xref: /openbmc/qemu/contrib/plugins/cache.c (revision 40a770ea8b9478aefa3a60049bc67cc04ace569c)
1  /*
2   * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
3   *
4   * License: GNU GPL, version 2 or later.
5   *   See the COPYING file in the top-level directory.
6   */
7  
8  #include <inttypes.h>
9  #include <stdio.h>
10  #include <glib.h>
11  
12  #include <qemu-plugin.h>
13  
14  #define STRTOLL(x) g_ascii_strtoll(x, NULL, 10)
15  
16  QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
17  
18  static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
19  
20  static GHashTable *miss_ht;
21  
22  static GMutex hashtable_lock;
23  static GRand *rng;
24  
25  static int limit;
26  static bool sys;
27  
28  enum EvictionPolicy {
29      LRU,
30      FIFO,
31      RAND,
32  };
33  
34  enum EvictionPolicy policy;
35  
36  /*
37   * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
38   * put in any of the blocks inside the set. The number of block per set is
39   * called the associativity (assoc).
40   *
41   * Each block contains the stored tag and a valid bit. Since this is not
42   * a functional simulator, the data itself is not stored. We only identify
43   * whether a block is in the cache or not by searching for its tag.
44   *
45   * In order to search for memory data in the cache, the set identifier and tag
46   * are extracted from the address and the set is probed to see whether a tag
47   * match occur.
48   *
49   * An address is logically divided into three portions: The block offset,
50   * the set number, and the tag.
51   *
52   * The set number is used to identify the set in which the block may exist.
53   * The tag is compared against all the tags of a set to search for a match. If a
54   * match is found, then the access is a hit.
55   *
56   * The CacheSet also contains bookkeaping information about eviction details.
57   */
58  
59  typedef struct {
60      uint64_t tag;
61      bool valid;
62  } CacheBlock;
63  
64  typedef struct {
65      CacheBlock *blocks;
66      uint64_t *lru_priorities;
67      uint64_t lru_gen_counter;
68      GQueue *fifo_queue;
69  } CacheSet;
70  
71  typedef struct {
72      CacheSet *sets;
73      int num_sets;
74      int cachesize;
75      int assoc;
76      int blksize_shift;
77      uint64_t set_mask;
78      uint64_t tag_mask;
79      uint64_t accesses;
80      uint64_t misses;
81  } Cache;
82  
83  typedef struct {
84      char *disas_str;
85      const char *symbol;
86      uint64_t addr;
87      uint64_t l1_dmisses;
88      uint64_t l1_imisses;
89      uint64_t l2_misses;
90  } InsnData;
91  
92  void (*update_hit)(Cache *cache, int set, int blk);
93  void (*update_miss)(Cache *cache, int set, int blk);
94  
95  void (*metadata_init)(Cache *cache);
96  void (*metadata_destroy)(Cache *cache);
97  
98  static int cores;
99  static Cache **l1_dcaches, **l1_icaches;
100  
101  static bool use_l2;
102  static Cache **l2_ucaches;
103  
104  static GMutex *l1_dcache_locks;
105  static GMutex *l1_icache_locks;
106  static GMutex *l2_ucache_locks;
107  
108  static uint64_t l1_dmem_accesses;
109  static uint64_t l1_imem_accesses;
110  static uint64_t l1_imisses;
111  static uint64_t l1_dmisses;
112  
113  static uint64_t l2_mem_accesses;
114  static uint64_t l2_misses;
115  
pow_of_two(int num)116  static int pow_of_two(int num)
117  {
118      g_assert((num & (num - 1)) == 0);
119      int ret = 0;
120      while (num /= 2) {
121          ret++;
122      }
123      return ret;
124  }
125  
126  /*
127   * LRU evection policy: For each set, a generation counter is maintained
128   * alongside a priority array.
129   *
130   * On each set access, the generation counter is incremented.
131   *
132   * On a cache hit: The hit-block is assigned the current generation counter,
133   * indicating that it is the most recently used block.
134   *
135   * On a cache miss: The block with the least priority is searched and replaced
136   * with the newly-cached block, of which the priority is set to the current
137   * generation number.
