1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 /* Note: divides are still a bit expensive.
241 * For the moment, only adjust scaling_ratio
242 * when we update icsk_ack.rcv_mss.
243 */
244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247
248 do_div(val, skb->truesize);
249 tcp_sk(sk)->scaling_ratio = val ? val : 1;
250
251 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 struct tcp_sock *tp = tcp_sk(sk);
253
254 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 tcp_set_window_clamp(sk, val);
256
257 if (tp->window_clamp < tp->rcvq_space.space)
258 tp->rcvq_space.space = tp->window_clamp;
259 }
260 }
261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 tcp_sk(sk)->advmss);
263 /* Account for possibly-removed options */
264 if (unlikely(len > icsk->icsk_ack.rcv_mss +
265 MAX_TCP_OPTION_SPACE))
266 tcp_gro_dev_warn(sk, skb, len);
267 /* If the skb has a len of exactly 1*MSS and has the PSH bit
268 * set then it is likely the end of an application write. So
269 * more data may not be arriving soon, and yet the data sender
270 * may be waiting for an ACK if cwnd-bound or using TX zero
271 * copy. So we set ICSK_ACK_PUSHED here so that
272 * tcp_cleanup_rbuf() will send an ACK immediately if the app
273 * reads all of the data and is not ping-pong. If len > MSS
274 * then this logic does not matter (and does not hurt) because
275 * tcp_cleanup_rbuf() will always ACK immediately if the app
276 * reads data and there is more than an MSS of unACKed data.
277 */
278 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
279 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
280 } else {
281 /* Otherwise, we make more careful check taking into account,
282 * that SACKs block is variable.
283 *
284 * "len" is invariant segment length, including TCP header.
285 */
286 len += skb->data - skb_transport_header(skb);
287 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
288 /* If PSH is not set, packet should be
289 * full sized, provided peer TCP is not badly broken.
290 * This observation (if it is correct 8)) allows
291 * to handle super-low mtu links fairly.
292 */
293 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
294 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
295 /* Subtract also invariant (if peer is RFC compliant),
296 * tcp header plus fixed timestamp option length.
297 * Resulting "len" is MSS free of SACK jitter.
298 */
299 len -= tcp_sk(sk)->tcp_header_len;
300 icsk->icsk_ack.last_seg_size = len;
301 if (len == lss) {
302 icsk->icsk_ack.rcv_mss = len;
303 return;
304 }
305 }
306 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
308 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
309 }
310 }
311
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
313 {
314 struct inet_connection_sock *icsk = inet_csk(sk);
315 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
316
317 if (quickacks == 0)
318 quickacks = 2;
319 quickacks = min(quickacks, max_quickacks);
320 if (quickacks > icsk->icsk_ack.quick)
321 icsk->icsk_ack.quick = quickacks;
322 }
323
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
325 {
326 struct inet_connection_sock *icsk = inet_csk(sk);
327
328 tcp_incr_quickack(sk, max_quickacks);
329 inet_csk_exit_pingpong_mode(sk);
330 icsk->icsk_ack.ato = TCP_ATO_MIN;
331 }
332
333 /* Send ACKs quickly, if "quick" count is not exhausted
334 * and the session is not interactive.
335 */
336
tcp_in_quickack_mode(struct sock * sk)337 static bool tcp_in_quickack_mode(struct sock *sk)
338 {
339 const struct inet_connection_sock *icsk = inet_csk(sk);
340 const struct dst_entry *dst = __sk_dst_get(sk);
341
342 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
343 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
344 }
345
tcp_ecn_queue_cwr(struct tcp_sock * tp)346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
347 {
348 if (tp->ecn_flags & TCP_ECN_OK)
349 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
350 }
351
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
353 {
354 if (tcp_hdr(skb)->cwr) {
355 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
356
357 /* If the sender is telling us it has entered CWR, then its
358 * cwnd may be very low (even just 1 packet), so we should ACK
359 * immediately.
360 */
361 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
362 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
363 }
364 }
365
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
367 {
368 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
369 }
370
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 struct tcp_sock *tp = tcp_sk(sk);
374
375 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
376 case INET_ECN_NOT_ECT:
377 /* Funny extension: if ECT is not set on a segment,
378 * and we already seen ECT on a previous segment,
379 * it is probably a retransmit.
380 */
381 if (tp->ecn_flags & TCP_ECN_SEEN)
382 tcp_enter_quickack_mode(sk, 2);
383 break;
384 case INET_ECN_CE:
385 if (tcp_ca_needs_ecn(sk))
386 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
387
388 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
389 /* Better not delay acks, sender can have a very low cwnd */
390 tcp_enter_quickack_mode(sk, 2);
391 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
392 }
393 tp->ecn_flags |= TCP_ECN_SEEN;
394 break;
395 default:
396 if (tcp_ca_needs_ecn(sk))
397 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
398 tp->ecn_flags |= TCP_ECN_SEEN;
399 break;
400 }
401 }
402
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
404 {
405 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
406 __tcp_ecn_check_ce(sk, skb);
407 }
408
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
412 tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
418 tp->ecn_flags &= ~TCP_ECN_OK;
419 }
420
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
422 {
423 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
424 return true;
425 return false;
426 }
427
428 /* Buffer size and advertised window tuning.
429 *
430 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
431 */
432
tcp_sndbuf_expand(struct sock * sk)433 static void tcp_sndbuf_expand(struct sock *sk)
434 {
435 const struct tcp_sock *tp = tcp_sk(sk);
436 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
437 int sndmem, per_mss;
438 u32 nr_segs;
439
440 /* Worst case is non GSO/TSO : each frame consumes one skb
441 * and skb->head is kmalloced using power of two area of memory
442 */
443 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
444 MAX_TCP_HEADER +
445 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
446
447 per_mss = roundup_pow_of_two(per_mss) +
448 SKB_DATA_ALIGN(sizeof(struct sk_buff));
449
450 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
451 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
452
453 /* Fast Recovery (RFC 5681 3.2) :
454 * Cubic needs 1.7 factor, rounded to 2 to include
455 * extra cushion (application might react slowly to EPOLLOUT)
456 */
457 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
458 sndmem *= nr_segs * per_mss;
459
460 if (sk->sk_sndbuf < sndmem)
461 WRITE_ONCE(sk->sk_sndbuf,
462 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
463 }
464
465 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
466 *
467 * All tcp_full_space() is split to two parts: "network" buffer, allocated
468 * forward and advertised in receiver window (tp->rcv_wnd) and
469 * "application buffer", required to isolate scheduling/application
470 * latencies from network.
471 * window_clamp is maximal advertised window. It can be less than
472 * tcp_full_space(), in this case tcp_full_space() - window_clamp
473 * is reserved for "application" buffer. The less window_clamp is
474 * the smoother our behaviour from viewpoint of network, but the lower
475 * throughput and the higher sensitivity of the connection to losses. 8)
476 *
477 * rcv_ssthresh is more strict window_clamp used at "slow start"
478 * phase to predict further behaviour of this connection.
479 * It is used for two goals:
480 * - to enforce header prediction at sender, even when application
481 * requires some significant "application buffer". It is check #1.
482 * - to prevent pruning of receive queue because of misprediction
483 * of receiver window. Check #2.
484 *
485 * The scheme does not work when sender sends good segments opening
486 * window and then starts to feed us spaghetti. But it should work
487 * in common situations. Otherwise, we have to rely on queue collapsing.
488 */
489
490 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)491 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
492 unsigned int skbtruesize)
493 {
494 const struct tcp_sock *tp = tcp_sk(sk);
495 /* Optimize this! */
496 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
497 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
498
499 while (tp->rcv_ssthresh <= window) {
500 if (truesize <= skb->len)
501 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
502
503 truesize >>= 1;
504 window >>= 1;
505 }
506 return 0;
507 }
508
509 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
510 * can play nice with us, as sk_buff and skb->head might be either
511 * freed or shared with up to MAX_SKB_FRAGS segments.
512 * Only give a boost to drivers using page frag(s) to hold the frame(s),
513 * and if no payload was pulled in skb->head before reaching us.
514 */
truesize_adjust(bool adjust,const struct sk_buff * skb)515 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
516 {
517 u32 truesize = skb->truesize;
518
519 if (adjust && !skb_headlen(skb)) {
520 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
521 /* paranoid check, some drivers might be buggy */
522 if (unlikely((int)truesize < (int)skb->len))
523 truesize = skb->truesize;
524 }
525 return truesize;
526 }
527
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)528 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
529 bool adjust)
530 {
531 struct tcp_sock *tp = tcp_sk(sk);
532 int room;
533
534 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
535
536 if (room <= 0)
537 return;
538
539 /* Check #1 */
540 if (!tcp_under_memory_pressure(sk)) {
541 unsigned int truesize = truesize_adjust(adjust, skb);
542 int incr;
543
544 /* Check #2. Increase window, if skb with such overhead
545 * will fit to rcvbuf in future.
546 */
547 if (tcp_win_from_space(sk, truesize) <= skb->len)
548 incr = 2 * tp->advmss;
549 else
550 incr = __tcp_grow_window(sk, skb, truesize);
551
552 if (incr) {
553 incr = max_t(int, incr, 2 * skb->len);
554 tp->rcv_ssthresh += min(room, incr);
555 inet_csk(sk)->icsk_ack.quick |= 1;
556 }
557 } else {
558 /* Under pressure:
559 * Adjust rcv_ssthresh according to reserved mem
560 */
561 tcp_adjust_rcv_ssthresh(sk);
562 }
563 }
564
565 /* 3. Try to fixup all. It is made immediately after connection enters
566 * established state.
567 */
tcp_init_buffer_space(struct sock * sk)568 static void tcp_init_buffer_space(struct sock *sk)
569 {
570 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
571 struct tcp_sock *tp = tcp_sk(sk);
572 int maxwin;
573
574 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
575 tcp_sndbuf_expand(sk);
576
577 tcp_mstamp_refresh(tp);
578 tp->rcvq_space.time = tp->tcp_mstamp;
579 tp->rcvq_space.seq = tp->copied_seq;
580
581 maxwin = tcp_full_space(sk);
582
583 if (tp->window_clamp >= maxwin) {
584 WRITE_ONCE(tp->window_clamp, maxwin);
585
586 if (tcp_app_win && maxwin > 4 * tp->advmss)
587 WRITE_ONCE(tp->window_clamp,
588 max(maxwin - (maxwin >> tcp_app_win),
589 4 * tp->advmss));
590 }
591
592 /* Force reservation of one segment. */
593 if (tcp_app_win &&
594 tp->window_clamp > 2 * tp->advmss &&
595 tp->window_clamp + tp->advmss > maxwin)
596 WRITE_ONCE(tp->window_clamp,
597 max(2 * tp->advmss, maxwin - tp->advmss));
598
599 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
600 tp->snd_cwnd_stamp = tcp_jiffies32;
601 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
602 (u32)TCP_INIT_CWND * tp->advmss);
603 }
604
605 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)606 static void tcp_clamp_window(struct sock *sk)
607 {
608 struct tcp_sock *tp = tcp_sk(sk);
609 struct inet_connection_sock *icsk = inet_csk(sk);
610 struct net *net = sock_net(sk);
611 int rmem2;
612
613 icsk->icsk_ack.quick = 0;
614 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
615
616 if (sk->sk_rcvbuf < rmem2 &&
617 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
618 !tcp_under_memory_pressure(sk) &&
619 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
620 WRITE_ONCE(sk->sk_rcvbuf,
621 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
622 }
623 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
624 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
625 }
626
627 /* Initialize RCV_MSS value.
628 * RCV_MSS is an our guess about MSS used by the peer.
629 * We haven't any direct information about the MSS.
630 * It's better to underestimate the RCV_MSS rather than overestimate.
631 * Overestimations make us ACKing less frequently than needed.
632 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
633 */
tcp_initialize_rcv_mss(struct sock * sk)634 void tcp_initialize_rcv_mss(struct sock *sk)
635 {
636 const struct tcp_sock *tp = tcp_sk(sk);
637 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
638
639 hint = min(hint, tp->rcv_wnd / 2);
640 hint = min(hint, TCP_MSS_DEFAULT);
641 hint = max(hint, TCP_MIN_MSS);
642
643 inet_csk(sk)->icsk_ack.rcv_mss = hint;
644 }
645 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
646
647 /* Receiver "autotuning" code.
648 *
649 * The algorithm for RTT estimation w/o timestamps is based on
650 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
651 * <https://public.lanl.gov/radiant/pubs.html#DRS>
652 *
653 * More detail on this code can be found at
654 * <http://staff.psc.edu/jheffner/>,
655 * though this reference is out of date. A new paper
656 * is pending.
657 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)658 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
659 {
660 u32 new_sample = tp->rcv_rtt_est.rtt_us;
661 long m = sample;
662
663 if (new_sample != 0) {
664 /* If we sample in larger samples in the non-timestamp
665 * case, we could grossly overestimate the RTT especially
666 * with chatty applications or bulk transfer apps which
667 * are stalled on filesystem I/O.
668 *
669 * Also, since we are only going for a minimum in the
670 * non-timestamp case, we do not smooth things out
671 * else with timestamps disabled convergence takes too
672 * long.
673 */
674 if (!win_dep) {
675 m -= (new_sample >> 3);
676 new_sample += m;
677 } else {
678 m <<= 3;
679 if (m < new_sample)
680 new_sample = m;
681 }
682 } else {
683 /* No previous measure. */
684 new_sample = m << 3;
685 }
686
687 tp->rcv_rtt_est.rtt_us = new_sample;
688 }
689
tcp_rcv_rtt_measure(struct tcp_sock * tp)690 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
691 {
692 u32 delta_us;
693
694 if (tp->rcv_rtt_est.time == 0)
695 goto new_measure;
696 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
697 return;
698 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
699 if (!delta_us)
700 delta_us = 1;
701 tcp_rcv_rtt_update(tp, delta_us, 1);
702
703 new_measure:
704 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
705 tp->rcv_rtt_est.time = tp->tcp_mstamp;
706 }
707
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)708 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
709 const struct sk_buff *skb)
710 {
711 struct tcp_sock *tp = tcp_sk(sk);
712
713 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
714 return;
715 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
716
717 if (TCP_SKB_CB(skb)->end_seq -
718 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
719 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
720 u32 delta_us;
721
722 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
723 if (!delta)
724 delta = 1;
725 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
726 tcp_rcv_rtt_update(tp, delta_us, 0);
727 }
728 }
729 }
730
731 /*
732 * This function should be called every time data is copied to user space.
733 * It calculates the appropriate TCP receive buffer space.
734 */
tcp_rcv_space_adjust(struct sock * sk)735 void tcp_rcv_space_adjust(struct sock *sk)
736 {
737 struct tcp_sock *tp = tcp_sk(sk);
738 u32 copied;
739 int time;
740
741 trace_tcp_rcv_space_adjust(sk);
742
743 tcp_mstamp_refresh(tp);
744 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
745 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
746 return;
747
748 /* Number of bytes copied to user in last RTT */
749 copied = tp->copied_seq - tp->rcvq_space.seq;
750 if (copied <= tp->rcvq_space.space)
751 goto new_measure;
752
753 /* A bit of theory :
754 * copied = bytes received in previous RTT, our base window
755 * To cope with packet losses, we need a 2x factor
756 * To cope with slow start, and sender growing its cwin by 100 %
757 * every RTT, we need a 4x factor, because the ACK we are sending
758 * now is for the next RTT, not the current one :
759 * <prev RTT . ><current RTT .. ><next RTT .... >
760 */
761
762 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
763 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
764 u64 rcvwin, grow;
765 int rcvbuf;
766
767 /* minimal window to cope with packet losses, assuming
768 * steady state. Add some cushion because of small variations.
769 */
770 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
771
772 /* Accommodate for sender rate increase (eg. slow start) */
773 grow = rcvwin * (copied - tp->rcvq_space.space);
774 do_div(grow, tp->rcvq_space.space);
775 rcvwin += (grow << 1);
776
777 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
779 if (rcvbuf > sk->sk_rcvbuf) {
780 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
781
782 /* Make the window clamp follow along. */
783 WRITE_ONCE(tp->window_clamp,
784 tcp_win_from_space(sk, rcvbuf));
785 }
786 }
787 tp->rcvq_space.space = copied;
788
789 new_measure:
790 tp->rcvq_space.seq = tp->copied_seq;
791 tp->rcvq_space.time = tp->tcp_mstamp;
792 }
793
794 /* There is something which you must keep in mind when you analyze the
795 * behavior of the tp->ato delayed ack timeout interval. When a
796 * connection starts up, we want to ack as quickly as possible. The
797 * problem is that "good" TCP's do slow start at the beginning of data
798 * transmission. The means that until we send the first few ACK's the
799 * sender will sit on his end and only queue most of his data, because
800 * he can only send snd_cwnd unacked packets at any given time. For
801 * each ACK we send, he increments snd_cwnd and transmits more of his
802 * queue. -DaveM
803 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)804 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
805 {
806 struct tcp_sock *tp = tcp_sk(sk);
807 struct inet_connection_sock *icsk = inet_csk(sk);
808 u32 now;
809
810 inet_csk_schedule_ack(sk);
811
812 tcp_measure_rcv_mss(sk, skb);
813
814 tcp_rcv_rtt_measure(tp);
815
816 now = tcp_jiffies32;
817
818 if (!icsk->icsk_ack.ato) {
819 /* The _first_ data packet received, initialize
820 * delayed ACK engine.
821 */
822 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
823 icsk->icsk_ack.ato = TCP_ATO_MIN;
824 } else {
825 int m = now - icsk->icsk_ack.lrcvtime;
826
827 if (m <= TCP_ATO_MIN / 2) {
828 /* The fastest case is the first. */
829 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
830 } else if (m < icsk->icsk_ack.ato) {
831 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
832 if (icsk->icsk_ack.ato > icsk->icsk_rto)
833 icsk->icsk_ack.ato = icsk->icsk_rto;
834 } else if (m > icsk->icsk_rto) {
835 /* Too long gap. Apparently sender failed to
836 * restart window, so that we send ACKs quickly.
837 */
838 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
839 }
840 }
841 icsk->icsk_ack.lrcvtime = now;
842
843 tcp_ecn_check_ce(sk, skb);
844
845 if (skb->len >= 128)
846 tcp_grow_window(sk, skb, true);
847 }
848
849 /* Called to compute a smoothed rtt estimate. The data fed to this
850 * routine either comes from timestamps, or from segments that were
851 * known _not_ to have been retransmitted [see Karn/Partridge
852 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
853 * piece by Van Jacobson.
854 * NOTE: the next three routines used to be one big routine.
855 * To save cycles in the RFC 1323 implementation it was better to break
856 * it up into three procedures. -- erics
857 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)858 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
859 {
860 struct tcp_sock *tp = tcp_sk(sk);
861 long m = mrtt_us; /* RTT */
862 u32 srtt = tp->srtt_us;
863
864 /* The following amusing code comes from Jacobson's
865 * article in SIGCOMM '88. Note that rtt and mdev
866 * are scaled versions of rtt and mean deviation.
867 * This is designed to be as fast as possible
868 * m stands for "measurement".
869 *
870 * On a 1990 paper the rto value is changed to:
871 * RTO = rtt + 4 * mdev
872 *
873 * Funny. This algorithm seems to be very broken.
874 * These formulae increase RTO, when it should be decreased, increase
875 * too slowly, when it should be increased quickly, decrease too quickly
876 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
877 * does not matter how to _calculate_ it. Seems, it was trap
878 * that VJ failed to avoid. 8)
879 */
880 if (srtt != 0) {
881 m -= (srtt >> 3); /* m is now error in rtt est */
882 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
883 if (m < 0) {
884 m = -m; /* m is now abs(error) */
885 m -= (tp->mdev_us >> 2); /* similar update on mdev */
886 /* This is similar to one of Eifel findings.
887 * Eifel blocks mdev updates when rtt decreases.
888 * This solution is a bit different: we use finer gain
889 * for mdev in this case (alpha*beta).
890 * Like Eifel it also prevents growth of rto,
891 * but also it limits too fast rto decreases,
892 * happening in pure Eifel.
893 */
894 if (m > 0)
895 m >>= 3;
896 } else {
897 m -= (tp->mdev_us >> 2); /* similar update on mdev */
898 }
899 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
900 if (tp->mdev_us > tp->mdev_max_us) {
901 tp->mdev_max_us = tp->mdev_us;
902 if (tp->mdev_max_us > tp->rttvar_us)
903 tp->rttvar_us = tp->mdev_max_us;
904 }
905 if (after(tp->snd_una, tp->rtt_seq)) {
906 if (tp->mdev_max_us < tp->rttvar_us)
907 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
908 tp->rtt_seq = tp->snd_nxt;
909 tp->mdev_max_us = tcp_rto_min_us(sk);
910
911 tcp_bpf_rtt(sk);
912 }
913 } else {
914 /* no previous measure. */
915 srtt = m << 3; /* take the measured time to be rtt */
916 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
917 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
918 tp->mdev_max_us = tp->rttvar_us;
919 tp->rtt_seq = tp->snd_nxt;
920
921 tcp_bpf_rtt(sk);
922 }
923 tp->srtt_us = max(1U, srtt);
924 }
925
tcp_update_pacing_rate(struct sock * sk)926 static void tcp_update_pacing_rate(struct sock *sk)
927 {
928 const struct tcp_sock *tp = tcp_sk(sk);
929 u64 rate;
930
931 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
932 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
933
934 /* current rate is (cwnd * mss) / srtt
935 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
936 * In Congestion Avoidance phase, set it to 120 % the current rate.
937 *
938 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
939 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
940 * end of slow start and should slow down.
941 */
942 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
943 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
944 else
945 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
946
947 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
948
949 if (likely(tp->srtt_us))
950 do_div(rate, tp->srtt_us);
951
952 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
953 * without any lock. We want to make sure compiler wont store
954 * intermediate values in this location.
955 */
956 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
957 sk->sk_max_pacing_rate));
958 }
959
960 /* Calculate rto without backoff. This is the second half of Van Jacobson's
961 * routine referred to above.
962 */
tcp_set_rto(struct sock * sk)963 static void tcp_set_rto(struct sock *sk)
964 {
965 const struct tcp_sock *tp = tcp_sk(sk);
966 /* Old crap is replaced with new one. 8)
967 *
968 * More seriously:
969 * 1. If rtt variance happened to be less 50msec, it is hallucination.
970 * It cannot be less due to utterly erratic ACK generation made
971 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
972 * to do with delayed acks, because at cwnd>2 true delack timeout
973 * is invisible. Actually, Linux-2.4 also generates erratic
974 * ACKs in some circumstances.
975 */
976 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
977
978 /* 2. Fixups made earlier cannot be right.
979 * If we do not estimate RTO correctly without them,
980 * all the algo is pure shit and should be replaced
981 * with correct one. It is exactly, which we pretend to do.
982 */
983
984 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
985 * guarantees that rto is higher.
986 */
987 tcp_bound_rto(sk);
988 }
989
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)990 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
991 {
992 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
993
994 if (!cwnd)
995 cwnd = TCP_INIT_CWND;
996 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
997 }
998
999 struct tcp_sacktag_state {
1000 /* Timestamps for earliest and latest never-retransmitted segment
1001 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1002 * but congestion control should still get an accurate delay signal.
1003 */
1004 u64 first_sackt;
1005 u64 last_sackt;
1006 u32 reord;
1007 u32 sack_delivered;
1008 int flag;
1009 unsigned int mss_now;
1010 struct rate_sample *rate;
1011 };
1012
1013 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1014 * and spurious retransmission information if this DSACK is unlikely caused by
1015 * sender's action:
1016 * - DSACKed sequence range is larger than maximum receiver's window.
1017 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1018 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1019 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1020 u32 end_seq, struct tcp_sacktag_state *state)
1021 {
1022 u32 seq_len, dup_segs = 1;
1023
1024 if (!before(start_seq, end_seq))
1025 return 0;
1026
1027 seq_len = end_seq - start_seq;
1028 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1029 if (seq_len > tp->max_window)
1030 return 0;
1031 if (seq_len > tp->mss_cache)
1032 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1033 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1034 state->flag |= FLAG_DSACK_TLP;
1035
1036 tp->dsack_dups += dup_segs;
1037 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1038 if (tp->dsack_dups > tp->total_retrans)
1039 return 0;
1040
1041 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1042 /* We increase the RACK ordering window in rounds where we receive
1043 * DSACKs that may have been due to reordering causing RACK to trigger
1044 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1045 * without having seen reordering, or that match TLP probes (TLP
1046 * is timer-driven, not triggered by RACK).
1047 */
1048 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1049 tp->rack.dsack_seen = 1;
1050
1051 state->flag |= FLAG_DSACKING_ACK;
1052 /* A spurious retransmission is delivered */
1053 state->sack_delivered += dup_segs;
1054
1055 return dup_segs;
1056 }
1057
1058 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1059 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1060 * distance is approximated in full-mss packet distance ("reordering").
1061 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1062 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1063 const int ts)
1064 {
1065 struct tcp_sock *tp = tcp_sk(sk);
1066 const u32 mss = tp->mss_cache;
1067 u32 fack, metric;
1068
1069 fack = tcp_highest_sack_seq(tp);
1070 if (!before(low_seq, fack))
1071 return;
1072
1073 metric = fack - low_seq;
1074 if ((metric > tp->reordering * mss) && mss) {
1075 #if FASTRETRANS_DEBUG > 1
1076 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1077 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1078 tp->reordering,
1079 0,
1080 tp->sacked_out,
1081 tp->undo_marker ? tp->undo_retrans : 0);
1082 #endif
1083 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1084 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1085 }
1086
1087 /* This exciting event is worth to be remembered. 8) */
1088 tp->reord_seen++;
1089 NET_INC_STATS(sock_net(sk),
1090 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1091 }
1092
1093 /* This must be called before lost_out or retrans_out are updated
1094 * on a new loss, because we want to know if all skbs previously
1095 * known to be lost have already been retransmitted, indicating
1096 * that this newly lost skb is our next skb to retransmit.
1097 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1098 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1099 {
1100 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1101 (tp->retransmit_skb_hint &&
1102 before(TCP_SKB_CB(skb)->seq,
1103 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1104 tp->retransmit_skb_hint = skb;
1105 }
1106
1107 /* Sum the number of packets on the wire we have marked as lost, and
1108 * notify the congestion control module that the given skb was marked lost.
