1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)100 static bool do_memsw_account(void)
101 {
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _KMEM,
211 _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val) ((val) & 0xffff)
217
218 /*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223 #define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
task_is_dying(void)233 static inline bool task_is_dying(void)
234 {
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245 }
246
vmpressure_to_memcg(struct vmpressure * vmpr)247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
mem_cgroup_kmem_disabled(void)255 bool mem_cgroup_kmem_disabled(void)
256 {
257 return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
262
obj_cgroup_release(struct percpu_ref * ref)263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
294 if (nr_pages)
295 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297 spin_lock_irqsave(&objcg_lock, flags);
298 list_del(&objcg->list);
299 spin_unlock_irqrestore(&objcg_lock, flags);
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303 }
304
obj_cgroup_alloc(void)305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322 }
323
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326 {
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331 spin_lock_irq(&objcg_lock);
332
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @folio is returned. The returned css remains associated with @folio
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
mem_cgroup_css_from_folio(struct folio * folio)370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372 struct mem_cgroup *memcg = folio_memcg(folio);
373
374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 memcg = root_mem_cgroup;
376
377 return &memcg->css;
378 }
379
380 /**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
page_cgroup_ino(struct page * page)393 ino_t page_cgroup_ino(struct page *page)
394 {
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
401
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408 }
409
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_node *mz_node;
417 bool rightmost = true;
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 tree_node);
429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 p = &(*p)->rb_left;
431 rightmost = false;
432 } else {
433 p = &(*p)->rb_right;
434 }
435 }
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443 }
444
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
447 {
448 if (!mz->on_tree)
449 return;
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456 }
457
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
460 {
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
464 __mem_cgroup_remove_exceeded(mz, mctz);
465 spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
soft_limit_excess(struct mem_cgroup * memcg)468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478 }
479
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 unsigned long excess;
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
485
486 if (lru_gen_enabled()) {
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(memcg, nid);
489 return;
490 }
491
492 mctz = soft_limit_tree.rb_tree_per_node[nid];
493 if (!mctz)
494 return;
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 mz = memcg->nodeinfo[nid];
501 excess = soft_limit_excess(memcg);
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
510 /* if on-tree, remove it */
511 if (mz->on_tree)
512 __mem_cgroup_remove_exceeded(mz, mctz);
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
518 spin_unlock_irqrestore(&mctz->lock, flags);
519 }
520 }
521 }
522
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
528
529 for_each_node(nid) {
530 mz = memcg->nodeinfo[nid];
531 mctz = soft_limit_tree.rb_tree_per_node[nid];
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
534 }
535 }
536
537 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540 struct mem_cgroup_per_node *mz;
541
542 retry:
543 mz = NULL;
544 if (!mctz->rb_rightmost)
545 goto done; /* Nothing to reclaim from */
546
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
554 __mem_cgroup_remove_exceeded(mz, mctz);
555 if (!soft_limit_excess(mz->memcg) ||
556 !css_tryget(&mz->memcg->css))
557 goto retry;
558 done:
559 return mz;
560 }
561
562 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565 struct mem_cgroup_per_node *mz;
566
567 spin_lock_irq(&mctz->lock);
568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 spin_unlock_irq(&mctz->lock);
570 return mz;
571 }
572
573 /*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
memcg_stats_lock(void)603 static void memcg_stats_lock(void)
604 {
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
607 }
608
__memcg_stats_lock(void)609 static void __memcg_stats_lock(void)
610 {
611 preempt_disable_nested();
612 }
613
memcg_stats_unlock(void)614 static void memcg_stats_unlock(void)
615 {
616 preempt_enable_nested();
617 }
618
memcg_rstat_updated(struct mem_cgroup * memcg,int val)619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621 unsigned int x;
622
623 if (!val)
624 return;
625
626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 __this_cpu_write(stats_updates, 0);
639 }
640 }
641
do_flush_stats(void)642 static void do_flush_stats(void)
643 {
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
651 return;
652
653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657 atomic_set(&stats_flush_threshold, 0);
658 atomic_set(&stats_flush_ongoing, 0);
659 }
660
mem_cgroup_flush_stats(void)661 void mem_cgroup_flush_stats(void)
662 {
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
665 }
666
mem_cgroup_flush_stats_ratelimited(void)667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 mem_cgroup_flush_stats();
671 }
672
flush_memcg_stats_dwork(struct work_struct * w)673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
679 do_flush_stats();
680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685 PGPGIN,
686 PGPGOUT,
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
689 PGSCAN_KHUGEPAGED,
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
692 PGSTEAL_KHUGEPAGED,
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
init_memcg_events(void)713 static void init_memcg_events(void)
714 {
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
memcg_events_index(enum vm_event_item idx)721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723 return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
729 unsigned long events[NR_MEMCG_EVENTS];
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
733 unsigned long events_prev[NR_MEMCG_EVENTS];
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
743 unsigned long events[NR_MEMCG_EVENTS];
744
745 /* Non-hierarchical (CPU aggregated) page state & events */
746 long state_local[MEMCG_NR_STAT];
747 unsigned long events_local[NR_MEMCG_EVENTS];
748
749 /* Pending child counts during tree propagation */
750 long state_pending[MEMCG_NR_STAT];
751 unsigned long events_pending[NR_MEMCG_EVENTS];
752 };
753
memcg_page_state(struct mem_cgroup * memcg,int idx)754 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755 {
756 long x = READ_ONCE(memcg->vmstats->state[idx]);
757 #ifdef CONFIG_SMP
758 if (x < 0)
759 x = 0;
760 #endif
761 return x;
762 }
763
764 /**
765 * __mod_memcg_state - update cgroup memory statistics
766 * @memcg: the memory cgroup
767 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768 * @val: delta to add to the counter, can be negative
769 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)770 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771 {
772 if (mem_cgroup_disabled())
773 return;
774
775 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776 memcg_rstat_updated(memcg, val);
777 }
778
779 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)780 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781 {
782 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783
784 #ifdef CONFIG_SMP
785 if (x < 0)
786 x = 0;
787 #endif
788 return x;
789 }
790
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)791 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792 int val)
793 {
794 struct mem_cgroup_per_node *pn;
795 struct mem_cgroup *memcg;
796
797 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798 memcg = pn->memcg;
799
800 /*
801 * The caller from rmap relay on disabled preemption becase they never
802 * update their counter from in-interrupt context. For these two
803 * counters we check that the update is never performed from an
804 * interrupt context while other caller need to have disabled interrupt.
805 */
806 __memcg_stats_lock();
807 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808 switch (idx) {
809 case NR_ANON_MAPPED:
810 case NR_FILE_MAPPED:
811 case NR_ANON_THPS:
812 case NR_SHMEM_PMDMAPPED:
813 case NR_FILE_PMDMAPPED:
814 WARN_ON_ONCE(!in_task());
815 break;
816 default:
817 VM_WARN_ON_IRQS_ENABLED();
818 }
819 }
820
821 /* Update memcg */
822 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823
824 /* Update lruvec */
825 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826
827 memcg_rstat_updated(memcg, val);
828 memcg_stats_unlock();
829 }
830
831 /**
832 * __mod_lruvec_state - update lruvec memory statistics
833 * @lruvec: the lruvec
834 * @idx: the stat item
835 * @val: delta to add to the counter, can be negative
836 *
837 * The lruvec is the intersection of the NUMA node and a cgroup. This
838 * function updates the all three counters that are affected by a
839 * change of state at this level: per-node, per-cgroup, per-lruvec.
840 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842 int val)
843 {
844 /* Update node */
845 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847 /* Update memcg and lruvec */
848 if (!mem_cgroup_disabled())
849 __mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)852 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853 int val)
854 {
855 struct page *head = compound_head(page); /* rmap on tail pages */
856 struct mem_cgroup *memcg;
857 pg_data_t *pgdat = page_pgdat(page);
858 struct lruvec *lruvec;
859
860 rcu_read_lock();
861 memcg = page_memcg(head);
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
863 if (!memcg) {
864 rcu_read_unlock();
865 __mod_node_page_state(pgdat, idx, val);
866 return;
867 }
868
869 lruvec = mem_cgroup_lruvec(memcg, pgdat);
870 __mod_lruvec_state(lruvec, idx, val);
871 rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(__mod_lruvec_page_state);
874
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)875 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876 {
877 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 struct mem_cgroup *memcg;
879 struct lruvec *lruvec;
880
881 rcu_read_lock();
882 memcg = mem_cgroup_from_slab_obj(p);
883
884 /*
885 * Untracked pages have no memcg, no lruvec. Update only the
886 * node. If we reparent the slab objects to the root memcg,
887 * when we free the slab object, we need to update the per-memcg
888 * vmstats to keep it correct for the root memcg.
889 */
890 if (!memcg) {
891 __mod_node_page_state(pgdat, idx, val);
892 } else {
893 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 __mod_lruvec_state(lruvec, idx, val);
895 }
896 rcu_read_unlock();
897 }
898
899 /**
900 * __count_memcg_events - account VM events in a cgroup
901 * @memcg: the memory cgroup
902 * @idx: the event item
903 * @count: the number of events that occurred
904 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906 unsigned long count)
907 {
908 int index = memcg_events_index(idx);
909
910 if (mem_cgroup_disabled() || index < 0)
911 return;
912
913 memcg_stats_lock();
914 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
915 memcg_rstat_updated(memcg, count);
916 memcg_stats_unlock();
917 }
918
memcg_events(struct mem_cgroup * memcg,int event)919 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920 {
921 int index = memcg_events_index(event);
922
923 if (index < 0)
924 return 0;
925 return READ_ONCE(memcg->vmstats->events[index]);
926 }
927
memcg_events_local(struct mem_cgroup * memcg,int event)928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 int index = memcg_events_index(event);
931
932 if (index < 0)
933 return 0;
934
935 return READ_ONCE(memcg->vmstats->events_local[index]);
936 }
937
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 int nr_pages)
940 {
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
943 __count_memcg_events(memcg, PGPGIN, 1);
944 else {
945 __count_memcg_events(memcg, PGPGOUT, 1);
946 nr_pages = -nr_pages; /* for event */
947 }
948
949 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950 }
951
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)(next - val) < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 default:
969 break;
970 }
971 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972 return true;
973 }
974 return false;
975 }
976
977 /*
978 * Check events in order.
979 *
980 */
memcg_check_events(struct mem_cgroup * memcg,int nid)981 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982 {
983 if (IS_ENABLED(CONFIG_PREEMPT_RT))
984 return;
985
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990
991 do_softlimit = mem_cgroup_event_ratelimit(memcg,
992 MEM_CGROUP_TARGET_SOFTLIMIT);
993 mem_cgroup_threshold(memcg);
994 if (unlikely(do_softlimit))
995 mem_cgroup_update_tree(memcg, nid);
996 }
997 }
998
mem_cgroup_from_task(struct task_struct * p)999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001 /*
1002 * mm_update_next_owner() may clear mm->owner to NULL
1003 * if it races with swapoff, page migration, etc.
1004 * So this can be called with p == NULL.
1005 */
1006 if (unlikely(!p))
1007 return NULL;
1008
1009 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012
active_memcg(void)1013 static __always_inline struct mem_cgroup *active_memcg(void)
1014 {
1015 if (!in_task())
1016 return this_cpu_read(int_active_memcg);
1017 else
1018 return current->active_memcg;
1019 }
1020
1021 /**
1022 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023 * @mm: mm from which memcg should be extracted. It can be NULL.
1024 *
1025 * Obtain a reference on mm->memcg and returns it if successful. If mm
1026 * is NULL, then the memcg is chosen as follows:
1027 * 1) The active memcg, if set.
1028 * 2) current->mm->memcg, if available
1029 * 3) root memcg
1030 * If mem_cgroup is disabled, NULL is returned.
1031 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1032 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033 {
1034 struct mem_cgroup *memcg;
1035
1036 if (mem_cgroup_disabled())
1037 return NULL;
1038
1039 /*
1040 * Page cache insertions can happen without an
1041 * actual mm context, e.g. during disk probing
1042 * on boot, loopback IO, acct() writes etc.
1043 *
1044 * No need to css_get on root memcg as the reference
1045 * counting is disabled on the root level in the
1046 * cgroup core. See CSS_NO_REF.
1047 */
1048 if (unlikely(!mm)) {
1049 memcg = active_memcg();
1050 if (unlikely(memcg)) {
1051 /* remote memcg must hold a ref */
1052 css_get(&memcg->css);
1053 return memcg;
1054 }
1055 mm = current->mm;
1056 if (unlikely(!mm))
1057 return root_mem_cgroup;
1058 }
1059
1060 rcu_read_lock();
1061 do {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 memcg = root_mem_cgroup;
1065 } while (!css_tryget(&memcg->css));
1066 rcu_read_unlock();
1067 return memcg;
1068 }
1069 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070
memcg_kmem_bypass(void)1071 static __always_inline bool memcg_kmem_bypass(void)
1072 {
1073 /* Allow remote memcg charging from any context. */
1074 if (unlikely(active_memcg()))
1075 return false;
1076
1077 /* Memcg to charge can't be determined. */
1078 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079 return true;
1080
1081 return false;
1082 }
1083
1084 /**
1085 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086 * @root: hierarchy root
1087 * @prev: previously returned memcg, NULL on first invocation
1088 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089 *
1090 * Returns references to children of the hierarchy below @root, or
1091 * @root itself, or %NULL after a full round-trip.
1092 *
1093 * Caller must pass the return value in @prev on subsequent
1094 * invocations for reference counting, or use mem_cgroup_iter_break()
1095 * to cancel a hierarchy walk before the round-trip is complete.
1096 *
1097 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098 * in the hierarchy among all concurrent reclaimers operating on the
1099 * same node.
1100 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1101 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102 struct mem_cgroup *prev,
1103 struct mem_cgroup_reclaim_cookie *reclaim)
1104 {
1105 struct mem_cgroup_reclaim_iter *iter;
1106 struct cgroup_subsys_state *css = NULL;
1107 struct mem_cgroup *memcg = NULL;
1108 struct mem_cgroup *pos = NULL;
1109
1110 if (mem_cgroup_disabled())
1111 return NULL;
1112
1113 if (!root)
1114 root = root_mem_cgroup;
1115
1116 rcu_read_lock();
1117
1118 if (reclaim) {
1119 struct mem_cgroup_per_node *mz;
1120
1121 mz = root->nodeinfo[reclaim->pgdat->node_id];
1122 iter = &mz->iter;
1123
1124 /*
1125 * On start, join the current reclaim iteration cycle.
1126 * Exit when a concurrent walker completes it.
1127 */
1128 if (!prev)
1129 reclaim->generation = iter->generation;
1130 else if (reclaim->generation != iter->generation)
1131 goto out_unlock;
1132
1133 while (1) {
1134 pos = READ_ONCE(iter->position);
1135 if (!pos || css_tryget(&pos->css))
1136 break;
1137 /*
1138 * css reference reached zero, so iter->position will
1139 * be cleared by ->css_released. However, we should not
1140 * rely on this happening soon, because ->css_released
1141 * is called from a work queue, and by busy-waiting we
1142 * might block it. So we clear iter->position right
1143 * away.
1144 */
1145 (void)cmpxchg(&iter->position, pos, NULL);
1146 }
1147 } else if (prev) {
1148 pos = prev;
1149 }
1150
1151 if (pos)
1152 css = &pos->css;
1153
1154 for (;;) {
1155 css = css_next_descendant_pre(css, &root->css);
1156 if (!css) {
1157 /*
1158 * Reclaimers share the hierarchy walk, and a
1159 * new one might jump in right at the end of
1160 * the hierarchy - make sure they see at least
1161 * one group and restart from the beginning.
1162 */
1163 if (!prev)
1164 continue;
1165 break;
1166 }
1167
1168 /*
1169 * Verify the css and acquire a reference. The root
1170 * is provided by the caller, so we know it's alive
1171 * and kicking, and don't take an extra reference.
1172 */
1173 if (css == &root->css || css_tryget(css)) {
1174 memcg = mem_cgroup_from_css(css);
1175 break;
1176 }
1177 }
1178
1179 if (reclaim) {
1180 /*
1181 * The position could have already been updated by a competing
1182 * thread, so check that the value hasn't changed since we read
1183 * it to avoid reclaiming from the same cgroup twice.
1184 */
1185 (void)cmpxchg(&iter->position, pos, memcg);
1186
1187 if (pos)
1188 css_put(&pos->css);
1189
1190 if (!memcg)
1191 iter->generation++;
1192 }
1193
1194 out_unlock:
1195 rcu_read_unlock();
1196 if (prev && prev != root)
1197 css_put(&prev->css);
1198
1199 return memcg;
1200 }
1201
1202 /**
1203 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204 * @root: hierarchy root
1205 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1207 void mem_cgroup_iter_break(struct mem_cgroup *root,
1208 struct mem_cgroup *prev)
1209 {
1210 if (!root)
1211 root = root_mem_cgroup;
1212 if (prev && prev != root)
1213 css_put(&prev->css);
1214 }
1215
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1216 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217 struct mem_cgroup *dead_memcg)
1218 {
1219 struct mem_cgroup_reclaim_iter *iter;
1220 struct mem_cgroup_per_node *mz;
1221 int nid;
1222
1223 for_each_node(nid) {
1224 mz = from->nodeinfo[nid];
1225 iter = &mz->iter;
1226 cmpxchg(&iter->position, dead_memcg, NULL);
1227 }
1228 }
1229
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1230 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231 {
1232 struct mem_cgroup *memcg = dead_memcg;
1233 struct mem_cgroup *last;
1234
1235 do {
1236 __invalidate_reclaim_iterators(memcg, dead_memcg);
1237 last = memcg;
1238 } while ((memcg = parent_mem_cgroup(memcg)));
1239
1240 /*
1241 * When cgroup1 non-hierarchy mode is used,
1242 * parent_mem_cgroup() does not walk all the way up to the
1243 * cgroup root (root_mem_cgroup). So we have to handle
1244 * dead_memcg from cgroup root separately.
1245 */
1246 if (!mem_cgroup_is_root(last))
1247 __invalidate_reclaim_iterators(root_mem_cgroup,
1248 dead_memcg);
1249 }
1250
1251 /**
1252 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253 * @memcg: hierarchy root
1254 * @fn: function to call for each task
1255 * @arg: argument passed to @fn
1256 *
1257 * This function iterates over tasks attached to @memcg or to any of its
1258 * descendants and calls @fn for each task. If @fn returns a non-zero
1259 * value, the function breaks the iteration loop. Otherwise, it will iterate
1260 * over all tasks and return 0.
1261 *
1262 * This function must not be called for the root memory cgroup.
1263 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1264 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265 int (*fn)(struct task_struct *, void *), void *arg)
1266 {
1267 struct mem_cgroup *iter;
1268 int ret = 0;
1269
1270 BUG_ON(mem_cgroup_is_root(memcg));
1271
1272 for_each_mem_cgroup_tree(iter, memcg) {
1273 struct css_task_iter it;
1274 struct task_struct *task;
1275
1276 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277 while (!ret && (task = css_task_iter_next(&it))) {
1278 ret = fn(task, arg);
1279 /* Avoid potential softlockup warning */
1280 cond_resched();
1281 }
1282 css_task_iter_end(&it);
1283 if (ret) {
1284 mem_cgroup_iter_break(memcg, iter);
1285 break;
1286 }
1287 }
1288 }
1289
1290 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1291 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292 {
1293 struct mem_cgroup *memcg;
1294
1295 if (mem_cgroup_disabled())
1296 return;
1297
1298 memcg = folio_memcg(folio);
1299
1300 if (!memcg)
1301 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1302 else
1303 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1304 }
1305 #endif
1306
1307 /**
1308 * folio_lruvec_lock - Lock the lruvec for a folio.
1309 * @folio: Pointer to the folio.
1310 *
1311 * These functions are safe to use under any of the following conditions:
1312 * - folio locked
1313 * - folio_test_lru false
1314 * - folio_memcg_lock()
1315 * - folio frozen (refcount of 0)
1316 *
1317 * Return: The lruvec this folio is on with its lock held.
1318 */
folio_lruvec_lock(struct folio * folio)1319 struct lruvec *folio_lruvec_lock(struct folio *folio)
1320 {
1321 struct lruvec *lruvec = folio_lruvec(folio);
1322
1323 spin_lock(&lruvec->lru_lock);
1324 lruvec_memcg_debug(lruvec, folio);
1325
1326 return lruvec;
1327 }
1328
1329 /**
1330 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1331 * @folio: Pointer to the folio.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held and interrupts
1340 * disabled.
1341 */
folio_lruvec_lock_irq(struct folio * folio)1342 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1343 {
1344 struct lruvec *lruvec = folio_lruvec(folio);
1345
1346 spin_lock_irq(&lruvec->lru_lock);
1347 lruvec_memcg_debug(lruvec, folio);
1348
1349 return lruvec;
1350 }
1351
1352 /**
1353 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1354 * @folio: Pointer to the folio.
1355 * @flags: Pointer to irqsave flags.
1356 *
1357 * These functions are safe to use under any of the following conditions:
1358 * - folio locked
1359 * - folio_test_lru false
1360 * - folio_memcg_lock()
1361 * - folio frozen (refcount of 0)
1362 *
1363 * Return: The lruvec this folio is on with its lock held and interrupts
1364 * disabled.
1365 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1366 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1367 unsigned long *flags)
1368 {
1369 struct lruvec *lruvec = folio_lruvec(folio);
1370
1371 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1372 lruvec_memcg_debug(lruvec, folio);
1373
1374 return lruvec;
1375 }
1376
1377 /**
1378 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1379 * @lruvec: mem_cgroup per zone lru vector
1380 * @lru: index of lru list the page is sitting on
1381 * @zid: zone id of the accounted pages
1382 * @nr_pages: positive when adding or negative when removing
1383 *
1384 * This function must be called under lru_lock, just before a page is added
1385 * to or just after a page is removed from an lru list.
1386 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1387 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1388 int zid, int nr_pages)
1389 {
1390 struct mem_cgroup_per_node *mz;
1391 unsigned long *lru_size;
1392 long size;
1393
1394 if (mem_cgroup_disabled())
1395 return;
1396
1397 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1398 lru_size = &mz->lru_zone_size[zid][lru];
1399
1400 if (nr_pages < 0)
1401 *lru_size += nr_pages;
1402
1403 size = *lru_size;
1404 if (WARN_ONCE(size < 0,
1405 "%s(%p, %d, %d): lru_size %ld\n",
1406 __func__, lruvec, lru, nr_pages, size)) {
1407 VM_BUG_ON(1);
1408 *lru_size = 0;
1409 }
1410
1411 if (nr_pages > 0)
1412 *lru_size += nr_pages;
1413 }
1414
1415 /**
1416 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1417 * @memcg: the memory cgroup
1418 *
1419 * Returns the maximum amount of memory @mem can be charged with, in
1420 * pages.
1421 */
mem_cgroup_margin(struct mem_cgroup * memcg)1422 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1423 {
1424 unsigned long margin = 0;
1425 unsigned long count;
1426 unsigned long limit;
1427
1428 count = page_counter_read(&memcg->memory);
1429 limit = READ_ONCE(memcg->memory.max);
1430 if (count < limit)
1431 margin = limit - count;
1432
1433 if (do_memsw_account()) {
1434 count = page_counter_read(&memcg->memsw);
1435 limit = READ_ONCE(memcg->memsw.max);
1436 if (count < limit)
1437 margin = min(margin, limit - count);
1438 else
1439 margin = 0;
1440 }
1441
1442 return margin;
1443 }
1444
1445 /*
1446 * A routine for checking "mem" is under move_account() or not.
1447 *
1448 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1449 * moving cgroups. This is for waiting at high-memory pressure
1450 * caused by "move".
1451 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1452 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1453 {
1454 struct mem_cgroup *from;
1455 struct mem_cgroup *to;
1456 bool ret = false;
1457 /*
1458 * Unlike task_move routines, we access mc.to, mc.from not under
1459 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1460 */
1461 spin_lock(&mc.lock);
1462 from = mc.from;
1463 to = mc.to;
1464 if (!from)
1465 goto unlock;
1466
1467 ret = mem_cgroup_is_descendant(from, memcg) ||
1468 mem_cgroup_is_descendant(to, memcg);
1469 unlock:
1470 spin_unlock(&mc.lock);
1471 return ret;
1472 }
1473
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1474 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1475 {
1476 if (mc.moving_task && current != mc.moving_task) {
1477 if (mem_cgroup_under_move(memcg)) {
1478 DEFINE_WAIT(wait);
1479 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1480 /* moving charge context might have finished. */
1481 if (mc.moving_task)
1482 schedule();
1483 finish_wait(&mc.waitq, &wait);
1484 return true;
1485 }
1486 }
1487 return false;
1488 }
1489
1490 struct memory_stat {
1491 const char *name;
1492 unsigned int idx;
1493 };
1494
1495 static const struct memory_stat memory_stats[] = {
1496 { "anon", NR_ANON_MAPPED },
1497 { "file", NR_FILE_PAGES },
1498 { "kernel", MEMCG_KMEM },
1499 { "kernel_stack", NR_KERNEL_STACK_KB },
1500 { "pagetables", NR_PAGETABLE },
1501 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1502 { "percpu", MEMCG_PERCPU_B },
1503 { "sock", MEMCG_SOCK },
1504 { "vmalloc", MEMCG_VMALLOC },
1505 { "shmem", NR_SHMEM },
1506 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1507 { "zswap", MEMCG_ZSWAP_B },
1508 { "zswapped", MEMCG_ZSWAPPED },
1509 #endif
1510 { "file_mapped", NR_FILE_MAPPED },
1511 { "file_dirty", NR_FILE_DIRTY },
1512 { "file_writeback", NR_WRITEBACK },
1513 #ifdef CONFIG_SWAP
1514 { "swapcached", NR_SWAPCACHE },
1515 #endif
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 { "anon_thp", NR_ANON_THPS },
1518 { "file_thp", NR_FILE_THPS },
1519 { "shmem_thp", NR_SHMEM_THPS },
1520 #endif
1521 { "inactive_anon", NR_INACTIVE_ANON },
1522 { "active_anon", NR_ACTIVE_ANON },
1523 { "inactive_file", NR_INACTIVE_FILE },
1524 { "active_file", NR_ACTIVE_FILE },
1525 { "unevictable", NR_UNEVICTABLE },
1526 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1527 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1528
1529 /* The memory events */
1530 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1531 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1532 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1533 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1534 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1535 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1536 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1537 };
1538
1539 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1540 static int memcg_page_state_unit(int item)
1541 {
1542 switch (item) {
1543 case MEMCG_PERCPU_B:
1544 case MEMCG_ZSWAP_B:
1545 case NR_SLAB_RECLAIMABLE_B:
1546 case NR_SLAB_UNRECLAIMABLE_B:
1547 case WORKINGSET_REFAULT_ANON:
1548 case WORKINGSET_REFAULT_FILE:
1549 case WORKINGSET_ACTIVATE_ANON:
1550 case WORKINGSET_ACTIVATE_FILE:
1551 case WORKINGSET_RESTORE_ANON:
1552 case WORKINGSET_RESTORE_FILE:
1553 case WORKINGSET_NODERECLAIM:
1554 return 1;
1555 case NR_KERNEL_STACK_KB:
1556 return SZ_1K;
1557 default:
1558 return PAGE_SIZE;
1559 }
1560 }
1561
memcg_page_state_output(struct mem_cgroup * memcg,int item)1562 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1563 int item)
1564 {
1565 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1566 }
1567
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1568 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1569 {
1570 int i;
1571
1572 /*
1573 * Provide statistics on the state of the memory subsystem as
1574 * well as cumulative event counters that show past behavior.