138   */
139  
lru_priorities_init(Cache * cache)140  static void lru_priorities_init(Cache *cache)
141  {
142      int i;
143  
144      for (i = 0; i < cache->num_sets; i++) {
145          cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
146          cache->sets[i].lru_gen_counter = 0;
147      }
148  }
149  
lru_update_blk(Cache * cache,int set_idx,int blk_idx)150  static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
151  {
152      CacheSet *set = &cache->sets[set_idx];
153      set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
154      set->lru_gen_counter++;
155  }
156  
lru_get_lru_block(Cache * cache,int set_idx)157  static int lru_get_lru_block(Cache *cache, int set_idx)
158  {
159      int i, min_idx, min_priority;
160  
161      min_priority = cache->sets[set_idx].lru_priorities[0];
162      min_idx = 0;
163  
164      for (i = 1; i < cache->assoc; i++) {
165          if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
166              min_priority = cache->sets[set_idx].lru_priorities[i];
167              min_idx = i;
168          }
169      }
170      return min_idx;
171  }
172  
lru_priorities_destroy(Cache * cache)173  static void lru_priorities_destroy(Cache *cache)
174  {
175      int i;
176  
177      for (i = 0; i < cache->num_sets; i++) {
178          g_free(cache->sets[i].lru_priorities);
179      }
180  }
181  
182  /*
183   * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
184   * stores accesses to the cache.
185   *
186   * On a compulsory miss: The block index is enqueued to the fifo_queue to
187   * indicate that it's the latest cached block.
188   *
189   * On a conflict miss: The first-in block is removed from the cache and the new
190   * block is put in its place and enqueued to the FIFO queue.
191   */
192  
fifo_init(Cache * cache)193  static void fifo_init(Cache *cache)
194  {
195      int i;
196  
197      for (i = 0; i < cache->num_sets; i++) {
198          cache->sets[i].fifo_queue = g_queue_new();
199      }
200  }
201  
fifo_get_first_block(Cache * cache,int set)202  static int fifo_get_first_block(Cache *cache, int set)
203  {
204      GQueue *q = cache->sets[set].fifo_queue;
205      return GPOINTER_TO_INT(g_queue_pop_tail(q));
206  }
207  
fifo_update_on_miss(Cache * cache,int set,int blk_idx)208  static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
209  {
210      GQueue *q = cache->sets[set].fifo_queue;
211      g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
212  }
213  
fifo_destroy(Cache * cache)214  static void fifo_destroy(Cache *cache)
215  {
216      int i;
217  
218      for (i = 0; i < cache->num_sets; i++) {
219          g_queue_free(cache->sets[i].fifo_queue);
220      }
221  }
222  
extract_tag(Cache * cache,uint64_t addr)223  static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
224  {
225      return addr & cache->tag_mask;
226  }
227  
extract_set(Cache * cache,uint64_t addr)228  static inline uint64_t extract_set(Cache *cache, uint64_t addr)
229  {
230      return (addr & cache->set_mask) >> cache->blksize_shift;
231  }
232  
cache_config_error(int blksize,int assoc,int cachesize)233  static const char *cache_config_error(int blksize, int assoc, int cachesize)
234  {
235      if (cachesize % blksize != 0) {
236          return "cache size must be divisible by block size";
237      } else if (cachesize % (blksize * assoc) != 0) {
238          return "cache size must be divisible by set size (assoc * block size)";
239      } else {
240          return NULL;
241      }
242  }
243  
bad_cache_params(int blksize,int assoc,int cachesize)244  static bool bad_cache_params(int blksize, int assoc, int cachesize)
245  {
246      return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
247  }
248  
cache_init(int blksize,int assoc,int cachesize)249  static Cache *cache_init(int blksize, int assoc, int cachesize)
250  {
251      Cache *cache;
252      int i;
253      uint64_t blk_mask;
254  
255      /*
256       * This function shall not be called directly, and hence expects suitable
257       * parameters.
