xref: /openbmc/linux/mm/memblock.c (revision 6f6249a599e52e1a5f0b632f8edff733cfa76450)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmem`` - describes the actual physical memory available during
52  *   boot regardless of the possible restrictions and memory hot(un)plug;
53  *   the ``physmem`` type is only available on some architectures.
54  *
55  * Each region is represented by struct memblock_region that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the struct memblock_type
58  * which contains an array of memory regions along with
59  * the allocator metadata. The "memory" and "reserved" types are nicely
60  * wrapped with struct memblock. This structure is statically
61  * initialized at build time. The region arrays are initially sized to
62  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65  * The memblock_allow_resize() enables automatic resizing of the region
66  * arrays during addition of new regions. This feature should be used
67  * with care so that memory allocated for the region array will not
68  * overlap with areas that should be reserved, for example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using memblock_add() or memblock_add_node()
72  * functions. The first function does not assign the region to a NUMA
73  * node and it is appropriate for UMA systems. Yet, it is possible to
74  * use it on NUMA systems as well and assign the region to a NUMA node
75  * later in the setup process using memblock_set_node(). The
76  * memblock_add_node() performs such an assignment directly.
77  *
78  * Once memblock is setup the memory can be allocated using one of the
79  * API variants:
80  *
81  * * memblock_phys_alloc*() - these functions return the **physical**
82  *   address of the allocated memory
83  * * memblock_alloc*() - these functions return the **virtual** address
84  *   of the allocated memory.
85  *
86  * Note, that both API variants use implicit assumptions about allowed
87  * memory ranges and the fallback methods. Consult the documentation
88  * of memblock_alloc_internal() and memblock_alloc_range_nid()
89  * functions for more elaborate description.
90  *
91  * As the system boot progresses, the architecture specific mem_init()
92  * function frees all the memory to the buddy page allocator.
93  *
94  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95  * memblock data structures (except "physmem") will be discarded after the
96  * system initialization completes.
97  */
98 
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103 
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108 
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114 
115 struct memblock memblock __initdata_memblock = {
116 	.memory.regions		= memblock_memory_init_regions,
117 	.memory.cnt		= 1,	/* empty dummy entry */
118 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119 	.memory.name		= "memory",
120 
121 	.reserved.regions	= memblock_reserved_init_regions,
122 	.reserved.cnt		= 1,	/* empty dummy entry */
123 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124 	.reserved.name		= "reserved",
125 
126 	.bottom_up		= false,
127 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128 };
129 
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 	.regions		= memblock_physmem_init_regions,
133 	.cnt			= 1,	/* empty dummy entry */
134 	.max			= INIT_PHYSMEM_REGIONS,
135 	.name			= "physmem",
136 };
137 #endif
138 
139 /*
140  * keep a pointer to &memblock.memory in the text section to use it in
141  * __next_mem_range() and its helpers.
142  *  For architectures that do not keep memblock data after init, this
143  * pointer will be reset to NULL at memblock_discard()
144  */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146 
147 #define for_each_memblock_type(i, memblock_type, rgn)			\
148 	for (i = 0, rgn = &memblock_type->regions[0];			\
149 	     i < memblock_type->cnt;					\
150 	     i++, rgn = &memblock_type->regions[i])
151 
152 #define memblock_dbg(fmt, ...)						\
153 	do {								\
154 		if (memblock_debug)					\
155 			pr_info(fmt, ##__VA_ARGS__);			\
156 	} while (0)
157 
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163 
memblock_has_mirror(void)164 bool __init_memblock memblock_has_mirror(void)
165 {
166 	return system_has_some_mirror;
167 }
168 
choose_memblock_flags(void)169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173 
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 	return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179 
180 /*
181  * Address comparison utilities
182  */
183 unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)184 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
185 		       phys_addr_t size2)
186 {
187 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
188 }
189 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)190 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191 					phys_addr_t base, phys_addr_t size)
192 {
193 	unsigned long i;
194 
195 	memblock_cap_size(base, &size);
196 
197 	for (i = 0; i < type->cnt; i++)
198 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
199 					   type->regions[i].size))
200 			break;
201 	return i < type->cnt;
202 }
203 
204 /**
205  * __memblock_find_range_bottom_up - find free area utility in bottom-up
206  * @start: start of candidate range
207  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208  *       %MEMBLOCK_ALLOC_ACCESSIBLE
209  * @size: size of free area to find
210  * @align: alignment of free area to find
211  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212  * @flags: pick from blocks based on memory attributes
213  *
214  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
215  *
216  * Return:
217  * Found address on success, 0 on failure.
218  */
219 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)220 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221 				phys_addr_t size, phys_addr_t align, int nid,
222 				enum memblock_flags flags)
223 {
224 	phys_addr_t this_start, this_end, cand;
225 	u64 i;
226 
227 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228 		this_start = clamp(this_start, start, end);
229 		this_end = clamp(this_end, start, end);
230 
231 		cand = round_up(this_start, align);
232 		if (cand < this_end && this_end - cand >= size)
233 			return cand;
234 	}
235 
236 	return 0;
237 }
238 
239 /**
240  * __memblock_find_range_top_down - find free area utility, in top-down
241  * @start: start of candidate range
242  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243  *       %MEMBLOCK_ALLOC_ACCESSIBLE
244  * @size: size of free area to find
245  * @align: alignment of free area to find
246  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247  * @flags: pick from blocks based on memory attributes
248  *
249  * Utility called from memblock_find_in_range_node(), find free area top-down.
250  *
251  * Return:
252  * Found address on success, 0 on failure.
253  */
254 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)255 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256 			       phys_addr_t size, phys_addr_t align, int nid,
257 			       enum memblock_flags flags)
258 {
259 	phys_addr_t this_start, this_end, cand;
260 	u64 i;
261 
262 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263 					NULL) {
264 		this_start = clamp(this_start, start, end);
265 		this_end = clamp(this_end, start, end);
266 
267 		if (this_end < size)
268 			continue;
269 
270 		cand = round_down(this_end - size, align);
271 		if (cand >= this_start)
272 			return cand;
273 	}
274 
275 	return 0;
276 }
277 
278 /**
279  * memblock_find_in_range_node - find free area in given range and node
280  * @size: size of free area to find
281  * @align: alignment of free area to find
282  * @start: start of candidate range
283  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284  *       %MEMBLOCK_ALLOC_ACCESSIBLE
285  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286  * @flags: pick from blocks based on memory attributes
287  *
288  * Find @size free area aligned to @align in the specified range and node.
289  *
290  * Return:
291  * Found address on success, 0 on failure.
292  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)293 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294 					phys_addr_t align, phys_addr_t start,
295 					phys_addr_t end, int nid,
296 					enum memblock_flags flags)
297 {
298 	/* pump up @end */
299 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301 		end = memblock.current_limit;
302 
303 	/* avoid allocating the first page */
304 	start = max_t(phys_addr_t, start, PAGE_SIZE);
305 	end = max(start, end);
306 
307 	if (memblock_bottom_up())
308 		return __memblock_find_range_bottom_up(start, end, size, align,
309 						       nid, flags);
310 	else
311 		return __memblock_find_range_top_down(start, end, size, align,
312 						      nid, flags);
313 }
314 
315 /**
316  * memblock_find_in_range - find free area in given range
317  * @start: start of candidate range
318  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319  *       %MEMBLOCK_ALLOC_ACCESSIBLE
320  * @size: size of free area to find
321  * @align: alignment of free area to find
322  *
323  * Find @size free area aligned to @align in the specified range.
324  *
325  * Return:
326  * Found address on success, 0 on failure.
