1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Copyright (C) 2000, 2001 Kanoj Sarcar
5 * Copyright (C) 2000, 2001 Ralf Baechle
6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8 */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42
43 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60
61 /*
62 * A logical cpu mask containing only one VPE per core to
63 * reduce the number of IPIs on large MT systems.
64 */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73
74 cpumask_t cpu_coherent_mask;
75
76 unsigned int smp_max_threads __initdata = UINT_MAX;
77
early_nosmt(char * s)78 static int __init early_nosmt(char *s)
79 {
80 smp_max_threads = 1;
81 return 0;
82 }
83 early_param("nosmt", early_nosmt);
84
early_smt(char * s)85 static int __init early_smt(char *s)
86 {
87 get_option(&s, &smp_max_threads);
88 /* Ensure at least one thread is available */
89 smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX);
90 return 0;
91 }
92 early_param("smt", early_smt);
93
94 #ifdef CONFIG_GENERIC_IRQ_IPI
95 static struct irq_desc *call_desc;
96 static struct irq_desc *sched_desc;
97 #endif
98
set_cpu_sibling_map(int cpu)99 static inline void set_cpu_sibling_map(int cpu)
100 {
101 int i;
102
103 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
104
105 if (smp_num_siblings > 1) {
106 for_each_cpu(i, &cpu_sibling_setup_map) {
107 if (cpus_are_siblings(cpu, i)) {
108 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
109 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
110 }
111 }
112 } else
113 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
114 }
115
set_cpu_core_map(int cpu)116 static inline void set_cpu_core_map(int cpu)
117 {
118 int i;
119
120 cpumask_set_cpu(cpu, &cpu_core_setup_map);
121
122 for_each_cpu(i, &cpu_core_setup_map) {
123 if (cpu_data[cpu].package == cpu_data[i].package) {
124 cpumask_set_cpu(i, &cpu_core_map[cpu]);
125 cpumask_set_cpu(cpu, &cpu_core_map[i]);
126 }
127 }
128 }
129
130 /*
131 * Calculate a new cpu_foreign_map mask whenever a
132 * new cpu appears or disappears.
133 */
calculate_cpu_foreign_map(void)134 void calculate_cpu_foreign_map(void)
135 {
136 int i, k, core_present;
137 cpumask_t temp_foreign_map;
138
139 /* Re-calculate the mask */
140 cpumask_clear(&temp_foreign_map);
141 for_each_online_cpu(i) {
142 core_present = 0;
143 for_each_cpu(k, &temp_foreign_map)
144 if (cpus_are_siblings(i, k))
145 core_present = 1;
146 if (!core_present)
147 cpumask_set_cpu(i, &temp_foreign_map);
148 }
149
150 for_each_online_cpu(i)
151 cpumask_andnot(&cpu_foreign_map[i],
152 &temp_foreign_map, &cpu_sibling_map[i]);
153 }
154
155 const struct plat_smp_ops *mp_ops;
156 EXPORT_SYMBOL(mp_ops);
157
register_smp_ops(const struct plat_smp_ops * ops)158 void register_smp_ops(const struct plat_smp_ops *ops)
159 {
160 if (mp_ops)
161 printk(KERN_WARNING "Overriding previously set SMP ops\n");
162
163 mp_ops = ops;
164 }
165
166 #ifdef CONFIG_GENERIC_IRQ_IPI
mips_smp_send_ipi_single(int cpu,unsigned int action)167 void mips_smp_send_ipi_single(int cpu, unsigned int action)
168 {
169 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
170 }
171
mips_smp_send_ipi_mask(const struct cpumask * mask,unsigned int action)172 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
173 {
174 unsigned long flags;
175 unsigned int core;
176 int cpu;
177
178 local_irq_save(flags);
179
180 switch (action) {
181 case SMP_CALL_FUNCTION:
182 __ipi_send_mask(call_desc, mask);
183 break;
184
185 case SMP_RESCHEDULE_YOURSELF:
186 __ipi_send_mask(sched_desc, mask);
187 break;
188
