1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16
17 /*
18 * HOW DOES SPACE RESERVATION WORK
19 *
20 * If you want to know about delalloc specifically, there is a separate comment
21 * for that with the delalloc code. This comment is about how the whole system
22 * works generally.
23 *
24 * BASIC CONCEPTS
25 *
26 * 1) space_info. This is the ultimate arbiter of how much space we can use.
27 * There's a description of the bytes_ fields with the struct declaration,
28 * refer to that for specifics on each field. Suffice it to say that for
29 * reservations we care about total_bytes - SUM(space_info->bytes_) when
30 * determining if there is space to make an allocation. There is a space_info
31 * for METADATA, SYSTEM, and DATA areas.
32 *
33 * 2) block_rsv's. These are basically buckets for every different type of
34 * metadata reservation we have. You can see the comment in the block_rsv
35 * code on the rules for each type, but generally block_rsv->reserved is how
36 * much space is accounted for in space_info->bytes_may_use.
37 *
38 * 3) btrfs_calc*_size. These are the worst case calculations we used based
39 * on the number of items we will want to modify. We have one for changing
40 * items, and one for inserting new items. Generally we use these helpers to
41 * determine the size of the block reserves, and then use the actual bytes
42 * values to adjust the space_info counters.
43 *
44 * MAKING RESERVATIONS, THE NORMAL CASE
45 *
46 * We call into either btrfs_reserve_data_bytes() or
47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48 * num_bytes we want to reserve.
49 *
50 * ->reserve
51 * space_info->bytes_may_reserve += num_bytes
52 *
53 * ->extent allocation
54 * Call btrfs_add_reserved_bytes() which does
55 * space_info->bytes_may_reserve -= num_bytes
56 * space_info->bytes_reserved += extent_bytes
57 *
58 * ->insert reference
59 * Call btrfs_update_block_group() which does
60 * space_info->bytes_reserved -= extent_bytes
61 * space_info->bytes_used += extent_bytes
62 *
63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64 *
65 * Assume we are unable to simply make the reservation because we do not have
66 * enough space
67 *
68 * -> __reserve_bytes
69 * create a reserve_ticket with ->bytes set to our reservation, add it to
70 * the tail of space_info->tickets, kick async flush thread
71 *
72 * ->handle_reserve_ticket
73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74 * on the ticket.
75 *
76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77 * Flushes various things attempting to free up space.
78 *
79 * -> btrfs_try_granting_tickets()
80 * This is called by anything that either subtracts space from
81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82 * space_info->total_bytes. This loops through the ->priority_tickets and
83 * then the ->tickets list checking to see if the reservation can be
84 * completed. If it can the space is added to space_info->bytes_may_use and
85 * the ticket is woken up.
86 *
87 * -> ticket wakeup
88 * Check if ->bytes == 0, if it does we got our reservation and we can carry
89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90 * were interrupted.)
91 *
92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93 *
94 * Same as the above, except we add ourselves to the
95 * space_info->priority_tickets, and we do not use ticket->wait, we simply
96 * call flush_space() ourselves for the states that are safe for us to call
97 * without deadlocking and hope for the best.
98 *
99 * THE FLUSHING STATES
100 *
101 * Generally speaking we will have two cases for each state, a "nice" state
102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
103 * reduce the locking over head on the various trees, and even to keep from
104 * doing any work at all in the case of delayed refs. Each of these delayed
105 * things however hold reservations, and so letting them run allows us to
106 * reclaim space so we can make new reservations.
107 *
108 * FLUSH_DELAYED_ITEMS
109 * Every inode has a delayed item to update the inode. Take a simple write
110 * for example, we would update the inode item at write time to update the
111 * mtime, and then again at finish_ordered_io() time in order to update the
112 * isize or bytes. We keep these delayed items to coalesce these operations
113 * into a single operation done on demand. These are an easy way to reclaim
114 * metadata space.
115 *
116 * FLUSH_DELALLOC
117 * Look at the delalloc comment to get an idea of how much space is reserved
118 * for delayed allocation. We can reclaim some of this space simply by
119 * running delalloc, but usually we need to wait for ordered extents to
120 * reclaim the bulk of this space.
121 *
122 * FLUSH_DELAYED_REFS
123 * We have a block reserve for the outstanding delayed refs space, and every
124 * delayed ref operation holds a reservation. Running these is a quick way
125 * to reclaim space, but we want to hold this until the end because COW can
126 * churn a lot and we can avoid making some extent tree modifications if we
127 * are able to delay for as long as possible.
128 *
129 * ALLOC_CHUNK
130 * We will skip this the first time through space reservation, because of
131 * overcommit and we don't want to have a lot of useless metadata space when
132 * our worst case reservations will likely never come true.
133 *
134 * RUN_DELAYED_IPUTS
135 * If we're freeing inodes we're likely freeing checksums, file extent
136 * items, and extent tree items. Loads of space could be freed up by these
137 * operations, however they won't be usable until the transaction commits.
138 *
139 * COMMIT_TRANS
140 * This will commit the transaction. Historically we had a lot of logic
141 * surrounding whether or not we'd commit the transaction, but this waits born
142 * out of a pre-tickets era where we could end up committing the transaction
143 * thousands of times in a row without making progress. Now thanks to our
144 * ticketing system we know if we're not making progress and can error
145 * everybody out after a few commits rather than burning the disk hoping for
146 * a different answer.
147 *
148 * OVERCOMMIT
149 *
150 * Because we hold so many reservations for metadata we will allow you to
151 * reserve more space than is currently free in the currently allocate
152 * metadata space. This only happens with metadata, data does not allow
153 * overcommitting.
154 *
155 * You can see the current logic for when we allow overcommit in
156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
157 * is no unallocated space to be had, all reservations are kept within the
158 * free space in the allocated metadata chunks.
159 *
160 * Because of overcommitting, you generally want to use the
161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
162 * thing with or without extra unallocated space.
163 */
164
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 bool may_use_included)
167 {
168 ASSERT(s_info);
169 return s_info->bytes_used + s_info->bytes_reserved +
170 s_info->bytes_pinned + s_info->bytes_readonly +
171 s_info->bytes_zone_unusable +
172 (may_use_included ? s_info->bytes_may_use : 0);
173 }
174
175 /*
176 * after adding space to the filesystem, we need to clear the full flags
177 * on all the space infos.
178 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 struct list_head *head = &info->space_info;
182 struct btrfs_space_info *found;
183
184 list_for_each_entry(found, head, list)
185 found->full = 0;
186 }
187
188 /*
189 * Block groups with more than this value (percents) of unusable space will be
190 * scheduled for background reclaim.
191 */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
193
194 /*
195 * Calculate chunk size depending on volume type (regular or zoned).
196 */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 if (btrfs_is_zoned(fs_info))
200 return fs_info->zone_size;
201
202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203
204 if (flags & BTRFS_BLOCK_GROUP_DATA)
205 return BTRFS_MAX_DATA_CHUNK_SIZE;
206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 return SZ_32M;
208
209 /* Handle BTRFS_BLOCK_GROUP_METADATA */
210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 return SZ_1G;
212
213 return SZ_256M;
214 }
215
216 /*
217 * Update default chunk size.
