xref: /openbmc/u-boot/post/drivers/memory.c (revision e8f80a5a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2002
4  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5  */
6 
7 #include <common.h>
8 
9 /* Memory test
10  *
11  * General observations:
12  * o The recommended test sequence is to test the data lines: if they are
13  *   broken, nothing else will work properly.  Then test the address
14  *   lines.  Finally, test the cells in the memory now that the test
15  *   program knows that the address and data lines work properly.
16  *   This sequence also helps isolate and identify what is faulty.
17  *
18  * o For the address line test, it is a good idea to use the base
19  *   address of the lowest memory location, which causes a '1' bit to
20  *   walk through a field of zeros on the address lines and the highest
21  *   memory location, which causes a '0' bit to walk through a field of
22  *   '1's on the address line.
23  *
24  * o Floating buses can fool memory tests if the test routine writes
25  *   a value and then reads it back immediately.  The problem is, the
26  *   write will charge the residual capacitance on the data bus so the
27  *   bus retains its state briefely.  When the test program reads the
28  *   value back immediately, the capacitance of the bus can allow it
29  *   to read back what was written, even though the memory circuitry
30  *   is broken.  To avoid this, the test program should write a test
31  *   pattern to the target location, write a different pattern elsewhere
32  *   to charge the residual capacitance in a differnt manner, then read
33  *   the target location back.
34  *
35  * o Always read the target location EXACTLY ONCE and save it in a local
36  *   variable.  The problem with reading the target location more than
37  *   once is that the second and subsequent reads may work properly,
38  *   resulting in a failed test that tells the poor technician that
39  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
40  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
41  *   done that.
42  *
43  * Data line test:
44  * ---------------
45  * This tests data lines for shorts and opens by forcing adjacent data
46  * to opposite states. Because the data lines could be routed in an
47  * arbitrary manner the must ensure test patterns ensure that every case
48  * is tested. By using the following series of binary patterns every
49  * combination of adjacent bits is test regardless of routing.
50  *
51  *     ...101010101010101010101010
52  *     ...110011001100110011001100
53  *     ...111100001111000011110000
54  *     ...111111110000000011111111
55  *
56  * Carrying this out, gives us six hex patterns as follows:
57  *
58  *     0xaaaaaaaaaaaaaaaa
59  *     0xcccccccccccccccc
60  *     0xf0f0f0f0f0f0f0f0
61  *     0xff00ff00ff00ff00
62  *     0xffff0000ffff0000
63  *     0xffffffff00000000
64  *
65  * To test for short and opens to other signals on our boards, we
66  * simply test with the 1's complemnt of the paterns as well, resulting
67  * in twelve patterns total.
68  *
69  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
70  * written to a different address in case the data lines are floating.
71  * Thus, if a byte lane fails, you will see part of the special
72  * pattern in that byte lane when the test runs.  For example, if the
73  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
74  * (for the 'a' test pattern).
75  *
76  * Address line test:
77  * ------------------
78  *  This function performs a test to verify that all the address lines
79  *  hooked up to the RAM work properly.  If there is an address line
80  *  fault, it usually shows up as two different locations in the address
81  *  map (related by the faulty address line) mapping to one physical
82  *  memory storage location.  The artifact that shows up is writing to
83  *  the first location "changes" the second location.
84  *
85  * To test all address lines, we start with the given base address and
86  * xor the address with a '1' bit to flip one address line.  For each
87  * test, we shift the '1' bit left to test the next address line.
88  *
89  * In the actual code, we start with address sizeof(ulong) since our
90  * test pattern we use is a ulong and thus, if we tried to test lower
91  * order address bits, it wouldn't work because our pattern would
92  * overwrite itself.
93  *
94  * Example for a 4 bit address space with the base at 0000:
95  *   0000 <- base
96  *   0001 <- test 1
97  *   0010 <- test 2
98  *   0100 <- test 3
99  *   1000 <- test 4
100  * Example for a 4 bit address space with the base at 0010:
101  *   0010 <- base
102  *   0011 <- test 1
103  *   0000 <- (below the base address, skipped)
104  *   0110 <- test 2
105  *   1010 <- test 3
106  *
107  * The test locations are successively tested to make sure that they are
108  * not "mirrored" onto the base address due to a faulty address line.
109  * Note that the base and each test location are related by one address
110  * line flipped.  Note that the base address need not be all zeros.
111  *
112  * Memory tests 1-4:
113  * -----------------
114  * These tests verify RAM using sequential writes and reads
115  * to/from RAM. There are several test cases that use different patterns to
116  * verify RAM. Each test case fills a region of RAM with one pattern and
117  * then reads the region back and compares its contents with the pattern.
