xref: /openbmc/qemu/system/memory.c (revision 5431ca88a9cae93dd7ac1f869998c7ed23429b48)
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "system/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qemu/target-info.h"
26 #include "qom/object.h"
27 #include "trace.h"
28 #include "system/ram_addr.h"
29 #include "system/kvm.h"
30 #include "system/runstate.h"
31 #include "system/tcg.h"
32 #include "qemu/accel.h"
33 #include "accel/accel-ops.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "system/address-spaces.h"
37 
38 #include "memory-internal.h"
39 
40 //#define DEBUG_UNASSIGNED
41 
42 static unsigned memory_region_transaction_depth;
43 static bool memory_region_update_pending;
44 static bool ioeventfd_update_pending;
45 unsigned int global_dirty_tracking;
46 
47 static QTAILQ_HEAD(, MemoryListener) memory_listeners
48     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
49 
50 static QTAILQ_HEAD(, AddressSpace) address_spaces
51     = QTAILQ_HEAD_INITIALIZER(address_spaces);
52 
53 static GHashTable *flat_views;
54 
55 typedef struct AddrRange AddrRange;
56 
57 /*
58  * Note that signed integers are needed for negative offsetting in aliases
59  * (large MemoryRegion::alias_offset).
60  */
61 struct AddrRange {
62     Int128 start;
63     Int128 size;
64 };
65 
addrrange_make(Int128 start,Int128 size)66 static AddrRange addrrange_make(Int128 start, Int128 size)
67 {
68     return (AddrRange) { start, size };
69 }
70 
addrrange_equal(AddrRange r1,AddrRange r2)71 static bool addrrange_equal(AddrRange r1, AddrRange r2)
72 {
73     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
74 }
75 
addrrange_end(AddrRange r)76 static Int128 addrrange_end(AddrRange r)
77 {
78     return int128_add(r.start, r.size);
79 }
80 
addrrange_shift(AddrRange range,Int128 delta)81 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
82 {
83     int128_addto(&range.start, delta);
84     return range;
85 }
86 
addrrange_contains(AddrRange range,Int128 addr)87 static bool addrrange_contains(AddrRange range, Int128 addr)
88 {
89     return int128_ge(addr, range.start)
90         && int128_lt(addr, addrrange_end(range));
91 }
92 
addrrange_intersects(AddrRange r1,AddrRange r2)93 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
94 {
95     return addrrange_contains(r1, r2.start)
96         || addrrange_contains(r2, r1.start);
97 }
98 
addrrange_intersection(AddrRange r1,AddrRange r2)99 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
100 {
101     Int128 start = int128_max(r1.start, r2.start);
102     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
103     return addrrange_make(start, int128_sub(end, start));
104 }
105 
106 enum ListenerDirection { Forward, Reverse };
107 
108 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
109     do {                                                                \
110         MemoryListener *_listener;                                      \
111                                                                         \
112         switch (_direction) {                                           \
113         case Forward:                                                   \
114             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
115                 if (_listener->_callback) {                             \
116                     _listener->_callback(_listener, ##_args);           \
117                 }                                                       \
118             }                                                           \
119             break;                                                      \
120         case Reverse:                                                   \
121             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
122                 if (_listener->_callback) {                             \
123                     _listener->_callback(_listener, ##_args);           \
124                 }                                                       \
125             }                                                           \
126             break;                                                      \
127         default:                                                        \
128             abort();                                                    \
129         }                                                               \
130     } while (0)
131 
132 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
133     do {                                                                \
134         MemoryListener *_listener;                                      \
135                                                                         \
136         switch (_direction) {                                           \
137         case Forward:                                                   \
138             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
139                 if (_listener->_callback) {                             \
140                     _listener->_callback(_listener, _section, ##_args); \
141                 }                                                       \
142             }                                                           \
143             break;                                                      \
144         case Reverse:                                                   \
145             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
146                 if (_listener->_callback) {                             \
147                     _listener->_callback(_listener, _section, ##_args); \
148                 }                                                       \
149             }                                                           \
150             break;                                                      \
151         default:                                                        \
152             abort();                                                    \
153         }                                                               \
154     } while (0)
155 
156 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
157 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
158     do {                                                                \
159         MemoryRegionSection mrs = section_from_flat_range(fr,           \
160                 address_space_to_flatview(as));                         \
161         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
162     } while(0)
163 
164 struct CoalescedMemoryRange {
165     AddrRange addr;
166     QTAILQ_ENTRY(CoalescedMemoryRange) link;
167 };
168 
169 struct MemoryRegionIoeventfd {
170     AddrRange addr;
171     bool match_data;
172     uint64_t data;
173     EventNotifier *e;
174 };
175 
memory_region_ioeventfd_before(MemoryRegionIoeventfd * a,MemoryRegionIoeventfd * b)176 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
177                                            MemoryRegionIoeventfd *b)
178 {
179     if (int128_lt(a->addr.start, b->addr.start)) {
180         return true;
181     } else if (int128_gt(a->addr.start, b->addr.start)) {
182         return false;
183     } else if (int128_lt(a->addr.size, b->addr.size)) {
184         return true;
185     } else if (int128_gt(a->addr.size, b->addr.size)) {
186         return false;
187     } else if (a->match_data < b->match_data) {
188         return true;
189     } else  if (a->match_data > b->match_data) {
190         return false;
191     } else if (a->match_data) {
192         if (a->data < b->data) {
193             return true;
194         } else if (a->data > b->data) {
195             return false;
196         }
197     }
198     if (a->e < b->e) {
199         return true;
200     } else if (a->e > b->e) {
201         return false;
202     }
203     return false;
204 }
205 
memory_region_ioeventfd_equal(MemoryRegionIoeventfd * a,MemoryRegionIoeventfd * b)206 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
207                                           MemoryRegionIoeventfd *b)
208 {
209     if (int128_eq(a->addr.start, b->addr.start) &&
210         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
211          (int128_eq(a->addr.size, b->addr.size) &&
212           (a->match_data == b->match_data) &&
213           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
214           (a->e == b->e))))
215         return true;
216 
217     return false;
218 }
219 
220 /* Range of memory in the global map.  Addresses are absolute. */
221 struct FlatRange {
222     MemoryRegion *mr;
223     hwaddr offset_in_region;
224     AddrRange addr;
225     uint8_t dirty_log_mask;
226     bool romd_mode;
227     bool readonly;
228     bool nonvolatile;
229     bool unmergeable;
230 };
231 
232 #define FOR_EACH_FLAT_RANGE(var, view)          \
233     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
234 
235 static inline MemoryRegionSection
section_from_flat_range(FlatRange * fr,FlatView * fv)236 section_from_flat_range(FlatRange *fr, FlatView *fv)
237 {
238     return (MemoryRegionSection) {
239         .mr = fr->mr,
240         .fv = fv,
241         .offset_within_region = fr->offset_in_region,
242         .size = fr->addr.size,
243         .offset_within_address_space = int128_get64(fr->addr.start),
244         .readonly = fr->readonly,
245         .nonvolatile = fr->nonvolatile,
246         .unmergeable = fr->unmergeable,
247     };
248 }
249 
flatrange_equal(FlatRange * a,FlatRange * b)250 static bool flatrange_equal(FlatRange *a, FlatRange *b)
251 {
252     return a->mr == b->mr
253         && addrrange_equal(a->addr, b->addr)
254         && a->offset_in_region == b->offset_in_region
255         && a->romd_mode == b->romd_mode
256         && a->readonly == b->readonly
257         && a->nonvolatile == b->nonvolatile
258         && a->unmergeable == b->unmergeable;
259 }
260 
flatview_new(MemoryRegion * mr_root)261 static FlatView *flatview_new(MemoryRegion *mr_root)
262 {
263     FlatView *view;
264 
265     view = g_new0(FlatView, 1);
266     view->ref = 1;
267     view->root = mr_root;
268     memory_region_ref(mr_root);
269     trace_flatview_new(view, mr_root);
270 
271     return view;
272 }
273 
274 /* Insert a range into a given position.  Caller is responsible for maintaining
275  * sorting order.
276  */
flatview_insert(FlatView * view,unsigned pos,FlatRange * range)277 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
278 {
279     if (view->nr == view->nr_allocated) {
280         view->nr_allocated = MAX(2 * view->nr, 10);
281         view->ranges = g_realloc(view->ranges,
282                                     view->nr_allocated * sizeof(*view->ranges));
283     }
284     memmove(view->ranges + pos + 1, view->ranges + pos,
285             (view->nr - pos) * sizeof(FlatRange));
286     view->ranges[pos] = *range;
287     memory_region_ref(range->mr);
288     ++view->nr;
289 }
290 
flatview_destroy(FlatView * view)291 static void flatview_destroy(FlatView *view)
292 {
293     int i;
294 
295     trace_flatview_destroy(view, view->root);
296     if (view->dispatch) {
297         address_space_dispatch_free(view->dispatch);
298     }
299     for (i = 0; i < view->nr; i++) {
300         memory_region_unref(view->ranges[i].mr);
301     }
302     g_free(view->ranges);
303     memory_region_unref(view->root);
304     g_free(view);
305 }
306 
flatview_ref(FlatView * view)307 static bool flatview_ref(FlatView *view)
308 {
309     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
310 }
311 
flatview_unref(FlatView * view)312 void flatview_unref(FlatView *view)
313 {
314     if (qatomic_fetch_dec(&view->ref) == 1) {
315         trace_flatview_destroy_rcu(view, view->root);
316         assert(view->root);
317         call_rcu(view, flatview_destroy, rcu);
318     }
319 }
320 
can_merge(FlatRange * r1,FlatRange * r2)321 static bool can_merge(FlatRange *r1, FlatRange *r2)
322 {
323     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
324         && r1->mr == r2->mr
325         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
326                                 r1->addr.size),
327                      int128_make64(r2->offset_in_region))
328         && r1->dirty_log_mask == r2->dirty_log_mask
329         && r1->romd_mode == r2->romd_mode
330         && r1->readonly == r2->readonly
331         && r1->nonvolatile == r2->nonvolatile
332         && !r1->unmergeable && !r2->unmergeable;
333 }
334 
335 /* Attempt to simplify a view by merging adjacent ranges */
flatview_simplify(FlatView * view)336 static void flatview_simplify(FlatView *view)
337 {
338     unsigned i, j, k;
339 
340     i = 0;
341     while (i < view->nr) {
342         j = i + 1;
343         while (j < view->nr
344                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
345             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
346             ++j;
347         }
348         ++i;
349         for (k = i; k < j; k++) {
350             memory_region_unref(view->ranges[k].mr);
351         }
352         memmove(&view->ranges[i], &view->ranges[j],
353                 (view->nr - j) * sizeof(view->ranges[j]));
354         view->nr -= j - i;
355     }
356 }
357 
adjust_endianness(MemoryRegion * mr,uint64_t * data,MemOp op)358 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
359 {
360     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
361         switch (op & MO_SIZE) {
362         case MO_8:
363             break;
364         case MO_16:
365             *data = bswap16(*data);
366             break;
367         case MO_32:
368             *data = bswap32(*data);
369             break;
370         case MO_64:
371             *data = bswap64(*data);
372             break;
373         default:
374             g_assert_not_reached();
375         }
376     }
377 }
378 
memory_region_shift_read_access(uint64_t * value,signed shift,uint64_t mask,uint64_t tmp)379 static inline void memory_region_shift_read_access(uint64_t *value,
380                                                    signed shift,
381                                                    uint64_t mask,
382                                                    uint64_t tmp)
383 {
384     if (shift >= 0) {
385         *value |= (tmp & mask) << shift;
386     } else {
387         *value |= (tmp & mask) >> -shift;
388     }
389 }
390 
memory_region_shift_write_access(uint64_t * value,signed shift,uint64_t mask)391 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
392                                                         signed shift,
393                                                         uint64_t mask)
394 {
395     uint64_t tmp;
396 
397     if (shift >= 0) {
398         tmp = (*value >> shift) & mask;
399     } else {
400         tmp = (*value << -shift) & mask;
401     }
402 
403     return tmp;
404 }
405 
memory_region_to_absolute_addr(MemoryRegion * mr,hwaddr offset)406 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
407 {
408     MemoryRegion *root;
409     hwaddr abs_addr = offset;
410 
411     abs_addr += mr->addr;
412     for (root = mr; root->container; ) {
413         root = root->container;
414         abs_addr += root->addr;
415     }
416 
417     return abs_addr;
418 }
419 
get_cpu_index(void)420 static int get_cpu_index(void)
421 {
422     if (current_cpu) {
423         return current_cpu->cpu_index;
424     }
425     return -1;
426 }
427 
memory_region_read_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)428 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
429                                                 hwaddr addr,
430                                                 uint64_t *value,
431                                                 unsigned size,
432                                                 signed shift,
433                                                 uint64_t mask,
434                                                 MemTxAttrs attrs)
435 {
436     uint64_t tmp;
437 
438     tmp = mr->ops->read(mr->opaque, addr, size);
439     if (mr->subpage) {
440         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
441     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
442         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
443         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
444                                      memory_region_name(mr));
445     }
446     memory_region_shift_read_access(value, shift, mask, tmp);
447     return MEMTX_OK;
448 }
449 
memory_region_read_with_attrs_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)450 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
451                                                           hwaddr addr,
452                                                           uint64_t *value,
453                                                           unsigned size,
454                                                           signed shift,
455                                                           uint64_t mask,
456                                                           MemTxAttrs attrs)
457 {
458     uint64_t tmp = 0;
459     MemTxResult r;
460 
461     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
462     if (mr->subpage) {
463         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
464     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
465         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
466         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
467                                      memory_region_name(mr));
468     }
469     memory_region_shift_read_access(value, shift, mask, tmp);
470     return r;
471 }
472 
memory_region_write_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)473 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
474                                                 hwaddr addr,
475                                                 uint64_t *value,
476                                                 unsigned size,
477                                                 signed shift,
478                                                 uint64_t mask,
479                                                 MemTxAttrs attrs)
480 {
481     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
482 
483     if (mr->subpage) {
484         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
485     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
486         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
487         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
488                                       memory_region_name(mr));
489     }
490     mr->ops->write(mr->opaque, addr, tmp, size);
491     return MEMTX_OK;
492 }
493 
memory_region_write_with_attrs_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)494 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
495                                                            hwaddr addr,
496                                                            uint64_t *value,
497                                                            unsigned size,
498                                                            signed shift,
499                                                            uint64_t mask,
500                                                            MemTxAttrs attrs)
501 {
502     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
503 
504     if (mr->subpage) {
505         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
506     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
507         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
508         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
509                                       memory_region_name(mr));
510     }
511     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
512 }
513 
access_with_adjusted_size_aligned(hwaddr addr,uint64_t * value,unsigned size,unsigned access_size_min,unsigned access_size_max,MemTxResult (* access_fn)(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs),MemoryRegion * mr,MemTxAttrs attrs)514 static MemTxResult access_with_adjusted_size_aligned(hwaddr addr,
515                                       uint64_t *value,
516                                       unsigned size,
