1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35
36 #define DC_LOGGER_INIT(logger)
37
38 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
39 .min_refresh = 120,
40 .max_refresh = 175,
41 .res = {
42 {.width = 3840, .height = 2160, },
43 {.width = 3440, .height = 1440, },
44 {.width = 2560, .height = 1440, }},
45 };
46
47 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
48 .gpuvm_enable = 0,
49 .gpuvm_max_page_table_levels = 4,
50 .hostvm_enable = 0,
51 .rob_buffer_size_kbytes = 128,
52 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
53 .config_return_buffer_size_in_kbytes = 1280,
54 .compressed_buffer_segment_size_in_kbytes = 64,
55 .meta_fifo_size_in_kentries = 22,
56 .zero_size_buffer_entries = 512,
57 .compbuf_reserved_space_64b = 256,
58 .compbuf_reserved_space_zs = 64,
59 .dpp_output_buffer_pixels = 2560,
60 .opp_output_buffer_lines = 1,
61 .pixel_chunk_size_kbytes = 8,
62 .alpha_pixel_chunk_size_kbytes = 4,
63 .min_pixel_chunk_size_bytes = 1024,
64 .dcc_meta_buffer_size_bytes = 6272,
65 .meta_chunk_size_kbytes = 2,
66 .min_meta_chunk_size_bytes = 256,
67 .writeback_chunk_size_kbytes = 8,
68 .ptoi_supported = false,
69 .num_dsc = 4,
70 .maximum_dsc_bits_per_component = 12,
71 .maximum_pixels_per_line_per_dsc_unit = 6016,
72 .dsc422_native_support = true,
73 .is_line_buffer_bpp_fixed = true,
74 .line_buffer_fixed_bpp = 57,
75 .line_buffer_size_bits = 1171920,
76 .max_line_buffer_lines = 32,
77 .writeback_interface_buffer_size_kbytes = 90,
78 .max_num_dpp = 4,
79 .max_num_otg = 4,
80 .max_num_hdmi_frl_outputs = 1,
81 .max_num_wb = 1,
82 .max_dchub_pscl_bw_pix_per_clk = 4,
83 .max_pscl_lb_bw_pix_per_clk = 2,
84 .max_lb_vscl_bw_pix_per_clk = 4,
85 .max_vscl_hscl_bw_pix_per_clk = 4,
86 .max_hscl_ratio = 6,
87 .max_vscl_ratio = 6,
88 .max_hscl_taps = 8,
89 .max_vscl_taps = 8,
90 .dpte_buffer_size_in_pte_reqs_luma = 64,
91 .dpte_buffer_size_in_pte_reqs_chroma = 34,
92 .dispclk_ramp_margin_percent = 1,
93 .max_inter_dcn_tile_repeaters = 8,
94 .cursor_buffer_size = 16,
95 .cursor_chunk_size = 2,
96 .writeback_line_buffer_buffer_size = 0,
97 .writeback_min_hscl_ratio = 1,
98 .writeback_min_vscl_ratio = 1,
99 .writeback_max_hscl_ratio = 1,
100 .writeback_max_vscl_ratio = 1,
101 .writeback_max_hscl_taps = 1,
102 .writeback_max_vscl_taps = 1,
103 .dppclk_delay_subtotal = 47,
104 .dppclk_delay_scl = 50,
105 .dppclk_delay_scl_lb_only = 16,
106 .dppclk_delay_cnvc_formatter = 28,
107 .dppclk_delay_cnvc_cursor = 6,
108 .dispclk_delay_subtotal = 125,
109 .dynamic_metadata_vm_enabled = false,
110 .odm_combine_4to1_supported = false,
111 .dcc_supported = true,
112 .max_num_dp2p0_outputs = 2,
113 .max_num_dp2p0_streams = 4,
114 };
115
116 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
117 .clock_limits = {
118 {
119 .state = 0,
120 .dcfclk_mhz = 1564.0,
121 .fabricclk_mhz = 2500.0,
122 .dispclk_mhz = 2150.0,
123 .dppclk_mhz = 2150.0,
124 .phyclk_mhz = 810.0,
125 .phyclk_d18_mhz = 667.0,
126 .phyclk_d32_mhz = 625.0,
127 .socclk_mhz = 1200.0,
128 .dscclk_mhz = 716.667,
129 .dram_speed_mts = 18000.0,
130 .dtbclk_mhz = 1564.0,
131 },
132 },
133 .num_states = 1,
134 .sr_exit_time_us = 42.97,
135 .sr_enter_plus_exit_time_us = 49.94,
136 .sr_exit_z8_time_us = 285.0,
137 .sr_enter_plus_exit_z8_time_us = 320,
138 .writeback_latency_us = 12.0,
139 .round_trip_ping_latency_dcfclk_cycles = 263,
140 .urgent_latency_pixel_data_only_us = 4.0,
141 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
142 .urgent_latency_vm_data_only_us = 4.0,
143 .fclk_change_latency_us = 25,
144 .usr_retraining_latency_us = 2,
145 .smn_latency_us = 2,
146 .mall_allocated_for_dcn_mbytes = 64,
147 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
148 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
149 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
150 .pct_ideal_sdp_bw_after_urgent = 90.0,
151 .pct_ideal_fabric_bw_after_urgent = 67.0,
152 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
153 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
154 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
155 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
156 .max_avg_sdp_bw_use_normal_percent = 80.0,
157 .max_avg_fabric_bw_use_normal_percent = 60.0,
158 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
159 .max_avg_dram_bw_use_normal_percent = 15.0,
160 .num_chans = 24,
161 .dram_channel_width_bytes = 2,
162 .fabric_datapath_to_dcn_data_return_bytes = 64,
163 .return_bus_width_bytes = 64,
164 .downspread_percent = 0.38,
165 .dcn_downspread_percent = 0.5,
166 .dram_clock_change_latency_us = 400,
167 .dispclk_dppclk_vco_speed_mhz = 4300.0,
168 .do_urgent_latency_adjustment = true,
169 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
170 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
171 };
172
dcn32_build_wm_range_table_fpu(struct clk_mgr_internal * clk_mgr)173 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
174 {
175 /* defaults */
176 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
177 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
178 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
179 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
180 /* For min clocks use as reported by PM FW and report those as min */
181 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
182 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
184 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
185
186 dc_assert_fp_enabled();
187
188 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
189 if (dcfclk_mhz_for_the_second_state)
190 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
191 else
192 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193
194 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
195 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
196
197 /* Set A - Normal - default values */
198 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
199 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
200 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
201 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
202 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
204 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
206 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
207 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
208
209 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
210 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
219
220 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
221 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
222 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
229 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
230 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
231 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
232 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
233 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
234 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
235 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
236 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
237 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
238 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
239 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
240 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
241 }
242 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
243 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
244 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
245 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
246 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
247 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
248 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
249 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
250 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
251 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
252 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
253 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
254 }
255
256 /*
257 * Finds dummy_latency_index when MCLK switching using firmware based
258 * vblank stretch is enabled. This function will iterate through the
259 * table of dummy pstate latencies until the lowest value that allows
260 * dm_allow_self_refresh_and_mclk_switch to happen is found
261 */
dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)262 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
263 struct dc_state *context,
264 display_e2e_pipe_params_st *pipes,
265 int pipe_cnt,
266 int vlevel)
267 {
268 const int max_latency_table_entries = 4;
269 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
270 int dummy_latency_index = 0;
271 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
272
273 dc_assert_fp_enabled();
274
275 while (dummy_latency_index < max_latency_table_entries) {
276 if (temp_clock_change_support != dm_dram_clock_change_unsupported)
277 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
278 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
279 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
280 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
281
282 /* for subvp + DRR case, if subvp pipes are still present we support pstate */
283 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
284 dcn32_subvp_in_use(dc, context))
285 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
286
287 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
288 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
289 break;
290
291 dummy_latency_index++;
292 }
293
294 if (dummy_latency_index == max_latency_table_entries) {
295 ASSERT(dummy_latency_index != max_latency_table_entries);
296 /* If the execution gets here, it means dummy p_states are
297 * not possible. This should never happen and would mean
298 * something is severely wrong.
299 * Here we reset dummy_latency_index to 3, because it is
300 * better to have underflows than system crashes.
301 */
302 dummy_latency_index = max_latency_table_entries - 1;
303 }
304
305 return dummy_latency_index;
306 }
307
308 /**
309 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
310 * and populate pipe_ctx with those params.
311 * @dc: [in] current dc state
312 * @context: [in] new dc state
313 * @pipes: [in] DML pipe params array
314 * @pipe_cnt: [in] DML pipe count
315 *
316 * This function must be called AFTER the phantom pipes are added to context
317 * and run through DML (so that the DLG params for the phantom pipes can be
318 * populated), and BEFORE we program the timing for the phantom pipes.
