1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5 * (C) Copyright 2008 Armadeus Systems nc
6 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8 */
9
10 #include <common.h>
11 #include <dm.h>
12 #include <environment.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <miiphy.h>
16 #include <net.h>
17 #include <netdev.h>
18 #include <power/regulator.h>
19
20 #include <asm/io.h>
21 #include <linux/errno.h>
22 #include <linux/compiler.h>
23
24 #include <asm/arch/clock.h>
25 #include <asm/arch/imx-regs.h>
26 #include <asm/mach-imx/sys_proto.h>
27 #include <asm-generic/gpio.h>
28
29 #include "fec_mxc.h"
30
31 DECLARE_GLOBAL_DATA_PTR;
32
33 /*
34 * Timeout the transfer after 5 mS. This is usually a bit more, since
35 * the code in the tightloops this timeout is used in adds some overhead.
36 */
37 #define FEC_XFER_TIMEOUT 5000
38
39 /*
40 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
41 * 64-byte alignment in the DMA RX FEC buffer.
42 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
43 * satisfies the alignment on other SoCs (32-bytes)
44 */
45 #define FEC_DMA_RX_MINALIGN 64
46
47 #ifndef CONFIG_MII
48 #error "CONFIG_MII has to be defined!"
49 #endif
50
51 #ifndef CONFIG_FEC_XCV_TYPE
52 #define CONFIG_FEC_XCV_TYPE MII100
53 #endif
54
55 /*
56 * The i.MX28 operates with packets in big endian. We need to swap them before
57 * sending and after receiving.
58 */
59 #ifdef CONFIG_MX28
60 #define CONFIG_FEC_MXC_SWAP_PACKET
61 #endif
62
63 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
64
65 /* Check various alignment issues at compile time */
66 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
67 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
68 #endif
69
70 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
71 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
72 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
73 #endif
74
75 #undef DEBUG
76
77 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet(uint32_t * packet,int length)78 static void swap_packet(uint32_t *packet, int length)
79 {
80 int i;
81
82 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
83 packet[i] = __swab32(packet[i]);
84 }
85 #endif
86
87 /* MII-interface related functions */
fec_mdio_read(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr)88 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
89 uint8_t regaddr)
90 {
91 uint32_t reg; /* convenient holder for the PHY register */
92 uint32_t phy; /* convenient holder for the PHY */
93 uint32_t start;
94 int val;
95
96 /*
97 * reading from any PHY's register is done by properly
98 * programming the FEC's MII data register.
99 */
100 writel(FEC_IEVENT_MII, ð->ievent);
101 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
102 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
103
104 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
105 phy | reg, ð->mii_data);
106
107 /* wait for the related interrupt */
108 start = get_timer(0);
109 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
110 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
111 printf("Read MDIO failed...\n");
112 return -1;
113 }
114 }
115
116 /* clear mii interrupt bit */
117 writel(FEC_IEVENT_MII, ð->ievent);
118
119 /* it's now safe to read the PHY's register */
120 val = (unsigned short)readl(ð->mii_data);
121 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
122 regaddr, val);
123 return val;
124 }
125
fec_get_clk_rate(void * udev,int idx)126 static int fec_get_clk_rate(void *udev, int idx)
127 {
128 #if IS_ENABLED(CONFIG_IMX8)
129 struct fec_priv *fec;
130 struct udevice *dev;
131 int ret;
132
133 dev = udev;
134 if (!dev) {
135 ret = uclass_get_device(UCLASS_ETH, idx, &dev);
136 if (ret < 0) {
137 debug("Can't get FEC udev: %d\n", ret);
138 return ret;
139 }
140 }
141
142 fec = dev_get_priv(dev);
143 if (fec)
144 return fec->clk_rate;
145
146 return -EINVAL;
147 #else
148 return imx_get_fecclk();
149 #endif
150 }
151
fec_mii_setspeed(struct ethernet_regs * eth)152 static void fec_mii_setspeed(struct ethernet_regs *eth)
153 {
154 /*
155 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
156 * and do not drop the Preamble.
157 *
158 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
159 * MII_SPEED) register that defines the MDIO output hold time. Earlier
160 * versions are RAZ there, so just ignore the difference and write the
161 * register always.
162 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
163 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
164 * output.
165 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
166 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
167 * holdtime cannot result in a value greater than 3.