327  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)328 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 					phys_addr_t end, phys_addr_t size,
330 					phys_addr_t align)
331 {
332 	phys_addr_t ret;
333 	enum memblock_flags flags = choose_memblock_flags();
334 
335 again:
336 	ret = memblock_find_in_range_node(size, align, start, end,
337 					    NUMA_NO_NODE, flags);
338 
339 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341 			&size);
342 		flags &= ~MEMBLOCK_MIRROR;
343 		goto again;
344 	}
345 
346 	return ret;
347 }
348 
memblock_remove_region(struct memblock_type * type,unsigned long r)349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 {
351 	type->total_size -= type->regions[r].size;
352 	memmove(&type->regions[r], &type->regions[r + 1],
353 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
354 	type->cnt--;
355 
356 	/* Special case for empty arrays */
357 	if (type->cnt == 0) {
358 		WARN_ON(type->total_size != 0);
359 		type->cnt = 1;
360 		type->regions[0].base = 0;
361 		type->regions[0].size = 0;
362 		type->regions[0].flags = 0;
363 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364 	}
365 }
366 
367 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368 /**
369  * memblock_discard - discard memory and reserved arrays if they were allocated
370  */
memblock_discard(void)371 void __init memblock_discard(void)
372 {
373 	phys_addr_t addr, size;
374 
375 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 		addr = __pa(memblock.reserved.regions);
377 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 				  memblock.reserved.max);
379 		if (memblock_reserved_in_slab)
380 			kfree(memblock.reserved.regions);
381 		else
382 			memblock_free_late(addr, size);
383 	}
384 
385 	if (memblock.memory.regions != memblock_memory_init_regions) {
386 		addr = __pa(memblock.memory.regions);
387 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 				  memblock.memory.max);
389 		if (memblock_memory_in_slab)
390 			kfree(memblock.memory.regions);
391 		else
392 			memblock_free_late(addr, size);
393 	}
394 
395 	memblock_memory = NULL;
396 }
397 #endif
398 
399 /**
400  * memblock_double_array - double the size of the memblock regions array
401  * @type: memblock type of the regions array being doubled
402  * @new_area_start: starting address of memory range to avoid overlap with
403  * @new_area_size: size of memory range to avoid overlap with
404  *
405  * Double the size of the @type regions array. If memblock is being used to
406  * allocate memory for a new reserved regions array and there is a previously
407  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408  * waiting to be reserved, ensure the memory used by the new array does
409  * not overlap.
410  *
411  * Return:
412  * 0 on success, -1 on failure.
413  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)414 static int __init_memblock memblock_double_array(struct memblock_type *type,
415 						phys_addr_t new_area_start,
416 						phys_addr_t new_area_size)
417 {
418 	struct memblock_region *new_array, *old_array;
419 	phys_addr_t old_alloc_size, new_alloc_size;
420 	phys_addr_t old_size, new_size, addr, new_end;
421 	int use_slab = slab_is_available();
422 	int *in_slab;
423 
424 	/* We don't allow resizing until we know about the reserved regions
425 	 * of memory that aren't suitable for allocation
426 	 */
427 	if (!memblock_can_resize)
428 		return -1;
429 
430 	/* Calculate new doubled size */
431 	old_size = type->max * sizeof(struct memblock_region);
432 	new_size = old_size << 1;
433 	/*
434 	 * We need to allocated new one align to PAGE_SIZE,
435 	 *   so we can free them completely later.
436 	 */
437 	old_alloc_size = PAGE_ALIGN(old_size);
438 	new_alloc_size = PAGE_ALIGN(new_size);
439 
440 	/* Retrieve the slab flag */
441 	if (type == &memblock.memory)
442 		in_slab = &memblock_memory_in_slab;
443 	else
444 		in_slab = &memblock_reserved_in_slab;
445 
446 	/* Try to find some space for it */
447 	if (use_slab) {
448 		new_array = kmalloc(new_size, GFP_KERNEL);
449 		addr = new_array ? __pa(new_array) : 0;
450 	} else {
451 		/* only exclude range when trying to double reserved.regions */
452 		if (type != &memblock.reserved)
453 			new_area_start = new_area_size = 0;
454 
455 		addr = memblock_find_in_range(new_area_start + new_area_size,
456 						memblock.current_limit,
457 						new_alloc_size, PAGE_SIZE);
458 		if (!addr && new_area_size)
459 			addr = memblock_find_in_range(0,
460 				min(new_area_start, memblock.current_limit),
461 				new_alloc_size, PAGE_SIZE);
462 
463 		if (addr) {
464 			/* The memory may not have been accepted, yet. */
465 			accept_memory(addr, addr + new_alloc_size);
466 
467 			new_array = __va(addr);
468 		} else {
469 			new_array = NULL;
470 		}
471 	}
472 	if (!addr) {
473 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
474 		       type->name, type->max, type->max * 2);
475 		return -1;
476 	}
477 
478 	new_end = addr + new_size - 1;
479 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
480 			type->name, type->max * 2, &addr, &new_end);
481 
482 	/*
483 	 * Found space, we now need to move the array over before we add the
484 	 * reserved region since it may be our reserved array itself that is
485 	 * full.
486 	 */
487 	memcpy(new_array, type->regions, old_size);
488 	memset(new_array + type->max, 0, old_size);
489 	old_array = type->regions;
490 	type->regions = new_array;
491 	type->max <<= 1;
492 
493 	/* Free old array. We needn't free it if the array is the static one */
494 	if (*in_slab)
495 		kfree(old_array);
496 	else if (old_array != memblock_memory_init_regions &&
497 		 old_array != memblock_reserved_init_regions)
498 		memblock_free(old_array, old_alloc_size);
499 
500 	/*
501 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
502 	 * needn't do it
503 	 */
504 	if (!use_slab)
505 		BUG_ON(memblock_reserve(addr, new_alloc_size));
506 
507 	/* Update slab flag */
508 	*in_slab = use_slab;
509 
510 	return 0;
511 }
512 
513 /**
514  * memblock_merge_regions - merge neighboring compatible regions
515  * @type: memblock type to scan
516  * @start_rgn: start scanning from (@start_rgn - 1)
517  * @end_rgn: end scanning at (@end_rgn - 1)
518  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
519  */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)520 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
521 						   unsigned long start_rgn,
522 						   unsigned long end_rgn)
523 {
524 	int i = 0;
525 	if (start_rgn)
526 		i = start_rgn - 1;
527 	end_rgn = min(end_rgn, type->cnt - 1);
528 	while (i < end_rgn) {
529 		struct memblock_region *this = &type->regions[i];
530 		struct memblock_region *next = &type->regions[i + 1];
531 
532 		if (this->base + this->size != next->base ||
533 		    memblock_get_region_node(this) !=
534 		    memblock_get_region_node(next) ||
535 		    this->flags != next->flags) {
536 			BUG_ON(this->base + this->size > next->base);
537 			i++;
538 			continue;
539 		}
540 
541 		this->size += next->size;
542 		/* move forward from next + 1, index of which is i + 2 */
543 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
544 		type->cnt--;
545 		end_rgn--;
546 	}
547 }
548 
549 /**
550  * memblock_insert_region - insert new memblock region
551  * @type:	memblock type to insert into
552  * @idx:	index for the insertion point
553  * @base:	base address of the new region
554  * @size:	size of the new region
555  * @nid:	node id of the new region
556  * @flags:	flags of the new region
557  *
558  * Insert new memblock region [@base, @base + @size) into @type at @idx.
559  * @type must already have extra room to accommodate the new region.
560  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)561 static void __init_memblock memblock_insert_region(struct memblock_type *type,
562 						   int idx, phys_addr_t base,
563 						   phys_addr_t size,
564 						   int nid,
565 						   enum memblock_flags flags)
566 {
567 	struct memblock_region *rgn = &type->regions[idx];
568 
569 	BUG_ON(type->cnt >= type->max);
570 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
571 	rgn->base = base;
572 	rgn->size = size;
573 	rgn->flags = flags;
574 	memblock_set_region_node(rgn, nid);
575 	type->cnt++;
576 	type->total_size += size;
577 }
578 
579 /**
580  * memblock_add_range - add new memblock region
581  * @type: memblock type to add new region into
582  * @base: base address of the new region
583  * @size: size of the new region
584  * @nid: nid of the new region
585  * @flags: flags of the new region
586  *
587  * Add new memblock region [@base, @base + @size) into @type.  The new region
588  * is allowed to overlap with existing ones - overlaps don't affect already
589  * existing regions.  @type is guaranteed to be minimal (all neighbouring
590  * compatible regions are merged) after the addition.
591  *
592  * Return:
593  * 0 on success, -errno on failure.
594  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)595 static int __init_memblock memblock_add_range(struct memblock_type *type,
596 				phys_addr_t base, phys_addr_t size,
597 				int nid, enum memblock_flags flags)
598 {
599 	bool insert = false;
600 	phys_addr_t obase = base;
601 	phys_addr_t end = base + memblock_cap_size(base, &size);
602 	int idx, nr_new, start_rgn = -1, end_rgn;
603 	struct memblock_region *rgn;
604 
605 	if (!size)
606 		return 0;
607 
608 	/* special case for empty array */
609 	if (type->regions[0].size == 0) {
610 		WARN_ON(type->cnt != 1 || type->total_size);
611 		type->regions[0].base = base;
612 		type->regions[0].size = size;
613 		type->regions[0].flags = flags;
614 		memblock_set_region_node(&type->regions[0], nid);
615 		type->total_size = size;
616 		return 0;
617 	}
618 
619 	/*
620 	 * The worst case is when new range overlaps all existing regions,
621 	 * then we'll need type->cnt + 1 empty regions in @type. So if
622 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
623 	 * that there is enough empty regions in @type, and we can insert
624 	 * regions directly.