258       */
259      g_assert(!bad_cache_params(blksize, assoc, cachesize));
260  
261      cache = g_new(Cache, 1);
262      cache->assoc = assoc;
263      cache->cachesize = cachesize;
264      cache->num_sets = cachesize / (blksize * assoc);
265      cache->sets = g_new(CacheSet, cache->num_sets);
266      cache->blksize_shift = pow_of_two(blksize);
267      cache->accesses = 0;
268      cache->misses = 0;
269  
270      for (i = 0; i < cache->num_sets; i++) {
271          cache->sets[i].blocks = g_new0(CacheBlock, assoc);
272      }
273  
274      blk_mask = blksize - 1;
275      cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
276      cache->tag_mask = ~(cache->set_mask | blk_mask);
277  
278      if (metadata_init) {
279          metadata_init(cache);
280      }
281  
282      return cache;
283  }
284  
caches_init(int blksize,int assoc,int cachesize)285  static Cache **caches_init(int blksize, int assoc, int cachesize)
286  {
287      Cache **caches;
288      int i;
289  
290      if (bad_cache_params(blksize, assoc, cachesize)) {
291          return NULL;
292      }
293  
294      caches = g_new(Cache *, cores);
295  
296      for (i = 0; i < cores; i++) {
297          caches[i] = cache_init(blksize, assoc, cachesize);
298      }
299  
300      return caches;
301  }
302  
get_invalid_block(Cache * cache,uint64_t set)303  static int get_invalid_block(Cache *cache, uint64_t set)
304  {
305      int i;
306  
307      for (i = 0; i < cache->assoc; i++) {
308          if (!cache->sets[set].blocks[i].valid) {
309              return i;
310          }
311      }
312  
313      return -1;
314  }
315  
get_replaced_block(Cache * cache,int set)316  static int get_replaced_block(Cache *cache, int set)
317  {
318      switch (policy) {
319      case RAND:
320          return g_rand_int_range(rng, 0, cache->assoc);
321      case LRU:
322          return lru_get_lru_block(cache, set);
323      case FIFO:
324          return fifo_get_first_block(cache, set);
325      default:
326          g_assert_not_reached();
327      }
328  }
329  
in_cache(Cache * cache,uint64_t addr)330  static int in_cache(Cache *cache, uint64_t addr)
331  {
332      int i;
333      uint64_t tag, set;
334  
335      tag = extract_tag(cache, addr);
336      set = extract_set(cache, addr);
337  
338      for (i = 0; i < cache->assoc; i++) {
339          if (cache->sets[set].blocks[i].tag == tag &&
340                  cache->sets[set].blocks[i].valid) {
341              return i;
342          }
343      }
344  
345      return -1;
346  }
347  
348  /**
349   * access_cache(): Simulate a cache access
350   * @cache: The cache under simulation
351   * @addr: The address of the requested memory location
352   *
353   * Returns true if the requested data is hit in the cache and false when missed.
354   * The cache is updated on miss for the next access.
