1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "system/physmem.h" 36 #include "system/ramblock.h" 37 #include "accel/accel-ops.h" 38 #include "qemu/bswap.h" 39 #include "exec/tswap.h" 40 #include "exec/target_page.h" 41 #include "system/memory.h" 42 #include "qemu/event_notifier.h" 43 #include "qemu/main-loop.h" 44 #include "trace.h" 45 #include "hw/irq.h" 46 #include "qapi/visitor.h" 47 #include "qapi/qapi-types-common.h" 48 #include "qapi/qapi-visit-common.h" 49 #include "system/reset.h" 50 #include "qemu/guest-random.h" 51 #include "system/hw_accel.h" 52 #include "kvm-cpus.h" 53 #include "system/dirtylimit.h" 54 #include "qemu/range.h" 55 56 #include "hw/boards.h" 57 #include "system/stats.h" 58 59 /* This check must be after config-host.h is included */ 60 #ifdef CONFIG_EVENTFD 61 #include <sys/eventfd.h> 62 #endif 63 64 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 65 # define KVM_HAVE_MCE_INJECTION 1 66 #endif 67 68 69 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 70 * need to use the real host PAGE_SIZE, as that's what KVM will use. 71 */ 72 #ifdef PAGE_SIZE 73 #undef PAGE_SIZE 74 #endif 75 #define PAGE_SIZE qemu_real_host_page_size() 76 77 #ifndef KVM_GUESTDBG_BLOCKIRQ 78 #define KVM_GUESTDBG_BLOCKIRQ 0 79 #endif 80 81 /* Default num of memslots to be allocated when VM starts */ 82 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 83 /* Default max allowed memslots if kernel reported nothing */ 84 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 85 86 struct KVMParkedVcpu { 87 unsigned long vcpu_id; 88 int kvm_fd; 89 QLIST_ENTRY(KVMParkedVcpu) node; 90 }; 91 92 KVMState *kvm_state; 93 bool kvm_kernel_irqchip; 94 bool kvm_split_irqchip; 95 bool kvm_async_interrupts_allowed; 96 bool kvm_halt_in_kernel_allowed; 97 bool kvm_resamplefds_allowed; 98 bool kvm_msi_via_irqfd_allowed; 99 bool kvm_gsi_routing_allowed; 100 bool kvm_gsi_direct_mapping; 101 bool kvm_allowed; 102 bool kvm_readonly_mem_allowed; 103 bool kvm_vm_attributes_allowed; 104 bool kvm_msi_use_devid; 105 bool kvm_pre_fault_memory_supported; 106 static bool kvm_has_guest_debug; 107 static int kvm_sstep_flags; 108 static bool kvm_immediate_exit; 109 static uint64_t kvm_supported_memory_attributes; 110 static bool kvm_guest_memfd_supported; 111 static hwaddr kvm_max_slot_size = ~0; 112 113 static const KVMCapabilityInfo kvm_required_capabilites[] = { 114 KVM_CAP_INFO(USER_MEMORY), 115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 116 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 117 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 118 KVM_CAP_INFO(IOEVENTFD), 119 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 120 KVM_CAP_LAST_INFO 121 }; 122 123 static NotifierList kvm_irqchip_change_notifiers = 124 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 125 126 struct KVMResampleFd { 127 int gsi; 128 EventNotifier *resample_event; 129 QLIST_ENTRY(KVMResampleFd) node; 130 }; 131 typedef struct KVMResampleFd KVMResampleFd; 132 133 /* 134 * Only used with split irqchip where we need to do the resample fd 135 * kick for the kernel from userspace. 136 */ 137 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 138 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 139 140 static QemuMutex kml_slots_lock; 141 142 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 143 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 144 145 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 146 147 static inline void kvm_resample_fd_remove(int gsi) 148 { 149 KVMResampleFd *rfd; 150 151 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 152 if (rfd->gsi == gsi) { 153 QLIST_REMOVE(rfd, node); 154 g_free(rfd); 155 break; 156 } 157 } 158 } 159 160 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 161 { 162 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 163 164 rfd->gsi = gsi; 165 rfd->resample_event = event; 166 167 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 168 } 169 170 void kvm_resample_fd_notify(int gsi) 171 { 172 KVMResampleFd *rfd; 173 174 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 175 if (rfd->gsi == gsi) { 176 event_notifier_set(rfd->resample_event); 177 trace_kvm_resample_fd_notify(gsi); 178 return; 179 } 180 } 181 } 182 183 /** 184 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 185 * 186 * @kml: The KVMMemoryListener* to grow the slots[] array 187 * @nr_slots_new: The new size of slots[] array 188 * 189 * Returns: True if the array grows larger, false otherwise. 190 */ 191 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 192 { 193 unsigned int i, cur = kml->nr_slots_allocated; 194 KVMSlot *slots; 195 196 if (nr_slots_new > kvm_state->nr_slots_max) { 197 nr_slots_new = kvm_state->nr_slots_max; 198 } 199 200 if (cur >= nr_slots_new) { 201 /* Big enough, no need to grow, or we reached max */ 202 return false; 203 } 204 205 if (cur == 0) { 206 slots = g_new0(KVMSlot, nr_slots_new); 207 } else { 208 assert(kml->slots); 209 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 210 /* 211 * g_renew() doesn't initialize extended buffers, however kvm 212 * memslots require fields to be zero-initialized. E.g. pointers, 213 * memory_size field, etc. 214 */ 215 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 216 } 217 218 for (i = cur; i < nr_slots_new; i++) { 219 slots[i].slot = i; 220 } 221 222 kml->slots = slots; 223 kml->nr_slots_allocated = nr_slots_new; 224 trace_kvm_slots_grow(cur, nr_slots_new); 225 226 return true; 227 } 228 229 static bool kvm_slots_double(KVMMemoryListener *kml) 230 { 231 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 232 } 233 234 unsigned int kvm_get_max_memslots(void) 235 { 236 KVMState *s = KVM_STATE(current_accel()); 237 238 return s->nr_slots_max; 239 } 240 241 unsigned int kvm_get_free_memslots(void) 242 { 243 unsigned int used_slots = 0; 244 KVMState *s = kvm_state; 245 int i; 246 247 kvm_slots_lock(); 248 for (i = 0; i < s->nr_as; i++) { 249 if (!s->as[i].ml) { 250 continue; 251 } 252 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 253 } 254 kvm_slots_unlock(); 255 256 return s->nr_slots_max - used_slots; 257 } 258 259 /* Called with KVMMemoryListener.slots_lock held */ 260 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 261 { 262 unsigned int n; 263 int i; 264 265 for (i = 0; i < kml->nr_slots_allocated; i++) { 266 if (kml->slots[i].memory_size == 0) { 267 return &kml->slots[i]; 268 } 269 } 270 271 /* 272 * If no free slots, try to grow first by doubling. Cache the old size 273 * here to avoid another round of search: if the grow succeeded, it 274 * means slots[] now must have the existing "n" slots occupied, 275 * followed by one or more free slots starting from slots[n]. 276 */ 277 n = kml->nr_slots_allocated; 278 if (kvm_slots_double(kml)) { 279 return &kml->slots[n]; 280 } 281 282 return NULL; 283 } 284 285 /* Called with KVMMemoryListener.slots_lock held */ 286 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 287 { 288 KVMSlot *slot = kvm_get_free_slot(kml); 289 290 if (slot) { 291 return slot; 292 } 293 294 fprintf(stderr, "%s: no free slot available\n", __func__); 295 abort(); 296 } 297 298 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 299 hwaddr start_addr, 300 hwaddr size) 301 { 302 int i; 303 304 for (i = 0; i < kml->nr_slots_allocated; i++) { 305 KVMSlot *mem = &kml->slots[i]; 306 307 if (start_addr == mem->start_addr && size == mem->memory_size) { 308 return mem; 309 } 310 } 311 312 return NULL; 313 } 314 315 /* 316 * Calculate and align the start address and the size of the section. 317 * Return the size. If the size is 0, the aligned section is empty. 318 */ 319 static hwaddr kvm_align_section(MemoryRegionSection *section, 320 hwaddr *start) 321 { 322 hwaddr size = int128_get64(section->size); 323 hwaddr delta, aligned; 324 325 /* kvm works in page size chunks, but the function may be called 326 with sub-page size and unaligned start address. Pad the start 327 address to next and truncate size to previous page boundary. */ 328 aligned = ROUND_UP(section->offset_within_address_space, 329 qemu_real_host_page_size()); 330 delta = aligned - section->offset_within_address_space; 331 *start = aligned; 332 if (delta > size) { 333 return 0; 334 } 335 336 return (size - delta) & qemu_real_host_page_mask(); 337 } 338 339 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 340 hwaddr *phys_addr) 341 { 342 KVMMemoryListener *kml = &s->memory_listener; 343 int i, ret = 0; 344 345 kvm_slots_lock(); 346 for (i = 0; i < kml->nr_slots_allocated; i++) { 347 KVMSlot *mem = &kml->slots[i]; 348 349 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 350 *phys_addr = mem->start_addr + (ram - mem->ram); 351 ret = 1; 352 break; 353 } 354 } 355 kvm_slots_unlock(); 356 357 return ret; 358 } 359 360 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 361 { 362 KVMState *s = kvm_state; 363 struct kvm_userspace_memory_region2 mem = {}; 364 int ret; 365 366 mem.slot = slot->slot | (kml->as_id << 16); 367 mem.guest_phys_addr = slot->start_addr; 368 mem.userspace_addr = (unsigned long)slot->ram; 369 mem.flags = slot->flags; 370 mem.guest_memfd = slot->guest_memfd; 371 mem.guest_memfd_offset = slot->guest_memfd_offset; 372 373 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 374 /* Set the slot size to 0 before setting the slot to the desired 375 * value. This is needed based on KVM commit 75d61fbc. */ 376 mem.memory_size = 0; 377 378 if (kvm_guest_memfd_supported) { 379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 380 } else { 381 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 382 } 383 if (ret < 0) { 384 goto err; 385 } 386 } 387 mem.memory_size = slot->memory_size; 388 if (kvm_guest_memfd_supported) { 389 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 390 } else { 391 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 392 } 393 slot->old_flags = mem.flags; 394 err: 395 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 396 mem.guest_phys_addr, mem.memory_size, 397 mem.userspace_addr, mem.guest_memfd, 398 mem.guest_memfd_offset, ret); 399 if (ret < 0) { 400 if (kvm_guest_memfd_supported) { 401 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 402 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 403 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 404 " guest_memfd_offset=0x%" PRIx64 ": %s", 405 __func__, mem.slot, slot->start_addr, 406 (uint64_t)mem.memory_size, mem.flags, 407 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 408 strerror(errno)); 409 } else { 410 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 411 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 412 __func__, mem.slot, slot->start_addr, 413 (uint64_t)mem.memory_size, strerror(errno)); 414 } 415 } 416 return ret; 417 } 418 419 static void kvm_park_vcpu(CPUState *cpu) 420 { 421 struct KVMParkedVcpu *vcpu; 422 423 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 424 425 vcpu = g_malloc0(sizeof(*vcpu)); 426 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 427 vcpu->kvm_fd = cpu->kvm_fd; 428 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 429 } 430 431 static int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 432 { 433 struct KVMParkedVcpu *cpu; 434 int kvm_fd = -ENOENT; 435 436 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 437 if (cpu->vcpu_id == vcpu_id) { 438 QLIST_REMOVE(cpu, node); 439 kvm_fd = cpu->kvm_fd; 440 g_free(cpu); 441 break; 442 } 443 } 444 445 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 446 447 return kvm_fd; 448 } 449 450 static void kvm_reset_parked_vcpus(KVMState *s) 451 { 452 struct KVMParkedVcpu *cpu; 453 454 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 455 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 456 } 457 } 458 459 /** 460 * kvm_create_vcpu - Gets a parked KVM vCPU or creates a KVM vCPU 461 * @cpu: QOM CPUState object for which KVM vCPU has to be fetched/created. 462 * 463 * @returns: 0 when success, errno (<0) when failed. 464 */ 465 static int kvm_create_vcpu(CPUState *cpu) 466 { 467 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 468 KVMState *s = kvm_state; 469 int kvm_fd; 470 471 /* check if the KVM vCPU already exist but is parked */ 472 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 473 if (kvm_fd < 0) { 474 /* vCPU not parked: create a new KVM vCPU */ 475 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 476 if (kvm_fd < 0) { 477 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 478 return kvm_fd; 479 } 480 } 481 482 cpu->kvm_fd = kvm_fd; 483 cpu->kvm_state = s; 484 if (!s->guest_state_protected) { 485 cpu->vcpu_dirty = true; 486 } 487 cpu->dirty_pages = 0; 488 cpu->throttle_us_per_full = 0; 489 490 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 491 492 return 0; 493 } 494 495 int kvm_create_and_park_vcpu(CPUState *cpu) 496 { 497 int ret = 0; 498 499 ret = kvm_create_vcpu(cpu); 500 if (!ret) { 501 kvm_park_vcpu(cpu); 502 } 503 504 return ret; 505 } 506 507 static int do_kvm_destroy_vcpu(CPUState *cpu) 508 { 509 KVMState *s = kvm_state; 510 int mmap_size; 511 int ret = 0; 512 513 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 514 515 ret = kvm_arch_destroy_vcpu(cpu); 516 if (ret < 0) { 517 goto err; 518 } 519 520 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 521 if (mmap_size < 0) { 522 ret = mmap_size; 523 trace_kvm_failed_get_vcpu_mmap_size(); 524 goto err; 525 } 526 527 /* If I am the CPU that created coalesced_mmio_ring, then discard it */ 528 if (s->coalesced_mmio_ring == 529 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE) { 530 s->coalesced_mmio_ring = NULL; 531 } 532 533 ret = munmap(cpu->kvm_run, mmap_size); 534 if (ret < 0) { 535 goto err; 536 } 537 cpu->kvm_run = NULL; 538 539 if (cpu->kvm_dirty_gfns) { 540 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 541 if (ret < 0) { 542 goto err; 543 } 544 cpu->kvm_dirty_gfns = NULL; 545 } 546 547 kvm_park_vcpu(cpu); 548 err: 549 return ret; 550 } 551 552 void kvm_destroy_vcpu(CPUState *cpu) 553 { 554 if (do_kvm_destroy_vcpu(cpu) < 0) { 555 error_report("kvm_destroy_vcpu failed"); 556 exit(EXIT_FAILURE); 557 } 558 } 559 560 int kvm_init_vcpu(CPUState *cpu, Error **errp) 561 { 562 KVMState *s = kvm_state; 563 int mmap_size; 564 int ret; 565 566 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 567 568 ret = kvm_arch_pre_create_vcpu(cpu, errp); 569 if (ret < 0) { 570 goto err; 571 } 572 573 ret = kvm_create_vcpu(cpu); 574 if (ret < 0) { 575 error_setg_errno(errp, -ret, 576 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 577 kvm_arch_vcpu_id(cpu)); 578 goto err; 579 } 580 581 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 582 if (mmap_size < 0) { 583 ret = mmap_size; 584 error_setg_errno(errp, -mmap_size, 585 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 586 goto err; 587 } 588 589 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 590 cpu->kvm_fd, 0); 591 if (cpu->kvm_run == MAP_FAILED) { 592 ret = -errno; 593 error_setg_errno(errp, ret, 594 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 595 kvm_arch_vcpu_id(cpu)); 596 goto