1575 *
1576 * This list is ordered following a combination of these gradients:
1577 * 1) generic big picture -> specifics and details
1578 * 2) reflecting userspace activity -> reflecting kernel heuristics
1579 *
1580 * Current memory state:
1581 */
1582 mem_cgroup_flush_stats();
1583
1584 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1585 u64 size;
1586
1587 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1588 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1589
1590 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1591 size += memcg_page_state_output(memcg,
1592 NR_SLAB_RECLAIMABLE_B);
1593 seq_buf_printf(s, "slab %llu\n", size);
1594 }
1595 }
1596
1597 /* Accumulated memory events */
1598 seq_buf_printf(s, "pgscan %lu\n",
1599 memcg_events(memcg, PGSCAN_KSWAPD) +
1600 memcg_events(memcg, PGSCAN_DIRECT) +
1601 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1602 seq_buf_printf(s, "pgsteal %lu\n",
1603 memcg_events(memcg, PGSTEAL_KSWAPD) +
1604 memcg_events(memcg, PGSTEAL_DIRECT) +
1605 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1606
1607 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1608 if (memcg_vm_event_stat[i] == PGPGIN ||
1609 memcg_vm_event_stat[i] == PGPGOUT)
1610 continue;
1611
1612 seq_buf_printf(s, "%s %lu\n",
1613 vm_event_name(memcg_vm_event_stat[i]),
1614 memcg_events(memcg, memcg_vm_event_stat[i]));
1615 }
1616
1617 /* The above should easily fit into one page */
1618 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1619 }
1620
1621 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1622
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1623 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1624 {
1625 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1626 memcg_stat_format(memcg, s);
1627 else
1628 memcg1_stat_format(memcg, s);
1629 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1630 }
1631
1632 /**
1633 * mem_cgroup_print_oom_context: Print OOM information relevant to
1634 * memory controller.
1635 * @memcg: The memory cgroup that went over limit
1636 * @p: Task that is going to be killed
1637 *
1638 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1639 * enabled
1640 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1641 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1642 {
1643 rcu_read_lock();
1644
1645 if (memcg) {
1646 pr_cont(",oom_memcg=");
1647 pr_cont_cgroup_path(memcg->css.cgroup);
1648 } else
1649 pr_cont(",global_oom");
1650 if (p) {
1651 pr_cont(",task_memcg=");
1652 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1653 }
1654 rcu_read_unlock();
1655 }
1656
1657 /**
1658 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1659 * memory controller.
1660 * @memcg: The memory cgroup that went over limit
1661 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1662 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1663 {
1664 /* Use static buffer, for the caller is holding oom_lock. */
1665 static char buf[PAGE_SIZE];
1666 struct seq_buf s;
1667
1668 lockdep_assert_held(&oom_lock);
1669
1670 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1671 K((u64)page_counter_read(&memcg->memory)),
1672 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1673 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1674 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1675 K((u64)page_counter_read(&memcg->swap)),
1676 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1677 else {
1678 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1679 K((u64)page_counter_read(&memcg->memsw)),
1680 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1681 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1682 K((u64)page_counter_read(&memcg->kmem)),
1683 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1684 }
1685
1686 pr_info("Memory cgroup stats for ");
1687 pr_cont_cgroup_path(memcg->css.cgroup);
1688 pr_cont(":");
1689 seq_buf_init(&s, buf, sizeof(buf));
1690 memory_stat_format(memcg, &s);
1691 seq_buf_do_printk(&s, KERN_INFO);
1692 }
1693
1694 /*
1695 * Return the memory (and swap, if configured) limit for a memcg.
1696 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1697 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1698 {
1699 unsigned long max = READ_ONCE(memcg->memory.max);
1700
1701 if (do_memsw_account()) {
1702 if (mem_cgroup_swappiness(memcg)) {
1703 /* Calculate swap excess capacity from memsw limit */
1704 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1705
1706 max += min(swap, (unsigned long)total_swap_pages);
1707 }
1708 } else {
1709 if (mem_cgroup_swappiness(memcg))
1710 max += min(READ_ONCE(memcg->swap.max),
1711 (unsigned long)total_swap_pages);
1712 }
1713 return max;
1714 }
1715
mem_cgroup_size(struct mem_cgroup * memcg)1716 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1717 {
1718 return page_counter_read(&memcg->memory);
1719 }
1720
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1721 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1722 int order)
1723 {
1724 struct oom_control oc = {
1725 .zonelist = NULL,
1726 .nodemask = NULL,
1727 .memcg = memcg,
1728 .gfp_mask = gfp_mask,
1729 .order = order,
1730 };
1731 bool ret = true;
1732
1733 if (mutex_lock_killable(&oom_lock))
1734 return true;
1735
1736 if (mem_cgroup_margin(memcg) >= (1 << order))
1737 goto unlock;
1738
1739 /*
1740 * A few threads which were not waiting at mutex_lock_killable() can
1741 * fail to bail out. Therefore, check again after holding oom_lock.
1742 */
1743 ret = task_is_dying() || out_of_memory(&oc);
1744
1745 unlock:
1746 mutex_unlock(&oom_lock);
1747 return ret;
1748 }
1749
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1750 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1751 pg_data_t *pgdat,
1752 gfp_t gfp_mask,
1753 unsigned long *total_scanned)
1754 {
1755 struct mem_cgroup *victim = NULL;
1756 int total = 0;
1757 int loop = 0;
1758 unsigned long excess;
1759 unsigned long nr_scanned;
1760 struct mem_cgroup_reclaim_cookie reclaim = {
1761 .pgdat = pgdat,
1762 };
1763
1764 excess = soft_limit_excess(root_memcg);
1765
1766 while (1) {
1767 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1768 if (!victim) {
1769 loop++;
1770 if (loop >= 2) {
1771 /*
1772 * If we have not been able to reclaim
1773 * anything, it might because there are
1774 * no reclaimable pages under this hierarchy
1775 */
1776 if (!total)
1777 break;
1778 /*
1779 * We want to do more targeted reclaim.
1780 * excess >> 2 is not to excessive so as to
1781 * reclaim too much, nor too less that we keep
1782 * coming back to reclaim from this cgroup
1783 */
1784 if (total >= (excess >> 2) ||
1785 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1786 break;
1787 }
1788 continue;
1789 }
1790 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1791 pgdat, &nr_scanned);
1792 *total_scanned += nr_scanned;
1793 if (!soft_limit_excess(root_memcg))
1794 break;
1795 }
1796 mem_cgroup_iter_break(root_memcg, victim);
1797 return total;
1798 }
1799
1800 #ifdef CONFIG_LOCKDEP
1801 static struct lockdep_map memcg_oom_lock_dep_map = {
1802 .name = "memcg_oom_lock",
1803 };
1804 #endif
1805
1806 static DEFINE_SPINLOCK(memcg_oom_lock);
1807
1808 /*
1809 * Check OOM-Killer is already running under our hierarchy.
1810 * If someone is running, return false.
1811 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1812 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1813 {
1814 struct mem_cgroup *iter, *failed = NULL;
1815
1816 spin_lock(&memcg_oom_lock);
1817
1818 for_each_mem_cgroup_tree(iter, memcg) {
1819 if (iter->oom_lock) {
1820 /*
1821 * this subtree of our hierarchy is already locked
1822 * so we cannot give a lock.
1823 */
1824 failed = iter;
1825 mem_cgroup_iter_break(memcg, iter);
1826 break;
1827 } else
1828 iter->oom_lock = true;
1829 }
1830
1831 if (failed) {
1832 /*
1833 * OK, we failed to lock the whole subtree so we have
1834 * to clean up what we set up to the failing subtree
1835 */
1836 for_each_mem_cgroup_tree(iter, memcg) {
1837 if (iter == failed) {
1838 mem_cgroup_iter_break(memcg, iter);
1839 break;
1840 }
1841 iter->oom_lock = false;
1842 }
1843 } else
1844 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1845
1846 spin_unlock(&memcg_oom_lock);
1847
1848 return !failed;
1849 }
1850
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1851 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1852 {
1853 struct mem_cgroup *iter;
1854
1855 spin_lock(&memcg_oom_lock);
1856 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1857 for_each_mem_cgroup_tree(iter, memcg)
1858 iter->oom_lock = false;
1859 spin_unlock(&memcg_oom_lock);
1860 }
1861
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1862 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1863 {
1864 struct mem_cgroup *iter;
1865
1866 spin_lock(&memcg_oom_lock);
1867 for_each_mem_cgroup_tree(iter, memcg)
1868 iter->under_oom++;
1869 spin_unlock(&memcg_oom_lock);
1870 }
1871
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1872 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1873 {
1874 struct mem_cgroup *iter;
1875
1876 /*
1877 * Be careful about under_oom underflows because a child memcg
1878 * could have been added after mem_cgroup_mark_under_oom.
1879 */
1880 spin_lock(&memcg_oom_lock);
1881 for_each_mem_cgroup_tree(iter, memcg)
1882 if (iter->under_oom > 0)
1883 iter->under_oom--;
1884 spin_unlock(&memcg_oom_lock);
1885 }
1886
1887 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1888
1889 struct oom_wait_info {
1890 struct mem_cgroup *memcg;
1891 wait_queue_entry_t wait;
1892 };
1893
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1894 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1895 unsigned mode, int sync, void *arg)
1896 {
1897 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1898 struct mem_cgroup *oom_wait_memcg;
1899 struct oom_wait_info *oom_wait_info;
1900
1901 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1902 oom_wait_memcg = oom_wait_info->memcg;
1903
1904 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1905 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1906 return 0;
1907 return autoremove_wake_function(wait, mode, sync, arg);
1908 }
1909
memcg_oom_recover(struct mem_cgroup * memcg)1910 static void memcg_oom_recover(struct mem_cgroup *memcg)
1911 {
1912 /*
1913 * For the following lockless ->under_oom test, the only required
1914 * guarantee is that it must see the state asserted by an OOM when
1915 * this function is called as a result of userland actions
1916 * triggered by the notification of the OOM. This is trivially
1917 * achieved by invoking mem_cgroup_mark_under_oom() before
1918 * triggering notification.
1919 */
1920 if (memcg && memcg->under_oom)
1921 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1922 }
1923
1924 /*
1925 * Returns true if successfully killed one or more processes. Though in some
1926 * corner cases it can return true even without killing any process.
1927 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1928 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1929 {
1930 bool locked, ret;
1931
1932 if (order > PAGE_ALLOC_COSTLY_ORDER)
1933 return false;
1934
1935 memcg_memory_event(memcg, MEMCG_OOM);
1936
1937 /*
1938 * We are in the middle of the charge context here, so we
1939 * don't want to block when potentially sitting on a callstack
1940 * that holds all kinds of filesystem and mm locks.
1941 *
1942 * cgroup1 allows disabling the OOM killer and waiting for outside
1943 * handling until the charge can succeed; remember the context and put
1944 * the task to sleep at the end of the page fault when all locks are
1945 * released.
1946 *
1947 * On the other hand, in-kernel OOM killer allows for an async victim
1948 * memory reclaim (oom_reaper) and that means that we are not solely
1949 * relying on the oom victim to make a forward progress and we can
1950 * invoke the oom killer here.
1951 *
1952 * Please note that mem_cgroup_out_of_memory might fail to find a
1953 * victim and then we have to bail out from the charge path.
1954 */
1955 if (READ_ONCE(memcg->oom_kill_disable)) {
1956 if (current->in_user_fault) {
1957 css_get(&memcg->css);
1958 current->memcg_in_oom = memcg;
1959 current->memcg_oom_gfp_mask = mask;
1960 current->memcg_oom_order = order;
1961 }
1962 return false;
1963 }
1964
1965 mem_cgroup_mark_under_oom(memcg);
1966
1967 locked = mem_cgroup_oom_trylock(memcg);
1968
1969 if (locked)
1970 mem_cgroup_oom_notify(memcg);
1971
1972 mem_cgroup_unmark_under_oom(memcg);
1973 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1974
1975 if (locked)
1976 mem_cgroup_oom_unlock(memcg);
1977
1978 return ret;
1979 }
1980
1981 /**
1982 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1983 * @handle: actually kill/wait or just clean up the OOM state
1984 *
1985 * This has to be called at the end of a page fault if the memcg OOM
1986 * handler was enabled.
1987 *
1988 * Memcg supports userspace OOM handling where failed allocations must
1989 * sleep on a waitqueue until the userspace task resolves the
1990 * situation. Sleeping directly in the charge context with all kinds
1991 * of locks held is not a good idea, instead we remember an OOM state
1992 * in the task and mem_cgroup_oom_synchronize() has to be called at
1993 * the end of the page fault to complete the OOM handling.
1994 *
1995 * Returns %true if an ongoing memcg OOM situation was detected and
1996 * completed, %false otherwise.
1997 */
mem_cgroup_oom_synchronize(bool handle)1998 bool mem_cgroup_oom_synchronize(bool handle)
1999 {
2000 struct mem_cgroup *memcg = current->memcg_in_oom;
2001 struct oom_wait_info owait;
2002 bool locked;
2003
2004 /* OOM is global, do not handle */
2005 if (!memcg)
2006 return false;
2007
2008 if (!handle)
2009 goto cleanup;
2010
2011 owait.memcg = memcg;
2012 owait.wait.flags = 0;
2013 owait.wait.func = memcg_oom_wake_function;
2014 owait.wait.private = current;
2015 INIT_LIST_HEAD(&owait.wait.entry);
2016
2017 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2018 mem_cgroup_mark_under_oom(memcg);
2019
2020 locked = mem_cgroup_oom_trylock(memcg);
2021
2022 if (locked)
2023 mem_cgroup_oom_notify(memcg);
2024
2025 schedule();
2026 mem_cgroup_unmark_under_oom(memcg);
2027 finish_wait(&memcg_oom_waitq, &owait.wait);
2028
2029 if (locked)
2030 mem_cgroup_oom_unlock(memcg);
2031 cleanup:
2032 current->memcg_in_oom = NULL;
2033 css_put(&memcg->css);
2034 return true;
2035 }
2036
2037 /**
2038 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2039 * @victim: task to be killed by the OOM killer
2040 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2041 *
2042 * Returns a pointer to a memory cgroup, which has to be cleaned up
2043 * by killing all belonging OOM-killable tasks.
2044 *
2045 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2046 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2047 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2048 struct mem_cgroup *oom_domain)
2049 {
2050 struct mem_cgroup *oom_group = NULL;
2051 struct mem_cgroup *memcg;
2052
2053 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2054 return NULL;
2055
2056 if (!oom_domain)
2057 oom_domain = root_mem_cgroup;
2058
2059 rcu_read_lock();
2060
2061 memcg = mem_cgroup_from_task(victim);
2062 if (mem_cgroup_is_root(memcg))
2063 goto out;
2064
2065 /*
2066 * If the victim task has been asynchronously moved to a different
2067 * memory cgroup, we might end up killing tasks outside oom_domain.
2068 * In this case it's better to ignore memory.group.oom.
2069 */
2070 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2071 goto out;
2072
2073 /*
2074 * Traverse the memory cgroup hierarchy from the victim task's
2075 * cgroup up to the OOMing cgroup (or root) to find the
2076 * highest-level memory cgroup with oom.group set.
2077 */
2078 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2079 if (READ_ONCE(memcg->oom_group))
2080 oom_group = memcg;
2081
2082 if (memcg == oom_domain)
2083 break;
2084 }
2085
2086 if (oom_group)
2087 css_get(&oom_group->css);
2088 out:
2089 rcu_read_unlock();
2090
2091 return oom_group;
2092 }
2093
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2094 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2095 {
2096 pr_info("Tasks in ");
2097 pr_cont_cgroup_path(memcg->css.cgroup);
2098 pr_cont(" are going to be killed due to memory.oom.group set\n");
2099 }
2100
2101 /**
2102 * folio_memcg_lock - Bind a folio to its memcg.
2103 * @folio: The folio.
2104 *
2105 * This function prevents unlocked LRU folios from being moved to
2106 * another cgroup.
2107 *
2108 * It ensures lifetime of the bound memcg. The caller is responsible
2109 * for the lifetime of the folio.
2110 */
folio_memcg_lock(struct folio * folio)2111 void folio_memcg_lock(struct folio *folio)
2112 {
2113 struct mem_cgroup *memcg;
2114 unsigned long flags;
2115
2116 /*
2117 * The RCU lock is held throughout the transaction. The fast
2118 * path can get away without acquiring the memcg->move_lock
2119 * because page moving starts with an RCU grace period.
2120 */
2121 rcu_read_lock();
2122
2123 if (mem_cgroup_disabled())
2124 return;
2125 again:
2126 memcg = folio_memcg(folio);
2127 if (unlikely(!memcg))
2128 return;
2129
2130 #ifdef CONFIG_PROVE_LOCKING
2131 local_irq_save(flags);
2132 might_lock(&memcg->move_lock);
2133 local_irq_restore(flags);
2134 #endif
2135
2136 if (atomic_read(&memcg->moving_account) <= 0)
2137 return;
2138
2139 spin_lock_irqsave(&memcg->move_lock, flags);
2140 if (memcg != folio_memcg(folio)) {
2141 spin_unlock_irqrestore(&memcg->move_lock, flags);
2142 goto again;
2143 }
2144
2145 /*
2146 * When charge migration first begins, we can have multiple
2147 * critical sections holding the fast-path RCU lock and one
2148 * holding the slowpath move_lock. Track the task who has the
2149 * move_lock for folio_memcg_unlock().
2150 */
2151 memcg->move_lock_task = current;
2152 memcg->move_lock_flags = flags;
2153 }
2154
__folio_memcg_unlock(struct mem_cgroup * memcg)2155 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2156 {
2157 if (memcg && memcg->move_lock_task == current) {
2158 unsigned long flags = memcg->move_lock_flags;
2159
2160 memcg->move_lock_task = NULL;
2161 memcg->move_lock_flags = 0;
2162
2163 spin_unlock_irqrestore(&memcg->move_lock, flags);
2164 }
2165
2166 rcu_read_unlock();
2167 }
2168
2169 /**
2170 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2171 * @folio: The folio.
2172 *
2173 * This releases the binding created by folio_memcg_lock(). This does
2174 * not change the accounting of this folio to its memcg, but it does
2175 * permit others to change it.
2176 */
folio_memcg_unlock(struct folio * folio)2177 void folio_memcg_unlock(struct folio *folio)
2178 {
2179 __folio_memcg_unlock(folio_memcg(folio));
2180 }
2181
2182 struct memcg_stock_pcp {
2183 local_lock_t stock_lock;
2184 struct mem_cgroup *cached; /* this never be root cgroup */
2185 unsigned int nr_pages;
2186
2187 #ifdef CONFIG_MEMCG_KMEM
2188 struct obj_cgroup *cached_objcg;
2189 struct pglist_data *cached_pgdat;
2190 unsigned int nr_bytes;
2191 int nr_slab_reclaimable_b;
2192 int nr_slab_unreclaimable_b;
2193 #endif
2194
2195 struct work_struct work;
2196 unsigned long flags;
2197 #define FLUSHING_CACHED_CHARGE 0
2198 };
2199 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2200 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2201 };
2202 static DEFINE_MUTEX(percpu_charge_mutex);
2203
2204 #ifdef CONFIG_MEMCG_KMEM
2205 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2206 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207 struct mem_cgroup *root_memcg);
2208 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2209
2210 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2211 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2212 {
2213 return NULL;
2214 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2215 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2216 struct mem_cgroup *root_memcg)
2217 {
2218 return false;
2219 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2220 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2221 {
2222 }
2223 #endif
2224
2225 /**
2226 * consume_stock: Try to consume stocked charge on this cpu.
2227 * @memcg: memcg to consume from.
2228 * @nr_pages: how many pages to charge.
2229 *
2230 * The charges will only happen if @memcg matches the current cpu's memcg
2231 * stock, and at least @nr_pages are available in that stock. Failure to
2232 * service an allocation will refill the stock.
2233 *
2234 * returns true if successful, false otherwise.
2235 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2236 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2237 {
2238 struct memcg_stock_pcp *stock;
2239 unsigned long flags;
2240 bool ret = false;
2241
2242 if (nr_pages > MEMCG_CHARGE_BATCH)
2243 return ret;
2244
2245 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2246
2247 stock = this_cpu_ptr(&memcg_stock);
2248 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2249 stock->nr_pages -= nr_pages;
2250 ret = true;
2251 }
2252
2253 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2254
2255 return ret;
2256 }
2257
2258 /*
2259 * Returns stocks cached in percpu and reset cached information.
2260 */
drain_stock(struct memcg_stock_pcp * stock)2261 static void drain_stock(struct memcg_stock_pcp *stock)
2262 {
2263 struct mem_cgroup *old = READ_ONCE(stock->cached);
2264
2265 if (!old)
2266 return;
2267
2268 if (stock->nr_pages) {
2269 page_counter_uncharge(&old->memory, stock->nr_pages);
2270 if (do_memsw_account())
2271 page_counter_uncharge(&old->memsw, stock->nr_pages);
2272 stock->nr_pages = 0;
2273 }
2274
2275 css_put(&old->css);
2276 WRITE_ONCE(stock->cached, NULL);
2277 }
2278
drain_local_stock(struct work_struct * dummy)2279 static void drain_local_stock(struct work_struct *dummy)
2280 {
2281 struct memcg_stock_pcp *stock;
2282 struct obj_cgroup *old = NULL;
2283 unsigned long flags;
2284
2285 /*
2286 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2287 * drain_stock races is that we always operate on local CPU stock
2288 * here with IRQ disabled
2289 */
2290 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2291
2292 stock = this_cpu_ptr(&memcg_stock);
2293 old = drain_obj_stock(stock);
2294 drain_stock(stock);
2295 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2296
2297 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2298 if (old)
2299 obj_cgroup_put(old);
2300 }
2301
2302 /*
2303 * Cache charges(val) to local per_cpu area.
2304 * This will be consumed by consume_stock() function, later.
2305 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2306 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2307 {
2308 struct memcg_stock_pcp *stock;
2309
2310 stock = this_cpu_ptr(&memcg_stock);
2311 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2312 drain_stock(stock);
2313 css_get(&memcg->css);
2314 WRITE_ONCE(stock->cached, memcg);
2315 }
2316 stock->nr_pages += nr_pages;
2317
2318 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2319 drain_stock(stock);
2320 }
2321
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2322 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2323 {
2324 unsigned long flags;
2325
2326 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2327 __refill_stock(memcg, nr_pages);
2328 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2329 }
2330
2331 /*
2332 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2333 * of the hierarchy under it.
2334 */
drain_all_stock(struct mem_cgroup * root_memcg)2335 static void drain_all_stock(struct mem_cgroup *root_memcg)
2336 {
2337 int cpu, curcpu;
2338
2339 /* If someone's already draining, avoid adding running more workers. */
2340 if (!mutex_trylock(&percpu_charge_mutex))
2341 return;
2342 /*
2343 * Notify other cpus that system-wide "drain" is running
2344 * We do not care about races with the cpu hotplug because cpu down
2345 * as well as workers from this path always operate on the local
2346 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2347 */
2348 migrate_disable();
2349 curcpu = smp_processor_id();
2350 for_each_online_cpu(cpu) {
2351 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2352 struct mem_cgroup *memcg;
2353 bool flush = false;
2354
2355 rcu_read_lock();
2356 memcg = READ_ONCE(stock->cached);
2357 if (memcg && stock->nr_pages &&
2358 mem_cgroup_is_descendant(memcg, root_memcg))
2359 flush = true;
2360 else if (obj_stock_flush_required(stock, root_memcg))
2361 flush = true;
2362 rcu_read_unlock();
2363
2364 if (flush &&
2365 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2366 if (cpu == curcpu)
2367 drain_local_stock(&stock->work);
2368 else if (!cpu_is_isolated(cpu))
2369 schedule_work_on(cpu, &stock->work);
2370 }
2371 }
2372 migrate_enable();
2373 mutex_unlock(&percpu_charge_mutex);
2374 }
2375
memcg_hotplug_cpu_dead(unsigned int cpu)2376 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2377 {
2378 struct memcg_stock_pcp *stock;
2379
2380 stock = &per_cpu(memcg_stock, cpu);
2381 drain_stock(stock);
2382
2383 return 0;
2384 }
2385
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2386 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2387 unsigned int nr_pages,
2388 gfp_t gfp_mask)
2389 {
2390 unsigned long nr_reclaimed = 0;
2391
2392 do {
2393 unsigned long pflags;
2394
2395 if (page_counter_read(&memcg->memory) <=
2396 READ_ONCE(memcg->memory.high))
2397 continue;
2398
2399 memcg_memory_event(memcg, MEMCG_HIGH);
2400
2401 psi_memstall_enter(&pflags);
2402 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2403 gfp_mask,
2404 MEMCG_RECLAIM_MAY_SWAP);
2405 psi_memstall_leave(&pflags);
2406 } while ((memcg = parent_mem_cgroup(memcg)) &&
2407 !mem_cgroup_is_root(memcg));
2408
2409 return nr_reclaimed;
2410 }
2411
high_work_func(struct work_struct * work)2412 static void high_work_func(struct work_struct *work)
2413 {
2414 struct mem_cgroup *memcg;
2415
2416 memcg = container_of(work, struct mem_cgroup, high_work);
2417 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2418 }
2419
2420 /*
2421 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2422 * enough to still cause a significant slowdown in most cases, while still
2423 * allowing diagnostics and tracing to proceed without becoming stuck.
2424 */
2425 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2426
2427 /*
2428 * When calculating the delay, we use these either side of the exponentiation to
2429 * maintain precision and scale to a reasonable number of jiffies (see the table
2430 * below.
2431 *
2432 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2433 * overage ratio to a delay.
2434 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2435 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2436 * to produce a reasonable delay curve.