319 */
dcn32_helper_populate_phantom_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)320 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
321 struct dc_state *context,
322 display_e2e_pipe_params_st *pipes,
323 int pipe_cnt)
324 {
325 uint32_t i, pipe_idx;
326
327 dc_assert_fp_enabled();
328
329 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
330 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
331
332 if (!pipe->stream)
333 continue;
334
335 if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
336 pipes[pipe_idx].pipe.dest.vstartup_start =
337 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
338 pipes[pipe_idx].pipe.dest.vupdate_offset =
339 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
340 pipes[pipe_idx].pipe.dest.vupdate_width =
341 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
342 pipes[pipe_idx].pipe.dest.vready_offset =
343 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
344 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
345 }
346 pipe_idx++;
347 }
348 }
349
350 /**
351 * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
352 * @context: [in] New DC state to be programmed
353 * @pipe_e2e: [in] DML pipe end to end context
354 *
355 * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
356 * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
357 * determined by DPPClk requirements
358 *
359 * This function follows the same policy as DML:
360 * - Check for ODM combine requirements / policy first
361 * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
362 * MPC is required
363 *
364 * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
365 */
dcn32_predict_pipe_split(struct dc_state * context,display_e2e_pipe_params_st * pipe_e2e)366 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
367 display_e2e_pipe_params_st *pipe_e2e)
368 {
369 double pscl_throughput;
370 double pscl_throughput_chroma;
371 double dpp_clk_single_dpp, clock;
372 double clk_frequency = 0.0;
373 double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
374 bool total_available_pipes_support = false;
375 uint32_t number_of_dpp = 0;
376 enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
377 double req_dispclk_per_surface = 0;
378 uint8_t num_splits = 0;
379
380 dc_assert_fp_enabled();
381
382 dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
383 pipe_e2e->pipe.dest.hactive,
384 pipe_e2e->dout.output_format,
385 pipe_e2e->dout.output_type,
386 pipe_e2e->pipe.dest.odm_combine_policy,
387 context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
388 context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
389 pipe_e2e->dout.dsc_enable != 0,
390 0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
391 context->bw_ctx.dml.ip.max_num_dpp,
392 pipe_e2e->pipe.dest.pixel_rate_mhz,
393 context->bw_ctx.dml.soc.dcn_downspread_percent,
394 context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
395 context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
396 pipe_e2e->dout.dsc_slices,
397 /* Output */
398 &total_available_pipes_support,
399 &number_of_dpp,
400 &odm_mode,
401 &req_dispclk_per_surface);
402
403 dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
404 pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
405 pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
406 pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
407 context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
408 context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
409 pipe_e2e->pipe.dest.pixel_rate_mhz,
410 pipe_e2e->pipe.src.source_format,
411 pipe_e2e->pipe.scale_taps.htaps,
412 pipe_e2e->pipe.scale_taps.htaps_c,
413 pipe_e2e->pipe.scale_taps.vtaps,
414 pipe_e2e->pipe.scale_taps.vtaps_c,
415 /* Output */
416 &pscl_throughput, &pscl_throughput_chroma,
417 &dpp_clk_single_dpp);
418
419 clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
420
421 if (clock > 0)
422 clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
423
424 if (odm_mode == dm_odm_combine_mode_2to1)
425 num_splits = 1;
426 else if (odm_mode == dm_odm_combine_mode_4to1)
427 num_splits = 3;
428 else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
429 num_splits = 1;
430
431 return num_splits;
432 }
433
calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st * entry)434 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
435 {
436 float memory_bw_kbytes_sec;
437 float fabric_bw_kbytes_sec;
438 float sdp_bw_kbytes_sec;
439 float limiting_bw_kbytes_sec;
440
441 memory_bw_kbytes_sec = entry->dram_speed_mts *
442 dcn3_2_soc.num_chans *
443 dcn3_2_soc.dram_channel_width_bytes *
444 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
445
446 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
447 dcn3_2_soc.return_bus_width_bytes *
448 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
449
450 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
451 dcn3_2_soc.return_bus_width_bytes *
452 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
453
454 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
455
456 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
457 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
458
459 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
460 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
461
462 return limiting_bw_kbytes_sec;
463 }
464
get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st * entry)465 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
466 {
467 if (entry->dcfclk_mhz > 0) {
468 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
469
470 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
471 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
472 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
473 } else if (entry->fabricclk_mhz > 0) {
474 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
475
476 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
477 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
478 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
479 } else if (entry->dram_speed_mts > 0) {
480 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
481 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
482
483 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
484 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
485 }
486 }
487
insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,struct _vcs_dpi_voltage_scaling_st * entry)488 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
489 unsigned int *num_entries,
490 struct _vcs_dpi_voltage_scaling_st *entry)
491 {
492 int i = 0;
493 int index = 0;
494
495 dc_assert_fp_enabled();
496
497 if (*num_entries == 0) {
498 table[0] = *entry;
499 (*num_entries)++;
500 } else {
501 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
502 index++;
503 if (index >= *num_entries)
504 break;
505 }
506
507 for (i = *num_entries; i > index; i--)
508 table[i] = table[i - 1];
509
510 table[index] = *entry;
511 (*num_entries)++;
512 }
513 }
514
515 /**
516 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
517 * @dc: current dc state
518 * @context: new dc state
519 * @ref_pipe: Main pipe for the phantom stream
520 * @phantom_stream: target phantom stream state
521 * @pipes: DML pipe params
522 * @pipe_cnt: number of DML pipes
523 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
524 *
525 * Set timing params of the phantom stream based on calculated output from DML.
526 * This function first gets the DML pipe index using the DC pipe index, then
527 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
528 * lines required for SubVP MCLK switching and assigns to the phantom stream
529 * accordingly.
530 *
531 * - The number of SubVP lines calculated in DML does not take into account
532 * FW processing delays and required pstate allow width, so we must include
533 * that separately.
534 *
535 * - Set phantom backporch = vstartup of main pipe
536 */
dcn32_set_phantom_stream_timing(struct dc * dc,struct dc_state * context,struct pipe_ctx * ref_pipe,struct dc_stream_state * phantom_stream,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)537 void dcn32_set_phantom_stream_timing(struct dc *dc,
538 struct dc_state *context,
539 struct pipe_ctx *ref_pipe,
540 struct dc_stream_state *phantom_stream,
541 display_e2e_pipe_params_st *pipes,
542 unsigned int pipe_cnt,
543 unsigned int dc_pipe_idx)
544 {
545 unsigned int i, pipe_idx;
546 struct pipe_ctx *pipe;
547 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
548 unsigned int num_dpp;
549 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
550 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
551 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
552 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
553 struct dc_stream_state *main_stream = ref_pipe->stream;
554
555 dc_assert_fp_enabled();
556
557 // Find DML pipe index (pipe_idx) using dc_pipe_idx
558 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
559 pipe = &context->res_ctx.pipe_ctx[i];
560
561 if (!pipe->stream)
562 continue;
563
564 if (i == dc_pipe_idx)
565 break;
566
567 pipe_idx++;
568 }
569
570 // Calculate lines required for pstate allow width and FW processing delays
571 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
572 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
573 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
574 (double)ref_pipe->stream->timing.h_total;
575
576 // Update clks_cfg for calling into recalculate
577 pipes[0].clks_cfg.voltage = vlevel;
578 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
579 pipes[0].clks_cfg.socclk_mhz = socclk;
580
581 // DML calculation for MALL region doesn't take into account FW delay
582 // and required pstate allow width for multi-display cases
583 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
584 * to 2 swaths (i.e. 16 lines)
585 */
586 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
587 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
588
589 // W/A for DCC corruption with certain high resolution timings.
590 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
591 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
592 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
593
594 /* dc->debug.subvp_extra_lines 0 by default*/
595 phantom_vactive += dc->debug.subvp_extra_lines;
596
597 // For backporch of phantom pipe, use vstartup of the main pipe
598 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
599
600 phantom_stream->dst.y = 0;
601 phantom_stream->dst.height = phantom_vactive;
602 /* When scaling, DML provides the end to end required number of lines for MALL.
603 * dst.height is always correct for this case, but src.height is not which causes a
604 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
605 * phantom for this case.
606 */
607 phantom_stream->src.y = 0;
608 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
609
610 phantom_stream->timing.v_addressable = phantom_vactive;
611 phantom_stream->timing.v_front_porch = 1;
612 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
613 phantom_stream->timing.v_front_porch +
614 phantom_stream->timing.v_sync_width +
615 phantom_bp;
616 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
617 }
618
619 /**
620 * dcn32_get_num_free_pipes - Calculate number of free pipes
621 * @dc: current dc state
622 * @context: new dc state
623 *
624 * This function assumes that a "used" pipe is a pipe that has
625 * both a stream and a plane assigned to it.
626 *
627 * Return: Number of free pipes available in the context
628 */
dcn32_get_num_free_pipes(struct dc * dc,struct dc_state * context)629 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
630 {
631 unsigned int i;
632 unsigned int free_pipes = 0;
633 unsigned int num_pipes = 0;
634
635 for (i = 0; i < dc->res_pool->pipe_count; i++) {
636 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
637
638 if (pipe->stream && !pipe->top_pipe) {
639 while (pipe) {
640 num_pipes++;
641 pipe = pipe->bottom_pipe;
642 }
643 }
644 }
645
646 free_pipes = dc->res_pool->pipe_count - num_pipes;
647 return free_pipes;
648 }
649
650 /**
651 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
652 * @dc: current dc state
653 * @context: new dc state
654 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
655 *
656 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
657 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
658 * we are forcing SubVP P-State switching on the current config.
659 *
660 * The number of pipes used for the chosen surface must be less than or equal to the
661 * number of free pipes available.
662 *
663 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
664 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
665 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
666 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
667 *
668 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
669 */
dcn32_assign_subvp_pipe(struct dc * dc,struct dc_state * context,unsigned int * index)670 static bool dcn32_assign_subvp_pipe(struct dc *dc,
671 struct dc_state *context,
672 unsigned int *index)
673 {
674 unsigned int i, pipe_idx;
675 unsigned int max_frame_time = 0;
676 bool valid_assignment_found = false;
677 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
678 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
679
680 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
681 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
682 unsigned int num_pipes = 0;
683 unsigned int refresh_rate = 0;
684
685 if (!pipe->stream)
686 continue;
687
688 // Round up
689 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
690 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
691 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
692 /* SubVP pipe candidate requirements:
693 * - Refresh rate < 120hz
694 * - Not able to switch in vactive naturally (switching in active means the
695 * DET provides enough buffer to hide the P-State switch latency -- trying
696 * to combine this with SubVP can cause issues with the scheduling).
697 * - Not TMZ surface
698 */
699 if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
700 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
701 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
702 pipe->stream->mall_stream_config.type == SUBVP_NONE &&
703 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
704 !pipe->plane_state->address.tmz_surface &&
705 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
706 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
707 dcn32_allow_subvp_with_active_margin(pipe)))) {
708 while (pipe) {
709 num_pipes++;
710 pipe = pipe->bottom_pipe;
711 }
712
713 pipe = &context->res_ctx.pipe_ctx[i];
714 if (num_pipes <= free_pipes) {
715 struct dc_stream_state *stream = pipe->stream;
716 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
717 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
718 if (frame_us > max_frame_time) {
719 *index = i;
720 max_frame_time = frame_us;
721 valid_assignment_found = true;
722 }
723 }
724 }
725 pipe_idx++;
726 }
727 return valid_assignment_found;
728 }
729
730 /**
731 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
732 * @dc: current dc state
733 * @context: new dc state
734 *
735 * This function returns true if there are enough free pipes
736 * to create the required phantom pipes for any given stream
737 * (that does not already have phantom pipe assigned).
738 *
739 * e.g. For a 2 stream config where the first stream uses one
740 * pipe and the second stream uses 2 pipes (i.e. pipe split),
741 * this function will return true because there is 1 remaining
742 * pipe which can be used as the phantom pipe for the non pipe
743 * split pipe.
744 *
745 * Return:
746 * True if there are enough free pipes to assign phantom pipes to at least one
747 * stream that does not already have phantom pipes assigned. Otherwise false.