err; 597 } 598 599 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 600 s->coalesced_mmio_ring = 601 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 602 } 603 604 if (s->kvm_dirty_ring_size) { 605 /* Use MAP_SHARED to share pages with the kernel */ 606 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 607 PROT_READ | PROT_WRITE, MAP_SHARED, 608 cpu->kvm_fd, 609 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 610 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 611 ret = -errno; 612 goto err; 613 } 614 } 615 616 ret = kvm_arch_init_vcpu(cpu); 617 if (ret < 0) { 618 error_setg_errno(errp, -ret, 619 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 620 kvm_arch_vcpu_id(cpu)); 621 } 622 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 623 624 err: 625 return ret; 626 } 627 628 void kvm_close(void) 629 { 630 CPUState *cpu; 631 632 if (!kvm_state || kvm_state->fd == -1) { 633 return; 634 } 635 636 CPU_FOREACH(cpu) { 637 cpu_remove_sync(cpu); 638 close(cpu->kvm_fd); 639 cpu->kvm_fd = -1; 640 close(cpu->kvm_vcpu_stats_fd); 641 cpu->kvm_vcpu_stats_fd = -1; 642 } 643 644 if (kvm_state && kvm_state->fd != -1) { 645 close(kvm_state->vmfd); 646 kvm_state->vmfd = -1; 647 close(kvm_state->fd); 648 kvm_state->fd = -1; 649 } 650 kvm_state = NULL; 651 } 652 653 /* 654 * dirty pages logging control 655 */ 656 657 static int kvm_mem_flags(MemoryRegion *mr) 658 { 659 bool readonly = mr->readonly || memory_region_is_romd(mr); 660 int flags = 0; 661 662 if (memory_region_get_dirty_log_mask(mr) != 0) { 663 flags |= KVM_MEM_LOG_DIRTY_PAGES; 664 } 665 if (readonly && kvm_readonly_mem_allowed) { 666 flags |= KVM_MEM_READONLY; 667 } 668 if (memory_region_has_guest_memfd(mr)) { 669 assert(kvm_guest_memfd_supported); 670 flags |= KVM_MEM_GUEST_MEMFD; 671 } 672 return flags; 673 } 674 675 /* Called with KVMMemoryListener.slots_lock held */ 676 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 677 MemoryRegion *mr) 678 { 679 mem->flags = kvm_mem_flags(mr); 680 681 /* If nothing changed effectively, no need to issue ioctl */ 682 if (mem->flags == mem->old_flags) { 683 return 0; 684 } 685 686 kvm_slot_init_dirty_bitmap(mem); 687 return kvm_set_user_memory_region(kml, mem, false); 688 } 689 690 static int kvm_section_update_flags(KVMMemoryListener *kml, 691 MemoryRegionSection *section) 692 { 693 hwaddr start_addr, size, slot_size; 694 KVMSlot *mem; 695 int ret = 0; 696 697 size = kvm_align_section(section, &start_addr); 698 if (!size) { 699 return 0; 700 } 701 702 kvm_slots_lock(); 703 704 while (size && !ret) { 705 slot_size = MIN(kvm_max_slot_size, size); 706 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 707 if (!mem) { 708 /* We don't have a slot if we want to trap every access. */ 709 goto out; 710 } 711 712 ret = kvm_slot_update_flags(kml, mem, section->mr); 713 start_addr += slot_size; 714 size -= slot_size; 715 } 716 717 out: 718 kvm_slots_unlock(); 719 return ret; 720 } 721 722 static void kvm_log_start(MemoryListener *listener, 723 MemoryRegionSection *section, 724 int old, int new) 725 { 726 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 727 int r; 728 729 if (old != 0) { 730 return; 731 } 732 733 r = kvm_section_update_flags(kml, section); 734 if (r < 0) { 735 abort(); 736 } 737 } 738 739 static void kvm_log_stop(MemoryListener *listener, 740 MemoryRegionSection *section, 741 int old, int new) 742 { 743 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 744 int r; 745 746 if (new != 0) { 747 return; 748 } 749 750 r = kvm_section_update_flags(kml, section); 751 if (r < 0) { 752 abort(); 753 } 754 } 755 756 /* get kvm's dirty pages bitmap and update qemu's */ 757 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 758 { 759 ram_addr_t start = slot->ram_start_offset; 760 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 761 762 physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 763 } 764 765 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 766 { 767 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 768 } 769 770 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 771 772 /* Allocate the dirty bitmap for a slot */ 773 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 774 { 775 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 776 return; 777 } 778 779 /* 780 * XXX bad kernel interface alert 781 * For dirty bitmap, kernel allocates array of size aligned to 782 * bits-per-long. But for case when the kernel is 64bits and 783 * the userspace is 32bits, userspace can't align to the same 784 * bits-per-long, since sizeof(long) is different between kernel 785 * and user space. This way, userspace will provide buffer which 786 * may be 4 bytes less than the kernel will use, resulting in 787 * userspace memory corruption (which is not detectable by valgrind 788 * too, in most cases). 789 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 790 * a hope that sizeof(long) won't become >8 any time soon. 791 * 792 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 793 * And mem->memory_size is aligned to it (otherwise this mem can't 794 * be registered to KVM). 795 */ 796 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 797 /*HOST_LONG_BITS*/ 64) / 8; 798 mem->dirty_bmap = g_malloc0(bitmap_size); 799 mem->dirty_bmap_size = bitmap_size; 800 } 801 802 /* 803 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 804 * succeeded, false otherwise 805 */ 806 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 807 { 808 struct kvm_dirty_log d = {}; 809 int ret; 810 811 d.dirty_bitmap = slot->dirty_bmap; 812 d.slot = slot->slot | (slot->as_id << 16); 813 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 814 815 if (ret == -ENOENT) { 816 /* kernel does not have dirty bitmap in this slot */ 817 ret = 0; 818 } 819 if (ret) { 820 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 821 __func__, ret); 822 } 823 return ret == 0; 824 } 825 826 /* Should be with all slots_lock held for the address spaces. */ 827 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 828 uint32_t slot_id, uint64_t offset) 829 { 830 KVMMemoryListener *kml; 831 KVMSlot *mem; 832 833 if (as_id >= s->nr_as) { 834 return; 835 } 836 837 kml = s->as[as_id].ml; 838 mem = &kml->slots[slot_id]; 839 840 if (!mem->memory_size || offset >= 841 (mem->memory_size / qemu_real_host_page_size())) { 842 return; 843 } 844 845 set_bit(offset, mem->dirty_bmap); 846 } 847 848 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 849 { 850 /* 851 * Read the flags before the value. Pairs with barrier in 852 * KVM's kvm_dirty_ring_push() function. 853 */ 854 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 855 } 856 857 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 858 { 859 /* 860 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 861 * sees the full content of the ring: 862 * 863 * CPU0 CPU1 CPU2 864 * ------------------------------------------------------------------------------ 865 * fill gfn0 866 * store-rel flags for gfn0 867 * load-acq flags for gfn0 868 * store-rel RESET for gfn0 869 * ioctl(RESET_RINGS) 870 * load-acq flags for gfn0 871 * check if flags have RESET 872 * 873 * The synchronization goes from CPU2 to CPU0 to CPU1. 874 */ 875 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 876 } 877 878 /* 879 * Should be with all slots_lock held for the address spaces. It returns the 880 * dirty page we've collected on this dirty ring. 881 */ 882 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 883 { 884 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 885 uint32_t ring_size = s->kvm_dirty_ring_size; 886 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 887 888 /* 889 * It's possible that we race with vcpu creation code where the vcpu is 890 * put onto the vcpus list but not yet initialized the dirty ring 891 * structures. If so, skip it. 892 */ 893 if (!cpu->created) { 894 return 0; 895 } 896 897 assert(dirty_gfns && ring_size); 898 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 899 900 while (true) { 901 cur = &dirty_gfns[fetch % ring_size]; 902 if (!dirty_gfn_is_dirtied(cur)) { 903 break; 904 } 905 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 906 cur->offset); 907 dirty_gfn_set_collected(cur); 908 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 909 fetch++; 910 count++; 911 } 912 cpu->kvm_fetch_index = fetch; 913 cpu->dirty_pages += count; 914 915 return count; 916 } 917 918 /* Must be with slots_lock held */ 919 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 920 { 921 int ret; 922 uint64_t total = 0; 923 int64_t stamp; 924 925 stamp = get_clock(); 926 927 if (cpu) { 928 total = kvm_dirty_ring_reap_one(s, cpu); 929 } else { 930 CPU_FOREACH(cpu) { 931 total += kvm_dirty_ring_reap_one(s, cpu); 932 } 933 } 934 935 if (total) { 936 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 937 assert(ret == total); 938 } 939 940 stamp = get_clock() - stamp; 941 942 if (total) { 943 trace_kvm_dirty_ring_reap(total, stamp / 1000); 944 } 945 946 return total; 947 } 948 949 /* 950 * Currently for simplicity, we must hold BQL before calling this. We can 951 * consider to drop the BQL if we're clear with all the race conditions. 952 */ 953 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 954 { 955 uint64_t total; 956 957 /* 958 * We need to lock all kvm slots for all address spaces here, 959 * because: 960 * 961 * (1) We need to mark dirty for dirty bitmaps in multiple slots 962 * and for tons of pages, so it's better to take the lock here 963 * once rather than once per page. And more importantly, 964 * 965 * (2) We must _NOT_ publish dirty bits to the other threads 966 * (e.g., the migration thread) via the kvm memory slot dirty 967 * bitmaps before correctly re-protect those dirtied pages. 968 * Otherwise we can have potential risk of data corruption if 969 * the page data is read in the other thread before we do 970 * reset below. 971 */ 972 kvm_slots_lock(); 973 total = kvm_dirty_ring_reap_locked(s, cpu); 974 kvm_slots_unlock(); 975 976 return total; 977 } 978 979 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 980 { 981 /* No need to do anything */ 982 } 983 984 /* 985 * Kick all vcpus out in a synchronized way. When returned, we 986 * guarantee that every vcpu has been kicked and at least returned to 987 * userspace once. 988 */ 989 static void kvm_cpu_synchronize_kick_all(void) 990 { 991 CPUState *cpu; 992 993 CPU_FOREACH(cpu) { 994 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 995 } 996 } 997 998 /* 999 * Flush all the existing dirty pages to the KVM slot buffers. When 1000 * this call returns, we guarantee that all the touched dirty pages 1001 * before calling this function have been put into the per-kvmslot 1002 * dirty bitmap. 1003 * 1004 * This function must be called with BQL held. 1005 */ 1006 static void kvm_dirty_ring_flush(void) 1007 { 1008 trace_kvm_dirty_ring_flush(0); 1009 /* 1010 * The function needs to be serialized. Since this function 1011 * should always be with BQL held, serialization is guaranteed. 1012 * However, let's be sure of it. 1013 */ 1014 assert(bql_locked()); 1015 /* 1016 * First make sure to flush the hardware buffers by kicking all 1017 * vcpus out in a synchronous way. 1018 */ 1019 kvm_cpu_synchronize_kick_all(); 1020 kvm_dirty_ring_reap(kvm_state, NULL); 1021 trace_kvm_dirty_ring_flush(1); 1022 } 1023 1024 /** 1025 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 1026 * 1027 * This function will first try to fetch dirty bitmap from the kernel, 1028 * and then updates qemu's dirty bitmap. 1029 * 1030 * NOTE: caller must be with kml->slots_lock held. 1031 * 1032 * @kml: the KVM memory listener object 1033 * @section: the memory section to sync the dirty bitmap with 1034 */ 1035 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 1036 MemoryRegionSection *section) 1037 { 1038 KVMState *s = kvm_state; 1039 KVMSlot *mem; 1040 hwaddr start_addr, size; 1041 hwaddr slot_size; 1042 1043 size = kvm_align_section(section, &start_addr); 1044 while (size) { 1045 slot_size = MIN(kvm_max_slot_size, size); 1046 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1047 if (!mem) { 1048 /* We don't have a slot if we want to trap every access. */ 1049 return; 1050 } 1051 if (kvm_slot_get_dirty_log(s, mem)) { 1052 kvm_slot_sync_dirty_pages(mem); 1053 } 1054 start_addr += slot_size; 1055 size -= slot_size; 1056 } 1057 } 1058 1059 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1060 #define KVM_CLEAR_LOG_SHIFT 6 1061 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1062 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1063 1064 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1065 uint64_t size) 1066 { 1067 KVMState *s = kvm_state; 1068 uint64_t end, bmap_start, start_delta, bmap_npages; 1069 struct kvm_clear_dirty_log d; 1070 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1071 int ret; 1072 1073 /* 1074 * We need to extend either the start or the size or both to 1075 * satisfy the KVM interface requirement. Firstly, do the start 1076 * page alignment on 64 host pages 1077 */ 1078 bmap_start = start & KVM_CLEAR_LOG_MASK; 1079 start_delta = start - bmap_start; 1080 bmap_start /= psize; 1081 1082 /* 1083 * The kernel interface has restriction on the size too, that either: 1084 * 1085 * (1) the size is 64 host pages aligned (just like the start), or 1086 * (2) the size fills up until the end of the KVM memslot. 1087 */ 1088 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1089 << KVM_CLEAR_LOG_SHIFT; 1090 end = mem->memory_size / psize; 1091 if (bmap_npages > end - bmap_start) { 1092 bmap_npages = end - bmap_start; 1093 } 1094 start_delta /= psize; 1095 1096 /* 1097 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1098 * that we won't clear any unknown dirty bits otherwise we might 1099 * accidentally clear some set bits which are not yet synced from 1100 * the kernel into QEMU's bitmap, then we'll lose track of the 1101 * guest modifications upon those pages (which can directly lead 1102 * to guest data loss or panic after migration). 1103 * 1104 * Layout of the KVMSlot.dirty_bmap: 1105 * 1106 * |<-------- bmap_npages -----------..