355   */
access_cache(Cache * cache,uint64_t addr)356  static bool access_cache(Cache *cache, uint64_t addr)
357  {
358      int hit_blk, replaced_blk;
359      uint64_t tag, set;
360  
361      tag = extract_tag(cache, addr);
362      set = extract_set(cache, addr);
363  
364      hit_blk = in_cache(cache, addr);
365      if (hit_blk != -1) {
366          if (update_hit) {
367              update_hit(cache, set, hit_blk);
368          }
369          return true;
370      }
371  
372      replaced_blk = get_invalid_block(cache, set);
373  
374      if (replaced_blk == -1) {
375          replaced_blk = get_replaced_block(cache, set);
376      }
377  
378      if (update_miss) {
379          update_miss(cache, set, replaced_blk);
380      }
381  
382      cache->sets[set].blocks[replaced_blk].tag = tag;
383      cache->sets[set].blocks[replaced_blk].valid = true;
384  
385      return false;
386  }
387  
vcpu_mem_access(unsigned int vcpu_index,qemu_plugin_meminfo_t info,uint64_t vaddr,void * userdata)388  static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
389                              uint64_t vaddr, void *userdata)
390  {
391      uint64_t effective_addr;
392      struct qemu_plugin_hwaddr *hwaddr;
393      int cache_idx;
394      InsnData *insn;
395      bool hit_in_l1;
396  
397      hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
398      if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
399          return;
400      }
401  
402      effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
403      cache_idx = vcpu_index % cores;
404  
405      g_mutex_lock(&l1_dcache_locks[cache_idx]);
406      hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr);
407      if (!hit_in_l1) {
408          insn = userdata;
409          __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST);
410          l1_dcaches[cache_idx]->misses++;
411      }
412      l1_dcaches[cache_idx]->accesses++;
413      g_mutex_unlock(&l1_dcache_locks[cache_idx]);
414  
415      if (hit_in_l1 || !use_l2) {
416          /* No need to access L2 */
417          return;
418      }
419  
420      g_mutex_lock(&l2_ucache_locks[cache_idx]);
421      if (!access_cache(l2_ucaches[cache_idx], effective_addr)) {
422          insn = userdata;
423          __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
424          l2_ucaches[cache_idx]->misses++;
425      }
426      l2_ucaches[cache_idx]->accesses++;
427      g_mutex_unlock(&l2_ucache_locks[cache_idx]);
428  }
429  
vcpu_insn_exec(unsigned int vcpu_index,void * userdata)430  static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
431  {
432      uint64_t insn_addr;
433      InsnData *insn;
434      int cache_idx;
435      bool hit_in_l1;
436  
437      insn_addr = ((InsnData *) userdata)->addr;
438  
439      cache_idx = vcpu_index % cores;
440      g_mutex_lock(&l1_icache_locks[cache_idx]);
441      hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr);
442      if (!hit_in_l1) {
443          insn = userdata;
444          __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST);
445          l1_icaches[cache_idx]->misses++;
446      }
447      l1_icaches[cache_idx]->accesses++;
448      g_mutex_unlock(&l1_icache_locks[cache_idx]);
449  
450      if (hit_in_l1 || !use_l2) {
451          /* No need to access L2 */
452          return;
453      }
454  
455      g_mutex_lock(&l2_ucache_locks[cache_idx]);
456      if (!access_cache(l2_ucaches[cache_idx], insn_addr)) {
457          insn = userdata;
458          __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
459          l2_ucaches[cache_idx]->misses++;
460      }
461      l2_ucaches[cache_idx]->accesses++;
462      g_mutex_unlock(&l2_ucache_locks[cache_idx]);
463  }
464  
vcpu_tb_trans(qemu_plugin_id_t id,struct qemu_plugin_tb * tb)465  static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
466  {
467      size_t n_insns;
468      size_t i;
469      InsnData *data;
470  
471      n_insns = qemu_plugin_tb_n_insns(tb);
472      for (i = 0; i < n_insns; i++) {
473          struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
474          uint64_t effective_addr;
475  
476          if (sys) {
477              effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
478          } else {
479              effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
480          }
481  
482          /*
483           * Instructions might get translated multiple times, we do not create
484           * new entries for those instructions. Instead, we fetch the same
485           * entry from the hash table and register it for the callback again.