748 */
dcn32_enough_pipes_for_subvp(struct dc * dc,struct dc_state * context)749 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
750 {
751 unsigned int i, split_cnt, free_pipes;
752 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
753 bool subvp_possible = false;
754
755 for (i = 0; i < dc->res_pool->pipe_count; i++) {
756 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
757
758 // Find the minimum pipe split count for non SubVP pipes
759 if (resource_is_pipe_type(pipe, OPP_HEAD) &&
760 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
761 split_cnt = 0;
762 while (pipe) {
763 split_cnt++;
764 pipe = pipe->bottom_pipe;
765 }
766
767 if (split_cnt < min_pipe_split)
768 min_pipe_split = split_cnt;
769 }
770 }
771
772 free_pipes = dcn32_get_num_free_pipes(dc, context);
773
774 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
775 // should not equal to the pipe_count)
776 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
777 subvp_possible = true;
778
779 return subvp_possible;
780 }
781
782 /**
783 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
784 * @dc: current dc state
785 * @context: new dc state
786 *
787 * High level algorithm:
788 * 1. Find longest microschedule length (in us) between the two SubVP pipes
789 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
790 * pipes still allows for the maximum microschedule to fit in the active
791 * region for both pipes.
792 *
793 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
794 */
subvp_subvp_schedulable(struct dc * dc,struct dc_state * context)795 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
796 {
797 struct pipe_ctx *subvp_pipes[2];
798 struct dc_stream_state *phantom = NULL;
799 uint32_t microschedule_lines = 0;
800 uint32_t index = 0;
801 uint32_t i;
802 uint32_t max_microschedule_us = 0;
803 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
804
805 for (i = 0; i < dc->res_pool->pipe_count; i++) {
806 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
807 uint32_t time_us = 0;
808
809 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
810 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
811 */
812 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
813 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
814 phantom = pipe->stream->mall_stream_config.paired_stream;
815 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
816 phantom->timing.v_addressable;
817
818 // Round up when calculating microschedule time (+ 1 at the end)
819 time_us = (microschedule_lines * phantom->timing.h_total) /
820 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
821 dc->caps.subvp_prefetch_end_to_mall_start_us +
822 dc->caps.subvp_fw_processing_delay_us + 1;
823 if (time_us > max_microschedule_us)
824 max_microschedule_us = time_us;
825
826 subvp_pipes[index] = pipe;
827 index++;
828
829 // Maximum 2 SubVP pipes
830 if (index == 2)
831 break;
832 }
833 }
834 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
835 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
836 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
837 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
838 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
839 subvp_pipes[0]->stream->timing.h_total) /
840 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
841 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
842 subvp_pipes[1]->stream->timing.h_total) /
843 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
844
845 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
846 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
847 return true;
848
849 return false;
850 }
851
852 /**
853 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
854 * @dc: current dc state
855 * @context: new dc state
856 *
857 * High level algorithm:
858 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
859 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
860 * (the margin is equal to the MALL region + DRR margin (500us))
861 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
862 * then report the configuration as supported
863 *
864 * Return: True if the SubVP + DRR config is schedulable, false otherwise
865 */
subvp_drr_schedulable(struct dc * dc,struct dc_state * context)866 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
867 {
868 bool schedulable = false;
869 uint32_t i;
870 struct pipe_ctx *pipe = NULL;
871 struct pipe_ctx *drr_pipe = NULL;
872 struct dc_crtc_timing *main_timing = NULL;
873 struct dc_crtc_timing *phantom_timing = NULL;
874 struct dc_crtc_timing *drr_timing = NULL;
875 int16_t prefetch_us = 0;
876 int16_t mall_region_us = 0;
877 int16_t drr_frame_us = 0; // nominal frame time
878 int16_t subvp_active_us = 0;
879 int16_t stretched_drr_us = 0;
880 int16_t drr_stretched_vblank_us = 0;
881 int16_t max_vblank_mallregion = 0;
882
883 // Find SubVP pipe
884 for (i = 0; i < dc->res_pool->pipe_count; i++) {
885 pipe = &context->res_ctx.pipe_ctx[i];
886
887 // We check for master pipe, but it shouldn't matter since we only need
888 // the pipe for timing info (stream should be same for any pipe splits)
889 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
890 !resource_is_pipe_type(pipe, DPP_PIPE))
891 continue;
892
893 // Find the SubVP pipe
894 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
895 break;
896 }
897
898 // Find the DRR pipe
899 for (i = 0; i < dc->res_pool->pipe_count; i++) {
900 drr_pipe = &context->res_ctx.pipe_ctx[i];
901
902 // We check for master pipe only
903 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
904 !resource_is_pipe_type(pipe, DPP_PIPE))
905 continue;
906
907 if (drr_pipe->stream->mall_stream_config.type == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
908 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable))
909 break;
910 }
911
912 main_timing = &pipe->stream->timing;
913 phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
914 drr_timing = &drr_pipe->stream->timing;
915 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
916 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
917 dc->caps.subvp_prefetch_end_to_mall_start_us;
918 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
919 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
920 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
921 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
922 // P-State allow width and FW delays already included phantom_timing->v_addressable
923 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
924 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
925 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
926 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
927 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
928 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
929
930 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
931 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
932 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
933 * and the max of (VBLANK blanking time, MALL region)).
934 */
935 if (drr_timing &&
936 stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
937 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
938 schedulable = true;
939
940 return schedulable;
941 }
942
943
944 /**
945 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
946 * @dc: current dc state
947 * @context: new dc state
948 *
949 * High level algorithm:
950 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
951 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
952 * then report the configuration as supported
953 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
954 *
955 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
956 */
subvp_vblank_schedulable(struct dc * dc,struct dc_state * context)957 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
958 {
959 struct pipe_ctx *pipe = NULL;
960 struct pipe_ctx *subvp_pipe = NULL;
961 bool found = false;
962 bool schedulable = false;
963 uint32_t i = 0;
964 uint8_t vblank_index = 0;
965 uint16_t prefetch_us = 0;
966 uint16_t mall_region_us = 0;
967 uint16_t vblank_frame_us = 0;
968 uint16_t subvp_active_us = 0;
969 uint16_t vblank_blank_us = 0;
970 uint16_t max_vblank_mallregion = 0;
971 struct dc_crtc_timing *main_timing = NULL;
972 struct dc_crtc_timing *phantom_timing = NULL;
973 struct dc_crtc_timing *vblank_timing = NULL;
974
975 /* For SubVP + VBLANK/DRR cases, we assume there can only be
976 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
977 * is supported, it is either a single VBLANK case or two VBLANK
978 * displays which are synchronized (in which case they have identical
979 * timings).
980 */
981 for (i = 0; i < dc->res_pool->pipe_count; i++) {
982 pipe = &context->res_ctx.pipe_ctx[i];
983
984 // We check for master pipe, but it shouldn't matter since we only need
985 // the pipe for timing info (stream should be same for any pipe splits)
986 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
987 !resource_is_pipe_type(pipe, DPP_PIPE))
988 continue;
989
990 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
991 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
992 vblank_index = i;
993 found = true;
994 }
995
996 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
997 subvp_pipe = pipe;
998 }
999 if (found && subvp_pipe) {
1000 main_timing = &subvp_pipe->stream->timing;
1001 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
1002 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
1003 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
1004 // Also include the prefetch end to mallstart delay time
1005 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
1006 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
1007 dc->caps.subvp_prefetch_end_to_mall_start_us;
1008 // P-State allow width and FW delays already included phantom_timing->v_addressable
1009 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
1010 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
1011 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
1012 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1013 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
1014 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1015 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
1016 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
1017 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
1018
1019 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
1020 // and the max of (VBLANK blanking time, MALL region)
1021 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
1022 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
1023 schedulable = true;
1024 }
1025 return schedulable;
1026 }
1027
1028 /**
1029 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
1030 *
1031 * @dc: Current DC state
1032 * @context: New DC state to be programmed
1033 *
1034 * SubVP + SubVP is admissible under the following conditions:
1035 * - All SubVP pipes are < 120Hz OR
1036 * - All SubVP pipes are >= 120hz
1037 *
1038 * Return: True if admissible, false otherwise
1039 */
subvp_subvp_admissable(struct dc * dc,struct dc_state * context)1040 static bool subvp_subvp_admissable(struct dc *dc,
1041 struct dc_state *context)
1042 {
1043 bool result = false;
1044 uint32_t i;
1045 uint8_t subvp_count = 0;
1046 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
1047 uint64_t refresh_rate = 0;
1048
1049 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1050 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1051
1052 if (!pipe->stream)
1053 continue;
1054
1055 if (pipe->plane_state && !pipe->top_pipe &&
1056 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
1057 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1058 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
1059 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1060 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1061
1062 if ((uint32_t)refresh_rate < min_refresh)
1063 min_refresh = (uint32_t)refresh_rate;
1064 if ((uint32_t)refresh_rate > max_refresh)
1065 max_refresh = (uint32_t)refresh_rate;
1066 subvp_count++;
1067 }
1068 }
1069
1070 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1071 (min_refresh >= subvp_high_refresh_list.min_refresh &&
1072 max_refresh <= subvp_high_refresh_list.max_refresh)))
1073 result = true;
1074
1075 return result;
1076 }
1077
1078 /**
1079 * subvp_validate_static_schedulability - Check which SubVP case is calculated
1080 * and handle static analysis based on the case.