625 	 */
626 	if (type->cnt * 2 + 1 <= type->max)
627 		insert = true;
628 
629 repeat:
630 	/*
631 	 * The following is executed twice.  Once with %false @insert and
632 	 * then with %true.  The first counts the number of regions needed
633 	 * to accommodate the new area.  The second actually inserts them.
634 	 */
635 	base = obase;
636 	nr_new = 0;
637 
638 	for_each_memblock_type(idx, type, rgn) {
639 		phys_addr_t rbase = rgn->base;
640 		phys_addr_t rend = rbase + rgn->size;
641 
642 		if (rbase >= end)
643 			break;
644 		if (rend <= base)
645 			continue;
646 		/*
647 		 * @rgn overlaps.  If it separates the lower part of new
648 		 * area, insert that portion.
649 		 */
650 		if (rbase > base) {
651 #ifdef CONFIG_NUMA
652 			WARN_ON(nid != memblock_get_region_node(rgn));
653 #endif
654 			WARN_ON(flags != rgn->flags);
655 			nr_new++;
656 			if (insert) {
657 				if (start_rgn == -1)
658 					start_rgn = idx;
659 				end_rgn = idx + 1;
660 				memblock_insert_region(type, idx++, base,
661 						       rbase - base, nid,
662 						       flags);
663 			}
664 		}
665 		/* area below @rend is dealt with, forget about it */
666 		base = min(rend, end);
667 	}
668 
669 	/* insert the remaining portion */
670 	if (base < end) {
671 		nr_new++;
672 		if (insert) {
673 			if (start_rgn == -1)
674 				start_rgn = idx;
675 			end_rgn = idx + 1;
676 			memblock_insert_region(type, idx, base, end - base,
677 					       nid, flags);
678 		}
679 	}
680 
681 	if (!nr_new)
682 		return 0;
683 
684 	/*
685 	 * If this was the first round, resize array and repeat for actual
686 	 * insertions; otherwise, merge and return.
687 	 */
688 	if (!insert) {
689 		while (type->cnt + nr_new > type->max)
690 			if (memblock_double_array(type, obase, size) < 0)
691 				return -ENOMEM;
692 		insert = true;
693 		goto repeat;
694 	} else {
695 		memblock_merge_regions(type, start_rgn, end_rgn);
696 		return 0;
697 	}
698 }
699 
700 /**
701  * memblock_add_node - add new memblock region within a NUMA node
702  * @base: base address of the new region
703  * @size: size of the new region
704  * @nid: nid of the new region
705  * @flags: flags of the new region
706  *
707  * Add new memblock region [@base, @base + @size) to the "memory"
708  * type. See memblock_add_range() description for mode details
709  *
710  * Return:
711  * 0 on success, -errno on failure.
712  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)713 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
714 				      int nid, enum memblock_flags flags)
715 {
716 	phys_addr_t end = base + size - 1;
717 
718 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
719 		     &base, &end, nid, flags, (void *)_RET_IP_);
720 
721 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
722 }
723 
724 /**
725  * memblock_add - add new memblock region
726  * @base: base address of the new region
727  * @size: size of the new region
728  *
729  * Add new memblock region [@base, @base + @size) to the "memory"
730  * type. See memblock_add_range() description for mode details
731  *
732  * Return:
733  * 0 on success, -errno on failure.
734  */
memblock_add(phys_addr_t base,phys_addr_t size)735 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
736 {
737 	phys_addr_t end = base + size - 1;
738 
739 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
740 		     &base, &end, (void *)_RET_IP_);
741 
742 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
743 }
744 
745 /**
746  * memblock_validate_numa_coverage - check if amount of memory with
747  * no node ID assigned is less than a threshold
748  * @threshold_bytes: maximal memory size that can have unassigned node
749  * ID (in bytes).
750  *
751  * A buggy firmware may report memory that does not belong to any node.
752  * Check if amount of such memory is below @threshold_bytes.
753  *
754  * Return: true on success, false on failure.
755  */
memblock_validate_numa_coverage(unsigned long threshold_bytes)756 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
757 {
758 	unsigned long nr_pages = 0;
759 	unsigned long start_pfn, end_pfn, mem_size_mb;
760 	int nid, i;
761 
762 	/* calculate lose page */
763 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
764 		if (!numa_valid_node(nid))
765 			nr_pages += end_pfn - start_pfn;
766 	}
767 
768 	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
769 		mem_size_mb = memblock_phys_mem_size() >> 20;
770 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
771 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
772 		return false;
773 	}
774 
775 	return true;
776 }
777 
778 
779 /**
780  * memblock_isolate_range - isolate given range into disjoint memblocks
781  * @type: memblock type to isolate range for
782  * @base: base of range to isolate
783  * @size: size of range to isolate
784  * @start_rgn: out parameter for the start of isolated region
785  * @end_rgn: out parameter for the end of isolated region
786  *
787  * Walk @type and ensure that regions don't cross the boundaries defined by
788  * [@base, @base + @size).  Crossing regions are split at the boundaries,
789  * which may create at most two more regions.  The index of the first
790  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
791  *
792  * Return:
793  * 0 on success, -errno on failure.
794  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)795 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
796 					phys_addr_t base, phys_addr_t size,
797 					int *start_rgn, int *end_rgn)
798 {
799 	phys_addr_t end = base + memblock_cap_size(base, &size);
800 	int idx;
801 	struct memblock_region *rgn;
802 
803 	*start_rgn = *end_rgn = 0;
804 
805 	if (!size)
806 		return 0;
807 
808 	/* we'll create at most two more regions */
809 	while (type->cnt + 2 > type->max)
810 		if (memblock_double_array(type, base, size) < 0)
811 			return -ENOMEM;
812 
813 	for_each_memblock_type(idx, type, rgn) {
814 		phys_addr_t rbase = rgn->base;
815 		phys_addr_t rend = rbase + rgn->size;
816 
817 		if (rbase >= end)
818 			break;
819 		if (rend <= base)
820 			continue;
821 
822 		if (rbase < base) {
823 			/*
824 			 * @rgn intersects from below.  Split and continue
825 			 * to process the next region - the new top half.
826 			 */
827 			rgn->base = base;
828 			rgn->size -= base - rbase;
829 			type->total_size -= base - rbase;
830 			memblock_insert_region(type, idx, rbase, base - rbase,
831 					       memblock_get_region_node(rgn),
832 					       rgn->flags);
833 		} else if (rend > end) {
834 			/*
835 			 * @rgn intersects from above.  Split and redo the
836 			 * current region - the new bottom half.
837 			 */
838 			rgn->base = end;
839 			rgn->size -= end - rbase;
840 			type->total_size -= end - rbase;
841 			memblock_insert_region(type, idx--, rbase, end - rbase,
842 					       memblock_get_region_node(rgn),
843 					       rgn->flags);
844 		} else {
845 			/* @rgn is fully contained, record it */
846 			if (!*end_rgn)
847 				*start_rgn = idx;
848 			*end_rgn = idx + 1;
849 		}
850 	}
851 
852 	return 0;
853 }
854 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)855 static int __init_memblock memblock_remove_range(struct memblock_type *type,
856 					  phys_addr_t base, phys_addr_t size)
857 {
858 	int start_rgn, end_rgn;
859 	int i, ret;
860 
861 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
862 	if (ret)
863 		return ret;
864 
865 	for (i = end_rgn - 1; i >= start_rgn; i--)
866 		memblock_remove_region(type, i);
867 	return 0;
868 }
869 
memblock_remove(phys_addr_t base,phys_addr_t size)870 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
871 {
872 	phys_addr_t end = base + size - 1;
873 
874 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
875 		     &base, &end, (void *)_RET_IP_);
876 
877 	return memblock_remove_range(&memblock.memory, base, size);
878 }
879 
880 /**
881  * memblock_free - free boot memory allocation
882  * @ptr: starting address of the  boot memory allocation
883  * @size: size of the boot memory block in bytes
884  *
885  * Free boot memory block previously allocated by memblock_alloc_xx() API.
886  * The freeing memory will not be released to the buddy allocator.
887  */
memblock_free(void * ptr,size_t size)888 void __init_memblock memblock_free(void *ptr, size_t size)
889 {
890 	if (ptr)
891 		memblock_phys_free(__pa(ptr), size);
892 }
893 
894 /**
895  * memblock_phys_free - free boot memory block
896  * @base: phys starting address of the  boot memory block
897  * @size: size of the boot memory block in bytes
898  *
899  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
900  * The freeing memory will not be released to the buddy allocator.