1109 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1110 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1111 {
1112 tp->lost += tcp_skb_pcount(skb);
1113 }
1114
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1115 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1116 {
1117 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1118 struct tcp_sock *tp = tcp_sk(sk);
1119
1120 if (sacked & TCPCB_SACKED_ACKED)
1121 return;
1122
1123 tcp_verify_retransmit_hint(tp, skb);
1124 if (sacked & TCPCB_LOST) {
1125 if (sacked & TCPCB_SACKED_RETRANS) {
1126 /* Account for retransmits that are lost again */
1127 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1128 tp->retrans_out -= tcp_skb_pcount(skb);
1129 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1130 tcp_skb_pcount(skb));
1131 tcp_notify_skb_loss_event(tp, skb);
1132 }
1133 } else {
1134 tp->lost_out += tcp_skb_pcount(skb);
1135 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1136 tcp_notify_skb_loss_event(tp, skb);
1137 }
1138 }
1139
1140 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1141 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1142 bool ece_ack)
1143 {
1144 tp->delivered += delivered;
1145 if (ece_ack)
1146 tp->delivered_ce += delivered;
1147 }
1148
1149 /* This procedure tags the retransmission queue when SACKs arrive.
1150 *
1151 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1152 * Packets in queue with these bits set are counted in variables
1153 * sacked_out, retrans_out and lost_out, correspondingly.
1154 *
1155 * Valid combinations are:
1156 * Tag InFlight Description
1157 * 0 1 - orig segment is in flight.
1158 * S 0 - nothing flies, orig reached receiver.
1159 * L 0 - nothing flies, orig lost by net.
1160 * R 2 - both orig and retransmit are in flight.
1161 * L|R 1 - orig is lost, retransmit is in flight.
1162 * S|R 1 - orig reached receiver, retrans is still in flight.
1163 * (L|S|R is logically valid, it could occur when L|R is sacked,
1164 * but it is equivalent to plain S and code short-curcuits it to S.
1165 * L|S is logically invalid, it would mean -1 packet in flight 8))
1166 *
1167 * These 6 states form finite state machine, controlled by the following events:
1168 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1169 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1170 * 3. Loss detection event of two flavors:
1171 * A. Scoreboard estimator decided the packet is lost.
1172 * A'. Reno "three dupacks" marks head of queue lost.
1173 * B. SACK arrives sacking SND.NXT at the moment, when the
1174 * segment was retransmitted.
1175 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1176 *
1177 * It is pleasant to note, that state diagram turns out to be commutative,
1178 * so that we are allowed not to be bothered by order of our actions,
1179 * when multiple events arrive simultaneously. (see the function below).
1180 *
1181 * Reordering detection.
1182 * --------------------
1183 * Reordering metric is maximal distance, which a packet can be displaced
1184 * in packet stream. With SACKs we can estimate it:
1185 *
1186 * 1. SACK fills old hole and the corresponding segment was not
1187 * ever retransmitted -> reordering. Alas, we cannot use it
1188 * when segment was retransmitted.
1189 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1190 * for retransmitted and already SACKed segment -> reordering..
1191 * Both of these heuristics are not used in Loss state, when we cannot
1192 * account for retransmits accurately.
1193 *
1194 * SACK block validation.
1195 * ----------------------
1196 *
1197 * SACK block range validation checks that the received SACK block fits to
1198 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1199 * Note that SND.UNA is not included to the range though being valid because
1200 * it means that the receiver is rather inconsistent with itself reporting
1201 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1202 * perfectly valid, however, in light of RFC2018 which explicitly states
1203 * that "SACK block MUST reflect the newest segment. Even if the newest
1204 * segment is going to be discarded ...", not that it looks very clever
1205 * in case of head skb. Due to potentional receiver driven attacks, we
1206 * choose to avoid immediate execution of a walk in write queue due to
1207 * reneging and defer head skb's loss recovery to standard loss recovery
1208 * procedure that will eventually trigger (nothing forbids us doing this).
1209 *
1210 * Implements also blockage to start_seq wrap-around. Problem lies in the
1211 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1212 * there's no guarantee that it will be before snd_nxt (n). The problem
1213 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1214 * wrap (s_w):
1215 *
1216 * <- outs wnd -> <- wrapzone ->
1217 * u e n u_w e_w s n_w
1218 * | | | | | | |
1219 * |<------------+------+----- TCP seqno space --------------+---------->|
1220 * ...-- <2^31 ->| |<--------...
1221 * ...---- >2^31 ------>| |<--------...
1222 *
1223 * Current code wouldn't be vulnerable but it's better still to discard such
1224 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1225 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1226 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1227 * equal to the ideal case (infinite seqno space without wrap caused issues).
1228 *
1229 * With D-SACK the lower bound is extended to cover sequence space below
1230 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1231 * again, D-SACK block must not to go across snd_una (for the same reason as
1232 * for the normal SACK blocks, explained above). But there all simplicity
1233 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1234 * fully below undo_marker they do not affect behavior in anyway and can
1235 * therefore be safely ignored. In rare cases (which are more or less
1236 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1237 * fragmentation and packet reordering past skb's retransmission. To consider
1238 * them correctly, the acceptable range must be extended even more though
1239 * the exact amount is rather hard to quantify. However, tp->max_window can
1240 * be used as an exaggerated estimate.
1241 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1242 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1243 u32 start_seq, u32 end_seq)
1244 {
1245 /* Too far in future, or reversed (interpretation is ambiguous) */
1246 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1247 return false;
1248
1249 /* Nasty start_seq wrap-around check (see comments above) */
1250 if (!before(start_seq, tp->snd_nxt))
1251 return false;
1252
1253 /* In outstanding window? ...This is valid exit for D-SACKs too.
1254 * start_seq == snd_una is non-sensical (see comments above)
1255 */
1256 if (after(start_seq, tp->snd_una))
1257 return true;
1258
1259 if (!is_dsack || !tp->undo_marker)
1260 return false;
1261
1262 /* ...Then it's D-SACK, and must reside below snd_una completely */
1263 if (after(end_seq, tp->snd_una))
1264 return false;
1265
1266 if (!before(start_seq, tp->undo_marker))
1267 return true;
1268
1269 /* Too old */
1270 if (!after(end_seq, tp->undo_marker))
1271 return false;
1272
1273 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1274 * start_seq < undo_marker and end_seq >= undo_marker.
1275 */
1276 return !before(start_seq, end_seq - tp->max_window);
1277 }
1278
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1279 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1280 struct tcp_sack_block_wire *sp, int num_sacks,
1281 u32 prior_snd_una, struct tcp_sacktag_state *state)
1282 {
1283 struct tcp_sock *tp = tcp_sk(sk);
1284 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1285 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1286 u32 dup_segs;
1287
1288 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1290 } else if (num_sacks > 1) {
1291 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1292 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1293
1294 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1295 return false;
1296 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1297 } else {
1298 return false;
1299 }
1300
1301 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1302 if (!dup_segs) { /* Skip dubious DSACK */
1303 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1304 return false;
1305 }
1306
1307 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1308
1309 /* D-SACK for already forgotten data... Do dumb counting. */
1310 if (tp->undo_marker && tp->undo_retrans > 0 &&
1311 !after(end_seq_0, prior_snd_una) &&
1312 after(end_seq_0, tp->undo_marker))
1313 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1314
1315 return true;
1316 }
1317
1318 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1319 * the incoming SACK may not exactly match but we can find smaller MSS
1320 * aligned portion of it that matches. Therefore we might need to fragment
1321 * which may fail and creates some hassle (caller must handle error case
1322 * returns).
1323 *
1324 * FIXME: this could be merged to shift decision code
1325 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1326 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1327 u32 start_seq, u32 end_seq)
1328 {
1329 int err;
1330 bool in_sack;
1331 unsigned int pkt_len;
1332 unsigned int mss;
1333
1334 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1335 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1336
1337 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1338 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1339 mss = tcp_skb_mss(skb);
1340 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1341
1342 if (!in_sack) {
1343 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1344 if (pkt_len < mss)
1345 pkt_len = mss;
1346 } else {
1347 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1348 if (pkt_len < mss)
1349 return -EINVAL;
1350 }
1351
1352 /* Round if necessary so that SACKs cover only full MSSes
1353 * and/or the remaining small portion (if present)
1354 */
1355 if (pkt_len > mss) {
1356 unsigned int new_len = (pkt_len / mss) * mss;
1357 if (!in_sack && new_len < pkt_len)
1358 new_len += mss;
1359 pkt_len = new_len;
1360 }
1361
1362 if (pkt_len >= skb->len && !in_sack)
1363 return 0;
1364
1365 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1366 pkt_len, mss, GFP_ATOMIC);
1367 if (err < 0)
1368 return err;
1369 }
1370
1371 return in_sack;
1372 }
1373
1374 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1375 static u8 tcp_sacktag_one(struct sock *sk,
1376 struct tcp_sacktag_state *state, u8 sacked,
1377 u32 start_seq, u32 end_seq,
1378 int dup_sack, int pcount,
1379 u64 xmit_time)
1380 {
1381 struct tcp_sock *tp = tcp_sk(sk);
1382
1383 /* Account D-SACK for retransmitted packet. */
1384 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1385 if (tp->undo_marker && tp->undo_retrans > 0 &&
1386 after(end_seq, tp->undo_marker))
1387 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1388 if ((sacked & TCPCB_SACKED_ACKED) &&
1389 before(start_seq, state->reord))
1390 state->reord = start_seq;
1391 }
1392
1393 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1394 if (!after(end_seq, tp->snd_una))
1395 return sacked;
1396
1397 if (!(sacked & TCPCB_SACKED_ACKED)) {
1398 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1399
1400 if (sacked & TCPCB_SACKED_RETRANS) {
1401 /* If the segment is not tagged as lost,
1402 * we do not clear RETRANS, believing
1403 * that retransmission is still in flight.
1404 */
1405 if (sacked & TCPCB_LOST) {
1406 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1407 tp->lost_out -= pcount;
1408 tp->retrans_out -= pcount;
1409 }
1410 } else {
1411 if (!(sacked & TCPCB_RETRANS)) {
1412 /* New sack for not retransmitted frame,
1413 * which was in hole. It is reordering.
1414 */
1415 if (before(start_seq,
1416 tcp_highest_sack_seq(tp)) &&
1417 before(start_seq, state->reord))
1418 state->reord = start_seq;
1419
1420 if (!after(end_seq, tp->high_seq))
1421 state->flag |= FLAG_ORIG_SACK_ACKED;
1422 if (state->first_sackt == 0)
1423 state->first_sackt = xmit_time;
1424 state->last_sackt = xmit_time;
1425 }
1426
1427 if (sacked & TCPCB_LOST) {
1428 sacked &= ~TCPCB_LOST;
1429 tp->lost_out -= pcount;
1430 }
1431 }
1432
1433 sacked |= TCPCB_SACKED_ACKED;
1434 state->flag |= FLAG_DATA_SACKED;
1435 tp->sacked_out += pcount;
1436 /* Out-of-order packets delivered */
1437 state->sack_delivered += pcount;
1438
1439 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1440 if (tp->lost_skb_hint &&
1441 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1442 tp->lost_cnt_hint += pcount;
1443 }
1444
1445 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1446 * frames and clear it. undo_retrans is decreased above, L|R frames
1447 * are accounted above as well.
1448 */
1449 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1450 sacked &= ~TCPCB_SACKED_RETRANS;
1451 tp->retrans_out -= pcount;
1452 }
1453
1454 return sacked;
1455 }
1456
1457 /* Shift newly-SACKed bytes from this skb to the immediately previous
1458 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1459 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1460 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1461 struct sk_buff *skb,
1462 struct tcp_sacktag_state *state,
1463 unsigned int pcount, int shifted, int mss,
1464 bool dup_sack)
1465 {
1466 struct tcp_sock *tp = tcp_sk(sk);
1467 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1468 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1469
1470 BUG_ON(!pcount);
1471
1472 /* Adjust counters and hints for the newly sacked sequence
1473 * range but discard the return value since prev is already
1474 * marked. We must tag the range first because the seq
1475 * advancement below implicitly advances
1476 * tcp_highest_sack_seq() when skb is highest_sack.
1477 */
1478 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1479 start_seq, end_seq, dup_sack, pcount,
1480 tcp_skb_timestamp_us(skb));
1481 tcp_rate_skb_delivered(sk, skb, state->rate);
1482
1483 if (skb == tp->lost_skb_hint)
1484 tp->lost_cnt_hint += pcount;
1485
1486 TCP_SKB_CB(prev)->end_seq += shifted;
1487 TCP_SKB_CB(skb)->seq += shifted;
1488
1489 tcp_skb_pcount_add(prev, pcount);
1490 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1491 tcp_skb_pcount_add(skb, -pcount);
1492
1493 /* When we're adding to gso_segs == 1, gso_size will be zero,
1494 * in theory this shouldn't be necessary but as long as DSACK
1495 * code can come after this skb later on it's better to keep
1496 * setting gso_size to something.
1497 */
1498 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1499 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1500
1501 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1502 if (tcp_skb_pcount(skb) <= 1)
1503 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1504
1505 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1506 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1507
1508 if (skb->len > 0) {
1509 BUG_ON(!tcp_skb_pcount(skb));
1510 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1511 return false;
1512 }
1513
1514 /* Whole SKB was eaten :-) */
1515
1516 if (skb == tp->retransmit_skb_hint)
1517 tp->retransmit_skb_hint = prev;
1518 if (skb == tp->lost_skb_hint) {
1519 tp->lost_skb_hint = prev;
1520 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1521 }
1522
1523 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1524 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1525 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1526 TCP_SKB_CB(prev)->end_seq++;
1527
1528 if (skb == tcp_highest_sack(sk))
1529 tcp_advance_highest_sack(sk, skb);
1530
1531 tcp_skb_collapse_tstamp(prev, skb);
1532 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1533 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1534
1535 tcp_rtx_queue_unlink_and_free(skb, sk);
1536
1537 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1538
1539 return true;
1540 }
1541
1542 /* I wish gso_size would have a bit more sane initialization than
1543 * something-or-zero which complicates things
1544 */
tcp_skb_seglen(const struct sk_buff * skb)1545 static int tcp_skb_seglen(const struct sk_buff *skb)
1546 {
1547 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1548 }
1549
1550 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1551 static int skb_can_shift(const struct sk_buff *skb)
1552 {
1553 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1554 }
1555
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1556 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1557 int pcount, int shiftlen)
1558 {
1559 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1560 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1561 * to make sure not storing more than 65535 * 8 bytes per skb,
1562 * even if current MSS is bigger.
1563 */
1564 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1565 return 0;
1566 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1567 return 0;
1568 return skb_shift(to, from, shiftlen);
1569 }
1570
1571 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1572 * skb.
1573 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1574 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1575 struct tcp_sacktag_state *state,
1576 u32 start_seq, u32 end_seq,
1577 bool dup_sack)
1578 {
1579 struct tcp_sock *tp = tcp_sk(sk);
1580 struct sk_buff *prev;
1581 int mss;
1582 int pcount = 0;
1583 int len;
1584 int in_sack;
1585
1586 /* Normally R but no L won't result in plain S */
1587 if (!dup_sack &&
1588 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1589 goto fallback;
1590 if (!skb_can_shift(skb))
1591 goto fallback;
1592 /* This frame is about to be dropped (was ACKed). */
1593 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1594 goto fallback;
1595
1596 /* Can only happen with delayed DSACK + discard craziness */
1597 prev = skb_rb_prev(skb);
1598 if (!prev)
1599 goto fallback;
1600
1601 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1602 goto fallback;
1603
1604 if (!tcp_skb_can_collapse(prev, skb))
1605 goto fallback;
1606
1607 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1608 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1609
1610 if (in_sack) {
1611 len = skb->len;
1612 pcount = tcp_skb_pcount(skb);
1613 mss = tcp_skb_seglen(skb);
1614
1615 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1616 * drop this restriction as unnecessary
1617 */
1618 if (mss != tcp_skb_seglen(prev))
1619 goto fallback;
1620 } else {
1621 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1622 goto noop;
1623 /* CHECKME: This is non-MSS split case only?, this will
1624 * cause skipped skbs due to advancing loop btw, original
1625 * has that feature too
1626 */
1627 if (tcp_skb_pcount(skb) <= 1)
1628 goto noop;
1629
1630 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1631 if (!in_sack) {
1632 /* TODO: head merge to next could be attempted here
1633 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1634 * though it might not be worth of the additional hassle
1635 *
1636 * ...we can probably just fallback to what was done
1637 * previously. We could try merging non-SACKed ones
1638 * as well but it probably isn't going to buy off
1639 * because later SACKs might again split them, and
1640 * it would make skb timestamp tracking considerably
1641 * harder problem.
1642 */
1643 goto fallback;
1644 }
1645
1646 len = end_seq - TCP_SKB_CB(skb)->seq;
1647 BUG_ON(len < 0);
1648 BUG_ON(len > skb->len);
1649
1650 /* MSS boundaries should be honoured or else pcount will
1651 * severely break even though it makes things bit trickier.
1652 * Optimize common case to avoid most of the divides
1653 */
1654 mss = tcp_skb_mss(skb);
1655
1656 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1657 * drop this restriction as unnecessary
1658 */
1659 if (mss != tcp_skb_seglen(prev))
1660 goto fallback;
1661
1662 if (len == mss) {
1663 pcount = 1;
1664 } else if (len < mss) {
1665 goto noop;
1666 } else {
1667 pcount = len / mss;
1668 len = pcount * mss;
1669 }
1670 }
1671
1672 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1673 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1674 goto fallback;
1675
1676 if (!tcp_skb_shift(prev, skb, pcount, len))
1677 goto fallback;
1678 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1679 goto out;
1680
1681 /* Hole filled allows collapsing with the next as well, this is very
1682 * useful when hole on every nth skb pattern happens
1683 */
1684 skb = skb_rb_next(prev);
1685 if (!skb)
1686 goto out;
1687
1688 if (!skb_can_shift(skb) ||
1689 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1690 (mss != tcp_skb_seglen(skb)))
1691 goto out;
1692
1693 if (!tcp_skb_can_collapse(prev, skb))
1694 goto out;
1695 len = skb->len;
1696 pcount = tcp_skb_pcount(skb);
1697 if (tcp_skb_shift(prev, skb, pcount, len))
1698 tcp_shifted_skb(sk, prev, skb, state, pcount,
1699 len, mss, 0);
1700
1701 out:
1702 return prev;
1703
1704 noop:
1705 return skb;
1706
1707 fallback:
1708 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1709 return NULL;
1710 }
1711
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1712 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1713 struct tcp_sack_block *next_dup,
1714 struct tcp_sacktag_state *state,
1715 u32 start_seq, u32 end_seq,
1716 bool dup_sack_in)
1717 {
1718 struct tcp_sock *tp = tcp_sk(sk);
1719 struct sk_buff *tmp;
1720
1721 skb_rbtree_walk_from(skb) {
1722 int in_sack = 0;
1723 bool dup_sack = dup_sack_in;
1724
1725 /* queue is in-order => we can short-circuit the walk early */
1726 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1727 break;
1728
1729 if (next_dup &&
1730 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1731 in_sack = tcp_match_skb_to_sack(sk, skb,
1732 next_dup->start_seq,
1733 next_dup->end_seq);
1734 if (in_sack > 0)
1735 dup_sack = true;
1736 }
1737
1738 /* skb reference here is a bit tricky to get right, since
1739 * shifting can eat and free both this skb and the next,
1740 * so not even _safe variant of the loop is enough.
1741 */
1742 if (in_sack <= 0) {
1743 tmp = tcp_shift_skb_data(sk, skb, state,
1744 start_seq, end_seq, dup_sack);
1745 if (tmp) {
1746 if (tmp != skb) {
1747 skb = tmp;
1748 continue;
1749 }
1750
1751 in_sack = 0;
1752 } else {
1753 in_sack = tcp_match_skb_to_sack(sk, skb,
1754 start_seq,
1755 end_seq);
1756 }
1757 }
1758
1759 if (unlikely(in_sack < 0))
1760 break;
1761
1762 if (in_sack) {
1763 TCP_SKB_CB(skb)->sacked =
1764 tcp_sacktag_one(sk,
1765 state,
1766 TCP_SKB_CB(skb)->sacked,
1767 TCP_SKB_CB(skb)->seq,
1768 TCP_SKB_CB(skb)->end_seq,
1769 dup_sack,
1770 tcp_skb_pcount(skb),
1771 tcp_skb_timestamp_us(skb));
1772 tcp_rate_skb_delivered(sk, skb, state->rate);
1773 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1774 list_del_init(&skb->tcp_tsorted_anchor);
1775
1776 if (!before(TCP_SKB_CB(skb)->seq,
1777 tcp_highest_sack_seq(tp)))
1778 tcp_advance_highest_sack(sk, skb);
1779 }
1780 }
1781 return skb;
1782 }
1783
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1784 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1785 {
1786 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1787 struct sk_buff *skb;
1788
1789 while (*p) {
1790 parent = *p;
1791 skb = rb_to_skb(parent);
1792 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1793 p = &parent->rb_left;
1794 continue;
1795 }
1796 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1797 p = &parent->rb_right;
1798 continue;
1799 }
1800 return skb;
1801 }
1802 return NULL;
1803 }
1804
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1805 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1806 u32 skip_to_seq)
1807 {
1808 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1809 return skb;
1810
1811 return tcp_sacktag_bsearch(sk, skip_to_seq);
1812 }
1813
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1814 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1815 struct sock *sk,
1816 struct tcp_sack_block *next_dup,
1817 struct tcp_sacktag_state *state,
1818 u32 skip_to_seq)
1819 {
1820 if (!next_dup)
1821 return skb;
1822
1823 if (before(next_dup->start_seq, skip_to_seq)) {
1824 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1825 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1826 next_dup->start_seq, next_dup->end_seq,
1827 1);
1828 }
1829
1830 return skb;
1831 }
1832
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1833 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1834 {
1835 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1836 }
1837
1838 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1839 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1840 u32 prior_snd_una, struct tcp_sacktag_state *state)
1841 {
1842 struct tcp_sock *tp = tcp_sk(sk);
1843 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1844 TCP_SKB_CB(ack_skb)->sacked);
1845 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1846 struct tcp_sack_block sp[TCP_NUM_SACKS];
1847 struct tcp_sack_block *cache;
1848 struct sk_buff *skb;
1849 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1850 int used_sacks;
1851 bool found_dup_sack = false;
1852 int i, j;
1853 int first_sack_index;
1854
1855 state->flag = 0;
1856 state->reord = tp->snd_nxt;
1857
1858 if (!tp->sacked_out)
1859 tcp_highest_sack_reset(sk);
1860
1861 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1862 num_sacks, prior_snd_una, state);
1863
1864 /* Eliminate too old ACKs, but take into
1865 * account more or less fresh ones, they can
1866 * contain valid SACK info.
1867 */
1868 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1869 return 0;
1870
1871 if (!tp->packets_out)
1872 goto out;
1873
1874 used_sacks = 0;
1875 first_sack_index = 0;
1876 for (i = 0; i < num_sacks; i++) {
1877 bool dup_sack = !i && found_dup_sack;
1878
1879 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1880 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1881
1882 if (!tcp_is_sackblock_valid(tp, dup_sack,
1883 sp[used_sacks].start_seq,
1884 sp[used_sacks].end_seq)) {
1885 int mib_idx;
1886
1887 if (dup_sack) {
1888 if (!tp->undo_marker)
1889 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1890 else
1891 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1892 } else {
1893 /* Don't count olds caused by ACK reordering */
1894 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1895 !after(sp[used_sacks].end_seq, tp->snd_una))
1896 continue;
1897 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1898 }
1899
1900 NET_INC_STATS(sock_net(sk), mib_idx);
1901 if (i == 0)
1902 first_sack_index = -1;
1903 continue;
1904 }
1905
1906 /* Ignore very old stuff early */
1907 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1908 if (i == 0)
1909 first_sack_index = -1;
1910 continue;
1911 }
1912
1913 used_sacks++;
1914 }
1915
1916 /* order SACK blocks to allow in order walk of the retrans queue */
1917 for (i = used_sacks - 1; i > 0; i--) {
1918 for (j = 0; j < i; j++) {
1919 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1920 swap(sp[j], sp[j + 1]);
1921
1922 /* Track where the first SACK block goes to */
1923 if (j == first_sack_index)
1924 first_sack_index = j + 1;
1925 }
1926 }
1927 }
1928
1929 state->mss_now = tcp_current_mss(sk);
1930 skb = NULL;
1931 i = 0;
1932
1933 if (!tp->sacked_out) {
1934 /* It's already past, so skip checking against it */
1935 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1936 } else {
1937 cache = tp->recv_sack_cache;
1938 /* Skip empty blocks in at head of the cache */
1939 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1940 !cache->end_seq)
1941 cache++;
1942 }
1943
1944 while (i < used_sacks) {
1945 u32 start_seq = sp[i].start_seq;
1946 u32 end_seq = sp[i].end_seq;
1947 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1948 struct tcp_sack_block *next_dup = NULL;
1949
1950 if (found_dup_sack && ((i + 1) == first_sack_index))
1951 next_dup = &sp[i + 1];
1952
1953 /* Skip too early cached blocks */
1954 while (tcp_sack_cache_ok(tp, cache) &&
1955 !before(start_seq, cache->end_seq))
1956 cache++;
1957
1958 /* Can skip some work by looking recv_sack_cache? */
1959 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1960 after(end_seq, cache->start_seq)) {
1961
1962 /* Head todo? */
1963 if (before(start_seq, cache->start_seq)) {
1964 skb = tcp_sacktag_skip(skb, sk, start_seq);
1965 skb = tcp_sacktag_walk(skb, sk, next_dup,
1966 state,
1967 start_seq,
1968 cache->start_seq,
1969 dup_sack);
1970 }
1971
1972 /* Rest of the block already fully processed? */
1973 if (!after(end_seq, cache->end_seq))
1974 goto advance_sp;
1975
1976 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1977 state,
1978 cache->end_seq);
1979
1980 /* ...tail remains todo... */
1981 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1982 /* ...but better entrypoint exists! */
1983 skb = tcp_highest_sack(sk);
1984 if (!skb)
1985 break;
1986 cache++;
1987 goto walk;
1988 }
1989
1990 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1991 /* Check overlap against next cached too (past this one already) */
1992 cache++;
1993 continue;
1994 }
1995
1996 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1997 skb = tcp_highest_sack(sk);
1998 if (!skb)
1999 break;
2000 }
2001 skb = tcp_sacktag_skip(skb, sk, start_seq);
2002
2003 walk:
2004 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2005 start_seq, end_seq, dup_sack);
2006
2007 advance_sp:
2008 i++;
2009 }
2010
2011 /* Clear the head of the cache sack blocks so we can skip it next time */
2012 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2013 tp->recv_sack_cache[i].start_seq = 0;
2014 tp->recv_sack_cache[i].end_seq = 0;
2015 }
2016 for (j = 0; j < used_sacks; j++)
2017 tp->recv_sack_cache[i++] = sp[j];
2018
2019 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2020 tcp_check_sack_reordering(sk, state->reord, 0);
2021
2022 tcp_verify_left_out(tp);
2023 out:
2024
2025 #if FASTRETRANS_DEBUG > 0
2026 WARN_ON((int)tp->sacked_out < 0);
2027 WARN_ON((int)tp->lost_out < 0);
2028 WARN_ON((int)tp->retrans_out < 0);
2029 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2030 #endif
2031 return state->flag;
2032 }
2033
2034 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2035 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2036 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2037 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2038 {
2039 u32 holes;
2040
2041 holes = max(tp->lost_out, 1U);
2042 holes = min(holes, tp->packets_out);
2043
2044 if ((tp->sacked_out + holes) > tp->packets_out) {
2045 tp->sacked_out = tp->packets_out - holes;
2046 return true;
2047 }
2048 return false;
2049 }
2050
2051 /* If we receive more dupacks than we expected counting segments
2052 * in assumption of absent reordering, interpret this as reordering.