1081 * @dc: current dc state
1082 * @context: new dc state
1083 * @vlevel: Voltage level calculated by DML
1084 *
1085 * Three cases:
1086 * 1. SubVP + SubVP
1087 * 2. SubVP + VBLANK (DRR checked internally)
1088 * 3. SubVP + VACTIVE (currently unsupported)
1089 *
1090 * Return: True if statically schedulable, false otherwise
1091 */
subvp_validate_static_schedulability(struct dc * dc,struct dc_state * context,int vlevel)1092 static bool subvp_validate_static_schedulability(struct dc *dc,
1093 struct dc_state *context,
1094 int vlevel)
1095 {
1096 bool schedulable = false;
1097 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1098 uint32_t i, pipe_idx;
1099 uint8_t subvp_count = 0;
1100 uint8_t vactive_count = 0;
1101 uint8_t non_subvp_pipes = 0;
1102
1103 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1104 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1105
1106 if (!pipe->stream)
1107 continue;
1108
1109 if (pipe->plane_state && !pipe->top_pipe) {
1110 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1111 subvp_count++;
1112 if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1113 non_subvp_pipes++;
1114 }
1115 }
1116
1117 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1118 // switching (SubVP + VACTIVE unsupported). In situations where we force
1119 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1120 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1121 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1122 vactive_count++;
1123 }
1124 pipe_idx++;
1125 }
1126
1127 if (subvp_count == 2) {
1128 // Static schedulability check for SubVP + SubVP case
1129 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1130 } else if (subvp_count == 1 && non_subvp_pipes == 0) {
1131 // Single SubVP configs will be supported by default as long as it's suppported by DML
1132 schedulable = true;
1133 } else if (subvp_count == 1 && non_subvp_pipes == 1) {
1134 if (dcn32_subvp_drr_admissable(dc, context))
1135 schedulable = subvp_drr_schedulable(dc, context);
1136 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1137 schedulable = subvp_vblank_schedulable(dc, context);
1138 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1139 vactive_count > 0) {
1140 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1141 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1142 // SubVP + VACTIVE currently unsupported
1143 schedulable = false;
1144 }
1145 return schedulable;
1146 }
1147
dcn32_full_validate_bw_helper(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * vlevel,int * split,bool * merge,int * pipe_cnt)1148 static void dcn32_full_validate_bw_helper(struct dc *dc,
1149 struct dc_state *context,
1150 display_e2e_pipe_params_st *pipes,
1151 int *vlevel,
1152 int *split,
1153 bool *merge,
1154 int *pipe_cnt)
1155 {
1156 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1157 unsigned int dc_pipe_idx = 0;
1158 int i = 0;
1159 bool found_supported_config = false;
1160
1161 dc_assert_fp_enabled();
1162
1163 /*
1164 * DML favors voltage over p-state, but we're more interested in
1165 * supporting p-state over voltage. We can't support p-state in
1166 * prefetch mode > 0 so try capping the prefetch mode to start.
1167 * Override present for testing.
1168 */
1169 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1170 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1171 dm_prefetch_support_uclk_fclk_and_stutter;
1172 else
1173 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1174 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1175
1176 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1177 /* This may adjust vlevel and maxMpcComb */
1178 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1179 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1180 vba->VoltageLevel = *vlevel;
1181 }
1182
1183 /* Conditions for setting up phantom pipes for SubVP:
1184 * 1. Not force disable SubVP
1185 * 2. Full update (i.e. !fast_validate)
1186 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1187 * 4. Display configuration passes validation
1188 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1189 */
1190 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1191 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1192 (*vlevel == context->bw_ctx.dml.soc.num_states ||
1193 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1194 dc->debug.force_subvp_mclk_switch)) {
1195
1196 dcn32_merge_pipes_for_subvp(dc, context);
1197 memset(merge, 0, MAX_PIPES * sizeof(bool));
1198
1199 /* to re-initialize viewport after the pipe merge */
1200 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1201 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1202
1203 if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1204 continue;
1205
1206 resource_build_scaling_params(pipe_ctx);
1207 }
1208
1209 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1210 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1211 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1212 * Adding phantom pipes won't change the validation result, so change the DML input param
1213 * for P-State support before adding phantom pipes and recalculating the DML result.
1214 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1215 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1216 * enough to support MCLK switching.
1217 */
1218 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1219 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1220 dm_prefetch_support_uclk_fclk_and_stutter) {
1221 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1222 dm_prefetch_support_fclk_and_stutter;
1223 /* There are params (such as FabricClock) that need to be recalculated
1224 * after validation fails (otherwise it will be 0). Calculation for
1225 * phantom vactive requires call into DML, so we must ensure all the
1226 * vba params are valid otherwise we'll get incorrect phantom vactive.
1227 */
1228 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1229 }
1230
1231 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1232
1233 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1234 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1235 // so the phantom pipe DLG params can be assigned correctly.
1236 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1237 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1238
1239 /* Check that vlevel requested supports pstate or not
1240 * if not, select the lowest vlevel that supports it
1241 */
1242 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1243 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1244 *vlevel = i;
1245 break;
1246 }
1247 }
1248
1249 if (*vlevel < context->bw_ctx.dml.soc.num_states
1250 && subvp_validate_static_schedulability(dc, context, *vlevel))
1251 found_supported_config = true;
1252 if (found_supported_config) {
1253 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1254 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1255 /* find lowest vlevel that supports the config */
1256 for (i = *vlevel; i >= 0; i--) {
1257 if (vba->ModeSupport[i][vba->maxMpcComb]) {
1258 *vlevel = i;
1259 } else {
1260 break;
1261 }
1262 }
1263 }
1264 }
1265 }
1266
1267 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1268 // remove phantom pipes and repopulate dml pipes
1269 if (!found_supported_config) {
1270 dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
1271 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1272 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1273
1274 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1275 /* This may adjust vlevel and maxMpcComb */
1276 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1277 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1278 vba->VoltageLevel = *vlevel;
1279 }
1280 } else {
1281 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1282 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1283
1284 /* Call validate_apply_pipe_split flags after calling DML getters for
1285 * phantom dlg params, or some of the VBA params indicating pipe split
1286 * can be overwritten by the getters.
1287 *
1288 * When setting up SubVP config, all pipes are merged before attempting to
1289 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1290 * and phantom pipes will be split in the regular pipe splitting sequence.
1291 */
1292 memset(split, 0, MAX_PIPES * sizeof(int));
1293 memset(merge, 0, MAX_PIPES * sizeof(bool));
1294 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1295 vba->VoltageLevel = *vlevel;
1296 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1297 // until driver has acquired the DMCUB lock to do it safely.
1298 }
1299 }
1300 }
1301
is_dtbclk_required(struct dc * dc,struct dc_state * context)1302 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1303 {
1304 int i;
1305
1306 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1307 if (!context->res_ctx.pipe_ctx[i].stream)
1308 continue;
1309 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1310 return true;
1311 }
1312 return false;
1313 }
1314
dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing * dc_crtc_timing,int * vstartup_start)1315 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1316 {
1317 struct dc_crtc_timing patched_crtc_timing;
1318 uint32_t asic_blank_end = 0;
1319 uint32_t asic_blank_start = 0;
1320 uint32_t newVstartup = 0;
1321
1322 patched_crtc_timing = *dc_crtc_timing;
1323
1324 if (patched_crtc_timing.flags.INTERLACE == 1) {
1325 if (patched_crtc_timing.v_front_porch < 2)
1326 patched_crtc_timing.v_front_porch = 2;
1327 } else {
1328 if (patched_crtc_timing.v_front_porch < 1)
1329 patched_crtc_timing.v_front_porch = 1;
1330 }
1331
1332 /* blank_start = frame end - front porch */
1333 asic_blank_start = patched_crtc_timing.v_total -
1334 patched_crtc_timing.v_front_porch;
1335
1336 /* blank_end = blank_start - active */
1337 asic_blank_end = asic_blank_start -
1338 patched_crtc_timing.v_border_bottom -
1339 patched_crtc_timing.v_addressable -
1340 patched_crtc_timing.v_border_top;
1341
1342 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1343
1344 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1345 }
1346
dcn32_calculate_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1347 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1348 display_e2e_pipe_params_st *pipes,
1349 int pipe_cnt, int vlevel)
1350 {
1351 int i, pipe_idx, active_hubp_count = 0;
1352 bool usr_retraining_support = false;
1353 bool unbounded_req_enabled = false;
1354 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1355
1356 dc_assert_fp_enabled();
1357
1358 /* Writeback MCIF_WB arbitration parameters */
1359 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1360
1361 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1362 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1363 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1364 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1365 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1366 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1367 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1368 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1369 != dm_dram_clock_change_unsupported;
1370
1371 /* Pstate change might not be supported by hardware, but it might be
1372 * possible with firmware driven vertical blank stretching.