517                                       unsigned access_size_min,
518                                       unsigned access_size_max,
519                                       MemTxResult (*access_fn)
520                                                   (MemoryRegion *mr,
521                                                    hwaddr addr,
522                                                    uint64_t *value,
523                                                    unsigned size,
524                                                    signed shift,
525                                                    uint64_t mask,
526                                                    MemTxAttrs attrs),
527                                       MemoryRegion *mr,
528                                       MemTxAttrs attrs)
529 {
530     uint64_t access_mask;
531     unsigned access_size;
532     unsigned i;
533     MemTxResult r = MEMTX_OK;
534     bool reentrancy_guard_applied = false;
535 
536     if (!access_size_min) {
537         access_size_min = 1;
538     }
539     if (!access_size_max) {
540         access_size_max = 4;
541     }
542 
543     /* Do not allow more than one simultaneous access to a device's IO Regions */
544     if (mr->dev && !mr->disable_reentrancy_guard &&
545         !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
546         if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
547             warn_report_once("Blocked re-entrant IO on MemoryRegion: "
548                              "%s at addr: 0x%" HWADDR_PRIX,
549                              memory_region_name(mr), addr);
550             return MEMTX_ACCESS_ERROR;
551         }
552         mr->dev->mem_reentrancy_guard.engaged_in_io = true;
553         reentrancy_guard_applied = true;
554     }
555 
556     access_size = MAX(MIN(size, access_size_max), access_size_min);
557     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
558     if (devend_big_endian(mr->ops->endianness)) {
559         for (i = 0; i < size; i += access_size) {
560             r |= access_fn(mr, addr + i, value, access_size,
561                         (size - access_size - i) * 8, access_mask, attrs);
562         }
563     } else {
564         for (i = 0; i < size; i += access_size) {
565             r |= access_fn(mr, addr + i, value, access_size, i * 8,
566                         access_mask, attrs);
567         }
568     }
569     if (mr->dev && reentrancy_guard_applied) {
570         mr->dev->mem_reentrancy_guard.engaged_in_io = false;
571     }
572     return r;
573 }
574 
575 /* Assume power-of-two size */
576 #define align_down(addr, size) ((addr) & ~((size) - 1))
577 #define align_up(addr, size) \
578     ({ typeof(size) __size = size;  \
579         align_down((addr) + (__size) - 1, (__size)); })
580 
access_with_adjusted_size_unaligned(hwaddr addr,uint64_t * value,unsigned size,unsigned access_size_min,unsigned access_size_max,bool unaligned,MemTxResult (* access)(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs),MemoryRegion * mr,MemTxAttrs attrs)581 static MemTxResult access_with_adjusted_size_unaligned(hwaddr addr,
582                                       uint64_t *value,
583                                       unsigned size,
584                                       unsigned access_size_min,
585                                       unsigned access_size_max,
586                                       bool unaligned,
587                                       MemTxResult (*access)(MemoryRegion *mr,
588                                                             hwaddr addr,
589                                                             uint64_t *value,
590                                                             unsigned size,
591                                                             signed shift,
592                                                             uint64_t mask,
593                                                             MemTxAttrs attrs),
594                                       MemoryRegion *mr,
595                                       MemTxAttrs attrs)
596 {
597     uint64_t access_value = 0;
598     MemTxResult r = MEMTX_OK;
599     hwaddr access_addr[2];
600     uint64_t access_mask;
601     unsigned access_size;
602 
603     if (unlikely(!access_size_min)) {
604         access_size_min = 1;
605     }
606     if (unlikely(!access_size_max)) {
607         access_size_max = 4;
608     }
609 
610     access_size = MAX(MIN(size, access_size_max), access_size_min);
611     access_addr[0] = align_down(addr, access_size);
612     access_addr[1] = align_up(addr + size, access_size);
613 
614     if (devend_big_endian(mr->ops->endianness)) {
615         hwaddr cur;
616 
617         /* XXX: Big-endian path is untested...  */
618 
619         for (cur = access_addr[0]; cur < access_addr[1]; cur += access_size) {
620             uint64_t mask_bounds[2];
621 
622             mask_bounds[0] = MAX(addr, cur) - cur;
623             mask_bounds[1] =
624                 MIN(addr + size, align_up(cur + 1, access_size)) - cur;
625 
626             access_mask = (-1ULL << mask_bounds[0] * 8) &
627                 (-1ULL >> (64 - mask_bounds[1] * 8));
628 
629             r |= access(mr, cur, &access_value, access_size,
630                   (size - access_size - (MAX(addr, cur) - addr)),
631                   access_mask, attrs);
632 
633             /* XXX: Can't do this hack for writes */
634             access_value >>= mask_bounds[0] * 8;
635         }
636     } else {
637         hwaddr cur;
638 
639         for (cur = access_addr[0]; cur < access_addr[1]; cur += access_size) {
640             uint64_t mask_bounds[2];
641 
642             mask_bounds[0] = MAX(addr, cur) - cur;
643             mask_bounds[1] =
644                 MIN(addr + size, align_up(cur + 1, access_size)) - cur;
645 
646             access_mask = (-1ULL << mask_bounds[0] * 8) &
647                 (-1ULL >> (64 - mask_bounds[1] * 8));
648 
649             r |= access(mr, cur, &access_value, access_size,
650                   (MAX(addr, cur) - addr), access_mask, attrs);
651 
652             /* XXX: Can't do this hack for writes */
653             access_value >>= mask_bounds[0] * 8;
654         }
655     }
656 
657     *value = access_value;
658 
659     return r;
660 }
661 
access_with_adjusted_size(hwaddr addr,uint64_t * value,unsigned size,unsigned access_size_min,unsigned access_size_max,bool unaligned,MemTxResult (* access)(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs),MemoryRegion * mr,MemTxAttrs attrs)662 static inline MemTxResult access_with_adjusted_size(hwaddr addr,
663                                       uint64_t *value,
664                                       unsigned size,
665                                       unsigned access_size_min,
666                                       unsigned access_size_max,
667                                       bool unaligned,
668                                       MemTxResult (*access)(MemoryRegion *mr,
669                                                             hwaddr addr,
670                                                             uint64_t *value,
671                                                             unsigned size,
672                                                             signed shift,
673                                                             uint64_t mask,
674                                                             MemTxAttrs attrs),
675                                       MemoryRegion *mr,
676                                       MemTxAttrs attrs)
677 {
678     unsigned access_size;
679 
680     if (!access_size_min) {
681         access_size_min = 1;
682     }
683     if (!access_size_max) {
684         access_size_max = 4;
685     }
686 
687     access_size = MAX(MIN(size, access_size_max), access_size_min);
688 
689     /* Handle unaligned accesses if the model only supports natural alignment */
690     if (unlikely((addr & (access_size - 1)) && !unaligned)) {
691         return access_with_adjusted_size_unaligned(addr, value, size,
692                 access_size_min, access_size_max, unaligned, access, mr, attrs);
693     }
694 
695     /*
696      * Otherwise, if the access is aligned or the model specifies it can handle
697      * unaligned accesses, use the 'aligned' handler
698      */
699     return access_with_adjusted_size_aligned(addr, value, size,
700             access_size_min, access_size_max, access, mr, attrs);
701 }
702 
memory_region_to_address_space(MemoryRegion * mr)703 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
704 {
705     AddressSpace *as;
706 
707     while (mr->container) {
708         mr = mr->container;
709     }
710     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
711         if (mr == as->root) {
712             return as;
713         }
714     }
715     return NULL;
716 }
717 
718 /* Render a memory region into the global view.  Ranges in @view obscure
719  * ranges in @mr.
720  */
render_memory_region(FlatView * view,MemoryRegion * mr,Int128 base,AddrRange clip,bool readonly,bool nonvolatile,bool unmergeable)721 static void render_memory_region(FlatView *view,
722                                  MemoryRegion *mr,
723                                  Int128 base,
724                                  AddrRange clip,
725                                  bool readonly,
726                                  bool nonvolatile,
727                                  bool unmergeable)
728 {
729     MemoryRegion *subregion;
730     unsigned i;
731     hwaddr offset_in_region;
732     Int128 remain;
733     Int128 now;
734     FlatRange fr;
735     AddrRange tmp;
736 
737     if (!mr->enabled) {
738         return;
739     }
740 
741     int128_addto(&base, int128_make64(mr->addr));
742     readonly |= mr->readonly;
743     nonvolatile |= mr->nonvolatile;
744     unmergeable |= mr->unmergeable;
745 
746     tmp = addrrange_make(base, mr->size);
747 
748     if (!addrrange_intersects(tmp, clip)) {
749         return;
750     }
751 
752     clip = addrrange_intersection(tmp, clip);
753 
754     if (mr->alias) {
755         int128_subfrom(&base, int128_make64(mr->alias->addr));
756         int128_subfrom(&base, int128_make64(mr->alias_offset));
757         render_memory_region(view, mr->alias, base, clip,
758                              readonly, nonvolatile, unmergeable);
759         return;
760     }
761 
762     /* Render subregions in priority order. */
763     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
764         render_memory_region(view, subregion, base, clip,
765                              readonly, nonvolatile, unmergeable);
766     }
767 
768     if (!mr->terminates) {
769         return;
770     }
771 
772     offset_in_region = int128_get64(int128_sub(clip.start, base));
773     base = clip.start;
774     remain = clip.size;
775 
776     fr.mr = mr;
777     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
778     fr.romd_mode = mr->romd_mode;
779     fr.readonly = readonly;
780     fr.nonvolatile = nonvolatile;
781     fr.unmergeable = unmergeable;
782 
783     /* Render the region itself into any gaps left by the current view. */
784     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
785         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
786             continue;
787         }
788         if (int128_lt(base, view->ranges[i].addr.start)) {
789             now = int128_min(remain,
790                              int128_sub(view->ranges[i].addr.start, base));
791             fr.offset_in_region = offset_in_region;
792             fr.addr = addrrange_make(base, now);
793             flatview_insert(view, i, &fr);
794             ++i;
795             int128_addto(&base, now);
796             offset_in_region += int128_get64(now);
797             int128_subfrom(&remain, now);
798         }
799         now = int128_sub(int128_min(int128_add(base, remain),
800                                     addrrange_end(view->ranges[i].addr)),
801                          base);
802         int128_addto(&base, now);
803         offset_in_region += int128_get64(now);
804         int128_subfrom(&remain, now);
805     }
806     if (int128_nz(remain)) {
807         fr.offset_in_region = offset_in_region;
808         fr.addr = addrrange_make(base, remain);
809         flatview_insert(view, i, &fr);
810     }
811 }
812 
flatview_for_each_range(FlatView * fv,flatview_cb cb,void * opaque)813 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
814 {
815     FlatRange *fr;
816 
817     assert(fv);
818     assert(cb);
819 
820     FOR_EACH_FLAT_RANGE(fr, fv) {
821         if (cb(fr->addr.start, fr->addr.size, fr->mr,
822                fr->offset_in_region, opaque)) {
823             break;
824         }
825     }
826 }
827 
memory_region_get_flatview_root(MemoryRegion * mr)828 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
829 {
830     while (mr->enabled) {
831         if (mr->alias) {
832             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
833                 /* The alias is included in its entirety.  Use it as
834                  * the "real" root, so that we can share more FlatViews.
835                  */
836                 mr = mr->alias;
837                 continue;
838             }
839         } else if (!mr->terminates) {
840             unsigned int found = 0;
841             MemoryRegion *child, *next = NULL;
842             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
843                 if (child->enabled) {
844                     if (++found > 1) {
845                         next = NULL;
846                         break;
847                     }
848                     if (!child->addr && int128_ge(mr->size, child->size)) {
849                         /* A child is included in its entirety.  If it's the only
850                          * enabled one, use it in the hope of finding an alias down the
851                          * way. This will also let us share FlatViews.
852                          */
853                         next = child;
854                     }
855                 }
856             }
857             if (found == 0) {
858                 return NULL;
859             }
860             if (next) {
861                 mr = next;
862                 continue;
863             }
864         }
865 
866         return mr;
867     }
868 
869     return NULL;
870 }
871 
872 /* Render a memory topology into a list of disjoint absolute ranges. */
generate_memory_topology(MemoryRegion * mr)873 static FlatView *generate_memory_topology(MemoryRegion *mr)
874 {
875     int i;
876     FlatView *view;
877 
878     view = flatview_new(mr);
879 
880     if (mr) {
881         render_memory_region(view, mr, int128_zero(),
882                              addrrange_make(int128_zero(), int128_2_64()),
883                              false, false, false);
884     }
885     flatview_simplify(view);
886 
887     view->dispatch = address_space_dispatch_new(view);
888     for (i = 0; i < view->nr; i++) {
889         MemoryRegionSection mrs =
890             section_from_flat_range(&view->ranges[i], view);
891         flatview_add_to_dispatch(view, &mrs);
892     }
893     address_space_dispatch_compact(view->dispatch);
894     g_hash_table_replace(flat_views, mr, view);
895 
896     return view;
897 }
898 
address_space_add_del_ioeventfds(AddressSpace * as,MemoryRegionIoeventfd * fds_new,unsigned fds_new_nb,MemoryRegionIoeventfd * fds_old,unsigned fds_old_nb)899 static void address_space_add_del_ioeventfds(AddressSpace *as,
900                                              MemoryRegionIoeventfd *fds_new,
901                                              unsigned fds_new_nb,
902                                              MemoryRegionIoeventfd *fds_old,
903                                              unsigned fds_old_nb)
904 {
905     unsigned iold, inew;
906     MemoryRegionIoeventfd *fd;
907     MemoryRegionSection section;
908 
909     /* Generate a symmetric difference of the old and new fd sets, adding
910      * and deleting as necessary.
911      */
912 
913     iold = inew = 0;
914     while (iold < fds_old_nb || inew < fds_new_nb) {
915         if (iold < fds_old_nb
916             && (inew == fds_new_nb
917                 || memory_region_ioeventfd_before(&fds_old[iold],
918                                                   &fds_new[inew]))) {
919             fd = &fds_old[iold];
920             section = (MemoryRegionSection) {
921                 .fv = address_space_to_flatview(as),
922                 .offset_within_address_space = int128_get64(fd->addr.start),
923                 .size = fd->addr.size,
924             };
925             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
926                                  fd->match_data, fd->data, fd->e);
927             ++iold;
928         } else if (inew < fds_new_nb
929                    && (iold == fds_old_nb
930                        || memory_region_ioeventfd_before(&fds_new[inew],
931                                                          &fds_old[iold]))) {
932             fd = &fds_new[inew];
933             section = (MemoryRegionSection) {
934                 .fv = address_space_to_flatview(as),
935                 .offset_within_address_space = int128_get64(fd->addr.start),
936                 .size = fd->addr.size,
937             };
938             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
939                                  fd->match_data, fd->data, fd->e);
940             ++inew;
941         } else {
942             ++iold;
943             ++inew;
944         }
945     }
946 }
947 
address_space_get_flatview(AddressSpace * as)948 FlatView *address_space_get_flatview(AddressSpace *as)
949 {
950     FlatView *view;
951 
952     RCU_READ_LOCK_GUARD();
953     do {
954         view = address_space_to_flatview(as);
955         /* If somebody has replaced as->current_map concurrently,
956          * flatview_ref returns false.
957          */
958     } while (!flatview_ref(view));
959     return view;
960 }
961 
address_space_update_ioeventfds(AddressSpace * as)962 static void address_space_update_ioeventfds(AddressSpace *as)
963 {
964     FlatView *view;
965     FlatRange *fr;
966     unsigned ioeventfd_nb = 0;
967     unsigned ioeventfd_max;
968     MemoryRegionIoeventfd *ioeventfds;
969     AddrRange tmp;
970     unsigned i;
971 
972     if (!as->ioeventfd_notifiers) {
973         return;
974     }
975 
976     /*
977      * It is likely that the number of ioeventfds hasn't changed much, so use
978      * the previous size as the starting value, with some headroom to avoid
979      * gratuitous reallocations.
980      */
981     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
982     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
983 
984     view = address_space_get_flatview(as);
985     FOR_EACH_FLAT_RANGE(fr, view) {
986         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
987             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
988                                   int128_sub(fr->addr.start,
989                                              int128_make64(fr->offset_in_region)));
990             if (addrrange_intersects(fr->addr, tmp)) {
991                 ++ioeventfd_nb;
992                 if (ioeventfd_nb > ioeventfd_max) {
993                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
994                     ioeventfds = g_realloc(ioeventfds,
995                             ioeventfd_max * sizeof(*ioeventfds));
996                 }
997                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
998                 ioeventfds[ioeventfd_nb-1].addr = tmp;
999             }
1000         }
1001     }
1002 
1003     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
1004                                      as->ioeventfds, as->ioeventfd_nb);
1005 
1006     g_free(as->ioeventfds);
1007     as->ioeventfds = ioeventfds;
1008     as->ioeventfd_nb = ioeventfd_nb;
1009     flatview_unref(view);
1010 }
1011 
1012 /*
1013  * Notify the memory listeners about the coalesced IO change events of
1014  * range `cmr'.  Only the part that has intersection of the specified
1015  * FlatRange will be sent.
