1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _LINUX_MEMBLOCK_H
3 #define _LINUX_MEMBLOCK_H
4
5 /*
6 * Logical memory blocks.
7 *
8 * Copyright (C) 2001 Peter Bergner, IBM Corp.
9 */
10
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <asm/dma.h>
14
15 extern unsigned long max_low_pfn;
16 extern unsigned long min_low_pfn;
17
18 /*
19 * highest page
20 */
21 extern unsigned long max_pfn;
22 /*
23 * highest possible page
24 */
25 extern unsigned long long max_possible_pfn;
26
27 /**
28 * enum memblock_flags - definition of memory region attributes
29 * @MEMBLOCK_NONE: no special request
30 * @MEMBLOCK_HOTPLUG: memory region indicated in the firmware-provided memory
31 * map during early boot as hot(un)pluggable system RAM (e.g., memory range
32 * that might get hotunplugged later). With "movable_node" set on the kernel
33 * commandline, try keeping this memory region hotunpluggable. Does not apply
34 * to memblocks added ("hotplugged") after early boot.
35 * @MEMBLOCK_MIRROR: mirrored region
36 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as
37 * reserved in the memory map; refer to memblock_mark_nomap() description
38 * for further details
39 * @MEMBLOCK_DRIVER_MANAGED: memory region that is always detected and added
40 * via a driver, and never indicated in the firmware-provided memory map as
41 * system RAM. This corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED in the
42 * kernel resource tree.
43 */
44 enum memblock_flags {
45 MEMBLOCK_NONE = 0x0, /* No special request */
46 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */
47 MEMBLOCK_MIRROR = 0x2, /* mirrored region */
48 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */
49 MEMBLOCK_DRIVER_MANAGED = 0x8, /* always detected via a driver */
50 };
51
52 /**
53 * struct memblock_region - represents a memory region
54 * @base: base address of the region
55 * @size: size of the region
56 * @flags: memory region attributes
57 * @nid: NUMA node id
58 */
59 struct memblock_region {
60 phys_addr_t base;
61 phys_addr_t size;
62 enum memblock_flags flags;
63 #ifdef CONFIG_NUMA
64 int nid;
65 #endif
66 };
67
68 /**
69 * struct memblock_type - collection of memory regions of certain type
70 * @cnt: number of regions
71 * @max: size of the allocated array
72 * @total_size: size of all regions
73 * @regions: array of regions
74 * @name: the memory type symbolic name
75 */
76 struct memblock_type {
77 unsigned long cnt;
78 unsigned long max;
79 phys_addr_t total_size;
80 struct memblock_region *regions;
81 char *name;
82 };
83
84 /**
85 * struct memblock - memblock allocator metadata
86 * @bottom_up: is bottom up direction?
87 * @current_limit: physical address of the current allocation limit
88 * @memory: usable memory regions
89 * @reserved: reserved memory regions
90 */
91 struct memblock {
92 bool bottom_up; /* is bottom up direction? */
93 phys_addr_t current_limit;
94 struct memblock_type memory;
95 struct memblock_type reserved;
96 };
97
98 extern struct memblock memblock;
99
100 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
101 #define __init_memblock __meminit
102 #define __initdata_memblock __meminitdata
103 void memblock_discard(void);
104 #else
105 #define __init_memblock
106 #define __initdata_memblock
memblock_discard(void)107 static inline void memblock_discard(void) {}
108 #endif
109
110 void memblock_allow_resize(void);
111 int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid,
112 enum memblock_flags flags);
113 int memblock_add(phys_addr_t base, phys_addr_t size);
114 int memblock_remove(phys_addr_t base, phys_addr_t size);
115 int memblock_phys_free(phys_addr_t base, phys_addr_t size);
116 int memblock_reserve(phys_addr_t base, phys_addr_t size);
117 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
118 int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
119 #endif
120 void memblock_trim_memory(phys_addr_t align);
121 unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
122 phys_addr_t base2, phys_addr_t size2);
123 bool memblock_overlaps_region(struct memblock_type *type,
124 phys_addr_t base, phys_addr_t size);
125 bool memblock_validate_numa_coverage(unsigned long threshold_bytes);
126 int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
127 int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
128 int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
129 int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
130 int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
131
132 void memblock_free_all(void);
133 void memblock_free(void *ptr, size_t size);
134 void reset_all_zones_managed_pages(void);
135
136 /* Low level functions */
137 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
138 struct memblock_type *type_a,
139 struct memblock_type *type_b, phys_addr_t *out_start,
140 phys_addr_t *out_end, int *out_nid);
141
142 void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
143 struct memblock_type *type_a,
144 struct memblock_type *type_b, phys_addr_t *out_start,
145 phys_addr_t *out_end, int *out_nid);
146
147 void memblock_free_late(phys_addr_t base, phys_addr_t size);
148
149 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
__next_physmem_range(u64 * idx,struct memblock_type * type,phys_addr_t * out_start,phys_addr_t * out_end)150 static inline void __next_physmem_range(u64 *idx, struct memblock_type *type,
151 phys_addr_t *out_start,
152 phys_addr_t *out_end)
153 {
154 extern struct memblock_type physmem;
155
156 __next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type,
157 out_start, out_end, NULL);
158 }
159
160 /**
161 * for_each_physmem_range - iterate through physmem areas not included in type.