1373 */
1374 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1375
1376 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1377 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1378 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1379 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1380 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1381 else
1382 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1383
1384 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1385 ASSERT(usr_retraining_support);
1386
1387 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1388 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1389
1390 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1391
1392 if (unbounded_req_enabled && pipe_cnt > 1) {
1393 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1394 ASSERT(false);
1395 unbounded_req_enabled = false;
1396 }
1397
1398 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1399 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1400 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1401
1402 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1403 if (!context->res_ctx.pipe_ctx[i].stream)
1404 continue;
1405 if (context->res_ctx.pipe_ctx[i].plane_state)
1406 active_hubp_count++;
1407 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1408 pipe_idx);
1409 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1410 pipe_idx);
1411 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1412 pipe_idx);
1413 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1414 pipe_idx);
1415
1416 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1417 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1418 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1419 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1420 } else {
1421 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1422 pipe_idx);
1423 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1424 }
1425
1426 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1427 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1428 if (context->res_ctx.pipe_ctx[i].plane_state)
1429 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1430 else
1431 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1432 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1433
1434 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1435
1436 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1437 context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1438 else
1439 context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1440
1441 /* MALL Allocation Sizes */
1442 /* count from active, top pipes per plane only */
1443 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1444 (context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1445 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1446 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1447 /* SS: all active surfaces stored in MALL */
1448 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
1449 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1450
1451 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1452 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1453 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1454 }
1455 } else {
1456 /* SUBVP: phantom surfaces only stored in MALL */
1457 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1458 }
1459 }
1460
1461 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1462 dcn20_adjust_freesync_v_startup(
1463 &context->res_ctx.pipe_ctx[i].stream->timing,
1464 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1465
1466 pipe_idx++;
1467 }
1468 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1469 if (!active_hubp_count) {
1470 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1471 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1472 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1473 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1474 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1475 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1476 context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1477 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1478 }
1479 /*save a original dppclock copy*/
1480 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1481 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1482 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1483 * 1000;
1484 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1485 * 1000;
1486
1487 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1488
1489 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1490
1491 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1492 if (context->res_ctx.pipe_ctx[i].stream)
1493 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1494 }
1495
1496 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1497
1498 if (!context->res_ctx.pipe_ctx[i].stream)
1499 continue;
1500
1501 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1502 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1503 pipe_cnt, pipe_idx);
1504
1505 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1506 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1507 pipe_idx++;
1508 }
1509 }
1510
dcn32_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1511 static struct pipe_ctx *dcn32_find_split_pipe(
1512 struct dc *dc,
1513 struct dc_state *context,
1514 int old_index)
1515 {
1516 struct pipe_ctx *pipe = NULL;
1517 int i;
1518
1519 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1520 pipe = &context->res_ctx.pipe_ctx[old_index];
1521 pipe->pipe_idx = old_index;
1522 }
1523
1524 if (!pipe)
1525 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1526 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1527 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1528 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1529 pipe = &context->res_ctx.pipe_ctx[i];
1530 pipe->pipe_idx = i;
1531 break;
1532 }
1533 }
1534 }
1535
1536 /*
1537 * May need to fix pipes getting tossed from 1 opp to another on flip
1538 * Add for debugging transient underflow during topology updates:
1539 * ASSERT(pipe);
1540 */
1541 if (!pipe)
1542 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1543 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1544 pipe = &context->res_ctx.pipe_ctx[i];
1545 pipe->pipe_idx = i;
1546 break;
1547 }
1548 }
1549
1550 return pipe;
1551 }
1552
dcn32_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1553 static bool dcn32_split_stream_for_mpc_or_odm(
1554 const struct dc *dc,
1555 struct resource_context *res_ctx,
1556 struct pipe_ctx *pri_pipe,
1557 struct pipe_ctx *sec_pipe,
1558 bool odm)
1559 {
1560 int pipe_idx = sec_pipe->pipe_idx;
1561 const struct resource_pool *pool = dc->res_pool;
1562
1563 DC_LOGGER_INIT(dc->ctx->logger);
1564
1565 if (odm && pri_pipe->plane_state) {
1566 /* ODM + window MPO, where MPO window is on left half only */
1567 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1568 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1569
1570 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1571 __func__,
1572 pri_pipe->pipe_idx);
1573 return true;
1574 }
1575
1576 /* ODM + window MPO, where MPO window is on right half only */
1577 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1578
1579 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1580 __func__,
1581 pri_pipe->pipe_idx);
1582 return true;
1583 }
1584 }
1585
1586 *sec_pipe = *pri_pipe;
1587
1588 sec_pipe->pipe_idx = pipe_idx;
1589 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1590 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1591 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1592 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1593 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1594 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1595 sec_pipe->stream_res.dsc = NULL;
1596 if (odm) {
1597 if (pri_pipe->next_odm_pipe) {
1598 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1599 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1600 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1601 }
1602 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1603 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1604 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1605 }
1606 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1607 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1608 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1609 }
1610 pri_pipe->next_odm_pipe = sec_pipe;
1611 sec_pipe->prev_odm_pipe = pri_pipe;
1612 ASSERT(sec_pipe->top_pipe == NULL);
1613
1614 if (!sec_pipe->top_pipe)
1615 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1616 else
1617 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1618 if (sec_pipe->stream->timing.flags.DSC == 1) {
1619 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1620 ASSERT(sec_pipe->stream_res.dsc);
1621 if (sec_pipe->stream_res.dsc == NULL)
1622 return false;
1623 }
1624 } else {
1625 if (pri_pipe->bottom_pipe) {
1626 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1627 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1628 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1629 }
1630 pri_pipe->bottom_pipe = sec_pipe;
1631 sec_pipe->top_pipe = pri_pipe;
1632
1633 ASSERT(pri_pipe->plane_state);
1634 }
1635
1636 return true;
1637 }
1638
dcn32_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)1639 bool dcn32_internal_validate_bw(struct dc *dc,
1640 struct dc_state *context,
1641 display_e2e_pipe_params_st *pipes,
1642 int *pipe_cnt_out,
1643 int *vlevel_out,
1644 bool fast_validate)
1645 {
1646 bool out = false;
1647 bool repopulate_pipes = false;
1648 int split[MAX_PIPES] = { 0 };
1649 bool merge[MAX_PIPES] = { false };
1650 bool newly_split[MAX_PIPES] = { false };
1651 int pipe_cnt, i, pipe_idx;
1652 int vlevel = context->bw_ctx.dml.soc.num_states;
1653 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1654
1655 dc_assert_fp_enabled();
1656
1657 ASSERT(pipes);
1658 if (!pipes)
1659 return false;
1660
1661 // For each full update, remove all existing phantom pipes first
1662 dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);
1663
1664 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1665
1666 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1667
1668 if (!pipe_cnt) {
1669 out = true;
1670 goto validate_out;
1671 }
1672
1673 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1674 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1675
1676 if (!fast_validate)
1677 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1678
1679 if (fast_validate ||
1680 (dc->debug.dml_disallow_alternate_prefetch_modes &&
1681 (vlevel == context->bw_ctx.dml.soc.num_states ||
1682 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1683 /*
1684 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1685 * tried alternate prefetch modes during full validation.
1686 *
1687 * If mode is unsupported or there is no p-state support, then
1688 * fall back to favouring voltage.
1689 *
1690 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1691 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1692 */
1693 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1694 dm_prefetch_support_none;
1695
1696 context->bw_ctx.dml.validate_max_state = fast_validate;
1697 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1698
1699 context->bw_ctx.dml.validate_max_state = false;
1700
1701 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1702 memset(split, 0, sizeof(split));
1703 memset(merge, 0, sizeof(merge));
1704 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1705 // dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1706 vba->VoltageLevel = vlevel;
1707 }
1708 }
1709
1710 dml_log_mode_support_params(&context->bw_ctx.dml);
1711
1712 if (vlevel == context->bw_ctx.dml.soc.num_states)
1713 goto validate_fail;
1714
1715 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1716 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1717 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1718
1719 if (!pipe->stream)
1720 continue;
1721
1722 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1723 && !dc->config.enable_windowed_mpo_odm
1724 && pipe->plane_state && mpo_pipe
1725 && memcmp(&mpo_pipe->plane_state->clip_rect,
1726 &pipe->stream->src,
1727 sizeof(struct rect)) != 0) {
1728 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1729 goto validate_fail;
1730 }
1731 pipe_idx++;
1732 }
1733
1734 /* merge pipes if necessary */
1735 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1736 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1737
1738 /*skip pipes that don't need merging*/
1739 if (!merge[i])
1740 continue;
1741
1742 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1743 if (pipe->prev_odm_pipe) {
1744 /*split off odm pipe*/
1745 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1746 if (pipe->next_odm_pipe)
1747 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1748
1749 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1750 if (pipe->bottom_pipe) {
1751 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1752 /*MPC split rules will handle this case*/
1753 pipe->bottom_pipe->top_pipe = NULL;
1754 } else {
1755 /* when merging an ODM pipes, the bottom MPC pipe must now point to
1756 * the previous ODM pipe and its associated stream assets
1757 */
1758 if (pipe->prev_odm_pipe->bottom_pipe) {
1759 /* 3 plane MPO*/
1760 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1761 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1762 } else {
1763 /* 2 plane MPO*/
1764 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1765 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1766 }
1767
1768 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1769 }
1770 }
1771
1772 if (pipe->top_pipe) {
1773 pipe->top_pipe->bottom_pipe = NULL;
1774 }
1775
1776 pipe->bottom_pipe = NULL;
1777 pipe->next_odm_pipe = NULL;
1778 pipe->plane_state = NULL;
1779 pipe->stream = NULL;
1780 pipe->top_pipe = NULL;
1781 pipe->prev_odm_pipe = NULL;
1782 if (pipe->stream_res.dsc)
1783 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1784 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1785 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1786 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1787 repopulate_pipes = true;
1788 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1789 struct pipe_ctx *top_pipe = pipe->top_pipe;
1790 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1791
1792 top_pipe->bottom_pipe = bottom_pipe;
1793 if (bottom_pipe)
1794 bottom_pipe->top_pipe = top_pipe;
1795
1796 pipe->top_pipe = NULL;
1797 pipe->bottom_pipe = NULL;
1798 pipe->plane_state = NULL;
1799 pipe->stream = NULL;
1800 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1801 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1802 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1803 repopulate_pipes = true;
1804 } else
1805 ASSERT(0); /* Should never try to merge master pipe */
1806
1807 }
1808
1809 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1810 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1811 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1812 struct pipe_ctx *hsplit_pipe = NULL;
1813 bool odm;
1814 int old_index = -1;
1815
1816 if (!pipe->stream || newly_split[i])
1817 continue;
1818
1819 pipe_idx++;
1820 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1821
1822 if (!pipe->plane_state && !odm)
1823 continue;
1824
1825 if (split[i]) {
1826 if (odm) {
1827 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1828 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1829 else if (old_pipe->next_odm_pipe)
1830 old_index = old_pipe->next_odm_pipe->pipe_idx;
1831 } else {
1832 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1833 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1834 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1835 else if (old_pipe->bottom_pipe &&
1836 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1837 old_index = old_pipe->bottom_pipe->pipe_idx;
1838 }
1839 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1840 ASSERT(hsplit_pipe);
1841 if (!hsplit_pipe)
1842 goto validate_fail;
1843
1844 if (!dcn32_split_stream_for_mpc_or_odm(
1845 dc, &context->res_ctx,
1846 pipe, hsplit_pipe, odm))
1847 goto validate_fail;
1848
1849 newly_split[hsplit_pipe->pipe_idx] = true;
1850 repopulate_pipes = true;
1851 }
1852 if (split[i] == 4) {
1853 struct pipe_ctx *pipe_4to1;
1854
1855 if (odm && old_pipe->next_odm_pipe)
1856 old_index = old_pipe->next_odm_pipe->pipe_idx;
1857 else if (!odm && old_pipe->bottom_pipe &&
1858 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1859 old_index = old_pipe->bottom_pipe->pipe_idx;
1860 else
1861 old_index = -1;
1862 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1863 ASSERT(pipe_4to1);
1864 if (!pipe_4to1)
1865 goto validate_fail;
1866 if (!dcn32_split_stream_for_mpc_or_odm(
1867 dc, &context->res_ctx,
1868 pipe, pipe_4to1, odm))
1869 goto validate_fail;
1870 newly_split[pipe_4to1->pipe_idx] = true;
1871
1872 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1873 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1874 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1875 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1876 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1877 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1878 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1879 else
1880 old_index = -1;
1881 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1882 ASSERT(pipe_4to1);
1883 if (!pipe_4to1)
1884 goto validate_fail;
1885 if (!dcn32_split_stream_for_mpc_or_odm(
1886 dc, &context->res_ctx,
1887 hsplit_pipe, pipe_4to1, odm))
1888 goto validate_fail;
1889 newly_split[pipe_4to1->pipe_idx] = true;
1890 }
1891 if (odm)
1892 dcn20_build_mapped_resource(dc, context, pipe->stream);
1893 }
1894
1895 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1896 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1897
1898 if (pipe->plane_state) {
1899 if (!resource_build_scaling_params(pipe))
1900 goto validate_fail;
1901 }
1902 }
1903
1904 /* Actual dsc count per stream dsc validation*/
1905 if (!dcn20_validate_dsc(dc, context)) {
1906 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1907 goto validate_fail;
1908 }
1909
1910 if (repopulate_pipes) {
1911 int flag_max_mpc_comb = vba->maxMpcComb;
1912 int flag_vlevel = vlevel;
1913 int i;
1914
1915 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1916
1917 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1918 * we have to re-calculate the DET allocation and run through DML once more to
1919 * ensure all the params are calculated correctly. We do not need to run the
1920 * pipe split check again after this call (pipes are already split / merged).