486           */
487          g_mutex_lock(&hashtable_lock);
488          data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
489          if (data == NULL) {
490              data = g_new0(InsnData, 1);
491              data->disas_str = qemu_plugin_insn_disas(insn);
492              data->symbol = qemu_plugin_insn_symbol(insn);
493              data->addr = effective_addr;
494              g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
495                                 (gpointer) data);
496          }
497          g_mutex_unlock(&hashtable_lock);
498  
499          qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
500                                           QEMU_PLUGIN_CB_NO_REGS,
501                                           rw, data);
502  
503          qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
504                                                 QEMU_PLUGIN_CB_NO_REGS, data);
505      }
506  }
507  
insn_free(gpointer data)508  static void insn_free(gpointer data)
509  {
510      InsnData *insn = (InsnData *) data;
511      g_free(insn->disas_str);
512      g_free(insn);
513  }
514  
cache_free(Cache * cache)515  static void cache_free(Cache *cache)
516  {
517      for (int i = 0; i < cache->num_sets; i++) {
518          g_free(cache->sets[i].blocks);
519      }
520  
521      if (metadata_destroy) {
522          metadata_destroy(cache);
523      }
524  
525      g_free(cache->sets);
526      g_free(cache);
527  }
528  
caches_free(Cache ** caches)529  static void caches_free(Cache **caches)
530  {
531      int i;
532  
533      for (i = 0; i < cores; i++) {
534          cache_free(caches[i]);
535      }
536  }
537  
append_stats_line(GString * line,uint64_t l1_daccess,uint64_t l1_dmisses,uint64_t l1_iaccess,uint64_t l1_imisses,uint64_t l2_access,uint64_t l2_misses)538  static void append_stats_line(GString *line,
539                                uint64_t l1_daccess, uint64_t l1_dmisses,
540                                uint64_t l1_iaccess, uint64_t l1_imisses,
541                                uint64_t l2_access, uint64_t l2_misses)
542  {
543      double l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0;
544      double l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0;
545  
546      g_string_append_printf(line, "%-14" PRIu64 " %-12" PRIu64 " %9.4lf%%"
547                             "  %-14" PRIu64 " %-12" PRIu64 " %9.4lf%%",
548                             l1_daccess,
549                             l1_dmisses,
550                             l1_daccess ? l1_dmiss_rate : 0.0,
551                             l1_iaccess,
552                             l1_imisses,
553                             l1_iaccess ? l1_imiss_rate : 0.0);
554  
555      if (l2_access && l2_misses) {
556          double l2_miss_rate =  ((double) l2_misses) / (l2_access) * 100.0;
557          g_string_append_printf(line,
558                                 "  %-12" PRIu64 " %-11" PRIu64 " %10.4lf%%",
559                                 l2_access,
560                                 l2_misses,
561                                 l2_miss_rate);
562      }
563  
564      g_string_append(line, "\n");
565  }
566  
sum_stats(void)567  static void sum_stats(void)
568  {
569      int i;
570  
571      g_assert(cores > 1);
572      for (i = 0; i < cores; i++) {
573          l1_imisses += l1_icaches[i]->misses;
574          l1_dmisses += l1_dcaches[i]->misses;
575          l1_imem_accesses += l1_icaches[i]->accesses;
576          l1_dmem_accesses += l1_dcaches[i]->accesses;
577  
578          if (use_l2) {
579              l2_misses += l2_ucaches[i]->misses;
580              l2_mem_accesses += l2_ucaches[i]->accesses;
581          }
582      }
583  }
584  
dcmp(gconstpointer a,gconstpointer b)585  static int dcmp(gconstpointer a, gconstpointer b)
586  {
587      InsnData *insn_a = (InsnData *) a;
588      InsnData *insn_b = (InsnData *) b;
589  
590      return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1;
591  }
592  
icmp(gconstpointer a,gconstpointer b)593  static int icmp(gconstpointer a, gconstpointer b)
594  {
595      InsnData *insn_a = (InsnData *) a;
596      InsnData *insn_b = (InsnData *) b;
597  
598      return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1;
599  }
600  
l2_cmp(gconstpointer a,gconstpointer b)601  static int l2_cmp(gconstpointer a, gconstpointer b)
602  {
603      InsnData *insn_a = (InsnData *) a;
604      InsnData *insn_b = (InsnData *) b;
605  
606      return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1;
607  }
608  
log_stats(void)609  static void log_stats(void)
610  {
611      int i;