168 */
169 u32 pclk;
170 u32 speed;
171 u32 hold;
172 int ret;
173
174 ret = fec_get_clk_rate(NULL, 0);
175 if (ret < 0) {
176 printf("Can't find FEC0 clk rate: %d\n", ret);
177 return;
178 }
179 pclk = ret;
180 speed = DIV_ROUND_UP(pclk, 5000000);
181 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
182
183 #ifdef FEC_QUIRK_ENET_MAC
184 speed--;
185 #endif
186 writel(speed << 1 | hold << 8, ð->mii_speed);
187 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
188 }
189
fec_mdio_write(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr,uint16_t data)190 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
191 uint8_t regaddr, uint16_t data)
192 {
193 uint32_t reg; /* convenient holder for the PHY register */
194 uint32_t phy; /* convenient holder for the PHY */
195 uint32_t start;
196
197 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
198 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
199
200 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
201 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
202
203 /* wait for the MII interrupt */
204 start = get_timer(0);
205 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
206 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
207 printf("Write MDIO failed...\n");
208 return -1;
209 }
210 }
211
212 /* clear MII interrupt bit */
213 writel(FEC_IEVENT_MII, ð->ievent);
214 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
215 regaddr, data);
216
217 return 0;
218 }
219
fec_phy_read(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr)220 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
221 int regaddr)
222 {
223 return fec_mdio_read(bus->priv, phyaddr, regaddr);
224 }
225
fec_phy_write(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr,u16 data)226 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
227 int regaddr, u16 data)
228 {
229 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
230 }
231
232 #ifndef CONFIG_PHYLIB
miiphy_restart_aneg(struct eth_device * dev)233 static int miiphy_restart_aneg(struct eth_device *dev)
234 {
235 int ret = 0;
236 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
237 struct fec_priv *fec = (struct fec_priv *)dev->priv;
238 struct ethernet_regs *eth = fec->bus->priv;
239
240 /*
241 * Wake up from sleep if necessary
242 * Reset PHY, then delay 300ns
243 */
244 #ifdef CONFIG_MX27
245 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
246 #endif
247 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
248 udelay(1000);
249
250 /* Set the auto-negotiation advertisement register bits */
251 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
252 LPA_100FULL | LPA_100HALF | LPA_10FULL |
253 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
254 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
255 BMCR_ANENABLE | BMCR_ANRESTART);
256
257 if (fec->mii_postcall)
258 ret = fec->mii_postcall(fec->phy_id);
259
260 #endif
261 return ret;
262 }
263
264 #ifndef CONFIG_FEC_FIXED_SPEED
miiphy_wait_aneg(struct eth_device * dev)265 static int miiphy_wait_aneg(struct eth_device *dev)
266 {
267 uint32_t start;
268 int status;
269 struct fec_priv *fec = (struct fec_priv *)dev->priv;
270 struct ethernet_regs *eth = fec->bus->priv;
271
272 /* Wait for AN completion */
273 start = get_timer(0);
274 do {
275 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
276 printf("%s: Autonegotiation timeout\n", dev->name);
277 return -1;
278 }
279
280 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
281 if (status < 0) {
282 printf("%s: Autonegotiation failed. status: %d\n",
283 dev->name, status);
284 return -1;
285 }
286 } while (!(status & BMSR_LSTATUS));
287
288 return 0;
289 }
290 #endif /* CONFIG_FEC_FIXED_SPEED */
291 #endif
292
fec_rx_task_enable(struct fec_priv * fec)293 static int fec_rx_task_enable(struct fec_priv *fec)
294 {
295 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
296 return 0;
297 }
298
fec_rx_task_disable(struct fec_priv * fec)299 static int fec_rx_task_disable(struct fec_priv *fec)
300 {
301 return 0;
302 }
303
fec_tx_task_enable(struct fec_priv * fec)304 static int fec_tx_task_enable(struct fec_priv *fec)
305 {
306 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
307 return 0;
308 }
309
fec_tx_task_disable(struct fec_priv * fec)310 static int fec_tx_task_disable(struct fec_priv *fec)
311 {
312 return 0;
313 }
314
315 /**
316 * Initialize receive task's buffer descriptors
317 * @param[in] fec all we know about the device yet
318 * @param[in] count receive buffer count to be allocated
319 * @param[in] dsize desired size of each receive buffer
320 * @return 0 on success
321 *
322 * Init all RX descriptors to default values.
323 */
fec_rbd_init(struct fec_priv * fec,int count,int dsize)324 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
325 {
326 uint32_t size;
327 ulong data;
328 int i;
329
330 /*
331 * Reload the RX descriptors with default values and wipe
332 * the RX buffers.
333 */
334 size = roundup(dsize, ARCH_DMA_MINALIGN);
335 for (i = 0; i < count; i++) {
336 data = fec->rbd_base[i].data_pointer;
337 memset((void *)data, 0, dsize);
338 flush_dcache_range(data, data + size);
339
340 fec->rbd_base[i].status = FEC_RBD_EMPTY;
341 fec->rbd_base[i].data_length = 0;
342 }
343
344 /* Mark the last RBD to close the ring. */
345 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
346 fec->rbd_index = 0;
347
348 flush_dcache_range((ulong)fec->rbd_base,
349 (ulong)fec->rbd_base + size);
350 }
351
352 /**
353 * Initialize transmit task's buffer descriptors
354 * @param[in] fec all we know about the device yet
355 *
356 * Transmit buffers are created externally. We only have to init the BDs here.\n
357 * Note: There is a race condition in the hardware. When only one BD is in
358 * use it must be marked with the WRAP bit to use it for every transmitt.
359 * This bit in combination with the READY bit results into double transmit
360 * of each data buffer. It seems the state machine checks READY earlier then
361 * resetting it after the first transfer.
362 * Using two BDs solves this issue.