162 * @i: u64 used as loop variable
163 * @type: ptr to memblock_type which excludes from the iteration, can be %NULL
164 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
165 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
166 */
167 #define for_each_physmem_range(i, type, p_start, p_end) \
168 for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \
169 i != (u64)ULLONG_MAX; \
170 __next_physmem_range(&i, type, p_start, p_end))
171 #endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */
172
173 /**
174 * __for_each_mem_range - iterate through memblock areas from type_a and not
175 * included in type_b. Or just type_a if type_b is NULL.
176 * @i: u64 used as loop variable
177 * @type_a: ptr to memblock_type to iterate
178 * @type_b: ptr to memblock_type which excludes from the iteration
179 * @nid: node selector, %NUMA_NO_NODE for all nodes
180 * @flags: pick from blocks based on memory attributes
181 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
182 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
183 * @p_nid: ptr to int for nid of the range, can be %NULL
184 */
185 #define __for_each_mem_range(i, type_a, type_b, nid, flags, \
186 p_start, p_end, p_nid) \
187 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \
188 p_start, p_end, p_nid); \
189 i != (u64)ULLONG_MAX; \
190 __next_mem_range(&i, nid, flags, type_a, type_b, \
191 p_start, p_end, p_nid))
192
193 /**
194 * __for_each_mem_range_rev - reverse iterate through memblock areas from
195 * type_a and not included in type_b. Or just type_a if type_b is NULL.
196 * @i: u64 used as loop variable
197 * @type_a: ptr to memblock_type to iterate
198 * @type_b: ptr to memblock_type which excludes from the iteration
199 * @nid: node selector, %NUMA_NO_NODE for all nodes
200 * @flags: pick from blocks based on memory attributes
201 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
202 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
203 * @p_nid: ptr to int for nid of the range, can be %NULL
204 */
205 #define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \
206 p_start, p_end, p_nid) \
207 for (i = (u64)ULLONG_MAX, \
208 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
209 p_start, p_end, p_nid); \
210 i != (u64)ULLONG_MAX; \
211 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
212 p_start, p_end, p_nid))
213
214 /**
215 * for_each_mem_range - iterate through memory areas.
216 * @i: u64 used as loop variable
217 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
218 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
219 */
220 #define for_each_mem_range(i, p_start, p_end) \
221 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \
222 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED, \
223 p_start, p_end, NULL)
224
225 /**
226 * for_each_mem_range_rev - reverse iterate through memblock areas from
227 * type_a and not included in type_b. Or just type_a if type_b is NULL.
228 * @i: u64 used as loop variable
229 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
230 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
231 */
232 #define for_each_mem_range_rev(i, p_start, p_end) \
233 __for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \
234 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED,\
235 p_start, p_end, NULL)
236
237 /**
238 * for_each_reserved_mem_range - iterate over all reserved memblock areas
239 * @i: u64 used as loop variable
240 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
241 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
242 *
243 * Walks over reserved areas of memblock. Available as soon as memblock
244 * is initialized.