1016  */
flat_range_coalesced_io_notify(FlatRange * fr,AddressSpace * as,CoalescedMemoryRange * cmr,bool add)1017 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
1018                                            CoalescedMemoryRange *cmr, bool add)
1019 {
1020     AddrRange tmp;
1021 
1022     tmp = addrrange_shift(cmr->addr,
1023                           int128_sub(fr->addr.start,
1024                                      int128_make64(fr->offset_in_region)));
1025     if (!addrrange_intersects(tmp, fr->addr)) {
1026         return;
1027     }
1028     tmp = addrrange_intersection(tmp, fr->addr);
1029 
1030     if (add) {
1031         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
1032                                       int128_get64(tmp.start),
1033                                       int128_get64(tmp.size));
1034     } else {
1035         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
1036                                       int128_get64(tmp.start),
1037                                       int128_get64(tmp.size));
1038     }
1039 }
1040 
flat_range_coalesced_io_del(FlatRange * fr,AddressSpace * as)1041 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
1042 {
1043     CoalescedMemoryRange *cmr;
1044 
1045     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
1046         flat_range_coalesced_io_notify(fr, as, cmr, false);
1047     }
1048 }
1049 
flat_range_coalesced_io_add(FlatRange * fr,AddressSpace * as)1050 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
1051 {
1052     MemoryRegion *mr = fr->mr;
1053     CoalescedMemoryRange *cmr;
1054 
1055     if (QTAILQ_EMPTY(&mr->coalesced)) {
1056         return;
1057     }
1058 
1059     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1060         flat_range_coalesced_io_notify(fr, as, cmr, true);
1061     }
1062 }
1063 
1064 static void
flat_range_coalesced_io_notify_listener_add_del(FlatRange * fr,MemoryRegionSection * mrs,MemoryListener * listener,AddressSpace * as,bool add)1065 flat_range_coalesced_io_notify_listener_add_del(FlatRange *fr,
1066                                                 MemoryRegionSection *mrs,
1067                                                 MemoryListener *listener,
1068                                                 AddressSpace *as, bool add)
1069 {
1070     CoalescedMemoryRange *cmr;
1071     MemoryRegion *mr = fr->mr;
1072     AddrRange tmp;
1073 
1074     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1075         tmp = addrrange_shift(cmr->addr,
1076                               int128_sub(fr->addr.start,
1077                                          int128_make64(fr->offset_in_region)));
1078 
1079         if (!addrrange_intersects(tmp, fr->addr)) {
1080             return;
1081         }
1082         tmp = addrrange_intersection(tmp, fr->addr);
1083 
1084         if (add && listener->coalesced_io_add) {
1085             listener->coalesced_io_add(listener, mrs,
1086                                        int128_get64(tmp.start),
1087                                        int128_get64(tmp.size));
1088         } else if (!add && listener->coalesced_io_del) {
1089             listener->coalesced_io_del(listener, mrs,
1090                                        int128_get64(tmp.start),
1091                                        int128_get64(tmp.size));
1092         }
1093     }
1094 }
1095 
address_space_update_topology_pass(AddressSpace * as,const FlatView * old_view,const FlatView * new_view,bool adding)1096 static void address_space_update_topology_pass(AddressSpace *as,
1097                                                const FlatView *old_view,
1098                                                const FlatView *new_view,
1099                                                bool adding)
1100 {
1101     unsigned iold, inew;
1102     FlatRange *frold, *frnew;
1103 
1104     /* Generate a symmetric difference of the old and new memory maps.
1105      * Kill ranges in the old map, and instantiate ranges in the new map.
1106      */
1107     iold = inew = 0;
1108     while (iold < old_view->nr || inew < new_view->nr) {
1109         if (iold < old_view->nr) {
1110             frold = &old_view->ranges[iold];
1111         } else {
1112             frold = NULL;
1113         }
1114         if (inew < new_view->nr) {
1115             frnew = &new_view->ranges[inew];
1116         } else {
1117             frnew = NULL;
1118         }
1119 
1120         if (frold
1121             && (!frnew
1122                 || int128_lt(frold->addr.start, frnew->addr.start)
1123                 || (int128_eq(frold->addr.start, frnew->addr.start)
1124                     && !flatrange_equal(frold, frnew)))) {
1125             /* In old but not in new, or in both but attributes changed. */
1126 
1127             if (!adding) {
1128                 flat_range_coalesced_io_del(frold, as);
1129                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
1130             }
1131 
1132             ++iold;
1133         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
1134             /* In both and unchanged (except logging may have changed) */
1135 
1136             if (adding) {
1137                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
1138                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
1139                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
1140                                                   frold->dirty_log_mask,
1141                                                   frnew->dirty_log_mask);
1142                 }
1143                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
1144                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
1145                                                   frold->dirty_log_mask,
1146                                                   frnew->dirty_log_mask);
1147                 }
1148             }
1149 
1150             ++iold;
1151             ++inew;
1152         } else {
1153             /* In new */
1154 
1155             if (adding) {
1156                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1157                 flat_range_coalesced_io_add(frnew, as);
1158             }
1159 
1160             ++inew;
1161         }
1162     }
1163 }
1164 
flatviews_init(void)1165 static void flatviews_init(void)
1166 {
1167     static FlatView *empty_view;
1168 
1169     if (flat_views) {
1170         return;
1171     }
1172 
1173     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1174                                        (GDestroyNotify) flatview_unref);
1175     if (!empty_view) {
1176         empty_view = generate_memory_topology(NULL);
1177         /* We keep it alive forever in the global variable.  */
1178         flatview_ref(empty_view);
1179     } else {
1180         g_hash_table_replace(flat_views, NULL, empty_view);
1181         flatview_ref(empty_view);
1182     }
1183 }
1184 
flatviews_reset(void)1185 static void flatviews_reset(void)
1186 {
1187     AddressSpace *as;
1188 
1189     if (flat_views) {
1190         g_hash_table_unref(flat_views);
1191         flat_views = NULL;
1192     }
1193     flatviews_init();
1194 
1195     /* Render unique FVs */
1196     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1197         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1198 
1199         if (g_hash_table_lookup(flat_views, physmr)) {
1200             continue;
1201         }
1202 
1203         generate_memory_topology(physmr);
1204     }
1205 }
1206 
address_space_set_flatview(AddressSpace * as)1207 static void address_space_set_flatview(AddressSpace *as)
1208 {
1209     FlatView *old_view = address_space_to_flatview(as);
1210     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1211     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1212 
1213     assert(new_view);
1214 
1215     if (old_view == new_view) {
1216         return;
1217     }
1218 
1219     if (old_view) {
1220         flatview_ref(old_view);
1221     }
1222 
1223     flatview_ref(new_view);
1224 
1225     if (!QTAILQ_EMPTY(&as->listeners)) {
1226         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1227 
1228         if (!old_view2) {
1229             old_view2 = &tmpview;
1230         }
1231         address_space_update_topology_pass(as, old_view2, new_view, false);
1232         address_space_update_topology_pass(as, old_view2, new_view, true);
1233     }
1234 
1235     /* Writes are protected by the BQL.  */
1236     qatomic_rcu_set(&as->current_map, new_view);
1237     if (old_view) {
1238         flatview_unref(old_view);
1239     }
1240 
1241     /* Note that all the old MemoryRegions are still alive up to this
1242      * point.  This relieves most MemoryListeners from the need to
1243      * ref/unref the MemoryRegions they get---unless they use them
1244      * outside the iothread mutex, in which case precise reference
1245      * counting is necessary.
1246      */
1247     if (old_view) {
1248         flatview_unref(old_view);
1249     }
1250 }
1251 
address_space_update_topology(AddressSpace * as)1252 static void address_space_update_topology(AddressSpace *as)
1253 {
1254     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1255 
1256     flatviews_init();
1257     if (!g_hash_table_lookup(flat_views, physmr)) {
1258         generate_memory_topology(physmr);
1259     }
1260     address_space_set_flatview(as);
1261 }
1262 
memory_region_transaction_begin(void)1263 void memory_region_transaction_begin(void)
1264 {
1265     qemu_flush_coalesced_mmio_buffer();
1266     ++memory_region_transaction_depth;
1267 }
1268 
memory_region_transaction_commit(void)1269 void memory_region_transaction_commit(void)
1270 {
1271     AddressSpace *as;
1272 
1273     assert(memory_region_transaction_depth);
1274     assert(bql_locked());
1275 
1276     --memory_region_transaction_depth;
1277     if (!memory_region_transaction_depth) {
1278         if (memory_region_update_pending) {
1279             flatviews_reset();
1280 
1281             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1282 
1283             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1284                 address_space_set_flatview(as);
1285                 address_space_update_ioeventfds(as);
1286             }
1287             memory_region_update_pending = false;
1288             ioeventfd_update_pending = false;
1289             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1290         } else if (ioeventfd_update_pending) {
1291             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1292                 address_space_update_ioeventfds(as);
1293             }
1294             ioeventfd_update_pending = false;
1295         }
1296    }
1297 }
1298 
memory_region_destructor_none(MemoryRegion * mr)1299 static void memory_region_destructor_none(MemoryRegion *mr)
1300 {
1301 }
1302 
memory_region_destructor_ram(MemoryRegion * mr)1303 static void memory_region_destructor_ram(MemoryRegion *mr)
1304 {
1305     qemu_ram_free(mr->ram_block);
1306 }
1307 
memory_region_need_escape(char c)1308 static bool memory_region_need_escape(char c)
1309 {
1310     return c == '/' || c == '[' || c == '\\' || c == ']';
1311 }
1312 
memory_region_escape_name(const char * name)1313 static char *memory_region_escape_name(const char *name)
1314 {
1315     const char *p;
1316     char *escaped, *q;
1317     uint8_t c;
1318     size_t bytes = 0;
1319 
1320     for (p = name; *p; p++) {
1321         bytes += memory_region_need_escape(*p) ? 4 : 1;
1322     }
1323     if (bytes == p - name) {
1324        return g_memdup(name, bytes + 1);
1325     }
1326 
1327     escaped = g_malloc(bytes + 1);
1328     for (p = name, q = escaped; *p; p++) {
1329         c = *p;
1330         if (unlikely(memory_region_need_escape(c))) {
1331             *q++ = '\\';
1332             *q++ = 'x';
1333             *q++ = "0123456789abcdef"[c >> 4];
1334             c = "0123456789abcdef"[c & 15];
1335         }
1336         *q++ = c;
1337     }
1338     *q = 0;
1339     return escaped;
1340 }
1341 
memory_region_do_init(MemoryRegion * mr,Object * owner,const char * name,uint64_t size)1342 static void memory_region_do_init(MemoryRegion *mr,
1343                                   Object *owner,
1344                                   const char *name,
1345                                   uint64_t size)
1346 {
1347     mr->size = int128_make64(size);
1348     if (size == UINT64_MAX) {
1349         mr->size = int128_2_64();
1350     }
1351     mr->name = g_strdup(name);
1352     mr->owner = owner;
1353     mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1354     mr->ram_block = NULL;
1355 
1356     if (name) {
1357         char *escaped_name = memory_region_escape_name(name);
1358         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1359 
1360         if (!owner) {
1361             owner = machine_get_container("unattached");
1362         }
1363 
1364         object_property_add_child(owner, name_array, OBJECT(mr));
1365         object_unref(OBJECT(mr));
1366         g_free(name_array);
1367         g_free(escaped_name);
1368     }
1369 }
1370 
memory_region_init(MemoryRegion * mr,Object * owner,const char * name,uint64_t size)1371 void memory_region_init(MemoryRegion *mr,
1372                         Object *owner,
1373                         const char *name,
1374                         uint64_t size)
1375 {
1376     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1377     memory_region_do_init(mr, owner, name, size);
1378 }
1379 
memory_region_get_container(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1380 static void memory_region_get_container(Object *obj, Visitor *v,
1381                                         const char *name, void *opaque,
1382                                         Error **errp)
1383 {
1384     MemoryRegion *mr = MEMORY_REGION(obj);
1385     char *path = (char *)"";
1386 
1387     if (mr->container) {
1388         path = object_get_canonical_path(OBJECT(mr->container));
1389     }
1390     visit_type_str(v, name, &path, errp);
1391     if (mr->container) {
1392         g_free(path);
1393     }
1394 }
1395 
memory_region_resolve_container(Object * obj,void * opaque,const char * part)1396 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1397                                                const char *part)
1398 {
1399     MemoryRegion *mr = MEMORY_REGION(obj);
1400 
1401     return OBJECT(mr->container);
1402 }
1403 
memory_region_get_priority(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1404 static void memory_region_get_priority(Object *obj, Visitor *v,
1405                                        const char *name, void *opaque,
1406                                        Error **errp)
1407 {
1408     MemoryRegion *mr = MEMORY_REGION(obj);
1409     int32_t value = mr->priority;
1410 
1411     visit_type_int32(v, name, &value, errp);
1412 }
1413 
memory_region_get_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1414 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1415                                    void *opaque, Error **errp)
1416 {
1417     MemoryRegion *mr = MEMORY_REGION(obj);
1418     uint64_t value = memory_region_size(mr);
1419 
1420     visit_type_uint64(v, name, &value, errp);
1421 }
1422 
memory_region_initfn(Object * obj)1423 static void memory_region_initfn(Object *obj)
1424 {
1425     MemoryRegion *mr = MEMORY_REGION(obj);
1426     ObjectProperty *op;
1427 
1428     mr->ops = &unassigned_mem_ops;
1429     mr->enabled = true;
1430     mr->romd_mode = true;
1431     mr->destructor = memory_region_destructor_none;
1432     QTAILQ_INIT(&mr->subregions);
1433     QTAILQ_INIT(&mr->coalesced);
1434 
1435     op = object_property_add(OBJECT(mr), "container",
1436                              "link<" TYPE_MEMORY_REGION ">",
1437                              memory_region_get_container,
1438                              NULL, /* memory_region_set_container */
1439                              NULL, NULL);
1440     op->resolve = memory_region_resolve_container;
1441 
1442     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1443                                    &mr->addr, OBJ_PROP_FLAG_READ);
1444     object_property_add(OBJECT(mr), "priority", "uint32",
1445                         memory_region_get_priority,
1446                         NULL, /* memory_region_set_priority */
1447                         NULL, NULL);
1448     object_property_add(OBJECT(mr), "size", "uint64",
1449                         memory_region_get_size,
1450                         NULL, /* memory_region_set_size, */
1451                         NULL, NULL);
1452 }
1453 
iommu_memory_region_initfn(Object * obj)1454 static void iommu_memory_region_initfn(Object *obj)
1455 {
1456     MemoryRegion *mr = MEMORY_REGION(obj);
1457 
1458     mr->is_iommu = true;
1459 }
1460 
unassigned_mem_read(void * opaque,hwaddr addr,unsigned size)1461 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1462                                     unsigned size)
1463 {
1464 #ifdef DEBUG_UNASSIGNED
1465     printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1466 #endif
1467     return 0;
1468 }
1469 
unassigned_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)1470 static void unassigned_mem_write(void *opaque, hwaddr addr,
1471                                  uint64_t val, unsigned size)
1472 {
1473 #ifdef DEBUG_UNASSIGNED
1474     printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1475 #endif
1476 }
1477 
unassigned_mem_accepts(void * opaque,hwaddr addr,unsigned size,bool is_write,MemTxAttrs attrs)1478 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1479                                    unsigned size, bool is_write,
1480                                    MemTxAttrs attrs)
1481 {
1482     return false;
1483 }
1484 
1485 const MemoryRegionOps unassigned_mem_ops = {
1486     .valid.accepts = unassigned_mem_accepts,
1487     .endianness = DEVICE_NATIVE_ENDIAN,
1488 };
1489 
memory_region_ram_device_read(void * opaque,hwaddr addr,unsigned size)1490 static uint64_t memory_region_ram_device_read(void *opaque,
1491                                               hwaddr addr, unsigned size)
1492 {
1493     MemoryRegion *mr = opaque;
1494     uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1495 
1496     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1497 
1498     return data;
1499 }
1500 
memory_region_ram_device_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)1501 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1502                                            uint64_t data, unsigned size)
1503 {
1504     MemoryRegion *mr = opaque;
1505 
1506     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1507 
1508     stn_he_p(mr->ram_block->host + addr, size, data);
1509 }
1510 
1511 static const MemoryRegionOps ram_device_mem_ops = {
1512     .read = memory_region_ram_device_read,
1513     .write = memory_region_ram_device_write,
1514     .endianness = HOST_BIG_ENDIAN ? DEVICE_BIG_ENDIAN : DEVICE_LITTLE_ENDIAN,
1515     .valid = {
1516         .min_access_size = 1,
1517         .max_access_size = 8,
1518         .unaligned = true,
1519     },
1520     .impl = {
1521         .min_access_size = 1,
1522         .max_access_size = 8,
1523         .unaligned = true,
1524     },
1525 };
1526 
memory_region_access_valid(MemoryRegion * mr,hwaddr addr,unsigned size,bool is_write,MemTxAttrs attrs)1527 bool memory_region_access_valid(MemoryRegion *mr,
1528                                 hwaddr addr,
1529                                 unsigned size,
1530                                 bool is_write,