2053 * The only another reason could be bug in receiver TCP.
2054 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2055 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2056 {
2057 struct tcp_sock *tp = tcp_sk(sk);
2058
2059 if (!tcp_limit_reno_sacked(tp))
2060 return;
2061
2062 tp->reordering = min_t(u32, tp->packets_out + addend,
2063 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2064 tp->reord_seen++;
2065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2066 }
2067
2068 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2069
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2070 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2071 {
2072 if (num_dupack) {
2073 struct tcp_sock *tp = tcp_sk(sk);
2074 u32 prior_sacked = tp->sacked_out;
2075 s32 delivered;
2076
2077 tp->sacked_out += num_dupack;
2078 tcp_check_reno_reordering(sk, 0);
2079 delivered = tp->sacked_out - prior_sacked;
2080 if (delivered > 0)
2081 tcp_count_delivered(tp, delivered, ece_ack);
2082 tcp_verify_left_out(tp);
2083 }
2084 }
2085
2086 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2087
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2088 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2089 {
2090 struct tcp_sock *tp = tcp_sk(sk);
2091
2092 if (acked > 0) {
2093 /* One ACK acked hole. The rest eat duplicate ACKs. */
2094 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2095 ece_ack);
2096 if (acked - 1 >= tp->sacked_out)
2097 tp->sacked_out = 0;
2098 else
2099 tp->sacked_out -= acked - 1;
2100 }
2101 tcp_check_reno_reordering(sk, acked);
2102 tcp_verify_left_out(tp);
2103 }
2104
tcp_reset_reno_sack(struct tcp_sock * tp)2105 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2106 {
2107 tp->sacked_out = 0;
2108 }
2109
tcp_clear_retrans(struct tcp_sock * tp)2110 void tcp_clear_retrans(struct tcp_sock *tp)
2111 {
2112 tp->retrans_out = 0;
2113 tp->lost_out = 0;
2114 tp->undo_marker = 0;
2115 tp->undo_retrans = -1;
2116 tp->sacked_out = 0;
2117 tp->rto_stamp = 0;
2118 tp->total_rto = 0;
2119 tp->total_rto_recoveries = 0;
2120 tp->total_rto_time = 0;
2121 }
2122
tcp_init_undo(struct tcp_sock * tp)2123 static inline void tcp_init_undo(struct tcp_sock *tp)
2124 {
2125 tp->undo_marker = tp->snd_una;
2126
2127 /* Retransmission still in flight may cause DSACKs later. */
2128 /* First, account for regular retransmits in flight: */
2129 tp->undo_retrans = tp->retrans_out;
2130 /* Next, account for TLP retransmits in flight: */
2131 if (tp->tlp_high_seq && tp->tlp_retrans)
2132 tp->undo_retrans++;
2133 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2134 if (!tp->undo_retrans)
2135 tp->undo_retrans = -1;
2136 }
2137
tcp_is_rack(const struct sock * sk)2138 static bool tcp_is_rack(const struct sock *sk)
2139 {
2140 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2141 TCP_RACK_LOSS_DETECTION;
2142 }
2143
2144 /* If we detect SACK reneging, forget all SACK information
2145 * and reset tags completely, otherwise preserve SACKs. If receiver
2146 * dropped its ofo queue, we will know this due to reneging detection.
2147 */
tcp_timeout_mark_lost(struct sock * sk)2148 static void tcp_timeout_mark_lost(struct sock *sk)
2149 {
2150 struct tcp_sock *tp = tcp_sk(sk);
2151 struct sk_buff *skb, *head;
2152 bool is_reneg; /* is receiver reneging on SACKs? */
2153
2154 head = tcp_rtx_queue_head(sk);
2155 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2156 if (is_reneg) {
2157 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2158 tp->sacked_out = 0;
2159 /* Mark SACK reneging until we recover from this loss event. */
2160 tp->is_sack_reneg = 1;
2161 } else if (tcp_is_reno(tp)) {
2162 tcp_reset_reno_sack(tp);
2163 }
2164
2165 skb = head;
2166 skb_rbtree_walk_from(skb) {
2167 if (is_reneg)
2168 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2169 else if (tcp_is_rack(sk) && skb != head &&
2170 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2171 continue; /* Don't mark recently sent ones lost yet */
2172 tcp_mark_skb_lost(sk, skb);
2173 }
2174 tcp_verify_left_out(tp);
2175 tcp_clear_all_retrans_hints(tp);
2176 }
2177
2178 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2179 void tcp_enter_loss(struct sock *sk)
2180 {
2181 const struct inet_connection_sock *icsk = inet_csk(sk);
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct net *net = sock_net(sk);
2184 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2185 u8 reordering;
2186
2187 tcp_timeout_mark_lost(sk);
2188
2189 /* Reduce ssthresh if it has not yet been made inside this window. */
2190 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2191 !after(tp->high_seq, tp->snd_una) ||
2192 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2193 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2194 tp->prior_cwnd = tcp_snd_cwnd(tp);
2195 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2196 tcp_ca_event(sk, CA_EVENT_LOSS);
2197 tcp_init_undo(tp);
2198 }
2199 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2200 tp->snd_cwnd_cnt = 0;
2201 tp->snd_cwnd_stamp = tcp_jiffies32;
2202
2203 /* Timeout in disordered state after receiving substantial DUPACKs
2204 * suggests that the degree of reordering is over-estimated.
2205 */
2206 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2207 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2208 tp->sacked_out >= reordering)
2209 tp->reordering = min_t(unsigned int, tp->reordering,
2210 reordering);
2211
2212 tcp_set_ca_state(sk, TCP_CA_Loss);
2213 tp->high_seq = tp->snd_nxt;
2214 tp->tlp_high_seq = 0;
2215 tcp_ecn_queue_cwr(tp);
2216
2217 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2218 * loss recovery is underway except recurring timeout(s) on
2219 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2220 */
2221 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2222 (new_recovery || icsk->icsk_retransmits) &&
2223 !inet_csk(sk)->icsk_mtup.probe_size;
2224 }
2225
2226 /* If ACK arrived pointing to a remembered SACK, it means that our
2227 * remembered SACKs do not reflect real state of receiver i.e.
2228 * receiver _host_ is heavily congested (or buggy).
2229 *
2230 * To avoid big spurious retransmission bursts due to transient SACK
2231 * scoreboard oddities that look like reneging, we give the receiver a
2232 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2233 * restore sanity to the SACK scoreboard. If the apparent reneging
2234 * persists until this RTO then we'll clear the SACK scoreboard.
2235 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2236 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2237 {
2238 if (*ack_flag & FLAG_SACK_RENEGING &&
2239 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2240 struct tcp_sock *tp = tcp_sk(sk);
2241 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2242 msecs_to_jiffies(10));
2243
2244 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2245 delay, TCP_RTO_MAX);
2246 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2247 return true;
2248 }
2249 return false;
2250 }
2251
2252 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2253 * counter when SACK is enabled (without SACK, sacked_out is used for
2254 * that purpose).
2255 *
2256 * With reordering, holes may still be in flight, so RFC3517 recovery
2257 * uses pure sacked_out (total number of SACKed segments) even though
2258 * it violates the RFC that uses duplicate ACKs, often these are equal
2259 * but when e.g. out-of-window ACKs or packet duplication occurs,
2260 * they differ. Since neither occurs due to loss, TCP should really
2261 * ignore them.
2262 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2263 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2264 {
2265 return tp->sacked_out + 1;
2266 }
2267
2268 /* Linux NewReno/SACK/ECN state machine.
2269 * --------------------------------------
2270 *
2271 * "Open" Normal state, no dubious events, fast path.
2272 * "Disorder" In all the respects it is "Open",
2273 * but requires a bit more attention. It is entered when
2274 * we see some SACKs or dupacks. It is split of "Open"
2275 * mainly to move some processing from fast path to slow one.
2276 * "CWR" CWND was reduced due to some Congestion Notification event.
2277 * It can be ECN, ICMP source quench, local device congestion.
2278 * "Recovery" CWND was reduced, we are fast-retransmitting.
2279 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2280 *
2281 * tcp_fastretrans_alert() is entered:
2282 * - each incoming ACK, if state is not "Open"
2283 * - when arrived ACK is unusual, namely:
2284 * * SACK
2285 * * Duplicate ACK.
2286 * * ECN ECE.
2287 *
2288 * Counting packets in flight is pretty simple.
2289 *
2290 * in_flight = packets_out - left_out + retrans_out
2291 *
2292 * packets_out is SND.NXT-SND.UNA counted in packets.
2293 *
2294 * retrans_out is number of retransmitted segments.
2295 *
2296 * left_out is number of segments left network, but not ACKed yet.
2297 *
2298 * left_out = sacked_out + lost_out
2299 *
2300 * sacked_out: Packets, which arrived to receiver out of order
2301 * and hence not ACKed. With SACKs this number is simply
2302 * amount of SACKed data. Even without SACKs
2303 * it is easy to give pretty reliable estimate of this number,
2304 * counting duplicate ACKs.
2305 *
2306 * lost_out: Packets lost by network. TCP has no explicit
2307 * "loss notification" feedback from network (for now).
2308 * It means that this number can be only _guessed_.
2309 * Actually, it is the heuristics to predict lossage that
2310 * distinguishes different algorithms.
2311 *
2312 * F.e. after RTO, when all the queue is considered as lost,
2313 * lost_out = packets_out and in_flight = retrans_out.
2314 *
2315 * Essentially, we have now a few algorithms detecting
2316 * lost packets.
2317 *
2318 * If the receiver supports SACK:
2319 *
2320 * RFC6675/3517: It is the conventional algorithm. A packet is
2321 * considered lost if the number of higher sequence packets
2322 * SACKed is greater than or equal the DUPACK thoreshold
2323 * (reordering). This is implemented in tcp_mark_head_lost and
2324 * tcp_update_scoreboard.
2325 *
2326 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2327 * (2017-) that checks timing instead of counting DUPACKs.
2328 * Essentially a packet is considered lost if it's not S/ACKed
2329 * after RTT + reordering_window, where both metrics are
2330 * dynamically measured and adjusted. This is implemented in
2331 * tcp_rack_mark_lost.
2332 *
2333 * If the receiver does not support SACK:
2334 *
2335 * NewReno (RFC6582): in Recovery we assume that one segment
2336 * is lost (classic Reno). While we are in Recovery and
2337 * a partial ACK arrives, we assume that one more packet
2338 * is lost (NewReno). This heuristics are the same in NewReno
2339 * and SACK.
2340 *
2341 * Really tricky (and requiring careful tuning) part of algorithm
2342 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2343 * The first determines the moment _when_ we should reduce CWND and,
2344 * hence, slow down forward transmission. In fact, it determines the moment
2345 * when we decide that hole is caused by loss, rather than by a reorder.
2346 *
2347 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2348 * holes, caused by lost packets.
2349 *
2350 * And the most logically complicated part of algorithm is undo
2351 * heuristics. We detect false retransmits due to both too early
2352 * fast retransmit (reordering) and underestimated RTO, analyzing
2353 * timestamps and D-SACKs. When we detect that some segments were
2354 * retransmitted by mistake and CWND reduction was wrong, we undo
2355 * window reduction and abort recovery phase. This logic is hidden
2356 * inside several functions named tcp_try_undo_<something>.
2357 */
2358
2359 /* This function decides, when we should leave Disordered state
2360 * and enter Recovery phase, reducing congestion window.
2361 *
2362 * Main question: may we further continue forward transmission
2363 * with the same cwnd?
2364 */
tcp_time_to_recover(struct sock * sk,int flag)2365 static bool tcp_time_to_recover(struct sock *sk, int flag)
2366 {
2367 struct tcp_sock *tp = tcp_sk(sk);
2368
2369 /* Trick#1: The loss is proven. */
2370 if (tp->lost_out)
2371 return true;
2372
2373 /* Not-A-Trick#2 : Classic rule... */
2374 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2375 return true;
2376
2377 return false;
2378 }
2379
2380 /* Detect loss in event "A" above by marking head of queue up as lost.
2381 * For RFC3517 SACK, a segment is considered lost if it
2382 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2383 * the maximum SACKed segments to pass before reaching this limit.
2384 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2385 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2386 {
2387 struct tcp_sock *tp = tcp_sk(sk);
2388 struct sk_buff *skb;
2389 int cnt;
2390 /* Use SACK to deduce losses of new sequences sent during recovery */
2391 const u32 loss_high = tp->snd_nxt;
2392
2393 WARN_ON(packets > tp->packets_out);
2394 skb = tp->lost_skb_hint;
2395 if (skb) {
2396 /* Head already handled? */
2397 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2398 return;
2399 cnt = tp->lost_cnt_hint;
2400 } else {
2401 skb = tcp_rtx_queue_head(sk);
2402 cnt = 0;
2403 }
2404
2405 skb_rbtree_walk_from(skb) {
2406 /* TODO: do this better */
2407 /* this is not the most efficient way to do this... */
2408 tp->lost_skb_hint = skb;
2409 tp->lost_cnt_hint = cnt;
2410
2411 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2412 break;
2413
2414 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2415 cnt += tcp_skb_pcount(skb);
2416
2417 if (cnt > packets)
2418 break;
2419
2420 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2421 tcp_mark_skb_lost(sk, skb);
2422
2423 if (mark_head)
2424 break;
2425 }
2426 tcp_verify_left_out(tp);
2427 }
2428
2429 /* Account newly detected lost packet(s) */
2430
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2431 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2432 {
2433 struct tcp_sock *tp = tcp_sk(sk);
2434
2435 if (tcp_is_sack(tp)) {
2436 int sacked_upto = tp->sacked_out - tp->reordering;
2437 if (sacked_upto >= 0)
2438 tcp_mark_head_lost(sk, sacked_upto, 0);
2439 else if (fast_rexmit)
2440 tcp_mark_head_lost(sk, 1, 1);
2441 }
2442 }
2443
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2444 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2445 {
2446 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2447 before(tp->rx_opt.rcv_tsecr, when);
2448 }
2449
2450 /* skb is spurious retransmitted if the returned timestamp echo
2451 * reply is prior to the skb transmission time
2452 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2453 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2454 const struct sk_buff *skb)
2455 {
2456 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2457 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2458 }
2459
2460 /* Nothing was retransmitted or returned timestamp is less
2461 * than timestamp of the first retransmission.
2462 */
tcp_packet_delayed(const struct tcp_sock * tp)2463 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2464 {
2465 const struct sock *sk = (const struct sock *)tp;
2466
2467 if (tp->retrans_stamp &&
2468 tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2469 return true; /* got echoed TS before first retransmission */
2470
2471 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2472 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2473 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2474 * retrans_stamp even if we had retransmitted the SYN.
2475 */
2476 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */
2477 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */
2478 return true; /* nothing was retransmitted */
2479
2480 return false;
2481 }
2482
2483 /* Undo procedures. */
2484
2485 /* We can clear retrans_stamp when there are no retransmissions in the
2486 * window. It would seem that it is trivially available for us in
2487 * tp->retrans_out, however, that kind of assumptions doesn't consider
2488 * what will happen if errors occur when sending retransmission for the
2489 * second time. ...It could the that such segment has only
2490 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2491 * the head skb is enough except for some reneging corner cases that
2492 * are not worth the effort.
2493 *
2494 * Main reason for all this complexity is the fact that connection dying
2495 * time now depends on the validity of the retrans_stamp, in particular,
2496 * that successive retransmissions of a segment must not advance
2497 * retrans_stamp under any conditions.
2498 */
tcp_any_retrans_done(const struct sock * sk)2499 static bool tcp_any_retrans_done(const struct sock *sk)
2500 {
2501 const struct tcp_sock *tp = tcp_sk(sk);
2502 struct sk_buff *skb;
2503
2504 if (tp->retrans_out)
2505 return true;
2506
2507 skb = tcp_rtx_queue_head(sk);
2508 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2509 return true;
2510
2511 return false;
2512 }
2513
2514 /* If loss recovery is finished and there are no retransmits out in the
2515 * network, then we clear retrans_stamp so that upon the next loss recovery
2516 * retransmits_timed_out() and timestamp-undo are using the correct value.
2517 */
tcp_retrans_stamp_cleanup(struct sock * sk)2518 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2519 {
2520 if (!tcp_any_retrans_done(sk))
2521 tcp_sk(sk)->retrans_stamp = 0;
2522 }
2523
DBGUNDO(struct sock * sk,const char * msg)2524 static void DBGUNDO(struct sock *sk, const char *msg)
2525 {
2526 #if FASTRETRANS_DEBUG > 1
2527 struct tcp_sock *tp = tcp_sk(sk);
2528 struct inet_sock *inet = inet_sk(sk);
2529
2530 if (sk->sk_family == AF_INET) {
2531 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2532 msg,
2533 &inet->inet_daddr, ntohs(inet->inet_dport),
2534 tcp_snd_cwnd(tp), tcp_left_out(tp),
2535 tp->snd_ssthresh, tp->prior_ssthresh,
2536 tp->packets_out);
2537 }
2538 #if IS_ENABLED(CONFIG_IPV6)
2539 else if (sk->sk_family == AF_INET6) {
2540 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2541 msg,
2542 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2543 tcp_snd_cwnd(tp), tcp_left_out(tp),
2544 tp->snd_ssthresh, tp->prior_ssthresh,
2545 tp->packets_out);
2546 }
2547 #endif
2548 #endif
2549 }
2550
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2551 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2552 {
2553 struct tcp_sock *tp = tcp_sk(sk);
2554
2555 if (unmark_loss) {
2556 struct sk_buff *skb;
2557
2558 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2559 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2560 }
2561 tp->lost_out = 0;
2562 tcp_clear_all_retrans_hints(tp);
2563 }
2564
2565 if (tp->prior_ssthresh) {
2566 const struct inet_connection_sock *icsk = inet_csk(sk);
2567
2568 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2569
2570 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2571 tp->snd_ssthresh = tp->prior_ssthresh;
2572 tcp_ecn_withdraw_cwr(tp);
2573 }
2574 }
2575 tp->snd_cwnd_stamp = tcp_jiffies32;
2576 tp->undo_marker = 0;
2577 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2578 }
2579
tcp_may_undo(const struct tcp_sock * tp)2580 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2581 {
2582 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2583 }
2584
tcp_is_non_sack_preventing_reopen(struct sock * sk)2585 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2586 {
2587 struct tcp_sock *tp = tcp_sk(sk);
2588
2589 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2590 /* Hold old state until something *above* high_seq
2591 * is ACKed. For Reno it is MUST to prevent false
2592 * fast retransmits (RFC2582). SACK TCP is safe. */
2593 if (!tcp_any_retrans_done(sk))
2594 tp->retrans_stamp = 0;
2595 return true;
2596 }
2597 return false;
2598 }
2599
2600 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2601 static bool tcp_try_undo_recovery(struct sock *sk)
2602 {
2603 struct tcp_sock *tp = tcp_sk(sk);
2604
2605 if (tcp_may_undo(tp)) {
2606 int mib_idx;
2607
2608 /* Happy end! We did not retransmit anything
2609 * or our original transmission succeeded.
2610 */
2611 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2612 tcp_undo_cwnd_reduction(sk, false);
2613 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2614 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2615 else
2616 mib_idx = LINUX_MIB_TCPFULLUNDO;
2617
2618 NET_INC_STATS(sock_net(sk), mib_idx);
2619 } else if (tp->rack.reo_wnd_persist) {
2620 tp->rack.reo_wnd_persist--;
2621 }
2622 if (tcp_is_non_sack_preventing_reopen(sk))
2623 return true;
2624 tcp_set_ca_state(sk, TCP_CA_Open);
2625 tp->is_sack_reneg = 0;
2626 return false;
2627 }
2628
2629 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2630 static bool tcp_try_undo_dsack(struct sock *sk)
2631 {
2632 struct tcp_sock *tp = tcp_sk(sk);
2633
2634 if (tp->undo_marker && !tp->undo_retrans) {
2635 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2636 tp->rack.reo_wnd_persist + 1);
2637 DBGUNDO(sk, "D-SACK");
2638 tcp_undo_cwnd_reduction(sk, false);
2639 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2640 return true;
2641 }
2642 return false;
2643 }
2644
2645 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2646 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2647 {
2648 struct tcp_sock *tp = tcp_sk(sk);
2649
2650 if (frto_undo || tcp_may_undo(tp)) {
2651 tcp_undo_cwnd_reduction(sk, true);
2652
2653 DBGUNDO(sk, "partial loss");
2654 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2655 if (frto_undo)
2656 NET_INC_STATS(sock_net(sk),
2657 LINUX_MIB_TCPSPURIOUSRTOS);
2658 inet_csk(sk)->icsk_retransmits = 0;
2659 if (tcp_is_non_sack_preventing_reopen(sk))
2660 return true;
2661 if (frto_undo || tcp_is_sack(tp)) {
2662 tcp_set_ca_state(sk, TCP_CA_Open);
2663 tp->is_sack_reneg = 0;
2664 }
2665 return true;
2666 }
2667 return false;
2668 }
2669
2670 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2671 * It computes the number of packets to send (sndcnt) based on packets newly
2672 * delivered:
2673 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2674 * cwnd reductions across a full RTT.
2675 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2676 * But when SND_UNA is acked without further losses,
2677 * slow starts cwnd up to ssthresh to speed up the recovery.
2678 */
tcp_init_cwnd_reduction(struct sock * sk)2679 static void tcp_init_cwnd_reduction(struct sock *sk)
2680 {
2681 struct tcp_sock *tp = tcp_sk(sk);
2682
2683 tp->high_seq = tp->snd_nxt;
2684 tp->tlp_high_seq = 0;
2685 tp->snd_cwnd_cnt = 0;
2686 tp->prior_cwnd = tcp_snd_cwnd(tp);
2687 tp->prr_delivered = 0;
2688 tp->prr_out = 0;
2689 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2690 tcp_ecn_queue_cwr(tp);
2691 }
2692
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2693 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2694 {
2695 struct tcp_sock *tp = tcp_sk(sk);
2696 int sndcnt = 0;
2697 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2698
2699 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2700 return;
2701
2702 tp->prr_delivered += newly_acked_sacked;
2703 if (delta < 0) {
2704 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2705 tp->prior_cwnd - 1;
2706 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2707 } else {
2708 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2709 newly_acked_sacked);
2710 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2711 sndcnt++;
2712 sndcnt = min(delta, sndcnt);
2713 }
2714 /* Force a fast retransmit upon entering fast recovery */
2715 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2716 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2717 }
2718
tcp_end_cwnd_reduction(struct sock * sk)2719 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2720 {
2721 struct tcp_sock *tp = tcp_sk(sk);
2722
2723 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2724 return;
2725
2726 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2727 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2728 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2729 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2730 tp->snd_cwnd_stamp = tcp_jiffies32;
2731 }
2732 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2733 }
2734
2735 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2736 void tcp_enter_cwr(struct sock *sk)
2737 {
2738 struct tcp_sock *tp = tcp_sk(sk);
2739
2740 tp->prior_ssthresh = 0;
2741 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2742 tp->undo_marker = 0;
2743 tcp_init_cwnd_reduction(sk);
2744 tcp_set_ca_state(sk, TCP_CA_CWR);
2745 }
2746 }
2747 EXPORT_SYMBOL(tcp_enter_cwr);
2748
tcp_try_keep_open(struct sock * sk)2749 static void tcp_try_keep_open(struct sock *sk)
2750 {
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 int state = TCP_CA_Open;
2753
2754 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2755 state = TCP_CA_Disorder;
2756
2757 if (inet_csk(sk)->icsk_ca_state != state) {
2758 tcp_set_ca_state(sk, state);
2759 tp->high_seq = tp->snd_nxt;
2760 }
2761 }
2762
tcp_try_to_open(struct sock * sk,int flag)2763 static void tcp_try_to_open(struct sock *sk, int flag)
2764 {
2765 struct tcp_sock *tp = tcp_sk(sk);
2766
2767 tcp_verify_left_out(tp);
2768
2769 if (!tcp_any_retrans_done(sk))
2770 tp->retrans_stamp = 0;
2771
2772 if (flag & FLAG_ECE)
2773 tcp_enter_cwr(sk);
2774
2775 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2776 tcp_try_keep_open(sk);
2777 }
2778 }
2779
tcp_mtup_probe_failed(struct sock * sk)2780 static void tcp_mtup_probe_failed(struct sock *sk)
2781 {
2782 struct inet_connection_sock *icsk = inet_csk(sk);
2783
2784 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2785 icsk->icsk_mtup.probe_size = 0;
2786 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2787 }
2788
tcp_mtup_probe_success(struct sock * sk)2789 static void tcp_mtup_probe_success(struct sock *sk)
2790 {
2791 struct tcp_sock *tp = tcp_sk(sk);
2792 struct inet_connection_sock *icsk = inet_csk(sk);
2793 u64 val;
2794
2795 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2796
2797 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2798 do_div(val, icsk->icsk_mtup.probe_size);
2799 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2800 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2801
2802 tp->snd_cwnd_cnt = 0;
2803 tp->snd_cwnd_stamp = tcp_jiffies32;
2804 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2805
2806 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2807 icsk->icsk_mtup.probe_size = 0;
2808 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2810 }
2811
2812 /* Sometimes we deduce that packets have been dropped due to reasons other than
2813 * congestion, like path MTU reductions or failed client TFO attempts. In these
2814 * cases we call this function to retransmit as many packets as cwnd allows,
2815 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2816 * non-zero value (and may do so in a later calling context due to TSQ), we
2817 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2818 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2819 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2820 * prematurely).