245 */
246 #define for_each_reserved_mem_range(i, p_start, p_end) \
247 __for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \
248 MEMBLOCK_NONE, p_start, p_end, NULL)
249
memblock_is_hotpluggable(struct memblock_region * m)250 static inline bool memblock_is_hotpluggable(struct memblock_region *m)
251 {
252 return m->flags & MEMBLOCK_HOTPLUG;
253 }
254
memblock_is_mirror(struct memblock_region * m)255 static inline bool memblock_is_mirror(struct memblock_region *m)
256 {
257 return m->flags & MEMBLOCK_MIRROR;
258 }
259
memblock_is_nomap(struct memblock_region * m)260 static inline bool memblock_is_nomap(struct memblock_region *m)
261 {
262 return m->flags & MEMBLOCK_NOMAP;
263 }
264
memblock_is_driver_managed(struct memblock_region * m)265 static inline bool memblock_is_driver_managed(struct memblock_region *m)
266 {
267 return m->flags & MEMBLOCK_DRIVER_MANAGED;
268 }
269
270 int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
271 unsigned long *end_pfn);
272 void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
273 unsigned long *out_end_pfn, int *out_nid);
274
275 /**
276 * for_each_mem_pfn_range - early memory pfn range iterator
277 * @i: an integer used as loop variable
278 * @nid: node selector, %MAX_NUMNODES for all nodes
279 * @p_start: ptr to ulong for start pfn of the range, can be %NULL
280 * @p_end: ptr to ulong for end pfn of the range, can be %NULL
281 * @p_nid: ptr to int for nid of the range, can be %NULL
282 *
283 * Walks over configured memory ranges.
284 */
285 #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
286 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
287 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
288
289 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
290 void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
291 unsigned long *out_spfn,
292 unsigned long *out_epfn);
293 /**
294 * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free
295 * memblock areas
296 * @i: u64 used as loop variable
297 * @zone: zone in which all of the memory blocks reside
298 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
299 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
300 *
301 * Walks over free (memory && !reserved) areas of memblock in a specific
302 * zone. Available once memblock and an empty zone is initialized. The main
303 * assumption is that the zone start, end, and pgdat have been associated.
304 * This way we can use the zone to determine NUMA node, and if a given part
305 * of the memblock is valid for the zone.
306 */
307 #define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \
308 for (i = 0, \
309 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \
310 i != U64_MAX; \
311 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
312
313 /**
314 * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific
315 * free memblock areas from a given point
316 * @i: u64 used as loop variable
317 * @zone: zone in which all of the memory blocks reside
318 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
319 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
320 *
321 * Walks over free (memory && !reserved) areas of memblock in a specific
322 * zone, continuing from current position. Available as soon as memblock is
323 * initialized.
324 */
325 #define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
326 for (; i != U64_MAX; \
327 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
328
329 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask);
330
331 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
332
333 /**
334 * for_each_free_mem_range - iterate through free memblock areas
335 * @i: u64 used as loop variable
336 * @nid: node selector, %NUMA_NO_NODE for all nodes
337 * @flags: pick from blocks based on memory attributes
338 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
339 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
340 * @p_nid: ptr to int for nid of the range, can be %NULL
341 *
342 * Walks over free (memory && !reserved) areas of memblock. Available as
343 * soon as memblock is initialized.
344 */
345 #define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \
346 __for_each_mem_range(i, &memblock.memory, &memblock.reserved, \
347 nid, flags, p_start, p_end, p_nid)
348
349 /**
350 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
351 * @i: u64 used as loop variable
352 * @nid: node selector, %NUMA_NO_NODE for all nodes
353 * @flags: pick from blocks based on memory attributes
354 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
355 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
356 * @p_nid: ptr to int for nid of the range, can be %NULL
357 *
358 * Walks over free (memory && !reserved) areas of memblock in reverse
359 * order. Available as soon as memblock is initialized.