363 */
fec_tbd_init(struct fec_priv * fec)364 static void fec_tbd_init(struct fec_priv *fec)
365 {
366 ulong addr = (ulong)fec->tbd_base;
367 unsigned size = roundup(2 * sizeof(struct fec_bd),
368 ARCH_DMA_MINALIGN);
369
370 memset(fec->tbd_base, 0, size);
371 fec->tbd_base[0].status = 0;
372 fec->tbd_base[1].status = FEC_TBD_WRAP;
373 fec->tbd_index = 0;
374 flush_dcache_range(addr, addr + size);
375 }
376
377 /**
378 * Mark the given read buffer descriptor as free
379 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
380 * @param[in] prbd buffer descriptor to mark free again
381 */
fec_rbd_clean(int last,struct fec_bd * prbd)382 static void fec_rbd_clean(int last, struct fec_bd *prbd)
383 {
384 unsigned short flags = FEC_RBD_EMPTY;
385 if (last)
386 flags |= FEC_RBD_WRAP;
387 writew(flags, &prbd->status);
388 writew(0, &prbd->data_length);
389 }
390
fec_get_hwaddr(int dev_id,unsigned char * mac)391 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
392 {
393 imx_get_mac_from_fuse(dev_id, mac);
394 return !is_valid_ethaddr(mac);
395 }
396
397 #ifdef CONFIG_DM_ETH
fecmxc_set_hwaddr(struct udevice * dev)398 static int fecmxc_set_hwaddr(struct udevice *dev)
399 #else
400 static int fec_set_hwaddr(struct eth_device *dev)
401 #endif
402 {
403 #ifdef CONFIG_DM_ETH
404 struct fec_priv *fec = dev_get_priv(dev);
405 struct eth_pdata *pdata = dev_get_platdata(dev);
406 uchar *mac = pdata->enetaddr;
407 #else
408 uchar *mac = dev->enetaddr;
409 struct fec_priv *fec = (struct fec_priv *)dev->priv;
410 #endif
411
412 writel(0, &fec->eth->iaddr1);
413 writel(0, &fec->eth->iaddr2);
414 writel(0, &fec->eth->gaddr1);
415 writel(0, &fec->eth->gaddr2);
416
417 /* Set physical address */
418 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
419 &fec->eth->paddr1);
420 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
421
422 return 0;
423 }
424
425 /* Do initial configuration of the FEC registers */
fec_reg_setup(struct fec_priv * fec)426 static void fec_reg_setup(struct fec_priv *fec)
427 {
428 uint32_t rcntrl;
429
430 /* Set interrupt mask register */
431 writel(0x00000000, &fec->eth->imask);
432
433 /* Clear FEC-Lite interrupt event register(IEVENT) */
434 writel(0xffffffff, &fec->eth->ievent);
435
436 /* Set FEC-Lite receive control register(R_CNTRL): */
437
438 /* Start with frame length = 1518, common for all modes. */
439 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
440 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
441 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
442 if (fec->xcv_type == RGMII)
443 rcntrl |= FEC_RCNTRL_RGMII;
444 else if (fec->xcv_type == RMII)
445 rcntrl |= FEC_RCNTRL_RMII;
446
447 writel(rcntrl, &fec->eth->r_cntrl);
448 }
449
450 /**
451 * Start the FEC engine
452 * @param[in] dev Our device to handle
453 */
454 #ifdef CONFIG_DM_ETH
fec_open(struct udevice * dev)455 static int fec_open(struct udevice *dev)
456 #else
457 static int fec_open(struct eth_device *edev)
458 #endif
459 {
460 #ifdef CONFIG_DM_ETH
461 struct fec_priv *fec = dev_get_priv(dev);
462 #else
463 struct fec_priv *fec = (struct fec_priv *)edev->priv;
464 #endif
465 int speed;
466 ulong addr, size;
467 int i;
468
469 debug("fec_open: fec_open(dev)\n");
470 /* full-duplex, heartbeat disabled */
471 writel(1 << 2, &fec->eth->x_cntrl);
472 fec->rbd_index = 0;
473
474 /* Invalidate all descriptors */
475 for (i = 0; i < FEC_RBD_NUM - 1; i++)
476 fec_rbd_clean(0, &fec->rbd_base[i]);
477 fec_rbd_clean(1, &fec->rbd_base[i]);
478
479 /* Flush the descriptors into RAM */
480 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
481 ARCH_DMA_MINALIGN);
482 addr = (ulong)fec->rbd_base;
483 flush_dcache_range(addr, addr + size);
484
485 #ifdef FEC_QUIRK_ENET_MAC
486 /* Enable ENET HW endian SWAP */
487 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
488 &fec->eth->ecntrl);
489 /* Enable ENET store and forward mode */
490 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
491 &fec->eth->x_wmrk);
492 #endif
493 /* Enable FEC-Lite controller */
494 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
495 &fec->eth->ecntrl);
496
497 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
498 udelay(100);
499
500 /* setup the MII gasket for RMII mode */
501 /* disable the gasket */
502 writew(0, &fec->eth->miigsk_enr);
503
504 /* wait for the gasket to be disabled */
505 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
506 udelay(2);
507
508 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
509 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
510
511 /* re-enable the gasket */
512 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
513
514 /* wait until MII gasket is ready */
515 int max_loops = 10;
516 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
517 if (--max_loops <= 0) {
518 printf("WAIT for MII Gasket ready timed out\n");
519 break;
520 }
521 }
522 #endif
523
524 #ifdef CONFIG_PHYLIB
525 {
526 /* Start up the PHY */
527 int ret = phy_startup(fec->phydev);
528
529 if (ret) {
530 printf("Could not initialize PHY %s\n",
531 fec->phydev->dev->name);
532 return ret;
533 }
534 speed = fec->phydev->speed;
535 }
536 #elif CONFIG_FEC_FIXED_SPEED
537 speed = CONFIG_FEC_FIXED_SPEED;
538 #else
539 miiphy_wait_aneg(edev);
540 speed = miiphy_speed(edev->name, fec->phy_id);
541 miiphy_duplex(edev->name, fec->phy_id);
542 #endif
543
544 #ifdef FEC_QUIRK_ENET_MAC
545 {
546 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
547 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
548 if (speed == _1000BASET)
549 ecr |= FEC_ECNTRL_SPEED;
550 else if (speed != _100BASET)
551 rcr |= FEC_RCNTRL_RMII_10T;
552 writel(ecr, &fec->eth->ecntrl);
553 writel(rcr, &fec->eth->r_cntrl);
554 }
555 #endif
556 debug("%s:Speed=%i\n", __func__, speed);
557
558 /* Enable SmartDMA receive task */
559 fec_rx_task_enable(fec);
560
561 udelay(100000);
562 return 0;
563 }
564
565 #ifdef CONFIG_DM_ETH
fecmxc_init(struct udevice * dev)566 static int fecmxc_init(struct udevice *dev)
567 #else
568 static int fec_init(struct eth_device *dev, bd_t *bd)
569 #endif
570 {
571 #ifdef CONFIG_DM_ETH