189 default:
190 BUG();
191 }
192
193 if (mips_cpc_present()) {
194 for_each_cpu(cpu, mask) {
195 if (cpus_are_siblings(cpu, smp_processor_id()))
196 continue;
197
198 core = cpu_core(&cpu_data[cpu]);
199
200 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
201 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
202 mips_cpc_lock_other(core);
203 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
204 mips_cpc_unlock_other();
205 mips_cm_unlock_other();
206 }
207 }
208 }
209
210 local_irq_restore(flags);
211 }
212
213
ipi_resched_interrupt(int irq,void * dev_id)214 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
215 {
216 scheduler_ipi();
217
218 return IRQ_HANDLED;
219 }
220
ipi_call_interrupt(int irq,void * dev_id)221 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
222 {
223 generic_smp_call_function_interrupt();
224
225 return IRQ_HANDLED;
226 }
227
smp_ipi_init_one(unsigned int virq,const char * name,irq_handler_t handler)228 static void smp_ipi_init_one(unsigned int virq, const char *name,
229 irq_handler_t handler)
230 {
231 int ret;
232
233 irq_set_handler(virq, handle_percpu_irq);
234 ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
235 BUG_ON(ret);
236 }
237
238 static unsigned int call_virq, sched_virq;
239
mips_smp_ipi_allocate(const struct cpumask * mask)240 int mips_smp_ipi_allocate(const struct cpumask *mask)
241 {
242 int virq;
243 struct irq_domain *ipidomain;
244 struct device_node *node;
245
246 node = of_irq_find_parent(of_root);
247 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
248
249 /*
250 * Some platforms have half DT setup. So if we found irq node but
251 * didn't find an ipidomain, try to search for one that is not in the
252 * DT.
253 */
254 if (node && !ipidomain)
255 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
256
257 /*
258 * There are systems which use IPI IRQ domains, but only have one
259 * registered when some runtime condition is met. For example a Malta
260 * kernel may include support for GIC & CPU interrupt controller IPI
261 * IRQ domains, but if run on a system with no GIC & no MT ASE then
262 * neither will be supported or registered.
263 *
264 * We only have a problem if we're actually using multiple CPUs so fail
265 * loudly if that is the case. Otherwise simply return, skipping IPI
266 * setup, if we're running with only a single CPU.
267 */
268 if (!ipidomain) {
269 BUG_ON(num_present_cpus() > 1);
270 return 0;
271 }
272
273 virq = irq_reserve_ipi(ipidomain, mask);
274 BUG_ON(!virq);
275 if (!call_virq)
276 call_virq = virq;
277
278 virq = irq_reserve_ipi(ipidomain, mask);
279 BUG_ON(!virq);
280 if (!sched_virq)
281 sched_virq = virq;
282
283 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
284 int cpu;
285
286 for_each_cpu(cpu, mask) {
287 smp_ipi_init_one(call_virq + cpu, "IPI call",
288 ipi_call_interrupt);
289 smp_ipi_init_one(sched_virq + cpu, "IPI resched",
290 ipi_resched_interrupt);
291 }
292 } else {
293 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
294 smp_ipi_init_one(sched_virq, "IPI resched",
295 ipi_resched_interrupt);
296 }
297
298 return 0;
299 }
300
mips_smp_ipi_free(const struct cpumask * mask)301 int mips_smp_ipi_free(const struct cpumask *mask)
302 {
303 struct irq_domain *ipidomain;
304 struct device_node *node;
305
306 node = of_irq_find_parent(of_root);
307 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
308
309 /*
310 * Some platforms have half DT setup. So if we found irq node but
311 * didn't find an ipidomain, try to search for one that is not in the
312 * DT.
