struct * tsk)2192 static __always_inline void delayed_free_task(struct task_struct *tsk)
2193 {
2194 if (IS_ENABLED(CONFIG_MEMCG))
2195 call_rcu(&tsk->rcu, __delayed_free_task);
2196 else
2197 free_task(tsk);
2198 }
2199
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2200 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2201 {
2202 /* Skip if kernel thread */
2203 if (!tsk->mm)
2204 return;
2205
2206 /* Skip if spawning a thread or using vfork */
2207 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2208 return;
2209
2210 /* We need to synchronize with __set_oom_adj */
2211 mutex_lock(&oom_adj_mutex);
2212 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2213 /* Update the values in case they were changed after copy_signal */
2214 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2215 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2216 mutex_unlock(&oom_adj_mutex);
2217 }
2218
2219 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2220 static void rv_task_fork(struct task_struct *p)
2221 {
2222 int i;
2223
2224 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2225 p->rv[i].da_mon.monitoring = false;
2226 }
2227 #else
2228 #define rv_task_fork(p) do {} while (0)
2229 #endif
2230
2231 /*
2232 * This creates a new process as a copy of the old one,
2233 * but does not actually start it yet.
2234 *
2235 * It copies the registers, and all the appropriate
2236 * parts of the process environment (as per the clone
2237 * flags). The actual kick-off is left to the caller.
2238 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2239 __latent_entropy struct task_struct *copy_process(
2240 struct pid *pid,
2241 int trace,
2242 int node,
2243 struct kernel_clone_args *args)
2244 {
2245 int pidfd = -1, retval;
2246 struct task_struct *p;
2247 struct multiprocess_signals delayed;
2248 struct file *pidfile = NULL;
2249 const u64 clone_flags = args->flags;
2250 struct nsproxy *nsp = current->nsproxy;
2251
2252 /*
2253 * Don't allow sharing the root directory with processes in a different
2254 * namespace
2255 */
2256 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2257 return ERR_PTR(-EINVAL);
2258
2259 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2260 return ERR_PTR(-EINVAL);
2261
2262 /*
2263 * Thread groups must share signals as well, and detached threads
2264 * can only be started up within the thread group.
2265 */
2266 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2267 return ERR_PTR(-EINVAL);
2268
2269 /*
2270 * Shared signal handlers imply shared VM. By way of the above,
2271 * thread groups also imply shared VM. Blocking this case allows
2272 * for various simplifications in other code.
2273 */
2274 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2275 return ERR_PTR(-EINVAL);
2276
2277 /*
2278 * Siblings of global init remain as zombies on exit since they are
2279 * not reaped by their parent (swapper). To solve this and to avoid
2280 * multi-rooted process trees, prevent global and container-inits
2281 * from creating siblings.
2282 */
2283 if ((clone_flags & CLONE_PARENT) &&
2284 current->signal->flags & SIGNAL_UNKILLABLE)
2285 return ERR_PTR(-EINVAL);
2286
2287 /*
2288 * If the new process will be in a different pid or user namespace
2289 * do not allow it to share a thread group with the forking task.
2290 */
2291 if (clone_flags & CLONE_THREAD) {
2292 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2293 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2294 return ERR_PTR(-EINVAL);
2295 }
2296
2297 if (clone_flags & CLONE_PIDFD) {
2298 /*
2299 * - CLONE_DETACHED is blocked so that we can potentially
2300 * reuse it later for CLONE_PIDFD.
2301 * - CLONE_THREAD is blocked until someone really needs it.
2302 */
2303 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2304 return ERR_PTR(-EINVAL);
2305 }
2306
2307 /*
2308 * Force any signals received before this point to be delivered
2309 * before the fork happens. Collect up signals sent to multiple
2310 * processes that happen during the fork and delay them so that
2311 * they appear to happen after the fork.
2312 */
2313 sigemptyset(&delayed.signal);
2314 INIT_HLIST_NODE(&delayed.node);
2315
2316 spin_lock_irq(¤t->sighand->siglock);
2317 if (!(clone_flags & CLONE_THREAD))
2318 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2319 recalc_sigpending();
2320 spin_unlock_irq(¤t->sighand->siglock);
2321 retval = -ERESTARTNOINTR;
2322 if (task_sigpending(current))
2323 goto fork_out;
2324
2325 retval = -ENOMEM;
2326 p = dup_task_struct(current, node);
2327 if (!p)
2328 goto fork_out;
2329 p->flags &= ~PF_KTHREAD;
2330 if (args->kthread)
2331 p->flags |= PF_KTHREAD;
2332 if (args->user_worker) {
2333 /*
2334 * Mark us a user worker, and block any signal that isn't
2335 * fatal or STOP
2336 */
2337 p->flags |= PF_USER_WORKER;
2338 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2339 }
2340 if (args->io_thread)
2341 p->flags |= PF_IO_WORKER;
2342
2343 if (args->name)
2344 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2345
2346 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2347 /*
2348 * Clear TID on mm_release()?
2349 */
2350 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2351
2352 ftrace_graph_init_task(p);
2353
2354 rt_mutex_init_task(p);
2355
2356 lockdep_assert_irqs_enabled();
2357 #ifdef CONFIG_PROVE_LOCKING
2358 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2359 #endif
2360 retval = copy_creds(p, clone_flags);
2361 if (retval < 0)
2362 goto bad_fork_free;
2363
2364 retval = -EAGAIN;
2365 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2366 if (p->real_cred->user != INIT_USER &&
2367 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2368 goto bad_fork_cleanup_count;
2369 }
2370 current->flags &= ~PF_NPROC_EXCEEDED;
2371
2372 /*
2373 * If multiple threads are within copy_process(), then this check
2374 * triggers too late. This doesn't hurt, the check is only there
2375 * to stop root fork bombs.