218 */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 u64 chunk_size)
221 {
222 WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224
create_space_info(struct btrfs_fs_info * info,u64 flags)225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227
228 struct btrfs_space_info *space_info;
229 int i;
230 int ret;
231
232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 if (!space_info)
234 return -ENOMEM;
235
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 INIT_LIST_HEAD(&space_info->block_groups[i]);
238 init_rwsem(&space_info->groups_sem);
239 spin_lock_init(&space_info->lock);
240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 INIT_LIST_HEAD(&space_info->ro_bgs);
243 INIT_LIST_HEAD(&space_info->tickets);
244 INIT_LIST_HEAD(&space_info->priority_tickets);
245 space_info->clamp = 1;
246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247
248 if (btrfs_is_zoned(info))
249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250
251 ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 if (ret)
253 return ret;
254
255 list_add(&space_info->list, &info->space_info);
256 if (flags & BTRFS_BLOCK_GROUP_DATA)
257 info->data_sinfo = space_info;
258
259 return ret;
260 }
261
btrfs_init_space_info(struct btrfs_fs_info * fs_info)262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 struct btrfs_super_block *disk_super;
265 u64 features;
266 u64 flags;
267 int mixed = 0;
268 int ret;
269
270 disk_super = fs_info->super_copy;
271 if (!btrfs_super_root(disk_super))
272 return -EINVAL;
273
274 features = btrfs_super_incompat_flags(disk_super);
275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 mixed = 1;
277
278 flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 ret = create_space_info(fs_info, flags);
280 if (ret)
281 goto out;
282
283 if (mixed) {
284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 ret = create_space_info(fs_info, flags);
286 } else {
287 flags = BTRFS_BLOCK_GROUP_METADATA;
288 ret = create_space_info(fs_info, flags);
289 if (ret)
290 goto out;
291
292 flags = BTRFS_BLOCK_GROUP_DATA;
293 ret = create_space_info(fs_info, flags);
294 }
295 out:
296 return ret;
297 }
298
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 struct btrfs_block_group *block_group)
301 {
302 struct btrfs_space_info *found;
303 int factor, index;
304
305 factor = btrfs_bg_type_to_factor(block_group->flags);
306
307 found = btrfs_find_space_info(info, block_group->flags);
308 ASSERT(found);
309 spin_lock(&found->lock);
310 found->total_bytes += block_group->length;
311 found->disk_total += block_group->length * factor;
312 found->bytes_used += block_group->used;
313 found->disk_used += block_group->used * factor;
314 found->bytes_readonly += block_group->bytes_super;
315 btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable);
316 if (block_group->length > 0)
317 found->full = 0;
318 btrfs_try_granting_tickets(info, found);
319 spin_unlock(&found->lock);
320
321 block_group->space_info = found;
322
323 index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 down_write(&found->groups_sem);
325 list_add_tail(&block_group->list, &found->block_groups[index]);
326 up_write(&found->groups_sem);
327 }
328
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 u64 flags)
331 {
332 struct list_head *head = &info->space_info;
333 struct btrfs_space_info *found;
334
335 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336
337 list_for_each_entry(found, head, list) {
338 if (found->flags & flags)
339 return found;
340 }
341 return NULL;
342 }
343
calc_available_free_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 struct btrfs_space_info *space_info,
346 enum btrfs_reserve_flush_enum flush)
347 {
348 u64 profile;
349 u64 avail;
350 int factor;
351
352 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
353 profile = btrfs_system_alloc_profile(fs_info);
354 else
355 profile = btrfs_metadata_alloc_profile(fs_info);
356
357 avail = atomic64_read(&fs_info->free_chunk_space);
358
359 /*
360 * If we have dup, raid1 or raid10 then only half of the free
361 * space is actually usable. For raid56, the space info used
362 * doesn't include the parity drive, so we don't have to
363 * change the math
364 */
365 factor = btrfs_bg_type_to_factor(profile);
366 avail = div_u64(avail, factor);
367
368 /*
369 * If we aren't flushing all things, let us overcommit up to
370 * 1/2th of the space. If we can flush, don't let us overcommit
371 * too much, let it overcommit up to 1/8 of the space.
372 */
373 if (flush == BTRFS_RESERVE_FLUSH_ALL)
374 avail >>= 3;
375 else
376 avail >>= 1;
377 return avail;
378 }
379
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
381 struct btrfs_space_info *space_info, u64 bytes,
382 enum btrfs_reserve_flush_enum flush)
383 {
384 u64 avail;
385 u64 used;
386
387 /* Don't overcommit when in mixed mode */
388 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
389 return 0;
390
391 used = btrfs_space_info_used(space_info, true);
392 avail = calc_available_free_space(fs_info, space_info, flush);
393
394 if (used + bytes < space_info->total_bytes + avail)
395 return 1;
396 return 0;
397 }
398
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)399 static void remove_ticket(struct btrfs_space_info *space_info,
400 struct reserve_ticket *ticket)
401 {
402 if (!list_empty(&ticket->list)) {
403 list_del_init(&ticket->list);
404 ASSERT(space_info->reclaim_size >= ticket->bytes);
405 space_info->reclaim_size -= ticket->bytes;
406 }
407 }
408
409 /*
410 * This is for space we already have accounted in space_info->bytes_may_use, so
411 * basically when we're returning space from block_rsv's.
412 */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)413 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
414 struct btrfs_space_info *space_info)
415 {
416 struct list_head *head;
417 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
418
419 lockdep_assert_held(&space_info->lock);
420
421 head = &space_info->priority_tickets;
422 again:
423 while (!list_empty(head)) {
424 struct reserve_ticket *ticket;
425 u64 used = btrfs_space_info_used(space_info, true);
426
427 ticket = list_first_entry(head, struct reserve_ticket, list);
428
429 /* Check and see if our ticket can be satisfied now. */
430 if ((used + ticket->bytes <= space_info->total_bytes) ||
431 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
432 flush)) {
433 btrfs_space_info_update_bytes_may_use(fs_info,
434 space_info,
435 ticket->bytes);
436 remove_ticket(space_info, ticket);
437 ticket->bytes = 0;
438 space_info->tickets_id++;
439 wake_up(&ticket->wait);
440 } else {
441 break;
442 }
443 }
444
445 if (head == &space_info->priority_tickets) {
446 head = &space_info->tickets;
447 flush = BTRFS_RESERVE_FLUSH_ALL;
448 goto again;
449 }
450 }
451
452 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
453 do { \
454 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
455 spin_lock(&__rsv->lock); \
456 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
457 __rsv->size, __rsv->reserved); \
458 spin_unlock(&__rsv->lock); \
459 } while (0)
460
space_info_flag_to_str(const struct btrfs_space_info * space_info)461 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
462 {
463 switch (space_info->flags) {
464 case BTRFS_BLOCK_GROUP_SYSTEM:
465 return "SYSTEM";
466 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
467 return "DATA+METADATA";
468 case BTRFS_BLOCK_GROUP_DATA:
469 return "DATA";
470 case BTRFS_BLOCK_GROUP_METADATA:
471 return "METADATA";
472 default:
473 return "UNKNOWN";
474 }
475 }
476
dump_global_block_rsv(struct btrfs_fs_info * fs_info)477 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
478 {
479 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