901  */
memblock_phys_free(phys_addr_t base,phys_addr_t size)902 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
903 {
904 	phys_addr_t end = base + size - 1;
905 
906 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
907 		     &base, &end, (void *)_RET_IP_);
908 
909 	kmemleak_free_part_phys(base, size);
910 	return memblock_remove_range(&memblock.reserved, base, size);
911 }
912 
memblock_reserve(phys_addr_t base,phys_addr_t size)913 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
914 {
915 	phys_addr_t end = base + size - 1;
916 
917 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
918 		     &base, &end, (void *)_RET_IP_);
919 
920 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
921 }
922 
923 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)924 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
925 {
926 	phys_addr_t end = base + size - 1;
927 
928 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
929 		     &base, &end, (void *)_RET_IP_);
930 
931 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
932 }
933 #endif
934 
935 /**
936  * memblock_setclr_flag - set or clear flag for a memory region
937  * @base: base address of the region
938  * @size: size of the region
939  * @set: set or clear the flag
940  * @flag: the flag to update
941  *
942  * This function isolates region [@base, @base + @size), and sets/clears flag
943  *
944  * Return: 0 on success, -errno on failure.
945  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)946 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
947 				phys_addr_t size, int set, int flag)
948 {
949 	struct memblock_type *type = &memblock.memory;
950 	int i, ret, start_rgn, end_rgn;
951 
952 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
953 	if (ret)
954 		return ret;
955 
956 	for (i = start_rgn; i < end_rgn; i++) {
957 		struct memblock_region *r = &type->regions[i];
958 
959 		if (set)
960 			r->flags |= flag;
961 		else
962 			r->flags &= ~flag;
963 	}
964 
965 	memblock_merge_regions(type, start_rgn, end_rgn);
966 	return 0;
967 }
968 
969 /**
970  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
971  * @base: the base phys addr of the region
972  * @size: the size of the region
973  *
974  * Return: 0 on success, -errno on failure.
975  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)976 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
977 {
978 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
979 }
980 
981 /**
982  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
983  * @base: the base phys addr of the region
984  * @size: the size of the region
985  *
986  * Return: 0 on success, -errno on failure.
987  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)988 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
989 {
990 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
991 }
992 
993 /**
994  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
995  * @base: the base phys addr of the region
996  * @size: the size of the region
997  *
998  * Return: 0 on success, -errno on failure.
999  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)1000 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
1001 {
1002 	if (!mirrored_kernelcore)
1003 		return 0;
1004 
1005 	system_has_some_mirror = true;
1006 
1007 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
1008 }
1009 
1010 /**
1011  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1012  * @base: the base phys addr of the region
1013  * @size: the size of the region
1014  *
1015  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1016  * direct mapping of the physical memory. These regions will still be
1017  * covered by the memory map. The struct page representing NOMAP memory
1018  * frames in the memory map will be PageReserved()
1019  *
1020  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1021  * memblock, the caller must inform kmemleak to ignore that memory
1022  *
1023  * Return: 0 on success, -errno on failure.
1024  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1025 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1026 {
1027 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
1028 }
1029 
1030 /**
1031  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1032  * @base: the base phys addr of the region
1033  * @size: the size of the region
1034  *
1035  * Return: 0 on success, -errno on failure.
1036  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1037 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1038 {
1039 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
1040 }
1041 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1042 static bool should_skip_region(struct memblock_type *type,
1043 			       struct memblock_region *m,
1044 			       int nid, int flags)
1045 {
1046 	int m_nid = memblock_get_region_node(m);
1047 
1048 	/* we never skip regions when iterating memblock.reserved or physmem */
1049 	if (type != memblock_memory)
1050 		return false;
1051 
1052 	/* only memory regions are associated with nodes, check it */
1053 	if (numa_valid_node(nid) && nid != m_nid)
1054 		return true;
1055 
1056 	/* skip hotpluggable memory regions if needed */
1057 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1058 	    !(flags & MEMBLOCK_HOTPLUG))
1059 		return true;
1060 
1061 	/* if we want mirror memory skip non-mirror memory regions */
1062 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1063 		return true;
1064 
1065 	/* skip nomap memory unless we were asked for it explicitly */
1066 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1067 		return true;
1068 
1069 	/* skip driver-managed memory unless we were asked for it explicitly */
1070 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1071 		return true;
1072 
1073 	return false;
1074 }
1075 
1076 /**
1077  * __next_mem_range - next function for for_each_free_mem_range() etc.
1078  * @idx: pointer to u64 loop variable
1079  * @nid: node selector, %NUMA_NO_NODE for all nodes
1080  * @flags: pick from blocks based on memory attributes
1081  * @type_a: pointer to memblock_type from where the range is taken
1082  * @type_b: pointer to memblock_type which excludes memory from being taken
1083  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1084  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1085  * @out_nid: ptr to int for nid of the range, can be %NULL
1086  *
1087  * Find the first area from *@idx which matches @nid, fill the out
1088  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1089  * *@idx contains index into type_a and the upper 32bit indexes the
1090  * areas before each region in type_b.	For example, if type_b regions
1091  * look like the following,
1092  *
1093  *	0:[0-16), 1:[32-48), 2:[128-130)
1094  *
1095  * The upper 32bit indexes the following regions.
1096  *
1097  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1098  *
1099  * As both region arrays are sorted, the function advances the two indices
1100  * in lockstep and returns each intersection.
1101  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1102 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1103 		      struct memblock_type *type_a,
1104 		      struct memblock_type *type_b, phys_addr_t *out_start,
1105 		      phys_addr_t *out_end, int *out_nid)
1106 {
1107 	int idx_a = *idx & 0xffffffff;
1108 	int idx_b = *idx >> 32;
1109 
1110 	for (; idx_a < type_a->cnt; idx_a++) {
1111 		struct memblock_region *m = &type_a->regions[idx_a];
1112 
1113 		phys_addr_t m_start = m->base;
1114 		phys_addr_t m_end = m->base + m->size;
1115 		int	    m_nid = memblock_get_region_node(m);
1116 
1117 		if (should_skip_region(type_a, m, nid, flags))
1118 			continue;
1119 
1120 		if (!type_b) {
1121 			if (out_start)
1122 				*out_start = m_start;
1123 			if (out_end)
1124 				*out_end = m_end;
1125 			if (out_nid)
1126 				*out_nid = m_nid;
1127 			idx_a++;
1128 			*idx = (u32)idx_a | (u64)idx_b << 32;
1129 			return;
1130 		}
1131 
1132 		/* scan areas before each reservation */
1133 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1134 			struct memblock_region *r;
1135 			phys_addr_t r_start;
1136 			phys_addr_t r_end;
1137 
1138 			r = &type_b->regions[idx_b];
1139 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1140 			r_end = idx_b < type_b->cnt ?
1141 				r->base : PHYS_ADDR_MAX;
1142 
1143 			/*
1144 			 * if idx_b advanced past idx_a,
1145 			 * break out to advance idx_a
1146 			 */
1147 			if (r_start >= m_end)
1148 				break;
1149 			/* if the two regions intersect, we're done */
1150 			if (m_start < r_end) {
1151 				if (out_start)
1152 					*out_start =
1153 						max(m_start, r_start);
1154 				if (out_end)
1155 					*out_end = min(m_end, r_end);
1156 				if (out_nid)
1157 					*out_nid = m_nid;
1158 				/*
1159 				 * The region which ends first is
1160 				 * advanced for the next iteration.
1161 				 */
1162 				if (m_end <= r_end)
1163 					idx_a++;
1164 				else
1165 					idx_b++;
1166 				*idx = (u32)idx_a | (u64)idx_b << 32;
1167 				return;
1168 			}
1169 		}
1170 	}
1171 
1172 	/* signal end of iteration */
1173 	*idx = ULLONG_MAX;
1174 }
1175 
1176 /**
1177  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1178  *
1179  * @idx: pointer to u64 loop variable
1180  * @nid: node selector, %NUMA_NO_NODE for all nodes
1181  * @flags: pick from blocks based on memory attributes
1182  * @type_a: pointer to memblock_type from where the range is taken
1183  * @type_b: pointer to memblock_type which excludes memory from being taken
1184  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1185  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1186  * @out_nid: ptr to int for nid of the range, can be %NULL
1187  *
1188  * Finds the next range from type_a which is not marked as unsuitable
1189  * in type_b.
1190  *
1191  * Reverse of __next_mem_range().