313 */
314 if (node && !ipidomain)
315 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
316
317 BUG_ON(!ipidomain);
318
319 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
320 int cpu;
321
322 for_each_cpu(cpu, mask) {
323 free_irq(call_virq + cpu, NULL);
324 free_irq(sched_virq + cpu, NULL);
325 }
326 }
327 irq_destroy_ipi(call_virq, mask);
328 irq_destroy_ipi(sched_virq, mask);
329 return 0;
330 }
331
332
mips_smp_ipi_init(void)333 static int __init mips_smp_ipi_init(void)
334 {
335 if (num_possible_cpus() == 1)
336 return 0;
337
338 mips_smp_ipi_allocate(cpu_possible_mask);
339
340 call_desc = irq_to_desc(call_virq);
341 sched_desc = irq_to_desc(sched_virq);
342
343 return 0;
344 }
345 early_initcall(mips_smp_ipi_init);
346 #endif
347
348 /*
349 * First C code run on the secondary CPUs after being started up by
350 * the master.
351 */
start_secondary(void)352 asmlinkage void start_secondary(void)
353 {
354 unsigned int cpu = raw_smp_processor_id();
355
356 cpu_probe();
357 per_cpu_trap_init(false);
358 rcu_cpu_starting(cpu);
359 mips_clockevent_init();
360 mp_ops->init_secondary();
361 cpu_report();
362 maar_init();
363
364 /*
365 * XXX parity protection should be folded in here when it's converted
366 * to an option instead of something based on .cputype
367 */
368
369 calibrate_delay();
370 cpu_data[cpu].udelay_val = loops_per_jiffy;
371
372 set_cpu_sibling_map(cpu);
373 set_cpu_core_map(cpu);
374
375 cpumask_set_cpu(cpu, &cpu_coherent_mask);
376 notify_cpu_starting(cpu);
377
378 /* Notify boot CPU that we're starting & ready to sync counters */
379 complete(&cpu_starting);
380
381 synchronise_count_slave(cpu);
382
383 /* The CPU is running and counters synchronised, now mark it online */
384 set_cpu_online(cpu, true);
385
386 calculate_cpu_foreign_map();
387
388 /*
389 * Notify boot CPU that we're up & online and it can safely return
390 * from __cpu_up
391 */
392 complete(&cpu_running);
393
394 /*
395 * irq will be enabled in ->smp_finish(), enabling it too early
396 * is dangerous.
397 */
398 WARN_ON_ONCE(!irqs_disabled());
399 mp_ops->smp_finish();
400
401 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
402 }
403
stop_this_cpu(void * dummy)404 static void stop_this_cpu(void *dummy)
405 {
406 /*
407 * Remove this CPU:
408 */
409
410 set_cpu_online(smp_processor_id(), false);
411 calculate_cpu_foreign_map();
412 local_irq_disable();
413 while (1);
414 }
415
smp_send_stop(void)416 void smp_send_stop(void)
417 {
418 smp_call_function(stop_this_cpu, NULL, 0);
419 }
420
smp_cpus_done(unsigned int max_cpus)421 void __init smp_cpus_done(unsigned int max_cpus)
422 {
423 }
424
425 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)426 void __init smp_prepare_cpus(unsigned int max_cpus)
427 {
428 init_new_context(current, &init_mm);
429 current_thread_info()->cpu = 0;
430 mp_ops->prepare_cpus(max_cpus);
431 set_cpu_sibling_map(0);
432 set_cpu_core_map(0);
433 calculate_cpu_foreign_map();
434 #ifndef CONFIG_HOTPLUG_CPU
435 init_cpu_present(cpu_possible_mask);
436 #endif
437 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
438 }
439
440 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)441 void smp_prepare_boot_cpu(void)
442 {
443 if (mp_ops->prepare_boot_cpu)
444 mp_ops->prepare_boot_cpu();
445 set_cpu_possible(0, true);
446 set_cpu_online(0, true);
447 }
448
__cpu_up(unsigned int cpu,struct task_struct * tidle)449 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
450 {
451 int err;
452
453 err = mp_ops->boot_secondary(cpu, tidle);
454 if (err)
455 return err;
456
457 /* Wait for CPU to start and be ready to sync counters */
458 if (!wait_for_completion_timeout(&cpu_starting,
459 msecs_to_jiffies(1000))) {
460 pr_crit("CPU%u: failed to start\n", cpu);
461 return -EIO;
462 }
463
464 synchronise_count_master(cpu);
465
466 /* Wait for CPU to finish startup & mark itself online before return */
467 wait_for_completion(&cpu_running);
468 return 0;
469 }
470
471 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)472 int setup_profiling_timer(unsigned int multiplier)
473 {
474 return 0;
475 }
476