118  * The following patterns are used:
119  *
120  *  1a) zero pattern (0x00000000)
121  *  1b) negative pattern (0xffffffff)
122  *  1c) checkerboard pattern (0x55555555)
123  *  1d) checkerboard pattern (0xaaaaaaaa)
124  *  2)  bit-flip pattern ((1 << (offset % 32))
125  *  3)  address pattern (offset)
126  *  4)  address pattern (~offset)
127  *
128  * Being run in normal mode, the test verifies only small 4Kb
129  * regions of RAM around each 1Mb boundary. For example, for 64Mb
130  * RAM the following areas are verified: 0x00000000-0x00000800,
131  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
132  * 0x04000000. If the test is run in slow-test mode, it verifies
133  * the whole RAM.
134  */
135 
136 #include <post.h>
137 #include <watchdog.h>
138 
139 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)
140 
141 DECLARE_GLOBAL_DATA_PTR;
142 
143 /*
144  * Define INJECT_*_ERRORS for testing error detection in the presence of
145  * _good_ hardware.
146  */
147 #undef  INJECT_DATA_ERRORS
148 #undef  INJECT_ADDRESS_ERRORS
149 
150 #ifdef INJECT_DATA_ERRORS
151 #warning "Injecting data line errors for testing purposes"
152 #endif
153 
154 #ifdef INJECT_ADDRESS_ERRORS
155 #warning "Injecting address line errors for testing purposes"
156 #endif
157 
158 
159 /*
160  * This function performs a double word move from the data at
161  * the source pointer to the location at the destination pointer.
162  * This is helpful for testing memory on processors which have a 64 bit
163  * wide data bus.
164  *
165  * On those PowerPC with FPU, use assembly and a floating point move:
166  * this does a 64 bit move.
167  *
168  * For other processors, let the compiler generate the best code it can.
169  */
move64(const unsigned long long * src,unsigned long long * dest)170 static void move64(const unsigned long long *src, unsigned long long *dest)
171 {
172 	*dest = *src;
173 }
174 
175 /*
176  * This is 64 bit wide test patterns.  Note that they reside in ROM
177  * (which presumably works) and the tests write them to RAM which may
178  * not work.
179  *
180  * The "otherpattern" is written to drive the data bus to values other
181  * than the test pattern.  This is for detecting floating bus lines.
182  *
183  */
184 const static unsigned long long pattern[] = {
185 	0xaaaaaaaaaaaaaaaaULL,
186 	0xccccccccccccccccULL,
187 	0xf0f0f0f0f0f0f0f0ULL,
188 	0xff00ff00ff00ff00ULL,
189 	0xffff0000ffff0000ULL,
190 	0xffffffff00000000ULL,
191 	0x00000000ffffffffULL,
192 	0x0000ffff0000ffffULL,
193 	0x00ff00ff00ff00ffULL,
194 	0x0f0f0f0f0f0f0f0fULL,
195 	0x3333333333333333ULL,
196 	0x5555555555555555ULL
197 };
198 const unsigned long long otherpattern = 0x0123456789abcdefULL;
199 
200 
memory_post_dataline(unsigned long long * pmem)201 static int memory_post_dataline(unsigned long long * pmem)
202 {
203 	unsigned long long temp64 = 0;
204 	int num_patterns = ARRAY_SIZE(pattern);
205 	int i;
206 	unsigned int hi, lo, pathi, patlo;
207 	int ret = 0;
208 
209 	for ( i = 0; i < num_patterns; i++) {
210 		move64(&(pattern[i]), pmem++);
211 		/*
212 		 * Put a different pattern on the data lines: otherwise they
213 		 * may float long enough to read back what we wrote.