1531                                 MemTxAttrs attrs)
1532 {
1533     if (mr->ops->valid.accepts
1534         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1535         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1536                       ", size %u, region '%s', reason: rejected\n",
1537                       is_write ? "write" : "read",
1538                       addr, size, memory_region_name(mr));
1539         return false;
1540     }
1541 
1542     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1543         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1544                       ", size %u, region '%s', reason: unaligned\n",
1545                       is_write ? "write" : "read",
1546                       addr, size, memory_region_name(mr));
1547         return false;
1548     }
1549 
1550     /* Treat zero as compatibility all valid */
1551     if (!mr->ops->valid.max_access_size) {
1552         return true;
1553     }
1554 
1555     if (size > mr->ops->valid.max_access_size
1556         || size < mr->ops->valid.min_access_size) {
1557         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1558                       ", size %u, region '%s', reason: invalid size "
1559                       "(min:%u max:%u)\n",
1560                       is_write ? "write" : "read",
1561                       addr, size, memory_region_name(mr),
1562                       mr->ops->valid.min_access_size,
1563                       mr->ops->valid.max_access_size);
1564         return false;
1565     }
1566     return true;
1567 }
1568 
memory_region_dispatch_read1(MemoryRegion * mr,hwaddr addr,uint64_t * pval,unsigned size,MemTxAttrs attrs)1569 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1570                                                 hwaddr addr,
1571                                                 uint64_t *pval,
1572                                                 unsigned size,
1573                                                 MemTxAttrs attrs)
1574 {
1575     *pval = 0;
1576 
1577     if (mr->ops->read) {
1578         return access_with_adjusted_size(addr, pval, size,
1579                                          mr->ops->impl.min_access_size,
1580                                          mr->ops->impl.max_access_size,
1581                                          mr->ops->impl.unaligned,
1582                                          memory_region_read_accessor,
1583                                          mr, attrs);
1584     } else {
1585         return access_with_adjusted_size(addr, pval, size,
1586                                          mr->ops->impl.min_access_size,
1587                                          mr->ops->impl.max_access_size,
1588                                          mr->ops->impl.unaligned,
1589                                          memory_region_read_with_attrs_accessor,
1590                                          mr, attrs);
1591     }
1592 }
1593 
memory_region_dispatch_read(MemoryRegion * mr,hwaddr addr,uint64_t * pval,MemOp op,MemTxAttrs attrs)1594 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1595                                         hwaddr addr,
1596                                         uint64_t *pval,
1597                                         MemOp op,
1598                                         MemTxAttrs attrs)
1599 {
1600     unsigned size = memop_size(op);
1601     MemTxResult r;
1602 
1603     if (mr->alias) {
1604         return memory_region_dispatch_read(mr->alias,
1605                                            mr->alias_offset + addr,
1606                                            pval, op, attrs);
1607     }
1608     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1609         *pval = unassigned_mem_read(mr, addr, size);
1610         return MEMTX_DECODE_ERROR;
1611     }
1612 
1613     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1614     adjust_endianness(mr, pval, op);
1615     return r;
1616 }
1617 
1618 /* Return true if an eventfd was signalled */
memory_region_dispatch_write_eventfds(MemoryRegion * mr,hwaddr addr,uint64_t data,unsigned size,MemTxAttrs attrs)1619 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1620                                                     hwaddr addr,
1621                                                     uint64_t data,
1622                                                     unsigned size,
1623                                                     MemTxAttrs attrs)
1624 {
1625     MemoryRegionIoeventfd ioeventfd = {
1626         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1627         .data = data,
1628     };
1629     unsigned i;
1630 
1631     for (i = 0; i < mr->ioeventfd_nb; i++) {
1632         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1633         ioeventfd.e = mr->ioeventfds[i].e;
1634 
1635         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1636             event_notifier_set(ioeventfd.e);
1637             return true;
1638         }
1639     }
1640 
1641     return false;
1642 }
1643 
memory_region_dispatch_write(MemoryRegion * mr,hwaddr addr,uint64_t data,MemOp op,MemTxAttrs attrs)1644 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1645                                          hwaddr addr,
1646                                          uint64_t data,
1647                                          MemOp op,
1648                                          MemTxAttrs attrs)
1649 {
1650     unsigned size = memop_size(op);
1651 
1652     if (mr->alias) {
1653         return memory_region_dispatch_write(mr->alias,
1654                                             mr->alias_offset + addr,
1655                                             data, op, attrs);
1656     }
1657     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1658         unassigned_mem_write(mr, addr, data, size);
1659         return MEMTX_DECODE_ERROR;
1660     }
1661 
1662     adjust_endianness(mr, &data, op);
1663 
1664     /*
1665      * FIXME: it's not clear why under KVM the write would be processed
1666      * directly, instead of going through eventfd.  This probably should
1667      * test "tcg_enabled() || qtest_enabled()", or should just go away.
1668      */
1669     if (!kvm_enabled() &&
1670         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1671         return MEMTX_OK;
1672     }
1673 
1674     if (mr->ops->write) {
1675         return access_with_adjusted_size_aligned(addr, &data, size,
1676                                          mr->ops->impl.min_access_size,
1677                                          mr->ops->impl.max_access_size,
1678                                          memory_region_write_accessor, mr,
1679                                          attrs);
1680     } else {
1681         return
1682             access_with_adjusted_size_aligned(addr, &data, size,
1683                                       mr->ops->impl.min_access_size,
1684                                       mr->ops->impl.max_access_size,
1685                                       memory_region_write_with_attrs_accessor,
1686                                       mr, attrs);
1687     }
1688 }
1689 
memory_region_init_io(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size)1690 void memory_region_init_io(MemoryRegion *mr,
1691                            Object *owner,
1692                            const MemoryRegionOps *ops,
1693                            void *opaque,
1694                            const char *name,
1695                            uint64_t size)
1696 {
1697     memory_region_init(mr, owner, name, size);
1698     mr->ops = ops ? ops : &unassigned_mem_ops;
1699     mr->opaque = opaque;
1700     mr->terminates = true;
1701 }
1702 
memory_region_init_ram_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)1703 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1704                                       Object *owner,
1705                                       const char *name,
1706                                       uint64_t size,
1707                                       Error **errp)
1708 {
1709     return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1710                                                   size, 0, errp);
1711 }
1712 
memory_region_init_ram_flags_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint32_t ram_flags,Error ** errp)1713 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1714                                             Object *owner,
1715                                             const char *name,
1716                                             uint64_t size,
1717                                             uint32_t ram_flags,
1718                                             Error **errp)
1719 {
1720     Error *err = NULL;
1721     memory_region_init(mr, owner, name, size);
1722     mr->ram = true;
1723     mr->terminates = true;
1724     mr->destructor = memory_region_destructor_ram;
1725     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1726     if (err) {
1727         mr->size = int128_zero();
1728         object_unparent(OBJECT(mr));
1729         error_propagate(errp, err);
1730         return false;
1731     }
1732     return true;
1733 }
1734 
memory_region_init_resizeable_ram(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint64_t max_size,void (* resized)(const char *,uint64_t length,void * host),Error ** errp)1735 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1736                                        Object *owner,
1737                                        const char *name,
1738                                        uint64_t size,
1739                                        uint64_t max_size,
1740                                        void (*resized)(const char*,
1741                                                        uint64_t length,
1742                                                        void *host),
1743                                        Error **errp)
1744 {
1745     Error *err = NULL;
1746     memory_region_init(mr, owner, name, size);
1747     mr->ram = true;
1748     mr->terminates = true;
1749     mr->destructor = memory_region_destructor_ram;
1750     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1751                                               mr, &err);
1752     if (err) {
1753         mr->size = int128_zero();
1754         object_unparent(OBJECT(mr));
1755         error_propagate(errp, err);
1756         return false;
1757     }
1758     return true;
1759 }
1760 
1761 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
memory_region_init_ram_from_file(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint64_t align,uint32_t ram_flags,const char * path,ram_addr_t offset,Error ** errp)1762 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1763                                       Object *owner,
1764                                       const char *name,
1765                                       uint64_t size,
1766                                       uint64_t align,
1767                                       uint32_t ram_flags,
1768                                       const char *path,
1769                                       ram_addr_t offset,
1770                                       Error **errp)
1771 {
1772     Error *err = NULL;
1773     memory_region_init(mr, owner, name, size);
1774     mr->ram = true;
1775     mr->readonly = !!(ram_flags & RAM_READONLY);
1776     mr->terminates = true;
1777     mr->destructor = memory_region_destructor_ram;
1778     mr->align = align;
1779     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1780                                              offset, &err);
1781     if (err) {
1782         mr->size = int128_zero();
1783         object_unparent(OBJECT(mr));
1784         error_propagate(errp, err);
1785         return false;
1786     }
1787     return true;
1788 }
1789 
memory_region_init_ram_from_fd(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint32_t ram_flags,int fd,ram_addr_t offset,Error ** errp)1790 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1791                                     Object *owner,
1792                                     const char *name,
1793                                     uint64_t size,
1794                                     uint32_t ram_flags,
1795                                     int fd,
1796                                     ram_addr_t offset,
1797                                     Error **errp)
1798 {
1799     Error *err = NULL;
1800     memory_region_init(mr, owner, name, size);
1801     mr->ram = true;
1802     mr->readonly = !!(ram_flags & RAM_READONLY);
1803     mr->terminates = true;
1804     mr->destructor = memory_region_destructor_ram;
1805     mr->ram_block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd,
1806                                            offset, false, &err);
1807     if (err) {
1808         mr->size = int128_zero();
1809         object_unparent(OBJECT(mr));
1810         error_propagate(errp, err);
1811         return false;
1812     }
1813     return true;
1814 }
1815 #endif
1816 
memory_region_init_ram_ptr(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,void * ptr)1817 void memory_region_init_ram_ptr(MemoryRegion *mr,
1818                                 Object *owner,
1819                                 const char *name,
1820                                 uint64_t size,
1821                                 void *ptr)
1822 {
1823     memory_region_init(mr, owner, name, size);
1824     mr->ram = true;
1825     mr->terminates = true;
1826     mr->destructor = memory_region_destructor_ram;
1827 
1828     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1829     assert(ptr != NULL);
1830     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1831 }
1832 
memory_region_init_ram_device_ptr(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,void * ptr)1833 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1834                                        Object *owner,
1835                                        const char *name,
1836                                        uint64_t size,
1837                                        void *ptr)
1838 {
1839     memory_region_init(mr, owner, name, size);
1840     mr->ram = true;
1841     mr->terminates = true;
1842     mr->ram_device = true;
1843     mr->ops = &ram_device_mem_ops;
1844     mr->opaque = mr;
1845     mr->destructor = memory_region_destructor_ram;
1846 
1847     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1848     assert(ptr != NULL);
1849     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1850 }
1851 
memory_region_init_alias(MemoryRegion * mr,Object * owner,const char * name,MemoryRegion * orig,hwaddr offset,uint64_t size)1852 void memory_region_init_alias(MemoryRegion *mr,
1853                               Object *owner,
1854                               const char *name,
1855                               MemoryRegion *orig,
1856                               hwaddr offset,
1857                               uint64_t size)
1858 {
1859     memory_region_init(mr, owner, name, size);
1860     mr->alias = orig;
1861     mr->alias_offset = offset;
1862 }
1863 
memory_region_init_rom_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)1864 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1865                                       Object *owner,
1866                                       const char *name,
1867                                       uint64_t size,
1868                                       Error **errp)
1869 {
1870     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1871                                                 size, 0, errp)) {
1872          return false;
1873     }
1874     mr->readonly = true;
1875 
1876     return true;
1877 }
1878 
memory_region_init_rom_device_nomigrate(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size,Error ** errp)1879 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1880                                              Object *owner,
1881                                              const MemoryRegionOps *ops,
1882                                              void *opaque,
1883                                              const char *name,
1884                                              uint64_t size,
1885                                              Error **errp)
1886 {
1887     Error *err = NULL;
1888     assert(ops);
1889     memory_region_init(mr, owner, name, size);
1890     mr->ops = ops;
1891     mr->opaque = opaque;
1892     mr->terminates = true;
1893     mr->rom_device = true;
1894     mr->destructor = memory_region_destructor_ram;
1895     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1896     if (err) {
1897         mr->size = int128_zero();
1898         object_unparent(OBJECT(mr));
1899         error_propagate(errp, err);
1900         return false;
1901     }
1902     return true;
1903 }
1904 
memory_region_init_iommu(void * _iommu_mr,size_t instance_size,const char * mrtypename,Object * owner,const char * name,uint64_t size)1905 void memory_region_init_iommu(void *_iommu_mr,
1906                               size_t instance_size,
1907                               const char *mrtypename,
1908                               Object *owner,
1909                               const char *name,
1910                               uint64_t size)
1911 {
1912     struct IOMMUMemoryRegion *iommu_mr;
1913     struct MemoryRegion *mr;
1914 
1915     object_initialize(_iommu_mr, instance_size, mrtypename);
1916     mr = MEMORY_REGION(_iommu_mr);
1917     memory_region_do_init(mr, owner, name, size);
1918     iommu_mr = IOMMU_MEMORY_REGION(mr);
1919     mr->terminates = true;  /* then re-forwards */
1920     QLIST_INIT(&iommu_mr->iommu_notify);
1921     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1922 }
1923 
memory_region_finalize(Object * obj)1924 static void memory_region_finalize(Object *obj)
1925 {
1926     MemoryRegion *mr = MEMORY_REGION(obj);
1927 
1928     assert(!mr->container);
1929 
1930     /* We know the region is not visible in any address space (it
1931      * does not have a container and cannot be a root either because
1932      * it has no references, so we can blindly clear mr->enabled.
1933      * memory_region_set_enabled instead could trigger a transaction
1934      * and cause an infinite loop.
1935      */
1936     mr->enabled = false;
1937     memory_region_transaction_begin();
1938     while (!QTAILQ_EMPTY(&mr->subregions)) {
1939         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1940         memory_region_del_subregion(mr, subregion);
1941     }
1942     memory_region_transaction_commit();
1943 
1944     mr->destructor(mr);
1945     memory_region_clear_coalescing(mr);
1946     g_free((char *)mr->name);
1947     g_free(mr->ioeventfds);
1948 }
1949 
memory_region_owner(MemoryRegion * mr)1950 Object *memory_region_owner(MemoryRegion *mr)
1951 {
1952     Object *obj = OBJECT(mr);
1953     return obj->parent;
1954 }
1955 
memory_region_ref(MemoryRegion * mr)1956 void memory_region_ref(MemoryRegion *mr)
1957 {
1958     /* MMIO callbacks most likely will access data that belongs
1959      * to the owner, hence the need to ref/unref the owner whenever
1960      * the memory region is in use.
1961      *
1962      * The memory region is a child of its owner.  As long as the
1963      * owner doesn't call unparent itself on the memory region,
1964      * ref-ing the owner will also keep the memory region alive.
1965      * Memory regions without an owner are supposed to never go away;
1966      * we do not ref/unref them because it slows down DMA sensibly.