flush_tlb_all_ipi(void * info)477 static void flush_tlb_all_ipi(void *info)
478 {
479 local_flush_tlb_all();
480 }
481
flush_tlb_all(void)482 void flush_tlb_all(void)
483 {
484 if (cpu_has_mmid) {
485 htw_stop();
486 ginvt_full();
487 sync_ginv();
488 instruction_hazard();
489 htw_start();
490 return;
491 }
492
493 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
494 }
495
flush_tlb_mm_ipi(void * mm)496 static void flush_tlb_mm_ipi(void *mm)
497 {
498 drop_mmu_context((struct mm_struct *)mm);
499 }
500
501 /*
502 * Special Variant of smp_call_function for use by TLB functions:
503 *
504 * o No return value
505 * o collapses to normal function call on UP kernels
506 * o collapses to normal function call on systems with a single shared
507 * primary cache.
508 */
smp_on_other_tlbs(void (* func)(void * info),void * info)509 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
510 {
511 smp_call_function(func, info, 1);
512 }
513
smp_on_each_tlb(void (* func)(void * info),void * info)514 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
515 {
516 preempt_disable();
517
518 smp_on_other_tlbs(func, info);
519 func(info);
520
521 preempt_enable();
522 }
523
524 /*
525 * The following tlb flush calls are invoked when old translations are
526 * being torn down, or pte attributes are changing. For single threaded
527 * address spaces, a new context is obtained on the current cpu, and tlb
528 * context on other cpus are invalidated to force a new context allocation
529 * at switch_mm time, should the mm ever be used on other cpus. For
530 * multithreaded address spaces, inter-CPU interrupts have to be sent.
531 * Another case where inter-CPU interrupts are required is when the target
532 * mm might be active on another cpu (eg debuggers doing the flushes on
533 * behalf of debugees, kswapd stealing pages from another process etc).
534 * Kanoj 07/00.
535 */
536
flush_tlb_mm(struct mm_struct * mm)537 void flush_tlb_mm(struct mm_struct *mm)
538 {
539 if (!mm)
540 return;
541
542 if (atomic_read(&mm->mm_users) == 0)
543 return; /* happens as a result of exit_mmap() */
544
545 preempt_disable();
546
547 if (cpu_has_mmid) {
548 /*
549 * No need to worry about other CPUs - the ginvt in
550 * drop_mmu_context() will be globalized.
551 */
552 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
553 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
554 } else {
555 unsigned int cpu;
556
557 for_each_online_cpu(cpu) {
558 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
559 set_cpu_context(cpu, mm, 0);
560 }
561 }
562 drop_mmu_context(mm);
563
564 preempt_enable();
565 }
566
567 struct flush_tlb_data {
568 struct vm_area_struct *vma;
569 unsigned long addr1;
570 unsigned long addr2;
571 };
572
flush_tlb_range_ipi(void * info)573 static void flush_tlb_range_ipi(void *info)
574 {
575 struct flush_tlb_data *fd = info;
576
577 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
578 }
579
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)580 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
581 {
582 struct mm_struct *mm = vma->vm_mm;
583 unsigned long addr;
584 u32 old_mmid;
585
586 preempt_disable();
587 if (cpu_has_mmid) {
588 htw_stop();
589 old_mmid = read_c0_memorymapid();
590 write_c0_memorymapid(cpu_asid(0, mm));
591 mtc0_tlbw_hazard();
592 addr = round_down(start, PAGE_SIZE * 2);
593 end = round_up(end, PAGE_SIZE * 2);
594 do {
595 ginvt_va_mmid(addr);
596 sync_ginv();
597 addr += PAGE_SIZE * 2;
598 } while (addr < end);
599 write_c0_memorymapid(old_mmid);
600 instruction_hazard();
601 htw_start();
602 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
603 struct flush_tlb_data fd = {
604 .vma = vma,
605 .addr1 = start,
606 .addr2 = end,
607 };
608
609 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
610 local_flush_tlb_range(vma, start, end);
611 } else {
612 unsigned int cpu;
613 int exec = vma->vm_flags & VM_EXEC;
614
615 for_each_online_cpu(cpu) {
616 /*
617 * flush_cache_range() will only fully flush icache if
618 * the VMA is executable, otherwise we must invalidate
619 * ASID without it appearing to has_valid_asid() as if
620 * mm has been completely unused by that CPU.