214 		 */
215 		move64(&otherpattern, pmem--);
216 		move64(pmem, &temp64);
217 
218 #ifdef INJECT_DATA_ERRORS
219 		temp64 ^= 0x00008000;
220 #endif
221 
222 		if (temp64 != pattern[i]){
223 			pathi = (pattern[i]>>32) & 0xffffffff;
224 			patlo = pattern[i] & 0xffffffff;
225 
226 			hi = (temp64>>32) & 0xffffffff;
227 			lo = temp64 & 0xffffffff;
228 
229 			post_log("Memory (data line) error at %08x, "
230 				  "wrote %08x%08x, read %08x%08x !\n",
231 					  pmem, pathi, patlo, hi, lo);
232 			ret = -1;
233 		}
234 	}
235 	return ret;
236 }
237 
memory_post_addrline(ulong * testaddr,ulong * base,ulong size)238 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
239 {
240 	ulong *target;
241 	ulong *end;
242 	ulong readback;
243 	ulong xor;
244 	int   ret = 0;
245 
246 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
247 	xor = 0;
248 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
249 		target = (ulong *)((ulong)testaddr ^ xor);
250 		if((target >= base) && (target < end)) {
251 			*testaddr = ~*target;
252 			readback  = *target;
253 
254 #ifdef INJECT_ADDRESS_ERRORS
255 			if(xor == 0x00008000) {
256 				readback = *testaddr;
257 			}
258 #endif
259 			if(readback == *testaddr) {
260 				post_log("Memory (address line) error at %08x<->%08x, "
261 					"XOR value %08x !\n",
262 					testaddr, target, xor);
263 				ret = -1;
264 			}
265 		}
266 	}
267 	return ret;
268 }
269 
memory_post_test1(unsigned long start,unsigned long size,unsigned long val)270 static int memory_post_test1(unsigned long start,
271 			      unsigned long size,
272 			      unsigned long val)
273 {
274 	unsigned long i;
275 	ulong *mem = (ulong *) start;
276 	ulong readback;
277 	int ret = 0;
278 
279 	for (i = 0; i < size / sizeof (ulong); i++) {
280 		mem[i] = val;
281 		if (i % 1024 == 0)
282 			WATCHDOG_RESET();
283 	}
284 
285 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
286 		readback = mem[i];
287 		if (readback != val) {
288 			post_log("Memory error at %08x, "
289 				  "wrote %08x, read %08x !\n",
290 					  mem + i, val, readback);
291 
292 			ret = -1;
293 			break;
294 		}
295 		if (i % 1024 == 0)
296 			WATCHDOG_RESET();
297 	}
298 
299 	return ret;
300 }
301 
memory_post_test2(unsigned long start,unsigned long size)302 static int memory_post_test2(unsigned long start, unsigned long size)
303 {
304 	unsigned long i;
305 	ulong *mem = (ulong *) start;
306 	ulong readback;
307 	int ret = 0;
308 
309 	for (i = 0; i < size / sizeof (ulong); i++) {
310 		mem[i] = 1 << (i % 32);
311 		if (i % 1024 == 0)
312 			WATCHDOG_RESET();
313 	}
314 
315 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
316 		readback = mem[i];
317 		if (readback != (1 << (i % 32))) {
318 			post_log("Memory error at %08x, "
319 				  "wrote %08x, read %08x !\n",
320 					  mem + i, 1 << (i % 32), readback);
321 
322 			ret = -1;
323 			break;
324 		}
325 		if (i % 1024 == 0)
326 			WATCHDOG_RESET();
327 	}
328 
329 	return ret;
330 }
331 
memory_post_test3(unsigned long start,unsigned long size)332 static int memory_post_test3(unsigned long start, unsigned long size)
333 {
334 	unsigned long i;
335 	ulong *mem = (ulong *) start;
336 	ulong readback;
337 	int ret = 0;
338 
339 	for (i = 0; i < size / sizeof (ulong); i++) {
340 		mem[i] = i;
341 		if (i % 1024 == 0)
342 			WATCHDOG_RESET();
343 	}
344 
345 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
346 		readback = mem[i];
347 		if (readback != i) {
348 			post_log("Memory error at %08x, "
349 				  "wrote %08x, read %08x !\n",
350 					  mem + i, i, readback);
351 
352 			ret = -1;
353 			break;
354 		}
355 		if (i % 1024 == 0)
356 			WATCHDOG_RESET();
357 	}
358 
359 	return ret;
360 }
361 
memory_post_test4(unsigned long start,unsigned long size)362 static int memory_post_test4(unsigned long start, unsigned long size)
363 {
364 	unsigned long i;
365 	ulong *mem = (ulong *) start;
366 	ulong readback;
367 	int ret = 0;
368 
369 	for (i = 0; i < size / sizeof (ulong); i++) {
370 		mem[i] = ~i;
371 		if (i % 1024 == 0)
372 			WATCHDOG_RESET();
373 	}
374 
375 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
376 		readback = mem[i];
377 		if (readback != ~i) {
378 			post_log("Memory error at %08x, "
379 				  "wrote %08x, read %08x !\n",
380 					  mem + i, ~i, readback);
381 
382 			ret = -1;
383 			break;
384 		}
385 		if (i % 1024 == 0)