2437 *
2438 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2439 * reasonable delay curve compared to precision-adjusted overage, not
2440 * penalising heavily at first, but still making sure that growth beyond the
2441 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2442 * example, with a high of 100 megabytes:
2443 *
2444 * +-------+------------------------+
2445 * | usage | time to allocate in ms |
2446 * +-------+------------------------+
2447 * | 100M | 0 |
2448 * | 101M | 6 |
2449 * | 102M | 25 |
2450 * | 103M | 57 |
2451 * | 104M | 102 |
2452 * | 105M | 159 |
2453 * | 106M | 230 |
2454 * | 107M | 313 |
2455 * | 108M | 409 |
2456 * | 109M | 518 |
2457 * | 110M | 639 |
2458 * | 111M | 774 |
2459 * | 112M | 921 |
2460 * | 113M | 1081 |
2461 * | 114M | 1254 |
2462 * | 115M | 1439 |
2463 * | 116M | 1638 |
2464 * | 117M | 1849 |
2465 * | 118M | 2000 |
2466 * | 119M | 2000 |
2467 * | 120M | 2000 |
2468 * +-------+------------------------+
2469 */
2470 #define MEMCG_DELAY_PRECISION_SHIFT 20
2471 #define MEMCG_DELAY_SCALING_SHIFT 14
2472
calculate_overage(unsigned long usage,unsigned long high)2473 static u64 calculate_overage(unsigned long usage, unsigned long high)
2474 {
2475 u64 overage;
2476
2477 if (usage <= high)
2478 return 0;
2479
2480 /*
2481 * Prevent division by 0 in overage calculation by acting as if
2482 * it was a threshold of 1 page
2483 */
2484 high = max(high, 1UL);
2485
2486 overage = usage - high;
2487 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2488 return div64_u64(overage, high);
2489 }
2490
mem_find_max_overage(struct mem_cgroup * memcg)2491 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2492 {
2493 u64 overage, max_overage = 0;
2494
2495 do {
2496 overage = calculate_overage(page_counter_read(&memcg->memory),
2497 READ_ONCE(memcg->memory.high));
2498 max_overage = max(overage, max_overage);
2499 } while ((memcg = parent_mem_cgroup(memcg)) &&
2500 !mem_cgroup_is_root(memcg));
2501
2502 return max_overage;
2503 }
2504
swap_find_max_overage(struct mem_cgroup * memcg)2505 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2506 {
2507 u64 overage, max_overage = 0;
2508
2509 do {
2510 overage = calculate_overage(page_counter_read(&memcg->swap),
2511 READ_ONCE(memcg->swap.high));
2512 if (overage)
2513 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2514 max_overage = max(overage, max_overage);
2515 } while ((memcg = parent_mem_cgroup(memcg)) &&
2516 !mem_cgroup_is_root(memcg));
2517
2518 return max_overage;
2519 }
2520
2521 /*
2522 * Get the number of jiffies that we should penalise a mischievous cgroup which
2523 * is exceeding its memory.high by checking both it and its ancestors.
2524 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2525 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2526 unsigned int nr_pages,
2527 u64 max_overage)
2528 {
2529 unsigned long penalty_jiffies;
2530
2531 if (!max_overage)
2532 return 0;
2533
2534 /*
2535 * We use overage compared to memory.high to calculate the number of
2536 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2537 * fairly lenient on small overages, and increasingly harsh when the
2538 * memcg in question makes it clear that it has no intention of stopping
2539 * its crazy behaviour, so we exponentially increase the delay based on
2540 * overage amount.
2541 */
2542 penalty_jiffies = max_overage * max_overage * HZ;
2543 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2544 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2545
2546 /*
2547 * Factor in the task's own contribution to the overage, such that four
2548 * N-sized allocations are throttled approximately the same as one
2549 * 4N-sized allocation.
2550 *
2551 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2552 * larger the current charge patch is than that.
2553 */
2554 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2555 }
2556
2557 /*
2558 * Scheduled by try_charge() to be executed from the userland return path
2559 * and reclaims memory over the high limit.
2560 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2561 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2562 {
2563 unsigned long penalty_jiffies;
2564 unsigned long pflags;
2565 unsigned long nr_reclaimed;
2566 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2567 int nr_retries = MAX_RECLAIM_RETRIES;
2568 struct mem_cgroup *memcg;
2569 bool in_retry = false;
2570
2571 if (likely(!nr_pages))
2572 return;
2573
2574 memcg = get_mem_cgroup_from_mm(current->mm);
2575 current->memcg_nr_pages_over_high = 0;
2576
2577 retry_reclaim:
2578 /*
2579 * The allocating task should reclaim at least the batch size, but for
2580 * subsequent retries we only want to do what's necessary to prevent oom
2581 * or breaching resource isolation.
2582 *
2583 * This is distinct from memory.max or page allocator behaviour because
2584 * memory.high is currently batched, whereas memory.max and the page
2585 * allocator run every time an allocation is made.
2586 */
2587 nr_reclaimed = reclaim_high(memcg,
2588 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2589 gfp_mask);
2590
2591 /*
2592 * memory.high is breached and reclaim is unable to keep up. Throttle
2593 * allocators proactively to slow down excessive growth.
2594 */
2595 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2596 mem_find_max_overage(memcg));
2597
2598 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2599 swap_find_max_overage(memcg));
2600
2601 /*
2602 * Clamp the max delay per usermode return so as to still keep the
2603 * application moving forwards and also permit diagnostics, albeit
2604 * extremely slowly.
2605 */
2606 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2607
2608 /*
2609 * Don't sleep if the amount of jiffies this memcg owes us is so low
2610 * that it's not even worth doing, in an attempt to be nice to those who
2611 * go only a small amount over their memory.high value and maybe haven't
2612 * been aggressively reclaimed enough yet.
2613 */
2614 if (penalty_jiffies <= HZ / 100)
2615 goto out;
2616
2617 /*
2618 * If reclaim is making forward progress but we're still over
2619 * memory.high, we want to encourage that rather than doing allocator
2620 * throttling.
2621 */
2622 if (nr_reclaimed || nr_retries--) {
2623 in_retry = true;
2624 goto retry_reclaim;
2625 }
2626
2627 /*
2628 * If we exit early, we're guaranteed to die (since
2629 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2630 * need to account for any ill-begotten jiffies to pay them off later.
2631 */
2632 psi_memstall_enter(&pflags);
2633 schedule_timeout_killable(penalty_jiffies);
2634 psi_memstall_leave(&pflags);
2635
2636 out:
2637 css_put(&memcg->css);
2638 }
2639
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2640 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2641 unsigned int nr_pages)
2642 {
2643 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2644 int nr_retries = MAX_RECLAIM_RETRIES;
2645 struct mem_cgroup *mem_over_limit;
2646 struct page_counter *counter;
2647 unsigned long nr_reclaimed;
2648 bool passed_oom = false;
2649 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2650 bool drained = false;
2651 bool raised_max_event = false;
2652 unsigned long pflags;
2653
2654 retry:
2655 if (consume_stock(memcg, nr_pages))
2656 return 0;
2657
2658 if (!do_memsw_account() ||
2659 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2660 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2661 goto done_restock;
2662 if (do_memsw_account())
2663 page_counter_uncharge(&memcg->memsw, batch);
2664 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2665 } else {
2666 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2667 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2668 }
2669
2670 if (batch > nr_pages) {
2671 batch = nr_pages;
2672 goto retry;
2673 }
2674
2675 /*
2676 * Prevent unbounded recursion when reclaim operations need to
2677 * allocate memory. This might exceed the limits temporarily,
2678 * but we prefer facilitating memory reclaim and getting back
2679 * under the limit over triggering OOM kills in these cases.
2680 */
2681 if (unlikely(current->flags & PF_MEMALLOC))
2682 goto force;
2683
2684 if (unlikely(task_in_memcg_oom(current)))
2685 goto nomem;
2686
2687 if (!gfpflags_allow_blocking(gfp_mask))
2688 goto nomem;
2689
2690 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2691 raised_max_event = true;
2692
2693 psi_memstall_enter(&pflags);
2694 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2695 gfp_mask, reclaim_options);
2696 psi_memstall_leave(&pflags);
2697
2698 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2699 goto retry;
2700
2701 if (!drained) {
2702 drain_all_stock(mem_over_limit);
2703 drained = true;
2704 goto retry;
2705 }
2706
2707 if (gfp_mask & __GFP_NORETRY)
2708 goto nomem;
2709 /*
2710 * Even though the limit is exceeded at this point, reclaim
2711 * may have been able to free some pages. Retry the charge
2712 * before killing the task.
2713 *
2714 * Only for regular pages, though: huge pages are rather
2715 * unlikely to succeed so close to the limit, and we fall back
2716 * to regular pages anyway in case of failure.
2717 */
2718 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2719 goto retry;
2720 /*
2721 * At task move, charge accounts can be doubly counted. So, it's
2722 * better to wait until the end of task_move if something is going on.
2723 */
2724 if (mem_cgroup_wait_acct_move(mem_over_limit))
2725 goto retry;
2726
2727 if (nr_retries--)
2728 goto retry;
2729
2730 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2731 goto nomem;
2732
2733 /* Avoid endless loop for tasks bypassed by the oom killer */
2734 if (passed_oom && task_is_dying())
2735 goto nomem;
2736
2737 /*
2738 * keep retrying as long as the memcg oom killer is able to make
2739 * a forward progress or bypass the charge if the oom killer
2740 * couldn't make any progress.
2741 */
2742 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2743 get_order(nr_pages * PAGE_SIZE))) {
2744 passed_oom = true;
2745 nr_retries = MAX_RECLAIM_RETRIES;
2746 goto retry;
2747 }
2748 nomem:
2749 /*
2750 * Memcg doesn't have a dedicated reserve for atomic
2751 * allocations. But like the global atomic pool, we need to
2752 * put the burden of reclaim on regular allocation requests
2753 * and let these go through as privileged allocations.
2754 */
2755 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2756 return -ENOMEM;
2757 force:
2758 /*
2759 * If the allocation has to be enforced, don't forget to raise
2760 * a MEMCG_MAX event.
2761 */
2762 if (!raised_max_event)
2763 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2764
2765 /*
2766 * The allocation either can't fail or will lead to more memory
2767 * being freed very soon. Allow memory usage go over the limit
2768 * temporarily by force charging it.
2769 */
2770 page_counter_charge(&memcg->memory, nr_pages);
2771 if (do_memsw_account())
2772 page_counter_charge(&memcg->memsw, nr_pages);
2773
2774 return 0;
2775
2776 done_restock:
2777 if (batch > nr_pages)
2778 refill_stock(memcg, batch - nr_pages);
2779
2780 /*
2781 * If the hierarchy is above the normal consumption range, schedule
2782 * reclaim on returning to userland. We can perform reclaim here
2783 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2784 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2785 * not recorded as it most likely matches current's and won't
2786 * change in the meantime. As high limit is checked again before
2787 * reclaim, the cost of mismatch is negligible.
2788 */
2789 do {
2790 bool mem_high, swap_high;
2791
2792 mem_high = page_counter_read(&memcg->memory) >
2793 READ_ONCE(memcg->memory.high);
2794 swap_high = page_counter_read(&memcg->swap) >
2795 READ_ONCE(memcg->swap.high);
2796
2797 /* Don't bother a random interrupted task */
2798 if (!in_task()) {
2799 if (mem_high) {
2800 schedule_work(&memcg->high_work);
2801 break;
2802 }
2803 continue;
2804 }
2805
2806 if (mem_high || swap_high) {
2807 /*
2808 * The allocating tasks in this cgroup will need to do
2809 * reclaim or be throttled to prevent further growth
2810 * of the memory or swap footprints.
2811 *
2812 * Target some best-effort fairness between the tasks,
2813 * and distribute reclaim work and delay penalties
2814 * based on how much each task is actually allocating.
2815 */
2816 current->memcg_nr_pages_over_high += batch;
2817 set_notify_resume(current);
2818 break;
2819 }
2820 } while ((memcg = parent_mem_cgroup(memcg)));
2821
2822 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2823 !(current->flags & PF_MEMALLOC) &&
2824 gfpflags_allow_blocking(gfp_mask)) {
2825 mem_cgroup_handle_over_high(gfp_mask);
2826 }
2827 return 0;
2828 }
2829
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2830 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2831 unsigned int nr_pages)
2832 {
2833 if (mem_cgroup_is_root(memcg))
2834 return 0;
2835
2836 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2837 }
2838
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2839 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2840 {
2841 if (mem_cgroup_is_root(memcg))
2842 return;
2843
2844 page_counter_uncharge(&memcg->memory, nr_pages);
2845 if (do_memsw_account())
2846 page_counter_uncharge(&memcg->memsw, nr_pages);
2847 }
2848
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2849 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2850 {
2851 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2852 /*
2853 * Any of the following ensures page's memcg stability:
2854 *
2855 * - the page lock
2856 * - LRU isolation
2857 * - folio_memcg_lock()
2858 * - exclusive reference
2859 * - mem_cgroup_trylock_pages()
2860 */
2861 folio->memcg_data = (unsigned long)memcg;
2862 }
2863
2864 #ifdef CONFIG_MEMCG_KMEM
2865 /*
2866 * The allocated objcg pointers array is not accounted directly.
2867 * Moreover, it should not come from DMA buffer and is not readily
2868 * reclaimable. So those GFP bits should be masked off.
2869 */
2870 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2871 __GFP_ACCOUNT | __GFP_NOFAIL)
2872
2873 /*
2874 * mod_objcg_mlstate() may be called with irq enabled, so
2875 * mod_memcg_lruvec_state() should be used.
2876 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2877 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2878 struct pglist_data *pgdat,
2879 enum node_stat_item idx, int nr)
2880 {
2881 struct mem_cgroup *memcg;
2882 struct lruvec *lruvec;
2883
2884 rcu_read_lock();
2885 memcg = obj_cgroup_memcg(objcg);
2886 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2887 mod_memcg_lruvec_state(lruvec, idx, nr);
2888 rcu_read_unlock();
2889 }
2890
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2891 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2892 gfp_t gfp, bool new_slab)
2893 {
2894 unsigned int objects = objs_per_slab(s, slab);
2895 unsigned long memcg_data;
2896 void *vec;
2897
2898 gfp &= ~OBJCGS_CLEAR_MASK;
2899 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2900 slab_nid(slab));
2901 if (!vec)
2902 return -ENOMEM;
2903
2904 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2905 if (new_slab) {
2906 /*
2907 * If the slab is brand new and nobody can yet access its
2908 * memcg_data, no synchronization is required and memcg_data can
2909 * be simply assigned.
2910 */
2911 slab->memcg_data = memcg_data;
2912 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2913 /*
2914 * If the slab is already in use, somebody can allocate and
2915 * assign obj_cgroups in parallel. In this case the existing
2916 * objcg vector should be reused.
2917 */
2918 kfree(vec);
2919 return 0;
2920 }
2921
2922 kmemleak_not_leak(vec);
2923 return 0;
2924 }
2925
2926 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2927 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2928 {
2929 /*
2930 * Slab objects are accounted individually, not per-page.
2931 * Memcg membership data for each individual object is saved in
2932 * slab->memcg_data.
2933 */
2934 if (folio_test_slab(folio)) {
2935 struct obj_cgroup **objcgs;
2936 struct slab *slab;
2937 unsigned int off;
2938
2939 slab = folio_slab(folio);
2940 objcgs = slab_objcgs(slab);
2941 if (!objcgs)
2942 return NULL;
2943
2944 off = obj_to_index(slab->slab_cache, slab, p);
2945 if (objcgs[off])
2946 return obj_cgroup_memcg(objcgs[off]);
2947
2948 return NULL;
2949 }
2950
2951 /*
2952 * folio_memcg_check() is used here, because in theory we can encounter
2953 * a folio where the slab flag has been cleared already, but
2954 * slab->memcg_data has not been freed yet
2955 * folio_memcg_check() will guarantee that a proper memory
2956 * cgroup pointer or NULL will be returned.
2957 */
2958 return folio_memcg_check(folio);
2959 }
2960
2961 /*
2962 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2963 *
2964 * A passed kernel object can be a slab object, vmalloc object or a generic
2965 * kernel page, so different mechanisms for getting the memory cgroup pointer
2966 * should be used.
2967 *
2968 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2969 * can not know for sure how the kernel object is implemented.
2970 * mem_cgroup_from_obj() can be safely used in such cases.
2971 *
2972 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2973 * cgroup_mutex, etc.
2974 */
mem_cgroup_from_obj(void * p)2975 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2976 {
2977 struct folio *folio;
2978
2979 if (mem_cgroup_disabled())
2980 return NULL;
2981
2982 if (unlikely(is_vmalloc_addr(p)))
2983 folio = page_folio(vmalloc_to_page(p));
2984 else
2985 folio = virt_to_folio(p);
2986
2987 return mem_cgroup_from_obj_folio(folio, p);
2988 }
2989
2990 /*
2991 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2993 * allocated using vmalloc().
2994 *
2995 * A passed kernel object must be a slab object or a generic kernel page.
2996 *
2997 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2998 * cgroup_mutex, etc.
2999 */
mem_cgroup_from_slab_obj(void * p)3000 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3001 {
3002 if (mem_cgroup_disabled())
3003 return NULL;
3004
3005 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3006 }
3007
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)3008 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3009 {
3010 struct obj_cgroup *objcg = NULL;
3011
3012 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3013 objcg = rcu_dereference(memcg->objcg);
3014 if (objcg && obj_cgroup_tryget(objcg))
3015 break;
3016 objcg = NULL;
3017 }
3018 return objcg;
3019 }
3020
get_obj_cgroup_from_current(void)3021 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3022 {
3023 struct obj_cgroup *objcg = NULL;
3024 struct mem_cgroup *memcg;
3025
3026 if (memcg_kmem_bypass())
3027 return NULL;
3028
3029 rcu_read_lock();
3030 if (unlikely(active_memcg()))
3031 memcg = active_memcg();
3032 else
3033 memcg = mem_cgroup_from_task(current);
3034 objcg = __get_obj_cgroup_from_memcg(memcg);
3035 rcu_read_unlock();
3036 return objcg;
3037 }
3038
get_obj_cgroup_from_folio(struct folio * folio)3039 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3040 {
3041 struct obj_cgroup *objcg;
3042
3043 if (!memcg_kmem_online())
3044 return NULL;
3045
3046 if (folio_memcg_kmem(folio)) {
3047 objcg = __folio_objcg(folio);
3048 obj_cgroup_get(objcg);
3049 } else {
3050 struct mem_cgroup *memcg;
3051
3052 rcu_read_lock();
3053 memcg = __folio_memcg(folio);
3054 if (memcg)
3055 objcg = __get_obj_cgroup_from_memcg(memcg);
3056 else
3057 objcg = NULL;
3058 rcu_read_unlock();
3059 }
3060 return objcg;
3061 }
3062
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)3063 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3064 {
3065 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3067 if (nr_pages > 0)
3068 page_counter_charge(&memcg->kmem, nr_pages);
3069 else
3070 page_counter_uncharge(&memcg->kmem, -nr_pages);
3071 }
3072 }
3073
3074
3075 /*
3076 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3077 * @objcg: object cgroup to uncharge
3078 * @nr_pages: number of pages to uncharge
3079 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3080 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3081 unsigned int nr_pages)
3082 {
3083 struct mem_cgroup *memcg;
3084
3085 memcg = get_mem_cgroup_from_objcg(objcg);
3086
3087 memcg_account_kmem(memcg, -nr_pages);
3088 refill_stock(memcg, nr_pages);
3089
3090 css_put(&memcg->css);
3091 }
3092
3093 /*
3094 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3095 * @objcg: object cgroup to charge
3096 * @gfp: reclaim mode
3097 * @nr_pages: number of pages to charge
3098 *
3099 * Returns 0 on success, an error code on failure.
3100 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3101 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3102 unsigned int nr_pages)
3103 {
3104 struct mem_cgroup *memcg;
3105 int ret;
3106
3107 memcg = get_mem_cgroup_from_objcg(objcg);
3108
3109 ret = try_charge_memcg(memcg, gfp, nr_pages);
3110 if (ret)
3111 goto out;
3112
3113 memcg_account_kmem(memcg, nr_pages);
3114 out:
3115 css_put(&memcg->css);
3116
3117 return ret;
3118 }
3119
3120 /**
3121 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3122 * @page: page to charge
3123 * @gfp: reclaim mode
3124 * @order: allocation order
3125 *
3126 * Returns 0 on success, an error code on failure.
3127 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3128 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3129 {
3130 struct obj_cgroup *objcg;
3131 int ret = 0;
3132
3133 objcg = get_obj_cgroup_from_current();
3134 if (objcg) {
3135 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3136 if (!ret) {
3137 page->memcg_data = (unsigned long)objcg |
3138 MEMCG_DATA_KMEM;
3139 return 0;
3140 }
3141 obj_cgroup_put(objcg);
3142 }
3143 return ret;
3144 }
3145
3146 /**
3147 * __memcg_kmem_uncharge_page: uncharge a kmem page
3148 * @page: page to uncharge
3149 * @order: allocation order
3150 */
__memcg_kmem_uncharge_page(struct page * page,int order)3151 void __memcg_kmem_uncharge_page(struct page *page, int order)
3152 {
3153 struct folio *folio = page_folio(page);
3154 struct obj_cgroup *objcg;
3155 unsigned int nr_pages = 1 << order;
3156
3157 if (!folio_memcg_kmem(folio))
3158 return;
3159
3160 objcg = __folio_objcg(folio);
3161 obj_cgroup_uncharge_pages(objcg, nr_pages);
3162 folio->memcg_data = 0;
3163 obj_cgroup_put(objcg);
3164 }
3165
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3166 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3167 enum node_stat_item idx, int nr)
3168 {
3169 struct memcg_stock_pcp *stock;
3170 struct obj_cgroup *old = NULL;
3171 unsigned long flags;
3172 int *bytes;
3173
3174 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3175 stock = this_cpu_ptr(&memcg_stock);
3176
3177 /*
3178 * Save vmstat data in stock and skip vmstat array update unless
3179 * accumulating over a page of vmstat data or when pgdat or idx
3180 * changes.
3181 */
3182 if (READ_ONCE(stock->cached_objcg) != objcg) {
3183 old = drain_obj_stock(stock);
3184 obj_cgroup_get(objcg);
3185 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3186 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3187 WRITE_ONCE(stock->cached_objcg, objcg);
3188 stock->cached_pgdat = pgdat;
3189 } else if (stock->cached_pgdat != pgdat) {
3190 /* Flush the existing cached vmstat data */
3191 struct pglist_data *oldpg = stock->cached_pgdat;
3192
3193 if (stock->nr_slab_reclaimable_b) {
3194 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3195 stock->nr_slab_reclaimable_b);
3196 stock->nr_slab_reclaimable_b = 0;
3197 }
3198 if (stock->nr_slab_unreclaimable_b) {
3199 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3200 stock->nr_slab_unreclaimable_b);
3201 stock->nr_slab_unreclaimable_b = 0;
3202 }
3203 stock->cached_pgdat = pgdat;
3204 }
3205
3206 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3207 : &stock->nr_slab_unreclaimable_b;
3208 /*
3209 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3210 * cached locally at least once before pushing it out.
3211 */
3212 if (!*bytes) {
3213 *bytes = nr;
3214 nr = 0;
3215 } else {
3216 *bytes += nr;
3217 if (abs(*bytes) > PAGE_SIZE) {
3218 nr = *bytes;
3219 *bytes = 0;
3220 } else {
3221 nr = 0;
3222 }
3223 }
3224 if (nr)
3225 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3226
3227 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3228 if (old)
3229 obj_cgroup_put(old);
3230 }
3231
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3232 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3233 {
3234 struct memcg_stock_pcp *stock;
3235 unsigned long flags;
3236 bool ret = false;
3237
3238 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3239
3240 stock = this_cpu_ptr(&memcg_stock);
3241 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3242 stock->nr_bytes -= nr_bytes;
3243 ret = true;
3244 }
3245
3246 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3247
3248 return ret;
3249 }
3250
drain_obj_stock(struct memcg_stock_pcp * stock)3251 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3252 {
3253 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3254
3255 if (!old)
3256 return NULL;
3257
3258 if (stock->nr_bytes) {
3259 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3260 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3261
3262 if (nr_pages) {
3263 struct mem_cgroup *memcg;
3264
3265 memcg = get_mem_cgroup_from_objcg(old);
3266
3267 memcg_account_kmem(memcg, -nr_pages);
3268 __refill_stock(memcg, nr_pages);
3269
3270 css_put(&memcg->css);
3271 }
3272
3273 /*
3274 * The leftover is flushed to the centralized per-memcg value.
3275 * On the next attempt to refill obj stock it will be moved
3276 * to a per-cpu stock (probably, on an other CPU), see
3277 * refill_obj_stock().
3278 *
3279 * How often it's flushed is a trade-off between the memory
3280 * limit enforcement accuracy and potential CPU contention,
3281 * so it might be changed in the future.
3282 */
3283 atomic_add(nr_bytes, &old->nr_charged_bytes);
3284 stock->nr_bytes = 0;
3285 }
3286
3287 /*
3288 * Flush the vmstat data in current stock
3289 */
3290 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3291 if (stock->nr_slab_reclaimable_b) {
3292 mod_objcg_mlstate(old, stock->cached_pgdat,
3293 NR_SLAB_RECLAIMABLE_B,
3294 stock->nr_slab_reclaimable_b);
3295 stock->nr_slab_reclaimable_b = 0;
3296 }
3297 if (stock->nr_slab_unreclaimable_b) {
3298 mod_objcg_mlstate(old, stock->cached_pgdat,
3299 NR_SLAB_UNRECLAIMABLE_B,
3300 stock->nr_slab_unreclaimable_b);
3301 stock->nr_slab_unreclaimable_b = 0;
3302 }
3303 stock->cached_pgdat = NULL;
3304 }
3305
3306 WRITE_ONCE(stock->cached_objcg, NULL);
3307 /*
3308 * The `old' objects needs to be released by the caller via
3309 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3310 */
3311 return old;
3312 }
3313
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3314 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3315 struct mem_cgroup *root_memcg)
3316 {
3317 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3318 struct mem_cgroup *memcg;
3319
3320 if (objcg) {
3321 memcg = obj_cgroup_memcg(objcg);
3322 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3323 return true;
3324 }
3325
3326 return false;
3327 }
3328
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3329 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3330 bool allow_uncharge)
3331 {
3332 struct memcg_stock_pcp *stock;
3333 struct obj_cgroup *old = NULL;
3334 unsigned long flags;
3335 unsigned int nr_pages = 0;
3336
3337 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3338
3339 stock = this_cpu_ptr(&memcg_stock);
3340 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3341 old = drain_obj_stock(stock);
3342 obj_cgroup_get(objcg);
3343 WRITE_ONCE(stock->cached_objcg, objcg);
3344 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3345 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3346 allow_uncharge = true; /* Allow uncharge when objcg changes */
3347 }
3348 stock->nr_bytes += nr_bytes;
3349
3350 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3351 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3352 stock->nr_bytes &= (PAGE_SIZE - 1);
3353 }
3354
3355 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3356 if (old)
3357 obj_cgroup_put(old);
3358
3359 if (nr_pages)
3360 obj_cgroup_uncharge_pages(objcg, nr_pages);
3361 }
3362
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3363 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3364 {
3365 unsigned int nr_pages, nr_bytes;
3366 int ret;
3367
3368 if (consume_obj_stock(objcg, size))
3369 return 0;
3370
3371 /*
3372 * In theory, objcg->nr_charged_bytes can have enough
3373 * pre-charged bytes to satisfy the allocation. However,
3374 * flushing objcg->nr_charged_bytes requires two atomic
3375 * operations, and objcg->nr_charged_bytes can't be big.