480 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
481 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
482 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
483 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
484 }
485
__btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info)486 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
487 struct btrfs_space_info *info)
488 {
489 const char *flag_str = space_info_flag_to_str(info);
490 lockdep_assert_held(&info->lock);
491
492 /* The free space could be negative in case of overcommit */
493 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
494 flag_str,
495 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
496 info->full ? "" : "not ");
497 btrfs_info(fs_info,
498 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
499 info->total_bytes, info->bytes_used, info->bytes_pinned,
500 info->bytes_reserved, info->bytes_may_use,
501 info->bytes_readonly, info->bytes_zone_unusable);
502 }
503
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)504 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
505 struct btrfs_space_info *info, u64 bytes,
506 int dump_block_groups)
507 {
508 struct btrfs_block_group *cache;
509 u64 total_avail = 0;
510 int index = 0;
511
512 spin_lock(&info->lock);
513 __btrfs_dump_space_info(fs_info, info);
514 dump_global_block_rsv(fs_info);
515 spin_unlock(&info->lock);
516
517 if (!dump_block_groups)
518 return;
519
520 down_read(&info->groups_sem);
521 again:
522 list_for_each_entry(cache, &info->block_groups[index], list) {
523 u64 avail;
524
525 spin_lock(&cache->lock);
526 avail = cache->length - cache->used - cache->pinned -
527 cache->reserved - cache->bytes_super - cache->zone_unusable;
528 btrfs_info(fs_info,
529 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
530 cache->start, cache->length, cache->used, cache->pinned,
531 cache->reserved, cache->delalloc_bytes,
532 cache->bytes_super, cache->zone_unusable,
533 avail, cache->ro ? "[readonly]" : "");
534 spin_unlock(&cache->lock);
535 btrfs_dump_free_space(cache, bytes);
536 total_avail += avail;
537 }
538 if (++index < BTRFS_NR_RAID_TYPES)
539 goto again;
540 up_read(&info->groups_sem);
541
542 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
543 }
544
calc_reclaim_items_nr(const struct btrfs_fs_info * fs_info,u64 to_reclaim)545 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
546 u64 to_reclaim)
547 {
548 u64 bytes;
549 u64 nr;
550
551 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
552 nr = div64_u64(to_reclaim, bytes);
553 if (!nr)
554 nr = 1;
555 return nr;
556 }
557
calc_delayed_refs_nr(const struct btrfs_fs_info * fs_info,u64 to_reclaim)558 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info,
559 u64 to_reclaim)
560 {
561 const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1);
562 u64 nr;
563
564 nr = div64_u64(to_reclaim, bytes);
565 if (!nr)
566 nr = 1;
567 return nr;
568 }
569
570 #define EXTENT_SIZE_PER_ITEM SZ_256K
571
572 /*
573 * shrink metadata reservation for delalloc
574 */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)575 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
576 struct btrfs_space_info *space_info,
577 u64 to_reclaim, bool wait_ordered,
578 bool for_preempt)
579 {
580 struct btrfs_trans_handle *trans;
581 u64 delalloc_bytes;
582 u64 ordered_bytes;
583 u64 items;
584 long time_left;
585 int loops;
586
587 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
588 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
589 if (delalloc_bytes == 0 && ordered_bytes == 0)
590 return;
591
592 /* Calc the number of the pages we need flush for space reservation */
593 if (to_reclaim == U64_MAX) {
594 items = U64_MAX;
595 } else {
596 /*
597 * to_reclaim is set to however much metadata we need to
598 * reclaim, but reclaiming that much data doesn't really track
599 * exactly. What we really want to do is reclaim full inode's
600 * worth of reservations, however that's not available to us
601 * here. We will take a fraction of the delalloc bytes for our
602 * flushing loops and hope for the best. Delalloc will expand
603 * the amount we write to cover an entire dirty extent, which
604 * will reclaim the metadata reservation for that range. If
605 * it's not enough subsequent flush stages will be more
606 * aggressive.
607 */
608 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
609 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
610 }
611
612 trans = current->journal_info;
613
614 /*
615 * If we are doing more ordered than delalloc we need to just wait on
616 * ordered extents, otherwise we'll waste time trying to flush delalloc
617 * that likely won't give us the space back we need.
618 */
619 if (ordered_bytes > delalloc_bytes && !for_preempt)
620 wait_ordered = true;
621
622 loops = 0;
623 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
624 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
625 long nr_pages = min_t(u64, temp, LONG_MAX);
626 int async_pages;
627
628 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
629
630 /*
631 * We need to make sure any outstanding async pages are now
632 * processed before we continue. This is because things like
633 * sync_inode() try to be smart and skip writing if the inode is
634 * marked clean. We don't use filemap_fwrite for flushing
635 * because we want to control how many pages we write out at a
636 * time, thus this is the only safe way to make sure we've
637 * waited for outstanding compressed workers to have started
638 * their jobs and thus have ordered extents set up properly.
639 *
640 * This exists because we do not want to wait for each
641 * individual inode to finish its async work, we simply want to
642 * start the IO on everybody, and then come back here and wait
643 * for all of the async work to catch up. Once we're done with
644 * that we know we'll have ordered extents for everything and we
645 * can decide if we wait for that or not.
646 *
647 * If we choose to replace this in the future, make absolutely
648 * sure that the proper waiting is being done in the async case,
649 * as there have been bugs in that area before.
650 */
651 async_pages = atomic_read(&fs_info->async_delalloc_pages);
652 if (!async_pages)
653 goto skip_async;
654
655 /*
656 * We don't want to wait forever, if we wrote less pages in this
657 * loop than we have outstanding, only wait for that number of
658 * pages, otherwise we can wait for all async pages to finish
659 * before continuing.
660 */
661 if (async_pages > nr_pages)
662 async_pages -= nr_pages;
663 else
664 async_pages = 0;
665 wait_event(fs_info->async_submit_wait,
666 atomic_read(&fs_info->async_delalloc_pages) <=
667 async_pages);
668 skip_async:
669 loops++;
670 if (wait_ordered && !trans) {
671 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
672 } else {
673 time_left = schedule_timeout_killable(1);
674 if (time_left)
675 break;
676 }
677
678 /*
679 * If we are for preemption we just want a one-shot of delalloc
680 * flushing so we can stop flushing if we decide we don't need
681 * to anymore.
682 */
683 if (for_preempt)
684 break;
685
686 spin_lock(&space_info->lock);
687 if (list_empty(&space_info->tickets) &&
688 list_empty(&space_info->priority_tickets)) {
689 spin_unlock(&space_info->lock);
690 break;
691 }
692 spin_unlock(&space_info->lock);
693
694 delalloc_bytes = percpu_counter_sum_positive(
695 &fs_info->delalloc_bytes);
696 ordered_bytes = percpu_counter_sum_positive(
697 &fs_info->ordered_bytes);
698 }
699 }
700
701 /*
702 * Try to flush some data based on policy set by @state. This is only advisory
703 * and may fail for various reasons. The caller is supposed to examine the
704 * state of @space_info to detect the outcome.