2376 */
2377 retval = -EAGAIN;
2378 if (data_race(nr_threads >= max_threads))
2379 goto bad_fork_cleanup_count;
2380
2381 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2382 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2383 p->flags |= PF_FORKNOEXEC;
2384 INIT_LIST_HEAD(&p->children);
2385 INIT_LIST_HEAD(&p->sibling);
2386 rcu_copy_process(p);
2387 p->vfork_done = NULL;
2388 spin_lock_init(&p->alloc_lock);
2389
2390 init_sigpending(&p->pending);
2391
2392 p->utime = p->stime = p->gtime = 0;
2393 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2394 p->utimescaled = p->stimescaled = 0;
2395 #endif
2396 prev_cputime_init(&p->prev_cputime);
2397
2398 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2399 seqcount_init(&p->vtime.seqcount);
2400 p->vtime.starttime = 0;
2401 p->vtime.state = VTIME_INACTIVE;
2402 #endif
2403
2404 #ifdef CONFIG_IO_URING
2405 p->io_uring = NULL;
2406 #endif
2407
2408 #if defined(SPLIT_RSS_COUNTING)
2409 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2410 #endif
2411
2412 p->default_timer_slack_ns = current->timer_slack_ns;
2413
2414 #ifdef CONFIG_PSI
2415 p->psi_flags = 0;
2416 #endif
2417
2418 task_io_accounting_init(&p->ioac);
2419 acct_clear_integrals(p);
2420
2421 posix_cputimers_init(&p->posix_cputimers);
2422 tick_dep_init_task(p);
2423
2424 p->io_context = NULL;
2425 audit_set_context(p, NULL);
2426 cgroup_fork(p);
2427 if (args->kthread) {
2428 if (!set_kthread_struct(p))
2429 goto bad_fork_cleanup_delayacct;
2430 }
2431 #ifdef CONFIG_NUMA
2432 p->mempolicy = mpol_dup(p->mempolicy);
2433 if (IS_ERR(p->mempolicy)) {
2434 retval = PTR_ERR(p->mempolicy);
2435 p->mempolicy = NULL;
2436 goto bad_fork_cleanup_delayacct;
2437 }
2438 #endif
2439 #ifdef CONFIG_CPUSETS
2440 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2441 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2442 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2443 #endif
2444 #ifdef CONFIG_TRACE_IRQFLAGS
2445 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2446 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2447 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2448 p->softirqs_enabled = 1;
2449 p->softirq_context = 0;
2450 #endif
2451
2452 p->pagefault_disabled = 0;
2453
2454 #ifdef CONFIG_LOCKDEP
2455 lockdep_init_task(p);
2456 #endif
2457
2458 #ifdef CONFIG_DEBUG_MUTEXES
2459 p->blocked_on = NULL; /* not blocked yet */
2460 #endif
2461 #ifdef CONFIG_BCACHE
2462 p->sequential_io = 0;
2463 p->sequential_io_avg = 0;
2464 #endif
2465 #ifdef CONFIG_BPF_SYSCALL
2466 RCU_INIT_POINTER(p->bpf_storage, NULL);
2467 p->bpf_ctx = NULL;
2468 #endif
2469
2470 /* Perform scheduler related setup. Assign this task to a CPU. */
2471 retval = sched_fork(clone_flags, p);
2472 if (retval)
2473 goto bad_fork_cleanup_policy;
2474
2475 retval = perf_event_init_task(p, clone_flags);
2476 if (retval)
2477 goto bad_fork_cleanup_policy;
2478 retval = audit_alloc(p);
2479 if (retval)
2480 goto bad_fork_cleanup_perf;
2481 /* copy all the process information */
2482 shm_init_task(p);
2483 retval = security_task_alloc(p, clone_flags);
2484 if (retval)
2485 goto bad_fork_cleanup_audit;
2486 retval = copy_semundo(clone_flags, p);
2487 if (retval)
2488 goto bad_fork_cleanup_security;
2489 retval = copy_files(clone_flags, p, args->no_files);
2490 if (retval)
2491 goto bad_fork_cleanup_semundo;
2492 retval = copy_fs(clone_flags, p);
2493 if (retval)
2494 goto bad_fork_cleanup_files;
2495 retval = copy_sighand(clone_flags, p);
2496 if (retval)
2497 goto bad_fork_cleanup_fs;
2498 retval = copy_signal(clone_flags, p);
2499 if (retval)
2500 goto bad_fork_cleanup_sighand;
2501 retval = copy_mm(clone_flags, p);
2502 if (retval)
2503 goto bad_fork_cleanup_signal;
2504 retval = copy_namespaces(clone_flags, p);
2505 if (retval)
2506 goto bad_fork_cleanup_mm;
2507 retval = copy_io(clone_flags, p);
2508 if (retval)
2509 goto bad_fork_cleanup_namespaces;
2510 retval = copy_thread(p, args);
2511 if (retval)
2512 goto bad_fork_cleanup_io;
2513
2514 stackleak_task_init(p);
2515
2516 if (pid != &init_struct_pid) {
2517 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2518 args->set_tid_size);
2519 if (IS_ERR(pid)) {
2520 retval = PTR_ERR(pid);
2521 goto bad_fork_cleanup_thread;
2522 }
2523 }
2524
2525 /*
2526 * This has to happen after we've potentially unshared the file
2527 * descriptor table (so that the pidfd doesn't leak into the child
2528 * if the fd table isn't shared).