572 struct fec_priv *fec = dev_get_priv(dev);
573 #else
574 struct fec_priv *fec = (struct fec_priv *)dev->priv;
575 #endif
576 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
577 u8 *i;
578 ulong addr;
579
580 /* Initialize MAC address */
581 #ifdef CONFIG_DM_ETH
582 fecmxc_set_hwaddr(dev);
583 #else
584 fec_set_hwaddr(dev);
585 #endif
586
587 /* Setup transmit descriptors, there are two in total. */
588 fec_tbd_init(fec);
589
590 /* Setup receive descriptors. */
591 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
592
593 fec_reg_setup(fec);
594
595 if (fec->xcv_type != SEVENWIRE)
596 fec_mii_setspeed(fec->bus->priv);
597
598 /* Set Opcode/Pause Duration Register */
599 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
600 writel(0x2, &fec->eth->x_wmrk);
601
602 /* Set multicast address filter */
603 writel(0x00000000, &fec->eth->gaddr1);
604 writel(0x00000000, &fec->eth->gaddr2);
605
606 /* Do not access reserved register */
607 if (!is_mx6ul() && !is_mx6ull() && !is_imx8m()) {
608 /* clear MIB RAM */
609 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
610 writel(0, i);
611
612 /* FIFO receive start register */
613 writel(0x520, &fec->eth->r_fstart);
614 }
615
616 /* size and address of each buffer */
617 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
618
619 addr = (ulong)fec->tbd_base;
620 writel((uint32_t)addr, &fec->eth->etdsr);
621
622 addr = (ulong)fec->rbd_base;
623 writel((uint32_t)addr, &fec->eth->erdsr);
624
625 #ifndef CONFIG_PHYLIB
626 if (fec->xcv_type != SEVENWIRE)
627 miiphy_restart_aneg(dev);
628 #endif
629 fec_open(dev);
630 return 0;
631 }
632
633 /**
634 * Halt the FEC engine
635 * @param[in] dev Our device to handle
636 */
637 #ifdef CONFIG_DM_ETH
fecmxc_halt(struct udevice * dev)638 static void fecmxc_halt(struct udevice *dev)
639 #else
640 static void fec_halt(struct eth_device *dev)
641 #endif
642 {
643 #ifdef CONFIG_DM_ETH
644 struct fec_priv *fec = dev_get_priv(dev);
645 #else
646 struct fec_priv *fec = (struct fec_priv *)dev->priv;
647 #endif
648 int counter = 0xffff;
649
650 /* issue graceful stop command to the FEC transmitter if necessary */
651 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
652 &fec->eth->x_cntrl);
653
654 debug("eth_halt: wait for stop regs\n");
655 /* wait for graceful stop to register */
656 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
657 udelay(1);
658
659 /* Disable SmartDMA tasks */
660 fec_tx_task_disable(fec);
661 fec_rx_task_disable(fec);
662
663 /*
664 * Disable the Ethernet Controller
665 * Note: this will also reset the BD index counter!
666 */
667 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
668 &fec->eth->ecntrl);
669 fec->rbd_index = 0;
670 fec->tbd_index = 0;
671 debug("eth_halt: done\n");
672 }
673
674 /**
675 * Transmit one frame
676 * @param[in] dev Our ethernet device to handle
677 * @param[in] packet Pointer to the data to be transmitted
678 * @param[in] length Data count in bytes
679 * @return 0 on success
680 */
681 #ifdef CONFIG_DM_ETH
fecmxc_send(struct udevice * dev,void * packet,int length)682 static int fecmxc_send(struct udevice *dev, void *packet, int length)
683 #else
684 static int fec_send(struct eth_device *dev, void *packet, int length)
685 #endif
686 {
687 unsigned int status;
688 u32 size;
689 ulong addr, end;
690 int timeout = FEC_XFER_TIMEOUT;
691 int ret = 0;
692
693 /*
694 * This routine transmits one frame. This routine only accepts
695 * 6-byte Ethernet addresses.
696 */
697 #ifdef CONFIG_DM_ETH
698 struct fec_priv *fec = dev_get_priv(dev);
699 #else
700 struct fec_priv *fec = (struct fec_priv *)dev->priv;
701 #endif
702
703 /*
704 * Check for valid length of data.
705 */
706 if ((length > 1500) || (length <= 0)) {
707 printf("Payload (%d) too large\n", length);
708 return -1;
709 }
710
711 /*
712 * Setup the transmit buffer. We are always using the first buffer for
713 * transmission, the second will be empty and only used to stop the DMA
714 * engine. We also flush the packet to RAM here to avoid cache trouble.
715 */
716 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
717 swap_packet((uint32_t *)packet, length);
718 #endif
719
720 addr = (ulong)packet;
721 end = roundup(addr + length, ARCH_DMA_MINALIGN);
722 addr &= ~(ARCH_DMA_MINALIGN - 1);
723 flush_dcache_range(addr, end);
724
725 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
726 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
727
728 /*
729 * update BD's status now
730 * This block:
731 * - is always the last in a chain (means no chain)
732 * - should transmitt the CRC
733 * - might be the last BD in the list, so the address counter should
734 * wrap (-> keep the WRAP flag)
735 */
736 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
737 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
738 writew(status, &fec->tbd_base[fec->tbd_index].status);
739
740 /*
741 * Flush data cache. This code flushes both TX descriptors to RAM.
742 * After this code, the descriptors will be safely in RAM and we
743 * can start DMA.
744 */
745 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
746 addr = (ulong)fec->tbd_base;
747 flush_dcache_range(addr, addr + size);
748
749 /*
750 * Below we read the DMA descriptor's last four bytes back from the
751 * DRAM. This is important in order to make sure that all WRITE
752 * operations on the bus that were triggered by previous cache FLUSH
753 * have completed.
754 *
755 * Otherwise, on MX28, it is possible to observe a corruption of the
756 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
757 * for the bus structure of MX28. The scenario is as follows:
758 *
759 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
760 * to DRAM due to flush_dcache_range()
761 * 2) ARM core writes the FEC registers via AHB_ARB2
762 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
763 *
764 * Note that 2) does sometimes finish before 1) due to reordering of
765 * WRITE accesses on the AHB bus, therefore triggering 3) before the
766 * DMA descriptor is fully written into DRAM. This results in occasional
767 * corruption of the DMA descriptor.