3376 * The shared objcg->nr_charged_bytes can also become a
3377 * performance bottleneck if all tasks of the same memcg are
3378 * trying to update it. So it's better to ignore it and try
3379 * grab some new pages. The stock's nr_bytes will be flushed to
3380 * objcg->nr_charged_bytes later on when objcg changes.
3381 *
3382 * The stock's nr_bytes may contain enough pre-charged bytes
3383 * to allow one less page from being charged, but we can't rely
3384 * on the pre-charged bytes not being changed outside of
3385 * consume_obj_stock() or refill_obj_stock(). So ignore those
3386 * pre-charged bytes as well when charging pages. To avoid a
3387 * page uncharge right after a page charge, we set the
3388 * allow_uncharge flag to false when calling refill_obj_stock()
3389 * to temporarily allow the pre-charged bytes to exceed the page
3390 * size limit. The maximum reachable value of the pre-charged
3391 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3392 * race.
3393 */
3394 nr_pages = size >> PAGE_SHIFT;
3395 nr_bytes = size & (PAGE_SIZE - 1);
3396
3397 if (nr_bytes)
3398 nr_pages += 1;
3399
3400 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3401 if (!ret && nr_bytes)
3402 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3403
3404 return ret;
3405 }
3406
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3407 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3408 {
3409 refill_obj_stock(objcg, size, true);
3410 }
3411
3412 #endif /* CONFIG_MEMCG_KMEM */
3413
3414 /*
3415 * Because page_memcg(head) is not set on tails, set it now.
3416 */
split_page_memcg(struct page * head,unsigned int nr)3417 void split_page_memcg(struct page *head, unsigned int nr)
3418 {
3419 struct folio *folio = page_folio(head);
3420 struct mem_cgroup *memcg = folio_memcg(folio);
3421 int i;
3422
3423 if (mem_cgroup_disabled() || !memcg)
3424 return;
3425
3426 for (i = 1; i < nr; i++)
3427 folio_page(folio, i)->memcg_data = folio->memcg_data;
3428
3429 if (folio_memcg_kmem(folio))
3430 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3431 else
3432 css_get_many(&memcg->css, nr - 1);
3433 }
3434
3435 #ifdef CONFIG_SWAP
3436 /**
3437 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3438 * @entry: swap entry to be moved
3439 * @from: mem_cgroup which the entry is moved from
3440 * @to: mem_cgroup which the entry is moved to
3441 *
3442 * It succeeds only when the swap_cgroup's record for this entry is the same
3443 * as the mem_cgroup's id of @from.
3444 *
3445 * Returns 0 on success, -EINVAL on failure.
3446 *
3447 * The caller must have charged to @to, IOW, called page_counter_charge() about
3448 * both res and memsw, and called css_get().
3449 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3450 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3451 struct mem_cgroup *from, struct mem_cgroup *to)
3452 {
3453 unsigned short old_id, new_id;
3454
3455 old_id = mem_cgroup_id(from);
3456 new_id = mem_cgroup_id(to);
3457
3458 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3459 mod_memcg_state(from, MEMCG_SWAP, -1);
3460 mod_memcg_state(to, MEMCG_SWAP, 1);
3461 return 0;
3462 }
3463 return -EINVAL;
3464 }
3465 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3466 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3467 struct mem_cgroup *from, struct mem_cgroup *to)
3468 {
3469 return -EINVAL;
3470 }
3471 #endif
3472
3473 static DEFINE_MUTEX(memcg_max_mutex);
3474
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3475 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3476 unsigned long max, bool memsw)
3477 {
3478 bool enlarge = false;
3479 bool drained = false;
3480 int ret;
3481 bool limits_invariant;
3482 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3483
3484 do {
3485 if (signal_pending(current)) {
3486 ret = -EINTR;
3487 break;
3488 }
3489
3490 mutex_lock(&memcg_max_mutex);
3491 /*
3492 * Make sure that the new limit (memsw or memory limit) doesn't
3493 * break our basic invariant rule memory.max <= memsw.max.
3494 */
3495 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3496 max <= memcg->memsw.max;
3497 if (!limits_invariant) {
3498 mutex_unlock(&memcg_max_mutex);
3499 ret = -EINVAL;
3500 break;
3501 }
3502 if (max > counter->max)
3503 enlarge = true;
3504 ret = page_counter_set_max(counter, max);
3505 mutex_unlock(&memcg_max_mutex);
3506
3507 if (!ret)
3508 break;
3509
3510 if (!drained) {
3511 drain_all_stock(memcg);
3512 drained = true;
3513 continue;
3514 }
3515
3516 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3517 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3518 ret = -EBUSY;
3519 break;
3520 }
3521 } while (true);
3522
3523 if (!ret && enlarge)
3524 memcg_oom_recover(memcg);
3525
3526 return ret;
3527 }
3528
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3529 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3530 gfp_t gfp_mask,
3531 unsigned long *total_scanned)
3532 {
3533 unsigned long nr_reclaimed = 0;
3534 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3535 unsigned long reclaimed;
3536 int loop = 0;
3537 struct mem_cgroup_tree_per_node *mctz;
3538 unsigned long excess;
3539
3540 if (lru_gen_enabled())
3541 return 0;
3542
3543 if (order > 0)
3544 return 0;
3545
3546 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3547
3548 /*
3549 * Do not even bother to check the largest node if the root
3550 * is empty. Do it lockless to prevent lock bouncing. Races
3551 * are acceptable as soft limit is best effort anyway.
3552 */
3553 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3554 return 0;
3555
3556 /*
3557 * This loop can run a while, specially if mem_cgroup's continuously
3558 * keep exceeding their soft limit and putting the system under
3559 * pressure
3560 */
3561 do {
3562 if (next_mz)
3563 mz = next_mz;
3564 else
3565 mz = mem_cgroup_largest_soft_limit_node(mctz);
3566 if (!mz)
3567 break;
3568
3569 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3570 gfp_mask, total_scanned);
3571 nr_reclaimed += reclaimed;
3572 spin_lock_irq(&mctz->lock);
3573
3574 /*
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3577 */
3578 next_mz = NULL;
3579 if (!reclaimed)
3580 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3581
3582 excess = soft_limit_excess(mz->memcg);
3583 /*
3584 * One school of thought says that we should not add
3585 * back the node to the tree if reclaim returns 0.
3586 * But our reclaim could return 0, simply because due
3587 * to priority we are exposing a smaller subset of
3588 * memory to reclaim from. Consider this as a longer
3589 * term TODO.
3590 */
3591 /* If excess == 0, no tree ops */
3592 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3593 spin_unlock_irq(&mctz->lock);
3594 css_put(&mz->memcg->css);
3595 loop++;
3596 /*
3597 * Could not reclaim anything and there are no more
3598 * mem cgroups to try or we seem to be looping without
3599 * reclaiming anything.
3600 */
3601 if (!nr_reclaimed &&
3602 (next_mz == NULL ||
3603 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3604 break;
3605 } while (!nr_reclaimed);
3606 if (next_mz)
3607 css_put(&next_mz->memcg->css);
3608 return nr_reclaimed;
3609 }
3610
3611 /*
3612 * Reclaims as many pages from the given memcg as possible.
3613 *
3614 * Caller is responsible for holding css reference for memcg.
3615 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3616 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3617 {
3618 int nr_retries = MAX_RECLAIM_RETRIES;
3619
3620 /* we call try-to-free pages for make this cgroup empty */
3621 lru_add_drain_all();
3622
3623 drain_all_stock(memcg);
3624
3625 /* try to free all pages in this cgroup */
3626 while (nr_retries && page_counter_read(&memcg->memory)) {
3627 if (signal_pending(current))
3628 return -EINTR;
3629
3630 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3631 MEMCG_RECLAIM_MAY_SWAP))
3632 nr_retries--;
3633 }
3634
3635 return 0;
3636 }
3637
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3638 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3639 char *buf, size_t nbytes,
3640 loff_t off)
3641 {
3642 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3643
3644 if (mem_cgroup_is_root(memcg))
3645 return -EINVAL;
3646 return mem_cgroup_force_empty(memcg) ?: nbytes;
3647 }
3648
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3649 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3650 struct cftype *cft)
3651 {
3652 return 1;
3653 }
3654
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3655 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3656 struct cftype *cft, u64 val)
3657 {
3658 if (val == 1)
3659 return 0;
3660
3661 pr_warn_once("Non-hierarchical mode is deprecated. "
3662 "Please report your usecase to linux-mm@kvack.org if you "
3663 "depend on this functionality.\n");
3664
3665 return -EINVAL;
3666 }
3667
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3668 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3669 {
3670 unsigned long val;
3671
3672 if (mem_cgroup_is_root(memcg)) {
3673 /*
3674 * Approximate root's usage from global state. This isn't
3675 * perfect, but the root usage was always an approximation.
3676 */
3677 val = global_node_page_state(NR_FILE_PAGES) +
3678 global_node_page_state(NR_ANON_MAPPED);
3679 if (swap)
3680 val += total_swap_pages - get_nr_swap_pages();
3681 } else {
3682 if (!swap)
3683 val = page_counter_read(&memcg->memory);
3684 else
3685 val = page_counter_read(&memcg->memsw);
3686 }
3687 return val;
3688 }
3689
3690 enum {
3691 RES_USAGE,
3692 RES_LIMIT,
3693 RES_MAX_USAGE,
3694 RES_FAILCNT,
3695 RES_SOFT_LIMIT,
3696 };
3697
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3698 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3699 struct cftype *cft)
3700 {
3701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3702 struct page_counter *counter;
3703
3704 switch (MEMFILE_TYPE(cft->private)) {
3705 case _MEM:
3706 counter = &memcg->memory;
3707 break;
3708 case _MEMSWAP:
3709 counter = &memcg->memsw;
3710 break;
3711 case _KMEM:
3712 counter = &memcg->kmem;
3713 break;
3714 case _TCP:
3715 counter = &memcg->tcpmem;
3716 break;
3717 default:
3718 BUG();
3719 }
3720
3721 switch (MEMFILE_ATTR(cft->private)) {
3722 case RES_USAGE:
3723 if (counter == &memcg->memory)
3724 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3725 if (counter == &memcg->memsw)
3726 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3727 return (u64)page_counter_read(counter) * PAGE_SIZE;
3728 case RES_LIMIT:
3729 return (u64)counter->max * PAGE_SIZE;
3730 case RES_MAX_USAGE:
3731 return (u64)counter->watermark * PAGE_SIZE;
3732 case RES_FAILCNT:
3733 return counter->failcnt;
3734 case RES_SOFT_LIMIT:
3735 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3736 default:
3737 BUG();
3738 }
3739 }
3740
3741 /*
3742 * This function doesn't do anything useful. Its only job is to provide a read
3743 * handler for a file so that cgroup_file_mode() will add read permissions.
3744 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)3745 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3746 __always_unused void *v)
3747 {
3748 return -EINVAL;
3749 }
3750
3751 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3752 static int memcg_online_kmem(struct mem_cgroup *memcg)
3753 {
3754 struct obj_cgroup *objcg;
3755
3756 if (mem_cgroup_kmem_disabled())
3757 return 0;
3758
3759 if (unlikely(mem_cgroup_is_root(memcg)))
3760 return 0;
3761
3762 objcg = obj_cgroup_alloc();
3763 if (!objcg)
3764 return -ENOMEM;
3765
3766 objcg->memcg = memcg;
3767 rcu_assign_pointer(memcg->objcg, objcg);
3768
3769 static_branch_enable(&memcg_kmem_online_key);
3770
3771 memcg->kmemcg_id = memcg->id.id;
3772
3773 return 0;
3774 }
3775
memcg_offline_kmem(struct mem_cgroup * memcg)3776 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777 {
3778 struct mem_cgroup *parent;
3779
3780 if (mem_cgroup_kmem_disabled())
3781 return;
3782
3783 if (unlikely(mem_cgroup_is_root(memcg)))
3784 return;
3785
3786 parent = parent_mem_cgroup(memcg);
3787 if (!parent)
3788 parent = root_mem_cgroup;
3789
3790 memcg_reparent_objcgs(memcg, parent);
3791
3792 /*
3793 * After we have finished memcg_reparent_objcgs(), all list_lrus
3794 * corresponding to this cgroup are guaranteed to remain empty.
3795 * The ordering is imposed by list_lru_node->lock taken by
3796 * memcg_reparent_list_lrus().
3797 */
3798 memcg_reparent_list_lrus(memcg, parent);
3799 }
3800 #else
memcg_online_kmem(struct mem_cgroup * memcg)3801 static int memcg_online_kmem(struct mem_cgroup *memcg)
3802 {
3803 return 0;
3804 }
memcg_offline_kmem(struct mem_cgroup * memcg)3805 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3806 {
3807 }
3808 #endif /* CONFIG_MEMCG_KMEM */
3809
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3810 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3811 {
3812 int ret;
3813
3814 mutex_lock(&memcg_max_mutex);
3815
3816 ret = page_counter_set_max(&memcg->tcpmem, max);
3817 if (ret)
3818 goto out;
3819
3820 if (!memcg->tcpmem_active) {
3821 /*
3822 * The active flag needs to be written after the static_key
3823 * update. This is what guarantees that the socket activation
3824 * function is the last one to run. See mem_cgroup_sk_alloc()
3825 * for details, and note that we don't mark any socket as
3826 * belonging to this memcg until that flag is up.
3827 *
3828 * We need to do this, because static_keys will span multiple
3829 * sites, but we can't control their order. If we mark a socket
3830 * as accounted, but the accounting functions are not patched in
3831 * yet, we'll lose accounting.
3832 *
3833 * We never race with the readers in mem_cgroup_sk_alloc(),
3834 * because when this value change, the code to process it is not
3835 * patched in yet.
3836 */
3837 static_branch_inc(&memcg_sockets_enabled_key);
3838 memcg->tcpmem_active = true;
3839 }
3840 out:
3841 mutex_unlock(&memcg_max_mutex);
3842 return ret;
3843 }
3844
3845 /*
3846 * The user of this function is...
3847 * RES_LIMIT.
3848 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3849 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3850 char *buf, size_t nbytes, loff_t off)
3851 {
3852 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3853 unsigned long nr_pages;
3854 int ret;
3855
3856 buf = strstrip(buf);
3857 ret = page_counter_memparse(buf, "-1", &nr_pages);
3858 if (ret)
3859 return ret;
3860
3861 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3862 case RES_LIMIT:
3863 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3864 ret = -EINVAL;
3865 break;
3866 }
3867 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3868 case _MEM:
3869 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3870 break;
3871 case _MEMSWAP:
3872 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3873 break;
3874 case _KMEM:
3875 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3876 "Writing any value to this file has no effect. "
3877 "Please report your usecase to linux-mm@kvack.org if you "
3878 "depend on this functionality.\n");
3879 ret = 0;
3880 break;
3881 case _TCP:
3882 ret = memcg_update_tcp_max(memcg, nr_pages);
3883 break;
3884 }
3885 break;
3886 case RES_SOFT_LIMIT:
3887 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3888 ret = -EOPNOTSUPP;
3889 } else {
3890 WRITE_ONCE(memcg->soft_limit, nr_pages);
3891 ret = 0;
3892 }
3893 break;
3894 }
3895 return ret ?: nbytes;
3896 }
3897
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3898 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3899 size_t nbytes, loff_t off)
3900 {
3901 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3902 struct page_counter *counter;
3903
3904 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3905 case _MEM:
3906 counter = &memcg->memory;
3907 break;
3908 case _MEMSWAP:
3909 counter = &memcg->memsw;
3910 break;
3911 case _KMEM:
3912 counter = &memcg->kmem;
3913 break;
3914 case _TCP:
3915 counter = &memcg->tcpmem;
3916 break;
3917 default:
3918 BUG();
3919 }
3920
3921 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3922 case RES_MAX_USAGE:
3923 page_counter_reset_watermark(counter);
3924 break;
3925 case RES_FAILCNT:
3926 counter->failcnt = 0;
3927 break;
3928 default:
3929 BUG();
3930 }
3931
3932 return nbytes;
3933 }
3934
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3935 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3936 struct cftype *cft)
3937 {
3938 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3939 }
3940
3941 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3942 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3943 struct cftype *cft, u64 val)
3944 {
3945 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3946
3947 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3948 "Please report your usecase to linux-mm@kvack.org if you "
3949 "depend on this functionality.\n");
3950
3951 if (val & ~MOVE_MASK)
3952 return -EINVAL;
3953
3954 /*
3955 * No kind of locking is needed in here, because ->can_attach() will
3956 * check this value once in the beginning of the process, and then carry
3957 * on with stale data. This means that changes to this value will only
3958 * affect task migrations starting after the change.
3959 */
3960 memcg->move_charge_at_immigrate = val;
3961 return 0;
3962 }
3963 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3964 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3965 struct cftype *cft, u64 val)
3966 {
3967 return -ENOSYS;
3968 }
3969 #endif
3970
3971 #ifdef CONFIG_NUMA
3972
3973 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3974 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3975 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3976
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3977 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3978 int nid, unsigned int lru_mask, bool tree)
3979 {
3980 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3981 unsigned long nr = 0;
3982 enum lru_list lru;
3983
3984 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3985
3986 for_each_lru(lru) {
3987 if (!(BIT(lru) & lru_mask))
3988 continue;
3989 if (tree)
3990 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3991 else
3992 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3993 }
3994 return nr;
3995 }
3996
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3997 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3998 unsigned int lru_mask,
3999 bool tree)
4000 {
4001 unsigned long nr = 0;
4002 enum lru_list lru;
4003
4004 for_each_lru(lru) {
4005 if (!(BIT(lru) & lru_mask))
4006 continue;
4007 if (tree)
4008 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4009 else
4010 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4011 }
4012 return nr;
4013 }
4014
memcg_numa_stat_show(struct seq_file * m,void * v)4015 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4016 {
4017 struct numa_stat {
4018 const char *name;
4019 unsigned int lru_mask;
4020 };
4021
4022 static const struct numa_stat stats[] = {
4023 { "total", LRU_ALL },
4024 { "file", LRU_ALL_FILE },
4025 { "anon", LRU_ALL_ANON },
4026 { "unevictable", BIT(LRU_UNEVICTABLE) },
4027 };
4028 const struct numa_stat *stat;
4029 int nid;
4030 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4031
4032 mem_cgroup_flush_stats();
4033
4034 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4035 seq_printf(m, "%s=%lu", stat->name,
4036 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4037 false));
4038 for_each_node_state(nid, N_MEMORY)
4039 seq_printf(m, " N%d=%lu", nid,
4040 mem_cgroup_node_nr_lru_pages(memcg, nid,
4041 stat->lru_mask, false));
4042 seq_putc(m, '\n');
4043 }
4044
4045 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4046
4047 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4048 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4049 true));
4050 for_each_node_state(nid, N_MEMORY)
4051 seq_printf(m, " N%d=%lu", nid,
4052 mem_cgroup_node_nr_lru_pages(memcg, nid,
4053 stat->lru_mask, true));
4054 seq_putc(m, '\n');
4055 }
4056
4057 return 0;
4058 }
4059 #endif /* CONFIG_NUMA */
4060
4061 static const unsigned int memcg1_stats[] = {
4062 NR_FILE_PAGES,
4063 NR_ANON_MAPPED,
4064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4065 NR_ANON_THPS,
4066 #endif
4067 NR_SHMEM,
4068 NR_FILE_MAPPED,
4069 NR_FILE_DIRTY,
4070 NR_WRITEBACK,
4071 WORKINGSET_REFAULT_ANON,
4072 WORKINGSET_REFAULT_FILE,
4073 MEMCG_SWAP,
4074 };
4075
4076 static const char *const memcg1_stat_names[] = {
4077 "cache",
4078 "rss",
4079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4080 "rss_huge",
4081 #endif
4082 "shmem",
4083 "mapped_file",
4084 "dirty",
4085 "writeback",
4086 "workingset_refault_anon",
4087 "workingset_refault_file",
4088 "swap",
4089 };
4090
4091 /* Universal VM events cgroup1 shows, original sort order */
4092 static const unsigned int memcg1_events[] = {
4093 PGPGIN,
4094 PGPGOUT,
4095 PGFAULT,
4096 PGMAJFAULT,
4097 };
4098
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)4099 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4100 {
4101 unsigned long memory, memsw;
4102 struct mem_cgroup *mi;
4103 unsigned int i;
4104
4105 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4106
4107 mem_cgroup_flush_stats();
4108
4109 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4110 unsigned long nr;
4111
4112 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4113 continue;
4114 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4115 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4116 nr * memcg_page_state_unit(memcg1_stats[i]));
4117 }
4118
4119 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4120 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4121 memcg_events_local(memcg, memcg1_events[i]));
4122
4123 for (i = 0; i < NR_LRU_LISTS; i++)
4124 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4125 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4126 PAGE_SIZE);
4127
4128 /* Hierarchical information */
4129 memory = memsw = PAGE_COUNTER_MAX;
4130 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4131 memory = min(memory, READ_ONCE(mi->memory.max));
4132 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4133 }
4134 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4135 (u64)memory * PAGE_SIZE);
4136 if (do_memsw_account())
4137 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4138 (u64)memsw * PAGE_SIZE);
4139
4140 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4141 unsigned long nr;
4142
4143 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4144 continue;
4145 nr = memcg_page_state(memcg, memcg1_stats[i]);
4146 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4147 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4148 }
4149
4150 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4151 seq_buf_printf(s, "total_%s %llu\n",
4152 vm_event_name(memcg1_events[i]),
4153 (u64)memcg_events(memcg, memcg1_events[i]));
4154
4155 for (i = 0; i < NR_LRU_LISTS; i++)
4156 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4157 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4158 PAGE_SIZE);
4159
4160 #ifdef CONFIG_DEBUG_VM
4161 {
4162 pg_data_t *pgdat;
4163 struct mem_cgroup_per_node *mz;
4164 unsigned long anon_cost = 0;
4165 unsigned long file_cost = 0;
4166
4167 for_each_online_pgdat(pgdat) {
4168 mz = memcg->nodeinfo[pgdat->node_id];
4169
4170 anon_cost += mz->lruvec.anon_cost;
4171 file_cost += mz->lruvec.file_cost;
4172 }
4173 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4174 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4175 }
4176 #endif
4177 }
4178
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4179 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4180 struct cftype *cft)
4181 {
4182 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4183
4184 return mem_cgroup_swappiness(memcg);
4185 }
4186
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4187 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4188 struct cftype *cft, u64 val)
4189 {
4190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4191
4192 if (val > 200)
4193 return -EINVAL;
4194
4195 if (!mem_cgroup_is_root(memcg))
4196 WRITE_ONCE(memcg->swappiness, val);
4197 else
4198 WRITE_ONCE(vm_swappiness, val);
4199
4200 return 0;
4201 }
4202
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4203 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4204 {
4205 struct mem_cgroup_threshold_ary *t;
4206 unsigned long usage;
4207 int i;
4208
4209 rcu_read_lock();
4210 if (!swap)
4211 t = rcu_dereference(memcg->thresholds.primary);
4212 else
4213 t = rcu_dereference(memcg->memsw_thresholds.primary);
4214
4215 if (!t)
4216 goto unlock;
4217
4218 usage = mem_cgroup_usage(memcg, swap);
4219
4220 /*
4221 * current_threshold points to threshold just below or equal to usage.
4222 * If it's not true, a threshold was crossed after last
4223 * call of __mem_cgroup_threshold().
4224 */
4225 i = t->current_threshold;
4226
4227 /*
4228 * Iterate backward over array of thresholds starting from
4229 * current_threshold and check if a threshold is crossed.
4230 * If none of thresholds below usage is crossed, we read
4231 * only one element of the array here.
4232 */
4233 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4234 eventfd_signal(t->entries[i].eventfd, 1);
4235
4236 /* i = current_threshold + 1 */
4237 i++;
4238
4239 /*
4240 * Iterate forward over array of thresholds starting from
4241 * current_threshold+1 and check if a threshold is crossed.
4242 * If none of thresholds above usage is crossed, we read
4243 * only one element of the array here.
4244 */
4245 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4246 eventfd_signal(t->entries[i].eventfd, 1);
4247
4248 /* Update current_threshold */
4249 t->current_threshold = i - 1;
4250 unlock:
4251 rcu_read_unlock();
4252 }
4253
mem_cgroup_threshold(struct mem_cgroup * memcg)4254 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4255 {
4256 while (memcg) {
4257 __mem_cgroup_threshold(memcg, false);
4258 if (do_memsw_account())
4259 __mem_cgroup_threshold(memcg, true);
4260
4261 memcg = parent_mem_cgroup(memcg);
4262 }
4263 }
4264
compare_thresholds(const void * a,const void * b)4265 static int compare_thresholds(const void *a, const void *b)
4266 {
4267 const struct mem_cgroup_threshold *_a = a;
4268 const struct mem_cgroup_threshold *_b = b;
4269
4270 if (_a->threshold > _b->threshold)
4271 return 1;
4272
4273 if (_a->threshold < _b->threshold)
4274 return -1;
4275
4276 return 0;
4277 }
4278
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4279 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4280 {
4281 struct mem_cgroup_eventfd_list *ev;
4282
4283 spin_lock(&memcg_oom_lock);
4284
4285 list_for_each_entry(ev, &memcg->oom_notify, list)
4286 eventfd_signal(ev->eventfd, 1);
4287
4288 spin_unlock(&memcg_oom_lock);
4289 return 0;
4290 }
4291
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4292 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4293 {
4294 struct mem_cgroup *iter;
4295
4296 for_each_mem_cgroup_tree(iter, memcg)
4297 mem_cgroup_oom_notify_cb(iter);
4298 }
4299
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4300 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4301 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4302 {
4303 struct mem_cgroup_thresholds *thresholds;
4304 struct mem_cgroup_threshold_ary *new;
4305 unsigned long threshold;
4306 unsigned long usage;
4307 int i, size, ret;
4308
4309 ret = page_counter_memparse(args, "-1", &threshold);
4310 if (ret)
4311 return ret;
4312
4313 mutex_lock(&memcg->thresholds_lock);
4314
4315 if (type == _MEM) {
4316 thresholds = &memcg->thresholds;
4317 usage = mem_cgroup_usage(memcg, false);
4318 } else if (type == _MEMSWAP) {
4319 thresholds = &memcg->memsw_thresholds;
4320 usage = mem_cgroup_usage(memcg, true);
4321 } else
4322 BUG();
4323
4324 /* Check if a threshold crossed before adding a new one */
4325 if (thresholds->primary)
4326 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4327
4328 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4329
4330 /* Allocate memory for new array of thresholds */
4331 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4332 if (!new) {
4333 ret = -ENOMEM;
4334 goto unlock;
4335 }
4336 new->size = size;
4337
4338 /* Copy thresholds (if any) to new array */
4339 if (thresholds->primary)
4340 memcpy(new->entries, thresholds->primary->entries,
4341 flex_array_size(new, entries, size - 1));
4342
4343 /* Add new threshold */
4344 new->entries[size - 1].eventfd = eventfd;
4345 new->entries[size - 1].threshold = threshold;
4346
4347 /* Sort thresholds. Registering of new threshold isn't time-critical */
4348 sort(new->entries, size, sizeof(*new->entries),
4349 compare_thresholds, NULL);
4350
4351 /* Find current threshold */
4352 new->current_threshold = -1;
4353 for (i = 0; i < size; i++) {
4354 if (new->entries[i].threshold <= usage) {
4355 /*
4356 * new->current_threshold will not be used until
4357 * rcu_assign_pointer(), so it's safe to increment
4358 * it here.