>| 1107 * [1] 1108 * start_delta size 1109 * |----------------|-------------|------------------|------------| 1110 * ^ ^ ^ ^ 1111 * | | | | 1112 * start bmap_start (start) end 1113 * of memslot of memslot 1114 * 1115 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1116 */ 1117 1118 assert(bmap_start % BITS_PER_LONG == 0); 1119 /* We should never do log_clear before log_sync */ 1120 assert(mem->dirty_bmap); 1121 if (start_delta || bmap_npages - size / psize) { 1122 /* Slow path - we need to manipulate a temp bitmap */ 1123 bmap_clear = bitmap_new(bmap_npages); 1124 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1125 bmap_start, start_delta + size / psize); 1126 /* 1127 * We need to fill the holes at start because that was not 1128 * specified by the caller and we extended the bitmap only for 1129 * 64 pages alignment 1130 */ 1131 bitmap_clear(bmap_clear, 0, start_delta); 1132 d.dirty_bitmap = bmap_clear; 1133 } else { 1134 /* 1135 * Fast path - both start and size align well with BITS_PER_LONG 1136 * (or the end of memory slot) 1137 */ 1138 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1139 } 1140 1141 d.first_page = bmap_start; 1142 /* It should never overflow. If it happens, say something */ 1143 assert(bmap_npages <= UINT32_MAX); 1144 d.num_pages = bmap_npages; 1145 d.slot = mem->slot | (as_id << 16); 1146 1147 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1148 if (ret < 0 && ret != -ENOENT) { 1149 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1150 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1151 __func__, d.slot, (uint64_t)d.first_page, 1152 (uint32_t)d.num_pages, ret); 1153 } else { 1154 ret = 0; 1155 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1156 } 1157 1158 /* 1159 * After we have updated the remote dirty bitmap, we update the 1160 * cached bitmap as well for the memslot, then if another user 1161 * clears the same region we know we shouldn't clear it again on 1162 * the remote otherwise it's data loss as well. 1163 */ 1164 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1165 size / psize); 1166 /* This handles the NULL case well */ 1167 g_free(bmap_clear); 1168 return ret; 1169 } 1170 1171 1172 /** 1173 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1174 * 1175 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1176 * protection in the host kernel because in that case this operation 1177 * will be done within log_sync(). 1178 * 1179 * @kml: the kvm memory listener 1180 * @section: the memory range to clear dirty bitmap 1181 */ 1182 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1183 MemoryRegionSection *section) 1184 { 1185 KVMState *s = kvm_state; 1186 uint64_t start, size, offset, count; 1187 KVMSlot *mem; 1188 int ret = 0, i; 1189 1190 if (!s->manual_dirty_log_protect) { 1191 /* No need to do explicit clear */ 1192 return ret; 1193 } 1194 1195 start = section->offset_within_address_space; 1196 size = int128_get64(section->size); 1197 1198 if (!size) { 1199 /* Nothing more we can do... */ 1200 return ret; 1201 } 1202 1203 kvm_slots_lock(); 1204 1205 for (i = 0; i < kml->nr_slots_allocated; i++) { 1206 mem = &kml->slots[i]; 1207 /* Discard slots that are empty or do not overlap the section */ 1208 if (!mem->memory_size || 1209 mem->start_addr > start + size - 1 || 1210 start > mem->start_addr + mem->memory_size - 1) { 1211 continue; 1212 } 1213 1214 if (start >= mem->start_addr) { 1215 /* The slot starts before section or is aligned to it. */ 1216 offset = start - mem->start_addr; 1217 count = MIN(mem->memory_size - offset, size); 1218 } else { 1219 /* The slot starts after section. */ 1220 offset = 0; 1221 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1222 } 1223 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1224 if (ret < 0) { 1225 break; 1226 } 1227 } 1228 1229 kvm_slots_unlock(); 1230 1231 return ret; 1232 } 1233 1234 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1235 MemoryRegionSection *secion, 1236 hwaddr start, hwaddr size) 1237 { 1238 KVMState *s = kvm_state; 1239 1240 if (s->coalesced_mmio) { 1241 struct kvm_coalesced_mmio_zone zone; 1242 1243 zone.addr = start; 1244 zone.size = size; 1245 zone.pad = 0; 1246 1247 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1248 } 1249 } 1250 1251 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1252 MemoryRegionSection *secion, 1253 hwaddr start, hwaddr size) 1254 { 1255 KVMState *s = kvm_state; 1256 1257 if (s->coalesced_mmio) { 1258 struct kvm_coalesced_mmio_zone zone; 1259 1260 zone.addr = start; 1261 zone.size = size; 1262 zone.pad = 0; 1263 1264 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1265 } 1266 } 1267 1268 static void kvm_coalesce_pio_add(MemoryListener *listener, 1269 MemoryRegionSection *section, 1270 hwaddr start, hwaddr size) 1271 { 1272 KVMState *s = kvm_state; 1273 1274 if (s->coalesced_pio) { 1275 struct kvm_coalesced_mmio_zone zone; 1276 1277 zone.addr = start; 1278 zone.size = size; 1279 zone.pio = 1; 1280 1281 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1282 } 1283 } 1284 1285 static void kvm_coalesce_pio_del(MemoryListener *listener, 1286 MemoryRegionSection *section, 1287 hwaddr start, hwaddr size) 1288 { 1289 KVMState *s = kvm_state; 1290 1291 if (s->coalesced_pio) { 1292 struct kvm_coalesced_mmio_zone zone; 1293 1294 zone.addr = start; 1295 zone.size = size; 1296 zone.pio = 1; 1297 1298 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1299 } 1300 } 1301 1302 int kvm_check_extension(KVMState *s, unsigned int extension) 1303 { 1304 int ret; 1305 1306 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1307 if (ret < 0) { 1308 ret = 0; 1309 } 1310 1311 return ret; 1312 } 1313 1314 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1315 { 1316 int ret; 1317 1318 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1319 if (ret < 0) { 1320 /* VM wide version not implemented, use global one instead */ 1321 ret = kvm_check_extension(s, extension); 1322 } 1323 1324 return ret; 1325 } 1326 1327 /* 1328 * We track the poisoned pages to be able to: 1329 * - replace them on VM reset 1330 * - block a migration for a VM with a poisoned page 1331 */ 1332 typedef struct HWPoisonPage { 1333 ram_addr_t ram_addr; 1334 QLIST_ENTRY(HWPoisonPage) list; 1335 } HWPoisonPage; 1336 1337 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1338 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1339 1340 static void kvm_unpoison_all(void *param) 1341 { 1342 HWPoisonPage *page, *next_page; 1343 1344 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1345 QLIST_REMOVE(page, list); 1346 qemu_ram_remap(page->ram_addr); 1347 g_free(page); 1348 } 1349 } 1350 1351 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1352 { 1353 HWPoisonPage *page; 1354 1355 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1356 if (page->ram_addr == ram_addr) { 1357 return; 1358 } 1359 } 1360 page = g_new(HWPoisonPage, 1); 1361 page->ram_addr = ram_addr; 1362 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1363 } 1364 1365 bool kvm_hwpoisoned_mem(void) 1366 { 1367 return !QLIST_EMPTY(&hwpoison_page_list); 1368 } 1369 1370 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1371 { 1372 if (target_needs_bswap()) { 1373 /* 1374 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1375 * endianness, but the memory core hands them in target endianness. 1376 * For example, PPC is always treated as big-endian even if running 1377 * on KVM and on PPC64LE. Correct here, swapping back. 1378 */ 1379 switch (size) { 1380 case 2: 1381 val = bswap16(val); 1382 break; 1383 case 4: 1384 val = bswap32(val); 1385 break; 1386 } 1387 } 1388 return val; 1389 } 1390 1391 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1392 bool assign, uint32_t size, bool datamatch) 1393 { 1394 int ret; 1395 struct kvm_ioeventfd iofd = { 1396 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1397 .addr = addr, 1398 .len = size, 1399 .flags = 0, 1400 .fd = fd, 1401 }; 1402 1403 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1404 datamatch); 1405 if (!kvm_enabled()) { 1406 return -ENOSYS; 1407 } 1408 1409 if (datamatch) { 1410 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1411 } 1412 if (!assign) { 1413 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1414 } 1415 1416 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1417 1418 if (ret < 0) { 1419 return -errno; 1420 } 1421 1422 return 0; 1423 } 1424 1425 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1426 bool assign, uint32_t size, bool datamatch) 1427 { 1428 struct kvm_ioeventfd kick = { 1429 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1430 .addr = addr, 1431 .flags = KVM_IOEVENTFD_FLAG_PIO, 1432 .len = size, 1433 .fd = fd, 1434 }; 1435 int r; 1436 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1437 if (!kvm_enabled()) { 1438 return -ENOSYS; 1439 } 1440 if (datamatch) { 1441 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1442 } 1443 if (!assign) { 1444 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1445 } 1446 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1447 if (r < 0) { 1448 return r; 1449 } 1450 return 0; 1451 } 1452 1453 1454 static const KVMCapabilityInfo * 1455 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1456 { 1457 while (list->name) { 1458 if (!kvm_check_extension(s, list->value)) { 1459 return list; 1460 } 1461 list++; 1462 } 1463 return NULL; 1464 } 1465 1466 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1467 { 1468 g_assert( 1469 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1470 ); 1471 kvm_max_slot_size = max_slot_size; 1472 } 1473 1474 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1475 { 1476 struct kvm_memory_attributes attrs; 1477 int r; 1478 1479 assert((attr & kvm_supported_memory_attributes) == attr); 1480 attrs.attributes = attr; 1481 attrs.address = start; 1482 attrs.size = size; 1483 attrs.flags = 0; 1484 1485 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1486 if (r) { 1487 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1488 "with attr 0x%" PRIx64 " error '%s'", 1489 start, size, attr, strerror(errno)); 1490 } 1491 return r; 1492 } 1493 1494 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1495 { 1496 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1497 } 1498 1499 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1500 { 1501 return kvm_set_memory_attributes(start, size, 0); 1502 } 1503 1504 /* Called with KVMMemoryListener.slots_lock held */ 1505 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1506 MemoryRegionSection *section, bool add) 1507 { 1508 KVMSlot *mem; 1509 int err; 1510 MemoryRegion *mr = section->mr; 1511 bool writable = !mr->readonly && !mr->rom_device; 1512 hwaddr start_addr, size, slot_size, mr_offset; 1513 ram_addr_t ram_start_offset; 1514 void *ram; 1515 1516 if (!memory_region_is_ram(mr)) { 1517 if (writable || !kvm_readonly_mem_allowed) { 1518 return; 1519 } else if (!mr->romd_mode) { 1520 /* If the memory device is not in romd_mode, then we actually want 1521 * to remove the kvm memory slot so all accesses will trap. */ 1522 add = false; 1523 } 1524 } 1525 1526 size = kvm_align_section(section, &start_addr); 1527 if (!size) { 1528 return; 1529 } 1530 1531 /* The offset of the kvmslot within the memory region */ 1532 mr_offset = section->offset_within_region + start_addr - 1533 section->offset_within_address_space; 1534 1535 /* use aligned delta to align the ram address and offset */ 1536 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1537 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1538 1539 if (!add) { 1540 do { 1541 slot_size = MIN(kvm_max_slot_size, size); 1542 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1543 if (!mem) { 1544 return; 1545 } 1546 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1547 /* 1548 * NOTE: We should be aware of the fact that here we're only 1549 * doing a best effort to sync dirty bits. No matter whether 1550 * we're using dirty log or dirty ring, we ignored two facts: 1551 * 1552 * (1) dirty bits can reside in hardware buffers (PML) 1553 * 1554 * (2) after we collected dirty bits here, pages can be dirtied 1555 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1556 * remove the slot. 1557 * 1558 * Not easy. Let's cross the fingers until it's fixed. 1559 */ 1560 if (kvm_state->kvm_dirty_ring_size) { 1561 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1562 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1563 kvm_slot_sync_dirty_pages(mem); 1564 kvm_slot_get_dirty_log(kvm_state, mem); 1565 } 1566 } else { 1567 kvm_slot_get_dirty_log(kvm_state, mem); 1568 } 1569 kvm_slot_sync_dirty_pages(mem); 1570 } 1571 1572 /* unregister the slot */ 1573 g_free(mem->dirty_bmap); 1574 mem->dirty_bmap = NULL; 1575 mem->memory_size = 0; 1576 mem->flags = 0; 1577 err = kvm_set_user_memory_region(kml, mem, false); 1578 if (err) { 1579 fprintf(stderr, "%s: error unregistering slot: %s\n", 1580 __func__, strerror(-err)); 1581 abort(); 1582 } 1583 start_addr += slot_size; 1584 size -= slot_size; 1585 kml->nr_slots_used--; 1586 } while (size); 1587 return; 1588 } 1589 1590 /* register the new slot */ 1591 do { 1592 slot_size = MIN(kvm_max_slot_size, size); 1593 mem = kvm_alloc_slot(kml); 1594 mem->as_id = kml->as_id; 1595 mem->memory_size = slot_size; 1596 mem->start_addr = start_addr; 1597 mem->ram_start_offset = ram_start_offset; 1598 mem->ram = ram; 1599 mem->flags = kvm_mem_flags(mr); 1600 mem->guest_memfd = mr->ram_block->guest_memfd; 1601 mem->guest_memfd_offset = mem->guest_memfd >= 0 ? 1602 (uint8_t*)ram - mr->ram_block->host : 0; 1603 1604 kvm_slot_init_dirty_bitmap(mem); 1605 err = kvm_set_user_memory_region(kml, mem, true); 1606 if (err) { 1607 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1608 strerror(-err)); 1609 abort(); 1610 } 1611 1612 if (memory_region_has_guest_memfd(mr)) { 1613 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1614 if (err) { 1615 error_report("%s: failed to set memory attribute private: %s", 1616 __func__, strerror(-err)); 1617 exit(1); 1618 } 1619 } 1620 1621 start_addr += slot_size; 1622 ram_start_offset += slot_size; 1623 ram += slot_size; 1624 size -= slot_size; 1625 kml->nr_slots_used++; 1626 } while (size); 1627 } 1628 1629 static void *kvm_dirty_ring_reaper_thread(void *data) 1630 { 1631 KVMState *s = data; 1632 struct KVMDirtyRingReaper *r = &s->reaper; 1633 1634 rcu_register_thread(); 1635 1636 trace_kvm_dirty_ring_reaper("init"); 1637 1638 while (true) { 1639 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1640 trace_kvm_dirty_ring_reaper("wait"); 1641 /* 1642 * TODO: provide a smarter timeout rather than a constant? 1643 */ 1644 sleep(1); 1645 1646 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1647 if (dirtylimit_in_service()) { 1648 continue; 1649 } 1650 1651 trace_kvm_dirty_ring_reaper("wakeup"); 1652 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1653 1654 bql_lock(); 1655 kvm_dirty_ring_reap(s, NULL); 1656 bql_unlock(); 1657 1658 r->reaper_iteration++; 1659 } 1660 1661 g_assert_not_reached(); 1662 } 1663 1664 static void kvm_dirty_ring_reaper_init(KVMState *s) 1665 { 1666 struct KVMDirtyRingReaper *r = &s->reaper; 1667 1668 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1669 kvm_dirty_ring_reaper_thread, 1670 s, QEMU_THREAD_JOINABLE); 1671 } 1672 1673 static int kvm_dirty_ring_init(KVMState *s) 1674 { 1675 uint32_t ring_size = s->kvm_dirty_ring_size; 1676 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1677 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1678 int ret; 1679 1680 s->kvm_dirty_ring_size = 0; 1681 s->kvm_dirty_ring_bytes = 0; 1682 1683 /* Bail if the dirty ring size isn't specified */ 1684 if (!ring_size) { 1685 return 0; 1686 } 1687 1688 /* 1689 * Read the max supported pages. Fall back to dirty logging mode 1690 * if the dirty ring isn't supported. 