621 */
622 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
623 set_cpu_context(cpu, mm, !exec);
624 }
625 local_flush_tlb_range(vma, start, end);
626 }
627 preempt_enable();
628 }
629
flush_tlb_kernel_range_ipi(void * info)630 static void flush_tlb_kernel_range_ipi(void *info)
631 {
632 struct flush_tlb_data *fd = info;
633
634 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
635 }
636
flush_tlb_kernel_range(unsigned long start,unsigned long end)637 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
638 {
639 struct flush_tlb_data fd = {
640 .addr1 = start,
641 .addr2 = end,
642 };
643
644 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
645 }
646
flush_tlb_page_ipi(void * info)647 static void flush_tlb_page_ipi(void *info)
648 {
649 struct flush_tlb_data *fd = info;
650
651 local_flush_tlb_page(fd->vma, fd->addr1);
652 }
653
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)654 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
655 {
656 u32 old_mmid;
657
658 preempt_disable();
659 if (cpu_has_mmid) {
660 htw_stop();
661 old_mmid = read_c0_memorymapid();
662 write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
663 mtc0_tlbw_hazard();
664 ginvt_va_mmid(page);
665 sync_ginv();
666 write_c0_memorymapid(old_mmid);
667 instruction_hazard();
668 htw_start();
669 } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
670 (current->mm != vma->vm_mm)) {
671 struct flush_tlb_data fd = {
672 .vma = vma,
673 .addr1 = page,
674 };
675
676 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
677 local_flush_tlb_page(vma, page);
678 } else {
679 unsigned int cpu;
680
681 for_each_online_cpu(cpu) {
682 /*
683 * flush_cache_page() only does partial flushes, so
684 * invalidate ASID without it appearing to
685 * has_valid_asid() as if mm has been completely unused
686 * by that CPU.
687 */
688 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
689 set_cpu_context(cpu, vma->vm_mm, 1);
690 }
691 local_flush_tlb_page(vma, page);
692 }
693 preempt_enable();
694 }
695
flush_tlb_one_ipi(void * info)696 static void flush_tlb_one_ipi(void *info)
697 {
698 unsigned long vaddr = (unsigned long) info;
699
700 local_flush_tlb_one(vaddr);
701 }
702
flush_tlb_one(unsigned long vaddr)703 void flush_tlb_one(unsigned long vaddr)
704 {
705 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
706 }
707
708 EXPORT_SYMBOL(flush_tlb_page);
709 EXPORT_SYMBOL(flush_tlb_one);
710
711 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)712 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
713 {
714 if (mp_ops->cleanup_dead_cpu)
715 mp_ops->cleanup_dead_cpu(cpu);
716 }
717 #endif
718
719 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
720
tick_broadcast_callee(void * info)721 static void tick_broadcast_callee(void *info)
722 {
723 tick_receive_broadcast();
724 }
725
726 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
727 CSD_INIT(tick_broadcast_callee, NULL);
728
tick_broadcast(const struct cpumask * mask)729 void tick_broadcast(const struct cpumask *mask)
730 {
731 call_single_data_t *csd;
732 int cpu;
733
734 for_each_cpu(cpu, mask) {
735 csd = &per_cpu(tick_broadcast_csd, cpu);
736 smp_call_function_single_async(cpu, csd);
737 }
738 }
739
740 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
741