4359 */
4360 ++new->current_threshold;
4361 } else
4362 break;
4363 }
4364
4365 /* Free old spare buffer and save old primary buffer as spare */
4366 kfree(thresholds->spare);
4367 thresholds->spare = thresholds->primary;
4368
4369 rcu_assign_pointer(thresholds->primary, new);
4370
4371 /* To be sure that nobody uses thresholds */
4372 synchronize_rcu();
4373
4374 unlock:
4375 mutex_unlock(&memcg->thresholds_lock);
4376
4377 return ret;
4378 }
4379
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4380 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4381 struct eventfd_ctx *eventfd, const char *args)
4382 {
4383 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4384 }
4385
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4386 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4387 struct eventfd_ctx *eventfd, const char *args)
4388 {
4389 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4390 }
4391
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4392 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4393 struct eventfd_ctx *eventfd, enum res_type type)
4394 {
4395 struct mem_cgroup_thresholds *thresholds;
4396 struct mem_cgroup_threshold_ary *new;
4397 unsigned long usage;
4398 int i, j, size, entries;
4399
4400 mutex_lock(&memcg->thresholds_lock);
4401
4402 if (type == _MEM) {
4403 thresholds = &memcg->thresholds;
4404 usage = mem_cgroup_usage(memcg, false);
4405 } else if (type == _MEMSWAP) {
4406 thresholds = &memcg->memsw_thresholds;
4407 usage = mem_cgroup_usage(memcg, true);
4408 } else
4409 BUG();
4410
4411 if (!thresholds->primary)
4412 goto unlock;
4413
4414 /* Check if a threshold crossed before removing */
4415 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4416
4417 /* Calculate new number of threshold */
4418 size = entries = 0;
4419 for (i = 0; i < thresholds->primary->size; i++) {
4420 if (thresholds->primary->entries[i].eventfd != eventfd)
4421 size++;
4422 else
4423 entries++;
4424 }
4425
4426 new = thresholds->spare;
4427
4428 /* If no items related to eventfd have been cleared, nothing to do */
4429 if (!entries)
4430 goto unlock;
4431
4432 /* Set thresholds array to NULL if we don't have thresholds */
4433 if (!size) {
4434 kfree(new);
4435 new = NULL;
4436 goto swap_buffers;
4437 }
4438
4439 new->size = size;
4440
4441 /* Copy thresholds and find current threshold */
4442 new->current_threshold = -1;
4443 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4444 if (thresholds->primary->entries[i].eventfd == eventfd)
4445 continue;
4446
4447 new->entries[j] = thresholds->primary->entries[i];
4448 if (new->entries[j].threshold <= usage) {
4449 /*
4450 * new->current_threshold will not be used
4451 * until rcu_assign_pointer(), so it's safe to increment
4452 * it here.
4453 */
4454 ++new->current_threshold;
4455 }
4456 j++;
4457 }
4458
4459 swap_buffers:
4460 /* Swap primary and spare array */
4461 thresholds->spare = thresholds->primary;
4462
4463 rcu_assign_pointer(thresholds->primary, new);
4464
4465 /* To be sure that nobody uses thresholds */
4466 synchronize_rcu();
4467
4468 /* If all events are unregistered, free the spare array */
4469 if (!new) {
4470 kfree(thresholds->spare);
4471 thresholds->spare = NULL;
4472 }
4473 unlock:
4474 mutex_unlock(&memcg->thresholds_lock);
4475 }
4476
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4477 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4478 struct eventfd_ctx *eventfd)
4479 {
4480 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4481 }
4482
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4483 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4484 struct eventfd_ctx *eventfd)
4485 {
4486 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4487 }
4488
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4489 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4490 struct eventfd_ctx *eventfd, const char *args)
4491 {
4492 struct mem_cgroup_eventfd_list *event;
4493
4494 event = kmalloc(sizeof(*event), GFP_KERNEL);
4495 if (!event)
4496 return -ENOMEM;
4497
4498 spin_lock(&memcg_oom_lock);
4499
4500 event->eventfd = eventfd;
4501 list_add(&event->list, &memcg->oom_notify);
4502
4503 /* already in OOM ? */
4504 if (memcg->under_oom)
4505 eventfd_signal(eventfd, 1);
4506 spin_unlock(&memcg_oom_lock);
4507
4508 return 0;
4509 }
4510
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4511 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4512 struct eventfd_ctx *eventfd)
4513 {
4514 struct mem_cgroup_eventfd_list *ev, *tmp;
4515
4516 spin_lock(&memcg_oom_lock);
4517
4518 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4519 if (ev->eventfd == eventfd) {
4520 list_del(&ev->list);
4521 kfree(ev);
4522 }
4523 }
4524
4525 spin_unlock(&memcg_oom_lock);
4526 }
4527
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4528 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4529 {
4530 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4531
4532 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4533 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4534 seq_printf(sf, "oom_kill %lu\n",
4535 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4536 return 0;
4537 }
4538
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4539 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4540 struct cftype *cft, u64 val)
4541 {
4542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4543
4544 /* cannot set to root cgroup and only 0 and 1 are allowed */
4545 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4546 return -EINVAL;
4547
4548 WRITE_ONCE(memcg->oom_kill_disable, val);
4549 if (!val)
4550 memcg_oom_recover(memcg);
4551
4552 return 0;
4553 }
4554
4555 #ifdef CONFIG_CGROUP_WRITEBACK
4556
4557 #include <trace/events/writeback.h>
4558
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4559 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4560 {
4561 return wb_domain_init(&memcg->cgwb_domain, gfp);
4562 }
4563
memcg_wb_domain_exit(struct mem_cgroup * memcg)4564 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4565 {
4566 wb_domain_exit(&memcg->cgwb_domain);
4567 }
4568
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4569 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4570 {
4571 wb_domain_size_changed(&memcg->cgwb_domain);
4572 }
4573
mem_cgroup_wb_domain(struct bdi_writeback * wb)4574 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4575 {
4576 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4577
4578 if (!memcg->css.parent)
4579 return NULL;
4580
4581 return &memcg->cgwb_domain;
4582 }
4583
4584 /**
4585 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4586 * @wb: bdi_writeback in question
4587 * @pfilepages: out parameter for number of file pages
4588 * @pheadroom: out parameter for number of allocatable pages according to memcg
4589 * @pdirty: out parameter for number of dirty pages
4590 * @pwriteback: out parameter for number of pages under writeback
4591 *
4592 * Determine the numbers of file, headroom, dirty, and writeback pages in
4593 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4594 * is a bit more involved.
4595 *
4596 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4597 * headroom is calculated as the lowest headroom of itself and the
4598 * ancestors. Note that this doesn't consider the actual amount of
4599 * available memory in the system. The caller should further cap
4600 * *@pheadroom accordingly.
4601 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4602 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4603 unsigned long *pheadroom, unsigned long *pdirty,
4604 unsigned long *pwriteback)
4605 {
4606 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4607 struct mem_cgroup *parent;
4608
4609 mem_cgroup_flush_stats();
4610
4611 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4612 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4613 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4614 memcg_page_state(memcg, NR_ACTIVE_FILE);
4615
4616 *pheadroom = PAGE_COUNTER_MAX;
4617 while ((parent = parent_mem_cgroup(memcg))) {
4618 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4619 READ_ONCE(memcg->memory.high));
4620 unsigned long used = page_counter_read(&memcg->memory);
4621
4622 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4623 memcg = parent;
4624 }
4625 }
4626
4627 /*
4628 * Foreign dirty flushing
4629 *
4630 * There's an inherent mismatch between memcg and writeback. The former
4631 * tracks ownership per-page while the latter per-inode. This was a
4632 * deliberate design decision because honoring per-page ownership in the
4633 * writeback path is complicated, may lead to higher CPU and IO overheads
4634 * and deemed unnecessary given that write-sharing an inode across
4635 * different cgroups isn't a common use-case.
4636 *
4637 * Combined with inode majority-writer ownership switching, this works well
4638 * enough in most cases but there are some pathological cases. For
4639 * example, let's say there are two cgroups A and B which keep writing to
4640 * different but confined parts of the same inode. B owns the inode and
4641 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4642 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4643 * triggering background writeback. A will be slowed down without a way to
4644 * make writeback of the dirty pages happen.
4645 *
4646 * Conditions like the above can lead to a cgroup getting repeatedly and
4647 * severely throttled after making some progress after each
4648 * dirty_expire_interval while the underlying IO device is almost
4649 * completely idle.
4650 *
4651 * Solving this problem completely requires matching the ownership tracking
4652 * granularities between memcg and writeback in either direction. However,
4653 * the more egregious behaviors can be avoided by simply remembering the
4654 * most recent foreign dirtying events and initiating remote flushes on
4655 * them when local writeback isn't enough to keep the memory clean enough.
4656 *
4657 * The following two functions implement such mechanism. When a foreign
4658 * page - a page whose memcg and writeback ownerships don't match - is
4659 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4660 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4661 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4662 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4663 * foreign bdi_writebacks which haven't expired. Both the numbers of
4664 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4665 * limited to MEMCG_CGWB_FRN_CNT.
4666 *
4667 * The mechanism only remembers IDs and doesn't hold any object references.
4668 * As being wrong occasionally doesn't matter, updates and accesses to the
4669 * records are lockless and racy.
4670 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4671 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4672 struct bdi_writeback *wb)
4673 {
4674 struct mem_cgroup *memcg = folio_memcg(folio);
4675 struct memcg_cgwb_frn *frn;
4676 u64 now = get_jiffies_64();
4677 u64 oldest_at = now;
4678 int oldest = -1;
4679 int i;
4680
4681 trace_track_foreign_dirty(folio, wb);
4682
4683 /*
4684 * Pick the slot to use. If there is already a slot for @wb, keep
4685 * using it. If not replace the oldest one which isn't being
4686 * written out.
4687 */
4688 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4689 frn = &memcg->cgwb_frn[i];
4690 if (frn->bdi_id == wb->bdi->id &&
4691 frn->memcg_id == wb->memcg_css->id)
4692 break;
4693 if (time_before64(frn->at, oldest_at) &&
4694 atomic_read(&frn->done.cnt) == 1) {
4695 oldest = i;
4696 oldest_at = frn->at;
4697 }
4698 }
4699
4700 if (i < MEMCG_CGWB_FRN_CNT) {
4701 /*
4702 * Re-using an existing one. Update timestamp lazily to
4703 * avoid making the cacheline hot. We want them to be
4704 * reasonably up-to-date and significantly shorter than
4705 * dirty_expire_interval as that's what expires the record.
4706 * Use the shorter of 1s and dirty_expire_interval / 8.
4707 */
4708 unsigned long update_intv =
4709 min_t(unsigned long, HZ,
4710 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4711
4712 if (time_before64(frn->at, now - update_intv))
4713 frn->at = now;
4714 } else if (oldest >= 0) {
4715 /* replace the oldest free one */
4716 frn = &memcg->cgwb_frn[oldest];
4717 frn->bdi_id = wb->bdi->id;
4718 frn->memcg_id = wb->memcg_css->id;
4719 frn->at = now;
4720 }
4721 }
4722
4723 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4724 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4725 {
4726 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4727 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4728 u64 now = jiffies_64;
4729 int i;
4730
4731 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4732 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4733
4734 /*
4735 * If the record is older than dirty_expire_interval,
4736 * writeback on it has already started. No need to kick it
4737 * off again. Also, don't start a new one if there's
4738 * already one in flight.
4739 */
4740 if (time_after64(frn->at, now - intv) &&
4741 atomic_read(&frn->done.cnt) == 1) {
4742 frn->at = 0;
4743 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4744 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4745 WB_REASON_FOREIGN_FLUSH,
4746 &frn->done);
4747 }
4748 }
4749 }
4750
4751 #else /* CONFIG_CGROUP_WRITEBACK */
4752
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4753 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4754 {
4755 return 0;
4756 }
4757
memcg_wb_domain_exit(struct mem_cgroup * memcg)4758 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4759 {
4760 }
4761
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4762 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4763 {
4764 }
4765
4766 #endif /* CONFIG_CGROUP_WRITEBACK */
4767
4768 /*
4769 * DO NOT USE IN NEW FILES.
4770 *
4771 * "cgroup.event_control" implementation.
4772 *
4773 * This is way over-engineered. It tries to support fully configurable
4774 * events for each user. Such level of flexibility is completely
4775 * unnecessary especially in the light of the planned unified hierarchy.
4776 *
4777 * Please deprecate this and replace with something simpler if at all
4778 * possible.
4779 */
4780
4781 /*
4782 * Unregister event and free resources.
4783 *
4784 * Gets called from workqueue.
4785 */
memcg_event_remove(struct work_struct * work)4786 static void memcg_event_remove(struct work_struct *work)
4787 {
4788 struct mem_cgroup_event *event =
4789 container_of(work, struct mem_cgroup_event, remove);
4790 struct mem_cgroup *memcg = event->memcg;
4791
4792 remove_wait_queue(event->wqh, &event->wait);
4793
4794 event->unregister_event(memcg, event->eventfd);
4795
4796 /* Notify userspace the event is going away. */
4797 eventfd_signal(event->eventfd, 1);
4798
4799 eventfd_ctx_put(event->eventfd);
4800 kfree(event);
4801 css_put(&memcg->css);
4802 }
4803
4804 /*
4805 * Gets called on EPOLLHUP on eventfd when user closes it.
4806 *
4807 * Called with wqh->lock held and interrupts disabled.
4808 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4809 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4810 int sync, void *key)
4811 {
4812 struct mem_cgroup_event *event =
4813 container_of(wait, struct mem_cgroup_event, wait);
4814 struct mem_cgroup *memcg = event->memcg;
4815 __poll_t flags = key_to_poll(key);
4816
4817 if (flags & EPOLLHUP) {
4818 /*
4819 * If the event has been detached at cgroup removal, we
4820 * can simply return knowing the other side will cleanup
4821 * for us.
4822 *
4823 * We can't race against event freeing since the other
4824 * side will require wqh->lock via remove_wait_queue(),
4825 * which we hold.
4826 */
4827 spin_lock(&memcg->event_list_lock);
4828 if (!list_empty(&event->list)) {
4829 list_del_init(&event->list);
4830 /*
4831 * We are in atomic context, but cgroup_event_remove()
4832 * may sleep, so we have to call it in workqueue.
4833 */
4834 schedule_work(&event->remove);
4835 }
4836 spin_unlock(&memcg->event_list_lock);
4837 }
4838
4839 return 0;
4840 }
4841
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4842 static void memcg_event_ptable_queue_proc(struct file *file,
4843 wait_queue_head_t *wqh, poll_table *pt)
4844 {
4845 struct mem_cgroup_event *event =
4846 container_of(pt, struct mem_cgroup_event, pt);
4847
4848 event->wqh = wqh;
4849 add_wait_queue(wqh, &event->wait);
4850 }
4851
4852 /*
4853 * DO NOT USE IN NEW FILES.
4854 *
4855 * Parse input and register new cgroup event handler.
4856 *
4857 * Input must be in format '<event_fd> <control_fd> <args>'.
4858 * Interpretation of args is defined by control file implementation.
4859 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4860 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4861 char *buf, size_t nbytes, loff_t off)
4862 {
4863 struct cgroup_subsys_state *css = of_css(of);
4864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4865 struct mem_cgroup_event *event;
4866 struct cgroup_subsys_state *cfile_css;
4867 unsigned int efd, cfd;
4868 struct fd efile;
4869 struct fd cfile;
4870 struct dentry *cdentry;
4871 const char *name;
4872 char *endp;
4873 int ret;
4874
4875 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4876 return -EOPNOTSUPP;
4877
4878 buf = strstrip(buf);
4879
4880 efd = simple_strtoul(buf, &endp, 10);
4881 if (*endp != ' ')
4882 return -EINVAL;
4883 buf = endp + 1;
4884
4885 cfd = simple_strtoul(buf, &endp, 10);
4886 if (*endp == '\0')
4887 buf = endp;
4888 else if (*endp == ' ')
4889 buf = endp + 1;
4890 else
4891 return -EINVAL;
4892
4893 event = kzalloc(sizeof(*event), GFP_KERNEL);
4894 if (!event)
4895 return -ENOMEM;
4896
4897 event->memcg = memcg;
4898 INIT_LIST_HEAD(&event->list);
4899 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4900 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4901 INIT_WORK(&event->remove, memcg_event_remove);
4902
4903 efile = fdget(efd);
4904 if (!efile.file) {
4905 ret = -EBADF;
4906 goto out_kfree;
4907 }
4908
4909 event->eventfd = eventfd_ctx_fileget(efile.file);
4910 if (IS_ERR(event->eventfd)) {
4911 ret = PTR_ERR(event->eventfd);
4912 goto out_put_efile;
4913 }
4914
4915 cfile = fdget(cfd);
4916 if (!cfile.file) {
4917 ret = -EBADF;
4918 goto out_put_eventfd;
4919 }
4920
4921 /* the process need read permission on control file */
4922 /* AV: shouldn't we check that it's been opened for read instead? */
4923 ret = file_permission(cfile.file, MAY_READ);
4924 if (ret < 0)
4925 goto out_put_cfile;
4926
4927 /*
4928 * The control file must be a regular cgroup1 file. As a regular cgroup
4929 * file can't be renamed, it's safe to access its name afterwards.
4930 */
4931 cdentry = cfile.file->f_path.dentry;
4932 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4933 ret = -EINVAL;
4934 goto out_put_cfile;
4935 }
4936
4937 /*
4938 * Determine the event callbacks and set them in @event. This used
4939 * to be done via struct cftype but cgroup core no longer knows
4940 * about these events. The following is crude but the whole thing
4941 * is for compatibility anyway.
4942 *
4943 * DO NOT ADD NEW FILES.
4944 */
4945 name = cdentry->d_name.name;
4946
4947 if (!strcmp(name, "memory.usage_in_bytes")) {
4948 event->register_event = mem_cgroup_usage_register_event;
4949 event->unregister_event = mem_cgroup_usage_unregister_event;
4950 } else if (!strcmp(name, "memory.oom_control")) {
4951 event->register_event = mem_cgroup_oom_register_event;
4952 event->unregister_event = mem_cgroup_oom_unregister_event;
4953 } else if (!strcmp(name, "memory.pressure_level")) {
4954 event->register_event = vmpressure_register_event;
4955 event->unregister_event = vmpressure_unregister_event;
4956 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4957 event->register_event = memsw_cgroup_usage_register_event;
4958 event->unregister_event = memsw_cgroup_usage_unregister_event;
4959 } else {
4960 ret = -EINVAL;
4961 goto out_put_cfile;
4962 }
4963
4964 /*
4965 * Verify @cfile should belong to @css. Also, remaining events are
4966 * automatically removed on cgroup destruction but the removal is
4967 * asynchronous, so take an extra ref on @css.
4968 */
4969 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4970 &memory_cgrp_subsys);
4971 ret = -EINVAL;
4972 if (IS_ERR(cfile_css))
4973 goto out_put_cfile;
4974 if (cfile_css != css) {
4975 css_put(cfile_css);
4976 goto out_put_cfile;
4977 }
4978
4979 ret = event->register_event(memcg, event->eventfd, buf);
4980 if (ret)
4981 goto out_put_css;
4982
4983 vfs_poll(efile.file, &event->pt);
4984
4985 spin_lock_irq(&memcg->event_list_lock);
4986 list_add(&event->list, &memcg->event_list);
4987 spin_unlock_irq(&memcg->event_list_lock);
4988
4989 fdput(cfile);
4990 fdput(efile);
4991
4992 return nbytes;
4993
4994 out_put_css:
4995 css_put(css);
4996 out_put_cfile:
4997 fdput(cfile);
4998 out_put_eventfd:
4999 eventfd_ctx_put(event->eventfd);
5000 out_put_efile:
5001 fdput(efile);
5002 out_kfree:
5003 kfree(event);
5004
5005 return ret;
5006 }
5007
5008 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)5009 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5010 {
5011 /*
5012 * Deprecated.
5013 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5014 */
5015 return 0;
5016 }
5017 #endif
5018
5019 static int memory_stat_show(struct seq_file *m, void *v);
5020
5021 static struct cftype mem_cgroup_legacy_files[] = {
5022 {
5023 .name = "usage_in_bytes",
5024 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "max_usage_in_bytes",
5029 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5030 .write = mem_cgroup_reset,
5031 .read_u64 = mem_cgroup_read_u64,
5032 },
5033 {
5034 .name = "limit_in_bytes",
5035 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5036 .write = mem_cgroup_write,
5037 .read_u64 = mem_cgroup_read_u64,
5038 },
5039 {
5040 .name = "soft_limit_in_bytes",
5041 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5042 .write = mem_cgroup_write,
5043 .read_u64 = mem_cgroup_read_u64,
5044 },
5045 {
5046 .name = "failcnt",
5047 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5048 .write = mem_cgroup_reset,
5049 .read_u64 = mem_cgroup_read_u64,
5050 },
5051 {
5052 .name = "stat",
5053 .seq_show = memory_stat_show,
5054 },
5055 {
5056 .name = "force_empty",
5057 .write = mem_cgroup_force_empty_write,
5058 },
5059 {
5060 .name = "use_hierarchy",
5061 .write_u64 = mem_cgroup_hierarchy_write,
5062 .read_u64 = mem_cgroup_hierarchy_read,
5063 },
5064 {
5065 .name = "cgroup.event_control", /* XXX: for compat */
5066 .write = memcg_write_event_control,
5067 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5068 },
5069 {
5070 .name = "swappiness",
5071 .read_u64 = mem_cgroup_swappiness_read,
5072 .write_u64 = mem_cgroup_swappiness_write,
5073 },
5074 {
5075 .name = "move_charge_at_immigrate",
5076 .read_u64 = mem_cgroup_move_charge_read,
5077 .write_u64 = mem_cgroup_move_charge_write,
5078 },
5079 {
5080 .name = "oom_control",
5081 .seq_show = mem_cgroup_oom_control_read,
5082 .write_u64 = mem_cgroup_oom_control_write,
5083 },
5084 {
5085 .name = "pressure_level",
5086 .seq_show = mem_cgroup_dummy_seq_show,
5087 },
5088 #ifdef CONFIG_NUMA
5089 {
5090 .name = "numa_stat",
5091 .seq_show = memcg_numa_stat_show,
5092 },
5093 #endif
5094 {
5095 .name = "kmem.limit_in_bytes",
5096 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5097 .write = mem_cgroup_write,
5098 .read_u64 = mem_cgroup_read_u64,
5099 },
5100 {
5101 .name = "kmem.usage_in_bytes",
5102 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5103 .read_u64 = mem_cgroup_read_u64,
5104 },
5105 {
5106 .name = "kmem.failcnt",
5107 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5108 .write = mem_cgroup_reset,
5109 .read_u64 = mem_cgroup_read_u64,
5110 },
5111 {
5112 .name = "kmem.max_usage_in_bytes",
5113 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5114 .write = mem_cgroup_reset,
5115 .read_u64 = mem_cgroup_read_u64,
5116 },
5117 #if defined(CONFIG_MEMCG_KMEM) && \
5118 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5119 {
5120 .name = "kmem.slabinfo",
5121 .seq_show = mem_cgroup_slab_show,
5122 },
5123 #endif
5124 {
5125 .name = "kmem.tcp.limit_in_bytes",
5126 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5127 .write = mem_cgroup_write,
5128 .read_u64 = mem_cgroup_read_u64,
5129 },
5130 {
5131 .name = "kmem.tcp.usage_in_bytes",
5132 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5133 .read_u64 = mem_cgroup_read_u64,
5134 },
5135 {
5136 .name = "kmem.tcp.failcnt",
5137 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5138 .write = mem_cgroup_reset,
5139 .read_u64 = mem_cgroup_read_u64,
5140 },
5141 {
5142 .name = "kmem.tcp.max_usage_in_bytes",
5143 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5144 .write = mem_cgroup_reset,
5145 .read_u64 = mem_cgroup_read_u64,
5146 },
5147 { }, /* terminate */
5148 };
5149
5150 /*
5151 * Private memory cgroup IDR
5152 *
5153 * Swap-out records and page cache shadow entries need to store memcg
5154 * references in constrained space, so we maintain an ID space that is
5155 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5156 * memory-controlled cgroups to 64k.
5157 *
5158 * However, there usually are many references to the offline CSS after
5159 * the cgroup has been destroyed, such as page cache or reclaimable
5160 * slab objects, that don't need to hang on to the ID. We want to keep
5161 * those dead CSS from occupying IDs, or we might quickly exhaust the
5162 * relatively small ID space and prevent the creation of new cgroups
5163 * even when there are much fewer than 64k cgroups - possibly none.
5164 *
5165 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5166 * be freed and recycled when it's no longer needed, which is usually
5167 * when the CSS is offlined.
5168 *
5169 * The only exception to that are records of swapped out tmpfs/shmem
5170 * pages that need to be attributed to live ancestors on swapin. But
5171 * those references are manageable from userspace.
5172 */
5173
5174 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5175 static DEFINE_IDR(mem_cgroup_idr);
5176 static DEFINE_SPINLOCK(memcg_idr_lock);
5177
mem_cgroup_alloc_id(void)5178 static int mem_cgroup_alloc_id(void)
5179 {
5180 int ret;
5181
5182 idr_preload(GFP_KERNEL);
5183 spin_lock(&memcg_idr_lock);
5184 ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX + 1,
5185 GFP_NOWAIT);
5186 spin_unlock(&memcg_idr_lock);
5187 idr_preload_end();
5188 return ret;
5189 }
5190
mem_cgroup_id_remove(struct mem_cgroup * memcg)5191 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5192 {
5193 if (memcg->id.id > 0) {
5194 spin_lock(&memcg_idr_lock);
5195 idr_remove(&mem_cgroup_idr, memcg->id.id);
5196 spin_unlock(&memcg_idr_lock);
5197
5198 memcg->id.id = 0;
5199 }
5200 }
5201
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5202 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5203 unsigned int n)
5204 {
5205 refcount_add(n, &memcg->id.ref);
5206 }
5207
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5208 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5209 {
5210 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5211 mem_cgroup_id_remove(memcg);
5212
5213 /* Memcg ID pins CSS */
5214 css_put(&memcg->css);
5215 }
5216 }
5217
mem_cgroup_id_put(struct mem_cgroup * memcg)5218 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5219 {
5220 mem_cgroup_id_put_many(memcg, 1);
5221 }
5222
5223 /**
5224 * mem_cgroup_from_id - look up a memcg from a memcg id
5225 * @id: the memcg id to look up
5226 *
5227 * Caller must hold rcu_read_lock().