2821 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2822 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2823 {
2824 const struct inet_connection_sock *icsk = inet_csk(sk);
2825 struct tcp_sock *tp = tcp_sk(sk);
2826
2827 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2828 tp->high_seq = tp->snd_nxt;
2829 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2830 tp->prior_ssthresh = 0;
2831 tp->undo_marker = 0;
2832 tcp_set_ca_state(sk, TCP_CA_Loss);
2833 }
2834 tcp_xmit_retransmit_queue(sk);
2835 }
2836
2837 /* Do a simple retransmit without using the backoff mechanisms in
2838 * tcp_timer. This is used for path mtu discovery.
2839 * The socket is already locked here.
2840 */
tcp_simple_retransmit(struct sock * sk)2841 void tcp_simple_retransmit(struct sock *sk)
2842 {
2843 struct tcp_sock *tp = tcp_sk(sk);
2844 struct sk_buff *skb;
2845 int mss;
2846
2847 /* A fastopen SYN request is stored as two separate packets within
2848 * the retransmit queue, this is done by tcp_send_syn_data().
2849 * As a result simply checking the MSS of the frames in the queue
2850 * will not work for the SYN packet.
2851 *
2852 * Us being here is an indication of a path MTU issue so we can
2853 * assume that the fastopen SYN was lost and just mark all the
2854 * frames in the retransmit queue as lost. We will use an MSS of
2855 * -1 to mark all frames as lost, otherwise compute the current MSS.
2856 */
2857 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2858 mss = -1;
2859 else
2860 mss = tcp_current_mss(sk);
2861
2862 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2863 if (tcp_skb_seglen(skb) > mss)
2864 tcp_mark_skb_lost(sk, skb);
2865 }
2866
2867 tcp_clear_retrans_hints_partial(tp);
2868
2869 if (!tp->lost_out)
2870 return;
2871
2872 if (tcp_is_reno(tp))
2873 tcp_limit_reno_sacked(tp);
2874
2875 tcp_verify_left_out(tp);
2876
2877 /* Don't muck with the congestion window here.
2878 * Reason is that we do not increase amount of _data_
2879 * in network, but units changed and effective
2880 * cwnd/ssthresh really reduced now.
2881 */
2882 tcp_non_congestion_loss_retransmit(sk);
2883 }
2884 EXPORT_SYMBOL(tcp_simple_retransmit);
2885
tcp_enter_recovery(struct sock * sk,bool ece_ack)2886 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2887 {
2888 struct tcp_sock *tp = tcp_sk(sk);
2889 int mib_idx;
2890
2891 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2892 tcp_retrans_stamp_cleanup(sk);
2893
2894 if (tcp_is_reno(tp))
2895 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2896 else
2897 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2898
2899 NET_INC_STATS(sock_net(sk), mib_idx);
2900
2901 tp->prior_ssthresh = 0;
2902 tcp_init_undo(tp);
2903
2904 if (!tcp_in_cwnd_reduction(sk)) {
2905 if (!ece_ack)
2906 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2907 tcp_init_cwnd_reduction(sk);
2908 }
2909 tcp_set_ca_state(sk, TCP_CA_Recovery);
2910 }
2911
tcp_update_rto_time(struct tcp_sock * tp)2912 static void tcp_update_rto_time(struct tcp_sock *tp)
2913 {
2914 if (tp->rto_stamp) {
2915 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
2916 tp->rto_stamp = 0;
2917 }
2918 }
2919
2920 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2921 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2922 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2923 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2924 int *rexmit)
2925 {
2926 struct tcp_sock *tp = tcp_sk(sk);
2927 bool recovered = !before(tp->snd_una, tp->high_seq);
2928
2929 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2930 tcp_try_undo_loss(sk, false))
2931 return;
2932
2933 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2934 /* Step 3.b. A timeout is spurious if not all data are
2935 * lost, i.e., never-retransmitted data are (s)acked.
2936 */
2937 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2938 tcp_try_undo_loss(sk, true))
2939 return;
2940
2941 if (after(tp->snd_nxt, tp->high_seq)) {
2942 if (flag & FLAG_DATA_SACKED || num_dupack)
2943 tp->frto = 0; /* Step 3.a. loss was real */
2944 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2945 tp->high_seq = tp->snd_nxt;
2946 /* Step 2.b. Try send new data (but deferred until cwnd
2947 * is updated in tcp_ack()). Otherwise fall back to
2948 * the conventional recovery.
2949 */
2950 if (!tcp_write_queue_empty(sk) &&
2951 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2952 *rexmit = REXMIT_NEW;
2953 return;
2954 }
2955 tp->frto = 0;
2956 }
2957 }
2958
2959 if (recovered) {
2960 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2961 tcp_try_undo_recovery(sk);
2962 return;
2963 }
2964 if (tcp_is_reno(tp)) {
2965 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2966 * delivered. Lower inflight to clock out (re)transmissions.
2967 */
2968 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2969 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2970 else if (flag & FLAG_SND_UNA_ADVANCED)
2971 tcp_reset_reno_sack(tp);
2972 }
2973 *rexmit = REXMIT_LOST;
2974 }
2975
tcp_force_fast_retransmit(struct sock * sk)2976 static bool tcp_force_fast_retransmit(struct sock *sk)
2977 {
2978 struct tcp_sock *tp = tcp_sk(sk);
2979
2980 return after(tcp_highest_sack_seq(tp),
2981 tp->snd_una + tp->reordering * tp->mss_cache);
2982 }
2983
2984 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2985 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2986 bool *do_lost)
2987 {
2988 struct tcp_sock *tp = tcp_sk(sk);
2989
2990 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2991 /* Plain luck! Hole if filled with delayed
2992 * packet, rather than with a retransmit. Check reordering.
2993 */
2994 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2995
2996 /* We are getting evidence that the reordering degree is higher
2997 * than we realized. If there are no retransmits out then we
2998 * can undo. Otherwise we clock out new packets but do not
2999 * mark more packets lost or retransmit more.
3000 */
3001 if (tp->retrans_out)
3002 return true;
3003
3004 if (!tcp_any_retrans_done(sk))
3005 tp->retrans_stamp = 0;
3006
3007 DBGUNDO(sk, "partial recovery");
3008 tcp_undo_cwnd_reduction(sk, true);
3009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3010 tcp_try_keep_open(sk);
3011 } else {
3012 /* Partial ACK arrived. Force fast retransmit. */
3013 *do_lost = tcp_force_fast_retransmit(sk);
3014 }
3015 return false;
3016 }
3017
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3018 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3019 {
3020 struct tcp_sock *tp = tcp_sk(sk);
3021
3022 if (tcp_rtx_queue_empty(sk))
3023 return;
3024
3025 if (unlikely(tcp_is_reno(tp))) {
3026 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3027 } else if (tcp_is_rack(sk)) {
3028 u32 prior_retrans = tp->retrans_out;
3029
3030 if (tcp_rack_mark_lost(sk))
3031 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3032 if (prior_retrans > tp->retrans_out)
3033 *ack_flag |= FLAG_LOST_RETRANS;
3034 }
3035 }
3036
3037 /* Process an event, which can update packets-in-flight not trivially.
3038 * Main goal of this function is to calculate new estimate for left_out,
3039 * taking into account both packets sitting in receiver's buffer and
3040 * packets lost by network.
3041 *
3042 * Besides that it updates the congestion state when packet loss or ECN
3043 * is detected. But it does not reduce the cwnd, it is done by the
3044 * congestion control later.
3045 *
3046 * It does _not_ decide what to send, it is made in function
3047 * tcp_xmit_retransmit_queue().
3048 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3049 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3050 int num_dupack, int *ack_flag, int *rexmit)
3051 {
3052 struct inet_connection_sock *icsk = inet_csk(sk);
3053 struct tcp_sock *tp = tcp_sk(sk);
3054 int fast_rexmit = 0, flag = *ack_flag;
3055 bool ece_ack = flag & FLAG_ECE;
3056 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3057 tcp_force_fast_retransmit(sk));
3058
3059 if (!tp->packets_out && tp->sacked_out)
3060 tp->sacked_out = 0;
3061
3062 /* Now state machine starts.
3063 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3064 if (ece_ack)
3065 tp->prior_ssthresh = 0;
3066
3067 /* B. In all the states check for reneging SACKs. */
3068 if (tcp_check_sack_reneging(sk, ack_flag))
3069 return;
3070
3071 /* C. Check consistency of the current state. */
3072 tcp_verify_left_out(tp);
3073
3074 /* D. Check state exit conditions. State can be terminated
3075 * when high_seq is ACKed. */
3076 if (icsk->icsk_ca_state == TCP_CA_Open) {
3077 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3078 tp->retrans_stamp = 0;
3079 } else if (!before(tp->snd_una, tp->high_seq)) {
3080 switch (icsk->icsk_ca_state) {
3081 case TCP_CA_CWR:
3082 /* CWR is to be held something *above* high_seq
3083 * is ACKed for CWR bit to reach receiver. */
3084 if (tp->snd_una != tp->high_seq) {
3085 tcp_end_cwnd_reduction(sk);
3086 tcp_set_ca_state(sk, TCP_CA_Open);
3087 }
3088 break;
3089
3090 case TCP_CA_Recovery:
3091 if (tcp_is_reno(tp))
3092 tcp_reset_reno_sack(tp);
3093 if (tcp_try_undo_recovery(sk))
3094 return;
3095 tcp_end_cwnd_reduction(sk);
3096 break;
3097 }
3098 }
3099
3100 /* E. Process state. */
3101 switch (icsk->icsk_ca_state) {
3102 case TCP_CA_Recovery:
3103 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3104 if (tcp_is_reno(tp))
3105 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3106 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3107 return;
3108
3109 if (tcp_try_undo_dsack(sk))
3110 tcp_try_to_open(sk, flag);
3111
3112 tcp_identify_packet_loss(sk, ack_flag);
3113 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3114 if (!tcp_time_to_recover(sk, flag))
3115 return;
3116 /* Undo reverts the recovery state. If loss is evident,
3117 * starts a new recovery (e.g. reordering then loss);
3118 */
3119 tcp_enter_recovery(sk, ece_ack);
3120 }
3121 break;
3122 case TCP_CA_Loss:
3123 tcp_process_loss(sk, flag, num_dupack, rexmit);
3124 if (icsk->icsk_ca_state != TCP_CA_Loss)
3125 tcp_update_rto_time(tp);
3126 tcp_identify_packet_loss(sk, ack_flag);
3127 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3128 (*ack_flag & FLAG_LOST_RETRANS)))
3129 return;
3130 /* Change state if cwnd is undone or retransmits are lost */
3131 fallthrough;
3132 default:
3133 if (tcp_is_reno(tp)) {
3134 if (flag & FLAG_SND_UNA_ADVANCED)
3135 tcp_reset_reno_sack(tp);
3136 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3137 }
3138
3139 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3140 tcp_try_undo_dsack(sk);
3141
3142 tcp_identify_packet_loss(sk, ack_flag);
3143 if (!tcp_time_to_recover(sk, flag)) {
3144 tcp_try_to_open(sk, flag);
3145 return;
3146 }
3147
3148 /* MTU probe failure: don't reduce cwnd */
3149 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3150 icsk->icsk_mtup.probe_size &&
3151 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3152 tcp_mtup_probe_failed(sk);
3153 /* Restores the reduction we did in tcp_mtup_probe() */
3154 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3155 tcp_simple_retransmit(sk);
3156 return;
3157 }
3158
3159 /* Otherwise enter Recovery state */
3160 tcp_enter_recovery(sk, ece_ack);
3161 fast_rexmit = 1;
3162 }
3163
3164 if (!tcp_is_rack(sk) && do_lost)
3165 tcp_update_scoreboard(sk, fast_rexmit);
3166 *rexmit = REXMIT_LOST;
3167 }
3168
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3169 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3170 {
3171 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3172 struct tcp_sock *tp = tcp_sk(sk);
3173
3174 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3175 /* If the remote keeps returning delayed ACKs, eventually
3176 * the min filter would pick it up and overestimate the
3177 * prop. delay when it expires. Skip suspected delayed ACKs.
3178 */
3179 return;
3180 }
3181 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3182 rtt_us ? : jiffies_to_usecs(1));
3183 }
3184
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3185 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3186 long seq_rtt_us, long sack_rtt_us,
3187 long ca_rtt_us, struct rate_sample *rs)
3188 {
3189 const struct tcp_sock *tp = tcp_sk(sk);
3190
3191 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3192 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3193 * Karn's algorithm forbids taking RTT if some retransmitted data
3194 * is acked (RFC6298).
3195 */
3196 if (seq_rtt_us < 0)
3197 seq_rtt_us = sack_rtt_us;
3198
3199 /* RTTM Rule: A TSecr value received in a segment is used to
3200 * update the averaged RTT measurement only if the segment
3201 * acknowledges some new data, i.e., only if it advances the
3202 * left edge of the send window.
3203 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3204 */
3205 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3206 flag & FLAG_ACKED) {
3207 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3208
3209 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3210 if (!delta)
3211 delta = 1;
3212 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3213 ca_rtt_us = seq_rtt_us;
3214 }
3215 }
3216 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3217 if (seq_rtt_us < 0)
3218 return false;
3219
3220 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3221 * always taken together with ACK, SACK, or TS-opts. Any negative
3222 * values will be skipped with the seq_rtt_us < 0 check above.
3223 */
3224 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3225 tcp_rtt_estimator(sk, seq_rtt_us);
3226 tcp_set_rto(sk);
3227
3228 /* RFC6298: only reset backoff on valid RTT measurement. */
3229 inet_csk(sk)->icsk_backoff = 0;
3230 return true;
3231 }
3232
3233 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3234 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3235 {
3236 struct rate_sample rs;
3237 long rtt_us = -1L;
3238
3239 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3240 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3241
3242 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3243 }
3244
3245
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3246 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3247 {
3248 const struct inet_connection_sock *icsk = inet_csk(sk);
3249
3250 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3251 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3252 }
3253
3254 /* Restart timer after forward progress on connection.
3255 * RFC2988 recommends to restart timer to now+rto.
3256 */
tcp_rearm_rto(struct sock * sk)3257 void tcp_rearm_rto(struct sock *sk)
3258 {
3259 const struct inet_connection_sock *icsk = inet_csk(sk);
3260 struct tcp_sock *tp = tcp_sk(sk);
3261
3262 /* If the retrans timer is currently being used by Fast Open
3263 * for SYN-ACK retrans purpose, stay put.
3264 */
3265 if (rcu_access_pointer(tp->fastopen_rsk))
3266 return;
3267
3268 if (!tp->packets_out) {
3269 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3270 } else {
3271 u32 rto = inet_csk(sk)->icsk_rto;
3272 /* Offset the time elapsed after installing regular RTO */
3273 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3274 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3275 s64 delta_us = tcp_rto_delta_us(sk);
3276 /* delta_us may not be positive if the socket is locked
3277 * when the retrans timer fires and is rescheduled.
3278 */
3279 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3280 }
3281 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3282 TCP_RTO_MAX);
3283 }
3284 }
3285
3286 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3287 static void tcp_set_xmit_timer(struct sock *sk)
3288 {
3289 if (!tcp_schedule_loss_probe(sk, true))
3290 tcp_rearm_rto(sk);
3291 }
3292
3293 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3294 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3295 {
3296 struct tcp_sock *tp = tcp_sk(sk);
3297 u32 packets_acked;
3298
3299 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3300
3301 packets_acked = tcp_skb_pcount(skb);
3302 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3303 return 0;
3304 packets_acked -= tcp_skb_pcount(skb);
3305
3306 if (packets_acked) {
3307 BUG_ON(tcp_skb_pcount(skb) == 0);
3308 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3309 }
3310
3311 return packets_acked;
3312 }
3313
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3314 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3315 const struct sk_buff *ack_skb, u32 prior_snd_una)
3316 {
3317 const struct skb_shared_info *shinfo;
3318
3319 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3320 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3321 return;
3322
3323 shinfo = skb_shinfo(skb);
3324 if (!before(shinfo->tskey, prior_snd_una) &&
3325 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3326 tcp_skb_tsorted_save(skb) {
3327 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3328 } tcp_skb_tsorted_restore(skb);
3329 }
3330 }
3331
3332 /* Remove acknowledged frames from the retransmission queue. If our packet
3333 * is before the ack sequence we can discard it as it's confirmed to have
3334 * arrived at the other end.
3335 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3336 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3337 u32 prior_fack, u32 prior_snd_una,
3338 struct tcp_sacktag_state *sack, bool ece_ack)
3339 {
3340 const struct inet_connection_sock *icsk = inet_csk(sk);
3341 u64 first_ackt, last_ackt;
3342 struct tcp_sock *tp = tcp_sk(sk);
3343 u32 prior_sacked = tp->sacked_out;
3344 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3345 struct sk_buff *skb, *next;
3346 bool fully_acked = true;
3347 long sack_rtt_us = -1L;
3348 long seq_rtt_us = -1L;
3349 long ca_rtt_us = -1L;
3350 u32 pkts_acked = 0;
3351 bool rtt_update;
3352 int flag = 0;
3353
3354 first_ackt = 0;
3355
3356 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3357 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3358 const u32 start_seq = scb->seq;
3359 u8 sacked = scb->sacked;
3360 u32 acked_pcount;
3361
3362 /* Determine how many packets and what bytes were acked, tso and else */
3363 if (after(scb->end_seq, tp->snd_una)) {
3364 if (tcp_skb_pcount(skb) == 1 ||
3365 !after(tp->snd_una, scb->seq))
3366 break;
3367
3368 acked_pcount = tcp_tso_acked(sk, skb);
3369 if (!acked_pcount)
3370 break;
3371 fully_acked = false;
3372 } else {
3373 acked_pcount = tcp_skb_pcount(skb);
3374 }
3375
3376 if (unlikely(sacked & TCPCB_RETRANS)) {
3377 if (sacked & TCPCB_SACKED_RETRANS)
3378 tp->retrans_out -= acked_pcount;
3379 flag |= FLAG_RETRANS_DATA_ACKED;
3380 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3381 last_ackt = tcp_skb_timestamp_us(skb);
3382 WARN_ON_ONCE(last_ackt == 0);
3383 if (!first_ackt)
3384 first_ackt = last_ackt;
3385
3386 if (before(start_seq, reord))
3387 reord = start_seq;
3388 if (!after(scb->end_seq, tp->high_seq))
3389 flag |= FLAG_ORIG_SACK_ACKED;
3390 }
3391
3392 if (sacked & TCPCB_SACKED_ACKED) {
3393 tp->sacked_out -= acked_pcount;
3394 } else if (tcp_is_sack(tp)) {
3395 tcp_count_delivered(tp, acked_pcount, ece_ack);
3396 if (!tcp_skb_spurious_retrans(tp, skb))
3397 tcp_rack_advance(tp, sacked, scb->end_seq,
3398 tcp_skb_timestamp_us(skb));
3399 }
3400 if (sacked & TCPCB_LOST)
3401 tp->lost_out -= acked_pcount;
3402
3403 tp->packets_out -= acked_pcount;
3404 pkts_acked += acked_pcount;
3405 tcp_rate_skb_delivered(sk, skb, sack->rate);
3406
3407 /* Initial outgoing SYN's get put onto the write_queue
3408 * just like anything else we transmit. It is not
3409 * true data, and if we misinform our callers that
3410 * this ACK acks real data, we will erroneously exit
3411 * connection startup slow start one packet too
3412 * quickly. This is severely frowned upon behavior.
3413 */
3414 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3415 flag |= FLAG_DATA_ACKED;
3416 } else {
3417 flag |= FLAG_SYN_ACKED;
3418 tp->retrans_stamp = 0;
3419 }
3420
3421 if (!fully_acked)
3422 break;
3423
3424 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3425
3426 next = skb_rb_next(skb);
3427 if (unlikely(skb == tp->retransmit_skb_hint))
3428 tp->retransmit_skb_hint = NULL;
3429 if (unlikely(skb == tp->lost_skb_hint))
3430 tp->lost_skb_hint = NULL;
3431 tcp_highest_sack_replace(sk, skb, next);
3432 tcp_rtx_queue_unlink_and_free(skb, sk);
3433 }
3434
3435 if (!skb)
3436 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3437
3438 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3439 tp->snd_up = tp->snd_una;
3440
3441 if (skb) {
3442 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3443 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3444 flag |= FLAG_SACK_RENEGING;
3445 }
3446
3447 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3448 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3449 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3450
3451 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3452 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3453 sack->rate->prior_delivered + 1 == tp->delivered &&
3454 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3455 /* Conservatively mark a delayed ACK. It's typically
3456 * from a lone runt packet over the round trip to
3457 * a receiver w/o out-of-order or CE events.
3458 */
3459 flag |= FLAG_ACK_MAYBE_DELAYED;
3460 }
3461 }
3462 if (sack->first_sackt) {
3463 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3464 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3465 }
3466 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3467 ca_rtt_us, sack->rate);
3468
3469 if (flag & FLAG_ACKED) {
3470 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3471 if (unlikely(icsk->icsk_mtup.probe_size &&
3472 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3473 tcp_mtup_probe_success(sk);
3474 }
3475
3476 if (tcp_is_reno(tp)) {
3477 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3478
3479 /* If any of the cumulatively ACKed segments was
3480 * retransmitted, non-SACK case cannot confirm that
3481 * progress was due to original transmission due to
3482 * lack of TCPCB_SACKED_ACKED bits even if some of
3483 * the packets may have been never retransmitted.
3484 */
3485 if (flag & FLAG_RETRANS_DATA_ACKED)
3486 flag &= ~FLAG_ORIG_SACK_ACKED;
3487 } else {
3488 int delta;
3489
3490 /* Non-retransmitted hole got filled? That's reordering */
3491 if (before(reord, prior_fack))
3492 tcp_check_sack_reordering(sk, reord, 0);
3493
3494 delta = prior_sacked - tp->sacked_out;
3495 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3496 }
3497 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3498 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3499 tcp_skb_timestamp_us(skb))) {
3500 /* Do not re-arm RTO if the sack RTT is measured from data sent
3501 * after when the head was last (re)transmitted. Otherwise the
3502 * timeout may continue to extend in loss recovery.
3503 */
3504 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3505 }
3506
3507 if (icsk->icsk_ca_ops->pkts_acked) {
3508 struct ack_sample sample = { .pkts_acked = pkts_acked,
3509 .rtt_us = sack->rate->rtt_us };
3510
3511 sample.in_flight = tp->mss_cache *
3512 (tp->delivered - sack->rate->prior_delivered);
3513 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3514 }
3515
3516 #if FASTRETRANS_DEBUG > 0
3517 WARN_ON((int)tp->sacked_out < 0);
3518 WARN_ON((int)tp->lost_out < 0);
3519 WARN_ON((int)tp->retrans_out < 0);
3520 if (!tp->packets_out && tcp_is_sack(tp)) {
3521 icsk = inet_csk(sk);
3522 if (tp->lost_out) {
3523 pr_debug("Leak l=%u %d\n",
3524 tp->lost_out, icsk->icsk_ca_state);
3525 tp->lost_out = 0;
3526 }
3527 if (tp->sacked_out) {
3528 pr_debug("Leak s=%u %d\n",
3529 tp->sacked_out, icsk->icsk_ca_state);
3530 tp->sacked_out = 0;
3531 }
3532 if (tp->retrans_out) {
3533 pr_debug("Leak r=%u %d\n",
3534 tp->retrans_out, icsk->icsk_ca_state);
3535 tp->retrans_out = 0;
3536 }
3537 }
3538 #endif
3539 return flag;
3540 }
3541
tcp_ack_probe(struct sock * sk)3542 static void tcp_ack_probe(struct sock *sk)
3543 {
3544 struct inet_connection_sock *icsk = inet_csk(sk);
3545 struct sk_buff *head = tcp_send_head(sk);
3546 const struct tcp_sock *tp = tcp_sk(sk);
3547
3548 /* Was it a usable window open? */
3549 if (!head)
3550 return;
3551 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3552 icsk->icsk_backoff = 0;
3553 icsk->icsk_probes_tstamp = 0;
3554 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3555 /* Socket must be waked up by subsequent tcp_data_snd_check().
3556 * This function is not for random using!
3557 */
3558 } else {
3559 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3560
3561 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3562 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3563 }
3564 }
3565
tcp_ack_is_dubious(const struct sock * sk,const int flag)3566 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3567 {
3568 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3569 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3570 }
3571
3572 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3573 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3574 {
3575 /* If reordering is high then always grow cwnd whenever data is
3576 * delivered regardless of its ordering. Otherwise stay conservative
3577 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3578 * new SACK or ECE mark may first advance cwnd here and later reduce
3579 * cwnd in tcp_fastretrans_alert() based on more states.
3580 */
3581 if (tcp_sk(sk)->reordering >
3582 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3583 return flag & FLAG_FORWARD_PROGRESS;
3584
3585 return flag & FLAG_DATA_ACKED;
3586 }
3587
3588 /* The "ultimate" congestion control function that aims to replace the rigid
3589 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3590 * It's called toward the end of processing an ACK with precise rate
3591 * information. All transmission or retransmission are delayed afterwards.
3592 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3593 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3594 int flag, const struct rate_sample *rs)
3595 {
3596 const struct inet_connection_sock *icsk = inet_csk(sk);
3597
3598 if (icsk->icsk_ca_ops->cong_control) {
3599 icsk->icsk_ca_ops->cong_control(sk, rs);
3600 return;
3601 }
3602
3603 if (tcp_in_cwnd_reduction(sk)) {
3604 /* Reduce cwnd if state mandates */
3605 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3606 } else if (tcp_may_raise_cwnd(sk, flag)) {
3607 /* Advance cwnd if state allows */
3608 tcp_cong_avoid(sk, ack, acked_sacked);
3609 }
3610 tcp_update_pacing_rate(sk);
3611 }
3612
3613 /* Check that window update is acceptable.
3614 * The function assumes that snd_una<=ack<=snd_next.
3615 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3616 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3617 const u32 ack, const u32 ack_seq,
3618 const u32 nwin)
3619 {
3620 return after(ack, tp->snd_una) ||
3621 after(ack_seq, tp->snd_wl1) ||
3622 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3623 }
3624
3625 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3626 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3627 {
3628 u32 delta = ack - tp->snd_una;
3629
3630 sock_owned_by_me((struct sock *)tp);
3631 tp->bytes_acked += delta;
3632 tp->snd_una = ack;
3633 }
3634
3635 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3636 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3637 {
3638 u32 delta = seq - tp->rcv_nxt;
3639
3640 sock_owned_by_me((struct sock *)tp);
3641 tp->bytes_received += delta;
3642 WRITE_ONCE(tp->rcv_nxt, seq);
3643 }
3644
3645 /* Update our send window.