2529 */
2530 if (clone_flags & CLONE_PIDFD) {
2531 /* Note that no task has been attached to @pid yet. */
2532 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2533 if (retval < 0)
2534 goto bad_fork_free_pid;
2535 pidfd = retval;
2536
2537 retval = put_user(pidfd, args->pidfd);
2538 if (retval)
2539 goto bad_fork_put_pidfd;
2540 }
2541
2542 #ifdef CONFIG_BLOCK
2543 p->plug = NULL;
2544 #endif
2545 futex_init_task(p);
2546
2547 /*
2548 * sigaltstack should be cleared when sharing the same VM
2549 */
2550 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2551 sas_ss_reset(p);
2552
2553 /*
2554 * Syscall tracing and stepping should be turned off in the
2555 * child regardless of CLONE_PTRACE.
2556 */
2557 user_disable_single_step(p);
2558 clear_task_syscall_work(p, SYSCALL_TRACE);
2559 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2560 clear_task_syscall_work(p, SYSCALL_EMU);
2561 #endif
2562 clear_tsk_latency_tracing(p);
2563
2564 /* ok, now we should be set up.. */
2565 p->pid = pid_nr(pid);
2566 if (clone_flags & CLONE_THREAD) {
2567 p->group_leader = current->group_leader;
2568 p->tgid = current->tgid;
2569 } else {
2570 p->group_leader = p;
2571 p->tgid = p->pid;
2572 }
2573
2574 p->nr_dirtied = 0;
2575 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2576 p->dirty_paused_when = 0;
2577
2578 p->pdeath_signal = 0;
2579 INIT_LIST_HEAD(&p->thread_group);
2580 p->task_works = NULL;
2581 clear_posix_cputimers_work(p);
2582
2583 #ifdef CONFIG_KRETPROBES
2584 p->kretprobe_instances.first = NULL;
2585 #endif
2586 #ifdef CONFIG_RETHOOK
2587 p->rethooks.first = NULL;
2588 #endif
2589
2590 /*
2591 * Ensure that the cgroup subsystem policies allow the new process to be
2592 * forked. It should be noted that the new process's css_set can be changed
2593 * between here and cgroup_post_fork() if an organisation operation is in
2594 * progress.
2595 */
2596 retval = cgroup_can_fork(p, args);
2597 if (retval)
2598 goto bad_fork_put_pidfd;
2599
2600 /*
2601 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2602 * the new task on the correct runqueue. All this *before* the task
2603 * becomes visible.
2604 *
2605 * This isn't part of ->can_fork() because while the re-cloning is
2606 * cgroup specific, it unconditionally needs to place the task on a
2607 * runqueue.
2608 */
2609 sched_cgroup_fork(p, args);
2610
2611 /*
2612 * From this point on we must avoid any synchronous user-space
2613 * communication until we take the tasklist-lock. In particular, we do
2614 * not want user-space to be able to predict the process start-time by
2615 * stalling fork(2) after we recorded the start_time but before it is
2616 * visible to the system.
2617 */
2618
2619 p->start_time = ktime_get_ns();
2620 p->start_boottime = ktime_get_boottime_ns();
2621
2622 /*
2623 * Make it visible to the rest of the system, but dont wake it up yet.
2624 * Need tasklist lock for parent etc handling!
2625 */
2626 write_lock_irq(&tasklist_lock);
2627
2628 /* CLONE_PARENT re-uses the old parent */
2629 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2630 p->real_parent = current->real_parent;
2631 p->parent_exec_id = current->parent_exec_id;
2632 if (clone_flags & CLONE_THREAD)
2633 p->exit_signal = -1;
2634 else
2635 p->exit_signal = current->group_leader->exit_signal;
2636 } else {
2637 p->real_parent = current;
2638 p->parent_exec_id = current->self_exec_id;
2639 p->exit_signal = args->exit_signal;
2640 }
2641
2642 klp_copy_process(p);
2643
2644 sched_core_fork(p);
2645
2646 spin_lock(¤t->sighand->siglock);
2647
2648 rv_task_fork(p);
2649
2650 rseq_fork(p, clone_flags);
2651
2652 /* Don't start children in a dying pid namespace */
2653 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2654 retval = -ENOMEM;
2655 goto bad_fork_cancel_cgroup;
2656 }
2657
2658 /* Let kill terminate clone/fork in the middle */
2659 if (fatal_signal_pending(current)) {
2660 retval = -EINTR;
2661 goto bad_fork_cancel_cgroup;
2662 }
2663
2664 /* No more failure paths after this point. */
2665
2666 /*
2667 * Copy seccomp details explicitly here, in case they were changed
2668 * before holding sighand lock.