1967      */
1968     if (mr && mr->owner) {
1969         object_ref(mr->owner);
1970     }
1971 }
1972 
memory_region_unref(MemoryRegion * mr)1973 void memory_region_unref(MemoryRegion *mr)
1974 {
1975     if (mr && mr->owner) {
1976         object_unref(mr->owner);
1977     }
1978 }
1979 
memory_region_size(MemoryRegion * mr)1980 uint64_t memory_region_size(MemoryRegion *mr)
1981 {
1982     if (int128_eq(mr->size, int128_2_64())) {
1983         return UINT64_MAX;
1984     }
1985     return int128_get64(mr->size);
1986 }
1987 
memory_region_name(const MemoryRegion * mr)1988 const char *memory_region_name(const MemoryRegion *mr)
1989 {
1990     if (!mr->name) {
1991         ((MemoryRegion *)mr)->name =
1992             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1993     }
1994     return mr->name;
1995 }
1996 
memory_region_is_ram_device(MemoryRegion * mr)1997 bool memory_region_is_ram_device(MemoryRegion *mr)
1998 {
1999     return mr->ram_device;
2000 }
2001 
memory_region_is_protected(MemoryRegion * mr)2002 bool memory_region_is_protected(MemoryRegion *mr)
2003 {
2004     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
2005 }
2006 
memory_region_has_guest_memfd(MemoryRegion * mr)2007 bool memory_region_has_guest_memfd(MemoryRegion *mr)
2008 {
2009     return mr->ram_block && mr->ram_block->guest_memfd >= 0;
2010 }
2011 
memory_region_get_dirty_log_mask(MemoryRegion * mr)2012 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
2013 {
2014     uint8_t mask = mr->dirty_log_mask;
2015     RAMBlock *rb = mr->ram_block;
2016 
2017     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
2018                              memory_region_is_iommu(mr))) {
2019         mask |= (1 << DIRTY_MEMORY_MIGRATION);
2020     }
2021 
2022     if (tcg_enabled() && rb) {
2023         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
2024         mask |= (1 << DIRTY_MEMORY_CODE);
2025     }
2026     return mask;
2027 }
2028 
memory_region_is_logging(MemoryRegion * mr,uint8_t client)2029 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
2030 {
2031     return memory_region_get_dirty_log_mask(mr) & (1 << client);
2032 }
2033 
memory_region_update_iommu_notify_flags(IOMMUMemoryRegion * iommu_mr,Error ** errp)2034 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
2035                                                    Error **errp)
2036 {
2037     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
2038     IOMMUNotifier *iommu_notifier;
2039     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2040     int ret = 0;
2041 
2042     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2043         flags |= iommu_notifier->notifier_flags;
2044     }
2045 
2046     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
2047         ret = imrc->notify_flag_changed(iommu_mr,
2048                                         iommu_mr->iommu_notify_flags,
2049                                         flags, errp);
2050     }
2051 
2052     if (!ret) {
2053         iommu_mr->iommu_notify_flags = flags;
2054     }
2055     return ret;
2056 }
2057 
memory_region_register_iommu_notifier(MemoryRegion * mr,IOMMUNotifier * n,Error ** errp)2058 int memory_region_register_iommu_notifier(MemoryRegion *mr,
2059                                           IOMMUNotifier *n, Error **errp)
2060 {
2061     IOMMUMemoryRegion *iommu_mr;
2062     int ret;
2063 
2064     if (mr->alias) {
2065         return memory_region_register_iommu_notifier(mr->alias, n, errp);
2066     }
2067 
2068     /* We need to register for at least one bitfield */
2069     iommu_mr = IOMMU_MEMORY_REGION(mr);
2070     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
2071     assert(n->start <= n->end);
2072     assert(n->iommu_idx >= 0 &&
2073            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
2074 
2075     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
2076     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
2077     if (ret) {
2078         QLIST_REMOVE(n, node);
2079     }
2080     return ret;
2081 }
2082 
memory_region_iommu_get_min_page_size(IOMMUMemoryRegion * iommu_mr)2083 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
2084 {
2085     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2086 
2087     if (imrc->get_min_page_size) {
2088         return imrc->get_min_page_size(iommu_mr);
2089     }
2090     return TARGET_PAGE_SIZE;
2091 }
2092 
memory_region_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)2093 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2094 {
2095     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
2096     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2097     hwaddr addr, granularity;
2098     IOMMUTLBEntry iotlb;
2099 
2100     /* If the IOMMU has its own replay callback, override */
2101     if (imrc->replay) {
2102         imrc->replay(iommu_mr, n);
2103         return;
2104     }
2105 
2106     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
2107 
2108     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
2109         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
2110         if (iotlb.perm != IOMMU_NONE) {
2111             n->notify(n, &iotlb);
2112         }
2113 
2114         /* if (2^64 - MR size) < granularity, it's possible to get an
2115          * infinite loop here.  This should catch such a wraparound */
2116         if ((addr + granularity) < addr) {
2117             break;
2118         }
2119     }
2120 }
2121 
memory_region_unregister_iommu_notifier(MemoryRegion * mr,IOMMUNotifier * n)2122 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
2123                                              IOMMUNotifier *n)
2124 {
2125     IOMMUMemoryRegion *iommu_mr;
2126 
2127     if (mr->alias) {
2128         memory_region_unregister_iommu_notifier(mr->alias, n);
2129         return;
2130     }
2131     QLIST_REMOVE(n, node);
2132     iommu_mr = IOMMU_MEMORY_REGION(mr);
2133     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2134 }
2135 
memory_region_notify_iommu_one(IOMMUNotifier * notifier,const IOMMUTLBEvent * event)2136 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2137                                     const IOMMUTLBEvent *event)
2138 {
2139     const IOMMUTLBEntry *entry = &event->entry;
2140     hwaddr entry_end = entry->iova + entry->addr_mask;
2141     IOMMUTLBEntry tmp = *entry;
2142 
2143     if (event->type == IOMMU_NOTIFIER_UNMAP) {
2144         assert(entry->perm == IOMMU_NONE);
2145     }
2146 
2147     /*
2148      * Skip the notification if the notification does not overlap
2149      * with registered range.
2150      */
2151     if (notifier->start > entry_end || notifier->end < entry->iova) {
2152         return;
2153     }
2154 
2155     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2156         /* Crop (iova, addr_mask) to range */
2157         tmp.iova = MAX(tmp.iova, notifier->start);
2158         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2159     } else {
2160         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2161     }
2162 
2163     if (event->type & notifier->notifier_flags) {
2164         notifier->notify(notifier, &tmp);
2165     }
2166 }
2167 
memory_region_unmap_iommu_notifier_range(IOMMUNotifier * notifier)2168 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2169 {
2170     IOMMUTLBEvent event;
2171 
2172     event.type = IOMMU_NOTIFIER_UNMAP;
2173     event.entry.target_as = &address_space_memory;
2174     event.entry.iova = notifier->start;
2175     event.entry.perm = IOMMU_NONE;
2176     event.entry.addr_mask = notifier->end - notifier->start;
2177 
2178     memory_region_notify_iommu_one(notifier, &event);
2179 }
2180 
memory_region_notify_iommu(IOMMUMemoryRegion * iommu_mr,int iommu_idx,const IOMMUTLBEvent event)2181 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2182                                 int iommu_idx,
2183                                 const IOMMUTLBEvent event)
2184 {
2185     IOMMUNotifier *iommu_notifier;
2186 
2187     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2188 
2189     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2190         if (iommu_notifier->iommu_idx == iommu_idx) {
2191             memory_region_notify_iommu_one(iommu_notifier, &event);
2192         }
2193     }
2194 }
2195 
memory_region_iommu_get_attr(IOMMUMemoryRegion * iommu_mr,enum IOMMUMemoryRegionAttr attr,void * data)2196 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2197                                  enum IOMMUMemoryRegionAttr attr,
2198                                  void *data)
2199 {
2200     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2201 
2202     if (!imrc->get_attr) {
2203         return -EINVAL;
2204     }
2205 
2206     return imrc->get_attr(iommu_mr, attr, data);
2207 }
2208 
memory_region_iommu_attrs_to_index(IOMMUMemoryRegion * iommu_mr,MemTxAttrs attrs)2209 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2210                                        MemTxAttrs attrs)
2211 {
2212     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2213 
2214     if (!imrc->attrs_to_index) {
2215         return 0;
2216     }
2217 
2218     return imrc->attrs_to_index(iommu_mr, attrs);
2219 }
2220 
memory_region_iommu_num_indexes(IOMMUMemoryRegion * iommu_mr)2221 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2222 {
2223     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2224 
2225     if (!imrc->num_indexes) {
2226         return 1;
2227     }
2228 
2229     return imrc->num_indexes(iommu_mr);
2230 }
2231 
memory_region_get_ram_discard_manager(MemoryRegion * mr)2232 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2233 {
2234     if (!memory_region_is_ram(mr)) {
2235         return NULL;
2236     }
2237     return mr->rdm;
2238 }
2239 
memory_region_set_ram_discard_manager(MemoryRegion * mr,RamDiscardManager * rdm)2240 int memory_region_set_ram_discard_manager(MemoryRegion *mr,
2241                                           RamDiscardManager *rdm)
2242 {
2243     g_assert(memory_region_is_ram(mr));
2244     if (mr->rdm && rdm) {
2245         return -EBUSY;
2246     }
2247 
2248     mr->rdm = rdm;
2249     return 0;
2250 }
2251 
ram_discard_manager_get_min_granularity(const RamDiscardManager * rdm,const MemoryRegion * mr)2252 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2253                                                  const MemoryRegion *mr)
2254 {
2255     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2256 
2257     g_assert(rdmc->get_min_granularity);
2258     return rdmc->get_min_granularity(rdm, mr);
2259 }
2260 
ram_discard_manager_is_populated(const RamDiscardManager * rdm,const MemoryRegionSection * section)2261 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2262                                       const MemoryRegionSection *section)
2263 {
2264     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2265 
2266     g_assert(rdmc->is_populated);
2267     return rdmc->is_populated(rdm, section);
2268 }
2269 
ram_discard_manager_replay_populated(const RamDiscardManager * rdm,MemoryRegionSection * section,ReplayRamDiscardState replay_fn,void * opaque)2270 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2271                                          MemoryRegionSection *section,
2272                                          ReplayRamDiscardState replay_fn,
2273                                          void *opaque)
2274 {
2275     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2276 
2277     g_assert(rdmc->replay_populated);
2278     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2279 }
2280 
ram_discard_manager_replay_discarded(const RamDiscardManager * rdm,MemoryRegionSection * section,ReplayRamDiscardState replay_fn,void * opaque)2281 int ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2282                                          MemoryRegionSection *section,
2283                                          ReplayRamDiscardState replay_fn,
2284                                          void *opaque)
2285 {
2286     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2287 
2288     g_assert(rdmc->replay_discarded);
2289     return rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2290 }
2291 
ram_discard_manager_register_listener(RamDiscardManager * rdm,RamDiscardListener * rdl,MemoryRegionSection * section)2292 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2293                                            RamDiscardListener *rdl,
2294                                            MemoryRegionSection *section)
2295 {
2296     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2297 
2298     g_assert(rdmc->register_listener);
2299     rdmc->register_listener(rdm, rdl, section);
2300 }
2301 
ram_discard_manager_unregister_listener(RamDiscardManager * rdm,RamDiscardListener * rdl)2302 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2303                                              RamDiscardListener *rdl)
2304 {
2305     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2306 
2307     g_assert(rdmc->unregister_listener);
2308     rdmc->unregister_listener(rdm, rdl);
2309 }
2310 
2311 /* Called with rcu_read_lock held.  */
memory_translate_iotlb(IOMMUTLBEntry * iotlb,hwaddr * xlat_p,Error ** errp)2312 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p,
2313                                      Error **errp)
2314 {
2315     MemoryRegion *mr;
2316     hwaddr xlat;
2317     hwaddr len = iotlb->addr_mask + 1;
2318     bool writable = iotlb->perm & IOMMU_WO;
2319 
2320     /*
2321      * The IOMMU TLB entry we have just covers translation through
2322      * this IOMMU to its immediate target.  We need to translate
2323      * it the rest of the way through to memory.
2324      */
2325     mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2326                                  &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2327     if (!memory_region_is_ram(mr)) {
2328         error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat);
2329         return NULL;
2330     } else if (memory_region_has_ram_discard_manager(mr)) {
2331         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2332         MemoryRegionSection tmp = {
2333             .mr = mr,
2334             .offset_within_region = xlat,
2335             .size = int128_make64(len),
2336         };
2337         /*
2338          * Malicious VMs can map memory into the IOMMU, which is expected
2339          * to remain discarded. vfio will pin all pages, populating memory.
2340          * Disallow that. vmstate priorities make sure any RamDiscardManager
2341          * were already restored before IOMMUs are restored.
2342          */
2343         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2344             error_setg(errp, "iommu map to discarded memory (e.g., unplugged"
2345                          " via virtio-mem): %" HWADDR_PRIx "",
2346                          iotlb->translated_addr);
2347             return NULL;
2348         }
2349     }
2350 
2351     /*
2352      * Translation truncates length to the IOMMU page size,
2353      * check that it did not truncate too much.
2354      */
2355     if (len & iotlb->addr_mask) {
2356         error_setg(errp, "iommu has granularity incompatible with target AS");
2357         return NULL;
2358     }
2359 
2360     *xlat_p = xlat;
2361     return mr;
2362 }
2363 
memory_region_set_log(MemoryRegion * mr,bool log,unsigned client)2364 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2365 {
2366     uint8_t mask = 1 << client;
2367     uint8_t old_logging;
2368 
2369     assert(client == DIRTY_MEMORY_VGA);
2370     old_logging = mr->vga_logging_count;
2371     mr->vga_logging_count += log ? 1 : -1;
2372     if (!!old_logging == !!mr->vga_logging_count) {
2373         return;
2374     }
2375 
2376     memory_region_transaction_begin();
2377     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2378     memory_region_update_pending |= mr->enabled;
2379     memory_region_transaction_commit();
2380 }
2381 
memory_region_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size)2382 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2383                              hwaddr size)
2384 {
2385     assert(mr->ram_block);
2386     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2387                                         size,
2388                                         memory_region_get_dirty_log_mask(mr));
2389 }
2390 
2391 /*
2392  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2393  * dirty bitmap for the specified memory region.
2394  */
memory_region_sync_dirty_bitmap(MemoryRegion * mr,bool last_stage)2395 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2396 {
2397     MemoryListener *listener;
2398     AddressSpace *as;
2399     FlatView *view;
2400     FlatRange *fr;
2401 
2402     /* If the same address space has multiple log_sync listeners, we
2403      * visit that address space's FlatView multiple times.  But because
2404      * log_sync listeners are rare, it's still cheaper than walking each
2405      * address space once.
2406      */
2407     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2408         if (listener->log_sync) {
2409             as = listener->address_space;
2410             view = address_space_get_flatview(as);
2411             FOR_EACH_FLAT_RANGE(fr, view) {
2412                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2413                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2414                     listener->log_sync(listener, &mrs);
2415                 }
2416             }
2417             flatview_unref(view);
2418             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2419         } else if (listener->log_sync_global) {
2420             /*
2421              * No matter whether MR is specified, what we can do here
2422              * is to do a global sync, because we are not capable to
2423              * sync in a finer granularity.
2424              */
2425             listener->log_sync_global(listener, last_stage);
2426             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2427         }
2428     }
2429 }
2430 
memory_region_clear_dirty_bitmap(MemoryRegion * mr,hwaddr start,hwaddr len)2431 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2432                                       hwaddr len)
2433 {
2434     MemoryRegionSection mrs;
2435     MemoryListener *listener;
2436     AddressSpace *as;
2437     FlatView *view;
2438     FlatRange *fr;
2439     hwaddr sec_start, sec_end, sec_size;
2440 
2441     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2442         if (!listener->log_clear) {
2443             continue;
2444         }
2445         as = listener->address_space;
2446         view = address_space_get_flatview(as);
2447         FOR_EACH_FLAT_RANGE(fr, view) {
2448             if (!fr->dirty_log_mask || fr->mr != mr) {
2449                 /*
2450                  * Clear dirty bitmap operation only applies to those
2451                  * regions whose dirty logging is at least enabled
2452                  */
2453                 continue;
2454             }
2455 
2456             mrs = section_from_flat_range(fr, view);
2457 
2458             sec_start = MAX(mrs.offset_within_region, start);
2459             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2460             sec_end = MIN(sec_end, start + len);
2461 
2462             if (sec_start >= sec_end) {
2463                 /*
2464                  * If this memory region section has no intersection
2465                  * with the requested range, skip.