1691 */ 1692 ret = kvm_vm_check_extension(s, capability); 1693 if (ret <= 0) { 1694 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1695 ret = kvm_vm_check_extension(s, capability); 1696 } 1697 1698 if (ret <= 0) { 1699 warn_report("KVM dirty ring not available, using bitmap method"); 1700 return 0; 1701 } 1702 1703 if (ring_bytes > ret) { 1704 error_report("KVM dirty ring size %" PRIu32 " too big " 1705 "(maximum is %ld). Please use a smaller value.", 1706 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1707 return -EINVAL; 1708 } 1709 1710 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1711 if (ret) { 1712 error_report("Enabling of KVM dirty ring failed: %s. " 1713 "Suggested minimum value is 1024.", strerror(-ret)); 1714 return -EIO; 1715 } 1716 1717 /* Enable the backup bitmap if it is supported */ 1718 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1719 if (ret > 0) { 1720 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1721 if (ret) { 1722 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1723 "%s. ", strerror(-ret)); 1724 return -EIO; 1725 } 1726 1727 s->kvm_dirty_ring_with_bitmap = true; 1728 } 1729 1730 s->kvm_dirty_ring_size = ring_size; 1731 s->kvm_dirty_ring_bytes = ring_bytes; 1732 1733 return 0; 1734 } 1735 1736 static void kvm_region_add(MemoryListener *listener, 1737 MemoryRegionSection *section) 1738 { 1739 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1740 KVMMemoryUpdate *update; 1741 1742 update = g_new0(KVMMemoryUpdate, 1); 1743 update->section = *section; 1744 1745 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1746 } 1747 1748 static void kvm_region_del(MemoryListener *listener, 1749 MemoryRegionSection *section) 1750 { 1751 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1752 KVMMemoryUpdate *update; 1753 1754 update = g_new0(KVMMemoryUpdate, 1); 1755 update->section = *section; 1756 1757 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1758 } 1759 1760 static void kvm_region_commit(MemoryListener *listener) 1761 { 1762 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1763 listener); 1764 KVMMemoryUpdate *u1, *u2; 1765 bool need_inhibit = false; 1766 1767 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1768 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1769 return; 1770 } 1771 1772 /* 1773 * We have to be careful when regions to add overlap with ranges to remove. 1774 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1775 * is currently active. 1776 * 1777 * The lists are order by addresses, so it's easy to find overlaps. 1778 */ 1779 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1780 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1781 while (u1 && u2) { 1782 Range r1, r2; 1783 1784 range_init_nofail(&r1, u1->section.offset_within_address_space, 1785 int128_get64(u1->section.size)); 1786 range_init_nofail(&r2, u2->section.offset_within_address_space, 1787 int128_get64(u2->section.size)); 1788 1789 if (range_overlaps_range(&r1, &r2)) { 1790 need_inhibit = true; 1791 break; 1792 } 1793 if (range_lob(&r1) < range_lob(&r2)) { 1794 u1 = QSIMPLEQ_NEXT(u1, next); 1795 } else { 1796 u2 = QSIMPLEQ_NEXT(u2, next); 1797 } 1798 } 1799 1800 kvm_slots_lock(); 1801 if (need_inhibit) { 1802 accel_ioctl_inhibit_begin(); 1803 } 1804 1805 /* Remove all memslots before adding the new ones. */ 1806 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1807 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1808 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1809 1810 kvm_set_phys_mem(kml, &u1->section, false); 1811 memory_region_unref(u1->section.mr); 1812 1813 g_free(u1); 1814 } 1815 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1816 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1817 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1818 1819 memory_region_ref(u1->section.mr); 1820 kvm_set_phys_mem(kml, &u1->section, true); 1821 1822 g_free(u1); 1823 } 1824 1825 if (need_inhibit) { 1826 accel_ioctl_inhibit_end(); 1827 } 1828 kvm_slots_unlock(); 1829 } 1830 1831 static void kvm_log_sync(MemoryListener *listener, 1832 MemoryRegionSection *section) 1833 { 1834 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1835 1836 kvm_slots_lock(); 1837 kvm_physical_sync_dirty_bitmap(kml, section); 1838 kvm_slots_unlock(); 1839 } 1840 1841 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1842 { 1843 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1844 KVMState *s = kvm_state; 1845 KVMSlot *mem; 1846 int i; 1847 1848 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1849 kvm_dirty_ring_flush(); 1850 1851 kvm_slots_lock(); 1852 for (i = 0; i < kml->nr_slots_allocated; i++) { 1853 mem = &kml->slots[i]; 1854 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1855 kvm_slot_sync_dirty_pages(mem); 1856 1857 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1858 kvm_slot_get_dirty_log(s, mem)) { 1859 kvm_slot_sync_dirty_pages(mem); 1860 } 1861 1862 /* 1863 * This is not needed by KVM_GET_DIRTY_LOG because the 1864 * ioctl will unconditionally overwrite the whole region. 1865 * However kvm dirty ring has no such side effect. 1866 */ 1867 kvm_slot_reset_dirty_pages(mem); 1868 } 1869 } 1870 kvm_slots_unlock(); 1871 } 1872 1873 static void kvm_log_clear(MemoryListener *listener, 1874 MemoryRegionSection *section) 1875 { 1876 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1877 int r; 1878 1879 r = kvm_physical_log_clear(kml, section); 1880 if (r < 0) { 1881 error_report_once("%s: kvm log clear failed: mr=%s " 1882 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1883 section->mr->name, section->offset_within_region, 1884 int128_get64(section->size)); 1885 abort(); 1886 } 1887 } 1888 1889 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1890 MemoryRegionSection *section, 1891 bool match_data, uint64_t data, 1892 EventNotifier *e) 1893 { 1894 int fd = event_notifier_get_fd(e); 1895 int r; 1896 1897 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1898 data, true, int128_get64(section->size), 1899 match_data); 1900 if (r < 0) { 1901 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1902 __func__, strerror(-r), -r); 1903 abort(); 1904 } 1905 } 1906 1907 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1908 MemoryRegionSection *section, 1909 bool match_data, uint64_t data, 1910 EventNotifier *e) 1911 { 1912 int fd = event_notifier_get_fd(e); 1913 int r; 1914 1915 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1916 data, false, int128_get64(section->size), 1917 match_data); 1918 if (r < 0) { 1919 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1920 __func__, strerror(-r), -r); 1921 abort(); 1922 } 1923 } 1924 1925 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1926 MemoryRegionSection *section, 1927 bool match_data, uint64_t data, 1928 EventNotifier *e) 1929 { 1930 int fd = event_notifier_get_fd(e); 1931 int r; 1932 1933 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1934 data, true, int128_get64(section->size), 1935 match_data); 1936 if (r < 0) { 1937 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1938 __func__, strerror(-r), -r); 1939 abort(); 1940 } 1941 } 1942 1943 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1944 MemoryRegionSection *section, 1945 bool match_data, uint64_t data, 1946 EventNotifier *e) 1947 1948 { 1949 int fd = event_notifier_get_fd(e); 1950 int r; 1951 1952 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1953 data, false, int128_get64(section->size), 1954 match_data); 1955 if (r < 0) { 1956 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1957 __func__, strerror(-r), -r); 1958 abort(); 1959 } 1960 } 1961 1962 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1963 AddressSpace *as, int as_id, const char *name) 1964 { 1965 int i; 1966 1967 kml->as_id = as_id; 1968 1969 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1970 1971 QSIMPLEQ_INIT(&kml->transaction_add); 1972 QSIMPLEQ_INIT(&kml->transaction_del); 1973 1974 kml->listener.region_add = kvm_region_add; 1975 kml->listener.region_del = kvm_region_del; 1976 kml->listener.commit = kvm_region_commit; 1977 kml->listener.log_start = kvm_log_start; 1978 kml->listener.log_stop = kvm_log_stop; 1979 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1980 kml->listener.name = name; 1981 1982 if (s->kvm_dirty_ring_size) { 1983 kml->listener.log_sync_global = kvm_log_sync_global; 1984 } else { 1985 kml->listener.log_sync = kvm_log_sync; 1986 kml->listener.log_clear = kvm_log_clear; 1987 } 1988 1989 memory_listener_register(&kml->listener, as); 1990 1991 for (i = 0; i < s->nr_as; ++i) { 1992 if (!s->as[i].as) { 1993 s->as[i].as = as; 1994 s->as[i].ml = kml; 1995 break; 1996 } 1997 } 1998 } 1999 2000 static MemoryListener kvm_io_listener = { 2001 .name = "kvm-io", 2002 .coalesced_io_add = kvm_coalesce_pio_add, 2003 .coalesced_io_del = kvm_coalesce_pio_del, 2004 .eventfd_add = kvm_io_ioeventfd_add, 2005 .eventfd_del = kvm_io_ioeventfd_del, 2006 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 2007 }; 2008 2009 int kvm_set_irq(KVMState *s, int irq, int level) 2010 { 2011 struct kvm_irq_level event; 2012 int ret; 2013 2014 assert(kvm_async_interrupts_enabled()); 2015 2016 event.level = level; 2017 event.irq = irq; 2018 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 2019 if (ret < 0) { 2020 perror("kvm_set_irq"); 2021 abort(); 2022 } 2023 2024 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 2025 } 2026 2027 #ifdef KVM_CAP_IRQ_ROUTING 2028 typedef struct KVMMSIRoute { 2029 struct kvm_irq_routing_entry kroute; 2030 QTAILQ_ENTRY(KVMMSIRoute) entry; 2031 } KVMMSIRoute; 2032 2033 static void set_gsi(KVMState *s, unsigned int gsi) 2034 { 2035 set_bit(gsi, s->used_gsi_bitmap); 2036 } 2037 2038 static void clear_gsi(KVMState *s, unsigned int gsi) 2039 { 2040 clear_bit(gsi, s->used_gsi_bitmap); 2041 } 2042 2043 void kvm_init_irq_routing(KVMState *s) 2044 { 2045 int gsi_count; 2046 2047 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2048 if (gsi_count > 0) { 2049 /* Round up so we can search ints using ffs */ 2050 s->used_gsi_bitmap = bitmap_new(gsi_count); 2051 s->gsi_count = gsi_count; 2052 } 2053 2054 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2055 s->nr_allocated_irq_routes = 0; 2056 2057 kvm_arch_init_irq_routing(s); 2058 } 2059 2060 void kvm_irqchip_commit_routes(KVMState *s) 2061 { 2062 int ret; 2063 2064 if (kvm_gsi_direct_mapping()) { 2065 return; 2066 } 2067 2068 if (!kvm_gsi_routing_enabled()) { 2069 return; 2070 } 2071 2072 s->irq_routes->flags = 0; 2073 trace_kvm_irqchip_commit_routes(); 2074 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2075 assert(ret == 0); 2076 } 2077 2078 void kvm_add_routing_entry(KVMState *s, 2079 struct kvm_irq_routing_entry *entry) 2080 { 2081 struct kvm_irq_routing_entry *new; 2082 int n, size; 2083 2084 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2085 n = s->nr_allocated_irq_routes * 2; 2086 if (n < 64) { 2087 n = 64; 2088 } 2089 size = sizeof(struct kvm_irq_routing); 2090 size += n * sizeof(*new); 2091 s->irq_routes = g_realloc(s->irq_routes, size); 2092 s->nr_allocated_irq_routes = n; 2093 } 2094 n = s->irq_routes->nr++; 2095 new = &s->irq_routes->entries[n]; 2096 2097 *new = *entry; 2098 2099 set_gsi(s, entry->gsi); 2100 } 2101 2102 static int kvm_update_routing_entry(KVMState *s, 2103 struct kvm_irq_routing_entry *new_entry) 2104 { 2105 struct kvm_irq_routing_entry *entry; 2106 int n; 2107 2108 for (n = 0; n < s->irq_routes->nr; n++) { 2109 entry = &s->irq_routes->entries[n]; 2110 if (entry->gsi != new_entry->gsi) { 2111 continue; 2112 } 2113 2114 if(!memcmp(entry, new_entry, sizeof *entry)) { 2115 return 0; 2116 } 2117 2118 *entry = *new_entry; 2119 2120 return 0; 2121 } 2122 2123 return -ESRCH; 2124 } 2125 2126 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2127 { 2128 struct kvm_irq_routing_entry e = {}; 2129 2130 assert(pin < s->gsi_count); 2131 2132 e.gsi = irq; 2133 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2134 e.flags = 0; 2135 e.u.irqchip.irqchip = irqchip; 2136 e.u.irqchip.pin = pin; 2137 kvm_add_routing_entry(s, &e); 2138 } 2139 2140 void kvm_irqchip_release_virq(KVMState *s, int virq) 2141 { 2142 struct kvm_irq_routing_entry *e; 2143 int i; 2144 2145 if (kvm_gsi_direct_mapping()) { 2146 return; 2147 } 2148 2149 for (i = 0; i < s->irq_routes->nr; i++) { 2150 e = &s->irq_routes->entries[i]; 2151 if (e->gsi == virq) { 2152 s->irq_routes->nr--; 2153 *e = s->irq_routes->entries[s->irq_routes->nr]; 2154 } 2155 } 2156 clear_gsi(s, virq); 2157 kvm_arch_release_virq_post(virq); 2158 trace_kvm_irqchip_release_virq(virq); 2159 } 2160 2161 void kvm_irqchip_add_change_notifier(Notifier *n) 2162 { 2163 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2164 } 2165 2166 void kvm_irqchip_remove_change_notifier(Notifier *n) 2167 { 2168 notifier_remove(n); 2169 } 2170 2171 void kvm_irqchip_change_notify(void) 2172 { 2173 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2174 } 2175 2176 int kvm_irqchip_get_virq(KVMState *s) 2177 { 2178 int next_virq; 2179 2180 /* Return the lowest unused GSI in the bitmap */ 2181 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2182 if (next_virq >= s->gsi_count) { 2183 return -ENOSPC; 2184 } else { 2185 return next_virq; 2186 } 2187 } 2188 2189 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2190 { 2191 struct kvm_msi msi; 2192 2193 msi.address_lo = (uint32_t)msg.address; 2194 msi.address_hi = msg.address >> 32; 2195 msi.data = le32_to_cpu(msg.data); 2196 msi.flags = 0; 2197 memset(msi.pad, 0, sizeof(msi.pad)); 2198 2199 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2200 } 2201 2202 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2203 { 2204 struct kvm_irq_routing_entry kroute = {}; 2205 int virq; 2206 KVMState *s = c->s; 2207 MSIMessage msg = {0, 0}; 2208 2209 if (pci_available && dev) { 2210 msg = pci_get_msi_message(dev, vector); 2211 } 2212 2213 if (kvm_gsi_direct_mapping()) { 2214 return kvm_arch_msi_data_to_gsi(msg.data); 2215 } 2216 2217 if (!kvm_gsi_routing_enabled()) { 2218 return -ENOSYS; 2219 } 2220 2221 virq = kvm_irqchip_get_virq(s); 2222 if (virq < 0) { 2223 return virq; 2224 } 2225 2226 kroute.gsi = virq; 2227 kroute.type = KVM_IRQ_ROUTING_MSI; 2228 kroute.flags = 0; 2229 kroute.u.msi.address_lo = (uint32_t)msg.address; 2230 kroute.u.msi.address_hi = msg.address >> 32; 2231 kroute.u.msi.data = le32_to_cpu(msg.data); 2232 if (pci_available && kvm_msi_devid_required()) { 2233 kroute.flags = KVM_MSI_VALID_DEVID; 2234 kroute.u.msi.devid = pci_requester_id(dev); 2235 } 2236 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2237 kvm_irqchip_release_virq(s, virq); 2238 return -EINVAL; 2239 } 2240 2241 if (s->irq_routes->nr < s->gsi_count) { 2242 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2243 vector, virq); 2244 2245 kvm_add_routing_entry(s, &kroute); 2246 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2247 c->changes++; 2248 } else { 2249 kvm_irqchip_release_virq(s, virq); 2250 return -ENOSPC; 2251 } 2252 2253 return virq; 2254 } 2255 2256 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2257 PCIDevice *dev) 2258 { 2259 struct kvm_irq_routing_entry kroute = {}; 2260 2261 if (kvm_gsi_direct_mapping()) { 2262 return 0; 2263 } 2264 2265 if (!kvm_irqchip_in_kernel()) { 2266 return -ENOSYS; 2267 } 2268 2269 kroute.gsi = virq; 2270 kroute.type = KVM_IRQ_ROUTING_MSI; 2271 kroute.flags = 0; 2272 kroute.u.msi.address_lo = (uint32_t)msg.address; 2273 kroute.u.msi.address_hi = msg.address >> 32; 2274 kroute.u.msi.data = le32_to_cpu(msg.data); 2275 if (pci_available && kvm_msi_devid_required()) { 2276 kroute.flags = KVM_MSI_VALID_DEVID; 2277 kroute.u.msi.devid = pci_requester_id(dev); 2278 } 2279 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2280 return -EINVAL; 2281 } 2282 2283 trace_kvm_irqchip_update_msi_route(virq); 2284 2285 return kvm_update_routing_entry(s, &kroute); 2286 } 2287 2288 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2289 EventNotifier *resample, int virq, 2290 bool assign) 2291 { 2292 int fd = event_notifier_get_fd(event); 2293 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2294 2295 struct kvm_irqfd irqfd = { 2296 .fd = fd, 2297 .gsi = virq, 2298 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2299 }; 2300 2301 if (rfd != -1) { 2302 assert(assign); 2303 if (kvm_irqchip_is_split()) { 2304 /* 2305 * When the slow irqchip (e.g. IOAPIC) is in the 2306 * userspace, KVM kernel resamplefd will not work because 2307 * the EOI of the interrupt will be delivered to userspace 2308 * instead, so the KVM kernel resamplefd kick will be 2309 * skipped. The userspace here mimics what the kernel 2310 * provides with resamplefd, remember the resamplefd and 2311 * kick it when we receive EOI of this IRQ. 2312 * 2313 * This is hackery because IOAPIC is mostly bypassed 2314 * (except EOI broadcasts) when irqfd is used. However 2315 * this can bring much performance back for split irqchip 2316 * with INTx IRQs (for VFIO, this gives 93% perf of the 2317 * full fast path, which is 46% perf boost comparing to 2318 * the INTx slow path). 