2669 */
2670 copy_seccomp(p);
2671
2672 init_task_pid_links(p);
2673 if (likely(p->pid)) {
2674 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2675
2676 init_task_pid(p, PIDTYPE_PID, pid);
2677 if (thread_group_leader(p)) {
2678 init_task_pid(p, PIDTYPE_TGID, pid);
2679 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2680 init_task_pid(p, PIDTYPE_SID, task_session(current));
2681
2682 if (is_child_reaper(pid)) {
2683 ns_of_pid(pid)->child_reaper = p;
2684 p->signal->flags |= SIGNAL_UNKILLABLE;
2685 }
2686 p->signal->shared_pending.signal = delayed.signal;
2687 p->signal->tty = tty_kref_get(current->signal->tty);
2688 /*
2689 * Inherit has_child_subreaper flag under the same
2690 * tasklist_lock with adding child to the process tree
2691 * for propagate_has_child_subreaper optimization.
2692 */
2693 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2694 p->real_parent->signal->is_child_subreaper;
2695 list_add_tail(&p->sibling, &p->real_parent->children);
2696 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2697 attach_pid(p, PIDTYPE_TGID);
2698 attach_pid(p, PIDTYPE_PGID);
2699 attach_pid(p, PIDTYPE_SID);
2700 __this_cpu_inc(process_counts);
2701 } else {
2702 current->signal->nr_threads++;
2703 current->signal->quick_threads++;
2704 atomic_inc(¤t->signal->live);
2705 refcount_inc(¤t->signal->sigcnt);
2706 task_join_group_stop(p);
2707 list_add_tail_rcu(&p->thread_group,
2708 &p->group_leader->thread_group);
2709 list_add_tail_rcu(&p->thread_node,
2710 &p->signal->thread_head);
2711 }
2712 attach_pid(p, PIDTYPE_PID);
2713 nr_threads++;
2714 }
2715 total_forks++;
2716 hlist_del_init(&delayed.node);
2717 spin_unlock(¤t->sighand->siglock);
2718 syscall_tracepoint_update(p);
2719 write_unlock_irq(&tasklist_lock);
2720
2721 if (pidfile)
2722 fd_install(pidfd, pidfile);
2723
2724 proc_fork_connector(p);
2725 sched_post_fork(p);
2726 cgroup_post_fork(p, args);
2727 perf_event_fork(p);
2728
2729 trace_task_newtask(p, clone_flags);
2730 uprobe_copy_process(p, clone_flags);
2731 user_events_fork(p, clone_flags);
2732
2733 copy_oom_score_adj(clone_flags, p);
2734
2735 return p;
2736
2737 bad_fork_cancel_cgroup:
2738 sched_core_free(p);
2739 spin_unlock(¤t->sighand->siglock);
2740 write_unlock_irq(&tasklist_lock);
2741 cgroup_cancel_fork(p, args);
2742 bad_fork_put_pidfd:
2743 if (clone_flags & CLONE_PIDFD) {
2744 fput(pidfile);
2745 put_unused_fd(pidfd);
2746 }
2747 bad_fork_free_pid:
2748 if (pid != &init_struct_pid)
2749 free_pid(pid);
2750 bad_fork_cleanup_thread:
2751 exit_thread(p);
2752 bad_fork_cleanup_io:
2753 if (p->io_context)
2754 exit_io_context(p);
2755 bad_fork_cleanup_namespaces:
2756 exit_task_namespaces(p);
2757 bad_fork_cleanup_mm:
2758 if (p->mm) {
2759 mm_clear_owner(p->mm, p);
2760 mmput(p->mm);
2761 }
2762 bad_fork_cleanup_signal:
2763 if (!(clone_flags & CLONE_THREAD))
2764 free_signal_struct(p->signal);
2765 bad_fork_cleanup_sighand:
2766 __cleanup_sighand(p->sighand);
2767 bad_fork_cleanup_fs:
2768 exit_fs(p); /* blocking */
2769 bad_fork_cleanup_files:
2770 exit_files(p); /* blocking */
2771 bad_fork_cleanup_semundo:
2772 exit_sem(p);
2773 bad_fork_cleanup_security:
2774 security_task_free(p);
2775 bad_fork_cleanup_audit:
2776 audit_free(p);
2777 bad_fork_cleanup_perf:
2778 perf_event_free_task(p);
2779 bad_fork_cleanup_policy:
2780 lockdep_free_task(p);
2781 #ifdef CONFIG_NUMA
2782 mpol_put(p->mempolicy);
2783 #endif
2784 bad_fork_cleanup_delayacct:
2785 delayacct_tsk_free(p);
2786 bad_fork_cleanup_count:
2787 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2788 exit_creds(p);
2789 bad_fork_free:
2790 WRITE_ONCE(p->__state, TASK_DEAD);
2791 exit_task_stack_account(p);
2792 put_task_stack(p);
2793 delayed_free_task(p);
2794 fork_out:
2795 spin_lock_irq(¤t->sighand->siglock);
2796 hlist_del_init(&delayed.node);
2797 spin_unlock_irq(¤t->sighand->siglock);
2798 return ERR_PTR(retval);
2799 }
2800
init_idle_pids(struct task_struct * idle)2801 static inline void init_idle_pids(struct task_struct *idle)
2802 {
2803 enum pid_type type;
2804
2805 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2806 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2807 init_task_pid(idle, type, &init_struct_pid);
2808 }
2809 }
2810
idle_dummy(void * dummy)2811 static int idle_dummy(void *dummy)
2812 {
2813 /* This function is never called */
2814 return 0;
2815 }
2816
fork_idle(int cpu)2817 struct task_struct * __init fork_idle(int cpu)
2818 {
2819 struct task_struct *task;
2820 struct kernel_clone_args args = {
2821 .flags = CLONE_VM,
2822 .fn = &idle_dummy,
2823 .fn_arg = NULL,
2824 .kthread = 1,
2825 .idle = 1,
2826 };
2827
2828 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2829 if (!IS_ERR(task)) {
2830 init_idle_pids(task);
2831 init_idle(task, cpu);
2832 }
2833
2834 return task;
2835 }
2836
2837 /*
2838 * This is like kernel_clone(), but shaved down and tailored to just
2839 * creating io_uring workers. It returns a created task, or an error pointer.