3646 *
3647 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3648 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3649 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3650 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3651 u32 ack_seq)
3652 {
3653 struct tcp_sock *tp = tcp_sk(sk);
3654 int flag = 0;
3655 u32 nwin = ntohs(tcp_hdr(skb)->window);
3656
3657 if (likely(!tcp_hdr(skb)->syn))
3658 nwin <<= tp->rx_opt.snd_wscale;
3659
3660 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3661 flag |= FLAG_WIN_UPDATE;
3662 tcp_update_wl(tp, ack_seq);
3663
3664 if (tp->snd_wnd != nwin) {
3665 tp->snd_wnd = nwin;
3666
3667 /* Note, it is the only place, where
3668 * fast path is recovered for sending TCP.
3669 */
3670 tp->pred_flags = 0;
3671 tcp_fast_path_check(sk);
3672
3673 if (!tcp_write_queue_empty(sk))
3674 tcp_slow_start_after_idle_check(sk);
3675
3676 if (nwin > tp->max_window) {
3677 tp->max_window = nwin;
3678 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3679 }
3680 }
3681 }
3682
3683 tcp_snd_una_update(tp, ack);
3684
3685 return flag;
3686 }
3687
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3688 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3689 u32 *last_oow_ack_time)
3690 {
3691 /* Paired with the WRITE_ONCE() in this function. */
3692 u32 val = READ_ONCE(*last_oow_ack_time);
3693
3694 if (val) {
3695 s32 elapsed = (s32)(tcp_jiffies32 - val);
3696
3697 if (0 <= elapsed &&
3698 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3699 NET_INC_STATS(net, mib_idx);
3700 return true; /* rate-limited: don't send yet! */
3701 }
3702 }
3703
3704 /* Paired with the prior READ_ONCE() and with itself,
3705 * as we might be lockless.
3706 */
3707 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3708
3709 return false; /* not rate-limited: go ahead, send dupack now! */
3710 }
3711
3712 /* Return true if we're currently rate-limiting out-of-window ACKs and
3713 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3714 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3715 * attacks that send repeated SYNs or ACKs for the same connection. To
3716 * do this, we do not send a duplicate SYNACK or ACK if the remote
3717 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3718 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3719 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3720 int mib_idx, u32 *last_oow_ack_time)
3721 {
3722 /* Data packets without SYNs are not likely part of an ACK loop. */
3723 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3724 !tcp_hdr(skb)->syn)
3725 return false;
3726
3727 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3728 }
3729
3730 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3731 static void tcp_send_challenge_ack(struct sock *sk)
3732 {
3733 struct tcp_sock *tp = tcp_sk(sk);
3734 struct net *net = sock_net(sk);
3735 u32 count, now, ack_limit;
3736
3737 /* First check our per-socket dupack rate limit. */
3738 if (__tcp_oow_rate_limited(net,
3739 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3740 &tp->last_oow_ack_time))
3741 return;
3742
3743 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3744 if (ack_limit == INT_MAX)
3745 goto send_ack;
3746
3747 /* Then check host-wide RFC 5961 rate limit. */
3748 now = jiffies / HZ;
3749 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3750 u32 half = (ack_limit + 1) >> 1;
3751
3752 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3753 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3754 get_random_u32_inclusive(half, ack_limit + half - 1));
3755 }
3756 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3757 if (count > 0) {
3758 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3759 send_ack:
3760 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3761 tcp_send_ack(sk);
3762 }
3763 }
3764
tcp_store_ts_recent(struct tcp_sock * tp)3765 static void tcp_store_ts_recent(struct tcp_sock *tp)
3766 {
3767 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3768 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3769 }
3770
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3771 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3772 {
3773 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3774 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3775 * extra check below makes sure this can only happen
3776 * for pure ACK frames. -DaveM
3777 *
3778 * Not only, also it occurs for expired timestamps.
3779 */
3780
3781 if (tcp_paws_check(&tp->rx_opt, 0))
3782 tcp_store_ts_recent(tp);
3783 }
3784 }
3785
3786 /* This routine deals with acks during a TLP episode and ends an episode by
3787 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3788 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3789 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3790 {
3791 struct tcp_sock *tp = tcp_sk(sk);
3792
3793 if (before(ack, tp->tlp_high_seq))
3794 return;
3795
3796 if (!tp->tlp_retrans) {
3797 /* TLP of new data has been acknowledged */
3798 tp->tlp_high_seq = 0;
3799 } else if (flag & FLAG_DSACK_TLP) {
3800 /* This DSACK means original and TLP probe arrived; no loss */
3801 tp->tlp_high_seq = 0;
3802 } else if (after(ack, tp->tlp_high_seq)) {
3803 /* ACK advances: there was a loss, so reduce cwnd. Reset
3804 * tlp_high_seq in tcp_init_cwnd_reduction()
3805 */
3806 tcp_init_cwnd_reduction(sk);
3807 tcp_set_ca_state(sk, TCP_CA_CWR);
3808 tcp_end_cwnd_reduction(sk);
3809 tcp_try_keep_open(sk);
3810 NET_INC_STATS(sock_net(sk),
3811 LINUX_MIB_TCPLOSSPROBERECOVERY);
3812 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3813 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3814 /* Pure dupack: original and TLP probe arrived; no loss */
3815 tp->tlp_high_seq = 0;
3816 }
3817 }
3818
tcp_in_ack_event(struct sock * sk,u32 flags)3819 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3820 {
3821 const struct inet_connection_sock *icsk = inet_csk(sk);
3822
3823 if (icsk->icsk_ca_ops->in_ack_event)
3824 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3825 }
3826
3827 /* Congestion control has updated the cwnd already. So if we're in
3828 * loss recovery then now we do any new sends (for FRTO) or
3829 * retransmits (for CA_Loss or CA_recovery) that make sense.
3830 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3831 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3832 {
3833 struct tcp_sock *tp = tcp_sk(sk);
3834
3835 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3836 return;
3837
3838 if (unlikely(rexmit == REXMIT_NEW)) {
3839 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3840 TCP_NAGLE_OFF);
3841 if (after(tp->snd_nxt, tp->high_seq))
3842 return;
3843 tp->frto = 0;
3844 }
3845 tcp_xmit_retransmit_queue(sk);
3846 }
3847
3848 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3849 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3850 {
3851 const struct net *net = sock_net(sk);
3852 struct tcp_sock *tp = tcp_sk(sk);
3853 u32 delivered;
3854
3855 delivered = tp->delivered - prior_delivered;
3856 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3857 if (flag & FLAG_ECE)
3858 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3859
3860 return delivered;
3861 }
3862
3863 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3864 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3865 {
3866 struct inet_connection_sock *icsk = inet_csk(sk);
3867 struct tcp_sock *tp = tcp_sk(sk);
3868 struct tcp_sacktag_state sack_state;
3869 struct rate_sample rs = { .prior_delivered = 0 };
3870 u32 prior_snd_una = tp->snd_una;
3871 bool is_sack_reneg = tp->is_sack_reneg;
3872 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3873 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3874 int num_dupack = 0;
3875 int prior_packets = tp->packets_out;
3876 u32 delivered = tp->delivered;
3877 u32 lost = tp->lost;
3878 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3879 u32 prior_fack;
3880
3881 sack_state.first_sackt = 0;
3882 sack_state.rate = &rs;
3883 sack_state.sack_delivered = 0;
3884
3885 /* We very likely will need to access rtx queue. */
3886 prefetch(sk->tcp_rtx_queue.rb_node);
3887
3888 /* If the ack is older than previous acks
3889 * then we can probably ignore it.
3890 */
3891 if (before(ack, prior_snd_una)) {
3892 u32 max_window;
3893
3894 /* do not accept ACK for bytes we never sent. */
3895 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3896 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3897 if (before(ack, prior_snd_una - max_window)) {
3898 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3899 tcp_send_challenge_ack(sk);
3900 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3901 }
3902 goto old_ack;
3903 }
3904
3905 /* If the ack includes data we haven't sent yet, discard
3906 * this segment (RFC793 Section 3.9).
3907 */
3908 if (after(ack, tp->snd_nxt))
3909 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3910
3911 if (after(ack, prior_snd_una)) {
3912 flag |= FLAG_SND_UNA_ADVANCED;
3913 icsk->icsk_retransmits = 0;
3914
3915 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3916 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3917 if (icsk->icsk_clean_acked)
3918 icsk->icsk_clean_acked(sk, ack);
3919 #endif
3920 }
3921
3922 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3923 rs.prior_in_flight = tcp_packets_in_flight(tp);
3924
3925 /* ts_recent update must be made after we are sure that the packet
3926 * is in window.
3927 */
3928 if (flag & FLAG_UPDATE_TS_RECENT)
3929 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3930
3931 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3932 FLAG_SND_UNA_ADVANCED) {
3933 /* Window is constant, pure forward advance.
3934 * No more checks are required.
3935 * Note, we use the fact that SND.UNA>=SND.WL2.
3936 */
3937 tcp_update_wl(tp, ack_seq);
3938 tcp_snd_una_update(tp, ack);
3939 flag |= FLAG_WIN_UPDATE;
3940
3941 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3942
3943 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3944 } else {
3945 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3946
3947 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3948 flag |= FLAG_DATA;
3949 else
3950 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3951
3952 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3953
3954 if (TCP_SKB_CB(skb)->sacked)
3955 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3956 &sack_state);
3957
3958 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3959 flag |= FLAG_ECE;
3960 ack_ev_flags |= CA_ACK_ECE;
3961 }
3962
3963 if (sack_state.sack_delivered)
3964 tcp_count_delivered(tp, sack_state.sack_delivered,
3965 flag & FLAG_ECE);
3966
3967 if (flag & FLAG_WIN_UPDATE)
3968 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3969
3970 tcp_in_ack_event(sk, ack_ev_flags);
3971 }
3972
3973 /* This is a deviation from RFC3168 since it states that:
3974 * "When the TCP data sender is ready to set the CWR bit after reducing
3975 * the congestion window, it SHOULD set the CWR bit only on the first
3976 * new data packet that it transmits."
3977 * We accept CWR on pure ACKs to be more robust
3978 * with widely-deployed TCP implementations that do this.
3979 */
3980 tcp_ecn_accept_cwr(sk, skb);
3981
3982 /* We passed data and got it acked, remove any soft error
3983 * log. Something worked...
3984 */
3985 WRITE_ONCE(sk->sk_err_soft, 0);
3986 icsk->icsk_probes_out = 0;
3987 tp->rcv_tstamp = tcp_jiffies32;
3988 if (!prior_packets)
3989 goto no_queue;
3990
3991 /* See if we can take anything off of the retransmit queue. */
3992 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3993 &sack_state, flag & FLAG_ECE);
3994
3995 tcp_rack_update_reo_wnd(sk, &rs);
3996
3997 if (tp->tlp_high_seq)
3998 tcp_process_tlp_ack(sk, ack, flag);
3999
4000 if (tcp_ack_is_dubious(sk, flag)) {
4001 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4002 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4003 num_dupack = 1;
4004 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4005 if (!(flag & FLAG_DATA))
4006 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4007 }
4008 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4009 &rexmit);
4010 }
4011
4012 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4013 if (flag & FLAG_SET_XMIT_TIMER)
4014 tcp_set_xmit_timer(sk);
4015
4016 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4017 sk_dst_confirm(sk);
4018
4019 delivered = tcp_newly_delivered(sk, delivered, flag);
4020 lost = tp->lost - lost; /* freshly marked lost */
4021 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4022 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4023 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4024 tcp_xmit_recovery(sk, rexmit);
4025 return 1;
4026
4027 no_queue:
4028 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4029 if (flag & FLAG_DSACKING_ACK) {
4030 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4031 &rexmit);
4032 tcp_newly_delivered(sk, delivered, flag);
4033 }
4034 /* If this ack opens up a zero window, clear backoff. It was
4035 * being used to time the probes, and is probably far higher than
4036 * it needs to be for normal retransmission.
4037 */
4038 tcp_ack_probe(sk);
4039
4040 if (tp->tlp_high_seq)
4041 tcp_process_tlp_ack(sk, ack, flag);
4042 return 1;
4043
4044 old_ack:
4045 /* If data was SACKed, tag it and see if we should send more data.
4046 * If data was DSACKed, see if we can undo a cwnd reduction.
4047 */
4048 if (TCP_SKB_CB(skb)->sacked) {
4049 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4050 &sack_state);
4051 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4052 &rexmit);
4053 tcp_newly_delivered(sk, delivered, flag);
4054 tcp_xmit_recovery(sk, rexmit);
4055 }
4056
4057 return 0;
4058 }
4059
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4060 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4061 bool syn, struct tcp_fastopen_cookie *foc,
4062 bool exp_opt)
4063 {
4064 /* Valid only in SYN or SYN-ACK with an even length. */
4065 if (!foc || !syn || len < 0 || (len & 1))
4066 return;
4067
4068 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4069 len <= TCP_FASTOPEN_COOKIE_MAX)
4070 memcpy(foc->val, cookie, len);
4071 else if (len != 0)
4072 len = -1;
4073 foc->len = len;
4074 foc->exp = exp_opt;
4075 }
4076
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4077 static bool smc_parse_options(const struct tcphdr *th,
4078 struct tcp_options_received *opt_rx,
4079 const unsigned char *ptr,
4080 int opsize)
4081 {
4082 #if IS_ENABLED(CONFIG_SMC)
4083 if (static_branch_unlikely(&tcp_have_smc)) {
4084 if (th->syn && !(opsize & 1) &&
4085 opsize >= TCPOLEN_EXP_SMC_BASE &&
4086 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4087 opt_rx->smc_ok = 1;
4088 return true;
4089 }
4090 }
4091 #endif
4092 return false;
4093 }
4094
4095 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4096 * value on success.
4097 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4098 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4099 {
4100 const unsigned char *ptr = (const unsigned char *)(th + 1);
4101 int length = (th->doff * 4) - sizeof(struct tcphdr);
4102 u16 mss = 0;
4103
4104 while (length > 0) {
4105 int opcode = *ptr++;
4106 int opsize;
4107
4108 switch (opcode) {
4109 case TCPOPT_EOL:
4110 return mss;
4111 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4112 length--;
4113 continue;
4114 default:
4115 if (length < 2)
4116 return mss;
4117 opsize = *ptr++;
4118 if (opsize < 2) /* "silly options" */
4119 return mss;
4120 if (opsize > length)
4121 return mss; /* fail on partial options */
4122 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4123 u16 in_mss = get_unaligned_be16(ptr);
4124
4125 if (in_mss) {
4126 if (user_mss && user_mss < in_mss)
4127 in_mss = user_mss;
4128 mss = in_mss;
4129 }
4130 }
4131 ptr += opsize - 2;
4132 length -= opsize;
4133 }
4134 }
4135 return mss;
4136 }
4137 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4138
4139 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4140 * But, this can also be called on packets in the established flow when
4141 * the fast version below fails.
4142 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4143 void tcp_parse_options(const struct net *net,
4144 const struct sk_buff *skb,
4145 struct tcp_options_received *opt_rx, int estab,
4146 struct tcp_fastopen_cookie *foc)
4147 {
4148 const unsigned char *ptr;
4149 const struct tcphdr *th = tcp_hdr(skb);
4150 int length = (th->doff * 4) - sizeof(struct tcphdr);
4151
4152 ptr = (const unsigned char *)(th + 1);
4153 opt_rx->saw_tstamp = 0;
4154 opt_rx->saw_unknown = 0;
4155
4156 while (length > 0) {
4157 int opcode = *ptr++;
4158 int opsize;
4159
4160 switch (opcode) {
4161 case TCPOPT_EOL:
4162 return;
4163 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4164 length--;
4165 continue;
4166 default:
4167 if (length < 2)
4168 return;
4169 opsize = *ptr++;
4170 if (opsize < 2) /* "silly options" */
4171 return;
4172 if (opsize > length)
4173 return; /* don't parse partial options */
4174 switch (opcode) {
4175 case TCPOPT_MSS:
4176 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4177 u16 in_mss = get_unaligned_be16(ptr);
4178 if (in_mss) {
4179 if (opt_rx->user_mss &&
4180 opt_rx->user_mss < in_mss)
4181 in_mss = opt_rx->user_mss;
4182 opt_rx->mss_clamp = in_mss;
4183 }
4184 }
4185 break;
4186 case TCPOPT_WINDOW:
4187 if (opsize == TCPOLEN_WINDOW && th->syn &&
4188 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4189 __u8 snd_wscale = *(__u8 *)ptr;
4190 opt_rx->wscale_ok = 1;
4191 if (snd_wscale > TCP_MAX_WSCALE) {
4192 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4193 __func__,
4194 snd_wscale,
4195 TCP_MAX_WSCALE);
4196 snd_wscale = TCP_MAX_WSCALE;
4197 }
4198 opt_rx->snd_wscale = snd_wscale;
4199 }
4200 break;
4201 case TCPOPT_TIMESTAMP:
4202 if ((opsize == TCPOLEN_TIMESTAMP) &&
4203 ((estab && opt_rx->tstamp_ok) ||
4204 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4205 opt_rx->saw_tstamp = 1;
4206 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4207 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4208 }
4209 break;
4210 case TCPOPT_SACK_PERM:
4211 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4212 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4213 opt_rx->sack_ok = TCP_SACK_SEEN;
4214 tcp_sack_reset(opt_rx);
4215 }
4216 break;
4217
4218 case TCPOPT_SACK:
4219 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4220 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4221 opt_rx->sack_ok) {
4222 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4223 }
4224 break;
4225 #ifdef CONFIG_TCP_MD5SIG
4226 case TCPOPT_MD5SIG:
4227 /* The MD5 Hash has already been
4228 * checked (see tcp_v{4,6}_rcv()).
4229 */
4230 break;
4231 #endif
4232 case TCPOPT_FASTOPEN:
4233 tcp_parse_fastopen_option(
4234 opsize - TCPOLEN_FASTOPEN_BASE,
4235 ptr, th->syn, foc, false);
4236 break;
4237
4238 case TCPOPT_EXP:
4239 /* Fast Open option shares code 254 using a
4240 * 16 bits magic number.
4241 */
4242 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4243 get_unaligned_be16(ptr) ==
4244 TCPOPT_FASTOPEN_MAGIC) {
4245 tcp_parse_fastopen_option(opsize -
4246 TCPOLEN_EXP_FASTOPEN_BASE,
4247 ptr + 2, th->syn, foc, true);
4248 break;
4249 }
4250
4251 if (smc_parse_options(th, opt_rx, ptr, opsize))
4252 break;
4253
4254 opt_rx->saw_unknown = 1;
4255 break;
4256
4257 default:
4258 opt_rx->saw_unknown = 1;
4259 }
4260 ptr += opsize-2;
4261 length -= opsize;
4262 }
4263 }
4264 }
4265 EXPORT_SYMBOL(tcp_parse_options);
4266
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4267 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4268 {
4269 const __be32 *ptr = (const __be32 *)(th + 1);
4270
4271 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4272 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4273 tp->rx_opt.saw_tstamp = 1;
4274 ++ptr;
4275 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4276 ++ptr;
4277 if (*ptr)
4278 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4279 else
4280 tp->rx_opt.rcv_tsecr = 0;
4281 return true;
4282 }
4283 return false;
4284 }
4285
4286 /* Fast parse options. This hopes to only see timestamps.
4287 * If it is wrong it falls back on tcp_parse_options().
4288 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4289 static bool tcp_fast_parse_options(const struct net *net,
4290 const struct sk_buff *skb,
4291 const struct tcphdr *th, struct tcp_sock *tp)
4292 {
4293 /* In the spirit of fast parsing, compare doff directly to constant
4294 * values. Because equality is used, short doff can be ignored here.
4295 */
4296 if (th->doff == (sizeof(*th) / 4)) {
4297 tp->rx_opt.saw_tstamp = 0;
4298 return false;
4299 } else if (tp->rx_opt.tstamp_ok &&
4300 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4301 if (tcp_parse_aligned_timestamp(tp, th))
4302 return true;
4303 }
4304
4305 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4306 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4307 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4308
4309 return true;
4310 }
4311
4312 #ifdef CONFIG_TCP_MD5SIG
4313 /*
4314 * Parse MD5 Signature option
4315 */
tcp_parse_md5sig_option(const struct tcphdr * th)4316 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4317 {
4318 int length = (th->doff << 2) - sizeof(*th);
4319 const u8 *ptr = (const u8 *)(th + 1);
4320
4321 /* If not enough data remaining, we can short cut */
4322 while (length >= TCPOLEN_MD5SIG) {
4323 int opcode = *ptr++;
4324 int opsize;
4325
4326 switch (opcode) {
4327 case TCPOPT_EOL:
4328 return NULL;
4329 case TCPOPT_NOP:
4330 length--;
4331 continue;
4332 default:
4333 opsize = *ptr++;
4334 if (opsize < 2 || opsize > length)
4335 return NULL;
4336 if (opcode == TCPOPT_MD5SIG)
4337 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4338 }
4339 ptr += opsize - 2;
4340 length -= opsize;
4341 }
4342 return NULL;
4343 }
4344 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4345 #endif
4346
4347 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4348 *
4349 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4350 * it can pass through stack. So, the following predicate verifies that
4351 * this segment is not used for anything but congestion avoidance or
4352 * fast retransmit. Moreover, we even are able to eliminate most of such
4353 * second order effects, if we apply some small "replay" window (~RTO)
4354 * to timestamp space.
4355 *
4356 * All these measures still do not guarantee that we reject wrapped ACKs
4357 * on networks with high bandwidth, when sequence space is recycled fastly,
4358 * but it guarantees that such events will be very rare and do not affect
4359 * connection seriously. This doesn't look nice, but alas, PAWS is really
4360 * buggy extension.
4361 *
4362 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4363 * states that events when retransmit arrives after original data are rare.
4364 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4365 * the biggest problem on large power networks even with minor reordering.
4366 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4367 * up to bandwidth of 18Gigabit/sec. 8) ]
4368 */
4369
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4370 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4371 {
4372 const struct tcp_sock *tp = tcp_sk(sk);
4373 const struct tcphdr *th = tcp_hdr(skb);
4374 u32 seq = TCP_SKB_CB(skb)->seq;
4375 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4376
4377 return (/* 1. Pure ACK with correct sequence number. */
4378 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4379
4380 /* 2. ... and duplicate ACK. */
4381 ack == tp->snd_una &&
4382
4383 /* 3. ... and does not update window. */
4384 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4385
4386 /* 4. ... and sits in replay window. */
4387 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4388 }
4389
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4390 static inline bool tcp_paws_discard(const struct sock *sk,
4391 const struct sk_buff *skb)
4392 {
4393 const struct tcp_sock *tp = tcp_sk(sk);
4394
4395 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4396 !tcp_disordered_ack(sk, skb);
4397 }
4398
4399 /* Check segment sequence number for validity.
4400 *
4401 * Segment controls are considered valid, if the segment
4402 * fits to the window after truncation to the window. Acceptability
4403 * of data (and SYN, FIN, of course) is checked separately.
4404 * See tcp_data_queue(), for example.
4405 *
4406 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4407 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4408 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4409 * (borrowed from freebsd)
4410 */
4411
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4412 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4413 u32 seq, u32 end_seq)
4414 {
4415 if (before(end_seq, tp->rcv_wup))
4416 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4417
4418 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4419 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4420
4421 return SKB_NOT_DROPPED_YET;
4422 }
4423
4424
tcp_done_with_error(struct sock * sk,int err)4425 void tcp_done_with_error(struct sock *sk, int err)
4426 {
4427 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4428 WRITE_ONCE(sk->sk_err, err);
4429 smp_wmb();
4430
4431 tcp_write_queue_purge(sk);
4432 tcp_done(sk);
4433
4434 if (!sock_flag(sk, SOCK_DEAD))
4435 sk_error_report(sk);
4436 }
4437 EXPORT_SYMBOL(tcp_done_with_error);
4438
4439 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4440 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4441 {
4442 int err;
4443
4444 trace_tcp_receive_reset(sk);
4445
4446 /* mptcp can't tell us to ignore reset pkts,
4447 * so just ignore the return value of mptcp_incoming_options().
4448 */
4449 if (sk_is_mptcp(sk))
4450 mptcp_incoming_options(sk, skb);
4451
4452 /* We want the right error as BSD sees it (and indeed as we do). */
4453 switch (sk->sk_state) {
4454 case TCP_SYN_SENT:
4455 err = ECONNREFUSED;
4456 break;
4457 case TCP_CLOSE_WAIT:
4458 err = EPIPE;
4459 break;
4460 case TCP_CLOSE:
4461 return;
4462 default:
4463 err = ECONNRESET;
4464 }
4465 tcp_done_with_error(sk, err);
4466 }
4467
4468 /*
4469 * Process the FIN bit. This now behaves as it is supposed to work
4470 * and the FIN takes effect when it is validly part of sequence
4471 * space. Not before when we get holes.
4472 *
4473 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4474 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4475 * TIME-WAIT)
4476 *
4477 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4478 * close and we go into CLOSING (and later onto TIME-WAIT)
4479 *
4480 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4481 */
tcp_fin(struct sock * sk)4482 void tcp_fin(struct sock *sk)
4483 {
4484 struct tcp_sock *tp = tcp_sk(sk);
4485
4486 inet_csk_schedule_ack(sk);
4487
4488 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4489 sock_set_flag(sk, SOCK_DONE);
4490
4491 switch (sk->sk_state) {
4492 case TCP_SYN_RECV:
4493 case TCP_ESTABLISHED:
4494 /* Move to CLOSE_WAIT */
4495 tcp_set_state(sk, TCP_CLOSE_WAIT);
4496 inet_csk_enter_pingpong_mode(sk);
4497 break;
4498
4499 case TCP_CLOSE_WAIT:
4500 case TCP_CLOSING:
4501 /* Received a retransmission of the FIN, do
4502 * nothing.
4503 */
4504 break;
4505 case TCP_LAST_ACK:
4506 /* RFC793: Remain in the LAST-ACK state. */
4507 break;
4508
4509 case TCP_FIN_WAIT1:
4510 /* This case occurs when a simultaneous close
4511 * happens, we must ack the received FIN and
4512 * enter the CLOSING state.
4513 */
4514 tcp_send_ack(sk);
4515 tcp_set_state(sk, TCP_CLOSING);
4516 break;
4517 case TCP_FIN_WAIT2:
4518 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4519 tcp_send_ack(sk);
4520 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4521 break;
4522 default:
4523 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4524 * cases we should never reach this piece of code.
4525 */
4526 pr_err("%s: Impossible, sk->sk_state=%d\n",
4527 __func__, sk->sk_state);
4528 break;
4529 }
4530
4531 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4532 * Probably, we should reset in this case. For now drop them.