768 */
769 readl(addr + size - 4);
770
771 /* Enable SmartDMA transmit task */
772 fec_tx_task_enable(fec);
773
774 /*
775 * Wait until frame is sent. On each turn of the wait cycle, we must
776 * invalidate data cache to see what's really in RAM. Also, we need
777 * barrier here.
778 */
779 while (--timeout) {
780 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
781 break;
782 }
783
784 if (!timeout) {
785 ret = -EINVAL;
786 goto out;
787 }
788
789 /*
790 * The TDAR bit is cleared when the descriptors are all out from TX
791 * but on mx6solox we noticed that the READY bit is still not cleared
792 * right after TDAR.
793 * These are two distinct signals, and in IC simulation, we found that
794 * TDAR always gets cleared prior than the READY bit of last BD becomes
795 * cleared.
796 * In mx6solox, we use a later version of FEC IP. It looks like that
797 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
798 * version.
799 *
800 * Fix this by polling the READY bit of BD after the TDAR polling,
801 * which covers the mx6solox case and does not harm the other SoCs.
802 */
803 timeout = FEC_XFER_TIMEOUT;
804 while (--timeout) {
805 invalidate_dcache_range(addr, addr + size);
806 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
807 FEC_TBD_READY))
808 break;
809 }
810
811 if (!timeout)
812 ret = -EINVAL;
813
814 out:
815 debug("fec_send: status 0x%x index %d ret %i\n",
816 readw(&fec->tbd_base[fec->tbd_index].status),
817 fec->tbd_index, ret);
818 /* for next transmission use the other buffer */
819 if (fec->tbd_index)
820 fec->tbd_index = 0;
821 else
822 fec->tbd_index = 1;
823
824 return ret;
825 }
826
827 /**
828 * Pull one frame from the card
829 * @param[in] dev Our ethernet device to handle
830 * @return Length of packet read
831 */
832 #ifdef CONFIG_DM_ETH
fecmxc_recv(struct udevice * dev,int flags,uchar ** packetp)833 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
834 #else
835 static int fec_recv(struct eth_device *dev)
836 #endif
837 {
838 #ifdef CONFIG_DM_ETH
839 struct fec_priv *fec = dev_get_priv(dev);
840 #else
841 struct fec_priv *fec = (struct fec_priv *)dev->priv;
842 #endif
843 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
844 unsigned long ievent;
845 int frame_length, len = 0;
846 uint16_t bd_status;
847 ulong addr, size, end;
848 int i;
849
850 #ifdef CONFIG_DM_ETH
851 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
852 if (*packetp == 0) {
853 printf("%s: error allocating packetp\n", __func__);
854 return -ENOMEM;
855 }
856 #else
857 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
858 #endif
859
860 /* Check if any critical events have happened */
861 ievent = readl(&fec->eth->ievent);
862 writel(ievent, &fec->eth->ievent);
863 debug("fec_recv: ievent 0x%lx\n", ievent);
864 if (ievent & FEC_IEVENT_BABR) {
865 #ifdef CONFIG_DM_ETH
866 fecmxc_halt(dev);
867 fecmxc_init(dev);
868 #else
869 fec_halt(dev);
870 fec_init(dev, fec->bd);
871 #endif
872 printf("some error: 0x%08lx\n", ievent);
873 return 0;
874 }
875 if (ievent & FEC_IEVENT_HBERR) {
876 /* Heartbeat error */
877 writel(0x00000001 | readl(&fec->eth->x_cntrl),
878 &fec->eth->x_cntrl);
879 }
880 if (ievent & FEC_IEVENT_GRA) {
881 /* Graceful stop complete */
882 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
883 #ifdef CONFIG_DM_ETH
884 fecmxc_halt(dev);
885 #else
886 fec_halt(dev);
887 #endif
888 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
889 &fec->eth->x_cntrl);
890 #ifdef CONFIG_DM_ETH
891 fecmxc_init(dev);
892 #else
893 fec_init(dev, fec->bd);
894 #endif
895 }
896 }
897
898 /*
899 * Read the buffer status. Before the status can be read, the data cache
900 * must be invalidated, because the data in RAM might have been changed
901 * by DMA. The descriptors are properly aligned to cachelines so there's
902 * no need to worry they'd overlap.
903 *
904 * WARNING: By invalidating the descriptor here, we also invalidate
905 * the descriptors surrounding this one. Therefore we can NOT change the
906 * contents of this descriptor nor the surrounding ones. The problem is
907 * that in order to mark the descriptor as processed, we need to change
908 * the descriptor. The solution is to mark the whole cache line when all
909 * descriptors in the cache line are processed.
910 */
911 addr = (ulong)rbd;
912 addr &= ~(ARCH_DMA_MINALIGN - 1);
913 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
914 invalidate_dcache_range(addr, addr + size);
915
916 bd_status = readw(&rbd->status);
917 debug("fec_recv: status 0x%x\n", bd_status);
918
919 if (!(bd_status & FEC_RBD_EMPTY)) {
920 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
921 ((readw(&rbd->data_length) - 4) > 14)) {
922 /* Get buffer address and size */
923 addr = readl(&rbd->data_pointer);
924 frame_length = readw(&rbd->data_length) - 4;
925 /* Invalidate data cache over the buffer */
926 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
927 addr &= ~(ARCH_DMA_MINALIGN - 1);
928 invalidate_dcache_range(addr, end);
929
930 /* Fill the buffer and pass it to upper layers */
931 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
932 swap_packet((uint32_t *)addr, frame_length);
933 #endif
934
935 #ifdef CONFIG_DM_ETH
936 memcpy(*packetp, (char *)addr, frame_length);
937 #else
938 memcpy(buff, (char *)addr, frame_length);
939 net_process_received_packet(buff, frame_length);
940 #endif
941 len = frame_length;
942 } else {
943 if (bd_status & FEC_RBD_ERR)
944 debug("error frame: 0x%08lx 0x%08x\n",
945 addr, bd_status);
946 }
947
948 /*
949 * Free the current buffer, restart the engine and move forward
950 * to the next buffer. Here we check if the whole cacheline of
951 * descriptors was already processed and if so, we mark it free
952 * as whole.