1921 * */
1922 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1923 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1924 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1925 if (vlevel == context->bw_ctx.dml.soc.num_states) {
1926 /* failed after DET size changes */
1927 goto validate_fail;
1928 } else if (flag_max_mpc_comb == 0 &&
1929 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
1930 /* check the context constructed with pipe split flags is still valid*/
1931 bool flags_valid = false;
1932 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1933 if (vba->ModeSupport[i][flag_max_mpc_comb]) {
1934 vba->maxMpcComb = flag_max_mpc_comb;
1935 vba->VoltageLevel = i;
1936 vlevel = i;
1937 flags_valid = true;
1938 }
1939 }
1940
1941 /* this should never happen */
1942 if (!flags_valid)
1943 goto validate_fail;
1944 }
1945 }
1946 *vlevel_out = vlevel;
1947 *pipe_cnt_out = pipe_cnt;
1948
1949 out = true;
1950 goto validate_out;
1951
1952 validate_fail:
1953 out = false;
1954
1955 validate_out:
1956 return out;
1957 }
1958
1959
dcn32_calculate_wm_and_dlg_fpu(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1960 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1961 display_e2e_pipe_params_st *pipes,
1962 int pipe_cnt,
1963 int vlevel)
1964 {
1965 int i, pipe_idx, vlevel_temp = 0;
1966 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1967 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1968 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
1969 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1970 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1971 dm_dram_clock_change_unsupported;
1972 unsigned int dummy_latency_index = 0;
1973 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1974 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1975 bool subvp_in_use = dcn32_subvp_in_use(dc, context);
1976 unsigned int min_dram_speed_mts_margin;
1977 bool need_fclk_lat_as_dummy = false;
1978 bool is_subvp_p_drr = false;
1979 struct dc_stream_state *fpo_candidate_stream = NULL;
1980
1981 dc_assert_fp_enabled();
1982
1983 /* need to find dummy latency index for subvp */
1984 if (subvp_in_use) {
1985 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
1986 if (!pstate_en) {
1987 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1988 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
1989 pstate_en = true;
1990 is_subvp_p_drr = true;
1991 }
1992 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1993 context, pipes, pipe_cnt, vlevel);
1994
1995 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
1996 * scheduled correctly to account for dummy pstate.
1997 */
1998 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
1999 need_fclk_lat_as_dummy = true;
2000 context->bw_ctx.dml.soc.fclk_change_latency_us =
2001 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2002 }
2003 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2004 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2005 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2006 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2007 if (is_subvp_p_drr) {
2008 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2009 }
2010 }
2011
2012 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2013 for (i = 0; i < context->stream_count; i++) {
2014 if (context->streams[i])
2015 context->streams[i]->fpo_in_use = false;
2016 }
2017
2018 if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2019 pstate_en && vlevel != 0)) {
2020 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2021 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2022 if (fpo_candidate_stream) {
2023 fpo_candidate_stream->fpo_in_use = true;
2024 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2025 }
2026
2027 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2028 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2029 context, pipes, pipe_cnt, vlevel);
2030
2031 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2032 * we reinstate the original dram_clock_change_latency_us on the context
2033 * and all variables that may have changed up to this point, except the
2034 * newly found dummy_latency_index
2035 */
2036 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2037 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2038 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2039 * prefetch is scheduled correctly to account for dummy pstate.
2040 */
2041 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2042 need_fclk_lat_as_dummy = true;
2043 context->bw_ctx.dml.soc.fclk_change_latency_us =
2044 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2045 }
2046 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2047 if (vlevel_temp < vlevel) {
2048 vlevel = vlevel_temp;
2049 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2050 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2051 pstate_en = true;
2052 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2053 } else {
2054 /* Restore FCLK latency and re-run validation to go back to original validation
2055 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2056 * voltage level)
2057 */
2058 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2059 for (i = 0; i < context->stream_count; i++) {
2060 if (context->streams[i])
2061 context->streams[i]->fpo_in_use = false;
2062 }
2063 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2064 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2065 }
2066 }
2067 }
2068
2069 /* Set B:
2070 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2071 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2072 * calculations to cover bootup clocks.
2073 * DCFCLK: soc.clock_limits[2] when available
2074 * UCLK: soc.clock_limits[2] when available
2075 */
2076 if (dcn3_2_soc.num_states > 2) {
2077 vlevel_temp = 2;
2078 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2079 } else
2080 dcfclk = 615; //DCFCLK Vmin_lv
2081
2082 pipes[0].clks_cfg.voltage = vlevel_temp;
2083 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2084 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2085
2086 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2087 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2088 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2089 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2090 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2091 }
2092 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2093 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2094 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2095 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2096 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2097 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2098 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2099 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2100 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2101 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2102
2103 /* Set D:
2104 * All clocks min.
2105 * DCFCLK: Min, as reported by PM FW when available
2106 * UCLK : Min, as reported by PM FW when available
2107 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2108 */
2109
2110 /*
2111 if (dcn3_2_soc.num_states > 2) {
2112 vlevel_temp = 0;
2113 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2114 } else
2115 dcfclk = 615; //DCFCLK Vmin_lv
2116
2117 pipes[0].clks_cfg.voltage = vlevel_temp;
2118 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2119 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2120
2121 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2122 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2123 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2124 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2125 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2126 }
2127 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2128 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2129 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2130 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2131 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2132 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2133 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2134 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2135 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2136 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2137 */
2138
2139 /* Set C, for Dummy P-State:
2140 * All clocks min.
2141 * DCFCLK: Min, as reported by PM FW, when available
2142 * UCLK : Min, as reported by PM FW, when available
2143 * pstate latency as per UCLK state dummy pstate latency
2144 */
2145
2146 // For Set A and Set C use values from validation
2147 pipes[0].clks_cfg.voltage = vlevel;
2148 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2149 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2150
2151 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2152 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2153 }
2154
2155 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2156 min_dram_speed_mts = dram_speed_from_validation;
2157 min_dram_speed_mts_margin = 160;
2158
2159 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2160 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2161
2162 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2163 dm_dram_clock_change_unsupported) {
2164 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2165
2166 min_dram_speed_mts =
2167 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2168 }
2169
2170 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2171 /* find largest table entry that is lower than dram speed,
2172 * but lower than DPM0 still uses DPM0
2173 */
2174 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2175 if (min_dram_speed_mts + min_dram_speed_mts_margin >
2176 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2177 break;
2178 }
2179
2180 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2181 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2182
2183 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2184 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2185 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2186 }
2187
2188 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2189 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2190 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2191 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2192 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2193 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2194 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2195 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2196 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2197 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2198 * value.
2199 */
2200 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2201 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2202
2203 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2204 /* The only difference between A and C is p-state latency, if p-state is not supported
2205 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2206 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2207 */
2208 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2209 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2210 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2211 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2212 */
2213 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2214 } else {
2215 /* Set A:
2216 * All clocks min.
2217 * DCFCLK: Min, as reported by PM FW, when available
2218 * UCLK: Min, as reported by PM FW, when available
2219 */
2220
2221 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2222 */
2223 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2224 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2225 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2226
2227 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2228 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2229 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2230 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2233 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2234 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2235 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2236 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2237 }
2238
2239 /* Make set D = set A since we do not optimized watermarks for MALL */
2240 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2241
2242 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2243 if (!context->res_ctx.pipe_ctx[i].stream)
2244 continue;
2245
2246 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2247 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2248
2249 if (dc->config.forced_clocks) {
2250 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2251 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2252 }
2253 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2254 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2255 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2256 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2257
2258 pipe_idx++;
2259 }
2260
2261 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2262
2263 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2264 if (need_fclk_lat_as_dummy)
2265 context->bw_ctx.dml.soc.fclk_change_latency_us =
2266 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2267
2268 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2269
2270 if (!pstate_en)
2271 /* Restore full p-state latency */
2272 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2273 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2274
2275 /* revert fclk lat changes if required */
2276 if (need_fclk_lat_as_dummy)
2277 context->bw_ctx.dml.soc.fclk_change_latency_us =
2278 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2279 }
2280
dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2281 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2282 unsigned int *optimal_dcfclk,
2283 unsigned int *optimal_fclk)
2284 {
2285 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2286
2287 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2288 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2289 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2290 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2291
2292 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2293
2294 if (optimal_fclk)
2295 *optimal_fclk = bw_from_dram /
2296 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2297
2298 if (optimal_dcfclk)
2299 *optimal_dcfclk = bw_from_dram /
2300 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2301 }
2302
remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,unsigned int index)2303 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2304 unsigned int index)
2305 {
2306 int i;
2307
2308 if (*num_entries == 0)
2309 return;
2310
2311 for (i = index; i < *num_entries - 1; i++) {
2312 table[i] = table[i + 1];
2313 }
2314 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2315 }
2316
dcn32_patch_dpm_table(struct clk_bw_params * bw_params)2317 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2318 {
2319 int i;
2320 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2321 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2322
2323 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2324 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2325 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2326 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2327 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2328 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2329 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2330 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2331 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2332 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2333 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2334 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2335 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2336 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2337 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2338 }
2339
2340 /* Scan through clock values we currently have and if they are 0,
2341 * then populate it with dcn3_2_soc.clock_limits[] value.
2342 *
2343 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2344 * 0, will cause it to skip building the clock table.