1192  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1193 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1194 					  enum memblock_flags flags,
1195 					  struct memblock_type *type_a,
1196 					  struct memblock_type *type_b,
1197 					  phys_addr_t *out_start,
1198 					  phys_addr_t *out_end, int *out_nid)
1199 {
1200 	int idx_a = *idx & 0xffffffff;
1201 	int idx_b = *idx >> 32;
1202 
1203 	if (*idx == (u64)ULLONG_MAX) {
1204 		idx_a = type_a->cnt - 1;
1205 		if (type_b != NULL)
1206 			idx_b = type_b->cnt;
1207 		else
1208 			idx_b = 0;
1209 	}
1210 
1211 	for (; idx_a >= 0; idx_a--) {
1212 		struct memblock_region *m = &type_a->regions[idx_a];
1213 
1214 		phys_addr_t m_start = m->base;
1215 		phys_addr_t m_end = m->base + m->size;
1216 		int m_nid = memblock_get_region_node(m);
1217 
1218 		if (should_skip_region(type_a, m, nid, flags))
1219 			continue;
1220 
1221 		if (!type_b) {
1222 			if (out_start)
1223 				*out_start = m_start;
1224 			if (out_end)
1225 				*out_end = m_end;
1226 			if (out_nid)
1227 				*out_nid = m_nid;
1228 			idx_a--;
1229 			*idx = (u32)idx_a | (u64)idx_b << 32;
1230 			return;
1231 		}
1232 
1233 		/* scan areas before each reservation */
1234 		for (; idx_b >= 0; idx_b--) {
1235 			struct memblock_region *r;
1236 			phys_addr_t r_start;
1237 			phys_addr_t r_end;
1238 
1239 			r = &type_b->regions[idx_b];
1240 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1241 			r_end = idx_b < type_b->cnt ?
1242 				r->base : PHYS_ADDR_MAX;
1243 			/*
1244 			 * if idx_b advanced past idx_a,
1245 			 * break out to advance idx_a
1246 			 */
1247 
1248 			if (r_end <= m_start)
1249 				break;
1250 			/* if the two regions intersect, we're done */
1251 			if (m_end > r_start) {
1252 				if (out_start)
1253 					*out_start = max(m_start, r_start);
1254 				if (out_end)
1255 					*out_end = min(m_end, r_end);
1256 				if (out_nid)
1257 					*out_nid = m_nid;
1258 				if (m_start >= r_start)
1259 					idx_a--;
1260 				else
1261 					idx_b--;
1262 				*idx = (u32)idx_a | (u64)idx_b << 32;
1263 				return;
1264 			}
1265 		}
1266 	}
1267 	/* signal end of iteration */
1268 	*idx = ULLONG_MAX;
1269 }
1270 
1271 /*
1272  * Common iterator interface used to define for_each_mem_pfn_range().
1273  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1274 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1275 				unsigned long *out_start_pfn,
1276 				unsigned long *out_end_pfn, int *out_nid)
1277 {
1278 	struct memblock_type *type = &memblock.memory;
1279 	struct memblock_region *r;
1280 	int r_nid;
1281 
1282 	while (++*idx < type->cnt) {
1283 		r = &type->regions[*idx];
1284 		r_nid = memblock_get_region_node(r);
1285 
1286 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1287 			continue;
1288 		if (!numa_valid_node(nid) || nid == r_nid)
1289 			break;
1290 	}
1291 	if (*idx >= type->cnt) {
1292 		*idx = -1;
1293 		return;
1294 	}
1295 
1296 	if (out_start_pfn)
1297 		*out_start_pfn = PFN_UP(r->base);
1298 	if (out_end_pfn)
1299 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1300 	if (out_nid)
1301 		*out_nid = r_nid;
1302 }
1303 
1304 /**
1305  * memblock_set_node - set node ID on memblock regions
1306  * @base: base of area to set node ID for
1307  * @size: size of area to set node ID for
1308  * @type: memblock type to set node ID for
1309  * @nid: node ID to set
1310  *
1311  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1312  * Regions which cross the area boundaries are split as necessary.
1313  *
1314  * Return:
1315  * 0 on success, -errno on failure.
1316  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1317 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1318 				      struct memblock_type *type, int nid)
1319 {
1320 #ifdef CONFIG_NUMA
1321 	int start_rgn, end_rgn;
1322 	int i, ret;
1323 
1324 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1325 	if (ret)
1326 		return ret;
1327 
1328 	for (i = start_rgn; i < end_rgn; i++)
1329 		memblock_set_region_node(&type->regions[i], nid);
1330 
1331 	memblock_merge_regions(type, start_rgn, end_rgn);
1332 #endif
1333 	return 0;
1334 }
1335 
1336 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1337 /**
1338  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1339  *
1340  * @idx: pointer to u64 loop variable
1341  * @zone: zone in which all of the memory blocks reside
1342  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1343  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1344  *
1345  * This function is meant to be a zone/pfn specific wrapper for the
1346  * for_each_mem_range type iterators. Specifically they are used in the
1347  * deferred memory init routines and as such we were duplicating much of
1348  * this logic throughout the code. So instead of having it in multiple
1349  * locations it seemed like it would make more sense to centralize this to
1350  * one new iterator that does everything they need.
1351  */
1352 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1353 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1354 			     unsigned long *out_spfn, unsigned long *out_epfn)
1355 {
1356 	int zone_nid = zone_to_nid(zone);
1357 	phys_addr_t spa, epa;
1358 
1359 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1360 			 &memblock.memory, &memblock.reserved,
1361 			 &spa, &epa, NULL);
1362 
1363 	while (*idx != U64_MAX) {
1364 		unsigned long epfn = PFN_DOWN(epa);
1365 		unsigned long spfn = PFN_UP(spa);
1366 
1367 		/*
1368 		 * Verify the end is at least past the start of the zone and
1369 		 * that we have at least one PFN to initialize.
1370 		 */
1371 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1372 			/* if we went too far just stop searching */
1373 			if (zone_end_pfn(zone) <= spfn) {
1374 				*idx = U64_MAX;
1375 				break;
1376 			}
1377 
1378 			if (out_spfn)
1379 				*out_spfn = max(zone->zone_start_pfn, spfn);
1380 			if (out_epfn)
1381 				*out_epfn = min(zone_end_pfn(zone), epfn);
1382 
1383 			return;
1384 		}
1385 
1386 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1387 				 &memblock.memory, &memblock.reserved,
1388 				 &spa, &epa, NULL);
1389 	}
1390 
1391 	/* signal end of iteration */
1392 	if (out_spfn)
1393 		*out_spfn = ULONG_MAX;
1394 	if (out_epfn)
1395 		*out_epfn = 0;
1396 }
1397 
1398 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1399 
1400 /**
1401  * memblock_alloc_range_nid - allocate boot memory block
1402  * @size: size of memory block to be allocated in bytes
1403  * @align: alignment of the region and block's size
1404  * @start: the lower bound of the memory region to allocate (phys address)
1405  * @end: the upper bound of the memory region to allocate (phys address)
1406  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1407  * @exact_nid: control the allocation fall back to other nodes
1408  *
1409  * The allocation is performed from memory region limited by
1410  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1411  *
1412  * If the specified node can not hold the requested memory and @exact_nid
1413  * is false, the allocation falls back to any node in the system.
1414  *
1415  * For systems with memory mirroring, the allocation is attempted first
1416  * from the regions with mirroring enabled and then retried from any
1417  * memory region.
1418  *
1419  * In addition, function using kmemleak_alloc_phys for allocated boot
1420  * memory block, it is never reported as leaks.
1421  *
1422  * Return:
1423  * Physical address of allocated memory block on success, %0 on failure.
1424  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1425 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1426 					phys_addr_t align, phys_addr_t start,
1427 					phys_addr_t end, int nid,
1428 					bool exact_nid)
1429 {
1430 	enum memblock_flags flags = choose_memblock_flags();
1431 	phys_addr_t found;
1432 
1433 	if (!align) {
1434 		/* Can't use WARNs this early in boot on powerpc */
1435 		dump_stack();
1436 		align = SMP_CACHE_BYTES;
1437 	}
1438 
1439 again:
1440 	found = memblock_find_in_range_node(size, align, start, end, nid,
1441 					    flags);
1442 	if (found && !memblock_reserve(found, size))
1443 		goto done;
1444 
1445 	if (numa_valid_node(nid) && !exact_nid) {
1446 		found = memblock_find_in_range_node(size, align, start,
1447 						    end, NUMA_NO_NODE,
1448 						    flags);
1449 		if (found && !memblock_reserve(found, size))
1450 			goto done;
1451 	}
1452 
1453 	if (flags & MEMBLOCK_MIRROR) {
1454 		flags &= ~MEMBLOCK_MIRROR;
1455 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1456 			&size);
1457 		goto again;
1458 	}
1459 
1460 	return 0;
1461 
1462 done:
1463 	/*
1464 	 * Skip kmemleak for those places like kasan_init() and
1465 	 * early_pgtable_alloc() due to high volume.
1466 	 */
1467 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1468 		/*
1469 		 * Memblock allocated blocks are never reported as
1470 		 * leaks. This is because many of these blocks are
1471 		 * only referred via the physical address which is
1472 		 * not looked up by kmemleak.
1473 		 */
1474 		kmemleak_alloc_phys(found, size, 0);
1475 
1476 	/*
1477 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1478 	 * require memory to be accepted before it can be used by the
1479 	 * guest.