612      Cache *icache, *dcache, *l2_cache;
613  
614      g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses,"
615                                            " dmiss rate, insn accesses,"
616                                            " insn misses, imiss rate");
617  
618      if (use_l2) {
619          g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate");
620      }
621  
622      g_string_append(rep, "\n");
623  
624      for (i = 0; i < cores; i++) {
625          g_string_append_printf(rep, "%-8d", i);
626          dcache = l1_dcaches[i];
627          icache = l1_icaches[i];
628          l2_cache = use_l2 ? l2_ucaches[i] : NULL;
629          append_stats_line(rep, dcache->accesses, dcache->misses,
630                  icache->accesses, icache->misses,
631                  l2_cache ? l2_cache->accesses : 0,
632                  l2_cache ? l2_cache->misses : 0);
633      }
634  
635      if (cores > 1) {
636          sum_stats();
637          g_string_append_printf(rep, "%-8s", "sum");
638          append_stats_line(rep, l1_dmem_accesses, l1_dmisses,
639                  l1_imem_accesses, l1_imisses,
640                  l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0);
641      }
642  
643      g_string_append(rep, "\n");
644      qemu_plugin_outs(rep->str);
645  }
646  
log_top_insns(void)647  static void log_top_insns(void)
648  {
649      int i;
650      GList *curr, *miss_insns;
651      InsnData *insn;
652  
653      miss_insns = g_hash_table_get_values(miss_ht);
654      miss_insns = g_list_sort(miss_insns, dcmp);
655      g_autoptr(GString) rep = g_string_new("");
656      g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
657  
658      for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
659          insn = (InsnData *) curr->data;
660          g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
661          if (insn->symbol) {
662              g_string_append_printf(rep, " (%s)", insn->symbol);
663          }
664          g_string_append_printf(rep, ", %" PRId64 ", %s\n",
665                                 insn->l1_dmisses, insn->disas_str);
666      }
667  
668      miss_insns = g_list_sort(miss_insns, icmp);
669      g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
670  
671      for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
672          insn = (InsnData *) curr->data;
673          g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
674          if (insn->symbol) {
675              g_string_append_printf(rep, " (%s)", insn->symbol);
676          }
677          g_string_append_printf(rep, ", %" PRId64 ", %s\n",
678                                 insn->l1_imisses, insn->disas_str);
679      }
680  
681      if (!use_l2) {
682          goto finish;
683      }
684  
685      miss_insns = g_list_sort(miss_insns, l2_cmp);
686      g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n");
687  
688      for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
689          insn = (InsnData *) curr->data;
690          g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
691          if (insn->symbol) {
692              g_string_append_printf(rep, " (%s)", insn->symbol);
693          }
694          g_string_append_printf(rep, ", %" PRId64 ", %s\n",
695                                 insn->l2_misses, insn->disas_str);
696      }
697  
698  finish:
699      qemu_plugin_outs(rep->str);
700      g_list_free(miss_insns);
701  }
702  
plugin_exit(qemu_plugin_id_t id,void * p)703  static void plugin_exit(qemu_plugin_id_t id, void *p)
704  {
705      log_stats();
706      log_top_insns();
707  
708      caches_free(l1_dcaches);
709      caches_free(l1_icaches);
710  
711      g_free(l1_dcache_locks);
712      g_free(l1_icache_locks);
713  
714      if (use_l2) {
715          caches_free(l2_ucaches);
716          g_free(l2_ucache_locks);
717      }
718  
719      g_hash_table_destroy(miss_ht);
720  }
721  
policy_init(void)722  static void policy_init(void)
723  {
724      switch (policy) {
725      case LRU:
726          update_hit = lru_update_blk;
727          update_miss = lru_update_blk;
728          metadata_init = lru_priorities_init;
729          metadata_destroy = lru_priorities_destroy;
730          break;
731      case FIFO:
732          update_miss = fifo_update_on_miss;
733          metadata_init = fifo_init;
734          metadata_destroy = fifo_destroy;
735          break;
736      case RAND:
737          rng = g_rand_new();
738          break;
739      default:
740          g_assert_not_reached();
741      }
742  }
743  
744  QEMU_PLUGIN_EXPORT
qemu_plugin_install(qemu_plugin_id_t id,const qemu_info_t * info,int argc,char ** argv)745  int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