2319 */ 2320 kvm_resample_fd_insert(virq, resample); 2321 } else { 2322 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2323 irqfd.resamplefd = rfd; 2324 } 2325 } else if (!assign) { 2326 if (kvm_irqchip_is_split()) { 2327 kvm_resample_fd_remove(virq); 2328 } 2329 } 2330 2331 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2332 } 2333 2334 #else /* !KVM_CAP_IRQ_ROUTING */ 2335 2336 void kvm_init_irq_routing(KVMState *s) 2337 { 2338 } 2339 2340 void kvm_irqchip_release_virq(KVMState *s, int virq) 2341 { 2342 } 2343 2344 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2345 { 2346 abort(); 2347 } 2348 2349 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2350 { 2351 return -ENOSYS; 2352 } 2353 2354 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2355 { 2356 return -ENOSYS; 2357 } 2358 2359 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2360 { 2361 return -ENOSYS; 2362 } 2363 2364 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2365 EventNotifier *resample, int virq, 2366 bool assign) 2367 { 2368 abort(); 2369 } 2370 2371 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2372 { 2373 return -ENOSYS; 2374 } 2375 #endif /* !KVM_CAP_IRQ_ROUTING */ 2376 2377 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2378 EventNotifier *rn, int virq) 2379 { 2380 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2381 } 2382 2383 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2384 int virq) 2385 { 2386 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2387 } 2388 2389 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2390 EventNotifier *rn, qemu_irq irq) 2391 { 2392 gpointer key, gsi; 2393 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2394 2395 if (!found) { 2396 return -ENXIO; 2397 } 2398 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2399 } 2400 2401 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2402 qemu_irq irq) 2403 { 2404 gpointer key, gsi; 2405 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2406 2407 if (!found) { 2408 return -ENXIO; 2409 } 2410 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2411 } 2412 2413 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2414 { 2415 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2416 } 2417 2418 static void kvm_irqchip_create(KVMState *s) 2419 { 2420 int ret; 2421 2422 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2423 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2424 ; 2425 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2426 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2427 if (ret < 0) { 2428 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2429 exit(1); 2430 } 2431 } else { 2432 return; 2433 } 2434 2435 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2436 fprintf(stderr, "kvm: irqfd not implemented\n"); 2437 exit(1); 2438 } 2439 2440 /* First probe and see if there's a arch-specific hook to create the 2441 * in-kernel irqchip for us */ 2442 ret = kvm_arch_irqchip_create(s); 2443 if (ret == 0) { 2444 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2445 error_report("Split IRQ chip mode not supported."); 2446 exit(1); 2447 } else { 2448 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2449 } 2450 } 2451 if (ret < 0) { 2452 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2453 exit(1); 2454 } 2455 2456 kvm_kernel_irqchip = true; 2457 /* If we have an in-kernel IRQ chip then we must have asynchronous 2458 * interrupt delivery (though the reverse is not necessarily true) 2459 */ 2460 kvm_async_interrupts_allowed = true; 2461 kvm_halt_in_kernel_allowed = true; 2462 2463 kvm_init_irq_routing(s); 2464 2465 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2466 } 2467 2468 /* Find number of supported CPUs using the recommended 2469 * procedure from the kernel API documentation to cope with 2470 * older kernels that may be missing capabilities. 2471 */ 2472 static int kvm_recommended_vcpus(KVMState *s) 2473 { 2474 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2475 return (ret) ? ret : 4; 2476 } 2477 2478 static int kvm_max_vcpus(KVMState *s) 2479 { 2480 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS); 2481 return (ret) ? ret : kvm_recommended_vcpus(s); 2482 } 2483 2484 static int kvm_max_vcpu_id(KVMState *s) 2485 { 2486 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2487 return (ret) ? ret : kvm_max_vcpus(s); 2488 } 2489 2490 bool kvm_vcpu_id_is_valid(int vcpu_id) 2491 { 2492 KVMState *s = KVM_STATE(current_accel()); 2493 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2494 } 2495 2496 bool kvm_dirty_ring_enabled(void) 2497 { 2498 return kvm_state && kvm_state->kvm_dirty_ring_size; 2499 } 2500 2501 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2502 strList *names, strList *targets, Error **errp); 2503 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2504 2505 uint32_t kvm_dirty_ring_size(void) 2506 { 2507 return kvm_state->kvm_dirty_ring_size; 2508 } 2509 2510 static int do_kvm_create_vm(KVMState *s, int type) 2511 { 2512 int ret; 2513 2514 do { 2515 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2516 } while (ret == -EINTR); 2517 2518 if (ret < 0) { 2519 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2520 2521 #ifdef TARGET_S390X 2522 if (ret == -EINVAL) { 2523 error_printf("Host kernel setup problem detected." 2524 " Please verify:\n"); 2525 error_printf("- for kernels supporting the" 2526 " switch_amode or user_mode parameters, whether"); 2527 error_printf(" user space is running in primary address space\n"); 2528 error_printf("- for kernels supporting the vm.allocate_pgste" 2529 " sysctl, whether it is enabled\n"); 2530 } 2531 #elif defined(TARGET_PPC) 2532 if (ret == -EINVAL) { 2533 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2534 (type == 2) ? "pr" : "hv"); 2535 } 2536 #endif 2537 } 2538 2539 return ret; 2540 } 2541 2542 static int find_kvm_machine_type(MachineState *ms) 2543 { 2544 MachineClass *mc = MACHINE_GET_CLASS(ms); 2545 int type; 2546 2547 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2548 g_autofree char *kvm_type; 2549 kvm_type = object_property_get_str(OBJECT(current_machine), 2550 "kvm-type", 2551 &error_abort); 2552 type = mc->kvm_type(ms, kvm_type); 2553 } else if (mc->kvm_type) { 2554 type = mc->kvm_type(ms, NULL); 2555 } else { 2556 type = kvm_arch_get_default_type(ms); 2557 } 2558 return type; 2559 } 2560 2561 static int kvm_setup_dirty_ring(KVMState *s) 2562 { 2563 uint64_t dirty_log_manual_caps; 2564 int ret; 2565 2566 /* 2567 * Enable KVM dirty ring if supported, otherwise fall back to 2568 * dirty logging mode 2569 */ 2570 ret = kvm_dirty_ring_init(s); 2571 if (ret < 0) { 2572 return ret; 2573 } 2574 2575 /* 2576 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2577 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2578 * page is wr-protected initially, which is against how kvm dirty ring is 2579 * usage - kvm dirty ring requires all pages are wr-protected at the very 2580 * beginning. Enabling this feature for dirty ring causes data corruption. 2581 * 2582 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2583 * we may expect a higher stall time when starting the migration. In the 2584 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2585 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2586 * guest pages. 2587 */ 2588 if (!s->kvm_dirty_ring_size) { 2589 dirty_log_manual_caps = 2590 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2591 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2592 KVM_DIRTY_LOG_INITIALLY_SET); 2593 s->manual_dirty_log_protect = dirty_log_manual_caps; 2594 if (dirty_log_manual_caps) { 2595 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2596 dirty_log_manual_caps); 2597 if (ret) { 2598 warn_report("Trying to enable capability %"PRIu64" of " 2599 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2600 "Falling back to the legacy mode. ", 2601 dirty_log_manual_caps); 2602 s->manual_dirty_log_protect = 0; 2603 } 2604 } 2605 } 2606 2607 return 0; 2608 } 2609 2610 static int kvm_init(AccelState *as, MachineState *ms) 2611 { 2612 MachineClass *mc = MACHINE_GET_CLASS(ms); 2613 static const char upgrade_note[] = 2614 "Please upgrade to at least kernel 4.5.\n"; 2615 const struct { 2616 const char *name; 2617 int num; 2618 } num_cpus[] = { 2619 { "SMP", ms->smp.cpus }, 2620 { "hotpluggable", ms->smp.max_cpus }, 2621 { /* end of list */ } 2622 }, *nc = num_cpus; 2623 int soft_vcpus_limit, hard_vcpus_limit; 2624 KVMState *s = KVM_STATE(as); 2625 const KVMCapabilityInfo *missing_cap; 2626 int ret; 2627 int type; 2628 2629 qemu_mutex_init(&kml_slots_lock); 2630 2631 /* 2632 * On systems where the kernel can support different base page 2633 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2634 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2635 * page size for the system though. 2636 */ 2637 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2638 2639 s->sigmask_len = 8; 2640 accel_blocker_init(); 2641 2642 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2643 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2644 #endif 2645 QLIST_INIT(&s->kvm_parked_vcpus); 2646 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2647 if (s->fd == -1) { 2648 error_report("Could not access KVM kernel module: %m"); 2649 ret = -errno; 2650 goto err; 2651 } 2652 2653 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2654 if (ret < KVM_API_VERSION) { 2655 if (ret >= 0) { 2656 ret = -EINVAL; 2657 } 2658 error_report("kvm version too old"); 2659 goto err; 2660 } 2661 2662 if (ret > KVM_API_VERSION) { 2663 ret = -EINVAL; 2664 error_report("kvm version not supported"); 2665 goto err; 2666 } 2667 2668 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2669 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2670 2671 /* If unspecified, use the default value */ 2672 if (!s->nr_slots_max) { 2673 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2674 } 2675 2676 type = find_kvm_machine_type(ms); 2677 if (type < 0) { 2678 ret = -EINVAL; 2679 goto err; 2680 } 2681 2682 ret = do_kvm_create_vm(s, type); 2683 if (ret < 0) { 2684 goto err; 2685 } 2686 2687 s->vmfd = ret; 2688 2689 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2690 if (s->nr_as <= 1) { 2691 s->nr_as = 1; 2692 } 2693 s->as = g_new0(struct KVMAs, s->nr_as); 2694 2695 /* check the vcpu limits */ 2696 soft_vcpus_limit = kvm_recommended_vcpus(s); 2697 hard_vcpus_limit = kvm_max_vcpus(s); 2698 2699 while (nc->name) { 2700 if (nc->num > soft_vcpus_limit) { 2701 warn_report("Number of %s cpus requested (%d) exceeds " 2702 "the recommended cpus supported by KVM (%d)", 2703 nc->name, nc->num, soft_vcpus_limit); 2704 2705 if (nc->num > hard_vcpus_limit) { 2706 error_report("Number of %s cpus requested (%d) exceeds " 2707 "the maximum cpus supported by KVM (%d)", 2708 nc->name, nc->num, hard_vcpus_limit); 2709 exit(1); 2710 } 2711 } 2712 nc++; 2713 } 2714 2715 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2716 if (!missing_cap) { 2717 missing_cap = 2718 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2719 } 2720 if (missing_cap) { 2721 ret = -EINVAL; 2722 error_report("kvm does not support %s", missing_cap->name); 2723 error_printf("%s", upgrade_note); 2724 goto err; 2725 } 2726 2727 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2728 s->coalesced_pio = s->coalesced_mmio && 2729 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2730 2731 ret = kvm_setup_dirty_ring(s); 2732 if (ret < 0) { 2733 goto err; 2734 } 2735 2736 #ifdef KVM_CAP_VCPU_EVENTS 2737 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2738 #endif 2739 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2740 2741 s->irq_set_ioctl = KVM_IRQ_LINE; 2742 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2743 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2744 } 2745 2746 kvm_readonly_mem_allowed = 2747 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2748 2749 kvm_resamplefds_allowed = 2750 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2751 2752 kvm_vm_attributes_allowed = 2753 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2754 2755 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2756 kvm_has_guest_debug = 2757 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2758 #endif 2759 2760 kvm_sstep_flags = 0; 2761 if (kvm_has_guest_debug) { 2762 kvm_sstep_flags = SSTEP_ENABLE; 2763 2764 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2765 int guest_debug_flags = 2766 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2767 2768 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2769 kvm_sstep_flags |= SSTEP_NOIRQ; 2770 } 2771 #endif 2772 } 2773 2774 kvm_state = s; 2775 2776 ret = kvm_arch_init(ms, s); 2777 if (ret < 0) { 2778 goto err; 2779 } 2780 2781 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2782 kvm_guest_memfd_supported = 2783 kvm_vm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2784 kvm_vm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2785 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2786 kvm_pre_fault_memory_supported = kvm_vm_check_extension(s, KVM_CAP_PRE_FAULT_MEMORY); 2787 2788 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2789 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2790 } 2791 2792 qemu_register_reset(kvm_unpoison_all, NULL); 2793 2794 if (s->kernel_irqchip_allowed) { 2795 kvm_irqchip_create(s); 2796 } 2797 2798 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2799 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2800 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2801 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2802 2803 kvm_memory_listener_register(s, &s->memory_listener, 2804 &address_space_memory, 0, "kvm-memory"); 2805 memory_listener_register(&kvm_io_listener, 2806 &address_space_io); 2807 2808 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2809 if (!s->sync_mmu) { 2810 ret = ram_block_discard_disable(true); 2811 assert(!ret); 2812 } 2813 2814 if (s->kvm_dirty_ring_size) { 2815 kvm_dirty_ring_reaper_init(s); 2816 } 2817 2818 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2819 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2820 query_stats_schemas_cb); 2821 } 2822 2823 return 0; 2824 2825 err: 2826 assert(ret < 0); 2827 if (s->vmfd >= 0) { 2828 close(s->vmfd); 2829 } 2830 if (s->fd != -1) { 2831 close(s->fd); 2832 } 2833 g_free(s->as); 2834 g_free(s->memory_listener.slots); 2835 2836 return ret; 2837 } 2838 2839 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2840 { 2841 s->sigmask_len = sigmask_len; 2842 } 2843 2844 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2845 int size, uint32_t count) 2846 { 2847 int i; 2848 uint8_t *ptr = data; 2849 2850 for (i = 0; i < count; i++) { 2851 address_space_rw(&address_space_io, port, attrs, 2852 ptr, size, 2853 direction == KVM_EXIT_IO_OUT); 2854 ptr += size; 2855 } 2856 } 2857 2858 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2859 { 2860 int i; 2861 2862 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2863 run->internal.suberror); 2864 2865 for (i = 0; i < run->internal.ndata; ++i) { 2866 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2867 i, (uint64_t)run->internal.data[i]); 2868 } 2869 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2870 fprintf(stderr, "emulation failure\n"); 2871 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2872 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2873 return EXCP_INTERRUPT; 2874 } 2875 } 2876 /* FIXME: Should trigger a qmp message to let management know 2877 * something went wrong. 2878 */ 2879 return -1; 2880 } 2881 2882 void kvm_flush_coalesced_mmio_buffer(void) 2883 { 2884 KVMState *s = kvm_state; 2885 2886 if (!s || s->coalesced_flush_in_progress) { 2887 return; 2888 } 2889 2890 s->coalesced_flush_in_progress = true; 2891 2892 if (s->coalesced_mmio_ring) { 2893 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2894 while (ring->first != ring->last) { 2895 struct kvm_coalesced_mmio *ent; 2896 2897 ent = &ring->coalesced_mmio[ring->first]; 2898 2899 if (ent->pio == 1) { 2900 address_space_write(&address_space_io, ent->phys_addr, 2901 MEMTXATTRS_UNSPECIFIED, ent->data, 2902 ent->len); 2903 } else { 2904 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2905 } 2906 smp_wmb(); 2907 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2908 } 2909 } 2910 2911 s->coalesced_flush_in_progress = false; 2912 } 2913 2914 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2915 { 2916 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2917 Error *err = NULL; 2918 int ret = kvm_arch_get_registers(cpu, &err); 2919 if (ret) { 2920 if (err) { 2921 error_reportf_err(err, "Failed to synchronize CPU state: "); 2922 } else { 2923 error_report("Failed to get registers: %s", strerror(-ret)); 2924 } 2925 2926 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2927 vm_stop(RUN_STATE_INTERNAL_ERROR); 2928 } 2929 2930 cpu->vcpu_dirty = true; 2931 } 2932 } 2933 2934 void kvm_cpu_synchronize_state(CPUState *cpu) 2935 { 2936 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2937 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2938 } 2939 } 2940 2941 static bool kvm_cpu_synchronize_put(CPUState *cpu, KvmPutState state, 2942 const char *desc) 2943 { 2944 Error *err = NULL; 2945 int ret = kvm_arch_put_registers(cpu, state, &err); 2946 if (ret) { 2947 if (err) { 2948 error_reportf_err(err, "Restoring resisters %s: ", desc); 2949 } else { 2950 error_report("Failed to put registers %s: %s", desc, 2951 strerror(-ret)); 2952 } 2953 return false; 2954 } 2955 2956 cpu->vcpu_dirty = false; 2957 2958 return true; 2959 } 2960 2961 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2962 { 2963 if (!kvm_cpu_synchronize_put(cpu, KVM_PUT_RESET_STATE, "after reset")) { 2964 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2965 vm_stop(RUN_STATE_INTERNAL_ERROR); 2966 } 2967 } 2968 2969 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2970 { 2971 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2972 2973 if (cpu == first_cpu) { 2974 kvm_reset_parked_vcpus(kvm_state); 2975 } 2976 } 2977 2978 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2979 { 2980 if (!kvm_cpu_synchronize_put(cpu, KVM_PUT_FULL_STATE, "after init")) { 2981 exit(1); 2982 } 2983 } 2984 2985 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2986 { 2987 if (!kvm_state->guest_state_protected) { 2988 /* 2989 * This runs before the machine_init_done notifiers, and is the last 2990 * opportunity to synchronize the state of confidential guests. 2991 */ 2992 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2993 } 2994 } 2995 2996 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2997 { 2998 cpu->vcpu_dirty = true; 2999 } 3000 3001 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 3002 { 3003 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 3004 } 3005 3006 #ifdef KVM_HAVE_MCE_INJECTION 3007 static __thread void *pending_sigbus_addr; 3008 static __thread int pending_sigbus_code; 3009 static __thread bool have_sigbus_pending; 3010 #endif 3011 3012 static void kvm_cpu_kick(CPUState *cpu) 3013 { 3014 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 3015 } 3016 3017 static void kvm_cpu_kick_self(void) 3018 { 3019 if (kvm_immediate_exit) { 3020 kvm_cpu_kick(current_cpu); 3021 } else { 3022 qemu_cpu_kick_self(); 3023 } 3024 } 3025 3026 static void kvm_eat_signals(CPUState *cpu) 3027 { 3028 struct timespec ts = { 0, 0 }; 3029 siginfo_t siginfo; 3030 sigset_t waitset; 3031 sigset_t chkset; 3032 int r; 3033 3034 if (kvm_immediate_exit) { 3035 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 3036 return; 3037 } 3038 3039 sigemptyset(&waitset); 3040 sigaddset(&waitset, SIG_IPI); 3041 3042 do { 3043 r = sigtimedwait(&waitset, &siginfo, &ts); 3044 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3045 perror("sigtimedwait"); 3046 exit(1); 3047 } 3048 3049 r = sigpending(&chkset); 3050 if (r == -1) { 3051 perror("sigpending"); 3052 exit(1); 3053 } 3054 } while (sigismember(&chkset, SIG_IPI)); 3055 } 3056 3057 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3058 { 3059 MemoryRegionSection section; 3060 ram_addr_t offset; 3061 MemoryRegion *mr; 3062 RAMBlock *rb; 3063 void *addr; 3064 int ret = -EINVAL; 3065 3066 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3067 3068 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3069 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3070 return ret; 3071 } 3072 3073 if (!size) { 3074 return ret; 3075 } 3076 3077 section = memory_region_find(get_system_memory(), start, size); 3078 mr = section.mr; 3079 if (!mr) { 3080 /* 3081 * Ignore converting non-assigned region to shared. 3082 * 3083 * TDX requires vMMIO region to be shared to inject #VE to guest. 3084 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3085 * and vIO-APIC 0xFEC00000 4K page. 3086 * OVMF assigns 32bit PCI MMIO region to 3087 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3088 */ 3089 if (!to_private) { 3090 return 0; 3091 } 3092 return ret; 3093 } 3094 3095 if (!memory_region_has_guest_memfd(mr)) { 3096 /* 3097 * Because vMMIO region must be shared, guest TD may convert vMMIO 3098 * region to shared explicitly. Don't complain such case. See 3099 * memory_region_type() for checking if the region is MMIO region. 3100 */ 3101 if (!to_private && 3102 !memory_region_is_ram(mr) && 3103 !memory_region_is_ram_device(mr) && 3104 !memory_region_is_rom(mr) && 3105 !memory_region_is_romd(mr)) { 3106 ret = 0; 3107 } else { 3108 error_report("Convert non guest_memfd backed memory region " 3109 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3110 start, size, to_private ? "private" : "shared"); 3111 } 3112 goto out_unref; 3113 } 3114 3115 if (to_private) { 3116 ret = kvm_set_memory_attributes_private(start, size); 3117 } else { 3118 ret = kvm_set_memory_attributes_shared(start, size); 3119 } 3120 if (ret) { 3121 goto out_unref; 3122 } 3123 3124 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3125 rb = qemu_ram_block_from_host(addr, false, &offset); 3126 3127 ret = ram_block_attributes_state_change(RAM_BLOCK_ATTRIBUTES(mr->rdm), 3128 offset, size, to_private); 3129 if (ret) { 3130 error_report("Failed to notify the listener the state change of " 3131 "(0x%"HWADDR_PRIx" + 0x%"HWADDR_PRIx") to %s", 3132 start, size, to_private ? "private" : "shared"); 3133 goto out_unref; 3134 } 3135 3136 if (to_private) { 3137 if (rb->page_size != qemu_real_host_page_size()) { 3138 /* 3139 * shared memory is backed by hugetlb, which is supposed to be 3140 * pre-allocated and doesn't need to be discarded 3141 */ 3142 goto out_unref; 3143 } 3144 ret = ram_block_discard_range(rb, offset, size); 3145 } else { 3146 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3147 } 3148 3149 out_unref: 3150 memory_region_unref(mr); 3151 return ret; 3152 } 3153 3154 int kvm_cpu_exec(CPUState *cpu) 3155 { 3156 struct kvm_run *run = cpu->kvm_run; 3157 int ret, run_ret; 3158 3159 trace_kvm_cpu_exec(); 3160 3161 if (kvm_arch_process_async_events(cpu)) { 3162 return EXCP_HLT; 3163 } 3164 3165 bql_unlock(); 3166 cpu_exec_start(cpu); 3167 3168 do { 3169 MemTxAttrs attrs; 3170 3171 if (cpu->vcpu_dirty) { 3172 if (!kvm_cpu_synchronize_put(cpu, KVM_PUT_RUNTIME_STATE, 3173 "at runtime")) { 3174 ret = -1; 3175 break; 3176 } 3177 } 3178 3179 kvm_arch_pre_run(cpu, run); 3180 /* Corresponding store-release is in cpu_exit. */ 3181 if (qatomic_load_acquire(&cpu->exit_request)) { 3182 trace_kvm_interrupt_exit_request(); 3183 /* 3184 * KVM requires us to reenter the kernel after IO exits to complete 3185 * instruction emulation. This self-signal will ensure that we 3186 * leave ASAP again. 3187 */ 3188 kvm_cpu_kick_self(); 3189 } 3190 3191 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3192 3193 /* 3194 * After writing cpu->exit_request, cpu_exit() sends a signal that writes 3195 * kvm->run->immediate_exit. The signal is already happening after the 3196 * write to cpu->exit_request so, if KVM read kvm->run->immediate_exit 3197 * as true, cpu->exit_request will always read as true. 3198 */ 3199 3200 attrs = kvm_arch_post_run(cpu, run); 3201 3202 #ifdef KVM_HAVE_MCE_INJECTION 3203 if (unlikely(have_sigbus_pending)) { 3204 bql_lock(); 3205 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3206 pending_sigbus_addr); 3207 have_sigbus_pending = false; 3208 bql_unlock(); 3209 } 3210 #endif 3211 3212 if (run_ret < 0) { 3213 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3214 trace_kvm_io_window_exit(); 3215 kvm_eat_signals(cpu); 3216 ret = EXCP_INTERRUPT; 3217 break; 3218 } 3219 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3220 fprintf(stderr, "error: kvm run failed %s\n", 3221 strerror(-run_ret)); 3222 #ifdef TARGET_PPC 3223 if (run_ret == -EBUSY) { 3224 fprintf(stderr, 3225 "This is probably because your SMT is enabled.\n" 3226 "VCPU can only run on primary threads with all " 3227 "secondary threads offline.\n"); 3228 } 3229 #endif 3230 ret = -1; 3231 break; 3232 } 3233 } 3234 3235 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3236 switch (run->exit_reason) { 3237 case KVM_EXIT_IO: 3238 /* Called outside BQL */ 3239 kvm_handle_io(run->io.port, attrs, 3240 (uint8_t *)run + run->io.data_offset, 3241 run->io.direction, 3242 run->io.size, 3243 run->io.count); 3244 ret = 0; 3245 break; 3246 case KVM_EXIT_MMIO: 3247 /* Called outside BQL */ 3248 address_space_rw(&address_space_memory, 3249 run->mmio.phys_addr, attrs, 3250 run->mmio.data, 3251 run->mmio.len, 3252 run->mmio.is_write); 3253 ret = 0; 3254 break; 3255 case KVM_EXIT_IRQ_WINDOW_OPEN: 3256 ret = EXCP_INTERRUPT; 3257 break; 3258 case KVM_EXIT_SHUTDOWN: 3259 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3260 ret = EXCP_INTERRUPT; 3261 break; 3262 case KVM_EXIT_UNKNOWN: 3263 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3264 (uint64_t)run->hw.hardware_exit_reason); 3265 ret = -1; 3266 break; 3267 case KVM_EXIT_INTERNAL_ERROR: 3268 ret = kvm_handle_internal_error(cpu, run); 3269 break; 3270 case KVM_EXIT_DIRTY_RING_FULL: 3271 /* 3272 * We shouldn't continue if the dirty ring of this vcpu is 3273 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3274 */ 3275 trace_kvm_dirty_ring_full(cpu->cpu_index); 3276 bql_lock(); 3277 /* 3278 * We throttle vCPU by making it sleep once it exit from kernel 3279 * due to dirty ring full. In the dirtylimit scenario, reaping 3280 * all vCPUs after a single vCPU dirty ring get full result in 3281 * the miss of sleep, so just reap the ring-fulled vCPU. 3282 */ 3283 if (dirtylimit_in_service()) { 3284 kvm_dirty_ring_reap(kvm_state, cpu); 3285 } else { 3286 kvm_dirty_ring_reap(kvm_state, NULL); 3287 } 3288 bql_unlock(); 3289 dirtylimit_vcpu_execute(cpu); 3290 ret = 0; 3291 break; 3292 case KVM_EXIT_SYSTEM_EVENT: 3293 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3294 switch (run->system_event.type) { 3295 case KVM_SYSTEM_EVENT_SHUTDOWN: 3296 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3297 ret = EXCP_INTERRUPT; 3298 break; 3299 case KVM_SYSTEM_EVENT_RESET: 3300 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3301 ret = EXCP_INTERRUPT; 3302 break; 3303 case KVM_SYSTEM_EVENT_CRASH: 3304 kvm_cpu_synchronize_state(cpu); 3305 bql_lock(); 3306 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3307 bql_unlock(); 3308 ret = 0; 3309 break; 3310 default: 3311 ret = kvm_arch_handle_exit(cpu, run); 3312 break; 3313 } 3314 break; 3315 case KVM_EXIT_MEMORY_FAULT: 3316 trace_kvm_memory_fault(run->memory_fault.gpa, 3317 run->memory_fault.size, 3318 run->memory_fault.flags); 3319 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3320 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3321 (uint64_t)run->memory_fault.flags); 3322 ret = -1; 3323 break; 3324 } 3325 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3326 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3327 break; 3328 default: 3329 ret = kvm_arch_handle_exit(cpu, run); 3330 break; 3331 } 3332 } while (ret == 0); 3333 3334 cpu_exec_end(cpu); 3335 bql_lock(); 3336 3337 if (ret < 0) { 3338 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3339 vm_stop(RUN_STATE_INTERNAL_ERROR); 3340 } 3341 3342 return ret; 3343 } 3344 3345 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3346 { 3347 int ret; 3348 void *arg; 3349 va_list ap; 3350 3351 va_start(ap, type); 3352 arg = va_arg(ap, void *); 3353 va_end(ap); 3354 3355 trace_kvm_ioctl(type, arg); 3356 ret = ioctl(s->fd, type, arg); 3357 if (ret == -1) { 3358 ret = -errno; 3359 } 3360 return ret; 3361 } 3362 3363 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3364 { 3365 int ret; 3366 void *arg; 3367 va_list ap; 3368 3369 va_start(ap, type); 3370 arg = va_arg(ap, void *); 3371 va_end(ap); 3372 3373 trace_kvm_vm_ioctl(type, arg); 3374 accel_ioctl_begin(); 3375 ret = ioctl(s->vmfd, type, arg); 3376 if (ret == -1) { 3377 ret = -errno; 3378 } 3379 accel_ioctl_end(); 3380 return ret; 3381 } 3382 3383 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3384 { 3385 int ret; 3386 void *arg; 3387 va_list ap; 3388 3389 va_start(ap, type); 3390 arg = va_arg(ap, void *); 3391 va_end(ap); 3392 3393 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3394 accel_cpu_ioctl_begin(cpu); 3395 ret = ioctl(cpu->kvm_fd, type, arg); 3396 accel_cpu_ioctl_end(cpu); 3397 if (ret == -1) { 3398 ret = -errno; 3399 } 3400 return ret; 3401 } 3402 3403 int kvm_device_ioctl(int fd, unsigned long type, ...) 