1480 	 *
1481 	 * Accept the memory of the allocated buffer.
1482 	 */
1483 	accept_memory(found, found + size);
1484 
1485 	return found;
1486 }
1487 
1488 /**
1489  * memblock_phys_alloc_range - allocate a memory block inside specified range
1490  * @size: size of memory block to be allocated in bytes
1491  * @align: alignment of the region and block's size
1492  * @start: the lower bound of the memory region to allocate (physical address)
1493  * @end: the upper bound of the memory region to allocate (physical address)
1494  *
1495  * Allocate @size bytes in the between @start and @end.
1496  *
1497  * Return: physical address of the allocated memory block on success,
1498  * %0 on failure.
1499  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1500 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1501 					     phys_addr_t align,
1502 					     phys_addr_t start,
1503 					     phys_addr_t end)
1504 {
1505 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1506 		     __func__, (u64)size, (u64)align, &start, &end,
1507 		     (void *)_RET_IP_);
1508 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1509 					false);
1510 }
1511 
1512 /**
1513  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1514  * @size: size of memory block to be allocated in bytes
1515  * @align: alignment of the region and block's size
1516  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517  *
1518  * Allocates memory block from the specified NUMA node. If the node
1519  * has no available memory, attempts to allocated from any node in the
1520  * system.
1521  *
1522  * Return: physical address of the allocated memory block on success,
1523  * %0 on failure.
1524  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1525 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1526 {
1527 	return memblock_alloc_range_nid(size, align, 0,
1528 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1529 }
1530 
1531 /**
1532  * memblock_alloc_internal - allocate boot memory block
1533  * @size: size of memory block to be allocated in bytes
1534  * @align: alignment of the region and block's size
1535  * @min_addr: the lower bound of the memory region to allocate (phys address)
1536  * @max_addr: the upper bound of the memory region to allocate (phys address)
1537  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1538  * @exact_nid: control the allocation fall back to other nodes
1539  *
1540  * Allocates memory block using memblock_alloc_range_nid() and
1541  * converts the returned physical address to virtual.
1542  *
1543  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1544  * will fall back to memory below @min_addr. Other constraints, such
1545  * as node and mirrored memory will be handled again in
1546  * memblock_alloc_range_nid().
1547  *
1548  * Return:
1549  * Virtual address of allocated memory block on success, NULL on failure.
1550  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1551 static void * __init memblock_alloc_internal(
1552 				phys_addr_t size, phys_addr_t align,
1553 				phys_addr_t min_addr, phys_addr_t max_addr,
1554 				int nid, bool exact_nid)
1555 {
1556 	phys_addr_t alloc;
1557 
1558 	/*
1559 	 * Detect any accidental use of these APIs after slab is ready, as at
1560 	 * this moment memblock may be deinitialized already and its
1561 	 * internal data may be destroyed (after execution of memblock_free_all)
1562 	 */
1563 	if (WARN_ON_ONCE(slab_is_available()))
1564 		return kzalloc_node(size, GFP_NOWAIT, nid);
1565 
1566 	if (max_addr > memblock.current_limit)
1567 		max_addr = memblock.current_limit;
1568 
1569 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1570 					exact_nid);
1571 
1572 	/* retry allocation without lower limit */
1573 	if (!alloc && min_addr)
1574 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1575 						exact_nid);
1576 
1577 	if (!alloc)
1578 		return NULL;
1579 
1580 	return phys_to_virt(alloc);
1581 }
1582 
1583 /**
1584  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1585  * without zeroing memory
1586  * @size: size of memory block to be allocated in bytes
1587  * @align: alignment of the region and block's size
1588  * @min_addr: the lower bound of the memory region from where the allocation
1589  *	  is preferred (phys address)
1590  * @max_addr: the upper bound of the memory region from where the allocation
1591  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1592  *	      allocate only from memory limited by memblock.current_limit value
1593  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1594  *
1595  * Public function, provides additional debug information (including caller
1596  * info), if enabled. Does not zero allocated memory.
1597  *
1598  * Return:
1599  * Virtual address of allocated memory block on success, NULL on failure.
1600  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1601 void * __init memblock_alloc_exact_nid_raw(
1602 			phys_addr_t size, phys_addr_t align,
1603 			phys_addr_t min_addr, phys_addr_t max_addr,
1604 			int nid)
1605 {
1606 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1607 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1608 		     &max_addr, (void *)_RET_IP_);
1609 
1610 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1611 				       true);
1612 }
1613 
1614 /**
1615  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1616  * memory and without panicking
1617  * @size: size of memory block to be allocated in bytes
1618  * @align: alignment of the region and block's size
1619  * @min_addr: the lower bound of the memory region from where the allocation
1620  *	  is preferred (phys address)
1621  * @max_addr: the upper bound of the memory region from where the allocation
1622  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1623  *	      allocate only from memory limited by memblock.current_limit value
1624  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1625  *
1626  * Public function, provides additional debug information (including caller
1627  * info), if enabled. Does not zero allocated memory, does not panic if request
1628  * cannot be satisfied.
1629  *
1630  * Return:
1631  * Virtual address of allocated memory block on success, NULL on failure.
1632  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1633 void * __init memblock_alloc_try_nid_raw(
1634 			phys_addr_t size, phys_addr_t align,
1635 			phys_addr_t min_addr, phys_addr_t max_addr,
1636 			int nid)
1637 {
1638 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1639 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1640 		     &max_addr, (void *)_RET_IP_);
1641 
1642 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1643 				       false);
1644 }
1645 
1646 /**
1647  * memblock_alloc_try_nid - allocate boot memory block
1648  * @size: size of memory block to be allocated in bytes
1649  * @align: alignment of the region and block's size
1650  * @min_addr: the lower bound of the memory region from where the allocation
1651  *	  is preferred (phys address)
1652  * @max_addr: the upper bound of the memory region from where the allocation
1653  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1654  *	      allocate only from memory limited by memblock.current_limit value
1655  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1656  *
1657  * Public function, provides additional debug information (including caller
1658  * info), if enabled. This function zeroes the allocated memory.
1659  *
1660  * Return:
1661  * Virtual address of allocated memory block on success, NULL on failure.
1662  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1663 void * __init memblock_alloc_try_nid(
1664 			phys_addr_t size, phys_addr_t align,
1665 			phys_addr_t min_addr, phys_addr_t max_addr,
1666 			int nid)
1667 {
1668 	void *ptr;
1669 
1670 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1671 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1672 		     &max_addr, (void *)_RET_IP_);
1673 	ptr = memblock_alloc_internal(size, align,
1674 					   min_addr, max_addr, nid, false);
1675 	if (ptr)
1676 		memset(ptr, 0, size);
1677 
1678 	return ptr;
1679 }
1680 
1681 /**
1682  * memblock_free_late - free pages directly to buddy allocator
1683  * @base: phys starting address of the  boot memory block
1684  * @size: size of the boot memory block in bytes
1685  *
1686  * This is only useful when the memblock allocator has already been torn
1687  * down, but we are still initializing the system.  Pages are released directly
1688  * to the buddy allocator.