705 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)706 static void flush_space(struct btrfs_fs_info *fs_info,
707 struct btrfs_space_info *space_info, u64 num_bytes,
708 enum btrfs_flush_state state, bool for_preempt)
709 {
710 struct btrfs_root *root = fs_info->tree_root;
711 struct btrfs_trans_handle *trans;
712 int nr;
713 int ret = 0;
714
715 switch (state) {
716 case FLUSH_DELAYED_ITEMS_NR:
717 case FLUSH_DELAYED_ITEMS:
718 if (state == FLUSH_DELAYED_ITEMS_NR)
719 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
720 else
721 nr = -1;
722
723 trans = btrfs_join_transaction_nostart(root);
724 if (IS_ERR(trans)) {
725 ret = PTR_ERR(trans);
726 if (ret == -ENOENT)
727 ret = 0;
728 break;
729 }
730 ret = btrfs_run_delayed_items_nr(trans, nr);
731 btrfs_end_transaction(trans);
732 break;
733 case FLUSH_DELALLOC:
734 case FLUSH_DELALLOC_WAIT:
735 case FLUSH_DELALLOC_FULL:
736 if (state == FLUSH_DELALLOC_FULL)
737 num_bytes = U64_MAX;
738 shrink_delalloc(fs_info, space_info, num_bytes,
739 state != FLUSH_DELALLOC, for_preempt);
740 break;
741 case FLUSH_DELAYED_REFS_NR:
742 case FLUSH_DELAYED_REFS:
743 trans = btrfs_join_transaction_nostart(root);
744 if (IS_ERR(trans)) {
745 ret = PTR_ERR(trans);
746 if (ret == -ENOENT)
747 ret = 0;
748 break;
749 }
750 if (state == FLUSH_DELAYED_REFS_NR)
751 nr = calc_delayed_refs_nr(fs_info, num_bytes);
752 else
753 nr = 0;
754 btrfs_run_delayed_refs(trans, nr);
755 btrfs_end_transaction(trans);
756 break;
757 case ALLOC_CHUNK:
758 case ALLOC_CHUNK_FORCE:
759 trans = btrfs_join_transaction(root);
760 if (IS_ERR(trans)) {
761 ret = PTR_ERR(trans);
762 break;
763 }
764 ret = btrfs_chunk_alloc(trans,
765 btrfs_get_alloc_profile(fs_info, space_info->flags),
766 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
767 CHUNK_ALLOC_FORCE);
768 btrfs_end_transaction(trans);
769
770 if (ret > 0 || ret == -ENOSPC)
771 ret = 0;
772 break;
773 case RUN_DELAYED_IPUTS:
774 /*
775 * If we have pending delayed iputs then we could free up a
776 * bunch of pinned space, so make sure we run the iputs before
777 * we do our pinned bytes check below.
778 */
779 btrfs_run_delayed_iputs(fs_info);
780 btrfs_wait_on_delayed_iputs(fs_info);
781 break;
782 case COMMIT_TRANS:
783 ASSERT(current->journal_info == NULL);
784 /*
785 * We don't want to start a new transaction, just attach to the
786 * current one or wait it fully commits in case its commit is
787 * happening at the moment. Note: we don't use a nostart join
788 * because that does not wait for a transaction to fully commit
789 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
790 */
791 trans = btrfs_attach_transaction_barrier(root);
792 if (IS_ERR(trans)) {
793 ret = PTR_ERR(trans);
794 if (ret == -ENOENT)
795 ret = 0;
796 break;
797 }
798 ret = btrfs_commit_transaction(trans);
799 break;
800 default:
801 ret = -ENOSPC;
802 break;
803 }
804
805 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
806 ret, for_preempt);
807 return;
808 }
809
810 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)811 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
812 struct btrfs_space_info *space_info)
813 {
814 u64 used;
815 u64 avail;
816 u64 to_reclaim = space_info->reclaim_size;
817
818 lockdep_assert_held(&space_info->lock);
819
820 avail = calc_available_free_space(fs_info, space_info,
821 BTRFS_RESERVE_FLUSH_ALL);
822 used = btrfs_space_info_used(space_info, true);
823
824 /*
825 * We may be flushing because suddenly we have less space than we had
826 * before, and now we're well over-committed based on our current free
827 * space. If that's the case add in our overage so we make sure to put
828 * appropriate pressure on the flushing state machine.
829 */
830 if (space_info->total_bytes + avail < used)
831 to_reclaim += used - (space_info->total_bytes + avail);
832
833 return to_reclaim;
834 }
835
need_preemptive_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)836 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
837 struct btrfs_space_info *space_info)
838 {
839 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
840 u64 ordered, delalloc;
841 u64 thresh;
842 u64 used;
843
844 thresh = mult_perc(space_info->total_bytes, 90);
845
846 lockdep_assert_held(&space_info->lock);
847
848 /* If we're just plain full then async reclaim just slows us down. */
849 if ((space_info->bytes_used + space_info->bytes_reserved +
850 global_rsv_size) >= thresh)
851 return false;
852
853 used = space_info->bytes_may_use + space_info->bytes_pinned;
854
855 /* The total flushable belongs to the global rsv, don't flush. */
856 if (global_rsv_size >= used)
857 return false;
858
859 /*
860 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
861 * that devoted to other reservations then there's no sense in flushing,
862 * we don't have a lot of things that need flushing.
863 */
864 if (used - global_rsv_size <= SZ_128M)
865 return false;
866
867 /*
868 * We have tickets queued, bail so we don't compete with the async
869 * flushers.
870 */
871 if (space_info->reclaim_size)
872 return false;
873
874 /*
875 * If we have over half of the free space occupied by reservations or
876 * pinned then we want to start flushing.
877 *
878 * We do not do the traditional thing here, which is to say
879 *
880 * if (used >= ((total_bytes + avail) / 2))
881 * return 1;
882 *
883 * because this doesn't quite work how we want. If we had more than 50%
884 * of the space_info used by bytes_used and we had 0 available we'd just
885 * constantly run the background flusher. Instead we want it to kick in
886 * if our reclaimable space exceeds our clamped free space.
887 *
888 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
889 * the following:
890 *
891 * Amount of RAM Minimum threshold Maximum threshold
892 *
893 * 256GiB 1GiB 128GiB
894 * 128GiB 512MiB 64GiB
895 * 64GiB 256MiB 32GiB
896 * 32GiB 128MiB 16GiB
897 * 16GiB 64MiB 8GiB
898 *
899 * These are the range our thresholds will fall in, corresponding to how
900 * much delalloc we need for the background flusher to kick in.
901 */
902
903 thresh = calc_available_free_space(fs_info, space_info,
904 BTRFS_RESERVE_FLUSH_ALL);
905 used = space_info->bytes_used + space_info->bytes_reserved +
906 space_info->bytes_readonly + global_rsv_size;
907 if (used < space_info->total_bytes)
908 thresh += space_info->total_bytes - used;
909 thresh >>= space_info->clamp;
910
911 used = space_info->bytes_pinned;
912
913 /*
914 * If we have more ordered bytes than delalloc bytes then we're either
915 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
916 * around. Preemptive flushing is only useful in that it can free up
917 * space before tickets need to wait for things to finish. In the case
918 * of ordered extents, preemptively waiting on ordered extents gets us
919 * nothing, if our reservations are tied up in ordered extents we'll
920 * simply have to slow down writers by forcing them to wait on ordered
921 * extents.
922 *
923 * In the case that ordered is larger than delalloc, only include the
924 * block reserves that we would actually be able to directly reclaim
925 * from. In this case if we're heavy on metadata operations this will
926 * clearly be heavy enough to warrant preemptive flushing. In the case
927 * of heavy DIO or ordered reservations, preemptive flushing will just
928 * waste time and cause us to slow down.
929 *
930 * We want to make sure we truly are maxed out on ordered however, so
931 * cut ordered in half, and if it's still higher than delalloc then we
932 * can keep flushing. This is to avoid the case where we start
933 * flushing, and now delalloc == ordered and we stop preemptively
934 * flushing when we could still have several gigs of delalloc to flush.