2345 */
2346 if (max_dcfclk_mhz == 0)
2347 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2348 if (max_dispclk_mhz == 0)
2349 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2350 if (max_dtbclk_mhz == 0)
2351 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2352 if (max_uclk_mhz == 0)
2353 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2354 }
2355
swap_table_entries(struct _vcs_dpi_voltage_scaling_st * first_entry,struct _vcs_dpi_voltage_scaling_st * second_entry)2356 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2357 struct _vcs_dpi_voltage_scaling_st *second_entry)
2358 {
2359 struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2360 *first_entry = *second_entry;
2361 *second_entry = temp_entry;
2362 }
2363
2364 /*
2365 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2366 */
sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2367 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2368 {
2369 unsigned int start_index = 0;
2370 unsigned int end_index = 0;
2371 unsigned int current_bw = 0;
2372
2373 for (int i = 0; i < (*num_entries - 1); i++) {
2374 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2375 current_bw = table[i].net_bw_in_kbytes_sec;
2376 start_index = i;
2377 end_index = ++i;
2378
2379 while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2380 end_index = ++i;
2381 }
2382
2383 if (start_index != end_index) {
2384 for (int j = start_index; j < end_index; j++) {
2385 for (int k = start_index; k < end_index; k++) {
2386 if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2387 swap_table_entries(&table[k], &table[k+1]);
2388 }
2389 }
2390 }
2391
2392 start_index = 0;
2393 end_index = 0;
2394
2395 }
2396 }
2397
2398 /*
2399 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2400 * and remove entries that do not
2401 */
remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2402 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2403 {
2404 for (int i = 0; i < (*num_entries - 1); i++) {
2405 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2406 if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2407 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2408 remove_entry_from_table_at_index(table, num_entries, i);
2409 }
2410 }
2411 }
2412
2413 /*
2414 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2415 * Input:
2416 * max_clk_limit - struct containing the desired clock timings
2417 * Output:
2418 * curr_clk_limit - struct containing the timings that need to be overwritten
2419 * Return: 0 upon success, non-zero for failure
2420 */
override_max_clk_values(struct clk_limit_table_entry * max_clk_limit,struct clk_limit_table_entry * curr_clk_limit)2421 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2422 struct clk_limit_table_entry *curr_clk_limit)
2423 {
2424 if (NULL == max_clk_limit || NULL == curr_clk_limit)
2425 return -1; //invalid parameters
2426
2427 //only overwrite if desired max clock frequency is initialized
2428 if (max_clk_limit->dcfclk_mhz != 0)
2429 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2430
2431 if (max_clk_limit->fclk_mhz != 0)
2432 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2433
2434 if (max_clk_limit->memclk_mhz != 0)
2435 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2436
2437 if (max_clk_limit->socclk_mhz != 0)
2438 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2439
2440 if (max_clk_limit->dtbclk_mhz != 0)
2441 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2442
2443 if (max_clk_limit->dispclk_mhz != 0)
2444 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2445
2446 return 0;
2447 }
2448
build_synthetic_soc_states(bool disable_dc_mode_overwrite,struct clk_bw_params * bw_params,struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2449 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2450 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2451 {
2452 int i, j;
2453 struct _vcs_dpi_voltage_scaling_st entry = {0};
2454 struct clk_limit_table_entry max_clk_data = {0};
2455
2456 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2457
2458 static const unsigned int num_dcfclk_stas = 5;
2459 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2460
2461 unsigned int num_uclk_dpms = 0;
2462 unsigned int num_fclk_dpms = 0;
2463 unsigned int num_dcfclk_dpms = 0;
2464
2465 unsigned int num_dc_uclk_dpms = 0;
2466 unsigned int num_dc_fclk_dpms = 0;
2467 unsigned int num_dc_dcfclk_dpms = 0;
2468
2469 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2470 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2471 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2472 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2473 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2474 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2475 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2476 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2477 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2478 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2479 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2480 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2481 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2482 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2483 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2484
2485 if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2486 num_uclk_dpms++;
2487 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2488 num_dc_uclk_dpms++;
2489 }
2490 if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2491 num_fclk_dpms++;
2492 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2493 num_dc_fclk_dpms++;
2494 }
2495 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2496 num_dcfclk_dpms++;
2497 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2498 num_dc_dcfclk_dpms++;
2499 }
2500 }
2501
2502 if (!disable_dc_mode_overwrite) {
2503 //Overwrite max frequencies with max DC mode frequencies for DC mode systems
2504 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2505 num_uclk_dpms = num_dc_uclk_dpms;
2506 num_fclk_dpms = num_dc_fclk_dpms;
2507 num_dcfclk_dpms = num_dc_dcfclk_dpms;
2508 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2509 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2510 }
2511
2512 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2513 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2514
2515 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2516 return -1;
2517
2518 if (max_clk_data.dppclk_mhz == 0)
2519 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2520
2521 if (max_clk_data.fclk_mhz == 0)
2522 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2523 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2524 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2525
2526 if (max_clk_data.phyclk_mhz == 0)
2527 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2528
2529 *num_entries = 0;
2530 entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2531 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2532 entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2533 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2534 entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2535 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2536 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2537
2538 // Insert all the DCFCLK STAs
2539 for (i = 0; i < num_dcfclk_stas; i++) {
2540 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2541 entry.fabricclk_mhz = 0;
2542 entry.dram_speed_mts = 0;
2543
2544 get_optimal_ntuple(&entry);
2545 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2546 insert_entry_into_table_sorted(table, num_entries, &entry);
2547 }
2548
2549 // Insert the max DCFCLK
2550 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2551 entry.fabricclk_mhz = 0;
2552 entry.dram_speed_mts = 0;
2553
2554 get_optimal_ntuple(&entry);
2555 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2556 insert_entry_into_table_sorted(table, num_entries, &entry);
2557
2558 // Insert the UCLK DPMS
2559 for (i = 0; i < num_uclk_dpms; i++) {
2560 entry.dcfclk_mhz = 0;
2561 entry.fabricclk_mhz = 0;
2562 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2563
2564 get_optimal_ntuple(&entry);
2565 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2566 insert_entry_into_table_sorted(table, num_entries, &entry);
2567 }
2568
2569 // If FCLK is coarse grained, insert individual DPMs.
2570 if (num_fclk_dpms > 2) {
2571 for (i = 0; i < num_fclk_dpms; i++) {
2572 entry.dcfclk_mhz = 0;
2573 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2574 entry.dram_speed_mts = 0;
2575
2576 get_optimal_ntuple(&entry);
2577 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2578 insert_entry_into_table_sorted(table, num_entries, &entry);
2579 }
2580 }
2581 // If FCLK fine grained, only insert max
2582 else {
2583 entry.dcfclk_mhz = 0;
2584 entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2585 entry.dram_speed_mts = 0;
2586
2587 get_optimal_ntuple(&entry);
2588 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2589 insert_entry_into_table_sorted(table, num_entries, &entry);
2590 }
2591
2592 // At this point, the table contains all "points of interest" based on
2593 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2594 // ratios (by derate, are exact).
2595
2596 // Remove states that require higher clocks than are supported
2597 for (i = *num_entries - 1; i >= 0 ; i--) {
2598 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2599 table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2600 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2601 remove_entry_from_table_at_index(table, num_entries, i);
2602 }
2603
2604 // Insert entry with all max dc limits without bandwidth matching
2605 if (!disable_dc_mode_overwrite) {
2606 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2607
2608 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2609 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2610 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2611
2612 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2613 insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2614
2615 sort_entries_with_same_bw(table, num_entries);
2616 remove_inconsistent_entries(table, num_entries);
2617 }
2618
2619 // At this point, the table only contains supported points of interest
2620 // it could be used as is, but some states may be redundant due to
2621 // coarse grained nature of some clocks, so we want to round up to
2622 // coarse grained DPMs and remove duplicates.
2623
2624 // Round up UCLKs
2625 for (i = *num_entries - 1; i >= 0 ; i--) {
2626 for (j = 0; j < num_uclk_dpms; j++) {
2627 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2628 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2629 break;
2630 }
2631 }
2632 }
2633
2634 // If FCLK is coarse grained, round up to next DPMs
2635 if (num_fclk_dpms > 2) {
2636 for (i = *num_entries - 1; i >= 0 ; i--) {
2637 for (j = 0; j < num_fclk_dpms; j++) {
2638 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2639 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2640 break;
2641 }
2642 }
2643 }
2644 }
2645 // Otherwise, round up to minimum.