2466                  */
2467                 continue;
2468             }
2469 
2470             /* Valid case; shrink the section if needed */
2471             mrs.offset_within_address_space +=
2472                 sec_start - mrs.offset_within_region;
2473             mrs.offset_within_region = sec_start;
2474             sec_size = sec_end - sec_start;
2475             mrs.size = int128_make64(sec_size);
2476             listener->log_clear(listener, &mrs);
2477         }
2478         flatview_unref(view);
2479     }
2480 }
2481 
memory_region_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size,unsigned client)2482 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2483                                                             hwaddr addr,
2484                                                             hwaddr size,
2485                                                             unsigned client)
2486 {
2487     DirtyBitmapSnapshot *snapshot;
2488     assert(mr->ram_block);
2489     memory_region_sync_dirty_bitmap(mr, false);
2490     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2491     memory_global_after_dirty_log_sync();
2492     return snapshot;
2493 }
2494 
memory_region_snapshot_get_dirty(MemoryRegion * mr,DirtyBitmapSnapshot * snap,hwaddr addr,hwaddr size)2495 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2496                                       hwaddr addr, hwaddr size)
2497 {
2498     assert(mr->ram_block);
2499     return cpu_physical_memory_snapshot_get_dirty(snap,
2500                 memory_region_get_ram_addr(mr) + addr, size);
2501 }
2502 
memory_region_set_readonly(MemoryRegion * mr,bool readonly)2503 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2504 {
2505     if (mr->readonly != readonly) {
2506         memory_region_transaction_begin();
2507         mr->readonly = readonly;
2508         memory_region_update_pending |= mr->enabled;
2509         memory_region_transaction_commit();
2510     }
2511 }
2512 
memory_region_set_nonvolatile(MemoryRegion * mr,bool nonvolatile)2513 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2514 {
2515     if (mr->nonvolatile != nonvolatile) {
2516         memory_region_transaction_begin();
2517         mr->nonvolatile = nonvolatile;
2518         memory_region_update_pending |= mr->enabled;
2519         memory_region_transaction_commit();
2520     }
2521 }
2522 
memory_region_rom_device_set_romd(MemoryRegion * mr,bool romd_mode)2523 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2524 {
2525     if (mr->romd_mode != romd_mode) {
2526         memory_region_transaction_begin();
2527         mr->romd_mode = romd_mode;
2528         memory_region_update_pending |= mr->enabled;
2529         memory_region_transaction_commit();
2530     }
2531 }
2532 
memory_region_reset_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size,unsigned client)2533 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2534                                hwaddr size, unsigned client)
2535 {
2536     assert(mr->ram_block);
2537     cpu_physical_memory_test_and_clear_dirty(
2538         memory_region_get_ram_addr(mr) + addr, size, client);
2539 }
2540 
memory_region_get_fd(MemoryRegion * mr)2541 int memory_region_get_fd(MemoryRegion *mr)
2542 {
2543     RCU_READ_LOCK_GUARD();
2544     while (mr->alias) {
2545         mr = mr->alias;
2546     }
2547     return mr->ram_block->fd;
2548 }
2549 
memory_region_get_ram_ptr(MemoryRegion * mr)2550 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2551 {
2552     uint64_t offset = 0;
2553 
2554     RCU_READ_LOCK_GUARD();
2555     while (mr->alias) {
2556         offset += mr->alias_offset;
2557         mr = mr->alias;
2558     }
2559     assert(mr->ram_block);
2560     return qemu_map_ram_ptr(mr->ram_block, offset);
2561 }
2562 
memory_region_from_host(void * ptr,ram_addr_t * offset)2563 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2564 {
2565     RAMBlock *block;
2566 
2567     block = qemu_ram_block_from_host(ptr, false, offset);
2568     if (!block) {
2569         return NULL;
2570     }
2571 
2572     return block->mr;
2573 }
2574 
memory_region_get_ram_addr(MemoryRegion * mr)2575 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2576 {
2577     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2578 }
2579 
memory_region_ram_resize(MemoryRegion * mr,ram_addr_t newsize,Error ** errp)2580 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2581 {
2582     assert(mr->ram_block);
2583 
2584     qemu_ram_resize(mr->ram_block, newsize, errp);
2585 }
2586 
memory_region_msync(MemoryRegion * mr,hwaddr addr,hwaddr size)2587 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2588 {
2589     if (mr->ram_block) {
2590         qemu_ram_msync(mr->ram_block, addr, size);
2591     }
2592 }
2593 
memory_region_writeback(MemoryRegion * mr,hwaddr addr,hwaddr size)2594 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2595 {
2596     /*
2597      * Might be extended case needed to cover
2598      * different types of memory regions
2599      */
2600     if (mr->dirty_log_mask) {
2601         memory_region_msync(mr, addr, size);
2602     }
2603 }
2604 
2605 /*
2606  * Call proper memory listeners about the change on the newly
2607  * added/removed CoalescedMemoryRange.
2608  */
memory_region_update_coalesced_range(MemoryRegion * mr,CoalescedMemoryRange * cmr,bool add)2609 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2610                                                  CoalescedMemoryRange *cmr,
2611                                                  bool add)
2612 {
2613     AddressSpace *as;
2614     FlatView *view;
2615     FlatRange *fr;
2616 
2617     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2618         view = address_space_get_flatview(as);
2619         FOR_EACH_FLAT_RANGE(fr, view) {
2620             if (fr->mr == mr) {
2621                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2622             }
2623         }
2624         flatview_unref(view);
2625     }
2626 }
2627 
memory_region_set_coalescing(MemoryRegion * mr)2628 void memory_region_set_coalescing(MemoryRegion *mr)
2629 {
2630     memory_region_clear_coalescing(mr);
2631     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2632 }
2633 
memory_region_add_coalescing(MemoryRegion * mr,hwaddr offset,uint64_t size)2634 void memory_region_add_coalescing(MemoryRegion *mr,
2635                                   hwaddr offset,
2636                                   uint64_t size)
2637 {
2638     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2639 
2640     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2641     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2642     memory_region_update_coalesced_range(mr, cmr, true);
2643     memory_region_set_flush_coalesced(mr);
2644 }
2645 
memory_region_clear_coalescing(MemoryRegion * mr)2646 void memory_region_clear_coalescing(MemoryRegion *mr)
2647 {
2648     CoalescedMemoryRange *cmr;
2649 
2650     if (QTAILQ_EMPTY(&mr->coalesced)) {
2651         return;
2652     }
2653 
2654     qemu_flush_coalesced_mmio_buffer();
2655     mr->flush_coalesced_mmio = false;
2656 
2657     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2658         cmr = QTAILQ_FIRST(&mr->coalesced);
2659         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2660         memory_region_update_coalesced_range(mr, cmr, false);
2661         g_free(cmr);
2662     }
2663 }
2664 
memory_region_set_flush_coalesced(MemoryRegion * mr)2665 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2666 {
2667     mr->flush_coalesced_mmio = true;
2668 }
2669 
memory_region_clear_flush_coalesced(MemoryRegion * mr)2670 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2671 {
2672     qemu_flush_coalesced_mmio_buffer();
2673     if (QTAILQ_EMPTY(&mr->coalesced)) {
2674         mr->flush_coalesced_mmio = false;
2675     }
2676 }
2677 
memory_region_add_eventfd(MemoryRegion * mr,hwaddr addr,unsigned size,bool match_data,uint64_t data,EventNotifier * e)2678 void memory_region_add_eventfd(MemoryRegion *mr,
2679                                hwaddr addr,
2680                                unsigned size,
2681                                bool match_data,
2682                                uint64_t data,
2683                                EventNotifier *e)
2684 {
2685     MemoryRegionIoeventfd mrfd = {
2686         .addr.start = int128_make64(addr),
2687         .addr.size = int128_make64(size),
2688         .match_data = match_data,
2689         .data = data,
2690         .e = e,
2691     };
2692     unsigned i;
2693 
2694     if (size) {
2695         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2696         adjust_endianness(mr, &mrfd.data, mop);
2697     }
2698     memory_region_transaction_begin();
2699     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2700         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2701             break;
2702         }
2703     }
2704     ++mr->ioeventfd_nb;
2705     mr->ioeventfds = g_realloc(mr->ioeventfds,
2706                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2707     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2708             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2709     mr->ioeventfds[i] = mrfd;
2710     ioeventfd_update_pending |= mr->enabled;
2711     memory_region_transaction_commit();
2712 }
2713 
memory_region_del_eventfd(MemoryRegion * mr,hwaddr addr,unsigned size,bool match_data,uint64_t data,EventNotifier * e)2714 void memory_region_del_eventfd(MemoryRegion *mr,
2715                                hwaddr addr,
2716                                unsigned size,
2717                                bool match_data,
2718                                uint64_t data,
2719                                EventNotifier *e)
2720 {
2721     MemoryRegionIoeventfd mrfd = {
2722         .addr.start = int128_make64(addr),
2723         .addr.size = int128_make64(size),
2724         .match_data = match_data,
2725         .data = data,
2726         .e = e,
2727     };
2728     unsigned i;
2729 
2730     if (size) {
2731         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2732         adjust_endianness(mr, &mrfd.data, mop);
2733     }
2734     memory_region_transaction_begin();
2735     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2736         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2737             break;
2738         }
2739     }
2740     assert(i != mr->ioeventfd_nb);
2741     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2742             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2743     --mr->ioeventfd_nb;
2744     mr->ioeventfds = g_realloc(mr->ioeventfds,
2745                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2746     ioeventfd_update_pending |= mr->enabled;
2747     memory_region_transaction_commit();
2748 }
2749 
memory_region_update_container_subregions(MemoryRegion * subregion)2750 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2751 {
2752     MemoryRegion *mr = subregion->container;
2753     MemoryRegion *other;
2754 
2755     memory_region_transaction_begin();
2756 
2757     memory_region_ref(subregion);
2758     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2759         if (subregion->priority >= other->priority) {
2760             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2761             goto done;
2762         }
2763     }
2764     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2765 done:
2766     memory_region_update_pending |= mr->enabled && subregion->enabled;
2767     memory_region_transaction_commit();
2768 }
2769 
memory_region_add_subregion_common(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion)2770 static void memory_region_add_subregion_common(MemoryRegion *mr,
2771                                                hwaddr offset,
2772                                                MemoryRegion *subregion)
2773 {
2774     MemoryRegion *alias;
2775 
2776     assert(!subregion->container);
2777     subregion->container = mr;
2778     for (alias = subregion->alias; alias; alias = alias->alias) {
2779         alias->mapped_via_alias++;
2780     }
2781     subregion->addr = offset;
2782     memory_region_update_container_subregions(subregion);
2783 }
2784 
memory_region_add_subregion(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion)2785 void memory_region_add_subregion(MemoryRegion *mr,
2786                                  hwaddr offset,
2787                                  MemoryRegion *subregion)
2788 {
2789     subregion->priority = 0;
2790     memory_region_add_subregion_common(mr, offset, subregion);
2791 }
2792 
memory_region_add_subregion_overlap(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion,int priority)2793 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2794                                          hwaddr offset,
2795                                          MemoryRegion *subregion,
2796                                          int priority)
2797 {
2798     subregion->priority = priority;
2799     memory_region_add_subregion_common(mr, offset, subregion);
2800 }
2801 
memory_region_del_subregion(MemoryRegion * mr,MemoryRegion * subregion)2802 void memory_region_del_subregion(MemoryRegion *mr,
2803                                  MemoryRegion *subregion)
2804 {
2805     MemoryRegion *alias;
2806 
2807     memory_region_transaction_begin();
2808     assert(subregion->container == mr);
2809     subregion->container = NULL;
2810     for (alias = subregion->alias; alias; alias = alias->alias) {
2811         alias->mapped_via_alias--;
2812         assert(alias->mapped_via_alias >= 0);
2813     }
2814     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2815     memory_region_unref(subregion);
2816     memory_region_update_pending |= mr->enabled && subregion->enabled;
2817     memory_region_transaction_commit();
2818 }
2819 
memory_region_set_enabled(MemoryRegion * mr,bool enabled)2820 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2821 {
2822     if (enabled == mr->enabled) {
2823         return;
2824     }
2825     memory_region_transaction_begin();
2826     mr->enabled = enabled;
2827     memory_region_update_pending = true;
2828     memory_region_transaction_commit();
2829 }
2830 
memory_region_set_size(MemoryRegion * mr,uint64_t size)2831 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2832 {
2833     Int128 s = int128_make64(size);
2834 
2835     if (size == UINT64_MAX) {
2836         s = int128_2_64();
2837     }
2838     if (int128_eq(s, mr->size)) {
2839         return;
2840     }
2841     memory_region_transaction_begin();
2842     mr->size = s;
2843     memory_region_update_pending = true;
2844     memory_region_transaction_commit();
2845 }
2846 
memory_region_readd_subregion(MemoryRegion * mr)2847 static void memory_region_readd_subregion(MemoryRegion *mr)
2848 {
2849     MemoryRegion *container = mr->container;
2850 
2851     if (container) {
2852         memory_region_transaction_begin();
2853         memory_region_ref(mr);
2854         memory_region_del_subregion(container, mr);
2855         memory_region_add_subregion_common(container, mr->addr, mr);
2856         memory_region_unref(mr);
2857         memory_region_transaction_commit();
2858     }
2859 }
2860 
memory_region_set_address(MemoryRegion * mr,hwaddr addr)2861 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2862 {
2863     if (addr != mr->addr) {
2864         mr->addr = addr;
2865         memory_region_readd_subregion(mr);
2866     }
2867 }
2868 
memory_region_set_alias_offset(MemoryRegion * mr,hwaddr offset)2869 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2870 {
2871     assert(mr->alias);
2872 
2873     if (offset == mr->alias_offset) {
2874         return;
2875     }
2876 
2877     memory_region_transaction_begin();
2878     mr->alias_offset = offset;
2879     memory_region_update_pending |= mr->enabled;
2880     memory_region_transaction_commit();
2881 }
2882 
memory_region_set_unmergeable(MemoryRegion * mr,bool unmergeable)2883 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2884 {
2885     if (unmergeable == mr->unmergeable) {
2886         return;
2887     }
2888 
2889     memory_region_transaction_begin();
2890     mr->unmergeable = unmergeable;
2891     memory_region_update_pending |= mr->enabled;
2892     memory_region_transaction_commit();
2893 }
2894 
memory_region_get_alignment(const MemoryRegion * mr)2895 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2896 {
2897     return mr->align;
2898 }
2899 
cmp_flatrange_addr(const void * addr_,const void * fr_)2900 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2901 {
2902     const AddrRange *addr = addr_;
2903     const FlatRange *fr = fr_;
2904 
2905     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2906         return -1;
2907     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2908         return 1;
2909     }
2910     return 0;
2911 }
2912 
flatview_lookup(FlatView * view,AddrRange addr)2913 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2914 {
2915     return bsearch(&addr, view->ranges, view->nr,
2916                    sizeof(FlatRange), cmp_flatrange_addr);
2917 }
2918 
memory_region_is_mapped(MemoryRegion * mr)2919 bool memory_region_is_mapped(MemoryRegion *mr)
2920 {
2921     return !!mr->container || mr->mapped_via_alias;
2922 }
2923 
2924 /* Same as memory_region_find, but it does not add a reference to the
2925  * returned region.  It must be called from an RCU critical section.
