1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/kobject.h>
7 #include <linux/sysfs.h>
8
9 #include "i915_drv.h"
10 #include "intel_engine.h"
11 #include "intel_engine_heartbeat.h"
12 #include "sysfs_engines.h"
13
14 struct kobj_engine {
15 struct kobject base;
16 struct intel_engine_cs *engine;
17 };
18
kobj_to_engine(struct kobject * kobj)19 static struct intel_engine_cs *kobj_to_engine(struct kobject *kobj)
20 {
21 return container_of(kobj, struct kobj_engine, base)->engine;
22 }
23
24 static ssize_t
name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)25 name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
26 {
27 return sysfs_emit(buf, "%s\n", kobj_to_engine(kobj)->name);
28 }
29
30 static const struct kobj_attribute name_attr =
31 __ATTR(name, 0444, name_show, NULL);
32
33 static ssize_t
class_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)34 class_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
35 {
36 return sysfs_emit(buf, "%d\n", kobj_to_engine(kobj)->uabi_class);
37 }
38
39 static const struct kobj_attribute class_attr =
40 __ATTR(class, 0444, class_show, NULL);
41
42 static ssize_t
inst_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)43 inst_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
44 {
45 return sysfs_emit(buf, "%d\n", kobj_to_engine(kobj)->uabi_instance);
46 }
47
48 static const struct kobj_attribute inst_attr =
49 __ATTR(instance, 0444, inst_show, NULL);
50
51 static ssize_t
mmio_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)52 mmio_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
53 {
54 return sysfs_emit(buf, "0x%x\n", kobj_to_engine(kobj)->mmio_base);
55 }
56
57 static const struct kobj_attribute mmio_attr =
58 __ATTR(mmio_base, 0444, mmio_show, NULL);
59
60 static const char * const vcs_caps[] = {
61 [ilog2(I915_VIDEO_CLASS_CAPABILITY_HEVC)] = "hevc",
62 [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
63 };
64
65 static const char * const vecs_caps[] = {
66 [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
67 };
68
repr_trim(char * buf,ssize_t len)69 static ssize_t repr_trim(char *buf, ssize_t len)
70 {
71 /* Trim off the trailing space and replace with a newline */
72 if (len > PAGE_SIZE)
73 len = PAGE_SIZE;
74 if (len > 0)
75 buf[len - 1] = '\n';
76
77 return len;
78 }
79
80 static ssize_t
__caps_show(struct intel_engine_cs * engine,unsigned long caps,char * buf,bool show_unknown)81 __caps_show(struct intel_engine_cs *engine,
82 unsigned long caps, char *buf, bool show_unknown)
83 {
84 const char * const *repr;
85 int count, n;
86 ssize_t len;
87
88 switch (engine->class) {
89 case VIDEO_DECODE_CLASS:
90 repr = vcs_caps;
91 count = ARRAY_SIZE(vcs_caps);
92 break;
93
94 case VIDEO_ENHANCEMENT_CLASS:
95 repr = vecs_caps;
96 count = ARRAY_SIZE(vecs_caps);
97 break;
98
99 default:
100 repr = NULL;
101 count = 0;
102 break;
103 }
104 GEM_BUG_ON(count > BITS_PER_LONG);
105
106 len = 0;
107 for_each_set_bit(n, &caps, show_unknown ? BITS_PER_LONG : count) {
108 if (n >= count || !repr[n]) {
109 if (GEM_WARN_ON(show_unknown))
110 len += sysfs_emit_at(buf, len, "[%x] ", n);
111 } else {
112 len += sysfs_emit_at(buf, len, "%s ", repr[n]);
113 }
114 if (GEM_WARN_ON(len >= PAGE_SIZE))
115 break;
116 }
117 return repr_trim(buf, len);
118 }
119
120 static ssize_t
caps_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)121 caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
122 {
123 struct intel_engine_cs *engine = kobj_to_engine(kobj);
124
125 return __caps_show(engine, engine->uabi_capabilities, buf, true);
126 }
127
128 static const struct kobj_attribute caps_attr =
129 __ATTR(capabilities, 0444, caps_show, NULL);
130
131 static ssize_t
all_caps_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)132 all_caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
133 {
134 return __caps_show(kobj_to_engine(kobj), -1, buf, false);
135 }
136
137 static const struct kobj_attribute all_caps_attr =
138 __ATTR(known_capabilities, 0444, all_caps_show, NULL);
139
140 static ssize_t
max_spin_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)141 max_spin_store(struct kobject *kobj, struct kobj_attribute *attr,
142 const char *buf, size_t count)
143 {
144 struct intel_engine_cs *engine = kobj_to_engine(kobj);
145 unsigned long long duration, clamped;
146 int err;
147
148 /*
149 * When waiting for a request, if is it currently being executed
150 * on the GPU, we busywait for a short while before sleeping. The
151 * premise is that most requests are short, and if it is already
152 * executing then there is a good chance that it will complete
153 * before we can setup the interrupt handler and go to sleep.