360 */
361 #define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \
362 p_nid) \
363 __for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
364 nid, flags, p_start, p_end, p_nid)
365
366 int memblock_set_node(phys_addr_t base, phys_addr_t size,
367 struct memblock_type *type, int nid);
368
369 #ifdef CONFIG_NUMA
memblock_set_region_node(struct memblock_region * r,int nid)370 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
371 {
372 r->nid = nid;
373 }
374
memblock_get_region_node(const struct memblock_region * r)375 static inline int memblock_get_region_node(const struct memblock_region *r)
376 {
377 return r->nid;
378 }
379 #else
memblock_set_region_node(struct memblock_region * r,int nid)380 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
381 {
382 }
383
memblock_get_region_node(const struct memblock_region * r)384 static inline int memblock_get_region_node(const struct memblock_region *r)
385 {
386 return 0;
387 }
388 #endif /* CONFIG_NUMA */
389
390 /* Flags for memblock allocation APIs */
391 #define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
392 #define MEMBLOCK_ALLOC_ACCESSIBLE 0
393 #define MEMBLOCK_ALLOC_NOLEAKTRACE 1
394
395 /* We are using top down, so it is safe to use 0 here */
396 #define MEMBLOCK_LOW_LIMIT 0
397
398 #ifndef ARCH_LOW_ADDRESS_LIMIT
399 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
400 #endif
401
402 phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
403 phys_addr_t start, phys_addr_t end);
404 phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
405 phys_addr_t align, phys_addr_t start,
406 phys_addr_t end, int nid, bool exact_nid);
407 phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
408
memblock_phys_alloc(phys_addr_t size,phys_addr_t align)409 static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
410 phys_addr_t align)
411 {
412 return memblock_phys_alloc_range(size, align, 0,
413 MEMBLOCK_ALLOC_ACCESSIBLE);
414 }
415
416 void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
417 phys_addr_t min_addr, phys_addr_t max_addr,
418 int nid);
419 void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
420 phys_addr_t min_addr, phys_addr_t max_addr,
421 int nid);
422 void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
423 phys_addr_t min_addr, phys_addr_t max_addr,
424 int nid);
425
memblock_alloc(phys_addr_t size,phys_addr_t align)426 static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align)
427 {
428 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
429 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
430 }
431
memblock_alloc_raw(phys_addr_t size,phys_addr_t align)432 static inline void *memblock_alloc_raw(phys_addr_t size,
433 phys_addr_t align)
434 {
435 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
436 MEMBLOCK_ALLOC_ACCESSIBLE,
437 NUMA_NO_NODE);
438 }
439
memblock_alloc_from(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr)440 static inline void *memblock_alloc_from(phys_addr_t size,
441 phys_addr_t align,
442 phys_addr_t min_addr)
443 {
444 return memblock_alloc_try_nid(size, align, min_addr,
445 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
446 }
447
memblock_alloc_low(phys_addr_t size,phys_addr_t align)448 static inline void *memblock_alloc_low(phys_addr_t size,
449 phys_addr_t align)
450 {
451 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
452 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
453 }
454
memblock_alloc_node(phys_addr_t size,phys_addr_t align,int nid)455 static inline void *memblock_alloc_node(phys_addr_t size,
456 phys_addr_t align, int nid)
457 {
458 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
459 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
460 }
461
462 /*
463 * Set the allocation direction to bottom-up or top-down.
464 */
memblock_set_bottom_up(bool enable)465 static inline __init_memblock void memblock_set_bottom_up(bool enable)
466 {
467 memblock.bottom_up = enable;
468 }
469
470 /*
471 * Check if the allocation direction is bottom-up or not.
472 * if this is true, that said, memblock will allocate memory
473 * in bottom-up direction.