1689  */
memblock_free_late(phys_addr_t base,phys_addr_t size)1690 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1691 {
1692 	phys_addr_t cursor, end;
1693 
1694 	end = base + size - 1;
1695 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1696 		     __func__, &base, &end, (void *)_RET_IP_);
1697 	kmemleak_free_part_phys(base, size);
1698 	cursor = PFN_UP(base);
1699 	end = PFN_DOWN(base + size);
1700 
1701 	for (; cursor < end; cursor++) {
1702 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1703 		totalram_pages_inc();
1704 	}
1705 }
1706 
1707 /*
1708  * Remaining API functions
1709  */
1710 
memblock_phys_mem_size(void)1711 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1712 {
1713 	return memblock.memory.total_size;
1714 }
1715 
memblock_reserved_size(void)1716 phys_addr_t __init_memblock memblock_reserved_size(void)
1717 {
1718 	return memblock.reserved.total_size;
1719 }
1720 
1721 /* lowest address */
memblock_start_of_DRAM(void)1722 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1723 {
1724 	return memblock.memory.regions[0].base;
1725 }
1726 
memblock_end_of_DRAM(void)1727 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1728 {
1729 	int idx = memblock.memory.cnt - 1;
1730 
1731 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1732 }
1733 
__find_max_addr(phys_addr_t limit)1734 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1735 {
1736 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1737 	struct memblock_region *r;
1738 
1739 	/*
1740 	 * translate the memory @limit size into the max address within one of
1741 	 * the memory memblock regions, if the @limit exceeds the total size
1742 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1743 	 */
1744 	for_each_mem_region(r) {
1745 		if (limit <= r->size) {
1746 			max_addr = r->base + limit;
1747 			break;
1748 		}
1749 		limit -= r->size;
1750 	}
1751 
1752 	return max_addr;
1753 }
1754 
memblock_enforce_memory_limit(phys_addr_t limit)1755 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1756 {
1757 	phys_addr_t max_addr;
1758 
1759 	if (!limit)
1760 		return;
1761 
1762 	max_addr = __find_max_addr(limit);
1763 
1764 	/* @limit exceeds the total size of the memory, do nothing */
1765 	if (max_addr == PHYS_ADDR_MAX)
1766 		return;
1767 
1768 	/* truncate both memory and reserved regions */
1769 	memblock_remove_range(&memblock.memory, max_addr,
1770 			      PHYS_ADDR_MAX);
1771 	memblock_remove_range(&memblock.reserved, max_addr,
1772 			      PHYS_ADDR_MAX);
1773 }
1774 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1775 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1776 {
1777 	int start_rgn, end_rgn;
1778 	int i, ret;
1779 
1780 	if (!size)
1781 		return;
1782 
1783 	if (!memblock_memory->total_size) {
1784 		pr_warn("%s: No memory registered yet\n", __func__);
1785 		return;
1786 	}
1787 
1788 	ret = memblock_isolate_range(&memblock.memory, base, size,
1789 						&start_rgn, &end_rgn);
1790 	if (ret)
1791 		return;
1792 
1793 	/* remove all the MAP regions */
1794 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1795 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1796 			memblock_remove_region(&memblock.memory, i);
1797 
1798 	for (i = start_rgn - 1; i >= 0; i--)
1799 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1800 			memblock_remove_region(&memblock.memory, i);
1801 
1802 	/* truncate the reserved regions */
1803 	memblock_remove_range(&memblock.reserved, 0, base);
1804 	memblock_remove_range(&memblock.reserved,
1805 			base + size, PHYS_ADDR_MAX);
1806 }
1807 
memblock_mem_limit_remove_map(phys_addr_t limit)1808 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1809 {
1810 	phys_addr_t max_addr;
1811 
1812 	if (!limit)
1813 		return;
1814 
1815 	max_addr = __find_max_addr(limit);
1816 
1817 	/* @limit exceeds the total size of the memory, do nothing */
1818 	if (max_addr == PHYS_ADDR_MAX)
1819 		return;
1820 
1821 	memblock_cap_memory_range(0, max_addr);
1822 }
1823 
memblock_search(struct memblock_type * type,phys_addr_t addr)1824 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1825 {
1826 	unsigned int left = 0, right = type->cnt;
1827 
1828 	do {
1829 		unsigned int mid = (right + left) / 2;
1830 
1831 		if (addr < type->regions[mid].base)
1832 			right = mid;
1833 		else if (addr >= (type->regions[mid].base +
1834 				  type->regions[mid].size))
1835 			left = mid + 1;
1836 		else
1837 			return mid;
1838 	} while (left < right);
1839 	return -1;
1840 }
1841 
memblock_is_reserved(phys_addr_t addr)1842 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1843 {
1844 	return memblock_search(&memblock.reserved, addr) != -1;
1845 }
1846 
memblock_is_memory(phys_addr_t addr)1847 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1848 {
1849 	return memblock_search(&memblock.memory, addr) != -1;
1850 }
1851 
memblock_is_map_memory(phys_addr_t addr)1852 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1853 {
1854 	int i = memblock_search(&memblock.memory, addr);
1855 
1856 	if (i == -1)
1857 		return false;
1858 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1859 }
1860 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1861 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1862 			 unsigned long *start_pfn, unsigned long *end_pfn)
1863 {
1864 	struct memblock_type *type = &memblock.memory;
1865 	int mid = memblock_search(type, PFN_PHYS(pfn));
1866 
1867 	if (mid == -1)
1868 		return -1;
1869 
1870 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1871 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1872 
1873 	return memblock_get_region_node(&type->regions[mid]);
1874 }
1875 
1876 /**
1877  * memblock_is_region_memory - check if a region is a subset of memory
1878  * @base: base of region to check
1879  * @size: size of region to check
1880  *
1881  * Check if the region [@base, @base + @size) is a subset of a memory block.
1882  *
1883  * Return:
1884  * 0 if false, non-zero if true
1885  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1886 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1887 {
1888 	int idx = memblock_search(&memblock.memory, base);
1889 	phys_addr_t end = base + memblock_cap_size(base, &size);
1890 
1891 	if (idx == -1)
1892 		return false;
1893 	return (memblock.memory.regions[idx].base +
1894 		 memblock.memory.regions[idx].size) >= end;
1895 }
1896 
1897 /**
1898  * memblock_is_region_reserved - check if a region intersects reserved memory
1899  * @base: base of region to check
1900  * @size: size of region to check
1901  *
1902  * Check if the region [@base, @base + @size) intersects a reserved
1903  * memory block.
1904  *
1905  * Return:
1906  * True if they intersect, false if not.
1907  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1908 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1909 {
1910 	return memblock_overlaps_region(&memblock.reserved, base, size);
1911 }
1912 
memblock_trim_memory(phys_addr_t align)1913 void __init_memblock memblock_trim_memory(phys_addr_t align)
1914 {
1915 	phys_addr_t start, end, orig_start, orig_end;
1916 	struct memblock_region *r;
1917 
1918 	for_each_mem_region(r) {
1919 		orig_start = r->base;
1920 		orig_end = r->base + r->size;
1921 		start = round_up(orig_start, align);
1922 		end = round_down(orig_end, align);
1923 
1924 		if (start == orig_start && end == orig_end)
1925 			continue;
1926 
1927 		if (start < end) {
1928 			r->base = start;
1929 			r->size = end - start;
1930 		} else {
1931 			memblock_remove_region(&memblock.memory,
1932 					       r - memblock.memory.regions);
1933 			r--;
1934 		}
1935 	}
1936 }
1937 
memblock_set_current_limit(phys_addr_t limit)1938 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1939 {
1940 	memblock.current_limit = limit;
1941 }
1942 
memblock_get_current_limit(void)1943 phys_addr_t __init_memblock memblock_get_current_limit(void)
1944 {
1945 	return memblock.current_limit;
1946 }
1947 
memblock_dump(struct memblock_type * type)1948 static void __init_memblock memblock_dump(struct memblock_type *type)
1949 {
1950 	phys_addr_t base, end, size;
1951 	enum memblock_flags flags;
1952 	int idx;
1953 	struct memblock_region *rgn;
1954 
1955 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1956 
1957 	for_each_memblock_type(idx, type, rgn) {
1958 		char nid_buf[32] = "";
1959 
1960 		base = rgn->base;
1961 		size = rgn->size;
1962 		end = base + size - 1;
1963 		flags = rgn->flags;
1964 #ifdef CONFIG_NUMA
1965 		if (numa_valid_node(memblock_get_region_node(rgn)))
1966 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1967 				 memblock_get_region_node(rgn));
1968 #endif
1969 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1970 			type->name, idx, &base, &end, &size, nid_buf, flags);
1971 	}
1972 }
1973 
__memblock_dump_all(void)1974 static void __init_memblock __memblock_dump_all(void)
1975 {
1976 	pr_info("MEMBLOCK configuration:\n");
1977 	pr_info(" memory size = %pa reserved size = %pa\n",
1978 		&memblock.memory.total_size,
1979 		&memblock.reserved.total_size);
1980 
1981 	memblock_dump(&memblock.memory);
1982 	memblock_dump(&memblock.reserved);
1983 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1984 	memblock_dump(&physmem);
1985 #endif
1986 }
1987 
memblock_dump_all(void)1988 void __init_memblock memblock_dump_all(void)
1989 {
1990 	if (memblock_debug)
1991 		__memblock_dump_all();
1992 }
1993 
memblock_allow_resize(void)1994 void __init memblock_allow_resize(void)
1995 {
1996 	memblock_can_resize = 1;
1997 }
1998 
early_memblock(char * p)1999 static int __init early_memblock(char *p)
2000 {
2001 	if (p && strstr(p, "debug"))
2002 		memblock_debug = 1;
2003 	return 0;
2004 }
2005 early_param("memblock", early_memblock);
2006 
free_memmap(unsigned long start_pfn,unsigned long end_pfn)2007 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2008 {
2009 	struct page *start_pg, *end_pg;
2010 	phys_addr_t pg, pgend;
2011 
2012 	/*
2013 	 * Convert start_pfn/end_pfn to a struct page pointer.
2014 	 */
2015 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2016 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2017 
2018 	/*
2019 	 * Convert to physical addresses, and round start upwards and end
2020 	 * downwards.