935 */
936 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
937 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
938 if (ordered >= delalloc)
939 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
940 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
941 else
942 used += space_info->bytes_may_use - global_rsv_size;
943
944 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
945 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
946 }
947
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)948 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
949 struct btrfs_space_info *space_info,
950 struct reserve_ticket *ticket)
951 {
952 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
953 u64 min_bytes;
954
955 if (!ticket->steal)
956 return false;
957
958 if (global_rsv->space_info != space_info)
959 return false;
960
961 spin_lock(&global_rsv->lock);
962 min_bytes = mult_perc(global_rsv->size, 10);
963 if (global_rsv->reserved < min_bytes + ticket->bytes) {
964 spin_unlock(&global_rsv->lock);
965 return false;
966 }
967 global_rsv->reserved -= ticket->bytes;
968 remove_ticket(space_info, ticket);
969 ticket->bytes = 0;
970 wake_up(&ticket->wait);
971 space_info->tickets_id++;
972 if (global_rsv->reserved < global_rsv->size)
973 global_rsv->full = 0;
974 spin_unlock(&global_rsv->lock);
975
976 return true;
977 }
978
979 /*
980 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
981 * @fs_info - fs_info for this fs
982 * @space_info - the space info we were flushing
983 *
984 * We call this when we've exhausted our flushing ability and haven't made
985 * progress in satisfying tickets. The reservation code handles tickets in
986 * order, so if there is a large ticket first and then smaller ones we could
987 * very well satisfy the smaller tickets. This will attempt to wake up any
988 * tickets in the list to catch this case.
989 *
990 * This function returns true if it was able to make progress by clearing out
991 * other tickets, or if it stumbles across a ticket that was smaller than the
992 * first ticket.
993 */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)994 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
995 struct btrfs_space_info *space_info)
996 {
997 struct reserve_ticket *ticket;
998 u64 tickets_id = space_info->tickets_id;
999 const bool aborted = BTRFS_FS_ERROR(fs_info);
1000
1001 trace_btrfs_fail_all_tickets(fs_info, space_info);
1002
1003 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1004 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1005 __btrfs_dump_space_info(fs_info, space_info);
1006 }
1007
1008 while (!list_empty(&space_info->tickets) &&
1009 tickets_id == space_info->tickets_id) {
1010 ticket = list_first_entry(&space_info->tickets,
1011 struct reserve_ticket, list);
1012
1013 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1014 return true;
1015
1016 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1017 btrfs_info(fs_info, "failing ticket with %llu bytes",
1018 ticket->bytes);
1019
1020 remove_ticket(space_info, ticket);
1021 if (aborted)
1022 ticket->error = -EIO;
1023 else
1024 ticket->error = -ENOSPC;
1025 wake_up(&ticket->wait);
1026
1027 /*
1028 * We're just throwing tickets away, so more flushing may not
1029 * trip over btrfs_try_granting_tickets, so we need to call it
1030 * here to see if we can make progress with the next ticket in
1031 * the list.
1032 */
1033 if (!aborted)
1034 btrfs_try_granting_tickets(fs_info, space_info);
1035 }
1036 return (tickets_id != space_info->tickets_id);
1037 }
1038
1039 /*
1040 * This is for normal flushers, we can wait all goddamned day if we want to. We
1041 * will loop and continuously try to flush as long as we are making progress.
1042 * We count progress as clearing off tickets each time we have to loop.
1043 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1044 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1045 {
1046 struct btrfs_fs_info *fs_info;
1047 struct btrfs_space_info *space_info;
1048 u64 to_reclaim;
1049 enum btrfs_flush_state flush_state;
1050 int commit_cycles = 0;
1051 u64 last_tickets_id;
1052
1053 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1054 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1055
1056 spin_lock(&space_info->lock);
1057 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1058 if (!to_reclaim) {
1059 space_info->flush = 0;
1060 spin_unlock(&space_info->lock);
1061 return;
1062 }
1063 last_tickets_id = space_info->tickets_id;
1064 spin_unlock(&space_info->lock);
1065
1066 flush_state = FLUSH_DELAYED_ITEMS_NR;
1067 do {
1068 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1069 spin_lock(&space_info->lock);
1070 if (list_empty(&space_info->tickets)) {
1071 space_info->flush = 0;
1072 spin_unlock(&space_info->lock);
1073 return;
1074 }
1075 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1076 space_info);
1077 if (last_tickets_id == space_info->tickets_id) {
1078 flush_state++;
1079 } else {
1080 last_tickets_id = space_info->tickets_id;
1081 flush_state = FLUSH_DELAYED_ITEMS_NR;
1082 if (commit_cycles)
1083 commit_cycles--;
1084 }
1085
1086 /*
1087 * We do not want to empty the system of delalloc unless we're
1088 * under heavy pressure, so allow one trip through the flushing
1089 * logic before we start doing a FLUSH_DELALLOC_FULL.
1090 */
1091 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1092 flush_state++;
1093
1094 /*
1095 * We don't want to force a chunk allocation until we've tried
1096 * pretty hard to reclaim space. Think of the case where we
1097 * freed up a bunch of space and so have a lot of pinned space
1098 * to reclaim. We would rather use that than possibly create a
1099 * underutilized metadata chunk. So if this is our first run
1100 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1101 * commit the transaction. If nothing has changed the next go
1102 * around then we can force a chunk allocation.
1103 */
1104 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1105 flush_state++;
1106
1107 if (flush_state > COMMIT_TRANS) {
1108 commit_cycles++;
1109 if (commit_cycles > 2) {
1110 if (maybe_fail_all_tickets(fs_info, space_info)) {
1111 flush_state = FLUSH_DELAYED_ITEMS_NR;
1112 commit_cycles--;
1113 } else {
1114 space_info->flush = 0;
1115 }
1116 } else {
1117 flush_state = FLUSH_DELAYED_ITEMS_NR;
1118 }
1119 }
1120 spin_unlock(&space_info->lock);
1121 } while (flush_state <= COMMIT_TRANS);
1122 }
1123
1124 /*
1125 * This handles pre-flushing of metadata space before we get to the point that
1126 * we need to start blocking threads on tickets. The logic here is different
1127 * from the other flush paths because it doesn't rely on tickets to tell us how
1128 * much we need to flush, instead it attempts to keep us below the 80% full
1129 * watermark of space by flushing whichever reservation pool is currently the
1130 * largest.
1131 */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1132 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1133 {
1134 struct btrfs_fs_info *fs_info;
1135 struct btrfs_space_info *space_info;
1136 struct btrfs_block_rsv *delayed_block_rsv;
1137 struct btrfs_block_rsv *delayed_refs_rsv;
1138 struct btrfs_block_rsv *global_rsv;
1139 struct btrfs_block_rsv *trans_rsv;
1140 int loops = 0;
1141
1142 fs_info = container_of(work, struct btrfs_fs_info,
1143 preempt_reclaim_work);
1144 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1145 delayed_block_rsv = &fs_info->delayed_block_rsv;
1146 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1147 global_rsv = &fs_info->global_block_rsv;
1148 trans_rsv = &fs_info->trans_block_rsv;
1149
1150 spin_lock(&space_info->lock);
1151 while (need_preemptive_reclaim(fs_info, space_info)) {
1152 enum btrfs_flush_state flush;
1153 u64 delalloc_size = 0;
1154 u64 to_reclaim, block_rsv_size;
1155 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1156
1157 loops++;
1158
1159 /*
1160 * We don't have a precise counter for the metadata being
1161 * reserved for delalloc, so we'll approximate it by subtracting
1162 * out the block rsv's space from the bytes_may_use. If that
1163 * amount is higher than the individual reserves, then we can
1164 * assume it's tied up in delalloc reservations.
1165 */
1166 block_rsv_size = global_rsv_size +
1167 btrfs_block_rsv_reserved(delayed_block_rsv) +
1168 btrfs_block_rsv_reserved(delayed_refs_rsv) +
1169 btrfs_block_rsv_reserved(trans_rsv);
1170 if (block_rsv_size < space_info->bytes_may_use)
1171 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1172
1173 /*
1174 * We don't want to include the global_rsv in our calculation,
1175 * because that's space we can't touch. Subtract it from the
1176 * block_rsv_size for the next checks.
