xref: /openbmc/linux/arch/mips/kernel/elf.c (revision 33f49a68)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2014 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/binfmts.h>
8 #include <linux/elf.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 
12 #include <asm/cpu-features.h>
13 #include <asm/cpu-info.h>
14 #include <asm/fpu.h>
15 
16 #ifdef CONFIG_MIPS_FP_SUPPORT
17 
18 /* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
19 bool mips_use_nan_legacy;
20 bool mips_use_nan_2008;
21 
22 /* FPU modes */
23 enum {
24 	FP_FRE,
25 	FP_FR0,
26 	FP_FR1,
27 };
28 
29 /**
30  * struct mode_req - ABI FPU mode requirements
31  * @single:	The program being loaded needs an FPU but it will only issue
32  *		single precision instructions meaning that it can execute in
33  *		either FR0 or FR1.
34  * @soft:	The soft(-float) requirement means that the program being
35  *		loaded needs has no FPU dependency at all (i.e. it has no
36  *		FPU instructions).
37  * @fr1:	The program being loaded depends on FPU being in FR=1 mode.
38  * @frdefault:	The program being loaded depends on the default FPU mode.
39  *		That is FR0 for O32 and FR1 for N32/N64.
40  * @fre:	The program being loaded depends on FPU with FRE=1. This mode is
41  *		a bridge which uses FR=1 whilst still being able to maintain
42  *		full compatibility with pre-existing code using the O32 FP32
43  *		ABI.
44  *
45  * More information about the FP ABIs can be found here:
46  *
47  * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
48  *
49  */
50 
51 struct mode_req {
52 	bool single;
53 	bool soft;
54 	bool fr1;
55 	bool frdefault;
56 	bool fre;
57 };
58 
59 static const struct mode_req fpu_reqs[] = {
60 	[MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
61 	[MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
62 	[MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
63 	[MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
64 	[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
65 	[MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
66 	[MIPS_ABI_FP_64]     = { false, false, true,  false, false },
67 	[MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
68 };
69 
70 /*
71  * Mode requirements when .MIPS.abiflags is not present in the ELF.
72  * Not present means that everything is acceptable except FR1.
73  */
74 static struct mode_req none_req = { true, true, false, true, true };
75 
arch_elf_pt_proc(void * _ehdr,void * _phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)76 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
77 		     bool is_interp, struct arch_elf_state *state)
78 {
79 	union {
80 		struct elf32_hdr e32;
81 		struct elf64_hdr e64;
82 	} *ehdr = _ehdr;
83 	struct elf32_phdr *phdr32 = _phdr;
84 	struct elf64_phdr *phdr64 = _phdr;
85 	struct mips_elf_abiflags_v0 abiflags;
86 	bool elf32;
87 	u32 flags;
88 	int ret;
89 	loff_t pos;
90 
91 	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
92 	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
93 
94 	/* Let's see if this is an O32 ELF */
95 	if (elf32) {
96 		if (flags & EF_MIPS_FP64) {
97 			/*
98 			 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
99 			 * later if needed
100 			 */
101 			if (is_interp)
102 				state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
103 			else
104 				state->fp_abi = MIPS_ABI_FP_OLD_64;
105 		}
106 		if (phdr32->p_type != PT_MIPS_ABIFLAGS)
107 			return 0;
108 
109 		if (phdr32->p_filesz < sizeof(abiflags))
110 			return -EINVAL;
111 		pos = phdr32->p_offset;
112 	} else {
113 		if (phdr64->p_type != PT_MIPS_ABIFLAGS)
114 			return 0;
115 		if (phdr64->p_filesz < sizeof(abiflags))
116 			return -EINVAL;
117 		pos = phdr64->p_offset;
118 	}
119 
120 	ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
121 	if (ret < 0)
122 		return ret;
123 	if (ret != sizeof(abiflags))
124 		return -EIO;
125 
126 	/* Record the required FP ABIs for use by mips_check_elf */
127 	if (is_interp)
128 		state->interp_fp_abi = abiflags.fp_abi;
129 	else
130 		state->fp_abi = abiflags.fp_abi;
131 
132 	return 0;
133 }
134 
arch_check_elf(void * _ehdr,bool has_interpreter,void * _interp_ehdr,struct arch_elf_state * state)135 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
136 		   struct arch_elf_state *state)
137 {
138 	union {
139 		struct elf32_hdr e32;
140 		struct elf64_hdr e64;
141 	} *ehdr = _ehdr;
142 	union {
143 		struct elf32_hdr e32;
144 		struct elf64_hdr e64;
145 	} *iehdr = _interp_ehdr;
146 	struct mode_req prog_req, interp_req;
147 	int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
148 	bool elf32;
149 	u32 flags;
150 
151 	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
152 	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
153 
154 	/*
155 	 * Determine the NaN personality, reject the binary if not allowed.
156 	 * Also ensure that any interpreter matches the executable.