2021 	 */
2022 	pg = PAGE_ALIGN(__pa(start_pg));
2023 	pgend = __pa(end_pg) & PAGE_MASK;
2024 
2025 	/*
2026 	 * If there are free pages between these, free the section of the
2027 	 * memmap array.
2028 	 */
2029 	if (pg < pgend)
2030 		memblock_phys_free(pg, pgend - pg);
2031 }
2032 
2033 /*
2034  * The mem_map array can get very big.  Free the unused area of the memory map.
2035  */
free_unused_memmap(void)2036 static void __init free_unused_memmap(void)
2037 {
2038 	unsigned long start, end, prev_end = 0;
2039 	int i;
2040 
2041 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2042 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2043 		return;
2044 
2045 	/*
2046 	 * This relies on each bank being in address order.
2047 	 * The banks are sorted previously in bootmem_init().
2048 	 */
2049 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2050 #ifdef CONFIG_SPARSEMEM
2051 		/*
2052 		 * Take care not to free memmap entries that don't exist
2053 		 * due to SPARSEMEM sections which aren't present.
2054 		 */
2055 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2056 #endif
2057 		/*
2058 		 * Align down here since many operations in VM subsystem
2059 		 * presume that there are no holes in the memory map inside
2060 		 * a pageblock
2061 		 */
2062 		start = pageblock_start_pfn(start);
2063 
2064 		/*
2065 		 * If we had a previous bank, and there is a space
2066 		 * between the current bank and the previous, free it.
2067 		 */
2068 		if (prev_end && prev_end < start)
2069 			free_memmap(prev_end, start);
2070 
2071 		/*
2072 		 * Align up here since many operations in VM subsystem
2073 		 * presume that there are no holes in the memory map inside
2074 		 * a pageblock
2075 		 */
2076 		prev_end = pageblock_align(end);
2077 	}
2078 
2079 #ifdef CONFIG_SPARSEMEM
2080 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2081 		prev_end = pageblock_align(end);
2082 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2083 	}
2084 #endif
2085 }
2086 
__free_pages_memory(unsigned long start,unsigned long end)2087 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2088 {
2089 	int order;
2090 
2091 	while (start < end) {
2092 		/*
2093 		 * Free the pages in the largest chunks alignment allows.
2094 		 *
2095 		 * __ffs() behaviour is undefined for 0. start == 0 is
2096 		 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2097 		 */
2098 		if (start)
2099 			order = min_t(int, MAX_ORDER, __ffs(start));
2100 		else
2101 			order = MAX_ORDER;
2102 
2103 		while (start + (1UL << order) > end)
2104 			order--;
2105 
2106 		memblock_free_pages(pfn_to_page(start), start, order);
2107 
2108 		start += (1UL << order);
2109 	}
2110 }
2111 
__free_memory_core(phys_addr_t start,phys_addr_t end)2112 static unsigned long __init __free_memory_core(phys_addr_t start,
2113 				 phys_addr_t end)
2114 {
2115 	unsigned long start_pfn = PFN_UP(start);
2116 	unsigned long end_pfn = min_t(unsigned long,
2117 				      PFN_DOWN(end), max_low_pfn);
2118 
2119 	if (start_pfn >= end_pfn)
2120 		return 0;
2121 
2122 	__free_pages_memory(start_pfn, end_pfn);
2123 
2124 	return end_pfn - start_pfn;
2125 }
2126 
memmap_init_reserved_pages(void)2127 static void __init memmap_init_reserved_pages(void)
2128 {
2129 	struct memblock_region *region;
2130 	phys_addr_t start, end;
2131 	int nid;
2132 	unsigned long max_reserved;
2133 
2134 	/*
2135 	 * set nid on all reserved pages and also treat struct
2136 	 * pages for the NOMAP regions as PageReserved
2137 	 */
2138 repeat:
2139 	max_reserved = memblock.reserved.max;
2140 	for_each_mem_region(region) {
2141 		nid = memblock_get_region_node(region);
2142 		start = region->base;
2143 		end = start + region->size;
2144 
2145 		if (memblock_is_nomap(region))
2146 			reserve_bootmem_region(start, end, nid);
2147 
2148 		memblock_set_node(start, region->size, &memblock.reserved, nid);
2149 	}
2150 	/*
2151 	 * 'max' is changed means memblock.reserved has been doubled its
2152 	 * array, which may result a new reserved region before current
2153 	 * 'start'. Now we should repeat the procedure to set its node id.
2154 	 */
2155 	if (max_reserved != memblock.reserved.max)
2156 		goto repeat;
2157 
2158 	/* initialize struct pages for the reserved regions */
2159 	for_each_reserved_mem_region(region) {
2160 		nid = memblock_get_region_node(region);
2161 		start = region->base;
2162 		end = start + region->size;
2163 
2164 		if (!numa_valid_node(nid))
2165 			nid = early_pfn_to_nid(PFN_DOWN(start));
2166 
2167 		reserve_bootmem_region(start, end, nid);
2168 	}
2169 }
2170 
free_low_memory_core_early(void)2171 static unsigned long __init free_low_memory_core_early(void)
2172 {
2173 	unsigned long count = 0;
2174 	phys_addr_t start, end;
2175 	u64 i;
2176 
2177 	memblock_clear_hotplug(0, -1);
2178 
2179 	memmap_init_reserved_pages();
2180 
2181 	/*
2182 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2183 	 *  because in some case like Node0 doesn't have RAM installed
2184 	 *  low ram will be on Node1
2185 	 */
2186 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2187 				NULL)
2188 		count += __free_memory_core(start, end);
2189 
2190 	return count;
2191 }
2192 
2193 static int reset_managed_pages_done __initdata;
2194 
reset_node_managed_pages(pg_data_t * pgdat)2195 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2196 {
2197 	struct zone *z;
2198 
2199 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2200 		atomic_long_set(&z->managed_pages, 0);
2201 }
2202 
reset_all_zones_managed_pages(void)2203 void __init reset_all_zones_managed_pages(void)
2204 {
2205 	struct pglist_data *pgdat;
2206 
2207 	if (reset_managed_pages_done)
2208 		return;
2209 
2210 	for_each_online_pgdat(pgdat)
2211 		reset_node_managed_pages(pgdat);
2212 
2213 	reset_managed_pages_done = 1;
2214 }
2215 
2216 /**
2217  * memblock_free_all - release free pages to the buddy allocator
2218  */
memblock_free_all(void)2219 void __init memblock_free_all(void)
2220 {
2221 	unsigned long pages;
2222 
2223 	free_unused_memmap();
2224 	reset_all_zones_managed_pages();
2225 
2226 	pages = free_low_memory_core_early();
2227 	totalram_pages_add(pages);
2228 }
2229 
2230 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2231 static const char * const flagname[] = {
2232 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2233 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2234 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2235 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2236 };
2237 
memblock_debug_show(struct seq_file * m,void * private)2238 static int memblock_debug_show(struct seq_file *m, void *private)
2239 {
2240 	struct memblock_type *type = m->private;
2241 	struct memblock_region *reg;
2242 	int i, j, nid;
2243 	unsigned int count = ARRAY_SIZE(flagname);
2244 	phys_addr_t end;
2245 
2246 	for (i = 0; i < type->cnt; i++) {
2247 		reg = &type->regions[i];
2248 		end = reg->base + reg->size - 1;
2249 		nid = memblock_get_region_node(reg);
2250 
2251 		seq_printf(m, "%4d: ", i);
2252 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2253 		if (numa_valid_node(nid))
2254 			seq_printf(m, "%4d ", nid);
2255 		else
2256 			seq_printf(m, "%4c ", 'x');
2257 		if (reg->flags) {
2258 			for (j = 0; j < count; j++) {
2259 				if (reg->flags & (1U << j)) {
2260 					seq_printf(m, "%s\n", flagname[j]);
2261 					break;
2262 				}
2263 			}
2264 			if (j == count)
2265 				seq_printf(m, "%s\n", "UNKNOWN");
2266 		} else {
2267 			seq_printf(m, "%s\n", "NONE");
2268 		}
2269 	}
2270 	return 0;
2271 }
2272 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2273 
memblock_init_debugfs(void)2274 static int __init memblock_init_debugfs(void)
2275 {
2276 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2277 
2278 	debugfs_create_file("memory", 0444, root,
2279 			    &memblock.memory, &memblock_debug_fops);
2280 	debugfs_create_file("reserved", 0444, root,
2281 			    &memblock.reserved, &memblock_debug_fops);
2282 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2283 	debugfs_create_file("physmem", 0444, root, &physmem,
2284 			    &memblock_debug_fops);
2285 #endif
2286 
2287 	return 0;
2288 }
2289 __initcall(memblock_init_debugfs);
2290 
2291 #endif /* CONFIG_DEBUG_FS */
2292