2646 else {
2647 for (i = *num_entries - 1; i >= 0 ; i--) {
2648 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2649 table[i].fabricclk_mhz = min_fclk_mhz;
2650 }
2651 }
2652 }
2653
2654 // Round DCFCLKs up to minimum
2655 for (i = *num_entries - 1; i >= 0 ; i--) {
2656 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2657 table[i].dcfclk_mhz = min_dcfclk_mhz;
2658 }
2659 }
2660
2661 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2662 i = 0;
2663 while (i < *num_entries - 1) {
2664 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2665 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2666 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2667 remove_entry_from_table_at_index(table, num_entries, i + 1);
2668 else
2669 i++;
2670 }
2671
2672 // Fix up the state indicies
2673 for (i = *num_entries - 1; i >= 0 ; i--) {
2674 table[i].state = i;
2675 }
2676
2677 return 0;
2678 }
2679
2680 /*
2681 * dcn32_update_bw_bounding_box
2682 *
2683 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2684 * spreadsheet with actual values as per dGPU SKU:
2685 * - with passed few options from dc->config
2686 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2687 * need to get it from PM FW)
2688 * - with passed latency values (passed in ns units) in dc-> bb override for
2689 * debugging purposes
2690 * - with passed latencies from VBIOS (in 100_ns units) if available for
2691 * certain dGPU SKU
2692 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2693 * of the same ASIC)
2694 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2695 * FW for different clocks (which might differ for certain dGPU SKU of the
2696 * same ASIC)
2697 */
dcn32_update_bw_bounding_box_fpu(struct dc * dc,struct clk_bw_params * bw_params)2698 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2699 {
2700 dc_assert_fp_enabled();
2701
2702 /* Overrides from dc->config options */
2703 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2704
2705 /* Override from passed dc->bb_overrides if available*/
2706 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2707 && dc->bb_overrides.sr_exit_time_ns) {
2708 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2709 }
2710
2711 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2712 != dc->bb_overrides.sr_enter_plus_exit_time_ns
2713 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2714 dcn3_2_soc.sr_enter_plus_exit_time_us =
2715 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2716 }
2717
2718 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2719 && dc->bb_overrides.urgent_latency_ns) {
2720 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2721 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2722 }
2723
2724 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2725 != dc->bb_overrides.dram_clock_change_latency_ns
2726 && dc->bb_overrides.dram_clock_change_latency_ns) {
2727 dcn3_2_soc.dram_clock_change_latency_us =
2728 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2729 }
2730
2731 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2732 != dc->bb_overrides.fclk_clock_change_latency_ns
2733 && dc->bb_overrides.fclk_clock_change_latency_ns) {
2734 dcn3_2_soc.fclk_change_latency_us =
2735 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2736 }
2737
2738 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2739 != dc->bb_overrides.dummy_clock_change_latency_ns
2740 && dc->bb_overrides.dummy_clock_change_latency_ns) {
2741 dcn3_2_soc.dummy_pstate_latency_us =
2742 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2743 }
2744
2745 /* Override from VBIOS if VBIOS bb_info available */
2746 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2747 struct bp_soc_bb_info bb_info = {0};
2748
2749 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2750 if (bb_info.dram_clock_change_latency_100ns > 0)
2751 dcn3_2_soc.dram_clock_change_latency_us =
2752 bb_info.dram_clock_change_latency_100ns * 10;
2753
2754 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2755 dcn3_2_soc.sr_enter_plus_exit_time_us =
2756 bb_info.dram_sr_enter_exit_latency_100ns * 10;
2757
2758 if (bb_info.dram_sr_exit_latency_100ns > 0)
2759 dcn3_2_soc.sr_exit_time_us =
2760 bb_info.dram_sr_exit_latency_100ns * 10;
2761 }
2762 }
2763
2764 /* Override from VBIOS for num_chan */
2765 if (dc->ctx->dc_bios->vram_info.num_chans) {
2766 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2767 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2768 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2769 }
2770
2771 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2772 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2773
2774 /* DML DSC delay factor workaround */
2775 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2776
2777 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2778
2779 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2780 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2781 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2782
2783 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2784 if (bw_params->clk_table.entries[0].memclk_mhz) {
2785 if (dc->debug.use_legacy_soc_bb_mechanism) {
2786 unsigned int i = 0, j = 0, num_states = 0;
2787
2788 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2789 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2790 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2791 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2792 unsigned int min_dcfclk = UINT_MAX;
2793 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2794 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2795 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2796 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2797 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2798
2799 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2800 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2801 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2802 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2803 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2804 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2805 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2806 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2807 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2808 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2809 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2810 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2811 }
2812 if (min_dcfclk > dcfclk_sta_targets[0])
2813 dcfclk_sta_targets[0] = min_dcfclk;
2814 if (!max_dcfclk_mhz)
2815 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2816 if (!max_dispclk_mhz)
2817 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2818 if (!max_dppclk_mhz)
2819 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2820 if (!max_phyclk_mhz)
2821 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2822
2823 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2824 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2825 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2826 num_dcfclk_sta_targets++;
2827 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2828 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2829 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2830 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2831 dcfclk_sta_targets[i] = max_dcfclk_mhz;
2832 break;
2833 }
2834 }
2835 // Update size of array since we "removed" duplicates
2836 num_dcfclk_sta_targets = i + 1;
2837 }
2838
2839 num_uclk_states = bw_params->clk_table.num_entries;
2840
2841 // Calculate optimal dcfclk for each uclk
2842 for (i = 0; i < num_uclk_states; i++) {
2843 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2844 &optimal_dcfclk_for_uclk[i], NULL);
2845 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2846 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2847 }
2848 }
2849
2850 // Calculate optimal uclk for each dcfclk sta target
2851 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2852 for (j = 0; j < num_uclk_states; j++) {
2853 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2854 optimal_uclk_for_dcfclk_sta_targets[i] =
2855 bw_params->clk_table.entries[j].memclk_mhz * 16;
2856 break;
2857 }
2858 }
2859 }
2860
2861 i = 0;
2862 j = 0;
2863 // create the final dcfclk and uclk table
2864 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2865 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2866 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2867 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2868 } else {
2869 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2870 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2871 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2872 } else {
2873 j = num_uclk_states;
2874 }
2875 }
2876 }
2877
2878 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2879 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2880 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2881 }
2882
2883 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2884 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2885 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2886 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2887 }
2888
2889 /* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
2890 * MAX_NUM_DPM_LVL is 8.
2891 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
2892 * DC__VOLTAGE_STATES is 40.
2893 */
2894 if (num_states > MAX_NUM_DPM_LVL) {
2895 ASSERT(0);
2896 return;
2897 }
2898
2899 dcn3_2_soc.num_states = num_states;
2900 for (i = 0; i < dcn3_2_soc.num_states; i++) {
2901 dcn3_2_soc.clock_limits[i].state = i;
2902 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2903 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2904
2905 /* Fill all states with max values of all these clocks */
2906 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2907 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
2908 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
2909 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
2910
2911 /* Populate from bw_params for DTBCLK, SOCCLK */
2912 if (i > 0) {
2913 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2914 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2915 } else {
2916 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2917 }
2918 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2919 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2920 }
2921
2922 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2923 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2924 else
2925 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2926
2927 if (!dram_speed_mts[i] && i > 0)
2928 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2929 else
2930 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2931
2932 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2933 /* PHYCLK_D18, PHYCLK_D32 */
2934 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2935 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2936 }
2937 } else {
2938 build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
2939 dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2940 }
2941
2942 /* Re-init DML with updated bb */
2943 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2944 if (dc->current_state)
2945 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2946 }
2947 }
2948
dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st * pipes,int pipe_cnt)2949 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2950 int pipe_cnt)
2951 {
2952 dc_assert_fp_enabled();
2953
2954 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2955 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2956 }
2957
dcn32_allow_subvp_with_active_margin(struct pipe_ctx * pipe)2958 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2959 {
2960 bool allow = false;
2961 uint32_t refresh_rate = 0;
2962
2963 /* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2964 * only for now. There must be no scaling as well.
2965 *
2966 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2967 * for p-state switching.
2968 */
2969 if (pipe->stream && pipe->plane_state) {
2970 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2971 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2972 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2973 if (pipe->stream->timing.v_addressable == 1440 &&
2974 pipe->stream->timing.h_addressable == 2560 &&
2975 refresh_rate >= 55 && refresh_rate <= 65 &&
2976 pipe->plane_state->src_rect.height == 1440 &&
2977 pipe->plane_state->src_rect.width == 2560 &&
2978 pipe->plane_state->dst_rect.height == 1440 &&
2979 pipe->plane_state->dst_rect.width == 2560)
2980 allow = true;
2981 }
2982 return allow;
2983 }
2984
2985 /**
2986 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
2987 *
2988 * @dc: Current DC state
2989 * @context: New DC state to be programmed
2990 * @pipe: Pipe to be considered for use in subvp
2991 *
2992 * On high refresh rate display configs, we will allow subvp under the following conditions:
2993 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
2994 * 2. Refresh rate is between 120hz - 165hz
2995 * 3. No scaling
2996 * 4. Freesync is inactive
2997 * 5. For single display cases, freesync must be disabled
2998 *
2999 * Return: True if pipe can be used for subvp, false otherwise
3000 */
dcn32_allow_subvp_high_refresh_rate(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe)3001 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3002 {
3003 bool allow = false;
3004 uint32_t refresh_rate = 0;
3005 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3006 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3007 uint32_t min_refresh = subvp_max_refresh;
3008 uint32_t i;
3009
3010 /* Only allow SubVP on high refresh displays if all connected displays
3011 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3012 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3013 */
3014 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3015 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3016
3017 if (!pipe_ctx->stream)
3018 continue;
3019 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3020 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3021 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3022
3023 if (refresh_rate < min_refresh)
3024 min_refresh = refresh_rate;
3025 }
3026
3027 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3028 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3029 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3030 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3031 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3032 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3033 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3034 uint32_t width = subvp_high_refresh_list.res[i].width;
3035 uint32_t height = subvp_high_refresh_list.res[i].height;
3036
3037 if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3038 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3039 allow = true;
3040 break;
3041 }
3042 }
3043 }
3044 }
3045 }
3046 return allow;
3047 }
3048
3049 /**
3050 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3051 *
3052 * @dc: Current DC state
3053 * @context: New DC state to be programmed
3054 *
3055 * Return: Max vratio for prefetch
3056 */
dcn32_determine_max_vratio_prefetch(struct dc * dc,struct dc_state * context)3057 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3058 {
3059 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3060 int i;
3061
3062 /* For single display MPO configs, allow the max vratio to be 8
3063 * if any plane is YUV420 format
3064 */
3065 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3066 for (i = 0; i < context->stream_status[0].plane_count; i++) {
3067 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3068 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3069 max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3070 }
3071 }
3072 }
3073 return max_vratio_pre;
3074 }
3075
3076 /**
3077 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3078 *
3079 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3080 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3081 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3082 * ActiveMargin <= 0 to be the FPO stream candidate if found.
3083 *
3084 *
3085 * @dc: current dc state
3086 * @context: new dc state
3087 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3088 *
3089 * Return: void
3090 */
dcn32_assign_fpo_vactive_candidate(struct dc * dc,const struct dc_state * context,struct dc_stream_state ** fpo_candidate_stream)3091 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3092 {
3093 unsigned int i, pipe_idx;
3094 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3095
3096 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3097 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3098
3099 if (!pipe->stream)
3100 continue;
3101
3102 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3103 *fpo_candidate_stream = pipe->stream;
3104 break;
3105 }
3106 pipe_idx++;
3107 }
3108 }
3109
3110 /**
3111 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3112 *
3113 * @dc: current dc state
3114 * @context: new dc state
3115 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3116 *
3117 * Return: True if VACTIVE display is found, false otherwise
3118 */
dcn32_find_vactive_pipe(struct dc * dc,const struct dc_state * context,uint32_t vactive_margin_req_us)3119 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3120 {
3121 unsigned int i, pipe_idx;
3122 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3123 bool vactive_found = false;
3124 unsigned int blank_us = 0;
3125
3126 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3127 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3128
3129 if (!pipe->stream)
3130 continue;
3131
3132 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3133 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3134 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3135 !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3136 vactive_found = true;
3137 break;
3138 }
3139 pipe_idx++;
3140 }
3141 return vactive_found;
3142 }
3143
dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st * soc_bb)3144 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3145 {
3146 dc_assert_fp_enabled();
3147 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3148 }
3149
dcn32_override_min_req_memclk(struct dc * dc,struct dc_state * context)3150 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3151 {
3152 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3153 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3154 dc->dml.soc.num_chans <= 8) {
3155 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3156
3157 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3158 num_mclk_levels > 1) {
3159 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3160 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3161 }
3162 }
3163 }
3164