386 			WATCHDOG_RESET();
387 	}
388 
389 	return ret;
390 }
391 
memory_post_test_lines(unsigned long start,unsigned long size)392 static int memory_post_test_lines(unsigned long start, unsigned long size)
393 {
394 	int ret = 0;
395 
396 	ret = memory_post_dataline((unsigned long long *)start);
397 	WATCHDOG_RESET();
398 	if (!ret)
399 		ret = memory_post_addrline((ulong *)start, (ulong *)start,
400 				size);
401 	WATCHDOG_RESET();
402 	if (!ret)
403 		ret = memory_post_addrline((ulong *)(start+size-8),
404 				(ulong *)start, size);
405 	WATCHDOG_RESET();
406 
407 	return ret;
408 }
409 
memory_post_test_patterns(unsigned long start,unsigned long size)410 static int memory_post_test_patterns(unsigned long start, unsigned long size)
411 {
412 	int ret = 0;
413 
414 	ret = memory_post_test1(start, size, 0x00000000);
415 	WATCHDOG_RESET();
416 	if (!ret)
417 		ret = memory_post_test1(start, size, 0xffffffff);
418 	WATCHDOG_RESET();
419 	if (!ret)
420 		ret = memory_post_test1(start, size, 0x55555555);
421 	WATCHDOG_RESET();
422 	if (!ret)
423 		ret = memory_post_test1(start, size, 0xaaaaaaaa);
424 	WATCHDOG_RESET();
425 	if (!ret)
426 		ret = memory_post_test2(start, size);
427 	WATCHDOG_RESET();
428 	if (!ret)
429 		ret = memory_post_test3(start, size);
430 	WATCHDOG_RESET();
431 	if (!ret)
432 		ret = memory_post_test4(start, size);
433 	WATCHDOG_RESET();
434 
435 	return ret;
436 }
437 
memory_post_test_regions(unsigned long start,unsigned long size)438 static int memory_post_test_regions(unsigned long start, unsigned long size)
439 {
440 	unsigned long i;
441 	int ret = 0;
442 
443 	for (i = 0; i < (size >> 20) && (!ret); i++) {
444 		if (!ret)
445 			ret = memory_post_test_patterns(start + (i << 20),
446 				0x800);
447 		if (!ret)
448 			ret = memory_post_test_patterns(start + (i << 20) +
449 				0xff800, 0x800);
450 	}
451 
452 	return ret;
453 }
454 
memory_post_tests(unsigned long start,unsigned long size)455 static int memory_post_tests(unsigned long start, unsigned long size)
456 {
457 	int ret = 0;
458 
459 	ret = memory_post_test_lines(start, size);
460 	if (!ret)
461 		ret = memory_post_test_patterns(start, size);
462 
463 	return ret;
464 }
465 
466 /*
467  * !! this is only valid, if you have contiguous memory banks !!
468  */
469 __attribute__((weak))
arch_memory_test_prepare(u32 * vstart,u32 * size,phys_addr_t * phys_offset)470 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
471 {
472 	bd_t *bd = gd->bd;
473 
474 	*vstart = CONFIG_SYS_SDRAM_BASE;
475 	*size = (gd->ram_size >= 256 << 20 ?
476 			256 << 20 : gd->ram_size) - (1 << 20);
477 
478 	/* Limit area to be tested with the board info struct */
479 	if ((*vstart) + (*size) > (ulong)bd)
480 		*size = (ulong)bd - *vstart;
481 
482 	return 0;
483 }
484 
485 __attribute__((weak))
arch_memory_test_advance(u32 * vstart,u32 * size,phys_addr_t * phys_offset)486 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
487 {
488 	return 1;
489 }
490 
491 __attribute__((weak))
arch_memory_test_cleanup(u32 * vstart,u32 * size,phys_addr_t * phys_offset)492 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
493 {
494 	return 0;
495 }
496 
497 __attribute__((weak))
arch_memory_failure_handle(void)498 void arch_memory_failure_handle(void)
499 {
500 	return;
501 }
502 
memory_regions_post_test(int flags)503 int memory_regions_post_test(int flags)
504 {
505 	int ret = 0;
506 	phys_addr_t phys_offset = 0;
507 	u32 memsize, vstart;
508 
509 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
510 
511 	ret = memory_post_test_lines(vstart, memsize);
512 	if (!ret)
513 		ret = memory_post_test_regions(vstart, memsize);
514 
515 	return ret;
516 }
517 
memory_post_test(int flags)518 int memory_post_test(int flags)
519 {
520 	int ret = 0;
521 	phys_addr_t phys_offset = 0;
522 	u32 memsize, vstart;
523 
524 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
525 
526 	do {
527 		if (flags & POST_SLOWTEST) {
528 			ret = memory_post_tests(vstart, memsize);
529 		} else {			/* POST_NORMAL */
530 			ret = memory_post_test_regions(vstart, memsize);
531 		}
532 	} while (!ret &&
533 		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));
534 
535 	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
536 	if (ret)
537 		arch_memory_failure_handle();
538 
539 	return ret;
540 }
541 
542 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */
543