2840 * The returned task is inactive, and the caller must fire it up through
2841 * wake_up_new_task(p). All signals are blocked in the created task.
2842 */
create_io_thread(int (* fn)(void *),void * arg,int node)2843 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2844 {
2845 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2846 CLONE_IO;
2847 struct kernel_clone_args args = {
2848 .flags = ((lower_32_bits(flags) | CLONE_VM |
2849 CLONE_UNTRACED) & ~CSIGNAL),
2850 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2851 .fn = fn,
2852 .fn_arg = arg,
2853 .io_thread = 1,
2854 .user_worker = 1,
2855 };
2856
2857 return copy_process(NULL, 0, node, &args);
2858 }
2859
2860 /*
2861 * Ok, this is the main fork-routine.
2862 *
2863 * It copies the process, and if successful kick-starts
2864 * it and waits for it to finish using the VM if required.
2865 *
2866 * args->exit_signal is expected to be checked for sanity by the caller.
2867 */
kernel_clone(struct kernel_clone_args * args)2868 pid_t kernel_clone(struct kernel_clone_args *args)
2869 {
2870 u64 clone_flags = args->flags;
2871 struct completion vfork;
2872 struct pid *pid;
2873 struct task_struct *p;
2874 int trace = 0;
2875 pid_t nr;
2876
2877 /*
2878 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2879 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2880 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2881 * field in struct clone_args and it still doesn't make sense to have
2882 * them both point at the same memory location. Performing this check
2883 * here has the advantage that we don't need to have a separate helper
2884 * to check for legacy clone().
2885 */
2886 if ((args->flags & CLONE_PIDFD) &&
2887 (args->flags & CLONE_PARENT_SETTID) &&
2888 (args->pidfd == args->parent_tid))
2889 return -EINVAL;
2890
2891 /*
2892 * Determine whether and which event to report to ptracer. When
2893 * called from kernel_thread or CLONE_UNTRACED is explicitly
2894 * requested, no event is reported; otherwise, report if the event
2895 * for the type of forking is enabled.
2896 */
2897 if (!(clone_flags & CLONE_UNTRACED)) {
2898 if (clone_flags & CLONE_VFORK)
2899 trace = PTRACE_EVENT_VFORK;
2900 else if (args->exit_signal != SIGCHLD)
2901 trace = PTRACE_EVENT_CLONE;
2902 else
2903 trace = PTRACE_EVENT_FORK;
2904
2905 if (likely(!ptrace_event_enabled(current, trace)))
2906 trace = 0;
2907 }
2908
2909 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2910 add_latent_entropy();
2911
2912 if (IS_ERR(p))
2913 return PTR_ERR(p);
2914
2915 /*
2916 * Do this prior waking up the new thread - the thread pointer
2917 * might get invalid after that point, if the thread exits quickly.
2918 */
2919 trace_sched_process_fork(current, p);
2920
2921 pid = get_task_pid(p, PIDTYPE_PID);
2922 nr = pid_vnr(pid);
2923
2924 if (clone_flags & CLONE_PARENT_SETTID)
2925 put_user(nr, args->parent_tid);
2926
2927 if (clone_flags & CLONE_VFORK) {
2928 p->vfork_done = &vfork;
2929 init_completion(&vfork);
2930 get_task_struct(p);
2931 }
2932
2933 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2934 /* lock the task to synchronize with memcg migration */
2935 task_lock(p);
2936 lru_gen_add_mm(p->mm);
2937 task_unlock(p);
2938 }
2939
2940 wake_up_new_task(p);
2941
2942 /* forking complete and child started to run, tell ptracer */
2943 if (unlikely(trace))
2944 ptrace_event_pid(trace, pid);
2945
2946 if (clone_flags & CLONE_VFORK) {
2947 if (!wait_for_vfork_done(p, &vfork))
2948 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2949 }
2950
2951 put_pid(pid);
2952 return nr;
2953 }
2954
2955 /*
2956 * Create a kernel thread.
2957 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2958 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2959 unsigned long flags)
2960 {
2961 struct kernel_clone_args args = {
2962 .flags = ((lower_32_bits(flags) | CLONE_VM |
2963 CLONE_UNTRACED) & ~CSIGNAL),
2964 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2965 .fn = fn,
2966 .fn_arg = arg,
2967 .name = name,
2968 .kthread = 1,
2969 };
2970
2971 return kernel_clone(&args);
2972 }
2973
2974 /*
2975 * Create a user mode thread.