3404 { 3405 int ret; 3406 void *arg; 3407 va_list ap; 3408 3409 va_start(ap, type); 3410 arg = va_arg(ap, void *); 3411 va_end(ap); 3412 3413 trace_kvm_device_ioctl(fd, type, arg); 3414 accel_ioctl_begin(); 3415 ret = ioctl(fd, type, arg); 3416 if (ret == -1) { 3417 ret = -errno; 3418 } 3419 accel_ioctl_end(); 3420 return ret; 3421 } 3422 3423 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3424 { 3425 int ret; 3426 struct kvm_device_attr attribute = { 3427 .group = group, 3428 .attr = attr, 3429 }; 3430 3431 if (!kvm_vm_attributes_allowed) { 3432 return 0; 3433 } 3434 3435 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3436 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3437 return ret ? 0 : 1; 3438 } 3439 3440 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3441 { 3442 struct kvm_device_attr attribute = { 3443 .group = group, 3444 .attr = attr, 3445 .flags = 0, 3446 }; 3447 3448 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3449 } 3450 3451 int kvm_device_access(int fd, int group, uint64_t attr, 3452 void *val, bool write, Error **errp) 3453 { 3454 struct kvm_device_attr kvmattr; 3455 int err; 3456 3457 kvmattr.flags = 0; 3458 kvmattr.group = group; 3459 kvmattr.attr = attr; 3460 kvmattr.addr = (uintptr_t)val; 3461 3462 err = kvm_device_ioctl(fd, 3463 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3464 &kvmattr); 3465 if (err < 0) { 3466 error_setg_errno(errp, -err, 3467 "KVM_%s_DEVICE_ATTR failed: Group %d " 3468 "attr 0x%016" PRIx64, 3469 write ? "SET" : "GET", group, attr); 3470 } 3471 return err; 3472 } 3473 3474 bool kvm_has_sync_mmu(void) 3475 { 3476 return kvm_state->sync_mmu; 3477 } 3478 3479 int kvm_has_vcpu_events(void) 3480 { 3481 return kvm_state->vcpu_events; 3482 } 3483 3484 int kvm_max_nested_state_length(void) 3485 { 3486 return kvm_state->max_nested_state_len; 3487 } 3488 3489 int kvm_has_gsi_routing(void) 3490 { 3491 #ifdef KVM_CAP_IRQ_ROUTING 3492 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3493 #else 3494 return false; 3495 #endif 3496 } 3497 3498 bool kvm_arm_supports_user_irq(void) 3499 { 3500 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3501 } 3502 3503 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3504 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3505 { 3506 struct kvm_sw_breakpoint *bp; 3507 3508 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3509 if (bp->pc == pc) { 3510 return bp; 3511 } 3512 } 3513 return NULL; 3514 } 3515 3516 int kvm_sw_breakpoints_active(CPUState *cpu) 3517 { 3518 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3519 } 3520 3521 struct kvm_set_guest_debug_data { 3522 struct kvm_guest_debug dbg; 3523 int err; 3524 }; 3525 3526 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3527 { 3528 struct kvm_set_guest_debug_data *dbg_data = 3529 (struct kvm_set_guest_debug_data *) data.host_ptr; 3530 3531 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3532 &dbg_data->dbg); 3533 } 3534 3535 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3536 { 3537 struct kvm_set_guest_debug_data data; 3538 3539 data.dbg.control = reinject_trap; 3540 3541 if (cpu->singlestep_enabled) { 3542 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3543 3544 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3545 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3546 } 3547 } 3548 kvm_arch_update_guest_debug(cpu, &data.dbg); 3549 3550 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3551 RUN_ON_CPU_HOST_PTR(&data)); 3552 return data.err; 3553 } 3554 3555 bool kvm_supports_guest_debug(void) 3556 { 3557 /* probed during kvm_init() */ 3558 return kvm_has_guest_debug; 3559 } 3560 3561 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3562 { 3563 struct kvm_sw_breakpoint *bp; 3564 int err; 3565 3566 if (type == GDB_BREAKPOINT_SW) { 3567 bp = kvm_find_sw_breakpoint(cpu, addr); 3568 if (bp) { 3569 bp->use_count++; 3570 return 0; 3571 } 3572 3573 bp = g_new(struct kvm_sw_breakpoint, 1); 3574 bp->pc = addr; 3575 bp->use_count = 1; 3576 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3577 if (err) { 3578 g_free(bp); 3579 return err; 3580 } 3581 3582 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3583 } else { 3584 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3585 if (err) { 3586 return err; 3587 } 3588 } 3589 3590 CPU_FOREACH(cpu) { 3591 err = kvm_update_guest_debug(cpu, 0); 3592 if (err) { 3593 return err; 3594 } 3595 } 3596 return 0; 3597 } 3598 3599 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3600 { 3601 struct kvm_sw_breakpoint *bp; 3602 int err; 3603 3604 if (type == GDB_BREAKPOINT_SW) { 3605 bp = kvm_find_sw_breakpoint(cpu, addr); 3606 if (!bp) { 3607 return -ENOENT; 3608 } 3609 3610 if (bp->use_count > 1) { 3611 bp->use_count--; 3612 return 0; 3613 } 3614 3615 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3616 if (err) { 3617 return err; 3618 } 3619 3620 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3621 g_free(bp); 3622 } else { 3623 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3624 if (err) { 3625 return err; 3626 } 3627 } 3628 3629 CPU_FOREACH(cpu) { 3630 err = kvm_update_guest_debug(cpu, 0); 3631 if (err) { 3632 return err; 3633 } 3634 } 3635 return 0; 3636 } 3637 3638 void kvm_remove_all_breakpoints(CPUState *cpu) 3639 { 3640 struct kvm_sw_breakpoint *bp, *next; 3641 KVMState *s = cpu->kvm_state; 3642 CPUState *tmpcpu; 3643 3644 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3645 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3646 /* Try harder to find a CPU that currently sees the breakpoint. */ 3647 CPU_FOREACH(tmpcpu) { 3648 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3649 break; 3650 } 3651 } 3652 } 3653 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3654 g_free(bp); 3655 } 3656 kvm_arch_remove_all_hw_breakpoints(); 3657 3658 CPU_FOREACH(cpu) { 3659 kvm_update_guest_debug(cpu, 0); 3660 } 3661 } 3662 3663 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3664 3665 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3666 { 3667 KVMState *s = kvm_state; 3668 struct kvm_signal_mask *sigmask; 3669 int r; 3670 3671 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3672 3673 sigmask->len = s->sigmask_len; 3674 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3675 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3676 g_free(sigmask); 3677 3678 return r; 3679 } 3680 3681 static void kvm_ipi_signal(int sig) 3682 { 3683 if (current_cpu) { 3684 assert(kvm_immediate_exit); 3685 kvm_cpu_kick(current_cpu); 3686 } 3687 } 3688 3689 void kvm_init_cpu_signals(CPUState *cpu) 3690 { 3691 int r; 3692 sigset_t set; 3693 struct sigaction sigact; 3694 3695 memset(&sigact, 0, sizeof(sigact)); 3696 sigact.sa_handler = kvm_ipi_signal; 3697 sigaction(SIG_IPI, &sigact, NULL); 3698 3699 pthread_sigmask(SIG_BLOCK, NULL, &set); 3700 #if defined KVM_HAVE_MCE_INJECTION 3701 sigdelset(&set, SIGBUS); 3702 pthread_sigmask(SIG_SETMASK, &set, NULL); 3703 #endif 3704 sigdelset(&set, SIG_IPI); 3705 if (kvm_immediate_exit) { 3706 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3707 } else { 3708 r = kvm_set_signal_mask(cpu, &set); 3709 } 3710 if (r) { 3711 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3712 exit(1); 3713 } 3714 } 3715 3716 /* Called asynchronously in VCPU thread. */ 3717 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3718 { 3719 #ifdef KVM_HAVE_MCE_INJECTION 3720 if (have_sigbus_pending) { 3721 return 1; 3722 } 3723 have_sigbus_pending = true; 3724 pending_sigbus_addr = addr; 3725 pending_sigbus_code = code; 3726 qatomic_set(&cpu->exit_request, true); 3727 return 0; 3728 #else 3729 return 1; 3730 #endif 3731 } 3732 3733 /* Called synchronously (via signalfd) in main thread. */ 3734 int kvm_on_sigbus(int code, void *addr) 3735 { 3736 #ifdef KVM_HAVE_MCE_INJECTION 3737 /* Action required MCE kills the process if SIGBUS is blocked. Because 3738 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3739 * we can only get action optional here. 3740 */ 3741 assert(code != BUS_MCEERR_AR); 3742 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3743 return 0; 3744 #else 3745 return 1; 3746 #endif 3747 } 3748 3749 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3750 { 3751 int ret; 3752 struct kvm_create_device create_dev; 3753 3754 create_dev.type = type; 3755 create_dev.fd = -1; 3756 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3757 3758 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3759 return -ENOTSUP; 3760 } 3761 3762 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3763 if (ret) { 3764 return ret; 3765 } 3766 3767 return test ? 0 : create_dev.fd; 3768 } 3769 3770 bool kvm_device_supported(int vmfd, uint64_t type) 3771 { 3772 struct kvm_create_device create_dev = { 3773 .type = type, 3774 .fd = -1, 3775 .flags = KVM_CREATE_DEVICE_TEST, 3776 }; 3777 3778 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3779 return false; 3780 } 3781 3782 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3783 } 3784 3785 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3786 { 3787 struct kvm_one_reg reg; 3788 int r; 3789 3790 reg.id = id; 3791 reg.addr = (uintptr_t) source; 3792 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3793 if (r) { 3794 trace_kvm_failed_reg_set(id, strerror(-r)); 3795 } 3796 return r; 3797 } 3798 3799 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3800 { 3801 struct kvm_one_reg reg; 3802 int r; 3803 3804 reg.id = id; 3805 reg.addr = (uintptr_t) target; 3806 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3807 if (r) { 3808 trace_kvm_failed_reg_get(id, strerror(-r)); 3809 } 3810 return r; 3811 } 3812 3813 static bool kvm_accel_has_memory(AccelState *accel, AddressSpace *as, 3814 hwaddr start_addr, hwaddr size) 3815 { 3816 KVMState *kvm = KVM_STATE(accel); 3817 int i; 3818 3819 for (i = 0; i < kvm->nr_as; ++i) { 3820 if (kvm->as[i].as == as && kvm->as[i].ml) { 3821 size = MIN(kvm_max_slot_size, size); 3822 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3823 start_addr, size); 3824 } 3825 } 3826 3827 return false; 3828 } 3829 3830 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3831 const char *name, void *opaque, 3832 Error **errp) 3833 { 3834 KVMState *s = KVM_STATE(obj); 3835 int64_t value = s->kvm_shadow_mem; 3836 3837 visit_type_int(v, name, &value, errp); 3838 } 3839 3840 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3841 const char *name, void *opaque, 3842 Error **errp) 3843 { 3844 KVMState *s = KVM_STATE(obj); 3845 int64_t value; 3846 3847 if (s->fd != -1) { 3848 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3849 return; 3850 } 3851 3852 if (!visit_type_int(v, name, &value, errp)) { 3853 return; 3854 } 3855 3856 s->kvm_shadow_mem = value; 3857 } 3858 3859 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3860 const char *name, void *opaque, 3861 Error **errp) 3862 { 3863 KVMState *s = KVM_STATE(obj); 3864 OnOffSplit mode; 3865 3866 if (s->fd != -1) { 3867 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3868 return; 3869 } 3870 3871 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3872 return; 3873 } 3874 switch (mode) { 3875 case ON_OFF_SPLIT_ON: 3876 s->kernel_irqchip_allowed = true; 3877 s->kernel_irqchip_required = true; 3878 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3879 break; 3880 case ON_OFF_SPLIT_OFF: 3881 s->kernel_irqchip_allowed = false; 3882 s->kernel_irqchip_required = false; 3883 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3884 break; 3885 case ON_OFF_SPLIT_SPLIT: 3886 s->kernel_irqchip_allowed = true; 3887 s->kernel_irqchip_required = true; 3888 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3889 break; 3890 default: 3891 /* The value was checked in visit_type_OnOffSplit() above. If 3892 * we get here, then something is wrong in QEMU. 3893 */ 3894 abort(); 3895 } 3896 } 3897 3898 bool kvm_kernel_irqchip_allowed(void) 3899 { 3900 return kvm_state->kernel_irqchip_allowed; 3901 } 3902 3903 bool kvm_kernel_irqchip_required(void) 3904 { 3905 return kvm_state->kernel_irqchip_required; 3906 } 3907 3908 bool kvm_kernel_irqchip_split(void) 3909 { 3910 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3911 } 3912 3913 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3914 const char *name, void *opaque, 3915 Error **errp) 3916 { 3917 KVMState *s = KVM_STATE(obj); 3918 uint32_t value = s->kvm_dirty_ring_size; 3919 3920 visit_type_uint32(v, name, &value, errp); 3921 } 3922 3923 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3924 const char *name, void *opaque, 3925 Error **errp) 3926 { 3927 KVMState *s = KVM_STATE(obj); 3928 uint32_t value; 3929 3930 if (s->fd != -1) { 3931 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3932 return; 3933 } 3934 3935 if (!visit_type_uint32(v, name, &value, errp)) { 3936 return; 3937 } 3938 if (value & (value - 1)) { 3939 error_setg(errp, "dirty-ring-size must be a power of two."); 3940 return; 3941 } 3942 3943 s->kvm_dirty_ring_size = value; 3944 } 3945 3946 static char *kvm_get_device(Object *obj, 3947 Error **errp G_GNUC_UNUSED) 3948 { 3949 KVMState *s = KVM_STATE(obj); 3950 3951 return g_strdup(s->device); 3952 } 3953 3954 static void kvm_set_device(Object *obj, 3955 const char *value, 3956 Error **errp G_GNUC_UNUSED) 3957 { 3958 KVMState *s = KVM_STATE(obj); 3959 3960 g_free(s->device); 3961 s->device = g_strdup(value); 3962 } 3963 3964 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3965 { 3966 KVMState *s = KVM_STATE(obj); 3967 s->msr_energy.enable = value; 3968 } 3969 3970 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3971 const char *str, 3972 Error **errp) 3973 { 3974 KVMState *s = KVM_STATE(obj); 3975 g_free(s->msr_energy.socket_path); 3976 s->msr_energy.socket_path = g_strdup(str); 3977 } 3978 3979 static void kvm_accel_instance_init(Object *obj) 3980 { 3981 KVMState *s = KVM_STATE(obj); 3982 3983 s->fd = -1; 3984 s->vmfd = -1; 3985 s->kvm_shadow_mem = -1; 3986 s->kernel_irqchip_allowed = true; 3987 