154 * We try to offset the cost of going to sleep, by first spinning
155 * on the request -- if it completed in less time than it would take
156 * to go sleep, process the interrupt and return back to the client,
157 * then we have saved the client some latency, albeit at the cost
158 * of spinning on an expensive CPU core.
159 *
160 * While we try to avoid waiting at all for a request that is unlikely
161 * to complete, deciding how long it is worth spinning is for is an
162 * arbitrary decision: trading off power vs latency.
163 */
164
165 err = kstrtoull(buf, 0, &duration);
166 if (err)
167 return err;
168
169 clamped = intel_clamp_max_busywait_duration_ns(engine, duration);
170 if (duration != clamped)
171 return -EINVAL;
172
173 WRITE_ONCE(engine->props.max_busywait_duration_ns, duration);
174
175 return count;
176 }
177
178 static ssize_t
max_spin_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)179 max_spin_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
180 {
181 struct intel_engine_cs *engine = kobj_to_engine(kobj);
182
183 return sysfs_emit(buf, "%lu\n", engine->props.max_busywait_duration_ns);
184 }
185
186 static const struct kobj_attribute max_spin_attr =
187 __ATTR(max_busywait_duration_ns, 0644, max_spin_show, max_spin_store);
188
189 static ssize_t
max_spin_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)190 max_spin_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
191 {
192 struct intel_engine_cs *engine = kobj_to_engine(kobj);
193
194 return sysfs_emit(buf, "%lu\n", engine->defaults.max_busywait_duration_ns);
195 }
196
197 static const struct kobj_attribute max_spin_def =
198 __ATTR(max_busywait_duration_ns, 0444, max_spin_default, NULL);
199
200 static ssize_t
timeslice_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)201 timeslice_store(struct kobject *kobj, struct kobj_attribute *attr,
202 const char *buf, size_t count)
203 {
204 struct intel_engine_cs *engine = kobj_to_engine(kobj);
205 unsigned long long duration, clamped;
206 int err;
207
208 /*
209 * Execlists uses a scheduling quantum (a timeslice) to alternate
210 * execution between ready-to-run contexts of equal priority. This
211 * ensures that all users (though only if they of equal importance)
212 * have the opportunity to run and prevents livelocks where contexts
213 * may have implicit ordering due to userspace semaphores.
214 */
215
216 err = kstrtoull(buf, 0, &duration);
217 if (err)
218 return err;
219
220 clamped = intel_clamp_timeslice_duration_ms(engine, duration);
221 if (duration != clamped)
222 return -EINVAL;
223
224 WRITE_ONCE(engine->props.timeslice_duration_ms, duration);
225
226 if (execlists_active(&engine->execlists))
227 set_timer_ms(&engine->execlists.timer, duration);
228
229 return count;
230 }
231
232 static ssize_t
timeslice_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)233 timeslice_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
234 {
235 struct intel_engine_cs *engine = kobj_to_engine(kobj);
236
237 return sysfs_emit(buf, "%lu\n", engine->props.timeslice_duration_ms);
238 }
239
240 static const struct kobj_attribute timeslice_duration_attr =
241 __ATTR(timeslice_duration_ms, 0644, timeslice_show, timeslice_store);
242
243 static ssize_t
timeslice_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)244 timeslice_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
245 {
246 struct intel_engine_cs *engine = kobj_to_engine(kobj);
247
248 return sysfs_emit(buf, "%lu\n", engine->defaults.timeslice_duration_ms);
249 }
250
251 static const struct kobj_attribute timeslice_duration_def =
252 __ATTR(timeslice_duration_ms, 0444, timeslice_default, NULL);
253
254 static ssize_t
stop_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)255 stop_store(struct kobject *kobj, struct kobj_attribute *attr,
256 const char *buf, size_t count)
257 {
258 struct intel_engine_cs *engine = kobj_to_engine(kobj);
259 unsigned long long duration, clamped;
260 int err;
261
262 /*
263 * When we allow ourselves to sleep before a GPU reset after disabling
264 * submission, even for a few milliseconds, gives an innocent context
265 * the opportunity to clear the GPU before the reset occurs. However,
266 * how long to sleep depends on the typical non-preemptible duration
267 * (a similar problem to determining the ideal preempt-reset timeout
268 * or even the heartbeat interval).