157 	 */
158 	if (flags & EF_MIPS_NAN2008) {
159 		if (mips_use_nan_2008)
160 			state->nan_2008 = 1;
161 		else
162 			return -ENOEXEC;
163 	} else {
164 		if (mips_use_nan_legacy)
165 			state->nan_2008 = 0;
166 		else
167 			return -ENOEXEC;
168 	}
169 	if (has_interpreter) {
170 		bool ielf32;
171 		u32 iflags;
172 
173 		ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
174 		iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
175 
176 		if ((flags ^ iflags) & EF_MIPS_NAN2008)
177 			return -ELIBBAD;
178 	}
179 
180 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
181 		return 0;
182 
183 	fp_abi = state->fp_abi;
184 
185 	if (has_interpreter) {
186 		interp_fp_abi = state->interp_fp_abi;
187 
188 		abi0 = min(fp_abi, interp_fp_abi);
189 		abi1 = max(fp_abi, interp_fp_abi);
190 	} else {
191 		abi0 = abi1 = fp_abi;
192 	}
193 
194 	if (elf32 && !(flags & EF_MIPS_ABI2)) {
195 		/* Default to a mode capable of running code expecting FR=0 */
196 		state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
197 
198 		/* Allow all ABIs we know about */
199 		max_abi = MIPS_ABI_FP_64A;
200 	} else {
201 		/* MIPS64 code always uses FR=1, thus the default is easy */
202 		state->overall_fp_mode = FP_FR1;
203 
204 		/* Disallow access to the various FPXX & FP64 ABIs */
205 		max_abi = MIPS_ABI_FP_SOFT;
206 	}
207 
208 	if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
209 	    (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
210 		return -ELIBBAD;
211 
212 	/* It's time to determine the FPU mode requirements */
213 	prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
214 	interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
215 
216 	/*
217 	 * Check whether the program's and interp's ABIs have a matching FPU
218 	 * mode requirement.
219 	 */
220 	prog_req.single = interp_req.single && prog_req.single;
221 	prog_req.soft = interp_req.soft && prog_req.soft;
222 	prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
223 	prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
224 	prog_req.fre = interp_req.fre && prog_req.fre;
225 
226 	/*
227 	 * Determine the desired FPU mode
228 	 *
229 	 * Decision making:
230 	 *
231 	 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
232 	 *   means that we have a combination of program and interpreter
233 	 *   that inherently require the hybrid FP mode.
234 	 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
235 	 *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
236 	 *   instructions so we don't care about the mode. We will simply use
237 	 *   the one preferred by the hardware. In fpxx case, that ABI can
238 	 *   handle both FR=1 and FR=0, so, again, we simply choose the one
239 	 *   preferred by the hardware. Next, if we only use single-precision
240 	 *   FPU instructions, and the default ABI FPU mode is not good
241 	 *   (ie single + any ABI combination), we set again the FPU mode to the
242 	 *   one is preferred by the hardware. Next, if we know that the code
243 	 *   will only use single-precision instructions, shown by single being
244 	 *   true but frdefault being false, then we again set the FPU mode to
245 	 *   the one that is preferred by the hardware.
246 	 * - We want FP_FR1 if that's the only matching mode and the default one
247 	 *   is not good.
248 	 * - Return with -ELIBADD if we can't find a matching FPU mode.
249 	 */
250 	if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
251 		state->overall_fp_mode = FP_FRE;
252 	else if ((prog_req.fr1 && prog_req.frdefault) ||
253 		 (prog_req.single && !prog_req.frdefault))
254 		/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
255 		state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
256 					  cpu_has_mips_r2_r6) ?
257 					  FP_FR1 : FP_FR0;
258 	else if (prog_req.fr1)
259 		state->overall_fp_mode = FP_FR1;
260 	else  if (!prog_req.fre && !prog_req.frdefault &&
261 		  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
262 		return -ELIBBAD;
263 
264 	return 0;
265 }
266 
set_thread_fp_mode(int hybrid,int regs32)267 static inline void set_thread_fp_mode(int hybrid, int regs32)
268 {
269 	if (hybrid)
270 		set_thread_flag(TIF_HYBRID_FPREGS);
271 	else
272 		clear_thread_flag(TIF_HYBRID_FPREGS);
273 	if (regs32)
274 		set_thread_flag(TIF_32BIT_FPREGS);
275 	else
276 		clear_thread_flag(TIF_32BIT_FPREGS);
277 }
278 
mips_set_personality_fp(struct arch_elf_state * state)279 void mips_set_personality_fp(struct arch_elf_state *state)
280 {
281 	/*
282 	 * This function is only ever called for O32 ELFs so we should
283 	 * not be worried about N32/N64 binaries.
284 	 */
285 
286 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
287 		return;
288 
289 	switch (state->overall_fp_mode) {
290 	case FP_FRE:
291 		set_thread_fp_mode(1, 0);
292 		break;
293 	case FP_FR0:
294 		set_thread_fp_mode(0, 1);
295 		break;
296 	case FP_FR1:
297 		set_thread_fp_mode(0, 0);
298 		break;
299 	default:
300 		BUG();
301 	}
302 }
303 
304 /*
305  * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
306  * in FCSR according to the ELF NaN personality.
307  */
mips_set_personality_nan(struct arch_elf_state * state)308 void mips_set_personality_nan(struct arch_elf_state *state)
309 {
310 	struct cpuinfo_mips *c = &boot_cpu_data;
311 	struct task_struct *t = current;
312 
313 	/* Do this early so t->thread.fpu.fcr31 won't be clobbered in case
314 	 * we are preempted before the lose_fpu(0) in start_thread.
315 	 */
316 	lose_fpu(0);
317 
318 	t->thread.fpu.fcr31 = c->fpu_csr31;
319 	switch (state->nan_2008) {
320 	case 0:
321 		break;
322 	case 1:
323 		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
324 			t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
325 		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
326 			t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
327 		break;
328 	default:
329 		BUG();
330 	}
331 }
332 
333 #endif /* CONFIG_MIPS_FP_SUPPORT */
334 
mips_elf_read_implies_exec(void * elf_ex,int exstack)335 int mips_elf_read_implies_exec(void *elf_ex, int exstack)
336 {
337 	/*
338 	 * Set READ_IMPLIES_EXEC only on non-NX systems that
339 	 * do not request a specific state via PT_GNU_STACK.
340 	 */
341 	return (!cpu_has_rixi && exstack == EXSTACK_DEFAULT);
342 }
343 EXPORT_SYMBOL(mips_elf_read_implies_exec);
344