2926  */
memory_region_find_rcu(MemoryRegion * mr,hwaddr addr,uint64_t size)2927 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2928                                                   hwaddr addr, uint64_t size)
2929 {
2930     MemoryRegionSection ret = { .mr = NULL };
2931     MemoryRegion *root;
2932     AddressSpace *as;
2933     AddrRange range;
2934     FlatView *view;
2935     FlatRange *fr;
2936 
2937     addr += mr->addr;
2938     for (root = mr; root->container; ) {
2939         root = root->container;
2940         addr += root->addr;
2941     }
2942 
2943     as = memory_region_to_address_space(root);
2944     if (!as) {
2945         return ret;
2946     }
2947     range = addrrange_make(int128_make64(addr), int128_make64(size));
2948 
2949     view = address_space_to_flatview(as);
2950     fr = flatview_lookup(view, range);
2951     if (!fr) {
2952         return ret;
2953     }
2954 
2955     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2956         --fr;
2957     }
2958 
2959     ret.mr = fr->mr;
2960     ret.fv = view;
2961     range = addrrange_intersection(range, fr->addr);
2962     ret.offset_within_region = fr->offset_in_region;
2963     ret.offset_within_region += int128_get64(int128_sub(range.start,
2964                                                         fr->addr.start));
2965     ret.size = range.size;
2966     ret.offset_within_address_space = int128_get64(range.start);
2967     ret.readonly = fr->readonly;
2968     ret.nonvolatile = fr->nonvolatile;
2969     return ret;
2970 }
2971 
memory_region_find(MemoryRegion * mr,hwaddr addr,uint64_t size)2972 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2973                                        hwaddr addr, uint64_t size)
2974 {
2975     MemoryRegionSection ret;
2976     RCU_READ_LOCK_GUARD();
2977     ret = memory_region_find_rcu(mr, addr, size);
2978     if (ret.mr) {
2979         memory_region_ref(ret.mr);
2980     }
2981     return ret;
2982 }
2983 
memory_region_section_new_copy(MemoryRegionSection * s)2984 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2985 {
2986     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2987 
2988     *tmp = *s;
2989     if (tmp->mr) {
2990         memory_region_ref(tmp->mr);
2991     }
2992     if (tmp->fv) {
2993         bool ret  = flatview_ref(tmp->fv);
2994 
2995         g_assert(ret);
2996     }
2997     return tmp;
2998 }
2999 
memory_region_section_free_copy(MemoryRegionSection * s)3000 void memory_region_section_free_copy(MemoryRegionSection *s)
3001 {
3002     if (s->fv) {
3003         flatview_unref(s->fv);
3004     }
3005     if (s->mr) {
3006         memory_region_unref(s->mr);
3007     }
3008     g_free(s);
3009 }
3010 
memory_region_present(MemoryRegion * container,hwaddr addr)3011 bool memory_region_present(MemoryRegion *container, hwaddr addr)
3012 {
3013     MemoryRegion *mr;
3014 
3015     RCU_READ_LOCK_GUARD();
3016     mr = memory_region_find_rcu(container, addr, 1).mr;
3017     return mr && mr != container;
3018 }
3019 
memory_global_dirty_log_sync(bool last_stage)3020 void memory_global_dirty_log_sync(bool last_stage)
3021 {
3022     memory_region_sync_dirty_bitmap(NULL, last_stage);
3023 }
3024 
memory_global_after_dirty_log_sync(void)3025 void memory_global_after_dirty_log_sync(void)
3026 {
3027     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
3028 }
3029 
3030 /*
3031  * Dirty track stop flags that are postponed due to VM being stopped.  Should
3032  * only be used within vmstate_change hook.
3033  */
3034 static unsigned int postponed_stop_flags;
3035 static VMChangeStateEntry *vmstate_change;
3036 static void memory_global_dirty_log_stop_postponed_run(void);
3037 
memory_global_dirty_log_do_start(Error ** errp)3038 static bool memory_global_dirty_log_do_start(Error **errp)
3039 {
3040     MemoryListener *listener;
3041 
3042     QTAILQ_FOREACH(listener, &memory_listeners, link) {
3043         if (listener->log_global_start) {
3044             if (!listener->log_global_start(listener, errp)) {
3045                 goto err;
3046             }
3047         }
3048     }
3049     return true;
3050 
3051 err:
3052     while ((listener = QTAILQ_PREV(listener, link)) != NULL) {
3053         if (listener->log_global_stop) {
3054             listener->log_global_stop(listener);
3055         }
3056     }
3057 
3058     return false;
3059 }
3060 
memory_global_dirty_log_start(unsigned int flags,Error ** errp)3061 bool memory_global_dirty_log_start(unsigned int flags, Error **errp)
3062 {
3063     unsigned int old_flags;
3064 
3065     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
3066 
3067     if (vmstate_change) {
3068         /* If there is postponed stop(), operate on it first */
3069         postponed_stop_flags &= ~flags;
3070         memory_global_dirty_log_stop_postponed_run();
3071     }
3072 
3073     flags &= ~global_dirty_tracking;
3074     if (!flags) {
3075         return true;
3076     }
3077 
3078     old_flags = global_dirty_tracking;
3079     global_dirty_tracking |= flags;
3080     trace_global_dirty_changed(global_dirty_tracking);
3081 
3082     if (!old_flags) {
3083         if (!memory_global_dirty_log_do_start(errp)) {
3084             global_dirty_tracking &= ~flags;
3085             trace_global_dirty_changed(global_dirty_tracking);
3086             return false;
3087         }
3088 
3089         memory_region_transaction_begin();
3090         memory_region_update_pending = true;
3091         memory_region_transaction_commit();
3092     }
3093     return true;
3094 }
3095 
memory_global_dirty_log_do_stop(unsigned int flags)3096 static void memory_global_dirty_log_do_stop(unsigned int flags)
3097 {
3098     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
3099     assert((global_dirty_tracking & flags) == flags);
3100     global_dirty_tracking &= ~flags;
3101 
3102     trace_global_dirty_changed(global_dirty_tracking);
3103 
3104     if (!global_dirty_tracking) {
3105         memory_region_transaction_begin();
3106         memory_region_update_pending = true;
3107         memory_region_transaction_commit();
3108         MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
3109     }
3110 }
3111 
3112 /*
3113  * Execute the postponed dirty log stop operations if there is, then reset
3114  * everything (including the flags and the vmstate change hook).
3115  */
memory_global_dirty_log_stop_postponed_run(void)3116 static void memory_global_dirty_log_stop_postponed_run(void)
3117 {
3118     /* This must be called with the vmstate handler registered */
3119     assert(vmstate_change);
3120 
3121     /* Note: postponed_stop_flags can be cleared in log start routine */
3122     if (postponed_stop_flags) {
3123         memory_global_dirty_log_do_stop(postponed_stop_flags);
3124         postponed_stop_flags = 0;
3125     }
3126 
3127     qemu_del_vm_change_state_handler(vmstate_change);
3128     vmstate_change = NULL;
3129 }
3130 
memory_vm_change_state_handler(void * opaque,bool running,RunState state)3131 static void memory_vm_change_state_handler(void *opaque, bool running,
3132                                            RunState state)
3133 {
3134     if (running) {
3135         memory_global_dirty_log_stop_postponed_run();
3136     }
3137 }
3138 
memory_global_dirty_log_stop(unsigned int flags)3139 void memory_global_dirty_log_stop(unsigned int flags)
3140 {
3141     if (!runstate_is_running()) {
3142         /* Postpone the dirty log stop, e.g., to when VM starts again */
3143         if (vmstate_change) {
3144             /* Batch with previous postponed flags */
3145             postponed_stop_flags |= flags;
3146         } else {
3147             postponed_stop_flags = flags;
3148             vmstate_change = qemu_add_vm_change_state_handler(
3149                 memory_vm_change_state_handler, NULL);
3150         }
3151         return;
3152     }
3153 
3154     memory_global_dirty_log_do_stop(flags);
3155 }
3156 
listener_add_address_space(MemoryListener * listener,AddressSpace * as)3157 static void listener_add_address_space(MemoryListener *listener,
3158                                        AddressSpace *as)
3159 {
3160     unsigned i;
3161     FlatView *view;
3162     FlatRange *fr;
3163     MemoryRegionIoeventfd *fd;
3164 
3165     if (listener->begin) {
3166         listener->begin(listener);
3167     }
3168     if (global_dirty_tracking) {
3169         /*
3170          * Currently only VFIO can fail log_global_start(), and it's not
3171          * yet allowed to hotplug any PCI device during migration. So this
3172          * should never fail when invoked, guard it with error_abort.  If
3173          * it can start to fail in the future, we need to be able to fail
3174          * the whole listener_add_address_space() and its callers.
3175          */
3176         if (listener->log_global_start) {
3177             listener->log_global_start(listener, &error_abort);
3178         }
3179     }
3180 
3181     view = address_space_get_flatview(as);
3182     FOR_EACH_FLAT_RANGE(fr, view) {
3183         MemoryRegionSection section = section_from_flat_range(fr, view);
3184 
3185         if (listener->region_add) {
3186             listener->region_add(listener, &section);
3187         }
3188 
3189         /* send coalesced io add notifications */
3190         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3191                                                         listener, as, true);
3192 
3193         if (fr->dirty_log_mask && listener->log_start) {
3194             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3195         }
3196     }
3197 
3198     /*
3199      * register all eventfds for this address space for the newly registered
3200      * listener.
3201      */
3202     for (i = 0; i < as->ioeventfd_nb; i++) {
3203         fd = &as->ioeventfds[i];
3204         MemoryRegionSection section = (MemoryRegionSection) {
3205             .fv = view,
3206             .offset_within_address_space = int128_get64(fd->addr.start),
3207             .size = fd->addr.size,
3208         };
3209 
3210         if (listener->eventfd_add) {
3211             listener->eventfd_add(listener, &section,
3212                                   fd->match_data, fd->data, fd->e);
3213         }
3214     }
3215 
3216     if (listener->commit) {
3217         listener->commit(listener);
3218     }
3219     flatview_unref(view);
3220 }
3221 
listener_del_address_space(MemoryListener * listener,AddressSpace * as)3222 static void listener_del_address_space(MemoryListener *listener,
3223                                        AddressSpace *as)
3224 {
3225     unsigned i;
3226     FlatView *view;
3227     FlatRange *fr;
3228     MemoryRegionIoeventfd *fd;
3229 
3230     if (listener->begin) {
3231         listener->begin(listener);
3232     }
3233     view = address_space_get_flatview(as);
3234     FOR_EACH_FLAT_RANGE(fr, view) {
3235         MemoryRegionSection section = section_from_flat_range(fr, view);
3236 
3237         if (fr->dirty_log_mask && listener->log_stop) {
3238             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3239         }
3240 
3241         /* send coalesced io del notifications */
3242         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3243                                                         listener, as, false);
3244         if (listener->region_del) {
3245             listener->region_del(listener, &section);
3246         }
3247     }
3248 
3249     /*
3250      * de-register all eventfds for this address space for the current
3251      * listener.
3252      */
3253     for (i = 0; i < as->ioeventfd_nb; i++) {
3254         fd = &as->ioeventfds[i];
3255         MemoryRegionSection section = (MemoryRegionSection) {
3256             .fv = view,
3257             .offset_within_address_space = int128_get64(fd->addr.start),
3258             .size = fd->addr.size,
3259         };
3260 
3261         if (listener->eventfd_del) {
3262             listener->eventfd_del(listener, &section,
3263                                   fd->match_data, fd->data, fd->e);
3264         }
3265     }
3266 
3267     if (listener->commit) {
3268         listener->commit(listener);
3269     }
3270     flatview_unref(view);
3271 }
3272 
memory_listener_register(MemoryListener * listener,AddressSpace * as)3273 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3274 {
3275     MemoryListener *other = NULL;
3276 
3277     /* Only one of them can be defined for a listener */
3278     assert(!(listener->log_sync && listener->log_sync_global));
3279 
3280     listener->address_space = as;
3281     if (QTAILQ_EMPTY(&memory_listeners)
3282         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3283         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3284     } else {
3285         QTAILQ_FOREACH(other, &memory_listeners, link) {
3286             if (listener->priority < other->priority) {
3287                 break;
3288             }
3289         }
3290         QTAILQ_INSERT_BEFORE(other, listener, link);
3291     }
3292 
3293     if (QTAILQ_EMPTY(&as->listeners)
3294         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3295         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3296     } else {
3297         QTAILQ_FOREACH(other, &as->listeners, link_as) {
3298             if (listener->priority < other->priority) {
3299                 break;
3300             }
3301         }
3302         QTAILQ_INSERT_BEFORE(other, listener, link_as);
3303     }
3304 
3305     listener_add_address_space(listener, as);
3306 
3307     if (listener->eventfd_add || listener->eventfd_del) {
3308         as->ioeventfd_notifiers++;
3309     }
3310 }
3311 
memory_listener_unregister(MemoryListener * listener)3312 void memory_listener_unregister(MemoryListener *listener)
3313 {
3314     if (!listener->address_space) {
3315         return;
3316     }
3317 
3318     if (listener->eventfd_add || listener->eventfd_del) {
3319         listener->address_space->ioeventfd_notifiers--;
3320     }
3321 
3322     listener_del_address_space(listener, listener->address_space);
3323     QTAILQ_REMOVE(&memory_listeners, listener, link);
3324     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3325     listener->address_space = NULL;
3326 }
3327 
address_space_remove_listeners(AddressSpace * as)3328 void address_space_remove_listeners(AddressSpace *as)
3329 {
3330     while (!QTAILQ_EMPTY(&as->listeners)) {
3331         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3332     }
3333 }
3334 
address_space_init(AddressSpace * as,MemoryRegion * root,const char * name)3335 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3336 {
3337     memory_region_ref(root);
3338     as->root = root;
3339     as->current_map = NULL;
3340     as->ioeventfd_nb = 0;
3341     as->ioeventfds = NULL;
3342     QTAILQ_INIT(&as->listeners);
3343     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3344     as->max_bounce_buffer_size = DEFAULT_MAX_BOUNCE_BUFFER_SIZE;
3345     as->bounce_buffer_size = 0;
3346     qemu_mutex_init(&as->map_client_list_lock);
3347     QLIST_INIT(&as->map_client_list);
3348     as->name = g_strdup(name ? name : "anonymous");
3349     address_space_update_topology(as);
3350     address_space_update_ioeventfds(as);
3351 }
3352 
do_address_space_destroy(AddressSpace * as)3353 static void do_address_space_destroy(AddressSpace *as)
3354 {
3355     assert(qatomic_read(&as->bounce_buffer_size) == 0);
3356     assert(QLIST_EMPTY(&as->map_client_list));
3357     qemu_mutex_destroy(&as->map_client_list_lock);
3358 
3359     assert(QTAILQ_EMPTY(&as->listeners));
3360 
3361     flatview_unref(as->current_map);
3362     g_free(as->name);
3363     g_free(as->ioeventfds);
3364     memory_region_unref(as->root);
3365 }
3366 
address_space_destroy(AddressSpace * as)3367 void address_space_destroy(AddressSpace *as)
3368 {
3369     MemoryRegion *root = as->root;
3370 
3371     /* Flush out anything from MemoryListeners listening in on this */
3372     memory_region_transaction_begin();
3373     as->root = NULL;
3374     memory_region_transaction_commit();
3375     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3376 
3377     /* At this point, as->dispatch and as->current_map are dummy
3378      * entries that the guest should never use.  Wait for the old
3379      * values to expire before freeing the data.
3380      */
3381     as->root = root;
3382     call_rcu(as, do_address_space_destroy, rcu);
3383 }
3384 
memory_region_type(MemoryRegion * mr)3385 static const char *memory_region_type(MemoryRegion *mr)
3386 {
3387     if (mr->alias) {
3388         return memory_region_type(mr->alias);
3389     }
3390     if (memory_region_is_ram_device(mr)) {
3391         return "ramd";
3392     } else if (memory_region_is_romd(mr)) {
3393         return "romd";
3394     } else if (memory_region_is_rom(mr)) {
3395         return "rom";
3396     } else if (memory_region_is_ram(mr)) {
3397         return "ram";
3398     } else {
3399         return "i/o";
3400     }
3401 }
3402 
3403 typedef struct MemoryRegionList MemoryRegionList;
3404 
3405 struct MemoryRegionList {
3406     const MemoryRegion *mr;
3407     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3408 };
3409 
3410 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3411 
3412 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3413                            int128_sub((size), int128_one())) : 0)
3414 #define MTREE_INDENT "  "
3415 
mtree_expand_owner(const char * label,Object * obj)3416 static void mtree_expand_owner(const char *label, Object *obj)
3417 {
3418     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3419 
3420     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3421     if (dev && dev->id) {
3422         qemu_printf(" id=%s", dev->id);
3423     } else {
3424         char *canonical_path = object_get_canonical_path(obj);
3425         if (canonical_path) {
3426             qemu_printf(" path=%s", canonical_path);
3427             g_free(canonical_path);
3428         } else {
3429             qemu_printf(" type=%s", object_get_typename(obj));
3430         }
3431     }
3432     qemu_printf("}");
3433 }
3434 
mtree_print_mr_owner(const MemoryRegion * mr)3435 static void mtree_print_mr_owner(const MemoryRegion *mr)
3436 {
3437     Object *owner = mr->owner;
3438     Object *parent = memory_region_owner((MemoryRegion *)mr);
3439 
3440     if (!owner && !parent) {
3441         qemu_printf(" orphan");
3442         return;
3443     }
3444     if (owner) {
3445         mtree_expand_owner("owner", owner);
3446     }
3447     if (parent && parent != owner) {
3448         mtree_expand_owner("parent", parent);
3449     }
3450 }
3451 
mtree_print_mr(const MemoryRegion * mr,unsigned int level,hwaddr base,MemoryRegionListHead * alias_print_queue,bool owner,bool display_disabled)3452 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3453                            hwaddr base,
3454                            MemoryRegionListHead *alias_print_queue,
3455                            bool owner, bool display_disabled)
3456 {
3457     MemoryRegionList *new_ml, *ml, *next_ml;
3458     MemoryRegionListHead submr_print_queue;
3459     const MemoryRegion *submr;
3460     unsigned int i;
3461     hwaddr cur_start, cur_end;
3462 
3463     if (!mr) {
3464         return;
3465     }
3466 
3467     cur_start = base + mr->addr;
3468     cur_end = cur_start + MR_SIZE(mr->size);
3469 
3470     /*
3471      * Try to detect overflow of memory region. This should never
3472      * happen normally. When it happens, we dump something to warn the
3473      * user who is observing this.