2976 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2977 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2978 {
2979 struct kernel_clone_args args = {
2980 .flags = ((lower_32_bits(flags) | CLONE_VM |
2981 CLONE_UNTRACED) & ~CSIGNAL),
2982 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2983 .fn = fn,
2984 .fn_arg = arg,
2985 };
2986
2987 return kernel_clone(&args);
2988 }
2989
2990 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2991 SYSCALL_DEFINE0(fork)
2992 {
2993 #ifdef CONFIG_MMU
2994 struct kernel_clone_args args = {
2995 .exit_signal = SIGCHLD,
2996 };
2997
2998 return kernel_clone(&args);
2999 #else
3000 /* can not support in nommu mode */
3001 return -EINVAL;
3002 #endif
3003 }
3004 #endif
3005
3006 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3007 SYSCALL_DEFINE0(vfork)
3008 {
3009 struct kernel_clone_args args = {
3010 .flags = CLONE_VFORK | CLONE_VM,
3011 .exit_signal = SIGCHLD,
3012 };
3013
3014 return kernel_clone(&args);
3015 }
3016 #endif
3017
3018 #ifdef __ARCH_WANT_SYS_CLONE
3019 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3020 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3021 int __user *, parent_tidptr,
3022 unsigned long, tls,
3023 int __user *, child_tidptr)
3024 #elif defined(CONFIG_CLONE_BACKWARDS2)
3025 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3026 int __user *, parent_tidptr,
3027 int __user *, child_tidptr,
3028 unsigned long, tls)
3029 #elif defined(CONFIG_CLONE_BACKWARDS3)
3030 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3031 int, stack_size,
3032 int __user *, parent_tidptr,
3033 int __user *, child_tidptr,
3034 unsigned long, tls)
3035 #else
3036 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3037 int __user *, parent_tidptr,
3038 int __user *, child_tidptr,
3039 unsigned long, tls)
3040 #endif
3041 {
3042 struct kernel_clone_args args = {
3043 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
3044 .pidfd = parent_tidptr,
3045 .child_tid = child_tidptr,
3046 .parent_tid = parent_tidptr,
3047 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
3048 .stack = newsp,
3049 .tls = tls,
3050 };
3051
3052 return kernel_clone(&args);
3053 }
3054 #endif
3055
3056 #ifdef __ARCH_WANT_SYS_CLONE3
3057
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3058 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3059 struct clone_args __user *uargs,
3060 size_t usize)
3061 {
3062 int err;
3063 struct clone_args args;
3064 pid_t *kset_tid = kargs->set_tid;
3065
3066 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3067 CLONE_ARGS_SIZE_VER0);
3068 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3069 CLONE_ARGS_SIZE_VER1);
3070 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3071 CLONE_ARGS_SIZE_VER2);
3072 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3073
3074 if (unlikely(usize > PAGE_SIZE))
3075 return -E2BIG;
3076 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3077 return -EINVAL;
3078
3079 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3080 if (err)
3081 return err;
3082
3083 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3084 return -EINVAL;
3085
3086 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3087 return -EINVAL;
3088
3089 if (unlikely(args.set_tid && args.set_tid_size == 0))
3090 return -EINVAL;
3091
3092 /*
3093 * Verify that higher 32bits of exit_signal are unset and that
3094 * it is a valid signal
3095 */
3096 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3097 !valid_signal(args.exit_signal)))
3098 return -EINVAL;
3099
3100 if ((args.flags & CLONE_INTO_CGROUP) &&
3101 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3102 return -EINVAL;
3103
3104 *kargs = (struct kernel_clone_args){
3105 .flags = args.flags,
3106 .pidfd = u64_to_user_ptr(args.pidfd),
3107 .child_tid = u64_to_user_ptr(args.child_tid),
3108 .parent_tid = u64_to_user_ptr(args.parent_tid),
3109 .exit_signal = args.exit_signal,
3110 .stack = args.stack,
3111 .stack_size = args.stack_size,
3112 .tls = args.tls,
3113 .set_tid_size = args.set_tid_size,
3114 .cgroup = args.cgroup,
3115 };
3116
3117 if (args.set_tid &&
3118 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3119 (kargs->set_tid_size * sizeof(pid_t))))
3120 return -EFAULT;
3121
3122 kargs->set_tid = kset_tid;
3123
3124 return 0;
3125 }
3126
3127 /**
3128 * clone3_stack_valid - check and prepare stack
3129 * @kargs: kernel clone args
3130 *
3131 * Verify that the stack arguments userspace gave us are sane.
3132 * In addition, set the stack direction for userspace since it's easy for us to
3133 * determine.
3134 */
clone3_stack_valid(struct kernel_clone_args * kargs)3135 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3136 {
3137 if (kargs->stack == 0) {
3138 if (kargs->stack_size > 0)
3139 return false;
3140 } else {
3141 if (kargs->stack_size == 0)
3142 return false;
3143
3144 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3145 return false;
3146
3147 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3148 kargs->stack += kargs->stack_size;
3149 #endif
3150 }
3151
3152 return true;
3153 }
3154
clone3_args_valid(struct kernel_clone_args * kargs)3155 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3156 {
3157 /* Verify that no unknown flags are passed along. */
3158 if (kargs->flags &
3159 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3160 return false;
3161
3162 /*
3163 * - make the CLONE_DETACHED bit reusable for clone3
3164 * - make the CSIGNAL bits reusable for clone3
3165 */
3166 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3167 return false;
3168
3169 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3170 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3171 return false;
3172
3173 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3174 kargs->exit_signal)
3175 return false;
3176
3177 if (!clone3_stack_valid(kargs))
3178 return false;
3179
3180 return true;
3181 }
3182
3183 /**
3184 * clone3 - create a new process with specific properties
3185 * @uargs: argument structure
3186 * @size: size of @uargs
3187 *
3188 * clone3() is the extensible successor to clone()/clone2().
3189 * It takes a struct as argument that is versioned by its size.