953 */
954 size = RXDESC_PER_CACHELINE - 1;
955 if ((fec->rbd_index & size) == size) {
956 i = fec->rbd_index - size;
957 addr = (ulong)&fec->rbd_base[i];
958 for (; i <= fec->rbd_index ; i++) {
959 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
960 &fec->rbd_base[i]);
961 }
962 flush_dcache_range(addr,
963 addr + ARCH_DMA_MINALIGN);
964 }
965
966 fec_rx_task_enable(fec);
967 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
968 }
969 debug("fec_recv: stop\n");
970
971 return len;
972 }
973
fec_set_dev_name(char * dest,int dev_id)974 static void fec_set_dev_name(char *dest, int dev_id)
975 {
976 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
977 }
978
fec_alloc_descs(struct fec_priv * fec)979 static int fec_alloc_descs(struct fec_priv *fec)
980 {
981 unsigned int size;
982 int i;
983 uint8_t *data;
984 ulong addr;
985
986 /* Allocate TX descriptors. */
987 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
988 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
989 if (!fec->tbd_base)
990 goto err_tx;
991
992 /* Allocate RX descriptors. */
993 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
994 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
995 if (!fec->rbd_base)
996 goto err_rx;
997
998 memset(fec->rbd_base, 0, size);
999
1000 /* Allocate RX buffers. */
1001
1002 /* Maximum RX buffer size. */
1003 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
1004 for (i = 0; i < FEC_RBD_NUM; i++) {
1005 data = memalign(FEC_DMA_RX_MINALIGN, size);
1006 if (!data) {
1007 printf("%s: error allocating rxbuf %d\n", __func__, i);
1008 goto err_ring;
1009 }
1010
1011 memset(data, 0, size);
1012
1013 addr = (ulong)data;
1014 fec->rbd_base[i].data_pointer = (uint32_t)addr;
1015 fec->rbd_base[i].status = FEC_RBD_EMPTY;
1016 fec->rbd_base[i].data_length = 0;
1017 /* Flush the buffer to memory. */
1018 flush_dcache_range(addr, addr + size);
1019 }
1020
1021 /* Mark the last RBD to close the ring. */
1022 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
1023
1024 fec->rbd_index = 0;
1025 fec->tbd_index = 0;
1026
1027 return 0;
1028
1029 err_ring:
1030 for (; i >= 0; i--) {
1031 addr = fec->rbd_base[i].data_pointer;
1032 free((void *)addr);
1033 }
1034 free(fec->rbd_base);
1035 err_rx:
1036 free(fec->tbd_base);
1037 err_tx:
1038 return -ENOMEM;
1039 }
1040
fec_free_descs(struct fec_priv * fec)1041 static void fec_free_descs(struct fec_priv *fec)
1042 {
1043 int i;
1044 ulong addr;
1045
1046 for (i = 0; i < FEC_RBD_NUM; i++) {
1047 addr = fec->rbd_base[i].data_pointer;
1048 free((void *)addr);
1049 }
1050 free(fec->rbd_base);
1051 free(fec->tbd_base);
1052 }
1053
fec_get_miibus(ulong base_addr,int dev_id)1054 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1055 {
1056 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1057 struct mii_dev *bus;
1058 int ret;
1059
1060 bus = mdio_alloc();
1061 if (!bus) {
1062 printf("mdio_alloc failed\n");
1063 return NULL;
1064 }
1065 bus->read = fec_phy_read;
1066 bus->write = fec_phy_write;
1067 bus->priv = eth;
1068 fec_set_dev_name(bus->name, dev_id);
1069
1070 ret = mdio_register(bus);
1071 if (ret) {
1072 printf("mdio_register failed\n");
1073 free(bus);
1074 return NULL;
1075 }
1076 fec_mii_setspeed(eth);
1077 return bus;
1078 }
1079
1080 #ifndef CONFIG_DM_ETH
1081 #ifdef CONFIG_PHYLIB
fec_probe(bd_t * bd,int dev_id,uint32_t base_addr,struct mii_dev * bus,struct phy_device * phydev)1082 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1083 struct mii_dev *bus, struct phy_device *phydev)
1084 #else
1085 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1086 struct mii_dev *bus, int phy_id)
1087 #endif
1088 {
1089 struct eth_device *edev;
1090 struct fec_priv *fec;
1091 unsigned char ethaddr[6];
1092 char mac[16];
1093 uint32_t start;
1094 int ret = 0;
1095
1096 /* create and fill edev struct */
1097 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1098 if (!edev) {
1099 puts("fec_mxc: not enough malloc memory for eth_device\n");
1100 ret = -ENOMEM;
1101 goto err1;
1102 }
1103
1104 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1105 if (!fec) {
1106 puts("fec_mxc: not enough malloc memory for fec_priv\n");
1107 ret = -ENOMEM;
1108 goto err2;
1109 }
1110
1111 memset(edev, 0, sizeof(*edev));
1112 memset(fec, 0, sizeof(*fec));
1113
1114 ret = fec_alloc_descs(fec);
1115 if (ret)
1116 goto err3;
1117
1118 edev->priv = fec;
1119 edev->init = fec_init;
1120 edev->send = fec_send;
1121 edev->recv = fec_recv;
1122 edev->halt = fec_halt;
1123 edev->write_hwaddr = fec_set_hwaddr;
1124
1125 fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1126 fec->bd = bd;
1127
1128 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1129
1130 /* Reset chip. */
1131 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1132 start = get_timer(0);
1133 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1134 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1135 printf("FEC MXC: Timeout resetting chip\n");
1136 goto err4;
1137 }
1138 udelay(10);
1139 }
1140
1141 fec_reg_setup(fec);
1142 fec_set_dev_name(edev->name, dev_id);