5228 */
mem_cgroup_from_id(unsigned short id)5229 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5230 {
5231 WARN_ON_ONCE(!rcu_read_lock_held());
5232 return idr_find(&mem_cgroup_idr, id);
5233 }
5234
5235 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5236 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5237 {
5238 struct cgroup *cgrp;
5239 struct cgroup_subsys_state *css;
5240 struct mem_cgroup *memcg;
5241
5242 cgrp = cgroup_get_from_id(ino);
5243 if (IS_ERR(cgrp))
5244 return ERR_CAST(cgrp);
5245
5246 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5247 if (css)
5248 memcg = container_of(css, struct mem_cgroup, css);
5249 else
5250 memcg = ERR_PTR(-ENOENT);
5251
5252 cgroup_put(cgrp);
5253
5254 return memcg;
5255 }
5256 #endif
5257
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5258 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5259 {
5260 struct mem_cgroup_per_node *pn;
5261
5262 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5263 if (!pn)
5264 return 1;
5265
5266 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5267 GFP_KERNEL_ACCOUNT);
5268 if (!pn->lruvec_stats_percpu) {
5269 kfree(pn);
5270 return 1;
5271 }
5272
5273 lruvec_init(&pn->lruvec);
5274 pn->memcg = memcg;
5275
5276 memcg->nodeinfo[node] = pn;
5277 return 0;
5278 }
5279
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5280 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5281 {
5282 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5283
5284 if (!pn)
5285 return;
5286
5287 free_percpu(pn->lruvec_stats_percpu);
5288 kfree(pn);
5289 }
5290
__mem_cgroup_free(struct mem_cgroup * memcg)5291 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5292 {
5293 int node;
5294
5295 for_each_node(node)
5296 free_mem_cgroup_per_node_info(memcg, node);
5297 kfree(memcg->vmstats);
5298 free_percpu(memcg->vmstats_percpu);
5299 kfree(memcg);
5300 }
5301
mem_cgroup_free(struct mem_cgroup * memcg)5302 static void mem_cgroup_free(struct mem_cgroup *memcg)
5303 {
5304 lru_gen_exit_memcg(memcg);
5305 memcg_wb_domain_exit(memcg);
5306 __mem_cgroup_free(memcg);
5307 }
5308
mem_cgroup_alloc(void)5309 static struct mem_cgroup *mem_cgroup_alloc(void)
5310 {
5311 struct mem_cgroup *memcg;
5312 int node;
5313 int __maybe_unused i;
5314 long error = -ENOMEM;
5315
5316 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5317 if (!memcg)
5318 return ERR_PTR(error);
5319
5320 memcg->id.id = mem_cgroup_alloc_id();
5321 if (memcg->id.id < 0) {
5322 error = memcg->id.id;
5323 goto fail;
5324 }
5325
5326 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5327 if (!memcg->vmstats)
5328 goto fail;
5329
5330 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5331 GFP_KERNEL_ACCOUNT);
5332 if (!memcg->vmstats_percpu)
5333 goto fail;
5334
5335 for_each_node(node)
5336 if (alloc_mem_cgroup_per_node_info(memcg, node))
5337 goto fail;
5338
5339 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5340 goto fail;
5341
5342 INIT_WORK(&memcg->high_work, high_work_func);
5343 INIT_LIST_HEAD(&memcg->oom_notify);
5344 mutex_init(&memcg->thresholds_lock);
5345 spin_lock_init(&memcg->move_lock);
5346 vmpressure_init(&memcg->vmpressure);
5347 INIT_LIST_HEAD(&memcg->event_list);
5348 spin_lock_init(&memcg->event_list_lock);
5349 memcg->socket_pressure = jiffies;
5350 #ifdef CONFIG_MEMCG_KMEM
5351 memcg->kmemcg_id = -1;
5352 INIT_LIST_HEAD(&memcg->objcg_list);
5353 #endif
5354 #ifdef CONFIG_CGROUP_WRITEBACK
5355 INIT_LIST_HEAD(&memcg->cgwb_list);
5356 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5357 memcg->cgwb_frn[i].done =
5358 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5359 #endif
5360 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5361 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5362 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5363 memcg->deferred_split_queue.split_queue_len = 0;
5364 #endif
5365 lru_gen_init_memcg(memcg);
5366 return memcg;
5367 fail:
5368 mem_cgroup_id_remove(memcg);
5369 __mem_cgroup_free(memcg);
5370 return ERR_PTR(error);
5371 }
5372
5373 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5374 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5375 {
5376 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5377 struct mem_cgroup *memcg, *old_memcg;
5378
5379 old_memcg = set_active_memcg(parent);
5380 memcg = mem_cgroup_alloc();
5381 set_active_memcg(old_memcg);
5382 if (IS_ERR(memcg))
5383 return ERR_CAST(memcg);
5384
5385 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5386 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5387 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5388 memcg->zswap_max = PAGE_COUNTER_MAX;
5389 #endif
5390 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5391 if (parent) {
5392 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5393 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5394
5395 page_counter_init(&memcg->memory, &parent->memory);
5396 page_counter_init(&memcg->swap, &parent->swap);
5397 page_counter_init(&memcg->kmem, &parent->kmem);
5398 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5399 } else {
5400 init_memcg_events();
5401 page_counter_init(&memcg->memory, NULL);
5402 page_counter_init(&memcg->swap, NULL);
5403 page_counter_init(&memcg->kmem, NULL);
5404 page_counter_init(&memcg->tcpmem, NULL);
5405
5406 root_mem_cgroup = memcg;
5407 return &memcg->css;
5408 }
5409
5410 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5411 static_branch_inc(&memcg_sockets_enabled_key);
5412
5413 #if defined(CONFIG_MEMCG_KMEM)
5414 if (!cgroup_memory_nobpf)
5415 static_branch_inc(&memcg_bpf_enabled_key);
5416 #endif
5417
5418 return &memcg->css;
5419 }
5420
mem_cgroup_css_online(struct cgroup_subsys_state * css)5421 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5422 {
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5424
5425 if (memcg_online_kmem(memcg))
5426 goto remove_id;
5427
5428 /*
5429 * A memcg must be visible for expand_shrinker_info()
5430 * by the time the maps are allocated. So, we allocate maps
5431 * here, when for_each_mem_cgroup() can't skip it.
5432 */
5433 if (alloc_shrinker_info(memcg))
5434 goto offline_kmem;
5435
5436 if (unlikely(mem_cgroup_is_root(memcg)))
5437 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5438 FLUSH_TIME);
5439 lru_gen_online_memcg(memcg);
5440
5441 /* Online state pins memcg ID, memcg ID pins CSS */
5442 refcount_set(&memcg->id.ref, 1);
5443 css_get(css);
5444
5445 /*
5446 * Ensure mem_cgroup_from_id() works once we're fully online.
5447 *
5448 * We could do this earlier and require callers to filter with
5449 * css_tryget_online(). But right now there are no users that
5450 * need earlier access, and the workingset code relies on the
5451 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5452 * publish it here at the end of onlining. This matches the
5453 * regular ID destruction during offlining.
5454 */
5455 spin_lock(&memcg_idr_lock);
5456 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5457 spin_unlock(&memcg_idr_lock);
5458
5459 return 0;
5460 offline_kmem:
5461 memcg_offline_kmem(memcg);
5462 remove_id:
5463 mem_cgroup_id_remove(memcg);
5464 return -ENOMEM;
5465 }
5466
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5467 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5468 {
5469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5470 struct mem_cgroup_event *event, *tmp;
5471
5472 /*
5473 * Unregister events and notify userspace.
5474 * Notify userspace about cgroup removing only after rmdir of cgroup
5475 * directory to avoid race between userspace and kernelspace.
5476 */
5477 spin_lock_irq(&memcg->event_list_lock);
5478 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5479 list_del_init(&event->list);
5480 schedule_work(&event->remove);
5481 }
5482 spin_unlock_irq(&memcg->event_list_lock);
5483
5484 page_counter_set_min(&memcg->memory, 0);
5485 page_counter_set_low(&memcg->memory, 0);
5486
5487 memcg_offline_kmem(memcg);
5488 reparent_shrinker_deferred(memcg);
5489 wb_memcg_offline(memcg);
5490 lru_gen_offline_memcg(memcg);
5491
5492 drain_all_stock(memcg);
5493
5494 mem_cgroup_id_put(memcg);
5495 }
5496
mem_cgroup_css_released(struct cgroup_subsys_state * css)5497 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5498 {
5499 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5500
5501 invalidate_reclaim_iterators(memcg);
5502 lru_gen_release_memcg(memcg);
5503 }
5504
mem_cgroup_css_free(struct cgroup_subsys_state * css)5505 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5506 {
5507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5508 int __maybe_unused i;
5509
5510 #ifdef CONFIG_CGROUP_WRITEBACK
5511 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5512 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5513 #endif
5514 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5515 static_branch_dec(&memcg_sockets_enabled_key);
5516
5517 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5518 static_branch_dec(&memcg_sockets_enabled_key);
5519
5520 #if defined(CONFIG_MEMCG_KMEM)
5521 if (!cgroup_memory_nobpf)
5522 static_branch_dec(&memcg_bpf_enabled_key);
5523 #endif
5524
5525 vmpressure_cleanup(&memcg->vmpressure);
5526 cancel_work_sync(&memcg->high_work);
5527 mem_cgroup_remove_from_trees(memcg);
5528 free_shrinker_info(memcg);
5529 mem_cgroup_free(memcg);
5530 }
5531
5532 /**
5533 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5534 * @css: the target css
5535 *
5536 * Reset the states of the mem_cgroup associated with @css. This is
5537 * invoked when the userland requests disabling on the default hierarchy
5538 * but the memcg is pinned through dependency. The memcg should stop
5539 * applying policies and should revert to the vanilla state as it may be
5540 * made visible again.
5541 *
5542 * The current implementation only resets the essential configurations.
5543 * This needs to be expanded to cover all the visible parts.
5544 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5545 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5546 {
5547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5548
5549 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5550 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5551 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5552 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5553 page_counter_set_min(&memcg->memory, 0);
5554 page_counter_set_low(&memcg->memory, 0);
5555 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5556 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5557 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5558 memcg_wb_domain_size_changed(memcg);
5559 }
5560
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5561 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5562 {
5563 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5564 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5565 struct memcg_vmstats_percpu *statc;
5566 long delta, delta_cpu, v;
5567 int i, nid;
5568
5569 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5570
5571 for (i = 0; i < MEMCG_NR_STAT; i++) {
5572 /*
5573 * Collect the aggregated propagation counts of groups
5574 * below us. We're in a per-cpu loop here and this is
5575 * a global counter, so the first cycle will get them.
5576 */
5577 delta = memcg->vmstats->state_pending[i];
5578 if (delta)
5579 memcg->vmstats->state_pending[i] = 0;
5580
5581 /* Add CPU changes on this level since the last flush */
5582 delta_cpu = 0;
5583 v = READ_ONCE(statc->state[i]);
5584 if (v != statc->state_prev[i]) {
5585 delta_cpu = v - statc->state_prev[i];
5586 delta += delta_cpu;
5587 statc->state_prev[i] = v;
5588 }
5589
5590 /* Aggregate counts on this level and propagate upwards */
5591 if (delta_cpu)
5592 memcg->vmstats->state_local[i] += delta_cpu;
5593
5594 if (delta) {
5595 memcg->vmstats->state[i] += delta;
5596 if (parent)
5597 parent->vmstats->state_pending[i] += delta;
5598 }
5599 }
5600
5601 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5602 delta = memcg->vmstats->events_pending[i];
5603 if (delta)
5604 memcg->vmstats->events_pending[i] = 0;
5605
5606 delta_cpu = 0;
5607 v = READ_ONCE(statc->events[i]);
5608 if (v != statc->events_prev[i]) {
5609 delta_cpu = v - statc->events_prev[i];
5610 delta += delta_cpu;
5611 statc->events_prev[i] = v;
5612 }
5613
5614 if (delta_cpu)
5615 memcg->vmstats->events_local[i] += delta_cpu;
5616
5617 if (delta) {
5618 memcg->vmstats->events[i] += delta;
5619 if (parent)
5620 parent->vmstats->events_pending[i] += delta;
5621 }
5622 }
5623
5624 for_each_node_state(nid, N_MEMORY) {
5625 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5626 struct mem_cgroup_per_node *ppn = NULL;
5627 struct lruvec_stats_percpu *lstatc;
5628
5629 if (parent)
5630 ppn = parent->nodeinfo[nid];
5631
5632 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5633
5634 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5635 delta = pn->lruvec_stats.state_pending[i];
5636 if (delta)
5637 pn->lruvec_stats.state_pending[i] = 0;
5638
5639 delta_cpu = 0;
5640 v = READ_ONCE(lstatc->state[i]);
5641 if (v != lstatc->state_prev[i]) {
5642 delta_cpu = v - lstatc->state_prev[i];
5643 delta += delta_cpu;
5644 lstatc->state_prev[i] = v;
5645 }
5646
5647 if (delta_cpu)
5648 pn->lruvec_stats.state_local[i] += delta_cpu;
5649
5650 if (delta) {
5651 pn->lruvec_stats.state[i] += delta;
5652 if (ppn)
5653 ppn->lruvec_stats.state_pending[i] += delta;
5654 }
5655 }
5656 }
5657 }
5658
5659 #ifdef CONFIG_MMU
5660 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5661 static int mem_cgroup_do_precharge(unsigned long count)
5662 {
5663 int ret;
5664
5665 /* Try a single bulk charge without reclaim first, kswapd may wake */
5666 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5667 if (!ret) {
5668 mc.precharge += count;
5669 return ret;
5670 }
5671
5672 /* Try charges one by one with reclaim, but do not retry */
5673 while (count--) {
5674 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5675 if (ret)
5676 return ret;
5677 mc.precharge++;
5678 cond_resched();
5679 }
5680 return 0;
5681 }
5682
5683 union mc_target {
5684 struct page *page;
5685 swp_entry_t ent;
5686 };
5687
5688 enum mc_target_type {
5689 MC_TARGET_NONE = 0,
5690 MC_TARGET_PAGE,
5691 MC_TARGET_SWAP,
5692 MC_TARGET_DEVICE,
5693 };
5694
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5695 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5696 unsigned long addr, pte_t ptent)
5697 {
5698 struct page *page = vm_normal_page(vma, addr, ptent);
5699
5700 if (!page)
5701 return NULL;
5702 if (PageAnon(page)) {
5703 if (!(mc.flags & MOVE_ANON))
5704 return NULL;
5705 } else {
5706 if (!(mc.flags & MOVE_FILE))
5707 return NULL;
5708 }
5709 get_page(page);
5710
5711 return page;
5712 }
5713
5714 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5715 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5716 pte_t ptent, swp_entry_t *entry)
5717 {
5718 struct page *page = NULL;
5719 swp_entry_t ent = pte_to_swp_entry(ptent);
5720
5721 if (!(mc.flags & MOVE_ANON))
5722 return NULL;
5723
5724 /*
5725 * Handle device private pages that are not accessible by the CPU, but
5726 * stored as special swap entries in the page table.
5727 */
5728 if (is_device_private_entry(ent)) {
5729 page = pfn_swap_entry_to_page(ent);
5730 if (!get_page_unless_zero(page))
5731 return NULL;
5732 return page;
5733 }
5734
5735 if (non_swap_entry(ent))
5736 return NULL;
5737
5738 /*
5739 * Because swap_cache_get_folio() updates some statistics counter,
5740 * we call find_get_page() with swapper_space directly.
5741 */
5742 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5743 entry->val = ent.val;
5744
5745 return page;
5746 }
5747 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5748 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5749 pte_t ptent, swp_entry_t *entry)
5750 {
5751 return NULL;
5752 }
5753 #endif
5754
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5755 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5756 unsigned long addr, pte_t ptent)
5757 {
5758 unsigned long index;
5759 struct folio *folio;
5760
5761 if (!vma->vm_file) /* anonymous vma */
5762 return NULL;
5763 if (!(mc.flags & MOVE_FILE))
5764 return NULL;
5765
5766 /* folio is moved even if it's not RSS of this task(page-faulted). */
5767 /* shmem/tmpfs may report page out on swap: account for that too. */
5768 index = linear_page_index(vma, addr);
5769 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5770 if (IS_ERR(folio))
5771 return NULL;
5772 return folio_file_page(folio, index);
5773 }
5774
5775 /**
5776 * mem_cgroup_move_account - move account of the page
5777 * @page: the page
5778 * @compound: charge the page as compound or small page
5779 * @from: mem_cgroup which the page is moved from.
5780 * @to: mem_cgroup which the page is moved to. @from != @to.
5781 *
5782 * The page must be locked and not on the LRU.
5783 *
5784 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5785 * from old cgroup.
5786 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5787 static int mem_cgroup_move_account(struct page *page,
5788 bool compound,
5789 struct mem_cgroup *from,
5790 struct mem_cgroup *to)
5791 {
5792 struct folio *folio = page_folio(page);
5793 struct lruvec *from_vec, *to_vec;
5794 struct pglist_data *pgdat;
5795 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5796 int nid, ret;
5797
5798 VM_BUG_ON(from == to);
5799 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5800 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5801 VM_BUG_ON(compound && !folio_test_large(folio));
5802
5803 ret = -EINVAL;
5804 if (folio_memcg(folio) != from)
5805 goto out;
5806
5807 pgdat = folio_pgdat(folio);
5808 from_vec = mem_cgroup_lruvec(from, pgdat);
5809 to_vec = mem_cgroup_lruvec(to, pgdat);
5810
5811 folio_memcg_lock(folio);
5812
5813 if (folio_test_anon(folio)) {
5814 if (folio_mapped(folio)) {
5815 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5816 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5817 if (folio_test_pmd_mappable(folio)) {
5818 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5819 -nr_pages);
5820 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5821 nr_pages);
5822 }
5823 }
5824 } else {
5825 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5826 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5827
5828 if (folio_test_swapbacked(folio)) {
5829 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5830 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5831 }
5832
5833 if (folio_mapped(folio)) {
5834 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5835 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5836 }
5837
5838 if (folio_test_dirty(folio)) {
5839 struct address_space *mapping = folio_mapping(folio);
5840
5841 if (mapping_can_writeback(mapping)) {
5842 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5843 -nr_pages);
5844 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5845 nr_pages);
5846 }
5847 }
5848 }
5849
5850 #ifdef CONFIG_SWAP
5851 if (folio_test_swapcache(folio)) {
5852 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5853 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5854 }
5855 #endif
5856 if (folio_test_writeback(folio)) {
5857 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5858 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5859 }
5860
5861 /*
5862 * All state has been migrated, let's switch to the new memcg.
5863 *
5864 * It is safe to change page's memcg here because the page
5865 * is referenced, charged, isolated, and locked: we can't race
5866 * with (un)charging, migration, LRU putback, or anything else
5867 * that would rely on a stable page's memory cgroup.
5868 *
5869 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5870 * to save space. As soon as we switch page's memory cgroup to a
5871 * new memcg that isn't locked, the above state can change
5872 * concurrently again. Make sure we're truly done with it.
5873 */
5874 smp_mb();
5875
5876 css_get(&to->css);
5877 css_put(&from->css);
5878
5879 /* Warning should never happen, so don't worry about refcount non-0 */
5880 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
5881 folio->memcg_data = (unsigned long)to;
5882
5883 __folio_memcg_unlock(from);
5884
5885 ret = 0;
5886 nid = folio_nid(folio);
5887
5888 local_irq_disable();
5889 mem_cgroup_charge_statistics(to, nr_pages);
5890 memcg_check_events(to, nid);
5891 mem_cgroup_charge_statistics(from, -nr_pages);
5892 memcg_check_events(from, nid);
5893 local_irq_enable();
5894 out:
5895 return ret;
5896 }
5897
5898 /**
5899 * get_mctgt_type - get target type of moving charge
5900 * @vma: the vma the pte to be checked belongs
5901 * @addr: the address corresponding to the pte to be checked
5902 * @ptent: the pte to be checked
5903 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5904 *
5905 * Context: Called with pte lock held.
5906 * Return:
5907 * * MC_TARGET_NONE - If the pte is not a target for move charge.
5908 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5909 * move charge. If @target is not NULL, the page is stored in target->page
5910 * with extra refcnt taken (Caller should release it).
5911 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5912 * target for charge migration. If @target is not NULL, the entry is
5913 * stored in target->ent.
5914 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5915 * thus not on the lru. For now such page is charged like a regular page
5916 * would be as it is just special memory taking the place of a regular page.
5917 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5918 */
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5919 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5920 unsigned long addr, pte_t ptent, union mc_target *target)
5921 {
5922 struct page *page = NULL;
5923 enum mc_target_type ret = MC_TARGET_NONE;
5924 swp_entry_t ent = { .val = 0 };
5925
5926 if (pte_present(ptent))
5927 page = mc_handle_present_pte(vma, addr, ptent);
5928 else if (pte_none_mostly(ptent))
5929 /*
5930 * PTE markers should be treated as a none pte here, separated
5931 * from other swap handling below.
5932 */
5933 page = mc_handle_file_pte(vma, addr, ptent);
5934 else if (is_swap_pte(ptent))
5935 page = mc_handle_swap_pte(vma, ptent, &ent);
5936
5937 if (target && page) {
5938 if (!trylock_page(page)) {
5939 put_page(page);
5940 return ret;
5941 }
5942 /*
5943 * page_mapped() must be stable during the move. This
5944 * pte is locked, so if it's present, the page cannot
5945 * become unmapped. If it isn't, we have only partial
5946 * control over the mapped state: the page lock will
5947 * prevent new faults against pagecache and swapcache,
5948 * so an unmapped page cannot become mapped. However,
5949 * if the page is already mapped elsewhere, it can
5950 * unmap, and there is nothing we can do about it.
5951 * Alas, skip moving the page in this case.
5952 */
5953 if (!pte_present(ptent) && page_mapped(page)) {
5954 unlock_page(page);
5955 put_page(page);
5956 return ret;
5957 }
5958 }
5959
5960 if (!page && !ent.val)
5961 return ret;
5962 if (page) {
5963 /*
5964 * Do only loose check w/o serialization.
5965 * mem_cgroup_move_account() checks the page is valid or
5966 * not under LRU exclusion.
5967 */
5968 if (page_memcg(page) == mc.from) {
5969 ret = MC_TARGET_PAGE;
5970 if (is_device_private_page(page) ||
5971 is_device_coherent_page(page))
5972 ret = MC_TARGET_DEVICE;
5973 if (target)
5974 target->page = page;
5975 }
5976 if (!ret || !target) {
5977 if (target)
5978 unlock_page(page);
5979 put_page(page);
5980 }
5981 }
5982 /*
5983 * There is a swap entry and a page doesn't exist or isn't charged.
5984 * But we cannot move a tail-page in a THP.
5985 */
5986 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5987 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5988 ret = MC_TARGET_SWAP;
5989 if (target)
5990 target->ent = ent;
5991 }
5992 return ret;
5993 }
5994
5995 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5996 /*
5997 * We don't consider PMD mapped swapping or file mapped pages because THP does
5998 * not support them for now.
5999 * Caller should make sure that pmd_trans_huge(pmd) is true.
6000 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6001 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6002 unsigned long addr, pmd_t pmd, union mc_target *target)
6003 {
6004 struct page *page = NULL;
6005 enum mc_target_type ret = MC_TARGET_NONE;
6006
6007 if (unlikely(is_swap_pmd(pmd))) {
6008 VM_BUG_ON(thp_migration_supported() &&
6009 !is_pmd_migration_entry(pmd));
6010 return ret;
6011 }
6012 page = pmd_page(pmd);
6013 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6014 if (!(mc.flags & MOVE_ANON))
6015 return ret;
6016 if (page_memcg(page) == mc.from) {
6017 ret = MC_TARGET_PAGE;
6018 if (target) {
6019 get_page(page);
6020 if (!trylock_page(page)) {
6021 put_page(page);
6022 return MC_TARGET_NONE;
6023 }
6024 target->page = page;
6025 }
6026 }
6027 return ret;
6028 }
6029 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6030 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6031 unsigned long addr, pmd_t pmd, union mc_target *target)
6032 {
6033 return MC_TARGET_NONE;
6034 }
6035 #endif
6036
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6037 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6038 unsigned long addr, unsigned long end,
6039 struct mm_walk *walk)
6040 {
6041 struct vm_area_struct *vma = walk->vma;
6042 pte_t *pte;
6043 spinlock_t *ptl;
6044
6045 ptl = pmd_trans_huge_lock(pmd, vma);
6046 if (ptl) {
6047 /*
6048 * Note their can not be MC_TARGET_DEVICE for now as we do not
6049 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6050 * this might change.
6051 */
6052 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6053 mc.precharge += HPAGE_PMD_NR;
6054 spin_unlock(ptl);
6055 return 0;
6056 }
6057
6058 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6059 if (!pte)
6060 return 0;
6061 for (; addr != end; pte++, addr += PAGE_SIZE)
6062 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6063 mc.precharge++; /* increment precharge temporarily */
6064 pte_unmap_unlock(pte - 1, ptl);
6065 cond_resched();
6066
6067 return 0;
6068 }
6069
6070 static const struct mm_walk_ops precharge_walk_ops = {
6071 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6072 .walk_lock = PGWALK_RDLOCK,
6073 };
6074
mem_cgroup_count_precharge(struct mm_struct * mm)6075 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6076 {
6077 unsigned long precharge;
6078
6079 mmap_read_lock(mm);
6080 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6081 mmap_read_unlock(mm);
6082
6083 precharge = mc.precharge;
6084 mc.precharge = 0;
6085
6086 return precharge;
6087 }
6088
mem_cgroup_precharge_mc(struct mm_struct * mm)6089 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6090 {
6091 unsigned long precharge = mem_cgroup_count_precharge(mm);
6092
6093 VM_BUG_ON(mc.moving_task);
6094 mc.moving_task = current;
6095 return mem_cgroup_do_precharge(precharge);
6096 }
6097
6098 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6099 static void __mem_cgroup_clear_mc(void)
6100 {
6101 struct mem_cgroup *from = mc.from;
6102 struct mem_cgroup *to = mc.to;
6103
6104 /* we must uncharge all the leftover precharges from mc.to */
6105 if (mc.precharge) {
6106 cancel_charge(mc.to, mc.precharge);
6107 mc.precharge = 0;
6108 }
6109 /*
6110 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6111 * we must uncharge here.
6112 */
6113 if (mc.moved_charge) {
6114 cancel_charge(mc.from, mc.moved_charge);
6115 mc.moved_charge = 0;
6116 }
6117 /* we must fixup refcnts and charges */
6118 if (mc.moved_swap) {
6119 /* uncharge swap account from the old cgroup */
6120 if (!mem_cgroup_is_root(mc.from))
6121 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6122
6123 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6124
6125 /*
6126 * we charged both to->memory and to->memsw, so we
6127 * should uncharge to->memory.