1177 */
1178 block_rsv_size -= global_rsv_size;
1179
1180 /*
1181 * We really want to avoid flushing delalloc too much, as it
1182 * could result in poor allocation patterns, so only flush it if
1183 * it's larger than the rest of the pools combined.
1184 */
1185 if (delalloc_size > block_rsv_size) {
1186 to_reclaim = delalloc_size;
1187 flush = FLUSH_DELALLOC;
1188 } else if (space_info->bytes_pinned >
1189 (btrfs_block_rsv_reserved(delayed_block_rsv) +
1190 btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1191 to_reclaim = space_info->bytes_pinned;
1192 flush = COMMIT_TRANS;
1193 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1194 btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1195 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1196 flush = FLUSH_DELAYED_ITEMS_NR;
1197 } else {
1198 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1199 flush = FLUSH_DELAYED_REFS_NR;
1200 }
1201
1202 spin_unlock(&space_info->lock);
1203
1204 /*
1205 * We don't want to reclaim everything, just a portion, so scale
1206 * down the to_reclaim by 1/4. If it takes us down to 0,
1207 * reclaim 1 items worth.
1208 */
1209 to_reclaim >>= 2;
1210 if (!to_reclaim)
1211 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1212 flush_space(fs_info, space_info, to_reclaim, flush, true);
1213 cond_resched();
1214 spin_lock(&space_info->lock);
1215 }
1216
1217 /* We only went through once, back off our clamping. */
1218 if (loops == 1 && !space_info->reclaim_size)
1219 space_info->clamp = max(1, space_info->clamp - 1);
1220 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1221 spin_unlock(&space_info->lock);
1222 }
1223
1224 /*
1225 * FLUSH_DELALLOC_WAIT:
1226 * Space is freed from flushing delalloc in one of two ways.
1227 *
1228 * 1) compression is on and we allocate less space than we reserved
1229 * 2) we are overwriting existing space
1230 *
1231 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1232 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1233 * length to ->bytes_reserved, and subtracts the reserved space from
1234 * ->bytes_may_use.
1235 *
1236 * For #2 this is trickier. Once the ordered extent runs we will drop the
1237 * extent in the range we are overwriting, which creates a delayed ref for
1238 * that freed extent. This however is not reclaimed until the transaction
1239 * commits, thus the next stages.
1240 *
1241 * RUN_DELAYED_IPUTS
1242 * If we are freeing inodes, we want to make sure all delayed iputs have
1243 * completed, because they could have been on an inode with i_nlink == 0, and
1244 * thus have been truncated and freed up space. But again this space is not
1245 * immediately re-usable, it comes in the form of a delayed ref, which must be
1246 * run and then the transaction must be committed.
1247 *
1248 * COMMIT_TRANS
1249 * This is where we reclaim all of the pinned space generated by running the
1250 * iputs
1251 *
1252 * ALLOC_CHUNK_FORCE
1253 * For data we start with alloc chunk force, however we could have been full
1254 * before, and then the transaction commit could have freed new block groups,
1255 * so if we now have space to allocate do the force chunk allocation.
1256 */
1257 static const enum btrfs_flush_state data_flush_states[] = {
1258 FLUSH_DELALLOC_FULL,
1259 RUN_DELAYED_IPUTS,
1260 COMMIT_TRANS,
1261 ALLOC_CHUNK_FORCE,
1262 };
1263
btrfs_async_reclaim_data_space(struct work_struct * work)1264 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1265 {
1266 struct btrfs_fs_info *fs_info;
1267 struct btrfs_space_info *space_info;
1268 u64 last_tickets_id;
1269 enum btrfs_flush_state flush_state = 0;
1270
1271 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1272 space_info = fs_info->data_sinfo;
1273
1274 spin_lock(&space_info->lock);
1275 if (list_empty(&space_info->tickets)) {
1276 space_info->flush = 0;
1277 spin_unlock(&space_info->lock);
1278 return;
1279 }
1280 last_tickets_id = space_info->tickets_id;
1281 spin_unlock(&space_info->lock);
1282
1283 while (!space_info->full) {
1284 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1285 spin_lock(&space_info->lock);
1286 if (list_empty(&space_info->tickets)) {
1287 space_info->flush = 0;
1288 spin_unlock(&space_info->lock);
1289 return;
1290 }
1291
1292 /* Something happened, fail everything and bail. */
1293 if (BTRFS_FS_ERROR(fs_info))
1294 goto aborted_fs;
1295 last_tickets_id = space_info->tickets_id;
1296 spin_unlock(&space_info->lock);
1297 }
1298
1299 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1300 flush_space(fs_info, space_info, U64_MAX,
1301 data_flush_states[flush_state], false);
1302 spin_lock(&space_info->lock);
1303 if (list_empty(&space_info->tickets)) {
1304 space_info->flush = 0;
1305 spin_unlock(&space_info->lock);
1306 return;
1307 }
1308
1309 if (last_tickets_id == space_info->tickets_id) {
1310 flush_state++;
1311 } else {
1312 last_tickets_id = space_info->tickets_id;
1313 flush_state = 0;
1314 }
1315
1316 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1317 if (space_info->full) {
1318 if (maybe_fail_all_tickets(fs_info, space_info))
1319 flush_state = 0;
1320 else
1321 space_info->flush = 0;
1322 } else {
1323 flush_state = 0;
1324 }
1325
1326 /* Something happened, fail everything and bail. */
1327 if (BTRFS_FS_ERROR(fs_info))
1328 goto aborted_fs;
1329
1330 }
1331 spin_unlock(&space_info->lock);
1332 }
1333 return;
1334
1335 aborted_fs:
1336 maybe_fail_all_tickets(fs_info, space_info);
1337 space_info->flush = 0;
1338 spin_unlock(&space_info->lock);
1339 }
1340
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1341 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1342 {
1343 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1344 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1345 INIT_WORK(&fs_info->preempt_reclaim_work,
1346 btrfs_preempt_reclaim_metadata_space);
1347 }
1348
1349 static const enum btrfs_flush_state priority_flush_states[] = {
1350 FLUSH_DELAYED_ITEMS_NR,
1351 FLUSH_DELAYED_ITEMS,
1352 ALLOC_CHUNK,
1353 };
1354
1355 static const enum btrfs_flush_state evict_flush_states[] = {
1356 FLUSH_DELAYED_ITEMS_NR,
1357 FLUSH_DELAYED_ITEMS,
1358 FLUSH_DELAYED_REFS_NR,
1359 FLUSH_DELAYED_REFS,
1360 FLUSH_DELALLOC,
1361 FLUSH_DELALLOC_WAIT,
1362 FLUSH_DELALLOC_FULL,
1363 ALLOC_CHUNK,
1364 COMMIT_TRANS,
1365 };
1366
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1367 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1368 struct btrfs_space_info *space_info,
1369 struct reserve_ticket *ticket,
1370 const enum btrfs_flush_state *states,
1371 int states_nr)
1372 {
1373 u64 to_reclaim;
1374 int flush_state = 0;
1375
1376 spin_lock(&space_info->lock);
1377 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1378 /*
1379 * This is the priority reclaim path, so to_reclaim could be >0 still
1380 * because we may have only satisfied the priority tickets and still
1381 * left non priority tickets on the list. We would then have
1382 * to_reclaim but ->bytes == 0.