1143 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1144 fec->bus = bus;
1145 fec_mii_setspeed(bus->priv);
1146 #ifdef CONFIG_PHYLIB
1147 fec->phydev = phydev;
1148 phy_connect_dev(phydev, edev);
1149 /* Configure phy */
1150 phy_config(phydev);
1151 #else
1152 fec->phy_id = phy_id;
1153 #endif
1154 eth_register(edev);
1155 /* only support one eth device, the index number pointed by dev_id */
1156 edev->index = fec->dev_id;
1157
1158 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1159 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1160 memcpy(edev->enetaddr, ethaddr, 6);
1161 if (fec->dev_id)
1162 sprintf(mac, "eth%daddr", fec->dev_id);
1163 else
1164 strcpy(mac, "ethaddr");
1165 if (!env_get(mac))
1166 eth_env_set_enetaddr(mac, ethaddr);
1167 }
1168 return ret;
1169 err4:
1170 fec_free_descs(fec);
1171 err3:
1172 free(fec);
1173 err2:
1174 free(edev);
1175 err1:
1176 return ret;
1177 }
1178
fecmxc_initialize_multi(bd_t * bd,int dev_id,int phy_id,uint32_t addr)1179 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1180 {
1181 uint32_t base_mii;
1182 struct mii_dev *bus = NULL;
1183 #ifdef CONFIG_PHYLIB
1184 struct phy_device *phydev = NULL;
1185 #endif
1186 int ret;
1187
1188 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1189 /*
1190 * The i.MX28 has two ethernet interfaces, but they are not equal.
1191 * Only the first one can access the MDIO bus.
1192 */
1193 base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1194 #else
1195 base_mii = addr;
1196 #endif
1197 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1198 bus = fec_get_miibus(base_mii, dev_id);
1199 if (!bus)
1200 return -ENOMEM;
1201 #ifdef CONFIG_PHYLIB
1202 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1203 if (!phydev) {
1204 mdio_unregister(bus);
1205 free(bus);
1206 return -ENOMEM;
1207 }
1208 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1209 #else
1210 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1211 #endif
1212 if (ret) {
1213 #ifdef CONFIG_PHYLIB
1214 free(phydev);
1215 #endif
1216 mdio_unregister(bus);
1217 free(bus);
1218 }
1219 return ret;
1220 }
1221
1222 #ifdef CONFIG_FEC_MXC_PHYADDR
fecmxc_initialize(bd_t * bd)1223 int fecmxc_initialize(bd_t *bd)
1224 {
1225 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1226 IMX_FEC_BASE);
1227 }
1228 #endif
1229
1230 #ifndef CONFIG_PHYLIB
fecmxc_register_mii_postcall(struct eth_device * dev,int (* cb)(int))1231 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1232 {
1233 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1234 fec->mii_postcall = cb;
1235 return 0;
1236 }
1237 #endif
1238
1239 #else
1240
fecmxc_read_rom_hwaddr(struct udevice * dev)1241 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1242 {
1243 struct fec_priv *priv = dev_get_priv(dev);
1244 struct eth_pdata *pdata = dev_get_platdata(dev);
1245
1246 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1247 }
1248
fecmxc_free_pkt(struct udevice * dev,uchar * packet,int length)1249 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1250 {
1251 if (packet)
1252 free(packet);
1253
1254 return 0;
1255 }
1256
1257 static const struct eth_ops fecmxc_ops = {
1258 .start = fecmxc_init,
1259 .send = fecmxc_send,
1260 .recv = fecmxc_recv,
1261 .free_pkt = fecmxc_free_pkt,
1262 .stop = fecmxc_halt,
1263 .write_hwaddr = fecmxc_set_hwaddr,
1264 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
1265 };
1266
device_get_phy_addr(struct udevice * dev)1267 static int device_get_phy_addr(struct udevice *dev)
1268 {
1269 struct ofnode_phandle_args phandle_args;
1270 int reg;
1271
1272 if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1273 &phandle_args)) {
1274 debug("Failed to find phy-handle");
1275 return -ENODEV;
1276 }
1277
1278 reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1279
1280 return reg;
1281 }
1282
fec_phy_init(struct fec_priv * priv,struct udevice * dev)1283 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1284 {
1285 struct phy_device *phydev;
1286 int addr;
1287
1288 addr = device_get_phy_addr(dev);
1289 #ifdef CONFIG_FEC_MXC_PHYADDR
1290 addr = CONFIG_FEC_MXC_PHYADDR;
1291 #endif
1292
1293 phydev = phy_connect(priv->bus, addr, dev, priv->interface);
1294 if (!phydev)
1295 return -ENODEV;
1296
1297 priv->phydev = phydev;
1298 phy_config(phydev);
1299
1300 return 0;
1301 }
1302
1303 #ifdef CONFIG_DM_GPIO
1304 /* FEC GPIO reset */
fec_gpio_reset(struct fec_priv * priv)1305 static void fec_gpio_reset(struct fec_priv *priv)
1306 {
1307 debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1308 if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1309 dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1310 mdelay(priv->reset_delay);
1311 dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1312 if (priv->reset_post_delay)
1313 mdelay(priv->reset_post_delay);
1314 }
1315 }
1316 #endif
1317
fecmxc_probe(struct udevice * dev)1318 static int fecmxc_probe(struct udevice *dev)
1319 {
1320 struct eth_pdata *pdata = dev_get_platdata(dev);
1321 struct fec_priv *priv = dev_get_priv(dev);
1322 struct mii_dev *bus = NULL;
1323 uint32_t start;