6128 */
6129 if (!mem_cgroup_is_root(mc.to))
6130 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6131
6132 mc.moved_swap = 0;
6133 }
6134 memcg_oom_recover(from);
6135 memcg_oom_recover(to);
6136 wake_up_all(&mc.waitq);
6137 }
6138
mem_cgroup_clear_mc(void)6139 static void mem_cgroup_clear_mc(void)
6140 {
6141 struct mm_struct *mm = mc.mm;
6142
6143 /*
6144 * we must clear moving_task before waking up waiters at the end of
6145 * task migration.
6146 */
6147 mc.moving_task = NULL;
6148 __mem_cgroup_clear_mc();
6149 spin_lock(&mc.lock);
6150 mc.from = NULL;
6151 mc.to = NULL;
6152 mc.mm = NULL;
6153 spin_unlock(&mc.lock);
6154
6155 mmput(mm);
6156 }
6157
mem_cgroup_can_attach(struct cgroup_taskset * tset)6158 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6159 {
6160 struct cgroup_subsys_state *css;
6161 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6162 struct mem_cgroup *from;
6163 struct task_struct *leader, *p;
6164 struct mm_struct *mm;
6165 unsigned long move_flags;
6166 int ret = 0;
6167
6168 /* charge immigration isn't supported on the default hierarchy */
6169 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6170 return 0;
6171
6172 /*
6173 * Multi-process migrations only happen on the default hierarchy
6174 * where charge immigration is not used. Perform charge
6175 * immigration if @tset contains a leader and whine if there are
6176 * multiple.
6177 */
6178 p = NULL;
6179 cgroup_taskset_for_each_leader(leader, css, tset) {
6180 WARN_ON_ONCE(p);
6181 p = leader;
6182 memcg = mem_cgroup_from_css(css);
6183 }
6184 if (!p)
6185 return 0;
6186
6187 /*
6188 * We are now committed to this value whatever it is. Changes in this
6189 * tunable will only affect upcoming migrations, not the current one.
6190 * So we need to save it, and keep it going.
6191 */
6192 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6193 if (!move_flags)
6194 return 0;
6195
6196 from = mem_cgroup_from_task(p);
6197
6198 VM_BUG_ON(from == memcg);
6199
6200 mm = get_task_mm(p);
6201 if (!mm)
6202 return 0;
6203 /* We move charges only when we move a owner of the mm */
6204 if (mm->owner == p) {
6205 VM_BUG_ON(mc.from);
6206 VM_BUG_ON(mc.to);
6207 VM_BUG_ON(mc.precharge);
6208 VM_BUG_ON(mc.moved_charge);
6209 VM_BUG_ON(mc.moved_swap);
6210
6211 spin_lock(&mc.lock);
6212 mc.mm = mm;
6213 mc.from = from;
6214 mc.to = memcg;
6215 mc.flags = move_flags;
6216 spin_unlock(&mc.lock);
6217 /* We set mc.moving_task later */
6218
6219 ret = mem_cgroup_precharge_mc(mm);
6220 if (ret)
6221 mem_cgroup_clear_mc();
6222 } else {
6223 mmput(mm);
6224 }
6225 return ret;
6226 }
6227
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6228 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6229 {
6230 if (mc.to)
6231 mem_cgroup_clear_mc();
6232 }
6233
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6234 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6235 unsigned long addr, unsigned long end,
6236 struct mm_walk *walk)
6237 {
6238 int ret = 0;
6239 struct vm_area_struct *vma = walk->vma;
6240 pte_t *pte;
6241 spinlock_t *ptl;
6242 enum mc_target_type target_type;
6243 union mc_target target;
6244 struct page *page;
6245 struct folio *folio;
6246 bool tried_split_before = false;
6247
6248 retry_pmd:
6249 ptl = pmd_trans_huge_lock(pmd, vma);
6250 if (ptl) {
6251 if (mc.precharge < HPAGE_PMD_NR) {
6252 spin_unlock(ptl);
6253 return 0;
6254 }
6255 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6256 if (target_type == MC_TARGET_PAGE) {
6257 page = target.page;
6258 folio = page_folio(page);
6259 /*
6260 * Deferred split queue locking depends on memcg,
6261 * and unqueue is unsafe unless folio refcount is 0:
6262 * split or skip if on the queue? first try to split.
6263 */
6264 if (!list_empty(&folio->_deferred_list)) {
6265 spin_unlock(ptl);
6266 if (!tried_split_before)
6267 split_folio(folio);
6268 folio_unlock(folio);
6269 folio_put(folio);
6270 if (tried_split_before)
6271 return 0;
6272 tried_split_before = true;
6273 goto retry_pmd;
6274 }
6275 /*
6276 * So long as that pmd lock is held, the folio cannot
6277 * be racily added to the _deferred_list, because
6278 * page_remove_rmap() will find it still pmdmapped.
6279 */
6280 if (isolate_lru_page(page)) {
6281 if (!mem_cgroup_move_account(page, true,
6282 mc.from, mc.to)) {
6283 mc.precharge -= HPAGE_PMD_NR;
6284 mc.moved_charge += HPAGE_PMD_NR;
6285 }
6286 putback_lru_page(page);
6287 }
6288 unlock_page(page);
6289 put_page(page);
6290 } else if (target_type == MC_TARGET_DEVICE) {
6291 page = target.page;
6292 if (!mem_cgroup_move_account(page, true,
6293 mc.from, mc.to)) {
6294 mc.precharge -= HPAGE_PMD_NR;
6295 mc.moved_charge += HPAGE_PMD_NR;
6296 }
6297 unlock_page(page);
6298 put_page(page);
6299 }
6300 spin_unlock(ptl);
6301 return 0;
6302 }
6303
6304 retry:
6305 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6306 if (!pte)
6307 return 0;
6308 for (; addr != end; addr += PAGE_SIZE) {
6309 pte_t ptent = ptep_get(pte++);
6310 bool device = false;
6311 swp_entry_t ent;
6312
6313 if (!mc.precharge)
6314 break;
6315
6316 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6317 case MC_TARGET_DEVICE:
6318 device = true;
6319 fallthrough;
6320 case MC_TARGET_PAGE:
6321 page = target.page;
6322 /*
6323 * We can have a part of the split pmd here. Moving it
6324 * can be done but it would be too convoluted so simply
6325 * ignore such a partial THP and keep it in original
6326 * memcg. There should be somebody mapping the head.
6327 */
6328 if (PageTransCompound(page))
6329 goto put;
6330 if (!device && !isolate_lru_page(page))
6331 goto put;
6332 if (!mem_cgroup_move_account(page, false,
6333 mc.from, mc.to)) {
6334 mc.precharge--;
6335 /* we uncharge from mc.from later. */
6336 mc.moved_charge++;
6337 }
6338 if (!device)
6339 putback_lru_page(page);
6340 put: /* get_mctgt_type() gets & locks the page */
6341 unlock_page(page);
6342 put_page(page);
6343 break;
6344 case MC_TARGET_SWAP:
6345 ent = target.ent;
6346 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6347 mc.precharge--;
6348 mem_cgroup_id_get_many(mc.to, 1);
6349 /* we fixup other refcnts and charges later. */
6350 mc.moved_swap++;
6351 }
6352 break;
6353 default:
6354 break;
6355 }
6356 }
6357 pte_unmap_unlock(pte - 1, ptl);
6358 cond_resched();
6359
6360 if (addr != end) {
6361 /*
6362 * We have consumed all precharges we got in can_attach().
6363 * We try charge one by one, but don't do any additional
6364 * charges to mc.to if we have failed in charge once in attach()
6365 * phase.
6366 */
6367 ret = mem_cgroup_do_precharge(1);
6368 if (!ret)
6369 goto retry;
6370 }
6371
6372 return ret;
6373 }
6374
6375 static const struct mm_walk_ops charge_walk_ops = {
6376 .pmd_entry = mem_cgroup_move_charge_pte_range,
6377 .walk_lock = PGWALK_RDLOCK,
6378 };
6379
mem_cgroup_move_charge(void)6380 static void mem_cgroup_move_charge(void)
6381 {
6382 lru_add_drain_all();
6383 /*
6384 * Signal folio_memcg_lock() to take the memcg's move_lock
6385 * while we're moving its pages to another memcg. Then wait
6386 * for already started RCU-only updates to finish.
6387 */
6388 atomic_inc(&mc.from->moving_account);
6389 synchronize_rcu();
6390 retry:
6391 if (unlikely(!mmap_read_trylock(mc.mm))) {
6392 /*
6393 * Someone who are holding the mmap_lock might be waiting in
6394 * waitq. So we cancel all extra charges, wake up all waiters,
6395 * and retry. Because we cancel precharges, we might not be able
6396 * to move enough charges, but moving charge is a best-effort
6397 * feature anyway, so it wouldn't be a big problem.
6398 */
6399 __mem_cgroup_clear_mc();
6400 cond_resched();
6401 goto retry;
6402 }
6403 /*
6404 * When we have consumed all precharges and failed in doing
6405 * additional charge, the page walk just aborts.
6406 */
6407 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6408 mmap_read_unlock(mc.mm);
6409 atomic_dec(&mc.from->moving_account);
6410 }
6411
mem_cgroup_move_task(void)6412 static void mem_cgroup_move_task(void)
6413 {
6414 if (mc.to) {
6415 mem_cgroup_move_charge();
6416 mem_cgroup_clear_mc();
6417 }
6418 }
6419 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6420 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6421 {
6422 return 0;
6423 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6424 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6425 {
6426 }
mem_cgroup_move_task(void)6427 static void mem_cgroup_move_task(void)
6428 {
6429 }
6430 #endif
6431
6432 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6433 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6434 {
6435 struct task_struct *task;
6436 struct cgroup_subsys_state *css;
6437
6438 /* find the first leader if there is any */
6439 cgroup_taskset_for_each_leader(task, css, tset)
6440 break;
6441
6442 if (!task)
6443 return;
6444
6445 task_lock(task);
6446 if (task->mm && READ_ONCE(task->mm->owner) == task)
6447 lru_gen_migrate_mm(task->mm);
6448 task_unlock(task);
6449 }
6450 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6451 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6452 {
6453 }
6454 #endif /* CONFIG_LRU_GEN */
6455
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6456 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6457 {
6458 if (value == PAGE_COUNTER_MAX)
6459 seq_puts(m, "max\n");
6460 else
6461 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6462
6463 return 0;
6464 }
6465
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6466 static u64 memory_current_read(struct cgroup_subsys_state *css,
6467 struct cftype *cft)
6468 {
6469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6470
6471 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6472 }
6473
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6474 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6475 struct cftype *cft)
6476 {
6477 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6478
6479 return (u64)memcg->memory.watermark * PAGE_SIZE;
6480 }
6481
memory_min_show(struct seq_file * m,void * v)6482 static int memory_min_show(struct seq_file *m, void *v)
6483 {
6484 return seq_puts_memcg_tunable(m,
6485 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6486 }
6487
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6488 static ssize_t memory_min_write(struct kernfs_open_file *of,
6489 char *buf, size_t nbytes, loff_t off)
6490 {
6491 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6492 unsigned long min;
6493 int err;
6494
6495 buf = strstrip(buf);
6496 err = page_counter_memparse(buf, "max", &min);
6497 if (err)
6498 return err;
6499
6500 page_counter_set_min(&memcg->memory, min);
6501
6502 return nbytes;
6503 }
6504
memory_low_show(struct seq_file * m,void * v)6505 static int memory_low_show(struct seq_file *m, void *v)
6506 {
6507 return seq_puts_memcg_tunable(m,
6508 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6509 }
6510
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6511 static ssize_t memory_low_write(struct kernfs_open_file *of,
6512 char *buf, size_t nbytes, loff_t off)
6513 {
6514 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6515 unsigned long low;
6516 int err;
6517
6518 buf = strstrip(buf);
6519 err = page_counter_memparse(buf, "max", &low);
6520 if (err)
6521 return err;
6522
6523 page_counter_set_low(&memcg->memory, low);
6524
6525 return nbytes;
6526 }
6527
memory_high_show(struct seq_file * m,void * v)6528 static int memory_high_show(struct seq_file *m, void *v)
6529 {
6530 return seq_puts_memcg_tunable(m,
6531 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6532 }
6533
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6534 static ssize_t memory_high_write(struct kernfs_open_file *of,
6535 char *buf, size_t nbytes, loff_t off)
6536 {
6537 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6538 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6539 bool drained = false;
6540 unsigned long high;
6541 int err;
6542
6543 buf = strstrip(buf);
6544 err = page_counter_memparse(buf, "max", &high);
6545 if (err)
6546 return err;
6547
6548 page_counter_set_high(&memcg->memory, high);
6549
6550 for (;;) {
6551 unsigned long nr_pages = page_counter_read(&memcg->memory);
6552 unsigned long reclaimed;
6553
6554 if (nr_pages <= high)
6555 break;
6556
6557 if (signal_pending(current))
6558 break;
6559
6560 if (!drained) {
6561 drain_all_stock(memcg);
6562 drained = true;
6563 continue;
6564 }
6565
6566 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6567 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6568
6569 if (!reclaimed && !nr_retries--)
6570 break;
6571 }
6572
6573 memcg_wb_domain_size_changed(memcg);
6574 return nbytes;
6575 }
6576
memory_max_show(struct seq_file * m,void * v)6577 static int memory_max_show(struct seq_file *m, void *v)
6578 {
6579 return seq_puts_memcg_tunable(m,
6580 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6581 }
6582
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6583 static ssize_t memory_max_write(struct kernfs_open_file *of,
6584 char *buf, size_t nbytes, loff_t off)
6585 {
6586 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6587 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6588 bool drained = false;
6589 unsigned long max;
6590 int err;
6591
6592 buf = strstrip(buf);
6593 err = page_counter_memparse(buf, "max", &max);
6594 if (err)
6595 return err;
6596
6597 xchg(&memcg->memory.max, max);
6598
6599 for (;;) {
6600 unsigned long nr_pages = page_counter_read(&memcg->memory);
6601
6602 if (nr_pages <= max)
6603 break;
6604
6605 if (signal_pending(current))
6606 break;
6607
6608 if (!drained) {
6609 drain_all_stock(memcg);
6610 drained = true;
6611 continue;
6612 }
6613
6614 if (nr_reclaims) {
6615 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6616 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6617 nr_reclaims--;
6618 continue;
6619 }
6620
6621 memcg_memory_event(memcg, MEMCG_OOM);
6622 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6623 break;
6624 }
6625
6626 memcg_wb_domain_size_changed(memcg);
6627 return nbytes;
6628 }
6629
__memory_events_show(struct seq_file * m,atomic_long_t * events)6630 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6631 {
6632 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6633 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6634 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6635 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6636 seq_printf(m, "oom_kill %lu\n",
6637 atomic_long_read(&events[MEMCG_OOM_KILL]));
6638 seq_printf(m, "oom_group_kill %lu\n",
6639 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6640 }
6641
memory_events_show(struct seq_file * m,void * v)6642 static int memory_events_show(struct seq_file *m, void *v)
6643 {
6644 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6645
6646 __memory_events_show(m, memcg->memory_events);
6647 return 0;
6648 }
6649
memory_events_local_show(struct seq_file * m,void * v)6650 static int memory_events_local_show(struct seq_file *m, void *v)
6651 {
6652 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6653
6654 __memory_events_show(m, memcg->memory_events_local);
6655 return 0;
6656 }
6657
memory_stat_show(struct seq_file * m,void * v)6658 static int memory_stat_show(struct seq_file *m, void *v)
6659 {
6660 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6661 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6662 struct seq_buf s;
6663
6664 if (!buf)
6665 return -ENOMEM;
6666 seq_buf_init(&s, buf, PAGE_SIZE);
6667 memory_stat_format(memcg, &s);
6668 seq_puts(m, buf);
6669 kfree(buf);
6670 return 0;
6671 }
6672
6673 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6674 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6675 int item)
6676 {
6677 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6678 }
6679
memory_numa_stat_show(struct seq_file * m,void * v)6680 static int memory_numa_stat_show(struct seq_file *m, void *v)
6681 {
6682 int i;
6683 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6684
6685 mem_cgroup_flush_stats();
6686
6687 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6688 int nid;
6689
6690 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6691 continue;
6692
6693 seq_printf(m, "%s", memory_stats[i].name);
6694 for_each_node_state(nid, N_MEMORY) {
6695 u64 size;
6696 struct lruvec *lruvec;
6697
6698 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6699 size = lruvec_page_state_output(lruvec,
6700 memory_stats[i].idx);
6701 seq_printf(m, " N%d=%llu", nid, size);
6702 }
6703 seq_putc(m, '\n');
6704 }
6705
6706 return 0;
6707 }
6708 #endif
6709
memory_oom_group_show(struct seq_file * m,void * v)6710 static int memory_oom_group_show(struct seq_file *m, void *v)
6711 {
6712 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6713
6714 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6715
6716 return 0;
6717 }
6718
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6719 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6720 char *buf, size_t nbytes, loff_t off)
6721 {
6722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6723 int ret, oom_group;
6724
6725 buf = strstrip(buf);
6726 if (!buf)
6727 return -EINVAL;
6728
6729 ret = kstrtoint(buf, 0, &oom_group);
6730 if (ret)
6731 return ret;
6732
6733 if (oom_group != 0 && oom_group != 1)
6734 return -EINVAL;
6735
6736 WRITE_ONCE(memcg->oom_group, oom_group);
6737
6738 return nbytes;
6739 }
6740
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6741 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6742 size_t nbytes, loff_t off)
6743 {
6744 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6745 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6746 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6747 unsigned int reclaim_options;
6748 int err;
6749
6750 buf = strstrip(buf);
6751 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6752 if (err)
6753 return err;
6754
6755 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6756 while (nr_reclaimed < nr_to_reclaim) {
6757 unsigned long reclaimed;
6758
6759 if (signal_pending(current))
6760 return -EINTR;
6761
6762 /*
6763 * This is the final attempt, drain percpu lru caches in the
6764 * hope of introducing more evictable pages for
6765 * try_to_free_mem_cgroup_pages().
6766 */
6767 if (!nr_retries)
6768 lru_add_drain_all();
6769
6770 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6771 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6772 GFP_KERNEL, reclaim_options);
6773
6774 if (!reclaimed && !nr_retries--)
6775 return -EAGAIN;
6776
6777 nr_reclaimed += reclaimed;
6778 }
6779
6780 return nbytes;
6781 }
6782
6783 static struct cftype memory_files[] = {
6784 {
6785 .name = "current",
6786 .flags = CFTYPE_NOT_ON_ROOT,
6787 .read_u64 = memory_current_read,
6788 },
6789 {
6790 .name = "peak",
6791 .flags = CFTYPE_NOT_ON_ROOT,
6792 .read_u64 = memory_peak_read,
6793 },
6794 {
6795 .name = "min",
6796 .flags = CFTYPE_NOT_ON_ROOT,
6797 .seq_show = memory_min_show,
6798 .write = memory_min_write,
6799 },
6800 {
6801 .name = "low",
6802 .flags = CFTYPE_NOT_ON_ROOT,
6803 .seq_show = memory_low_show,
6804 .write = memory_low_write,
6805 },
6806 {
6807 .name = "high",
6808 .flags = CFTYPE_NOT_ON_ROOT,
6809 .seq_show = memory_high_show,
6810 .write = memory_high_write,
6811 },
6812 {
6813 .name = "max",
6814 .flags = CFTYPE_NOT_ON_ROOT,
6815 .seq_show = memory_max_show,
6816 .write = memory_max_write,
6817 },
6818 {
6819 .name = "events",
6820 .flags = CFTYPE_NOT_ON_ROOT,
6821 .file_offset = offsetof(struct mem_cgroup, events_file),
6822 .seq_show = memory_events_show,
6823 },
6824 {
6825 .name = "events.local",
6826 .flags = CFTYPE_NOT_ON_ROOT,
6827 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6828 .seq_show = memory_events_local_show,
6829 },
6830 {
6831 .name = "stat",
6832 .seq_show = memory_stat_show,
6833 },
6834 #ifdef CONFIG_NUMA
6835 {
6836 .name = "numa_stat",
6837 .seq_show = memory_numa_stat_show,
6838 },
6839 #endif
6840 {
6841 .name = "oom.group",
6842 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6843 .seq_show = memory_oom_group_show,
6844 .write = memory_oom_group_write,
6845 },
6846 {
6847 .name = "reclaim",
6848 .flags = CFTYPE_NS_DELEGATABLE,
6849 .write = memory_reclaim,
6850 },
6851 { } /* terminate */
6852 };
6853
6854 struct cgroup_subsys memory_cgrp_subsys = {
6855 .css_alloc = mem_cgroup_css_alloc,
6856 .css_online = mem_cgroup_css_online,
6857 .css_offline = mem_cgroup_css_offline,
6858 .css_released = mem_cgroup_css_released,
6859 .css_free = mem_cgroup_css_free,
6860 .css_reset = mem_cgroup_css_reset,
6861 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6862 .can_attach = mem_cgroup_can_attach,
6863 .attach = mem_cgroup_attach,
6864 .cancel_attach = mem_cgroup_cancel_attach,
6865 .post_attach = mem_cgroup_move_task,
6866 .dfl_cftypes = memory_files,
6867 .legacy_cftypes = mem_cgroup_legacy_files,
6868 .early_init = 0,
6869 };
6870
6871 /*
6872 * This function calculates an individual cgroup's effective
6873 * protection which is derived from its own memory.min/low, its
6874 * parent's and siblings' settings, as well as the actual memory
6875 * distribution in the tree.
6876 *
6877 * The following rules apply to the effective protection values:
6878 *
6879 * 1. At the first level of reclaim, effective protection is equal to
6880 * the declared protection in memory.min and memory.low.
6881 *
6882 * 2. To enable safe delegation of the protection configuration, at
6883 * subsequent levels the effective protection is capped to the
6884 * parent's effective protection.
6885 *
6886 * 3. To make complex and dynamic subtrees easier to configure, the
6887 * user is allowed to overcommit the declared protection at a given
6888 * level. If that is the case, the parent's effective protection is
6889 * distributed to the children in proportion to how much protection
6890 * they have declared and how much of it they are utilizing.
6891 *
6892 * This makes distribution proportional, but also work-conserving:
6893 * if one cgroup claims much more protection than it uses memory,
6894 * the unused remainder is available to its siblings.
6895 *
6896 * 4. Conversely, when the declared protection is undercommitted at a
6897 * given level, the distribution of the larger parental protection
6898 * budget is NOT proportional. A cgroup's protection from a sibling
6899 * is capped to its own memory.min/low setting.
6900 *
6901 * 5. However, to allow protecting recursive subtrees from each other
6902 * without having to declare each individual cgroup's fixed share
6903 * of the ancestor's claim to protection, any unutilized -
6904 * "floating" - protection from up the tree is distributed in
6905 * proportion to each cgroup's *usage*. This makes the protection
6906 * neutral wrt sibling cgroups and lets them compete freely over
6907 * the shared parental protection budget, but it protects the
6908 * subtree as a whole from neighboring subtrees.
6909 *
6910 * Note that 4. and 5. are not in conflict: 4. is about protecting
6911 * against immediate siblings whereas 5. is about protecting against
6912 * neighboring subtrees.
6913 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6914 static unsigned long effective_protection(unsigned long usage,
6915 unsigned long parent_usage,
6916 unsigned long setting,
6917 unsigned long parent_effective,
6918 unsigned long siblings_protected)
6919 {
6920 unsigned long protected;
6921 unsigned long ep;
6922
6923 protected = min(usage, setting);
6924 /*
6925 * If all cgroups at this level combined claim and use more
6926 * protection than what the parent affords them, distribute
6927 * shares in proportion to utilization.
6928 *
6929 * We are using actual utilization rather than the statically
6930 * claimed protection in order to be work-conserving: claimed
6931 * but unused protection is available to siblings that would
6932 * otherwise get a smaller chunk than what they claimed.
6933 */
6934 if (siblings_protected > parent_effective)
6935 return protected * parent_effective / siblings_protected;
6936
6937 /*
6938 * Ok, utilized protection of all children is within what the
6939 * parent affords them, so we know whatever this child claims
6940 * and utilizes is effectively protected.
6941 *
6942 * If there is unprotected usage beyond this value, reclaim
6943 * will apply pressure in proportion to that amount.
6944 *
6945 * If there is unutilized protection, the cgroup will be fully
6946 * shielded from reclaim, but we do return a smaller value for
6947 * protection than what the group could enjoy in theory. This
6948 * is okay. With the overcommit distribution above, effective
6949 * protection is always dependent on how memory is actually
6950 * consumed among the siblings anyway.
6951 */
6952 ep = protected;
6953
6954 /*
6955 * If the children aren't claiming (all of) the protection
6956 * afforded to them by the parent, distribute the remainder in
6957 * proportion to the (unprotected) memory of each cgroup. That
6958 * way, cgroups that aren't explicitly prioritized wrt each
6959 * other compete freely over the allowance, but they are
6960 * collectively protected from neighboring trees.
6961 *
6962 * We're using unprotected memory for the weight so that if
6963 * some cgroups DO claim explicit protection, we don't protect
6964 * the same bytes twice.
6965 *
6966 * Check both usage and parent_usage against the respective
6967 * protected values. One should imply the other, but they
6968 * aren't read atomically - make sure the division is sane.
6969 */
6970 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6971 return ep;
6972 if (parent_effective > siblings_protected &&
6973 parent_usage > siblings_protected &&
6974 usage > protected) {
6975 unsigned long unclaimed;
6976
6977 unclaimed = parent_effective - siblings_protected;
6978 unclaimed *= usage - protected;
6979 unclaimed /= parent_usage - siblings_protected;
6980
6981 ep += unclaimed;
6982 }
6983
6984 return ep;
6985 }
6986
6987 /**
6988 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6989 * @root: the top ancestor of the sub-tree being checked
6990 * @memcg: the memory cgroup to check
6991 *
6992 * WARNING: This function is not stateless! It can only be used as part
6993 * of a top-down tree iteration, not for isolated queries.
6994 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6995 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6996 struct mem_cgroup *memcg)
6997 {
6998 unsigned long usage, parent_usage;
6999 struct mem_cgroup *parent;
7000
7001 if (mem_cgroup_disabled())
7002 return;
7003
7004 if (!root)
7005 root = root_mem_cgroup;
7006
7007 /*
7008 * Effective values of the reclaim targets are ignored so they
7009 * can be stale. Have a look at mem_cgroup_protection for more
7010 * details.
7011 * TODO: calculation should be more robust so that we do not need
7012 * that special casing.