4533 */
4534 skb_rbtree_purge(&tp->out_of_order_queue);
4535 if (tcp_is_sack(tp))
4536 tcp_sack_reset(&tp->rx_opt);
4537
4538 if (!sock_flag(sk, SOCK_DEAD)) {
4539 sk->sk_state_change(sk);
4540
4541 /* Do not send POLL_HUP for half duplex close. */
4542 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4543 sk->sk_state == TCP_CLOSE)
4544 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4545 else
4546 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4547 }
4548 }
4549
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4550 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4551 u32 end_seq)
4552 {
4553 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4554 if (before(seq, sp->start_seq))
4555 sp->start_seq = seq;
4556 if (after(end_seq, sp->end_seq))
4557 sp->end_seq = end_seq;
4558 return true;
4559 }
4560 return false;
4561 }
4562
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4563 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4564 {
4565 struct tcp_sock *tp = tcp_sk(sk);
4566
4567 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4568 int mib_idx;
4569
4570 if (before(seq, tp->rcv_nxt))
4571 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4572 else
4573 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4574
4575 NET_INC_STATS(sock_net(sk), mib_idx);
4576
4577 tp->rx_opt.dsack = 1;
4578 tp->duplicate_sack[0].start_seq = seq;
4579 tp->duplicate_sack[0].end_seq = end_seq;
4580 }
4581 }
4582
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4583 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4584 {
4585 struct tcp_sock *tp = tcp_sk(sk);
4586
4587 if (!tp->rx_opt.dsack)
4588 tcp_dsack_set(sk, seq, end_seq);
4589 else
4590 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4591 }
4592
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4593 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4594 {
4595 /* When the ACK path fails or drops most ACKs, the sender would
4596 * timeout and spuriously retransmit the same segment repeatedly.
4597 * The receiver remembers and reflects via DSACKs. Leverage the
4598 * DSACK state and change the txhash to re-route speculatively.
4599 */
4600 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4601 sk_rethink_txhash(sk))
4602 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4603 }
4604
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4605 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4606 {
4607 struct tcp_sock *tp = tcp_sk(sk);
4608
4609 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4610 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4611 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4612 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4613
4614 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4615 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4616
4617 tcp_rcv_spurious_retrans(sk, skb);
4618 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4619 end_seq = tp->rcv_nxt;
4620 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4621 }
4622 }
4623
4624 tcp_send_ack(sk);
4625 }
4626
4627 /* These routines update the SACK block as out-of-order packets arrive or
4628 * in-order packets close up the sequence space.
4629 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4630 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4631 {
4632 int this_sack;
4633 struct tcp_sack_block *sp = &tp->selective_acks[0];
4634 struct tcp_sack_block *swalk = sp + 1;
4635
4636 /* See if the recent change to the first SACK eats into
4637 * or hits the sequence space of other SACK blocks, if so coalesce.
4638 */
4639 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4640 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4641 int i;
4642
4643 /* Zap SWALK, by moving every further SACK up by one slot.
4644 * Decrease num_sacks.
4645 */
4646 tp->rx_opt.num_sacks--;
4647 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4648 sp[i] = sp[i + 1];
4649 continue;
4650 }
4651 this_sack++;
4652 swalk++;
4653 }
4654 }
4655
tcp_sack_compress_send_ack(struct sock * sk)4656 void tcp_sack_compress_send_ack(struct sock *sk)
4657 {
4658 struct tcp_sock *tp = tcp_sk(sk);
4659
4660 if (!tp->compressed_ack)
4661 return;
4662
4663 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4664 __sock_put(sk);
4665
4666 /* Since we have to send one ack finally,
4667 * substract one from tp->compressed_ack to keep
4668 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4669 */
4670 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4671 tp->compressed_ack - 1);
4672
4673 tp->compressed_ack = 0;
4674 tcp_send_ack(sk);
4675 }
4676
4677 /* Reasonable amount of sack blocks included in TCP SACK option
4678 * The max is 4, but this becomes 3 if TCP timestamps are there.
4679 * Given that SACK packets might be lost, be conservative and use 2.
4680 */
4681 #define TCP_SACK_BLOCKS_EXPECTED 2
4682
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4683 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4684 {
4685 struct tcp_sock *tp = tcp_sk(sk);
4686 struct tcp_sack_block *sp = &tp->selective_acks[0];
4687 int cur_sacks = tp->rx_opt.num_sacks;
4688 int this_sack;
4689
4690 if (!cur_sacks)
4691 goto new_sack;
4692
4693 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4694 if (tcp_sack_extend(sp, seq, end_seq)) {
4695 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4696 tcp_sack_compress_send_ack(sk);
4697 /* Rotate this_sack to the first one. */
4698 for (; this_sack > 0; this_sack--, sp--)
4699 swap(*sp, *(sp - 1));
4700 if (cur_sacks > 1)
4701 tcp_sack_maybe_coalesce(tp);
4702 return;
4703 }
4704 }
4705
4706 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4707 tcp_sack_compress_send_ack(sk);
4708
4709 /* Could not find an adjacent existing SACK, build a new one,
4710 * put it at the front, and shift everyone else down. We
4711 * always know there is at least one SACK present already here.
4712 *
4713 * If the sack array is full, forget about the last one.
4714 */
4715 if (this_sack >= TCP_NUM_SACKS) {
4716 this_sack--;
4717 tp->rx_opt.num_sacks--;
4718 sp--;
4719 }
4720 for (; this_sack > 0; this_sack--, sp--)
4721 *sp = *(sp - 1);
4722
4723 new_sack:
4724 /* Build the new head SACK, and we're done. */
4725 sp->start_seq = seq;
4726 sp->end_seq = end_seq;
4727 tp->rx_opt.num_sacks++;
4728 }
4729
4730 /* RCV.NXT advances, some SACKs should be eaten. */
4731
tcp_sack_remove(struct tcp_sock * tp)4732 static void tcp_sack_remove(struct tcp_sock *tp)
4733 {
4734 struct tcp_sack_block *sp = &tp->selective_acks[0];
4735 int num_sacks = tp->rx_opt.num_sacks;
4736 int this_sack;
4737
4738 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4739 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4740 tp->rx_opt.num_sacks = 0;
4741 return;
4742 }
4743
4744 for (this_sack = 0; this_sack < num_sacks;) {
4745 /* Check if the start of the sack is covered by RCV.NXT. */
4746 if (!before(tp->rcv_nxt, sp->start_seq)) {
4747 int i;
4748
4749 /* RCV.NXT must cover all the block! */
4750 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4751
4752 /* Zap this SACK, by moving forward any other SACKS. */
4753 for (i = this_sack+1; i < num_sacks; i++)
4754 tp->selective_acks[i-1] = tp->selective_acks[i];
4755 num_sacks--;
4756 continue;
4757 }
4758 this_sack++;
4759 sp++;
4760 }
4761 tp->rx_opt.num_sacks = num_sacks;
4762 }
4763
4764 /**
4765 * tcp_try_coalesce - try to merge skb to prior one
4766 * @sk: socket
4767 * @to: prior buffer
4768 * @from: buffer to add in queue
4769 * @fragstolen: pointer to boolean
4770 *
4771 * Before queueing skb @from after @to, try to merge them
4772 * to reduce overall memory use and queue lengths, if cost is small.
4773 * Packets in ofo or receive queues can stay a long time.
4774 * Better try to coalesce them right now to avoid future collapses.
4775 * Returns true if caller should free @from instead of queueing it
4776 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4777 static bool tcp_try_coalesce(struct sock *sk,
4778 struct sk_buff *to,
4779 struct sk_buff *from,
4780 bool *fragstolen)
4781 {
4782 int delta;
4783
4784 *fragstolen = false;
4785
4786 /* Its possible this segment overlaps with prior segment in queue */
4787 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4788 return false;
4789
4790 if (!mptcp_skb_can_collapse(to, from))
4791 return false;
4792
4793 #ifdef CONFIG_TLS_DEVICE
4794 if (from->decrypted != to->decrypted)
4795 return false;
4796 #endif
4797
4798 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4799 return false;
4800
4801 atomic_add(delta, &sk->sk_rmem_alloc);
4802 sk_mem_charge(sk, delta);
4803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4804 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4805 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4806 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4807
4808 if (TCP_SKB_CB(from)->has_rxtstamp) {
4809 TCP_SKB_CB(to)->has_rxtstamp = true;
4810 to->tstamp = from->tstamp;
4811 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4812 }
4813
4814 return true;
4815 }
4816
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4817 static bool tcp_ooo_try_coalesce(struct sock *sk,
4818 struct sk_buff *to,
4819 struct sk_buff *from,
4820 bool *fragstolen)
4821 {
4822 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4823
4824 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4825 if (res) {
4826 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4827 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4828
4829 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4830 }
4831 return res;
4832 }
4833
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4834 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4835 enum skb_drop_reason reason)
4836 {
4837 sk_drops_add(sk, skb);
4838 kfree_skb_reason(skb, reason);
4839 }
4840
4841 /* This one checks to see if we can put data from the
4842 * out_of_order queue into the receive_queue.
4843 */
tcp_ofo_queue(struct sock * sk)4844 static void tcp_ofo_queue(struct sock *sk)
4845 {
4846 struct tcp_sock *tp = tcp_sk(sk);
4847 __u32 dsack_high = tp->rcv_nxt;
4848 bool fin, fragstolen, eaten;
4849 struct sk_buff *skb, *tail;
4850 struct rb_node *p;
4851
4852 p = rb_first(&tp->out_of_order_queue);
4853 while (p) {
4854 skb = rb_to_skb(p);
4855 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4856 break;
4857
4858 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4859 __u32 dsack = dsack_high;
4860 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4861 dsack_high = TCP_SKB_CB(skb)->end_seq;
4862 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4863 }
4864 p = rb_next(p);
4865 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4866
4867 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4868 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4869 continue;
4870 }
4871
4872 tail = skb_peek_tail(&sk->sk_receive_queue);
4873 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4874 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4875 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4876 if (!eaten)
4877 tcp_add_receive_queue(sk, skb);
4878 else
4879 kfree_skb_partial(skb, fragstolen);
4880
4881 if (unlikely(fin)) {
4882 tcp_fin(sk);
4883 /* tcp_fin() purges tp->out_of_order_queue,
4884 * so we must end this loop right now.
4885 */
4886 break;
4887 }
4888 }
4889 }
4890
4891 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4892 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4893
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4894 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4895 unsigned int size)
4896 {
4897 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4898 !sk_rmem_schedule(sk, skb, size)) {
4899
4900 if (tcp_prune_queue(sk, skb) < 0)
4901 return -1;
4902
4903 while (!sk_rmem_schedule(sk, skb, size)) {
4904 if (!tcp_prune_ofo_queue(sk, skb))
4905 return -1;
4906 }
4907 }
4908 return 0;
4909 }
4910
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4911 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4912 {
4913 struct tcp_sock *tp = tcp_sk(sk);
4914 struct rb_node **p, *parent;
4915 struct sk_buff *skb1;
4916 u32 seq, end_seq;
4917 bool fragstolen;
4918
4919 tcp_ecn_check_ce(sk, skb);
4920
4921 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4922 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4923 sk->sk_data_ready(sk);
4924 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4925 return;
4926 }
4927
4928 /* Disable header prediction. */
4929 tp->pred_flags = 0;
4930 inet_csk_schedule_ack(sk);
4931
4932 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4933 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4934 seq = TCP_SKB_CB(skb)->seq;
4935 end_seq = TCP_SKB_CB(skb)->end_seq;
4936
4937 p = &tp->out_of_order_queue.rb_node;
4938 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4939 /* Initial out of order segment, build 1 SACK. */
4940 if (tcp_is_sack(tp)) {
4941 tp->rx_opt.num_sacks = 1;
4942 tp->selective_acks[0].start_seq = seq;
4943 tp->selective_acks[0].end_seq = end_seq;
4944 }
4945 rb_link_node(&skb->rbnode, NULL, p);
4946 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4947 tp->ooo_last_skb = skb;
4948 goto end;
4949 }
4950
4951 /* In the typical case, we are adding an skb to the end of the list.
4952 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4953 */
4954 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4955 skb, &fragstolen)) {
4956 coalesce_done:
4957 /* For non sack flows, do not grow window to force DUPACK
4958 * and trigger fast retransmit.
4959 */
4960 if (tcp_is_sack(tp))
4961 tcp_grow_window(sk, skb, true);
4962 kfree_skb_partial(skb, fragstolen);
4963 skb = NULL;
4964 goto add_sack;
4965 }
4966 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4967 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4968 parent = &tp->ooo_last_skb->rbnode;
4969 p = &parent->rb_right;
4970 goto insert;
4971 }
4972
4973 /* Find place to insert this segment. Handle overlaps on the way. */
4974 parent = NULL;
4975 while (*p) {
4976 parent = *p;
4977 skb1 = rb_to_skb(parent);
4978 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4979 p = &parent->rb_left;
4980 continue;
4981 }
4982 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4983 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4984 /* All the bits are present. Drop. */
4985 NET_INC_STATS(sock_net(sk),
4986 LINUX_MIB_TCPOFOMERGE);
4987 tcp_drop_reason(sk, skb,
4988 SKB_DROP_REASON_TCP_OFOMERGE);
4989 skb = NULL;
4990 tcp_dsack_set(sk, seq, end_seq);
4991 goto add_sack;
4992 }
4993 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4994 /* Partial overlap. */
4995 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4996 } else {
4997 /* skb's seq == skb1's seq and skb covers skb1.
4998 * Replace skb1 with skb.
4999 */
5000 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5001 &tp->out_of_order_queue);
5002 tcp_dsack_extend(sk,
5003 TCP_SKB_CB(skb1)->seq,
5004 TCP_SKB_CB(skb1)->end_seq);
5005 NET_INC_STATS(sock_net(sk),
5006 LINUX_MIB_TCPOFOMERGE);
5007 tcp_drop_reason(sk, skb1,
5008 SKB_DROP_REASON_TCP_OFOMERGE);
5009 goto merge_right;
5010 }
5011 } else if (tcp_ooo_try_coalesce(sk, skb1,
5012 skb, &fragstolen)) {
5013 goto coalesce_done;
5014 }
5015 p = &parent->rb_right;
5016 }
5017 insert:
5018 /* Insert segment into RB tree. */
5019 rb_link_node(&skb->rbnode, parent, p);
5020 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5021
5022 merge_right:
5023 /* Remove other segments covered by skb. */
5024 while ((skb1 = skb_rb_next(skb)) != NULL) {
5025 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5026 break;
5027 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5028 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5029 end_seq);
5030 break;
5031 }
5032 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5033 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5034 TCP_SKB_CB(skb1)->end_seq);
5035 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5036 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5037 }
5038 /* If there is no skb after us, we are the last_skb ! */
5039 if (!skb1)
5040 tp->ooo_last_skb = skb;
5041
5042 add_sack:
5043 if (tcp_is_sack(tp))
5044 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5045 end:
5046 if (skb) {
5047 /* For non sack flows, do not grow window to force DUPACK
5048 * and trigger fast retransmit.
5049 */
5050 if (tcp_is_sack(tp))
5051 tcp_grow_window(sk, skb, false);
5052 skb_condense(skb);
5053 skb_set_owner_r(skb, sk);
5054 }
5055 }
5056
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5057 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5058 bool *fragstolen)
5059 {
5060 int eaten;
5061 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5062
5063 eaten = (tail &&
5064 tcp_try_coalesce(sk, tail,
5065 skb, fragstolen)) ? 1 : 0;
5066 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5067 if (!eaten) {
5068 tcp_add_receive_queue(sk, skb);
5069 skb_set_owner_r(skb, sk);
5070 }
5071 return eaten;
5072 }
5073
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5074 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5075 {
5076 struct sk_buff *skb;
5077 int err = -ENOMEM;
5078 int data_len = 0;
5079 bool fragstolen;
5080
5081 if (size == 0)
5082 return 0;
5083
5084 if (size > PAGE_SIZE) {
5085 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5086
5087 data_len = npages << PAGE_SHIFT;
5088 size = data_len + (size & ~PAGE_MASK);
5089 }
5090 skb = alloc_skb_with_frags(size - data_len, data_len,
5091 PAGE_ALLOC_COSTLY_ORDER,
5092 &err, sk->sk_allocation);
5093 if (!skb)
5094 goto err;
5095
5096 skb_put(skb, size - data_len);
5097 skb->data_len = data_len;
5098 skb->len = size;
5099
5100 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5102 goto err_free;
5103 }
5104
5105 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5106 if (err)
5107 goto err_free;
5108
5109 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5110 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5111 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5112
5113 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5114 WARN_ON_ONCE(fragstolen); /* should not happen */
5115 __kfree_skb(skb);
5116 }
5117 return size;
5118
5119 err_free:
5120 kfree_skb(skb);
5121 err:
5122 return err;
5123
5124 }
5125
tcp_data_ready(struct sock * sk)5126 void tcp_data_ready(struct sock *sk)
5127 {
5128 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5129 sk->sk_data_ready(sk);
5130 }
5131
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5132 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5133 {
5134 struct tcp_sock *tp = tcp_sk(sk);
5135 enum skb_drop_reason reason;
5136 bool fragstolen;
5137 int eaten;
5138
5139 /* If a subflow has been reset, the packet should not continue
5140 * to be processed, drop the packet.
5141 */
5142 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5143 __kfree_skb(skb);
5144 return;
5145 }
5146
5147 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5148 __kfree_skb(skb);
5149 return;
5150 }
5151 tcp_cleanup_skb(skb);
5152 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5153
5154 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5155 tp->rx_opt.dsack = 0;
5156
5157 /* Queue data for delivery to the user.
5158 * Packets in sequence go to the receive queue.
5159 * Out of sequence packets to the out_of_order_queue.
5160 */
5161 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5162 if (tcp_receive_window(tp) == 0) {
5163 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5165 goto out_of_window;
5166 }
5167
5168 /* Ok. In sequence. In window. */
5169 queue_and_out:
5170 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5171 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5172 inet_csk(sk)->icsk_ack.pending |=
5173 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5174 inet_csk_schedule_ack(sk);
5175 sk->sk_data_ready(sk);
5176
5177 if (skb_queue_len(&sk->sk_receive_queue)) {
5178 reason = SKB_DROP_REASON_PROTO_MEM;
5179 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5180 goto drop;
5181 }
5182 sk_forced_mem_schedule(sk, skb->truesize);
5183 }
5184
5185 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5186 if (skb->len)
5187 tcp_event_data_recv(sk, skb);
5188 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5189 tcp_fin(sk);
5190
5191 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5192 tcp_ofo_queue(sk);
5193
5194 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5195 * gap in queue is filled.
5196 */
5197 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5198 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5199 }
5200
5201 if (tp->rx_opt.num_sacks)
5202 tcp_sack_remove(tp);
5203
5204 tcp_fast_path_check(sk);
5205
5206 if (eaten > 0)
5207 kfree_skb_partial(skb, fragstolen);
5208 if (!sock_flag(sk, SOCK_DEAD))
5209 tcp_data_ready(sk);
5210 return;
5211 }
5212
5213 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5214 tcp_rcv_spurious_retrans(sk, skb);
5215 /* A retransmit, 2nd most common case. Force an immediate ack. */
5216 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5217 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5218 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5219
5220 out_of_window:
5221 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5222 inet_csk_schedule_ack(sk);
5223 drop:
5224 tcp_drop_reason(sk, skb, reason);
5225 return;
5226 }
5227
5228 /* Out of window. F.e. zero window probe. */
5229 if (!before(TCP_SKB_CB(skb)->seq,
5230 tp->rcv_nxt + tcp_receive_window(tp))) {
5231 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5232 goto out_of_window;
5233 }
5234
5235 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5236 /* Partial packet, seq < rcv_next < end_seq */
5237 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5238
5239 /* If window is closed, drop tail of packet. But after
5240 * remembering D-SACK for its head made in previous line.
5241 */
5242 if (!tcp_receive_window(tp)) {
5243 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5244 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5245 goto out_of_window;
5246 }
5247 goto queue_and_out;
5248 }
5249
5250 tcp_data_queue_ofo(sk, skb);
5251 }
5252
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5253 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5254 {
5255 if (list)
5256 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5257
5258 return skb_rb_next(skb);
5259 }
5260
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5261 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5262 struct sk_buff_head *list,
5263 struct rb_root *root)
5264 {
5265 struct sk_buff *next = tcp_skb_next(skb, list);
5266
5267 if (list)
5268 __skb_unlink(skb, list);
5269 else
5270 rb_erase(&skb->rbnode, root);
5271
5272 __kfree_skb(skb);
5273 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5274
5275 return next;
5276 }
5277
5278 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5279 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5280 {
5281 struct rb_node **p = &root->rb_node;
5282 struct rb_node *parent = NULL;
5283 struct sk_buff *skb1;
5284
5285 while (*p) {
5286 parent = *p;
5287 skb1 = rb_to_skb(parent);
5288 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5289 p = &parent->rb_left;
5290 else
5291 p = &parent->rb_right;
5292 }
5293 rb_link_node(&skb->rbnode, parent, p);
5294 rb_insert_color(&skb->rbnode, root);
5295 }
5296
5297 /* Collapse contiguous sequence of skbs head..tail with
5298 * sequence numbers start..end.
5299 *
5300 * If tail is NULL, this means until the end of the queue.
5301 *
5302 * Segments with FIN/SYN are not collapsed (only because this
5303 * simplifies code)
5304 */
5305 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5306 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5307 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5308 {
5309 struct sk_buff *skb = head, *n;
5310 struct sk_buff_head tmp;
5311 bool end_of_skbs;
5312
5313 /* First, check that queue is collapsible and find
5314 * the point where collapsing can be useful.
5315 */
5316 restart:
5317 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5318 n = tcp_skb_next(skb, list);
5319
5320 /* No new bits? It is possible on ofo queue. */
5321 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5322 skb = tcp_collapse_one(sk, skb, list, root);
5323 if (!skb)
5324 break;
5325 goto restart;
5326 }
5327
5328 /* The first skb to collapse is:
5329 * - not SYN/FIN and
5330 * - bloated or contains data before "start" or
5331 * overlaps to the next one and mptcp allow collapsing.
5332 */
5333 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5334 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5335 before(TCP_SKB_CB(skb)->seq, start))) {
5336 end_of_skbs = false;
5337 break;
5338 }
5339
5340 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5341 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5342 end_of_skbs = false;
5343 break;
5344 }
5345
5346 /* Decided to skip this, advance start seq. */
5347 start = TCP_SKB_CB(skb)->end_seq;
5348 }
5349 if (end_of_skbs ||
5350 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5351 return;
5352
5353 __skb_queue_head_init(&tmp);
5354
5355 while (before(start, end)) {
5356 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5357 struct sk_buff *nskb;
5358
5359 nskb = alloc_skb(copy, GFP_ATOMIC);
5360 if (!nskb)
5361 break;
5362
5363 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5364 #ifdef CONFIG_TLS_DEVICE
5365 nskb->decrypted = skb->decrypted;
5366 #endif
5367 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5368 if (list)
5369 __skb_queue_before(list, skb, nskb);
5370 else
5371 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5372 skb_set_owner_r(nskb, sk);
5373 mptcp_skb_ext_move(nskb, skb);
5374
5375 /* Copy data, releasing collapsed skbs. */
5376 while (copy > 0) {
5377 int offset = start - TCP_SKB_CB(skb)->seq;
5378 int size = TCP_SKB_CB(skb)->end_seq - start;
5379
5380 BUG_ON(offset < 0);
5381 if (size > 0) {
5382 size = min(copy, size);
5383 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5384 BUG();
5385 TCP_SKB_CB(nskb)->end_seq += size;
5386 copy -= size;
5387 start += size;
5388 }
5389 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5390 skb = tcp_collapse_one(sk, skb, list, root);
5391 if (!skb ||
5392 skb == tail ||
5393 !mptcp_skb_can_collapse(nskb, skb) ||
5394 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5395 goto end;
5396 #ifdef CONFIG_TLS_DEVICE
5397 if (skb->decrypted != nskb->decrypted)
5398 goto end;
5399 #endif
5400 }
5401 }
5402 }
5403 end:
5404 skb_queue_walk_safe(&tmp, skb, n)
5405 tcp_rbtree_insert(root, skb);
5406 }
5407
5408 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5409 * and tcp_collapse() them until all the queue is collapsed.
5410 */
tcp_collapse_ofo_queue(struct sock * sk)5411 static void tcp_collapse_ofo_queue(struct sock *sk)
5412 {
5413 struct tcp_sock *tp = tcp_sk(sk);
5414 u32 range_truesize, sum_tiny = 0;
5415 struct sk_buff *skb, *head;
5416 u32 start, end;
5417
5418 skb = skb_rb_first(&tp->out_of_order_queue);
5419 new_range:
5420 if (!skb) {
5421 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5422 return;
5423 }
5424 start = TCP_SKB_CB(skb)->seq;
5425 end = TCP_SKB_CB(skb)->end_seq;
5426 range_truesize = skb->truesize;
5427
5428 for (head = skb;;) {
5429 skb = skb_rb_next(skb);
5430
5431 /* Range is terminated when we see a gap or when
5432 * we are at the queue end.
5433 */
5434 if (!skb ||
5435 after(TCP_SKB_CB(skb)->seq, end) ||
5436 before(TCP_SKB_CB(skb)->end_seq, start)) {
5437 /* Do not attempt collapsing tiny skbs */
5438 if (range_truesize != head->truesize ||
5439 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5440 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5441 head, skb, start, end);
5442 } else {
5443 sum_tiny += range_truesize;
5444 if (sum_tiny > sk->sk_rcvbuf >> 3)
5445 return;
5446 }
5447 goto new_range;
5448 }
5449
5450 range_truesize += skb->truesize;
5451 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5452 start = TCP_SKB_CB(skb)->seq;
5453 if (after(TCP_SKB_CB(skb)->end_seq, end))
5454 end = TCP_SKB_CB(skb)->end_seq;
5455 }
5456 }
5457
5458 /*
5459 * Clean the out-of-order queue to make room.
5460 * We drop high sequences packets to :
5461 * 1) Let a chance for holes to be filled.
5462 * This means we do not drop packets from ooo queue if their sequence
5463 * is before incoming packet sequence.
5464 * 2) not add too big latencies if thousands of packets sit there.
5465 * (But if application shrinks SO_RCVBUF, we could still end up
5466 * freeing whole queue here)
5467 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5468 *
5469 * Return true if queue has shrunk.