474 */
memblock_bottom_up(void)475 static inline __init_memblock bool memblock_bottom_up(void)
476 {
477 return memblock.bottom_up;
478 }
479
480 phys_addr_t memblock_phys_mem_size(void);
481 phys_addr_t memblock_reserved_size(void);
482 phys_addr_t memblock_start_of_DRAM(void);
483 phys_addr_t memblock_end_of_DRAM(void);
484 void memblock_enforce_memory_limit(phys_addr_t memory_limit);
485 void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
486 void memblock_mem_limit_remove_map(phys_addr_t limit);
487 bool memblock_is_memory(phys_addr_t addr);
488 bool memblock_is_map_memory(phys_addr_t addr);
489 bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
490 bool memblock_is_reserved(phys_addr_t addr);
491 bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
492
493 void memblock_dump_all(void);
494
495 /**
496 * memblock_set_current_limit - Set the current allocation limit to allow
497 * limiting allocations to what is currently
498 * accessible during boot
499 * @limit: New limit value (physical address)
500 */
501 void memblock_set_current_limit(phys_addr_t limit);
502
503
504 phys_addr_t memblock_get_current_limit(void);
505
506 /*
507 * pfn conversion functions
508 *
509 * While the memory MEMBLOCKs should always be page aligned, the reserved
510 * MEMBLOCKs may not be. This accessor attempt to provide a very clear
511 * idea of what they return for such non aligned MEMBLOCKs.
512 */
513
514 /**
515 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
516 * @reg: memblock_region structure
517 *
518 * Return: the lowest pfn intersecting with the memory region
519 */
memblock_region_memory_base_pfn(const struct memblock_region * reg)520 static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
521 {
522 return PFN_UP(reg->base);
523 }
524
525 /**
526 * memblock_region_memory_end_pfn - get the end pfn of the memory region
527 * @reg: memblock_region structure
528 *
529 * Return: the end_pfn of the reserved region
530 */
memblock_region_memory_end_pfn(const struct memblock_region * reg)531 static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
532 {
533 return PFN_DOWN(reg->base + reg->size);
534 }
535
536 /**
537 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
538 * @reg: memblock_region structure
539 *
540 * Return: the lowest pfn intersecting with the reserved region
541 */
memblock_region_reserved_base_pfn(const struct memblock_region * reg)542 static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
543 {
544 return PFN_DOWN(reg->base);
545 }
546
547 /**
548 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
549 * @reg: memblock_region structure
550 *
551 * Return: the end_pfn of the reserved region
552 */
memblock_region_reserved_end_pfn(const struct memblock_region * reg)553 static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
554 {
555 return PFN_UP(reg->base + reg->size);
556 }
557
558 /**
559 * for_each_mem_region - itereate over memory regions
560 * @region: loop variable
561 */
562 #define for_each_mem_region(region) \
563 for (region = memblock.memory.regions; \
564 region < (memblock.memory.regions + memblock.memory.cnt); \
565 region++)
566
567 /**
568 * for_each_reserved_mem_region - itereate over reserved memory regions
569 * @region: loop variable
570 */
571 #define for_each_reserved_mem_region(region) \
572 for (region = memblock.reserved.regions; \
573 region < (memblock.reserved.regions + memblock.reserved.cnt); \
574 region++)
575
576 extern void *alloc_large_system_hash(const char *tablename,
577 unsigned long bucketsize,
578 unsigned long numentries,
579 int scale,
580 int flags,
581 unsigned int *_hash_shift,
582 unsigned int *_hash_mask,
583 unsigned long low_limit,
584 unsigned long high_limit);
585
586 #define HASH_EARLY 0x00000001 /* Allocating during early boot? */
587 #define HASH_ZERO 0x00000002 /* Zero allocated hash table */
588
589 /* Only NUMA needs hash distribution. 64bit NUMA architectures have
590 * sufficient vmalloc space.
591 */
592 #ifdef CONFIG_NUMA
593 #define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
594 extern int hashdist; /* Distribute hashes across NUMA nodes? */
595 #else
596 #define hashdist (0)
597 #endif
598
599 #ifdef CONFIG_MEMTEST
600 void early_memtest(phys_addr_t start, phys_addr_t end);
601 void memtest_report_meminfo(struct seq_file *m);
602 #else
early_memtest(phys_addr_t start,phys_addr_t end)603 static inline void early_memtest(phys_addr_t start, phys_addr_t end) { }
memtest_report_meminfo(struct seq_file * m)604 static inline void memtest_report_meminfo(struct seq_file *m) { }
605 #endif
606
607
608 #endif /* _LINUX_MEMBLOCK_H */
609