3190 *
3191 * Return: On success, a positive PID for the child process.
3192 * On error, a negative errno number.
3193 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3194 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3195 {
3196 int err;
3197
3198 struct kernel_clone_args kargs;
3199 pid_t set_tid[MAX_PID_NS_LEVEL];
3200
3201 kargs.set_tid = set_tid;
3202
3203 err = copy_clone_args_from_user(&kargs, uargs, size);
3204 if (err)
3205 return err;
3206
3207 if (!clone3_args_valid(&kargs))
3208 return -EINVAL;
3209
3210 return kernel_clone(&kargs);
3211 }
3212 #endif
3213
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3214 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3215 {
3216 struct task_struct *leader, *parent, *child;
3217 int res;
3218
3219 read_lock(&tasklist_lock);
3220 leader = top = top->group_leader;
3221 down:
3222 for_each_thread(leader, parent) {
3223 list_for_each_entry(child, &parent->children, sibling) {
3224 res = visitor(child, data);
3225 if (res) {
3226 if (res < 0)
3227 goto out;
3228 leader = child;
3229 goto down;
3230 }
3231 up:
3232 ;
3233 }
3234 }
3235
3236 if (leader != top) {
3237 child = leader;
3238 parent = child->real_parent;
3239 leader = parent->group_leader;
3240 goto up;
3241 }
3242 out:
3243 read_unlock(&tasklist_lock);
3244 }
3245
3246 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3247 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3248 #endif
3249
sighand_ctor(void * data)3250 static void sighand_ctor(void *data)
3251 {
3252 struct sighand_struct *sighand = data;
3253
3254 spin_lock_init(&sighand->siglock);
3255 init_waitqueue_head(&sighand->signalfd_wqh);
3256 }
3257
mm_cache_init(void)3258 void __init mm_cache_init(void)
3259 {
3260 unsigned int mm_size;
3261
3262 /*
3263 * The mm_cpumask is located at the end of mm_struct, and is
3264 * dynamically sized based on the maximum CPU number this system
3265 * can have, taking hotplug into account (nr_cpu_ids).
3266 */
3267 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3268
3269 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3270 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3271 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3272 offsetof(struct mm_struct, saved_auxv),
3273 sizeof_field(struct mm_struct, saved_auxv),
3274 NULL);
3275 }
3276
proc_caches_init(void)3277 void __init proc_caches_init(void)
3278 {
3279 sighand_cachep = kmem_cache_create("sighand_cache",
3280 sizeof(struct sighand_struct), 0,
3281 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3282 SLAB_ACCOUNT, sighand_ctor);
3283 signal_cachep = kmem_cache_create("signal_cache",
3284 sizeof(struct signal_struct), 0,
3285 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3286 NULL);
3287 files_cachep = kmem_cache_create("files_cache",
3288 sizeof(struct files_struct), 0,
3289 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3290 NULL);
3291 fs_cachep = kmem_cache_create("fs_cache",
3292 sizeof(struct fs_struct), 0,
3293 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3294 NULL);
3295
3296 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3297 #ifdef CONFIG_PER_VMA_LOCK
3298 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3299 #endif
3300 mmap_init();
3301 nsproxy_cache_init();
3302 }
3303
3304 /*
3305 * Check constraints on flags passed to the unshare system call.
3306 */
check_unshare_flags(unsigned long unshare_flags)3307 static int check_unshare_flags(unsigned long unshare_flags)
3308 {
3309 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3310 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3311 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3312 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3313 CLONE_NEWTIME))
3314 return -EINVAL;
3315 /*
3316 * Not implemented, but pretend it works if there is nothing
3317 * to unshare. Note that unsharing the address space or the
3318 * signal handlers also need to unshare the signal queues (aka
3319 * CLONE_THREAD).
3320 */
3321 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3322 if (!thread_group_empty(current))
3323 return -EINVAL;
3324 }
3325 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3326 if (refcount_read(¤t->sighand->count) > 1)
3327 return -EINVAL;
3328 }
3329 if (unshare_flags & CLONE_VM) {
3330 if (!current_is_single_threaded())
3331 return -EINVAL;
3332 }
3333
3334 return 0;
3335 }
3336
3337 /*
3338 * Unshare the filesystem structure if it is being shared
3339 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3340 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3341 {
3342 struct fs_struct *fs = current->fs;
3343
3344 if (!(unshare_flags & CLONE_FS) || !fs)
3345 return 0;
3346
3347 /* don't need lock here; in the worst case we'll do useless copy */
3348 if (fs->users == 1)
3349 return 0;
3350
3351 *new_fsp = copy_fs_struct(fs);
3352 if (!*new_fsp)
3353 return -ENOMEM;
3354
3355 return 0;
3356 }
3357
3358 /*
3359 * Unshare file descriptor table if it is being shared
3360 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3361 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3362 {
3363 struct files_struct *fd = current->files;
3364
3365 if ((unshare_flags & CLONE_FILES) &&
3366 (fd && atomic_read(&fd->count) > 1)) {
3367 fd = dup_fd(fd, NULL);
3368 if (IS_ERR(fd))
3369 return PTR_ERR(fd);
3370 *new_fdp = fd;
3371 }
3372
3373 return 0;
3374 }
3375
3376 /*
3377 * unshare allows a process to 'unshare' part of the process
3378 * context which was originally shared using clone. copy_*
3379 * functions used by kernel_clone() cannot be used here directly
3380 * because they modify an inactive task_struct that is being
3381 * constructed. Here we are modifying the current, active,
3382 * task_struct.