1383 */
1384 if (ticket->bytes == 0) {
1385 spin_unlock(&space_info->lock);
1386 return;
1387 }
1388
1389 while (flush_state < states_nr) {
1390 spin_unlock(&space_info->lock);
1391 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1392 false);
1393 flush_state++;
1394 spin_lock(&space_info->lock);
1395 if (ticket->bytes == 0) {
1396 spin_unlock(&space_info->lock);
1397 return;
1398 }
1399 }
1400
1401 /*
1402 * Attempt to steal from the global rsv if we can, except if the fs was
1403 * turned into error mode due to a transaction abort when flushing space
1404 * above, in that case fail with the abort error instead of returning
1405 * success to the caller if we can steal from the global rsv - this is
1406 * just to have caller fail immeditelly instead of later when trying to
1407 * modify the fs, making it easier to debug -ENOSPC problems.
1408 */
1409 if (BTRFS_FS_ERROR(fs_info)) {
1410 ticket->error = BTRFS_FS_ERROR(fs_info);
1411 remove_ticket(space_info, ticket);
1412 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1413 ticket->error = -ENOSPC;
1414 remove_ticket(space_info, ticket);
1415 }
1416
1417 /*
1418 * We must run try_granting_tickets here because we could be a large
1419 * ticket in front of a smaller ticket that can now be satisfied with
1420 * the available space.
1421 */
1422 btrfs_try_granting_tickets(fs_info, space_info);
1423 spin_unlock(&space_info->lock);
1424 }
1425
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1426 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1427 struct btrfs_space_info *space_info,
1428 struct reserve_ticket *ticket)
1429 {
1430 spin_lock(&space_info->lock);
1431
1432 /* We could have been granted before we got here. */
1433 if (ticket->bytes == 0) {
1434 spin_unlock(&space_info->lock);
1435 return;
1436 }
1437
1438 while (!space_info->full) {
1439 spin_unlock(&space_info->lock);
1440 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1441 spin_lock(&space_info->lock);
1442 if (ticket->bytes == 0) {
1443 spin_unlock(&space_info->lock);
1444 return;
1445 }
1446 }
1447
1448 ticket->error = -ENOSPC;
1449 remove_ticket(space_info, ticket);
1450 btrfs_try_granting_tickets(fs_info, space_info);
1451 spin_unlock(&space_info->lock);
1452 }
1453
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1454 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1455 struct btrfs_space_info *space_info,
1456 struct reserve_ticket *ticket)
1457
1458 {
1459 DEFINE_WAIT(wait);
1460 int ret = 0;
1461
1462 spin_lock(&space_info->lock);
1463 while (ticket->bytes > 0 && ticket->error == 0) {
1464 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1465 if (ret) {
1466 /*
1467 * Delete us from the list. After we unlock the space
1468 * info, we don't want the async reclaim job to reserve
1469 * space for this ticket. If that would happen, then the
1470 * ticket's task would not known that space was reserved
1471 * despite getting an error, resulting in a space leak
1472 * (bytes_may_use counter of our space_info).
1473 */
1474 remove_ticket(space_info, ticket);
1475 ticket->error = -EINTR;
1476 break;
1477 }
1478 spin_unlock(&space_info->lock);
1479
1480 schedule();
1481
1482 finish_wait(&ticket->wait, &wait);
1483 spin_lock(&space_info->lock);
1484 }
1485 spin_unlock(&space_info->lock);
1486 }
1487
1488 /*
1489 * Do the appropriate flushing and waiting for a ticket.
1490 *
1491 * @fs_info: the filesystem
1492 * @space_info: space info for the reservation
1493 * @ticket: ticket for the reservation
1494 * @start_ns: timestamp when the reservation started
1495 * @orig_bytes: amount of bytes originally reserved
1496 * @flush: how much we can flush
1497 *
1498 * This does the work of figuring out how to flush for the ticket, waiting for
1499 * the reservation, and returning the appropriate error if there is one.
1500 */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1501 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1502 struct btrfs_space_info *space_info,
1503 struct reserve_ticket *ticket,
1504 u64 start_ns, u64 orig_bytes,
1505 enum btrfs_reserve_flush_enum flush)
1506 {
1507 int ret;
1508
1509 switch (flush) {
1510 case BTRFS_RESERVE_FLUSH_DATA:
1511 case BTRFS_RESERVE_FLUSH_ALL:
1512 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1513 wait_reserve_ticket(fs_info, space_info, ticket);
1514 break;
1515 case BTRFS_RESERVE_FLUSH_LIMIT:
1516 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1517 priority_flush_states,
1518 ARRAY_SIZE(priority_flush_states));
1519 break;
1520 case BTRFS_RESERVE_FLUSH_EVICT:
1521 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1522 evict_flush_states,
1523 ARRAY_SIZE(evict_flush_states));
1524 break;
1525 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1526 priority_reclaim_data_space(fs_info, space_info, ticket);
1527 break;
1528 default:
1529 ASSERT(0);
1530 break;
1531 }
1532
1533 ret = ticket->error;
1534 ASSERT(list_empty(&ticket->list));
1535 /*
1536 * Check that we can't have an error set if the reservation succeeded,
1537 * as that would confuse tasks and lead them to error out without
1538 * releasing reserved space (if an error happens the expectation is that
1539 * space wasn't reserved at all).
1540 */
1541 ASSERT(!(ticket->bytes == 0 && ticket->error));
1542 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1543 start_ns, flush, ticket->error);
1544 return ret;
1545 }
1546
1547 /*
1548 * This returns true if this flush state will go through the ordinary flushing
1549 * code.
1550 */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1551 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1552 {
1553 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1554 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1555 }
1556
maybe_clamp_preempt(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1557 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1558 struct btrfs_space_info *space_info)
1559 {
1560 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1561 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1562
1563 /*
1564 * If we're heavy on ordered operations then clamping won't help us. We
1565 * need to clamp specifically to keep up with dirty'ing buffered
1566 * writers, because there's not a 1:1 correlation of writing delalloc
1567 * and freeing space, like there is with flushing delayed refs or
1568 * delayed nodes. If we're already more ordered than delalloc then
1569 * we're keeping up, otherwise we aren't and should probably clamp.
1570 */
1571 if (ordered < delalloc)
1572 space_info->clamp = min(space_info->clamp + 1, 8);
1573 }
1574
can_steal(enum btrfs_reserve_flush_enum flush)1575 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1576 {
1577 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1578 flush == BTRFS_RESERVE_FLUSH_EVICT);
1579 }
1580
1581 /*
1582 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1583 * fail as quickly as possible.
1584 */
can_ticket(enum btrfs_reserve_flush_enum flush)1585 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1586 {
1587 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1588 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1589 }
1590
1591 /*
1592 * Try to reserve bytes from the block_rsv's space.
1593 *
1594 * @fs_info: the filesystem
1595 * @space_info: space info we want to allocate from
1596 * @orig_bytes: number of bytes we want
1597 * @flush: whether or not we can flush to make our reservation
1598 *
1599 * This will reserve orig_bytes number of bytes from the space info associated
1600 * with the block_rsv. If there is not enough space it will make an attempt to
1601 * flush out space to make room. It will do this by flushing delalloc if
1602 * possible or committing the transaction. If flush is 0 then no attempts to
1603 * regain reservations will be made and this will fail if there is not enough
1604 * space already.
1605 */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1606 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1607 struct btrfs_space_info *space_info, u64 orig_bytes,
1608 enum btrfs_reserve_flush_enum flush)
1609 {
1610 struct work_struct *async_work;
1611 struct reserve_ticket ticket;
1612 u64 start_ns = 0;
1613 u64 used;
1614 int ret = -ENOSPC;
1615 bool pending_tickets;
1616
1617 ASSERT(orig_bytes);
1618 /*
1619 * If have a transaction handle (current->journal_info != NULL), then
1620 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1621 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1622 * flushing methods can trigger transaction commits.