746                          int argc, char **argv)
747  {
748      int i;
749      int l1_iassoc, l1_iblksize, l1_icachesize;
750      int l1_dassoc, l1_dblksize, l1_dcachesize;
751      int l2_assoc, l2_blksize, l2_cachesize;
752  
753      limit = 32;
754      sys = info->system_emulation;
755  
756      l1_dassoc = 8;
757      l1_dblksize = 64;
758      l1_dcachesize = l1_dblksize * l1_dassoc * 32;
759  
760      l1_iassoc = 8;
761      l1_iblksize = 64;
762      l1_icachesize = l1_iblksize * l1_iassoc * 32;
763  
764      l2_assoc = 16;
765      l2_blksize = 64;
766      l2_cachesize = l2_assoc * l2_blksize * 2048;
767  
768      policy = LRU;
769  
770      cores = sys ? info->system.smp_vcpus : 1;
771  
772      for (i = 0; i < argc; i++) {
773          char *opt = argv[i];
774          g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
775  
776          if (g_strcmp0(tokens[0], "iblksize") == 0) {
777              l1_iblksize = STRTOLL(tokens[1]);
778          } else if (g_strcmp0(tokens[0], "iassoc") == 0) {
779              l1_iassoc = STRTOLL(tokens[1]);
780          } else if (g_strcmp0(tokens[0], "icachesize") == 0) {
781              l1_icachesize = STRTOLL(tokens[1]);
782          } else if (g_strcmp0(tokens[0], "dblksize") == 0) {
783              l1_dblksize = STRTOLL(tokens[1]);
784          } else if (g_strcmp0(tokens[0], "dassoc") == 0) {
785              l1_dassoc = STRTOLL(tokens[1]);
786          } else if (g_strcmp0(tokens[0], "dcachesize") == 0) {
787              l1_dcachesize = STRTOLL(tokens[1]);
788          } else if (g_strcmp0(tokens[0], "limit") == 0) {
789              limit = STRTOLL(tokens[1]);
790          } else if (g_strcmp0(tokens[0], "cores") == 0) {
791              cores = STRTOLL(tokens[1]);
792          } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) {
793              use_l2 = true;
794              l2_cachesize = STRTOLL(tokens[1]);
795          } else if (g_strcmp0(tokens[0], "l2blksize") == 0) {
796              use_l2 = true;
797              l2_blksize = STRTOLL(tokens[1]);
798          } else if (g_strcmp0(tokens[0], "l2assoc") == 0) {
799              use_l2 = true;
800              l2_assoc = STRTOLL(tokens[1]);
801          } else if (g_strcmp0(tokens[0], "l2") == 0) {
802              if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) {
803                  fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
804                  return -1;
805              }
806          } else if (g_strcmp0(tokens[0], "evict") == 0) {
807              if (g_strcmp0(tokens[1], "rand") == 0) {
808                  policy = RAND;
809              } else if (g_strcmp0(tokens[1], "lru") == 0) {
810                  policy = LRU;
811              } else if (g_strcmp0(tokens[1], "fifo") == 0) {
812                  policy = FIFO;
813              } else {
814                  fprintf(stderr, "invalid eviction policy: %s\n", opt);
815                  return -1;
816              }
817          } else {
818              fprintf(stderr, "option parsing failed: %s\n", opt);
819              return -1;
820          }
821      }
822  
823      policy_init();
824  
825      l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize);
826      if (!l1_dcaches) {
827          const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize);
828          fprintf(stderr, "dcache cannot be constructed from given parameters\n");
829          fprintf(stderr, "%s\n", err);
830          return -1;
831      }
832  
833      l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize);
834      if (!l1_icaches) {
835          const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize);
836          fprintf(stderr, "icache cannot be constructed from given parameters\n");
837          fprintf(stderr, "%s\n", err);
838          return -1;
839      }
840  
841      l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL;
842      if (!l2_ucaches && use_l2) {
843          const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize);
844          fprintf(stderr, "L2 cache cannot be constructed from given parameters\n");
845          fprintf(stderr, "%s\n", err);
846          return -1;
847      }
848  
849      l1_dcache_locks = g_new0(GMutex, cores);
850      l1_icache_locks = g_new0(GMutex, cores);
851      l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL;
852  
853      qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
854      qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
855  
856      miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
857  
858      return 0;
859  }
860