3383 */
ksys_unshare(unsigned long unshare_flags)3384 int ksys_unshare(unsigned long unshare_flags)
3385 {
3386 struct fs_struct *fs, *new_fs = NULL;
3387 struct files_struct *new_fd = NULL;
3388 struct cred *new_cred = NULL;
3389 struct nsproxy *new_nsproxy = NULL;
3390 int do_sysvsem = 0;
3391 int err;
3392
3393 /*
3394 * If unsharing a user namespace must also unshare the thread group
3395 * and unshare the filesystem root and working directories.
3396 */
3397 if (unshare_flags & CLONE_NEWUSER)
3398 unshare_flags |= CLONE_THREAD | CLONE_FS;
3399 /*
3400 * If unsharing vm, must also unshare signal handlers.
3401 */
3402 if (unshare_flags & CLONE_VM)
3403 unshare_flags |= CLONE_SIGHAND;
3404 /*
3405 * If unsharing a signal handlers, must also unshare the signal queues.
3406 */
3407 if (unshare_flags & CLONE_SIGHAND)
3408 unshare_flags |= CLONE_THREAD;
3409 /*
3410 * If unsharing namespace, must also unshare filesystem information.
3411 */
3412 if (unshare_flags & CLONE_NEWNS)
3413 unshare_flags |= CLONE_FS;
3414
3415 err = check_unshare_flags(unshare_flags);
3416 if (err)
3417 goto bad_unshare_out;
3418 /*
3419 * CLONE_NEWIPC must also detach from the undolist: after switching
3420 * to a new ipc namespace, the semaphore arrays from the old
3421 * namespace are unreachable.
3422 */
3423 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3424 do_sysvsem = 1;
3425 err = unshare_fs(unshare_flags, &new_fs);
3426 if (err)
3427 goto bad_unshare_out;
3428 err = unshare_fd(unshare_flags, &new_fd);
3429 if (err)
3430 goto bad_unshare_cleanup_fs;
3431 err = unshare_userns(unshare_flags, &new_cred);
3432 if (err)
3433 goto bad_unshare_cleanup_fd;
3434 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3435 new_cred, new_fs);
3436 if (err)
3437 goto bad_unshare_cleanup_cred;
3438
3439 if (new_cred) {
3440 err = set_cred_ucounts(new_cred);
3441 if (err)
3442 goto bad_unshare_cleanup_cred;
3443 }
3444
3445 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3446 if (do_sysvsem) {
3447 /*
3448 * CLONE_SYSVSEM is equivalent to sys_exit().
3449 */
3450 exit_sem(current);
3451 }
3452 if (unshare_flags & CLONE_NEWIPC) {
3453 /* Orphan segments in old ns (see sem above). */
3454 exit_shm(current);
3455 shm_init_task(current);
3456 }
3457
3458 if (new_nsproxy)
3459 switch_task_namespaces(current, new_nsproxy);
3460
3461 task_lock(current);
3462
3463 if (new_fs) {
3464 fs = current->fs;
3465 spin_lock(&fs->lock);
3466 current->fs = new_fs;
3467 if (--fs->users)
3468 new_fs = NULL;
3469 else
3470 new_fs = fs;
3471 spin_unlock(&fs->lock);
3472 }
3473
3474 if (new_fd)
3475 swap(current->files, new_fd);
3476
3477 task_unlock(current);
3478
3479 if (new_cred) {
3480 /* Install the new user namespace */
3481 commit_creds(new_cred);
3482 new_cred = NULL;
3483 }
3484 }
3485
3486 perf_event_namespaces(current);
3487
3488 bad_unshare_cleanup_cred:
3489 if (new_cred)
3490 put_cred(new_cred);
3491 bad_unshare_cleanup_fd:
3492 if (new_fd)
3493 put_files_struct(new_fd);
3494
3495 bad_unshare_cleanup_fs:
3496 if (new_fs)
3497 free_fs_struct(new_fs);
3498
3499 bad_unshare_out:
3500 return err;
3501 }
3502
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3503 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3504 {
3505 return ksys_unshare(unshare_flags);
3506 }
3507
3508 /*
3509 * Helper to unshare the files of the current task.
3510 * We don't want to expose copy_files internals to
3511 * the exec layer of the kernel.
3512 */
3513
unshare_files(void)3514 int unshare_files(void)
3515 {
3516 struct task_struct *task = current;
3517 struct files_struct *old, *copy = NULL;
3518 int error;
3519
3520 error = unshare_fd(CLONE_FILES, ©);
3521 if (error || !copy)
3522 return error;
3523
3524 old = task->files;
3525 task_lock(task);
3526 task->files = copy;
3527 task_unlock(task);
3528 put_files_struct(old);
3529 return 0;
3530 }
3531
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3532 int sysctl_max_threads(struct ctl_table *table, int write,
3533 void *buffer, size_t *lenp, loff_t *ppos)
3534 {
3535 struct ctl_table t;
3536 int ret;
3537 int threads = max_threads;
3538 int min = 1;
3539 int max = MAX_THREADS;
3540
3541 t = *table;
3542 t.data = &threads;
3543 t.extra1 = &min;
3544 t.extra2 = &max;
3545
3546 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3547 if (ret || !write)
3548 return ret;
3549
3550 max_threads = threads;
3551
3552 return 0;
3553 }
3554