5470 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5471 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5472 {
5473 struct tcp_sock *tp = tcp_sk(sk);
5474 struct rb_node *node, *prev;
5475 bool pruned = false;
5476 int goal;
5477
5478 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5479 return false;
5480
5481 goal = sk->sk_rcvbuf >> 3;
5482 node = &tp->ooo_last_skb->rbnode;
5483
5484 do {
5485 struct sk_buff *skb = rb_to_skb(node);
5486
5487 /* If incoming skb would land last in ofo queue, stop pruning. */
5488 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5489 break;
5490 pruned = true;
5491 prev = rb_prev(node);
5492 rb_erase(node, &tp->out_of_order_queue);
5493 goal -= skb->truesize;
5494 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5495 tp->ooo_last_skb = rb_to_skb(prev);
5496 if (!prev || goal <= 0) {
5497 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5498 !tcp_under_memory_pressure(sk))
5499 break;
5500 goal = sk->sk_rcvbuf >> 3;
5501 }
5502 node = prev;
5503 } while (node);
5504
5505 if (pruned) {
5506 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5507 /* Reset SACK state. A conforming SACK implementation will
5508 * do the same at a timeout based retransmit. When a connection
5509 * is in a sad state like this, we care only about integrity
5510 * of the connection not performance.
5511 */
5512 if (tp->rx_opt.sack_ok)
5513 tcp_sack_reset(&tp->rx_opt);
5514 }
5515 return pruned;
5516 }
5517
5518 /* Reduce allocated memory if we can, trying to get
5519 * the socket within its memory limits again.
5520 *
5521 * Return less than zero if we should start dropping frames
5522 * until the socket owning process reads some of the data
5523 * to stabilize the situation.
5524 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5525 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5526 {
5527 struct tcp_sock *tp = tcp_sk(sk);
5528
5529 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5530
5531 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5532 tcp_clamp_window(sk);
5533 else if (tcp_under_memory_pressure(sk))
5534 tcp_adjust_rcv_ssthresh(sk);
5535
5536 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5537 return 0;
5538
5539 tcp_collapse_ofo_queue(sk);
5540 if (!skb_queue_empty(&sk->sk_receive_queue))
5541 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5542 skb_peek(&sk->sk_receive_queue),
5543 NULL,
5544 tp->copied_seq, tp->rcv_nxt);
5545
5546 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5547 return 0;
5548
5549 /* Collapsing did not help, destructive actions follow.
5550 * This must not ever occur. */
5551
5552 tcp_prune_ofo_queue(sk, in_skb);
5553
5554 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5555 return 0;
5556
5557 /* If we are really being abused, tell the caller to silently
5558 * drop receive data on the floor. It will get retransmitted
5559 * and hopefully then we'll have sufficient space.
5560 */
5561 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5562
5563 /* Massive buffer overcommit. */
5564 tp->pred_flags = 0;
5565 return -1;
5566 }
5567
tcp_should_expand_sndbuf(struct sock * sk)5568 static bool tcp_should_expand_sndbuf(struct sock *sk)
5569 {
5570 const struct tcp_sock *tp = tcp_sk(sk);
5571
5572 /* If the user specified a specific send buffer setting, do
5573 * not modify it.
5574 */
5575 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5576 return false;
5577
5578 /* If we are under global TCP memory pressure, do not expand. */
5579 if (tcp_under_memory_pressure(sk)) {
5580 int unused_mem = sk_unused_reserved_mem(sk);
5581
5582 /* Adjust sndbuf according to reserved mem. But make sure
5583 * it never goes below SOCK_MIN_SNDBUF.
5584 * See sk_stream_moderate_sndbuf() for more details.
5585 */
5586 if (unused_mem > SOCK_MIN_SNDBUF)
5587 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5588
5589 return false;
5590 }
5591
5592 /* If we are under soft global TCP memory pressure, do not expand. */
5593 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5594 return false;
5595
5596 /* If we filled the congestion window, do not expand. */
5597 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5598 return false;
5599
5600 return true;
5601 }
5602
tcp_new_space(struct sock * sk)5603 static void tcp_new_space(struct sock *sk)
5604 {
5605 struct tcp_sock *tp = tcp_sk(sk);
5606
5607 if (tcp_should_expand_sndbuf(sk)) {
5608 tcp_sndbuf_expand(sk);
5609 tp->snd_cwnd_stamp = tcp_jiffies32;
5610 }
5611
5612 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5613 }
5614
5615 /* Caller made space either from:
5616 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5617 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5618 *
5619 * We might be able to generate EPOLLOUT to the application if:
5620 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5621 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5622 * small enough that tcp_stream_memory_free() decides it
5623 * is time to generate EPOLLOUT.
5624 */
tcp_check_space(struct sock * sk)5625 void tcp_check_space(struct sock *sk)
5626 {
5627 /* pairs with tcp_poll() */
5628 smp_mb();
5629 if (sk->sk_socket &&
5630 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5631 tcp_new_space(sk);
5632 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5633 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5634 }
5635 }
5636
tcp_data_snd_check(struct sock * sk)5637 static inline void tcp_data_snd_check(struct sock *sk)
5638 {
5639 tcp_push_pending_frames(sk);
5640 tcp_check_space(sk);
5641 }
5642
5643 /*
5644 * Check if sending an ack is needed.
5645 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5646 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5647 {
5648 struct tcp_sock *tp = tcp_sk(sk);
5649 unsigned long rtt, delay;
5650
5651 /* More than one full frame received... */
5652 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5653 /* ... and right edge of window advances far enough.
5654 * (tcp_recvmsg() will send ACK otherwise).
5655 * If application uses SO_RCVLOWAT, we want send ack now if
5656 * we have not received enough bytes to satisfy the condition.
5657 */
5658 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5659 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5660 /* We ACK each frame or... */
5661 tcp_in_quickack_mode(sk) ||
5662 /* Protocol state mandates a one-time immediate ACK */
5663 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5664 send_now:
5665 tcp_send_ack(sk);
5666 return;
5667 }
5668
5669 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5670 tcp_send_delayed_ack(sk);
5671 return;
5672 }
5673
5674 if (!tcp_is_sack(tp) ||
5675 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5676 goto send_now;
5677
5678 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5679 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5680 tp->dup_ack_counter = 0;
5681 }
5682 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5683 tp->dup_ack_counter++;
5684 goto send_now;
5685 }
5686 tp->compressed_ack++;
5687 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5688 return;
5689
5690 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5691
5692 rtt = tp->rcv_rtt_est.rtt_us;
5693 if (tp->srtt_us && tp->srtt_us < rtt)
5694 rtt = tp->srtt_us;
5695
5696 delay = min_t(unsigned long,
5697 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5698 rtt * (NSEC_PER_USEC >> 3)/20);
5699 sock_hold(sk);
5700 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5701 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5702 HRTIMER_MODE_REL_PINNED_SOFT);
5703 }
5704
tcp_ack_snd_check(struct sock * sk)5705 static inline void tcp_ack_snd_check(struct sock *sk)
5706 {
5707 if (!inet_csk_ack_scheduled(sk)) {
5708 /* We sent a data segment already. */
5709 return;
5710 }
5711 __tcp_ack_snd_check(sk, 1);
5712 }
5713
5714 /*
5715 * This routine is only called when we have urgent data
5716 * signaled. Its the 'slow' part of tcp_urg. It could be
5717 * moved inline now as tcp_urg is only called from one
5718 * place. We handle URGent data wrong. We have to - as
5719 * BSD still doesn't use the correction from RFC961.
5720 * For 1003.1g we should support a new option TCP_STDURG to permit
5721 * either form (or just set the sysctl tcp_stdurg).
5722 */
5723
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5724 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5725 {
5726 struct tcp_sock *tp = tcp_sk(sk);
5727 u32 ptr = ntohs(th->urg_ptr);
5728
5729 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5730 ptr--;
5731 ptr += ntohl(th->seq);
5732
5733 /* Ignore urgent data that we've already seen and read. */
5734 if (after(tp->copied_seq, ptr))
5735 return;
5736
5737 /* Do not replay urg ptr.
5738 *
5739 * NOTE: interesting situation not covered by specs.
5740 * Misbehaving sender may send urg ptr, pointing to segment,
5741 * which we already have in ofo queue. We are not able to fetch
5742 * such data and will stay in TCP_URG_NOTYET until will be eaten
5743 * by recvmsg(). Seems, we are not obliged to handle such wicked
5744 * situations. But it is worth to think about possibility of some
5745 * DoSes using some hypothetical application level deadlock.
5746 */
5747 if (before(ptr, tp->rcv_nxt))
5748 return;
5749
5750 /* Do we already have a newer (or duplicate) urgent pointer? */
5751 if (tp->urg_data && !after(ptr, tp->urg_seq))
5752 return;
5753
5754 /* Tell the world about our new urgent pointer. */
5755 sk_send_sigurg(sk);
5756
5757 /* We may be adding urgent data when the last byte read was
5758 * urgent. To do this requires some care. We cannot just ignore
5759 * tp->copied_seq since we would read the last urgent byte again
5760 * as data, nor can we alter copied_seq until this data arrives
5761 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5762 *
5763 * NOTE. Double Dutch. Rendering to plain English: author of comment
5764 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5765 * and expect that both A and B disappear from stream. This is _wrong_.
5766 * Though this happens in BSD with high probability, this is occasional.
5767 * Any application relying on this is buggy. Note also, that fix "works"
5768 * only in this artificial test. Insert some normal data between A and B and we will
5769 * decline of BSD again. Verdict: it is better to remove to trap
5770 * buggy users.
5771 */
5772 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5773 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5774 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5775 tp->copied_seq++;
5776 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5777 __skb_unlink(skb, &sk->sk_receive_queue);
5778 __kfree_skb(skb);
5779 }
5780 }
5781
5782 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5783 WRITE_ONCE(tp->urg_seq, ptr);
5784
5785 /* Disable header prediction. */
5786 tp->pred_flags = 0;
5787 }
5788
5789 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5790 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5791 {
5792 struct tcp_sock *tp = tcp_sk(sk);
5793
5794 /* Check if we get a new urgent pointer - normally not. */
5795 if (unlikely(th->urg))
5796 tcp_check_urg(sk, th);
5797
5798 /* Do we wait for any urgent data? - normally not... */
5799 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5800 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5801 th->syn;
5802
5803 /* Is the urgent pointer pointing into this packet? */
5804 if (ptr < skb->len) {
5805 u8 tmp;
5806 if (skb_copy_bits(skb, ptr, &tmp, 1))
5807 BUG();
5808 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5809 if (!sock_flag(sk, SOCK_DEAD))
5810 sk->sk_data_ready(sk);
5811 }
5812 }
5813 }
5814
5815 /* Accept RST for rcv_nxt - 1 after a FIN.
5816 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5817 * FIN is sent followed by a RST packet. The RST is sent with the same
5818 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5819 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5820 * ACKs on the closed socket. In addition middleboxes can drop either the
5821 * challenge ACK or a subsequent RST.
5822 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5823 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5824 {
5825 const struct tcp_sock *tp = tcp_sk(sk);
5826
5827 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5828 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5829 TCPF_CLOSING));
5830 }
5831
5832 /* Does PAWS and seqno based validation of an incoming segment, flags will
5833 * play significant role here.
5834 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5835 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5836 const struct tcphdr *th, int syn_inerr)
5837 {
5838 struct tcp_sock *tp = tcp_sk(sk);
5839 SKB_DR(reason);
5840
5841 /* RFC1323: H1. Apply PAWS check first. */
5842 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5843 tp->rx_opt.saw_tstamp &&
5844 tcp_paws_discard(sk, skb)) {
5845 if (!th->rst) {
5846 if (unlikely(th->syn))
5847 goto syn_challenge;
5848 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5849 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5850 LINUX_MIB_TCPACKSKIPPEDPAWS,
5851 &tp->last_oow_ack_time))
5852 tcp_send_dupack(sk, skb);
5853 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5854 goto discard;
5855 }
5856 /* Reset is accepted even if it did not pass PAWS. */
5857 }
5858
5859 /* Step 1: check sequence number */
5860 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5861 if (reason) {
5862 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5863 * (RST) segments are validated by checking their SEQ-fields."
5864 * And page 69: "If an incoming segment is not acceptable,
5865 * an acknowledgment should be sent in reply (unless the RST
5866 * bit is set, if so drop the segment and return)".
5867 */
5868 if (!th->rst) {
5869 if (th->syn)
5870 goto syn_challenge;
5871 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5872 LINUX_MIB_TCPACKSKIPPEDSEQ,
5873 &tp->last_oow_ack_time))
5874 tcp_send_dupack(sk, skb);
5875 } else if (tcp_reset_check(sk, skb)) {
5876 goto reset;
5877 }
5878 goto discard;
5879 }
5880
5881 /* Step 2: check RST bit */
5882 if (th->rst) {
5883 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5884 * FIN and SACK too if available):
5885 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5886 * the right-most SACK block,
5887 * then
5888 * RESET the connection
5889 * else
5890 * Send a challenge ACK
5891 */
5892 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5893 tcp_reset_check(sk, skb))
5894 goto reset;
5895
5896 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5897 struct tcp_sack_block *sp = &tp->selective_acks[0];
5898 int max_sack = sp[0].end_seq;
5899 int this_sack;
5900
5901 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5902 ++this_sack) {
5903 max_sack = after(sp[this_sack].end_seq,
5904 max_sack) ?
5905 sp[this_sack].end_seq : max_sack;
5906 }
5907
5908 if (TCP_SKB_CB(skb)->seq == max_sack)
5909 goto reset;
5910 }
5911
5912 /* Disable TFO if RST is out-of-order
5913 * and no data has been received
5914 * for current active TFO socket
5915 */
5916 if (tp->syn_fastopen && !tp->data_segs_in &&
5917 sk->sk_state == TCP_ESTABLISHED)
5918 tcp_fastopen_active_disable(sk);
5919 tcp_send_challenge_ack(sk);
5920 SKB_DR_SET(reason, TCP_RESET);
5921 goto discard;
5922 }
5923
5924 /* step 3: check security and precedence [ignored] */
5925
5926 /* step 4: Check for a SYN
5927 * RFC 5961 4.2 : Send a challenge ack
5928 */
5929 if (th->syn) {
5930 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5931 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5932 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5933 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5934 goto pass;
5935 syn_challenge:
5936 if (syn_inerr)
5937 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5938 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5939 tcp_send_challenge_ack(sk);
5940 SKB_DR_SET(reason, TCP_INVALID_SYN);
5941 goto discard;
5942 }
5943
5944 pass:
5945 bpf_skops_parse_hdr(sk, skb);
5946
5947 return true;
5948
5949 discard:
5950 tcp_drop_reason(sk, skb, reason);
5951 return false;
5952
5953 reset:
5954 tcp_reset(sk, skb);
5955 __kfree_skb(skb);
5956 return false;
5957 }
5958
5959 /*
5960 * TCP receive function for the ESTABLISHED state.
5961 *
5962 * It is split into a fast path and a slow path. The fast path is
5963 * disabled when:
5964 * - A zero window was announced from us - zero window probing
5965 * is only handled properly in the slow path.
5966 * - Out of order segments arrived.
5967 * - Urgent data is expected.
5968 * - There is no buffer space left
5969 * - Unexpected TCP flags/window values/header lengths are received
5970 * (detected by checking the TCP header against pred_flags)
5971 * - Data is sent in both directions. Fast path only supports pure senders
5972 * or pure receivers (this means either the sequence number or the ack
5973 * value must stay constant)
5974 * - Unexpected TCP option.
5975 *
5976 * When these conditions are not satisfied it drops into a standard
5977 * receive procedure patterned after RFC793 to handle all cases.
5978 * The first three cases are guaranteed by proper pred_flags setting,
5979 * the rest is checked inline. Fast processing is turned on in
5980 * tcp_data_queue when everything is OK.
5981 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5982 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5983 {
5984 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5985 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5986 struct tcp_sock *tp = tcp_sk(sk);
5987 unsigned int len = skb->len;
5988
5989 /* TCP congestion window tracking */
5990 trace_tcp_probe(sk, skb);
5991
5992 tcp_mstamp_refresh(tp);
5993 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5994 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5995 /*
5996 * Header prediction.
5997 * The code loosely follows the one in the famous
5998 * "30 instruction TCP receive" Van Jacobson mail.
5999 *
6000 * Van's trick is to deposit buffers into socket queue
6001 * on a device interrupt, to call tcp_recv function
6002 * on the receive process context and checksum and copy
6003 * the buffer to user space. smart...
6004 *
6005 * Our current scheme is not silly either but we take the
6006 * extra cost of the net_bh soft interrupt processing...
6007 * We do checksum and copy also but from device to kernel.
6008 */
6009
6010 tp->rx_opt.saw_tstamp = 0;
6011
6012 /* pred_flags is 0xS?10 << 16 + snd_wnd
6013 * if header_prediction is to be made
6014 * 'S' will always be tp->tcp_header_len >> 2
6015 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6016 * turn it off (when there are holes in the receive
6017 * space for instance)
6018 * PSH flag is ignored.
6019 */
6020
6021 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6022 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6023 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6024 int tcp_header_len = tp->tcp_header_len;
6025
6026 /* Timestamp header prediction: tcp_header_len
6027 * is automatically equal to th->doff*4 due to pred_flags
6028 * match.
6029 */
6030
6031 /* Check timestamp */
6032 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6033 /* No? Slow path! */
6034 if (!tcp_parse_aligned_timestamp(tp, th))
6035 goto slow_path;
6036
6037 /* If PAWS failed, check it more carefully in slow path */
6038 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6039 goto slow_path;
6040
6041 /* DO NOT update ts_recent here, if checksum fails
6042 * and timestamp was corrupted part, it will result
6043 * in a hung connection since we will drop all
6044 * future packets due to the PAWS test.
6045 */
6046 }
6047
6048 if (len <= tcp_header_len) {
6049 /* Bulk data transfer: sender */
6050 if (len == tcp_header_len) {
6051 /* Predicted packet is in window by definition.
6052 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6053 * Hence, check seq<=rcv_wup reduces to:
6054 */
6055 if (tcp_header_len ==
6056 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6057 tp->rcv_nxt == tp->rcv_wup)
6058 tcp_store_ts_recent(tp);
6059
6060 /* We know that such packets are checksummed
6061 * on entry.
6062 */
6063 tcp_ack(sk, skb, 0);
6064 __kfree_skb(skb);
6065 tcp_data_snd_check(sk);
6066 /* When receiving pure ack in fast path, update
6067 * last ts ecr directly instead of calling
6068 * tcp_rcv_rtt_measure_ts()
6069 */
6070 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6071 return;
6072 } else { /* Header too small */
6073 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6074 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6075 goto discard;
6076 }
6077 } else {
6078 int eaten = 0;
6079 bool fragstolen = false;
6080
6081 if (tcp_checksum_complete(skb))
6082 goto csum_error;
6083
6084 if ((int)skb->truesize > sk->sk_forward_alloc)
6085 goto step5;
6086
6087 /* Predicted packet is in window by definition.
6088 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6089 * Hence, check seq<=rcv_wup reduces to:
6090 */
6091 if (tcp_header_len ==
6092 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6093 tp->rcv_nxt == tp->rcv_wup)
6094 tcp_store_ts_recent(tp);
6095
6096 tcp_rcv_rtt_measure_ts(sk, skb);
6097
6098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6099
6100 /* Bulk data transfer: receiver */
6101 tcp_cleanup_skb(skb);
6102 __skb_pull(skb, tcp_header_len);
6103 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6104
6105 tcp_event_data_recv(sk, skb);
6106
6107 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6108 /* Well, only one small jumplet in fast path... */
6109 tcp_ack(sk, skb, FLAG_DATA);
6110 tcp_data_snd_check(sk);
6111 if (!inet_csk_ack_scheduled(sk))
6112 goto no_ack;
6113 } else {
6114 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6115 }
6116
6117 __tcp_ack_snd_check(sk, 0);
6118 no_ack:
6119 if (eaten)
6120 kfree_skb_partial(skb, fragstolen);
6121 tcp_data_ready(sk);
6122 return;
6123 }
6124 }
6125
6126 slow_path:
6127 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6128 goto csum_error;
6129
6130 if (!th->ack && !th->rst && !th->syn) {
6131 reason = SKB_DROP_REASON_TCP_FLAGS;
6132 goto discard;
6133 }
6134
6135 /*
6136 * Standard slow path.
6137 */
6138
6139 if (!tcp_validate_incoming(sk, skb, th, 1))
6140 return;
6141
6142 step5:
6143 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6144 if ((int)reason < 0) {
6145 reason = -reason;
6146 goto discard;
6147 }
6148 tcp_rcv_rtt_measure_ts(sk, skb);
6149
6150 /* Process urgent data. */
6151 tcp_urg(sk, skb, th);
6152
6153 /* step 7: process the segment text */
6154 tcp_data_queue(sk, skb);
6155
6156 tcp_data_snd_check(sk);
6157 tcp_ack_snd_check(sk);
6158 return;
6159
6160 csum_error:
6161 reason = SKB_DROP_REASON_TCP_CSUM;
6162 trace_tcp_bad_csum(skb);
6163 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6164 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6165
6166 discard:
6167 tcp_drop_reason(sk, skb, reason);
6168 }
6169 EXPORT_SYMBOL(tcp_rcv_established);
6170
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6171 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6172 {
6173 struct inet_connection_sock *icsk = inet_csk(sk);
6174 struct tcp_sock *tp = tcp_sk(sk);
6175
6176 tcp_mtup_init(sk);
6177 icsk->icsk_af_ops->rebuild_header(sk);
6178 tcp_init_metrics(sk);
6179
6180 /* Initialize the congestion window to start the transfer.
6181 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6182 * retransmitted. In light of RFC6298 more aggressive 1sec
6183 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6184 * retransmission has occurred.
6185 */
6186 if (tp->total_retrans > 1 && tp->undo_marker)
6187 tcp_snd_cwnd_set(tp, 1);
6188 else
6189 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6190 tp->snd_cwnd_stamp = tcp_jiffies32;
6191
6192 bpf_skops_established(sk, bpf_op, skb);
6193 /* Initialize congestion control unless BPF initialized it already: */
6194 if (!icsk->icsk_ca_initialized)
6195 tcp_init_congestion_control(sk);
6196 tcp_init_buffer_space(sk);
6197 }
6198
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6199 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6200 {
6201 struct tcp_sock *tp = tcp_sk(sk);
6202 struct inet_connection_sock *icsk = inet_csk(sk);
6203
6204 tcp_set_state(sk, TCP_ESTABLISHED);
6205 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6206
6207 if (skb) {
6208 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6209 security_inet_conn_established(sk, skb);
6210 sk_mark_napi_id(sk, skb);
6211 }
6212
6213 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6214
6215 /* Prevent spurious tcp_cwnd_restart() on first data
6216 * packet.
6217 */
6218 tp->lsndtime = tcp_jiffies32;
6219
6220 if (sock_flag(sk, SOCK_KEEPOPEN))
6221 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6222
6223 if (!tp->rx_opt.snd_wscale)
6224 __tcp_fast_path_on(tp, tp->snd_wnd);
6225 else
6226 tp->pred_flags = 0;
6227 }
6228
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6229 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6230 struct tcp_fastopen_cookie *cookie)
6231 {
6232 struct tcp_sock *tp = tcp_sk(sk);
6233 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6234 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6235 bool syn_drop = false;
6236
6237 if (mss == tp->rx_opt.user_mss) {
6238 struct tcp_options_received opt;
6239
6240 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6241 tcp_clear_options(&opt);
6242 opt.user_mss = opt.mss_clamp = 0;
6243 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6244 mss = opt.mss_clamp;
6245 }
6246
6247 if (!tp->syn_fastopen) {
6248 /* Ignore an unsolicited cookie */
6249 cookie->len = -1;
6250 } else if (tp->total_retrans) {
6251 /* SYN timed out and the SYN-ACK neither has a cookie nor
6252 * acknowledges data. Presumably the remote received only
6253 * the retransmitted (regular) SYNs: either the original
6254 * SYN-data or the corresponding SYN-ACK was dropped.
6255 */
6256 syn_drop = (cookie->len < 0 && data);
6257 } else if (cookie->len < 0 && !tp->syn_data) {
6258 /* We requested a cookie but didn't get it. If we did not use
6259 * the (old) exp opt format then try so next time (try_exp=1).
6260 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6261 */
6262 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6263 }
6264
6265 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6266
6267 if (data) { /* Retransmit unacked data in SYN */
6268 if (tp->total_retrans)
6269 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6270 else
6271 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6272 skb_rbtree_walk_from(data)
6273 tcp_mark_skb_lost(sk, data);
6274 tcp_non_congestion_loss_retransmit(sk);
6275 NET_INC_STATS(sock_net(sk),
6276 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6277 return true;
6278 }
6279 tp->syn_data_acked = tp->syn_data;
6280 if (tp->syn_data_acked) {
6281 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6282 /* SYN-data is counted as two separate packets in tcp_ack() */
6283 if (tp->delivered > 1)
6284 --tp->delivered;
6285 }
6286
6287 tcp_fastopen_add_skb(sk, synack);
6288
6289 return false;
6290 }
6291
smc_check_reset_syn(struct tcp_sock * tp)6292 static void smc_check_reset_syn(struct tcp_sock *tp)
6293 {
6294 #if IS_ENABLED(CONFIG_SMC)
6295 if (static_branch_unlikely(&tcp_have_smc)) {
6296 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6297 tp->syn_smc = 0;
6298 }
6299 #endif
6300 }
6301
tcp_try_undo_spurious_syn(struct sock * sk)6302 static void tcp_try_undo_spurious_syn(struct sock *sk)
6303 {
6304 struct tcp_sock *tp = tcp_sk(sk);
6305 u32 syn_stamp;
6306
6307 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6308 * spurious if the ACK's timestamp option echo value matches the
6309 * original SYN timestamp.
6310 */
6311 syn_stamp = tp->retrans_stamp;
6312 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6313 syn_stamp == tp->rx_opt.rcv_tsecr)
6314 tp->undo_marker = 0;
6315 }
6316
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6317 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6318 const struct tcphdr *th)
6319 {
6320 struct inet_connection_sock *icsk = inet_csk(sk);
6321 struct tcp_sock *tp = tcp_sk(sk);
6322 struct tcp_fastopen_cookie foc = { .len = -1 };
6323 int saved_clamp = tp->rx_opt.mss_clamp;
6324 bool fastopen_fail;
6325 SKB_DR(reason);
6326
6327 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6328 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6329 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6330
6331 if (th->ack) {
6332 /* rfc793:
6333 * "If the state is SYN-SENT then
6334 * first check the ACK bit
6335 * If the ACK bit is set
6336 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6337 * a reset (unless the RST bit is set, if so drop
6338 * the segment and return)"
6339 */
6340 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6341 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6342 /* Previous FIN/ACK or RST/ACK might be ignored. */
6343 if (icsk->icsk_retransmits == 0)
6344 inet_csk_reset_xmit_timer(sk,
6345 ICSK_TIME_RETRANS,
6346 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6347 goto reset_and_undo;
6348 }
6349
6350 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6351 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6352 tcp_time_stamp(tp))) {
6353 NET_INC_STATS(sock_net(sk),
6354 LINUX_MIB_PAWSACTIVEREJECTED);
6355 goto reset_and_undo;
6356 }
6357
6358 /* Now ACK is acceptable.