1623 */
1624 if (current->journal_info) {
1625 /* One assert per line for easier debugging. */
1626 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1627 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1628 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1629 }
1630
1631 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1632 async_work = &fs_info->async_data_reclaim_work;
1633 else
1634 async_work = &fs_info->async_reclaim_work;
1635
1636 spin_lock(&space_info->lock);
1637 used = btrfs_space_info_used(space_info, true);
1638
1639 /*
1640 * We don't want NO_FLUSH allocations to jump everybody, they can
1641 * generally handle ENOSPC in a different way, so treat them the same as
1642 * normal flushers when it comes to skipping pending tickets.
1643 */
1644 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1645 pending_tickets = !list_empty(&space_info->tickets) ||
1646 !list_empty(&space_info->priority_tickets);
1647 else
1648 pending_tickets = !list_empty(&space_info->priority_tickets);
1649
1650 /*
1651 * Carry on if we have enough space (short-circuit) OR call
1652 * can_overcommit() to ensure we can overcommit to continue.
1653 */
1654 if (!pending_tickets &&
1655 ((used + orig_bytes <= space_info->total_bytes) ||
1656 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1657 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1658 orig_bytes);
1659 ret = 0;
1660 }
1661
1662 /*
1663 * Things are dire, we need to make a reservation so we don't abort. We
1664 * will let this reservation go through as long as we have actual space
1665 * left to allocate for the block.
1666 */
1667 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1668 used = btrfs_space_info_used(space_info, false);
1669 if (used + orig_bytes <= space_info->total_bytes) {
1670 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1671 orig_bytes);
1672 ret = 0;
1673 }
1674 }
1675
1676 /*
1677 * If we couldn't make a reservation then setup our reservation ticket
1678 * and kick the async worker if it's not already running.
1679 *
1680 * If we are a priority flusher then we just need to add our ticket to
1681 * the list and we will do our own flushing further down.
1682 */
1683 if (ret && can_ticket(flush)) {
1684 ticket.bytes = orig_bytes;
1685 ticket.error = 0;
1686 space_info->reclaim_size += ticket.bytes;
1687 init_waitqueue_head(&ticket.wait);
1688 ticket.steal = can_steal(flush);
1689 if (trace_btrfs_reserve_ticket_enabled())
1690 start_ns = ktime_get_ns();
1691
1692 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1693 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1694 flush == BTRFS_RESERVE_FLUSH_DATA) {
1695 list_add_tail(&ticket.list, &space_info->tickets);
1696 if (!space_info->flush) {
1697 /*
1698 * We were forced to add a reserve ticket, so
1699 * our preemptive flushing is unable to keep
1700 * up. Clamp down on the threshold for the
1701 * preemptive flushing in order to keep up with
1702 * the workload.
1703 */
1704 maybe_clamp_preempt(fs_info, space_info);
1705
1706 space_info->flush = 1;
1707 trace_btrfs_trigger_flush(fs_info,
1708 space_info->flags,
1709 orig_bytes, flush,
1710 "enospc");
1711 queue_work(system_unbound_wq, async_work);
1712 }
1713 } else {
1714 list_add_tail(&ticket.list,
1715 &space_info->priority_tickets);
1716 }
1717 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1718 /*
1719 * We will do the space reservation dance during log replay,
1720 * which means we won't have fs_info->fs_root set, so don't do
1721 * the async reclaim as we will panic.
1722 */
1723 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1724 !work_busy(&fs_info->preempt_reclaim_work) &&
1725 need_preemptive_reclaim(fs_info, space_info)) {
1726 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1727 orig_bytes, flush, "preempt");
1728 queue_work(system_unbound_wq,
1729 &fs_info->preempt_reclaim_work);
1730 }
1731 }
1732 spin_unlock(&space_info->lock);
1733 if (!ret || !can_ticket(flush))
1734 return ret;
1735
1736 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1737 orig_bytes, flush);
1738 }
1739
1740 /*
1741 * Try to reserve metadata bytes from the block_rsv's space.
1742 *
1743 * @fs_info: the filesystem
1744 * @block_rsv: block_rsv we're allocating for
1745 * @orig_bytes: number of bytes we want
1746 * @flush: whether or not we can flush to make our reservation
1747 *
1748 * This will reserve orig_bytes number of bytes from the space info associated
1749 * with the block_rsv. If there is not enough space it will make an attempt to
1750 * flush out space to make room. It will do this by flushing delalloc if
1751 * possible or committing the transaction. If flush is 0 then no attempts to
1752 * regain reservations will be made and this will fail if there is not enough
1753 * space already.
1754 */
btrfs_reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1755 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1756 struct btrfs_block_rsv *block_rsv,
1757 u64 orig_bytes,
1758 enum btrfs_reserve_flush_enum flush)
1759 {
1760 int ret;
1761
1762 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1763 if (ret == -ENOSPC) {
1764 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1765 block_rsv->space_info->flags,
1766 orig_bytes, 1);
1767
1768 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1769 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1770 orig_bytes, 0);
1771 }
1772 return ret;
1773 }
1774
1775 /*
1776 * Try to reserve data bytes for an allocation.
1777 *
1778 * @fs_info: the filesystem
1779 * @bytes: number of bytes we need
1780 * @flush: how we are allowed to flush
1781 *
1782 * This will reserve bytes from the data space info. If there is not enough
1783 * space then we will attempt to flush space as specified by flush.
1784 */
btrfs_reserve_data_bytes(struct btrfs_fs_info * fs_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1785 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1786 enum btrfs_reserve_flush_enum flush)
1787 {
1788 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1789 int ret;
1790
1791 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1792 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1793 flush == BTRFS_RESERVE_NO_FLUSH);
1794 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1795
1796 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1797 if (ret == -ENOSPC) {
1798 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1799 data_sinfo->flags, bytes, 1);
1800 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1801 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1802 }
1803 return ret;
1804 }
1805
1806 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1807 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1808 {
1809 struct btrfs_space_info *space_info;
1810
1811 btrfs_info(fs_info, "dumping space info:");
1812 list_for_each_entry(space_info, &fs_info->space_info, list) {
1813 spin_lock(&space_info->lock);
1814 __btrfs_dump_space_info(fs_info, space_info);
1815 spin_unlock(&space_info->lock);
1816 }
1817 dump_global_block_rsv(fs_info);
1818 }
1819
1820 /*
1821 * Account the unused space of all the readonly block group in the space_info.
1822 * takes mirrors into account.
1823 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)1824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1825 {
1826 struct btrfs_block_group *block_group;
1827 u64 free_bytes = 0;
1828 int factor;
1829
1830 /* It's df, we don't care if it's racy */
1831 if (list_empty(&sinfo->ro_bgs))
1832 return 0;
1833
1834 spin_lock(&sinfo->lock);
1835 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1836 spin_lock(&block_group->lock);
1837
1838 if (!block_group->ro) {
1839 spin_unlock(&block_group->lock);
1840 continue;
1841 }
1842
1843 factor = btrfs_bg_type_to_factor(block_group->flags);
1844 free_bytes += (block_group->length -
1845 block_group->used) * factor;
1846
1847 spin_unlock(&block_group->lock);
1848 }
1849 spin_unlock(&sinfo->lock);
1850
1851 return free_bytes;
1852 }
1853