3474      */
3475     if (cur_start < base || cur_end < cur_start) {
3476         qemu_printf("[DETECTED OVERFLOW!] ");
3477     }
3478 
3479     if (mr->alias) {
3480         bool found = false;
3481 
3482         /* check if the alias is already in the queue */
3483         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3484             if (ml->mr == mr->alias) {
3485                 found = true;
3486             }
3487         }
3488 
3489         if (!found) {
3490             ml = g_new(MemoryRegionList, 1);
3491             ml->mr = mr->alias;
3492             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3493         }
3494         if (mr->enabled || display_disabled) {
3495             for (i = 0; i < level; i++) {
3496                 qemu_printf(MTREE_INDENT);
3497             }
3498             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3499                         " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3500                         "-" HWADDR_FMT_plx "%s",
3501                         cur_start, cur_end,
3502                         mr->priority,
3503                         mr->nonvolatile ? "nv-" : "",
3504                         memory_region_type((MemoryRegion *)mr),
3505                         memory_region_name(mr),
3506                         memory_region_name(mr->alias),
3507                         mr->alias_offset,
3508                         mr->alias_offset + MR_SIZE(mr->size),
3509                         mr->enabled ? "" : " [disabled]");
3510             if (owner) {
3511                 mtree_print_mr_owner(mr);
3512             }
3513             qemu_printf("\n");
3514         }
3515     } else {
3516         if (mr->enabled || display_disabled) {
3517             for (i = 0; i < level; i++) {
3518                 qemu_printf(MTREE_INDENT);
3519             }
3520             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3521                         " (prio %d, %s%s): %s%s",
3522                         cur_start, cur_end,
3523                         mr->priority,
3524                         mr->nonvolatile ? "nv-" : "",
3525                         memory_region_type((MemoryRegion *)mr),
3526                         memory_region_name(mr),
3527                         mr->enabled ? "" : " [disabled]");
3528             if (owner) {
3529                 mtree_print_mr_owner(mr);
3530             }
3531             qemu_printf("\n");
3532         }
3533     }
3534 
3535     QTAILQ_INIT(&submr_print_queue);
3536 
3537     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3538         new_ml = g_new(MemoryRegionList, 1);
3539         new_ml->mr = submr;
3540         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3541             if (new_ml->mr->addr < ml->mr->addr ||
3542                 (new_ml->mr->addr == ml->mr->addr &&
3543                  new_ml->mr->priority > ml->mr->priority)) {
3544                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3545                 new_ml = NULL;
3546                 break;
3547             }
3548         }
3549         if (new_ml) {
3550             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3551         }
3552     }
3553 
3554     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3555         mtree_print_mr(ml->mr, level + 1, cur_start,
3556                        alias_print_queue, owner, display_disabled);
3557     }
3558 
3559     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3560         g_free(ml);
3561     }
3562 }
3563 
3564 struct FlatViewInfo {
3565     int counter;
3566     bool dispatch_tree;
3567     bool owner;
3568     AccelClass *ac;
3569 };
3570 
mtree_print_flatview(gpointer key,gpointer value,gpointer user_data)3571 static void mtree_print_flatview(gpointer key, gpointer value,
3572                                  gpointer user_data)
3573 {
3574     FlatView *view = key;
3575     GArray *fv_address_spaces = value;
3576     struct FlatViewInfo *fvi = user_data;
3577     FlatRange *range = &view->ranges[0];
3578     MemoryRegion *mr;
3579     int n = view->nr;
3580     int i;
3581     AddressSpace *as;
3582 
3583     qemu_printf("FlatView #%d\n", fvi->counter);
3584     ++fvi->counter;
3585 
3586     for (i = 0; i < fv_address_spaces->len; ++i) {
3587         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3588         qemu_printf(" AS \"%s\", root: %s",
3589                     as->name, memory_region_name(as->root));
3590         if (as->root->alias) {
3591             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3592         }
3593         qemu_printf("\n");
3594     }
3595 
3596     qemu_printf(" Root memory region: %s\n",
3597       view->root ? memory_region_name(view->root) : "(none)");
3598 
3599     if (n <= 0) {
3600         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3601         return;
3602     }
3603 
3604     while (n--) {
3605         mr = range->mr;
3606         if (range->offset_in_region) {
3607             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3608                         " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3609                         int128_get64(range->addr.start),
3610                         int128_get64(range->addr.start)
3611                         + MR_SIZE(range->addr.size),
3612                         mr->priority,
3613                         range->nonvolatile ? "nv-" : "",
3614                         range->readonly ? "rom" : memory_region_type(mr),
3615                         memory_region_name(mr),
3616                         range->offset_in_region);
3617         } else {
3618             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3619                         " (prio %d, %s%s): %s",
3620                         int128_get64(range->addr.start),
3621                         int128_get64(range->addr.start)
3622                         + MR_SIZE(range->addr.size),
3623                         mr->priority,
3624                         range->nonvolatile ? "nv-" : "",
3625                         range->readonly ? "rom" : memory_region_type(mr),
3626                         memory_region_name(mr));
3627         }
3628         if (fvi->owner) {
3629             mtree_print_mr_owner(mr);
3630         }
3631 
3632         if (fvi->ac) {
3633             for (i = 0; i < fv_address_spaces->len; ++i) {
3634                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3635                 if (fvi->ac->has_memory(current_machine->accelerator, as,
3636                                         int128_get64(range->addr.start),
3637                                         MR_SIZE(range->addr.size) + 1)) {
3638                     qemu_printf(" %s", fvi->ac->name);
3639                 }
3640             }
3641         }
3642         qemu_printf("\n");
3643         range++;
3644     }
3645 
3646 #if !defined(CONFIG_USER_ONLY)
3647     if (fvi->dispatch_tree && view->root) {
3648         mtree_print_dispatch(view->dispatch, view->root);
3649     }
3650 #endif
3651 
3652     qemu_printf("\n");
3653 }
3654 
mtree_info_flatview_free(gpointer key,gpointer value,gpointer user_data)3655 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3656                                       gpointer user_data)
3657 {
3658     FlatView *view = key;
3659     GArray *fv_address_spaces = value;
3660 
3661     g_array_unref(fv_address_spaces);
3662     flatview_unref(view);
3663 
3664     return true;
3665 }
3666 
mtree_info_flatview(bool dispatch_tree,bool owner)3667 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3668 {
3669     struct FlatViewInfo fvi = {
3670         .counter = 0,
3671         .dispatch_tree = dispatch_tree,
3672         .owner = owner,
3673     };
3674     AddressSpace *as;
3675     FlatView *view;
3676     GArray *fv_address_spaces;
3677     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3678     AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3679 
3680     if (ac->has_memory) {
3681         fvi.ac = ac;
3682     }
3683 
3684     /* Gather all FVs in one table */
3685     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3686         view = address_space_get_flatview(as);
3687 
3688         fv_address_spaces = g_hash_table_lookup(views, view);
3689         if (!fv_address_spaces) {
3690             fv_address_spaces = g_array_new(false, false, sizeof(as));
3691             g_hash_table_insert(views, view, fv_address_spaces);
3692         }
3693 
3694         g_array_append_val(fv_address_spaces, as);
3695     }
3696 
3697     /* Print */
3698     g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3699 
3700     /* Free */
3701     g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3702     g_hash_table_unref(views);
3703 }
3704 
3705 struct AddressSpaceInfo {
3706     MemoryRegionListHead *ml_head;
3707     bool owner;
3708     bool disabled;
3709 };
3710 
3711 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
address_space_compare_name(gconstpointer a,gconstpointer b)3712 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3713 {
3714     const AddressSpace *as_a = a;
3715     const AddressSpace *as_b = b;
3716 
3717     return g_strcmp0(as_a->name, as_b->name);
3718 }
3719 
mtree_print_as_name(gpointer data,gpointer user_data)3720 static void mtree_print_as_name(gpointer data, gpointer user_data)
3721 {
3722     AddressSpace *as = data;
3723 
3724     qemu_printf("address-space: %s\n", as->name);
3725 }
3726 
mtree_print_as(gpointer key,gpointer value,gpointer user_data)3727 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3728 {
3729     MemoryRegion *mr = key;
3730     GSList *as_same_root_mr_list = value;
3731     struct AddressSpaceInfo *asi = user_data;
3732 
3733     g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3734     mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3735     qemu_printf("\n");
3736 }
3737 
mtree_info_as_free(gpointer key,gpointer value,gpointer user_data)3738 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3739                                    gpointer user_data)
3740 {
3741     GSList *as_same_root_mr_list = value;
3742 
3743     g_slist_free(as_same_root_mr_list);
3744 
3745     return true;
3746 }
3747 
mtree_info_as(bool dispatch_tree,bool owner,bool disabled)3748 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3749 {
3750     MemoryRegionListHead ml_head;
3751     MemoryRegionList *ml, *ml2;
3752     AddressSpace *as;
3753     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3754     GSList *as_same_root_mr_list;
3755     struct AddressSpaceInfo asi = {
3756         .ml_head = &ml_head,
3757         .owner = owner,
3758         .disabled = disabled,
3759     };
3760 
3761     QTAILQ_INIT(&ml_head);
3762 
3763     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3764         /* Create hashtable, key=AS root MR, value = list of AS */
3765         as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3766         as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3767                                                      address_space_compare_name);
3768         g_hash_table_insert(views, as->root, as_same_root_mr_list);
3769     }
3770 
3771     /* print address spaces */
3772     g_hash_table_foreach(views, mtree_print_as, &asi);
3773     g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3774     g_hash_table_unref(views);
3775 
3776     /* print aliased regions */
3777     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3778         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3779         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3780         qemu_printf("\n");
3781     }
3782 
3783     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3784         g_free(ml);
3785     }
3786 }
3787 
mtree_info(bool flatview,bool dispatch_tree,bool owner,bool disabled)3788 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3789 {
3790     if (flatview) {
3791         mtree_info_flatview(dispatch_tree, owner);
3792     } else {
3793         mtree_info_as(dispatch_tree, owner, disabled);
3794     }
3795 }
3796 
memory_region_init_ram(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3797 bool memory_region_init_ram(MemoryRegion *mr,
3798                             Object *owner,
3799                             const char *name,
3800                             uint64_t size,
3801                             Error **errp)
3802 {
3803     DeviceState *owner_dev;
3804 
3805     if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3806         return false;
3807     }
3808     /* This will assert if owner is neither NULL nor a DeviceState.
3809      * We only want the owner here for the purposes of defining a
3810      * unique name for migration. TODO: Ideally we should implement
3811      * a naming scheme for Objects which are not DeviceStates, in
3812      * which case we can relax this restriction.
3813      */
3814     owner_dev = DEVICE(owner);
3815     vmstate_register_ram(mr, owner_dev);
3816 
3817     return true;
3818 }
3819 
memory_region_init_ram_guest_memfd(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3820 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
3821                                         Object *owner,
3822                                         const char *name,
3823                                         uint64_t size,
3824                                         Error **errp)
3825 {
3826     DeviceState *owner_dev;
3827 
3828     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size,
3829                                                 RAM_GUEST_MEMFD, errp)) {
3830         return false;
3831     }
3832     /* This will assert if owner is neither NULL nor a DeviceState.
3833      * We only want the owner here for the purposes of defining a
3834      * unique name for migration. TODO: Ideally we should implement
3835      * a naming scheme for Objects which are not DeviceStates, in
3836      * which case we can relax this restriction.
3837      */
3838     owner_dev = DEVICE(owner);
3839     vmstate_register_ram(mr, owner_dev);
3840 
3841     return true;
3842 }
3843 
memory_region_init_rom(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3844 bool memory_region_init_rom(MemoryRegion *mr,
3845                             Object *owner,
3846                             const char *name,
3847                             uint64_t size,
3848                             Error **errp)
3849 {
3850     DeviceState *owner_dev;
3851 
3852     if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3853         return false;
3854     }
3855     /* This will assert if owner is neither NULL nor a DeviceState.
3856      * We only want the owner here for the purposes of defining a
3857      * unique name for migration. TODO: Ideally we should implement
3858      * a naming scheme for Objects which are not DeviceStates, in
3859      * which case we can relax this restriction.
3860      */
3861     owner_dev = DEVICE(owner);
3862     vmstate_register_ram(mr, owner_dev);
3863 
3864     return true;
3865 }
3866 
memory_region_init_rom_device(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size,Error ** errp)3867 bool memory_region_init_rom_device(MemoryRegion *mr,
3868                                    Object *owner,
3869                                    const MemoryRegionOps *ops,
3870                                    void *opaque,
3871                                    const char *name,
3872                                    uint64_t size,
3873                                    Error **errp)
3874 {
3875     DeviceState *owner_dev;
3876 
3877     if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3878                                                  name, size, errp)) {
3879         return false;
3880     }
3881     /* This will assert if owner is neither NULL nor a DeviceState.
3882      * We only want the owner here for the purposes of defining a
3883      * unique name for migration. TODO: Ideally we should implement
3884      * a naming scheme for Objects which are not DeviceStates, in
3885      * which case we can relax this restriction.
3886      */
3887     owner_dev = DEVICE(owner);
3888     vmstate_register_ram(mr, owner_dev);
3889 
3890     return true;
3891 }
3892 
3893 /*
3894  * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3895  * the fuzz_dma_read_cb callback
3896  */
3897 #ifdef CONFIG_FUZZ
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)3898 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3899                       size_t len,
3900                       MemoryRegion *mr)
3901 {
3902 }
3903 #endif
3904 
3905 static const TypeInfo memory_region_info = {
3906     .parent             = TYPE_OBJECT,
3907     .name               = TYPE_MEMORY_REGION,
3908     .class_size         = sizeof(MemoryRegionClass),
3909     .instance_size      = sizeof(MemoryRegion),
3910     .instance_init      = memory_region_initfn,
3911     .instance_finalize  = memory_region_finalize,
3912 };
3913 
3914 static const TypeInfo iommu_memory_region_info = {
3915     .parent             = TYPE_MEMORY_REGION,
3916     .name               = TYPE_IOMMU_MEMORY_REGION,
3917     .class_size         = sizeof(IOMMUMemoryRegionClass),
3918     .instance_size      = sizeof(IOMMUMemoryRegion),
3919     .instance_init      = iommu_memory_region_initfn,
3920     .abstract           = true,
3921 };
3922 
3923 static const TypeInfo ram_discard_manager_info = {
3924     .parent             = TYPE_INTERFACE,
3925     .name               = TYPE_RAM_DISCARD_MANAGER,
3926     .class_size         = sizeof(RamDiscardManagerClass),
3927 };
3928 
memory_register_types(void)3929 static void memory_register_types(void)
3930 {
3931     type_register_static(&memory_region_info);
3932     type_register_static(&iommu_memory_region_info);
3933     type_register_static(&ram_discard_manager_info);
3934 }
3935 
3936 type_init(memory_register_types)
3937