6359 *
6360 * "If the RST bit is set
6361 * If the ACK was acceptable then signal the user "error:
6362 * connection reset", drop the segment, enter CLOSED state,
6363 * delete TCB, and return."
6364 */
6365
6366 if (th->rst) {
6367 tcp_reset(sk, skb);
6368 consume:
6369 __kfree_skb(skb);
6370 return 0;
6371 }
6372
6373 /* rfc793:
6374 * "fifth, if neither of the SYN or RST bits is set then
6375 * drop the segment and return."
6376 *
6377 * See note below!
6378 * --ANK(990513)
6379 */
6380 if (!th->syn) {
6381 SKB_DR_SET(reason, TCP_FLAGS);
6382 goto discard_and_undo;
6383 }
6384 /* rfc793:
6385 * "If the SYN bit is on ...
6386 * are acceptable then ...
6387 * (our SYN has been ACKed), change the connection
6388 * state to ESTABLISHED..."
6389 */
6390
6391 tcp_ecn_rcv_synack(tp, th);
6392
6393 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6394 tcp_try_undo_spurious_syn(sk);
6395 tcp_ack(sk, skb, FLAG_SLOWPATH);
6396
6397 /* Ok.. it's good. Set up sequence numbers and
6398 * move to established.
6399 */
6400 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6401 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6402
6403 /* RFC1323: The window in SYN & SYN/ACK segments is
6404 * never scaled.
6405 */
6406 tp->snd_wnd = ntohs(th->window);
6407
6408 if (!tp->rx_opt.wscale_ok) {
6409 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6410 WRITE_ONCE(tp->window_clamp,
6411 min(tp->window_clamp, 65535U));
6412 }
6413
6414 if (tp->rx_opt.saw_tstamp) {
6415 tp->rx_opt.tstamp_ok = 1;
6416 tp->tcp_header_len =
6417 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6418 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6419 tcp_store_ts_recent(tp);
6420 } else {
6421 tp->tcp_header_len = sizeof(struct tcphdr);
6422 }
6423
6424 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6425 tcp_initialize_rcv_mss(sk);
6426
6427 /* Remember, tcp_poll() does not lock socket!
6428 * Change state from SYN-SENT only after copied_seq
6429 * is initialized. */
6430 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6431
6432 smc_check_reset_syn(tp);
6433
6434 smp_mb();
6435
6436 tcp_finish_connect(sk, skb);
6437
6438 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6439 tcp_rcv_fastopen_synack(sk, skb, &foc);
6440
6441 if (!sock_flag(sk, SOCK_DEAD)) {
6442 sk->sk_state_change(sk);
6443 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6444 }
6445 if (fastopen_fail)
6446 return -1;
6447 if (sk->sk_write_pending ||
6448 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6449 inet_csk_in_pingpong_mode(sk)) {
6450 /* Save one ACK. Data will be ready after
6451 * several ticks, if write_pending is set.
6452 *
6453 * It may be deleted, but with this feature tcpdumps
6454 * look so _wonderfully_ clever, that I was not able
6455 * to stand against the temptation 8) --ANK
6456 */
6457 inet_csk_schedule_ack(sk);
6458 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6459 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6460 TCP_DELACK_MAX, TCP_RTO_MAX);
6461 goto consume;
6462 }
6463 tcp_send_ack(sk);
6464 return -1;
6465 }
6466
6467 /* No ACK in the segment */
6468
6469 if (th->rst) {
6470 /* rfc793:
6471 * "If the RST bit is set
6472 *
6473 * Otherwise (no ACK) drop the segment and return."
6474 */
6475 SKB_DR_SET(reason, TCP_RESET);
6476 goto discard_and_undo;
6477 }
6478
6479 /* PAWS check. */
6480 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6481 tcp_paws_reject(&tp->rx_opt, 0)) {
6482 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6483 goto discard_and_undo;
6484 }
6485 if (th->syn) {
6486 /* We see SYN without ACK. It is attempt of
6487 * simultaneous connect with crossed SYNs.
6488 * Particularly, it can be connect to self.
6489 */
6490 tcp_set_state(sk, TCP_SYN_RECV);
6491
6492 if (tp->rx_opt.saw_tstamp) {
6493 tp->rx_opt.tstamp_ok = 1;
6494 tcp_store_ts_recent(tp);
6495 tp->tcp_header_len =
6496 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6497 } else {
6498 tp->tcp_header_len = sizeof(struct tcphdr);
6499 }
6500
6501 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6502 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6503 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6504
6505 /* RFC1323: The window in SYN & SYN/ACK segments is
6506 * never scaled.
6507 */
6508 tp->snd_wnd = ntohs(th->window);
6509 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6510 tp->max_window = tp->snd_wnd;
6511
6512 tcp_ecn_rcv_syn(tp, th);
6513
6514 tcp_mtup_init(sk);
6515 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6516 tcp_initialize_rcv_mss(sk);
6517
6518 tcp_send_synack(sk);
6519 #if 0
6520 /* Note, we could accept data and URG from this segment.
6521 * There are no obstacles to make this (except that we must
6522 * either change tcp_recvmsg() to prevent it from returning data
6523 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6524 *
6525 * However, if we ignore data in ACKless segments sometimes,
6526 * we have no reasons to accept it sometimes.
6527 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6528 * is not flawless. So, discard packet for sanity.
6529 * Uncomment this return to process the data.
6530 */
6531 return -1;
6532 #else
6533 goto consume;
6534 #endif
6535 }
6536 /* "fifth, if neither of the SYN or RST bits is set then
6537 * drop the segment and return."
6538 */
6539
6540 discard_and_undo:
6541 tcp_clear_options(&tp->rx_opt);
6542 tp->rx_opt.mss_clamp = saved_clamp;
6543 tcp_drop_reason(sk, skb, reason);
6544 return 0;
6545
6546 reset_and_undo:
6547 tcp_clear_options(&tp->rx_opt);
6548 tp->rx_opt.mss_clamp = saved_clamp;
6549 return 1;
6550 }
6551
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6552 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6553 {
6554 struct tcp_sock *tp = tcp_sk(sk);
6555 struct request_sock *req;
6556
6557 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6558 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6559 */
6560 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6561 tcp_try_undo_recovery(sk);
6562
6563 tcp_update_rto_time(tp);
6564 inet_csk(sk)->icsk_retransmits = 0;
6565 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6566 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6567 * need to zero retrans_stamp here to prevent spurious
6568 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6569 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6570 * set entering CA_Recovery, for correct retransmits_timed_out() and
6571 * undo behavior.
6572 */
6573 tcp_retrans_stamp_cleanup(sk);
6574
6575 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6576 * we no longer need req so release it.
6577 */
6578 req = rcu_dereference_protected(tp->fastopen_rsk,
6579 lockdep_sock_is_held(sk));
6580 reqsk_fastopen_remove(sk, req, false);
6581
6582 /* Re-arm the timer because data may have been sent out.
6583 * This is similar to the regular data transmission case
6584 * when new data has just been ack'ed.
6585 *
6586 * (TFO) - we could try to be more aggressive and
6587 * retransmitting any data sooner based on when they
6588 * are sent out.
6589 */
6590 tcp_rearm_rto(sk);
6591 }
6592
6593 /*
6594 * This function implements the receiving procedure of RFC 793 for
6595 * all states except ESTABLISHED and TIME_WAIT.
6596 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6597 * address independent.
6598 */
6599
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6600 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6601 {
6602 struct tcp_sock *tp = tcp_sk(sk);
6603 struct inet_connection_sock *icsk = inet_csk(sk);
6604 const struct tcphdr *th = tcp_hdr(skb);
6605 struct request_sock *req;
6606 int queued = 0;
6607 bool acceptable;
6608 SKB_DR(reason);
6609
6610 switch (sk->sk_state) {
6611 case TCP_CLOSE:
6612 SKB_DR_SET(reason, TCP_CLOSE);
6613 goto discard;
6614
6615 case TCP_LISTEN:
6616 if (th->ack)
6617 return 1;
6618
6619 if (th->rst) {
6620 SKB_DR_SET(reason, TCP_RESET);
6621 goto discard;
6622 }
6623 if (th->syn) {
6624 if (th->fin) {
6625 SKB_DR_SET(reason, TCP_FLAGS);
6626 goto discard;
6627 }
6628 /* It is possible that we process SYN packets from backlog,
6629 * so we need to make sure to disable BH and RCU right there.
6630 */
6631 rcu_read_lock();
6632 local_bh_disable();
6633 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6634 local_bh_enable();
6635 rcu_read_unlock();
6636
6637 if (!acceptable)
6638 return 1;
6639 consume_skb(skb);
6640 return 0;
6641 }
6642 SKB_DR_SET(reason, TCP_FLAGS);
6643 goto discard;
6644
6645 case TCP_SYN_SENT:
6646 tp->rx_opt.saw_tstamp = 0;
6647 tcp_mstamp_refresh(tp);
6648 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6649 if (queued >= 0)
6650 return queued;
6651
6652 /* Do step6 onward by hand. */
6653 tcp_urg(sk, skb, th);
6654 __kfree_skb(skb);
6655 tcp_data_snd_check(sk);
6656 return 0;
6657 }
6658
6659 tcp_mstamp_refresh(tp);
6660 tp->rx_opt.saw_tstamp = 0;
6661 req = rcu_dereference_protected(tp->fastopen_rsk,
6662 lockdep_sock_is_held(sk));
6663 if (req) {
6664 bool req_stolen;
6665
6666 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6667 sk->sk_state != TCP_FIN_WAIT1);
6668
6669 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6670 SKB_DR_SET(reason, TCP_FASTOPEN);
6671 goto discard;
6672 }
6673 }
6674
6675 if (!th->ack && !th->rst && !th->syn) {
6676 SKB_DR_SET(reason, TCP_FLAGS);
6677 goto discard;
6678 }
6679 if (!tcp_validate_incoming(sk, skb, th, 0))
6680 return 0;
6681
6682 /* step 5: check the ACK field */
6683 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6684 FLAG_UPDATE_TS_RECENT |
6685 FLAG_NO_CHALLENGE_ACK) > 0;
6686
6687 if (!acceptable) {
6688 if (sk->sk_state == TCP_SYN_RECV)
6689 return 1; /* send one RST */
6690 tcp_send_challenge_ack(sk);
6691 SKB_DR_SET(reason, TCP_OLD_ACK);
6692 goto discard;
6693 }
6694 switch (sk->sk_state) {
6695 case TCP_SYN_RECV:
6696 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6697 if (!tp->srtt_us)
6698 tcp_synack_rtt_meas(sk, req);
6699
6700 if (req) {
6701 tcp_rcv_synrecv_state_fastopen(sk);
6702 } else {
6703 tcp_try_undo_spurious_syn(sk);
6704 tp->retrans_stamp = 0;
6705 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6706 skb);
6707 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6708 }
6709 smp_mb();
6710 tcp_set_state(sk, TCP_ESTABLISHED);
6711 sk->sk_state_change(sk);
6712
6713 /* Note, that this wakeup is only for marginal crossed SYN case.
6714 * Passively open sockets are not waked up, because
6715 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6716 */
6717 if (sk->sk_socket)
6718 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6719
6720 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6721 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6722 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6723
6724 if (tp->rx_opt.tstamp_ok)
6725 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6726
6727 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6728 tcp_update_pacing_rate(sk);
6729
6730 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6731 tp->lsndtime = tcp_jiffies32;
6732
6733 tcp_initialize_rcv_mss(sk);
6734 tcp_fast_path_on(tp);
6735 if (sk->sk_shutdown & SEND_SHUTDOWN)
6736 tcp_shutdown(sk, SEND_SHUTDOWN);
6737 break;
6738
6739 case TCP_FIN_WAIT1: {
6740 int tmo;
6741
6742 if (req)
6743 tcp_rcv_synrecv_state_fastopen(sk);
6744
6745 if (tp->snd_una != tp->write_seq)
6746 break;
6747
6748 tcp_set_state(sk, TCP_FIN_WAIT2);
6749 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6750
6751 sk_dst_confirm(sk);
6752
6753 if (!sock_flag(sk, SOCK_DEAD)) {
6754 /* Wake up lingering close() */
6755 sk->sk_state_change(sk);
6756 break;
6757 }
6758
6759 if (READ_ONCE(tp->linger2) < 0) {
6760 tcp_done(sk);
6761 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6762 return 1;
6763 }
6764 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6765 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6766 /* Receive out of order FIN after close() */
6767 if (tp->syn_fastopen && th->fin)
6768 tcp_fastopen_active_disable(sk);
6769 tcp_done(sk);
6770 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6771 return 1;
6772 }
6773
6774 tmo = tcp_fin_time(sk);
6775 if (tmo > TCP_TIMEWAIT_LEN) {
6776 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6777 } else if (th->fin || sock_owned_by_user(sk)) {
6778 /* Bad case. We could lose such FIN otherwise.
6779 * It is not a big problem, but it looks confusing
6780 * and not so rare event. We still can lose it now,
6781 * if it spins in bh_lock_sock(), but it is really
6782 * marginal case.
6783 */
6784 inet_csk_reset_keepalive_timer(sk, tmo);
6785 } else {
6786 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6787 goto consume;
6788 }
6789 break;
6790 }
6791
6792 case TCP_CLOSING:
6793 if (tp->snd_una == tp->write_seq) {
6794 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6795 goto consume;
6796 }
6797 break;
6798
6799 case TCP_LAST_ACK:
6800 if (tp->snd_una == tp->write_seq) {
6801 tcp_update_metrics(sk);
6802 tcp_done(sk);
6803 goto consume;
6804 }
6805 break;
6806 }
6807
6808 /* step 6: check the URG bit */
6809 tcp_urg(sk, skb, th);
6810
6811 /* step 7: process the segment text */
6812 switch (sk->sk_state) {
6813 case TCP_CLOSE_WAIT:
6814 case TCP_CLOSING:
6815 case TCP_LAST_ACK:
6816 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6817 /* If a subflow has been reset, the packet should not
6818 * continue to be processed, drop the packet.
6819 */
6820 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6821 goto discard;
6822 break;
6823 }
6824 fallthrough;
6825 case TCP_FIN_WAIT1:
6826 case TCP_FIN_WAIT2:
6827 /* RFC 793 says to queue data in these states,
6828 * RFC 1122 says we MUST send a reset.
6829 * BSD 4.4 also does reset.
6830 */
6831 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6832 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6833 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6834 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6835 tcp_reset(sk, skb);
6836 return 1;
6837 }
6838 }
6839 fallthrough;
6840 case TCP_ESTABLISHED:
6841 tcp_data_queue(sk, skb);
6842 queued = 1;
6843 break;
6844 }
6845
6846 /* tcp_data could move socket to TIME-WAIT */
6847 if (sk->sk_state != TCP_CLOSE) {
6848 tcp_data_snd_check(sk);
6849 tcp_ack_snd_check(sk);
6850 }
6851
6852 if (!queued) {
6853 discard:
6854 tcp_drop_reason(sk, skb, reason);
6855 }
6856 return 0;
6857
6858 consume:
6859 __kfree_skb(skb);
6860 return 0;
6861 }
6862 EXPORT_SYMBOL(tcp_rcv_state_process);
6863
pr_drop_req(struct request_sock * req,__u16 port,int family)6864 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6865 {
6866 struct inet_request_sock *ireq = inet_rsk(req);
6867
6868 if (family == AF_INET)
6869 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6870 &ireq->ir_rmt_addr, port);
6871 #if IS_ENABLED(CONFIG_IPV6)
6872 else if (family == AF_INET6)
6873 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6874 &ireq->ir_v6_rmt_addr, port);
6875 #endif
6876 }
6877
6878 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6879 *
6880 * If we receive a SYN packet with these bits set, it means a
6881 * network is playing bad games with TOS bits. In order to
6882 * avoid possible false congestion notifications, we disable
6883 * TCP ECN negotiation.
6884 *
6885 * Exception: tcp_ca wants ECN. This is required for DCTCP
6886 * congestion control: Linux DCTCP asserts ECT on all packets,
6887 * including SYN, which is most optimal solution; however,
6888 * others, such as FreeBSD do not.
6889 *
6890 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6891 * set, indicating the use of a future TCP extension (such as AccECN). See
6892 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6893 * extensions.
6894 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6895 static void tcp_ecn_create_request(struct request_sock *req,
6896 const struct sk_buff *skb,
6897 const struct sock *listen_sk,
6898 const struct dst_entry *dst)
6899 {
6900 const struct tcphdr *th = tcp_hdr(skb);
6901 const struct net *net = sock_net(listen_sk);
6902 bool th_ecn = th->ece && th->cwr;
6903 bool ect, ecn_ok;
6904 u32 ecn_ok_dst;
6905
6906 if (!th_ecn)
6907 return;
6908
6909 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6910 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6911 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6912
6913 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6914 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6915 tcp_bpf_ca_needs_ecn((struct sock *)req))
6916 inet_rsk(req)->ecn_ok = 1;
6917 }
6918
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6919 static void tcp_openreq_init(struct request_sock *req,
6920 const struct tcp_options_received *rx_opt,
6921 struct sk_buff *skb, const struct sock *sk)
6922 {
6923 struct inet_request_sock *ireq = inet_rsk(req);
6924
6925 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6926 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6927 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6928 tcp_rsk(req)->snt_synack = 0;
6929 tcp_rsk(req)->last_oow_ack_time = 0;
6930 req->mss = rx_opt->mss_clamp;
6931 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6932 ireq->tstamp_ok = rx_opt->tstamp_ok;
6933 ireq->sack_ok = rx_opt->sack_ok;
6934 ireq->snd_wscale = rx_opt->snd_wscale;
6935 ireq->wscale_ok = rx_opt->wscale_ok;
6936 ireq->acked = 0;
6937 ireq->ecn_ok = 0;
6938 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6939 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6940 ireq->ir_mark = inet_request_mark(sk, skb);
6941 #if IS_ENABLED(CONFIG_SMC)
6942 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6943 tcp_sk(sk)->smc_hs_congested(sk));
6944 #endif
6945 }
6946
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6947 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6948 struct sock *sk_listener,
6949 bool attach_listener)
6950 {
6951 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6952 attach_listener);
6953
6954 if (req) {
6955 struct inet_request_sock *ireq = inet_rsk(req);
6956
6957 ireq->ireq_opt = NULL;
6958 #if IS_ENABLED(CONFIG_IPV6)
6959 ireq->pktopts = NULL;
6960 #endif
6961 atomic64_set(&ireq->ir_cookie, 0);
6962 ireq->ireq_state = TCP_NEW_SYN_RECV;
6963 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6964 ireq->ireq_family = sk_listener->sk_family;
6965 req->timeout = TCP_TIMEOUT_INIT;
6966 }
6967
6968 return req;
6969 }
6970 EXPORT_SYMBOL(inet_reqsk_alloc);
6971
6972 /*
6973 * Return true if a syncookie should be sent
6974 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6975 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6976 {
6977 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6978 const char *msg = "Dropping request";
6979 struct net *net = sock_net(sk);
6980 bool want_cookie = false;
6981 u8 syncookies;
6982
6983 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6984
6985 #ifdef CONFIG_SYN_COOKIES
6986 if (syncookies) {
6987 msg = "Sending cookies";
6988 want_cookie = true;
6989 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6990 } else
6991 #endif
6992 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6993
6994 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6995 xchg(&queue->synflood_warned, 1) == 0) {
6996 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6997 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6998 proto, inet6_rcv_saddr(sk),
6999 sk->sk_num, msg);
7000 } else {
7001 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7002 proto, &sk->sk_rcv_saddr,
7003 sk->sk_num, msg);
7004 }
7005 }
7006
7007 return want_cookie;
7008 }
7009
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7010 static void tcp_reqsk_record_syn(const struct sock *sk,
7011 struct request_sock *req,
7012 const struct sk_buff *skb)
7013 {
7014 if (tcp_sk(sk)->save_syn) {
7015 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7016 struct saved_syn *saved_syn;
7017 u32 mac_hdrlen;
7018 void *base;
7019
7020 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7021 base = skb_mac_header(skb);
7022 mac_hdrlen = skb_mac_header_len(skb);
7023 len += mac_hdrlen;
7024 } else {
7025 base = skb_network_header(skb);
7026 mac_hdrlen = 0;
7027 }
7028
7029 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7030 GFP_ATOMIC);
7031 if (saved_syn) {
7032 saved_syn->mac_hdrlen = mac_hdrlen;
7033 saved_syn->network_hdrlen = skb_network_header_len(skb);
7034 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7035 memcpy(saved_syn->data, base, len);
7036 req->saved_syn = saved_syn;
7037 }
7038 }
7039 }
7040
7041 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7042 * used for SYN cookie generation.
7043 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7044 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7045 const struct tcp_request_sock_ops *af_ops,
7046 struct sock *sk, struct tcphdr *th)
7047 {
7048 struct tcp_sock *tp = tcp_sk(sk);
7049 u16 mss;
7050
7051 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7052 !inet_csk_reqsk_queue_is_full(sk))
7053 return 0;
7054
7055 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7056 return 0;
7057
7058 if (sk_acceptq_is_full(sk)) {
7059 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7060 return 0;
7061 }
7062
7063 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7064 if (!mss)
7065 mss = af_ops->mss_clamp;
7066
7067 return mss;
7068 }
7069 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7070
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7071 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7072 const struct tcp_request_sock_ops *af_ops,
7073 struct sock *sk, struct sk_buff *skb)
7074 {
7075 struct tcp_fastopen_cookie foc = { .len = -1 };
7076 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7077 struct tcp_options_received tmp_opt;
7078 struct tcp_sock *tp = tcp_sk(sk);
7079 struct net *net = sock_net(sk);
7080 struct sock *fastopen_sk = NULL;
7081 struct request_sock *req;
7082 bool want_cookie = false;
7083 struct dst_entry *dst;
7084 struct flowi fl;
7085 u8 syncookies;
7086
7087 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7088
7089 /* TW buckets are converted to open requests without
7090 * limitations, they conserve resources and peer is
7091 * evidently real one.
7092 */
7093 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7094 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7095 if (!want_cookie)
7096 goto drop;
7097 }
7098
7099 if (sk_acceptq_is_full(sk)) {
7100 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7101 goto drop;
7102 }
7103
7104 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7105 if (!req)
7106 goto drop;
7107
7108 req->syncookie = want_cookie;
7109 tcp_rsk(req)->af_specific = af_ops;
7110 tcp_rsk(req)->ts_off = 0;
7111 #if IS_ENABLED(CONFIG_MPTCP)
7112 tcp_rsk(req)->is_mptcp = 0;
7113 #endif
7114
7115 tcp_clear_options(&tmp_opt);
7116 tmp_opt.mss_clamp = af_ops->mss_clamp;
7117 tmp_opt.user_mss = tp->rx_opt.user_mss;
7118 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7119 want_cookie ? NULL : &foc);
7120
7121 if (want_cookie && !tmp_opt.saw_tstamp)
7122 tcp_clear_options(&tmp_opt);
7123
7124 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7125 tmp_opt.smc_ok = 0;
7126
7127 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7128 tcp_openreq_init(req, &tmp_opt, skb, sk);
7129 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7130
7131 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7132 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7133
7134 dst = af_ops->route_req(sk, skb, &fl, req);
7135 if (!dst)
7136 goto drop_and_free;
7137
7138 if (tmp_opt.tstamp_ok)
7139 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7140
7141 if (!want_cookie && !isn) {
7142 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7143
7144 /* Kill the following clause, if you dislike this way. */
7145 if (!syncookies &&
7146 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7147 (max_syn_backlog >> 2)) &&
7148 !tcp_peer_is_proven(req, dst)) {
7149 /* Without syncookies last quarter of
7150 * backlog is filled with destinations,
7151 * proven to be alive.
7152 * It means that we continue to communicate
7153 * to destinations, already remembered
7154 * to the moment of synflood.
7155 */
7156 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7157 rsk_ops->family);
7158 goto drop_and_release;
7159 }
7160
7161 isn = af_ops->init_seq(skb);
7162 }
7163
7164 tcp_ecn_create_request(req, skb, sk, dst);
7165
7166 if (want_cookie) {
7167 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7168 if (!tmp_opt.tstamp_ok)
7169 inet_rsk(req)->ecn_ok = 0;
7170 }
7171
7172 tcp_rsk(req)->snt_isn = isn;
7173 tcp_rsk(req)->txhash = net_tx_rndhash();
7174 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7175 tcp_openreq_init_rwin(req, sk, dst);
7176 sk_rx_queue_set(req_to_sk(req), skb);
7177 if (!want_cookie) {
7178 tcp_reqsk_record_syn(sk, req, skb);
7179 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7180 }
7181 if (fastopen_sk) {
7182 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7183 &foc, TCP_SYNACK_FASTOPEN, skb);
7184 /* Add the child socket directly into the accept queue */
7185 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7186 reqsk_fastopen_remove(fastopen_sk, req, false);
7187 bh_unlock_sock(fastopen_sk);
7188 sock_put(fastopen_sk);
7189 goto drop_and_free;
7190 }
7191 sk->sk_data_ready(sk);
7192 bh_unlock_sock(fastopen_sk);
7193 sock_put(fastopen_sk);
7194 } else {
7195 tcp_rsk(req)->tfo_listener = false;
7196 if (!want_cookie) {
7197 req->timeout = tcp_timeout_init((struct sock *)req);
7198 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7199 req->timeout))) {
7200 reqsk_free(req);
7201 dst_release(dst);
7202 return 0;
7203 }
7204
7205 }
7206 af_ops->send_synack(sk, dst, &fl, req, &foc,
7207 !want_cookie ? TCP_SYNACK_NORMAL :
7208 TCP_SYNACK_COOKIE,
7209 skb);
7210 if (want_cookie) {
7211 reqsk_free(req);
7212 return 0;
7213 }
7214 }
7215 reqsk_put(req);
7216 return 0;
7217
7218 drop_and_release:
7219 dst_release(dst);
7220 drop_and_free:
7221 __reqsk_free(req);
7222 drop:
7223 tcp_listendrop(sk);
7224 return 0;
7225 }
7226 EXPORT_SYMBOL(tcp_conn_request);
7227