1324 int ret;
1325
1326 if (IS_ENABLED(CONFIG_IMX8)) {
1327 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1328 if (ret < 0) {
1329 debug("Can't get FEC ipg clk: %d\n", ret);
1330 return ret;
1331 }
1332 ret = clk_enable(&priv->ipg_clk);
1333 if (ret < 0) {
1334 debug("Can't enable FEC ipg clk: %d\n", ret);
1335 return ret;
1336 }
1337
1338 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1339 }
1340
1341 ret = fec_alloc_descs(priv);
1342 if (ret)
1343 return ret;
1344
1345 #ifdef CONFIG_DM_REGULATOR
1346 if (priv->phy_supply) {
1347 ret = regulator_set_enable(priv->phy_supply, true);
1348 if (ret) {
1349 printf("%s: Error enabling phy supply\n", dev->name);
1350 return ret;
1351 }
1352 }
1353 #endif
1354
1355 #ifdef CONFIG_DM_GPIO
1356 fec_gpio_reset(priv);
1357 #endif
1358 /* Reset chip. */
1359 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1360 &priv->eth->ecntrl);
1361 start = get_timer(0);
1362 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1363 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1364 printf("FEC MXC: Timeout reseting chip\n");
1365 goto err_timeout;
1366 }
1367 udelay(10);
1368 }
1369
1370 fec_reg_setup(priv);
1371
1372 priv->dev_id = dev->seq;
1373 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1374 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1375 #else
1376 bus = fec_get_miibus((ulong)priv->eth, dev->seq);
1377 #endif
1378 if (!bus) {
1379 ret = -ENOMEM;
1380 goto err_mii;
1381 }
1382
1383 priv->bus = bus;
1384 priv->interface = pdata->phy_interface;
1385 switch (priv->interface) {
1386 case PHY_INTERFACE_MODE_MII:
1387 priv->xcv_type = MII100;
1388 break;
1389 case PHY_INTERFACE_MODE_RMII:
1390 priv->xcv_type = RMII;
1391 break;
1392 case PHY_INTERFACE_MODE_RGMII:
1393 case PHY_INTERFACE_MODE_RGMII_ID:
1394 case PHY_INTERFACE_MODE_RGMII_RXID:
1395 case PHY_INTERFACE_MODE_RGMII_TXID:
1396 priv->xcv_type = RGMII;
1397 break;
1398 default:
1399 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1400 printf("Unsupported interface type %d defaulting to %d\n",
1401 priv->interface, priv->xcv_type);
1402 break;
1403 }
1404
1405 ret = fec_phy_init(priv, dev);
1406 if (ret)
1407 goto err_phy;
1408
1409 return 0;
1410
1411 err_phy:
1412 mdio_unregister(bus);
1413 free(bus);
1414 err_mii:
1415 err_timeout:
1416 fec_free_descs(priv);
1417 return ret;
1418 }
1419
fecmxc_remove(struct udevice * dev)1420 static int fecmxc_remove(struct udevice *dev)
1421 {
1422 struct fec_priv *priv = dev_get_priv(dev);
1423
1424 free(priv->phydev);
1425 fec_free_descs(priv);
1426 mdio_unregister(priv->bus);
1427 mdio_free(priv->bus);
1428
1429 #ifdef CONFIG_DM_REGULATOR
1430 if (priv->phy_supply)
1431 regulator_set_enable(priv->phy_supply, false);
1432 #endif
1433
1434 return 0;
1435 }
1436
fecmxc_ofdata_to_platdata(struct udevice * dev)1437 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1438 {
1439 int ret = 0;
1440 struct eth_pdata *pdata = dev_get_platdata(dev);
1441 struct fec_priv *priv = dev_get_priv(dev);
1442 const char *phy_mode;
1443
1444 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1445 priv->eth = (struct ethernet_regs *)pdata->iobase;
1446
1447 pdata->phy_interface = -1;
1448 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1449 NULL);
1450 if (phy_mode)
1451 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1452 if (pdata->phy_interface == -1) {
1453 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1454 return -EINVAL;
1455 }
1456
1457 #ifdef CONFIG_DM_REGULATOR
1458 device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1459 #endif
1460
1461 #ifdef CONFIG_DM_GPIO
1462 ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1463 &priv->phy_reset_gpio, GPIOD_IS_OUT);
1464 if (ret < 0)
1465 return 0; /* property is optional, don't return error! */
1466
1467 priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
1468 if (priv->reset_delay > 1000) {
1469 printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1470 /* property value wrong, use default value */
1471 priv->reset_delay = 1;
1472 }
1473
1474 priv->reset_post_delay = dev_read_u32_default(dev,
1475 "phy-reset-post-delay",
1476 0);
1477 if (priv->reset_post_delay > 1000) {
1478 printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1479 /* property value wrong, use default value */
1480 priv->reset_post_delay = 0;
1481 }
1482 #endif
1483
1484 return 0;
1485 }
1486
1487 static const struct udevice_id fecmxc_ids[] = {
1488 { .compatible = "fsl,imx6q-fec" },
1489 { .compatible = "fsl,imx6sl-fec" },
1490 { .compatible = "fsl,imx6sx-fec" },
1491 { .compatible = "fsl,imx6ul-fec" },
1492 { .compatible = "fsl,imx53-fec" },
1493 { .compatible = "fsl,imx7d-fec" },
1494 { }
1495 };
1496
1497 U_BOOT_DRIVER(fecmxc_gem) = {
1498 .name = "fecmxc",
1499 .id = UCLASS_ETH,
1500 .of_match = fecmxc_ids,
1501 .ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1502 .probe = fecmxc_probe,
1503 .remove = fecmxc_remove,
1504 .ops = &fecmxc_ops,
1505 .priv_auto_alloc_size = sizeof(struct fec_priv),
1506 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1507 };
1508 #endif
1509