7013 */
7014 if (memcg == root)
7015 return;
7016
7017 usage = page_counter_read(&memcg->memory);
7018 if (!usage)
7019 return;
7020
7021 parent = parent_mem_cgroup(memcg);
7022
7023 if (parent == root) {
7024 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7025 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7026 return;
7027 }
7028
7029 parent_usage = page_counter_read(&parent->memory);
7030
7031 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7032 READ_ONCE(memcg->memory.min),
7033 READ_ONCE(parent->memory.emin),
7034 atomic_long_read(&parent->memory.children_min_usage)));
7035
7036 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7037 READ_ONCE(memcg->memory.low),
7038 READ_ONCE(parent->memory.elow),
7039 atomic_long_read(&parent->memory.children_low_usage)));
7040 }
7041
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)7042 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7043 gfp_t gfp)
7044 {
7045 long nr_pages = folio_nr_pages(folio);
7046 int ret;
7047
7048 ret = try_charge(memcg, gfp, nr_pages);
7049 if (ret)
7050 goto out;
7051
7052 css_get(&memcg->css);
7053 commit_charge(folio, memcg);
7054
7055 local_irq_disable();
7056 mem_cgroup_charge_statistics(memcg, nr_pages);
7057 memcg_check_events(memcg, folio_nid(folio));
7058 local_irq_enable();
7059 out:
7060 return ret;
7061 }
7062
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)7063 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7064 {
7065 struct mem_cgroup *memcg;
7066 int ret;
7067
7068 memcg = get_mem_cgroup_from_mm(mm);
7069 ret = charge_memcg(folio, memcg, gfp);
7070 css_put(&memcg->css);
7071
7072 return ret;
7073 }
7074
7075 /**
7076 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7077 * @folio: folio to charge.
7078 * @mm: mm context of the victim
7079 * @gfp: reclaim mode
7080 * @entry: swap entry for which the folio is allocated
7081 *
7082 * This function charges a folio allocated for swapin. Please call this before
7083 * adding the folio to the swapcache.
7084 *
7085 * Returns 0 on success. Otherwise, an error code is returned.
7086 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)7087 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7088 gfp_t gfp, swp_entry_t entry)
7089 {
7090 struct mem_cgroup *memcg;
7091 unsigned short id;
7092 int ret;
7093
7094 if (mem_cgroup_disabled())
7095 return 0;
7096
7097 id = lookup_swap_cgroup_id(entry);
7098 rcu_read_lock();
7099 memcg = mem_cgroup_from_id(id);
7100 if (!memcg || !css_tryget_online(&memcg->css))
7101 memcg = get_mem_cgroup_from_mm(mm);
7102 rcu_read_unlock();
7103
7104 ret = charge_memcg(folio, memcg, gfp);
7105
7106 css_put(&memcg->css);
7107 return ret;
7108 }
7109
7110 /*
7111 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7112 * @entry: swap entry for which the page is charged
7113 *
7114 * Call this function after successfully adding the charged page to swapcache.
7115 *
7116 * Note: This function assumes the page for which swap slot is being uncharged
7117 * is order 0 page.
7118 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)7119 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7120 {
7121 /*
7122 * Cgroup1's unified memory+swap counter has been charged with the
7123 * new swapcache page, finish the transfer by uncharging the swap
7124 * slot. The swap slot would also get uncharged when it dies, but
7125 * it can stick around indefinitely and we'd count the page twice
7126 * the entire time.
7127 *
7128 * Cgroup2 has separate resource counters for memory and swap,
7129 * so this is a non-issue here. Memory and swap charge lifetimes
7130 * correspond 1:1 to page and swap slot lifetimes: we charge the
7131 * page to memory here, and uncharge swap when the slot is freed.
7132 */
7133 if (!mem_cgroup_disabled() && do_memsw_account()) {
7134 /*
7135 * The swap entry might not get freed for a long time,
7136 * let's not wait for it. The page already received a
7137 * memory+swap charge, drop the swap entry duplicate.
7138 */
7139 mem_cgroup_uncharge_swap(entry, 1);
7140 }
7141 }
7142
7143 struct uncharge_gather {
7144 struct mem_cgroup *memcg;
7145 unsigned long nr_memory;
7146 unsigned long pgpgout;
7147 unsigned long nr_kmem;
7148 int nid;
7149 };
7150
uncharge_gather_clear(struct uncharge_gather * ug)7151 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7152 {
7153 memset(ug, 0, sizeof(*ug));
7154 }
7155
uncharge_batch(const struct uncharge_gather * ug)7156 static void uncharge_batch(const struct uncharge_gather *ug)
7157 {
7158 unsigned long flags;
7159
7160 if (ug->nr_memory) {
7161 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7162 if (do_memsw_account())
7163 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7164 if (ug->nr_kmem)
7165 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7166 memcg_oom_recover(ug->memcg);
7167 }
7168
7169 local_irq_save(flags);
7170 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7171 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7172 memcg_check_events(ug->memcg, ug->nid);
7173 local_irq_restore(flags);
7174
7175 /* drop reference from uncharge_folio */
7176 css_put(&ug->memcg->css);
7177 }
7178
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)7179 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7180 {
7181 long nr_pages;
7182 struct mem_cgroup *memcg;
7183 struct obj_cgroup *objcg;
7184
7185 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7186
7187 /*
7188 * Nobody should be changing or seriously looking at
7189 * folio memcg or objcg at this point, we have fully
7190 * exclusive access to the folio.
7191 */
7192 if (folio_memcg_kmem(folio)) {
7193 objcg = __folio_objcg(folio);
7194 /*
7195 * This get matches the put at the end of the function and
7196 * kmem pages do not hold memcg references anymore.
7197 */
7198 memcg = get_mem_cgroup_from_objcg(objcg);
7199 } else {
7200 memcg = __folio_memcg(folio);
7201 }
7202
7203 if (!memcg)
7204 return;
7205
7206 if (ug->memcg != memcg) {
7207 if (ug->memcg) {
7208 uncharge_batch(ug);
7209 uncharge_gather_clear(ug);
7210 }
7211 ug->memcg = memcg;
7212 ug->nid = folio_nid(folio);
7213
7214 /* pairs with css_put in uncharge_batch */
7215 css_get(&memcg->css);
7216 }
7217
7218 nr_pages = folio_nr_pages(folio);
7219
7220 if (folio_memcg_kmem(folio)) {
7221 ug->nr_memory += nr_pages;
7222 ug->nr_kmem += nr_pages;
7223
7224 folio->memcg_data = 0;
7225 obj_cgroup_put(objcg);
7226 } else {
7227 /* LRU pages aren't accounted at the root level */
7228 if (!mem_cgroup_is_root(memcg))
7229 ug->nr_memory += nr_pages;
7230 ug->pgpgout++;
7231
7232 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
7233 folio->memcg_data = 0;
7234 }
7235
7236 css_put(&memcg->css);
7237 }
7238
__mem_cgroup_uncharge(struct folio * folio)7239 void __mem_cgroup_uncharge(struct folio *folio)
7240 {
7241 struct uncharge_gather ug;
7242
7243 /* Don't touch folio->lru of any random page, pre-check: */
7244 if (!folio_memcg(folio))
7245 return;
7246
7247 uncharge_gather_clear(&ug);
7248 uncharge_folio(folio, &ug);
7249 uncharge_batch(&ug);
7250 }
7251
7252 /**
7253 * __mem_cgroup_uncharge_list - uncharge a list of page
7254 * @page_list: list of pages to uncharge
7255 *
7256 * Uncharge a list of pages previously charged with
7257 * __mem_cgroup_charge().
7258 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7259 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7260 {
7261 struct uncharge_gather ug;
7262 struct folio *folio;
7263
7264 uncharge_gather_clear(&ug);
7265 list_for_each_entry(folio, page_list, lru)
7266 uncharge_folio(folio, &ug);
7267 if (ug.memcg)
7268 uncharge_batch(&ug);
7269 }
7270
7271 /**
7272 * mem_cgroup_migrate - Charge a folio's replacement.
7273 * @old: Currently circulating folio.
7274 * @new: Replacement folio.
7275 *
7276 * Charge @new as a replacement folio for @old. @old will
7277 * be uncharged upon free.
7278 *
7279 * Both folios must be locked, @new->mapping must be set up.
7280 */
mem_cgroup_migrate(struct folio * old,struct folio * new)7281 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7282 {
7283 struct mem_cgroup *memcg;
7284 long nr_pages = folio_nr_pages(new);
7285 unsigned long flags;
7286
7287 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7288 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7289 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7290 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7291
7292 if (mem_cgroup_disabled())
7293 return;
7294
7295 /* Page cache replacement: new folio already charged? */
7296 if (folio_memcg(new))
7297 return;
7298
7299 memcg = folio_memcg(old);
7300 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7301 if (!memcg)
7302 return;
7303
7304 /* Force-charge the new page. The old one will be freed soon */
7305 if (!mem_cgroup_is_root(memcg)) {
7306 page_counter_charge(&memcg->memory, nr_pages);
7307 if (do_memsw_account())
7308 page_counter_charge(&memcg->memsw, nr_pages);
7309 }
7310
7311 css_get(&memcg->css);
7312 commit_charge(new, memcg);
7313
7314 local_irq_save(flags);
7315 mem_cgroup_charge_statistics(memcg, nr_pages);
7316 memcg_check_events(memcg, folio_nid(new));
7317 local_irq_restore(flags);
7318 }
7319
7320 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7321 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7322
mem_cgroup_sk_alloc(struct sock * sk)7323 void mem_cgroup_sk_alloc(struct sock *sk)
7324 {
7325 struct mem_cgroup *memcg;
7326
7327 if (!mem_cgroup_sockets_enabled)
7328 return;
7329
7330 /* Do not associate the sock with unrelated interrupted task's memcg. */
7331 if (!in_task())
7332 return;
7333
7334 rcu_read_lock();
7335 memcg = mem_cgroup_from_task(current);
7336 if (mem_cgroup_is_root(memcg))
7337 goto out;
7338 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7339 goto out;
7340 if (css_tryget(&memcg->css))
7341 sk->sk_memcg = memcg;
7342 out:
7343 rcu_read_unlock();
7344 }
7345
mem_cgroup_sk_free(struct sock * sk)7346 void mem_cgroup_sk_free(struct sock *sk)
7347 {
7348 if (sk->sk_memcg)
7349 css_put(&sk->sk_memcg->css);
7350 }
7351
7352 /**
7353 * mem_cgroup_charge_skmem - charge socket memory
7354 * @memcg: memcg to charge
7355 * @nr_pages: number of pages to charge
7356 * @gfp_mask: reclaim mode
7357 *
7358 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7359 * @memcg's configured limit, %false if it doesn't.
7360 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7361 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7362 gfp_t gfp_mask)
7363 {
7364 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7365 struct page_counter *fail;
7366
7367 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7368 memcg->tcpmem_pressure = 0;
7369 return true;
7370 }
7371 memcg->tcpmem_pressure = 1;
7372 if (gfp_mask & __GFP_NOFAIL) {
7373 page_counter_charge(&memcg->tcpmem, nr_pages);
7374 return true;
7375 }
7376 return false;
7377 }
7378
7379 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7380 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7381 return true;
7382 }
7383
7384 return false;
7385 }
7386
7387 /**
7388 * mem_cgroup_uncharge_skmem - uncharge socket memory
7389 * @memcg: memcg to uncharge
7390 * @nr_pages: number of pages to uncharge
7391 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7392 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7393 {
7394 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7395 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7396 return;
7397 }
7398
7399 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7400
7401 refill_stock(memcg, nr_pages);
7402 }
7403
cgroup_memory(char * s)7404 static int __init cgroup_memory(char *s)
7405 {
7406 char *token;
7407
7408 while ((token = strsep(&s, ",")) != NULL) {
7409 if (!*token)
7410 continue;
7411 if (!strcmp(token, "nosocket"))
7412 cgroup_memory_nosocket = true;
7413 if (!strcmp(token, "nokmem"))
7414 cgroup_memory_nokmem = true;
7415 if (!strcmp(token, "nobpf"))
7416 cgroup_memory_nobpf = true;
7417 }
7418 return 1;
7419 }
7420 __setup("cgroup.memory=", cgroup_memory);
7421
7422 /*
7423 * subsys_initcall() for memory controller.
7424 *
7425 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7426 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7427 * basically everything that doesn't depend on a specific mem_cgroup structure
7428 * should be initialized from here.
7429 */
mem_cgroup_init(void)7430 static int __init mem_cgroup_init(void)
7431 {
7432 int cpu, node;
7433
7434 /*
7435 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7436 * used for per-memcg-per-cpu caching of per-node statistics. In order
7437 * to work fine, we should make sure that the overfill threshold can't
7438 * exceed S32_MAX / PAGE_SIZE.
7439 */
7440 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7441
7442 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7443 memcg_hotplug_cpu_dead);
7444
7445 for_each_possible_cpu(cpu)
7446 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7447 drain_local_stock);
7448
7449 for_each_node(node) {
7450 struct mem_cgroup_tree_per_node *rtpn;
7451
7452 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7453
7454 rtpn->rb_root = RB_ROOT;
7455 rtpn->rb_rightmost = NULL;
7456 spin_lock_init(&rtpn->lock);
7457 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7458 }
7459
7460 return 0;
7461 }
7462 subsys_initcall(mem_cgroup_init);
7463
7464 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7465 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7466 {
7467 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7468 /*
7469 * The root cgroup cannot be destroyed, so it's refcount must
7470 * always be >= 1.
7471 */
7472 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7473 VM_BUG_ON(1);
7474 break;
7475 }
7476 memcg = parent_mem_cgroup(memcg);
7477 if (!memcg)
7478 memcg = root_mem_cgroup;
7479 }
7480 return memcg;
7481 }
7482
7483 /**
7484 * mem_cgroup_swapout - transfer a memsw charge to swap
7485 * @folio: folio whose memsw charge to transfer
7486 * @entry: swap entry to move the charge to
7487 *
7488 * Transfer the memsw charge of @folio to @entry.
7489 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7490 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7491 {
7492 struct mem_cgroup *memcg, *swap_memcg;
7493 unsigned int nr_entries;
7494 unsigned short oldid;
7495
7496 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7497 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7498
7499 if (mem_cgroup_disabled())
7500 return;
7501
7502 if (!do_memsw_account())
7503 return;
7504
7505 memcg = folio_memcg(folio);
7506
7507 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7508 if (!memcg)
7509 return;
7510
7511 /*
7512 * In case the memcg owning these pages has been offlined and doesn't
7513 * have an ID allocated to it anymore, charge the closest online
7514 * ancestor for the swap instead and transfer the memory+swap charge.
7515 */
7516 swap_memcg = mem_cgroup_id_get_online(memcg);
7517 nr_entries = folio_nr_pages(folio);
7518 /* Get references for the tail pages, too */
7519 if (nr_entries > 1)
7520 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7521 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7522 nr_entries);
7523 VM_BUG_ON_FOLIO(oldid, folio);
7524 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7525
7526 folio_unqueue_deferred_split(folio);
7527 folio->memcg_data = 0;
7528
7529 if (!mem_cgroup_is_root(memcg))
7530 page_counter_uncharge(&memcg->memory, nr_entries);
7531
7532 if (memcg != swap_memcg) {
7533 if (!mem_cgroup_is_root(swap_memcg))
7534 page_counter_charge(&swap_memcg->memsw, nr_entries);
7535 page_counter_uncharge(&memcg->memsw, nr_entries);
7536 }
7537
7538 /*
7539 * Interrupts should be disabled here because the caller holds the
7540 * i_pages lock which is taken with interrupts-off. It is
7541 * important here to have the interrupts disabled because it is the
7542 * only synchronisation we have for updating the per-CPU variables.
7543 */
7544 memcg_stats_lock();
7545 mem_cgroup_charge_statistics(memcg, -nr_entries);
7546 memcg_stats_unlock();
7547 memcg_check_events(memcg, folio_nid(folio));
7548
7549 css_put(&memcg->css);
7550 }
7551
7552 /**
7553 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7554 * @folio: folio being added to swap
7555 * @entry: swap entry to charge
7556 *
7557 * Try to charge @folio's memcg for the swap space at @entry.
7558 *
7559 * Returns 0 on success, -ENOMEM on failure.
7560 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7561 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7562 {
7563 unsigned int nr_pages = folio_nr_pages(folio);
7564 struct page_counter *counter;
7565 struct mem_cgroup *memcg;
7566 unsigned short oldid;
7567
7568 if (do_memsw_account())
7569 return 0;
7570
7571 memcg = folio_memcg(folio);
7572
7573 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7574 if (!memcg)
7575 return 0;
7576
7577 if (!entry.val) {
7578 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7579 return 0;
7580 }
7581
7582 memcg = mem_cgroup_id_get_online(memcg);
7583
7584 if (!mem_cgroup_is_root(memcg) &&
7585 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7586 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7587 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7588 mem_cgroup_id_put(memcg);
7589 return -ENOMEM;
7590 }
7591
7592 /* Get references for the tail pages, too */
7593 if (nr_pages > 1)
7594 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7595 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7596 VM_BUG_ON_FOLIO(oldid, folio);
7597 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7598
7599 return 0;
7600 }
7601
7602 /**
7603 * __mem_cgroup_uncharge_swap - uncharge swap space
7604 * @entry: swap entry to uncharge
7605 * @nr_pages: the amount of swap space to uncharge
7606 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7607 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7608 {
7609 struct mem_cgroup *memcg;
7610 unsigned short id;
7611
7612 id = swap_cgroup_record(entry, 0, nr_pages);
7613 rcu_read_lock();
7614 memcg = mem_cgroup_from_id(id);
7615 if (memcg) {
7616 if (!mem_cgroup_is_root(memcg)) {
7617 if (do_memsw_account())
7618 page_counter_uncharge(&memcg->memsw, nr_pages);
7619 else
7620 page_counter_uncharge(&memcg->swap, nr_pages);
7621 }
7622 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7623 mem_cgroup_id_put_many(memcg, nr_pages);
7624 }
7625 rcu_read_unlock();
7626 }
7627
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7628 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7629 {
7630 long nr_swap_pages = get_nr_swap_pages();
7631
7632 if (mem_cgroup_disabled() || do_memsw_account())
7633 return nr_swap_pages;
7634 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7635 nr_swap_pages = min_t(long, nr_swap_pages,
7636 READ_ONCE(memcg->swap.max) -
7637 page_counter_read(&memcg->swap));
7638 return nr_swap_pages;
7639 }
7640
mem_cgroup_swap_full(struct folio * folio)7641 bool mem_cgroup_swap_full(struct folio *folio)
7642 {
7643 struct mem_cgroup *memcg;
7644
7645 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7646
7647 if (vm_swap_full())
7648 return true;
7649 if (do_memsw_account())
7650 return false;
7651
7652 memcg = folio_memcg(folio);
7653 if (!memcg)
7654 return false;
7655
7656 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7657 unsigned long usage = page_counter_read(&memcg->swap);
7658
7659 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7660 usage * 2 >= READ_ONCE(memcg->swap.max))
7661 return true;
7662 }
7663
7664 return false;
7665 }
7666
setup_swap_account(char * s)7667 static int __init setup_swap_account(char *s)
7668 {
7669 bool res;
7670
7671 if (!kstrtobool(s, &res) && !res)
7672 pr_warn_once("The swapaccount=0 commandline option is deprecated "
7673 "in favor of configuring swap control via cgroupfs. "
7674 "Please report your usecase to linux-mm@kvack.org if you "
7675 "depend on this functionality.\n");
7676 return 1;
7677 }
7678 __setup("swapaccount=", setup_swap_account);
7679
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7680 static u64 swap_current_read(struct cgroup_subsys_state *css,
7681 struct cftype *cft)
7682 {
7683 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7684
7685 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7686 }
7687
swap_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)7688 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7689 struct cftype *cft)
7690 {
7691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7692
7693 return (u64)memcg->swap.watermark * PAGE_SIZE;
7694 }
7695
swap_high_show(struct seq_file * m,void * v)7696 static int swap_high_show(struct seq_file *m, void *v)
7697 {
7698 return seq_puts_memcg_tunable(m,
7699 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7700 }
7701
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7702 static ssize_t swap_high_write(struct kernfs_open_file *of,
7703 char *buf, size_t nbytes, loff_t off)
7704 {
7705 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7706 unsigned long high;
7707 int err;
7708
7709 buf = strstrip(buf);
7710 err = page_counter_memparse(buf, "max", &high);
7711 if (err)
7712 return err;
7713
7714 page_counter_set_high(&memcg->swap, high);
7715
7716 return nbytes;
7717 }
7718
swap_max_show(struct seq_file * m,void * v)7719 static int swap_max_show(struct seq_file *m, void *v)
7720 {
7721 return seq_puts_memcg_tunable(m,
7722 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7723 }
7724
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7725 static ssize_t swap_max_write(struct kernfs_open_file *of,
7726 char *buf, size_t nbytes, loff_t off)
7727 {
7728 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7729 unsigned long max;
7730 int err;
7731
7732 buf = strstrip(buf);
7733 err = page_counter_memparse(buf, "max", &max);
7734 if (err)
7735 return err;
7736
7737 xchg(&memcg->swap.max, max);
7738
7739 return nbytes;
7740 }
7741
swap_events_show(struct seq_file * m,void * v)7742 static int swap_events_show(struct seq_file *m, void *v)
7743 {
7744 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7745
7746 seq_printf(m, "high %lu\n",
7747 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7748 seq_printf(m, "max %lu\n",
7749 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7750 seq_printf(m, "fail %lu\n",
7751 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7752
7753 return 0;
7754 }
7755
7756 static struct cftype swap_files[] = {
7757 {
7758 .name = "swap.current",
7759 .flags = CFTYPE_NOT_ON_ROOT,
7760 .read_u64 = swap_current_read,
7761 },
7762 {
7763 .name = "swap.high",
7764 .flags = CFTYPE_NOT_ON_ROOT,
7765 .seq_show = swap_high_show,
7766 .write = swap_high_write,
7767 },
7768 {
7769 .name = "swap.max",
7770 .flags = CFTYPE_NOT_ON_ROOT,
7771 .seq_show = swap_max_show,
7772 .write = swap_max_write,
7773 },
7774 {
7775 .name = "swap.peak",
7776 .flags = CFTYPE_NOT_ON_ROOT,
7777 .read_u64 = swap_peak_read,
7778 },
7779 {
7780 .name = "swap.events",
7781 .flags = CFTYPE_NOT_ON_ROOT,
7782 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7783 .seq_show = swap_events_show,
7784 },
7785 { } /* terminate */
7786 };
7787
7788 static struct cftype memsw_files[] = {
7789 {
7790 .name = "memsw.usage_in_bytes",
7791 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7792 .read_u64 = mem_cgroup_read_u64,
7793 },
7794 {
7795 .name = "memsw.max_usage_in_bytes",
7796 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7797 .write = mem_cgroup_reset,
7798 .read_u64 = mem_cgroup_read_u64,
7799 },
7800 {
7801 .name = "memsw.limit_in_bytes",
7802 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7803 .write = mem_cgroup_write,
7804 .read_u64 = mem_cgroup_read_u64,
7805 },
7806 {
7807 .name = "memsw.failcnt",
7808 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7809 .write = mem_cgroup_reset,
7810 .read_u64 = mem_cgroup_read_u64,
7811 },
7812 { }, /* terminate */
7813 };
7814
7815 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7816 /**
7817 * obj_cgroup_may_zswap - check if this cgroup can zswap
7818 * @objcg: the object cgroup
7819 *
7820 * Check if the hierarchical zswap limit has been reached.
7821 *
7822 * This doesn't check for specific headroom, and it is not atomic
7823 * either. But with zswap, the size of the allocation is only known
7824 * once compression has occured, and this optimistic pre-check avoids
7825 * spending cycles on compression when there is already no room left
7826 * or zswap is disabled altogether somewhere in the hierarchy.
7827 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7828 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7829 {
7830 struct mem_cgroup *memcg, *original_memcg;
7831 bool ret = true;
7832
7833 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7834 return true;
7835
7836 original_memcg = get_mem_cgroup_from_objcg(objcg);
7837 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7838 memcg = parent_mem_cgroup(memcg)) {
7839 unsigned long max = READ_ONCE(memcg->zswap_max);
7840 unsigned long pages;
7841
7842 if (max == PAGE_COUNTER_MAX)
7843 continue;
7844 if (max == 0) {
7845 ret = false;
7846 break;
7847 }
7848
7849 cgroup_rstat_flush(memcg->css.cgroup);
7850 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7851 if (pages < max)
7852 continue;
7853 ret = false;
7854 break;
7855 }
7856 mem_cgroup_put(original_memcg);
7857 return ret;
7858 }
7859
7860 /**
7861 * obj_cgroup_charge_zswap - charge compression backend memory
7862 * @objcg: the object cgroup
7863 * @size: size of compressed object
7864 *
7865 * This forces the charge after obj_cgroup_may_zswap() allowed
7866 * compression and storage in zwap for this cgroup to go ahead.
7867 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7868 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7869 {
7870 struct mem_cgroup *memcg;
7871
7872 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7873 return;
7874
7875 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7876
7877 /* PF_MEMALLOC context, charging must succeed */
7878 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7879 VM_WARN_ON_ONCE(1);
7880
7881 rcu_read_lock();
7882 memcg = obj_cgroup_memcg(objcg);
7883 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7884 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7885 rcu_read_unlock();
7886 }
7887
7888 /**
7889 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7890 * @objcg: the object cgroup
7891 * @size: size of compressed object
7892 *
7893 * Uncharges zswap memory on page in.
7894 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7895 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7896 {
7897 struct mem_cgroup *memcg;
7898
7899 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7900 return;
7901
7902 obj_cgroup_uncharge(objcg, size);
7903
7904 rcu_read_lock();
7905 memcg = obj_cgroup_memcg(objcg);
7906 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7907 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7908 rcu_read_unlock();
7909 }
7910
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7911 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7912 struct cftype *cft)
7913 {
7914 cgroup_rstat_flush(css->cgroup);
7915 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7916 }
7917
zswap_max_show(struct seq_file * m,void * v)7918 static int zswap_max_show(struct seq_file *m, void *v)
7919 {
7920 return seq_puts_memcg_tunable(m,
7921 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7922 }
7923
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7924 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7925 char *buf, size_t nbytes, loff_t off)
7926 {
7927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7928 unsigned long max;
7929 int err;
7930
7931 buf = strstrip(buf);
7932 err = page_counter_memparse(buf, "max", &max);
7933 if (err)
7934 return err;
7935
7936 xchg(&memcg->zswap_max, max);
7937
7938 return nbytes;
7939 }
7940
7941 static struct cftype zswap_files[] = {
7942 {
7943 .name = "zswap.current",
7944 .flags = CFTYPE_NOT_ON_ROOT,
7945 .read_u64 = zswap_current_read,
7946 },
7947 {
7948 .name = "zswap.max",
7949 .flags = CFTYPE_NOT_ON_ROOT,
7950 .seq_show = zswap_max_show,
7951 .write = zswap_max_write,
7952 },
7953 { } /* terminate */
7954 };
7955 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7956
mem_cgroup_swap_init(void)7957 static int __init mem_cgroup_swap_init(void)
7958 {
7959 if (mem_cgroup_disabled())
7960 return 0;
7961
7962 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7964 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7965 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7966 #endif
7967 return 0;
7968 }
7969 subsys_initcall(mem_cgroup_swap_init);
7970
7971 #endif /* CONFIG_SWAP */
7972