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3988 /* KVM dirty ring is by default off */ 3989 s->kvm_dirty_ring_size = 0; 3990 s->kvm_dirty_ring_with_bitmap = false; 3991 s->kvm_eager_split_size = 0; 3992 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3993 s->notify_window = 0; 3994 s->xen_version = 0; 3995 s->xen_gnttab_max_frames = 64; 3996 s->xen_evtchn_max_pirq = 256; 3997 s->device = NULL; 3998 s->msr_energy.enable = false; 3999 } 4000 4001 /** 4002 * kvm_gdbstub_sstep_flags(): 4003 * 4004 * Returns: SSTEP_* flags that KVM supports for guest debug. The 4005 * support is probed during kvm_init() 4006 */ 4007 static int kvm_gdbstub_sstep_flags(AccelState *as) 4008 { 4009 return kvm_sstep_flags; 4010 } 4011 4012 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 4013 { 4014 AccelClass *ac = ACCEL_CLASS(oc); 4015 ac->name = "KVM"; 4016 ac->init_machine = kvm_init; 4017 ac->has_memory = kvm_accel_has_memory; 4018 ac->allowed = &kvm_allowed; 4019 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 4020 4021 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 4022 NULL, kvm_set_kernel_irqchip, 4023 NULL, NULL); 4024 object_class_property_set_description(oc, "kernel-irqchip", 4025 "Configure KVM in-kernel irqchip"); 4026 4027 object_class_property_add(oc, "kvm-shadow-mem", "int", 4028 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 4029 NULL, NULL); 4030 object_class_property_set_description(oc, "kvm-shadow-mem", 4031 "KVM shadow MMU size"); 4032 4033 object_class_property_add(oc, "dirty-ring-size", "uint32", 4034 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 4035 NULL, NULL); 4036 object_class_property_set_description(oc, "dirty-ring-size", 4037 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4038 4039 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4040 object_class_property_set_description(oc, "device", 4041 "Path to the device node to use (default: /dev/kvm)"); 4042 4043 object_class_property_add_bool(oc, "rapl", 4044 NULL, 4045 kvm_set_kvm_rapl); 4046 object_class_property_set_description(oc, "rapl", 4047 "Allow energy related MSRs for RAPL interface in Guest"); 4048 4049 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4050 kvm_set_kvm_rapl_socket_path); 4051 object_class_property_set_description(oc, "rapl-helper-socket", 4052 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4053 4054 kvm_arch_accel_class_init(oc); 4055 } 4056 4057 static const TypeInfo kvm_accel_type = { 4058 .name = TYPE_KVM_ACCEL, 4059 .parent = TYPE_ACCEL, 4060 .instance_init = kvm_accel_instance_init, 4061 .class_init = kvm_accel_class_init, 4062 .instance_size = sizeof(KVMState), 4063 }; 4064 4065 static void kvm_type_init(void) 4066 { 4067 type_register_static(&kvm_accel_type); 4068 } 4069 4070 type_init(kvm_type_init); 4071 4072 typedef struct StatsArgs { 4073 union StatsResultsType { 4074 StatsResultList **stats; 4075 StatsSchemaList **schema; 4076 } result; 4077 strList *names; 4078 Error **errp; 4079 } StatsArgs; 4080 4081 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4082 uint64_t *stats_data, 4083 StatsList *stats_list, 4084 Error **errp) 4085 { 4086 4087 Stats *stats; 4088 uint64List *val_list = NULL; 4089 4090 /* Only add stats that we understand. */ 4091 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4092 case KVM_STATS_TYPE_CUMULATIVE: 4093 case KVM_STATS_TYPE_INSTANT: 4094 case KVM_STATS_TYPE_PEAK: 4095 case KVM_STATS_TYPE_LINEAR_HIST: 4096 case KVM_STATS_TYPE_LOG_HIST: 4097 break; 4098 default: 4099 return stats_list; 4100 } 4101 4102 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4103 case KVM_STATS_UNIT_NONE: 4104 case KVM_STATS_UNIT_BYTES: 4105 case KVM_STATS_UNIT_CYCLES: 4106 case KVM_STATS_UNIT_SECONDS: 4107 case KVM_STATS_UNIT_BOOLEAN: 4108 break; 4109 default: 4110 return stats_list; 4111 } 4112 4113 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4114 case KVM_STATS_BASE_POW10: 4115 case KVM_STATS_BASE_POW2: 4116 break; 4117 default: 4118 return stats_list; 4119 } 4120 4121 /* Alloc and populate data list */ 4122 stats = g_new0(Stats, 1); 4123 stats->name = g_strdup(pdesc->name); 4124 stats->value = g_new0(StatsValue, 1); 4125 4126 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4127 stats->value->u.boolean = *stats_data; 4128 stats->value->type = QTYPE_QBOOL; 4129 } else if (pdesc->size == 1) { 4130 stats->value->u.scalar = *stats_data; 4131 stats->value->type = QTYPE_QNUM; 4132 } else { 4133 int i; 4134 for (i = 0; i < pdesc->size; i++) { 4135 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4136 } 4137 stats->value->u.list = val_list; 4138 stats->value->type = QTYPE_QLIST; 4139 } 4140 4141 QAPI_LIST_PREPEND(stats_list, stats); 4142 return stats_list; 4143 } 4144 4145 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4146 StatsSchemaValueList *list, 4147 Error **errp) 4148 { 4149 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4150 schema_entry->value = g_new0(StatsSchemaValue, 1); 4151 4152 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4153 case KVM_STATS_TYPE_CUMULATIVE: 4154 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4155 break; 4156 case KVM_STATS_TYPE_INSTANT: 4157 schema_entry->value->type = STATS_TYPE_INSTANT; 4158 break; 4159 case KVM_STATS_TYPE_PEAK: 4160 schema_entry->value->type = STATS_TYPE_PEAK; 4161 break; 4162 case KVM_STATS_TYPE_LINEAR_HIST: 4163 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4164 schema_entry->value->bucket_size = pdesc->bucket_size; 4165 schema_entry->value->has_bucket_size = true; 4166 break; 4167 case KVM_STATS_TYPE_LOG_HIST: 4168 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4169 break; 4170 default: 4171 goto exit; 4172 } 4173 4174 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4175 case KVM_STATS_UNIT_NONE: 4176 break; 4177 case KVM_STATS_UNIT_BOOLEAN: 4178 schema_entry->value->has_unit = true; 4179 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4180 break; 4181 case KVM_STATS_UNIT_BYTES: 4182 schema_entry->value->has_unit = true; 4183 schema_entry->value->unit = STATS_UNIT_BYTES; 4184 break; 4185 case KVM_STATS_UNIT_CYCLES: 4186 schema_entry->value->has_unit = true; 4187 schema_entry->value->unit = STATS_UNIT_CYCLES; 4188 break; 4189 case KVM_STATS_UNIT_SECONDS: 4190 schema_entry->value->has_unit = true; 4191 schema_entry->value->unit = STATS_UNIT_SECONDS; 4192 break; 4193 default: 4194 goto exit; 4195 } 4196 4197 schema_entry->value->exponent = pdesc->exponent; 4198 if (pdesc->exponent) { 4199 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4200 case KVM_STATS_BASE_POW10: 4201 schema_entry->value->has_base = true; 4202 schema_entry->value->base = 10; 4203 break; 4204 case KVM_STATS_BASE_POW2: 4205 schema_entry->value->has_base = true; 4206 schema_entry->value->base = 2; 4207 break; 4208 default: 4209 goto exit; 4210 } 4211 } 4212 4213 schema_entry->value->name = g_strdup(pdesc->name); 4214 schema_entry->next = list; 4215 return schema_entry; 4216 exit: 4217 g_free(schema_entry->value); 4218 g_free(schema_entry); 4219 return list; 4220 } 4221 4222 /* Cached stats descriptors */ 4223 typedef struct StatsDescriptors { 4224 const char *ident; /* cache key, currently the StatsTarget */ 4225 struct kvm_stats_desc *kvm_stats_desc; 4226 struct kvm_stats_header kvm_stats_header; 4227 QTAILQ_ENTRY(StatsDescriptors) next; 4228 } StatsDescriptors; 4229 4230 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4231 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4232 4233 /* 4234 * Return the descriptors for 'target', that either have already been read 4235 * or are retrieved from 'stats_fd'. 4236 */ 4237 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4238 Error **errp) 4239 { 4240 StatsDescriptors *descriptors; 4241 const char *ident; 4242 struct kvm_stats_desc *kvm_stats_desc; 4243 struct kvm_stats_header *kvm_stats_header; 4244 size_t size_desc; 4245 ssize_t ret; 4246 4247 ident = StatsTarget_str(target); 4248 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4249 if (g_str_equal(descriptors->ident, ident)) { 4250 return descriptors; 4251 } 4252 } 4253 4254 descriptors = g_new0(StatsDescriptors, 1); 4255 4256 /* Read stats header */ 4257 kvm_stats_header = &descriptors->kvm_stats_header; 4258 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4259 if (ret != sizeof(*kvm_stats_header)) { 4260 error_setg(errp, "KVM stats: failed to read stats header: " 4261 "expected %zu actual %zu", 4262 sizeof(*kvm_stats_header), ret); 4263 g_free(descriptors); 4264 return NULL; 4265 } 4266 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4267 4268 /* Read stats descriptors */ 4269 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4270 ret = pread(stats_fd, kvm_stats_desc, 4271 size_desc * kvm_stats_header->num_desc, 4272 kvm_stats_header->desc_offset); 4273 4274 if (ret != size_desc * kvm_stats_header->num_desc) { 4275 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4276 "expected %zu actual %zu", 4277 size_desc * kvm_stats_header->num_desc, ret); 4278 g_free(descriptors); 4279 g_free(kvm_stats_desc); 4280 return NULL; 4281 } 4282 descriptors->kvm_stats_desc = kvm_stats_desc; 4283 descriptors->ident = ident; 4284 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4285 return descriptors; 4286 } 4287 4288 static void query_stats(StatsResultList **result, StatsTarget target, 4289 strList *names, int stats_fd, CPUState *cpu, 4290 Error **errp) 4291 { 4292 struct kvm_stats_desc *kvm_stats_desc; 4293 struct kvm_stats_header *kvm_stats_header; 4294 StatsDescriptors *descriptors; 4295 g_autofree uint64_t *stats_data = NULL; 4296 struct kvm_stats_desc *pdesc; 4297 StatsList *stats_list = NULL; 4298 size_t size_desc, size_data = 0; 4299 ssize_t ret; 4300 int i; 4301 4302 descriptors = find_stats_descriptors(target, stats_fd, errp); 4303 if (!descriptors) { 4304 return; 4305 } 4306 4307 kvm_stats_header = &descriptors->kvm_stats_header; 4308 kvm_stats_desc = descriptors->kvm_stats_desc; 4309 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4310 4311 /* Tally the total data size; read schema data */ 4312 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4313 pdesc = (void *)kvm_stats_desc + i * size_desc; 4314 size_data += pdesc->size * sizeof(*stats_data); 4315 } 4316 4317 stats_data = g_malloc0(size_data); 4318 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4319 4320 if (ret != size_data) { 4321 error_setg(errp, "KVM stats: failed to read data: " 4322 "expected %zu actual %zu", size_data, ret); 4323 return; 4324 } 4325 4326 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4327 uint64_t *stats; 4328 pdesc = (void *)kvm_stats_desc + i * size_desc; 4329 4330 /* Add entry to the list */ 4331 stats = (void *)stats_data + pdesc->offset; 4332 if (!apply_str_list_filter(pdesc->name, names)) { 4333 continue; 4334 } 4335 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4336 } 4337 4338 if (!stats_list) { 4339 return; 4340 } 4341 4342 switch (target) { 4343 case STATS_TARGET_VM: 4344 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4345 break; 4346 case STATS_TARGET_VCPU: 4347 add_stats_entry(result, STATS_PROVIDER_KVM, 4348 cpu->parent_obj.canonical_path, 4349 stats_list); 4350 break; 4351 default: 4352 g_assert_not_reached(); 4353 } 4354 } 4355 4356 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4357 int stats_fd, Error **errp) 4358 { 4359 struct kvm_stats_desc *kvm_stats_desc; 4360 struct kvm_stats_header *kvm_stats_header; 4361 StatsDescriptors *descriptors; 4362 struct kvm_stats_desc *pdesc; 4363 StatsSchemaValueList *stats_list = NULL; 4364 size_t size_desc; 4365 int i; 4366 4367 descriptors = find_stats_descriptors(target, stats_fd, errp); 4368 if (!descriptors) { 4369 return; 4370 } 4371 4372 kvm_stats_header = &descriptors->kvm_stats_header; 4373 kvm_stats_desc = descriptors->kvm_stats_desc; 4374 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4375 4376 /* Tally the total data size; read schema data */ 4377 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4378 pdesc = (void *)kvm_stats_desc + i * size_desc; 4379 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4380 } 4381 4382 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4383 } 4384 4385 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4386 { 4387 int stats_fd = cpu->kvm_vcpu_stats_fd; 4388 Error *local_err = NULL; 4389 4390 if (stats_fd == -1) { 4391 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4392 error_propagate(kvm_stats_args->errp, local_err); 4393 return; 4394 } 4395 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4396 kvm_stats_args->names, stats_fd, cpu, 4397 kvm_stats_args->errp); 4398 } 4399 4400 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4401 { 4402 int stats_fd = cpu->kvm_vcpu_stats_fd; 4403 Error *local_err = NULL; 4404 4405 if (stats_fd == -1) { 4406 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4407 error_propagate(kvm_stats_args->errp, local_err); 4408 return; 4409 } 4410 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4411 kvm_stats_args->errp); 4412 } 4413 4414 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4415 strList *names, strList *targets, Error **errp) 4416 { 4417 KVMState *s = kvm_state; 4418 CPUState *cpu; 4419 int stats_fd; 4420 4421 switch (target) { 4422 case STATS_TARGET_VM: 4423 { 4424 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4425 if (stats_fd == -1) { 4426 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4427 return; 4428 } 4429 query_stats(result, target, names, stats_fd, NULL, errp); 4430 close(stats_fd); 4431 break; 4432 } 4433 case STATS_TARGET_VCPU: 4434 { 4435 StatsArgs stats_args; 4436 stats_args.result.stats = result; 4437 stats_args.names = names; 4438 stats_args.errp = errp; 4439 CPU_FOREACH(cpu) { 4440 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4441 continue; 4442 } 4443 query_stats_vcpu(cpu, &stats_args); 4444 } 4445 break; 4446 } 4447 default: 4448 break; 4449 } 4450 } 4451 4452 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4453 { 4454 StatsArgs stats_args; 4455 KVMState *s = kvm_state; 4456 int stats_fd; 4457 4458 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4459 if (stats_fd == -1) { 4460 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4461 return; 4462 } 4463 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4464 close(stats_fd); 4465 4466 if (first_cpu) { 4467 stats_args.result.schema = result; 4468 stats_args.errp = errp; 4469 query_stats_schema_vcpu(first_cpu, &stats_args); 4470 } 4471 } 4472 4473 void kvm_mark_guest_state_protected(void) 4474 { 4475 kvm_state->guest_state_protected = true; 4476 } 4477 4478 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4479 { 4480 int fd; 4481 struct kvm_create_guest_memfd guest_memfd = { 4482 .size = size, 4483 .flags = flags, 4484 }; 4485 4486 if (!kvm_guest_memfd_supported) { 4487 error_setg(errp, "KVM does not support guest_memfd"); 4488 return -1; 4489 } 4490 4491 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4492 if (fd < 0) { 4493 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4494 return -1; 4495 } 4496 4497 return fd; 4498 } 4499