269 */
270
271 err = kstrtoull(buf, 0, &duration);
272 if (err)
273 return err;
274
275 clamped = intel_clamp_stop_timeout_ms(engine, duration);
276 if (duration != clamped)
277 return -EINVAL;
278
279 WRITE_ONCE(engine->props.stop_timeout_ms, duration);
280 return count;
281 }
282
283 static ssize_t
stop_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)284 stop_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
285 {
286 struct intel_engine_cs *engine = kobj_to_engine(kobj);
287
288 return sysfs_emit(buf, "%lu\n", engine->props.stop_timeout_ms);
289 }
290
291 static const struct kobj_attribute stop_timeout_attr =
292 __ATTR(stop_timeout_ms, 0644, stop_show, stop_store);
293
294 static ssize_t
stop_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)295 stop_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
296 {
297 struct intel_engine_cs *engine = kobj_to_engine(kobj);
298
299 return sysfs_emit(buf, "%lu\n", engine->defaults.stop_timeout_ms);
300 }
301
302 static const struct kobj_attribute stop_timeout_def =
303 __ATTR(stop_timeout_ms, 0444, stop_default, NULL);
304
305 static ssize_t
preempt_timeout_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)306 preempt_timeout_store(struct kobject *kobj, struct kobj_attribute *attr,
307 const char *buf, size_t count)
308 {
309 struct intel_engine_cs *engine = kobj_to_engine(kobj);
310 unsigned long long timeout, clamped;
311 int err;
312
313 /*
314 * After initialising a preemption request, we give the current
315 * resident a small amount of time to vacate the GPU. The preemption
316 * request is for a higher priority context and should be immediate to
317 * maintain high quality of service (and avoid priority inversion).
318 * However, the preemption granularity of the GPU can be quite coarse
319 * and so we need a compromise.
320 */
321
322 err = kstrtoull(buf, 0, &timeout);
323 if (err)
324 return err;
325
326 clamped = intel_clamp_preempt_timeout_ms(engine, timeout);
327 if (timeout != clamped)
328 return -EINVAL;
329
330 WRITE_ONCE(engine->props.preempt_timeout_ms, timeout);
331
332 if (READ_ONCE(engine->execlists.pending[0]))
333 set_timer_ms(&engine->execlists.preempt, timeout);
334
335 return count;
336 }
337
338 static ssize_t
preempt_timeout_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)339 preempt_timeout_show(struct kobject *kobj, struct kobj_attribute *attr,
340 char *buf)
341 {
342 struct intel_engine_cs *engine = kobj_to_engine(kobj);
343
344 return sysfs_emit(buf, "%lu\n", engine->props.preempt_timeout_ms);
345 }
346
347 static const struct kobj_attribute preempt_timeout_attr =
348 __ATTR(preempt_timeout_ms, 0644, preempt_timeout_show, preempt_timeout_store);
349
350 static ssize_t
preempt_timeout_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)351 preempt_timeout_default(struct kobject *kobj, struct kobj_attribute *attr,
352 char *buf)
353 {
354 struct intel_engine_cs *engine = kobj_to_engine(kobj);
355
356 return sysfs_emit(buf, "%lu\n", engine->defaults.preempt_timeout_ms);
357 }
358
359 static const struct kobj_attribute preempt_timeout_def =
360 __ATTR(preempt_timeout_ms, 0444, preempt_timeout_default, NULL);
361
362 static ssize_t
heartbeat_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)363 heartbeat_store(struct kobject *kobj, struct kobj_attribute *attr,
364 const char *buf, size_t count)
365 {
366 struct intel_engine_cs *engine = kobj_to_engine(kobj);
367 unsigned long long delay, clamped;
368 int err;
369
370 /*
371 * We monitor the health of the system via periodic heartbeat pulses.
372 * The pulses also provide the opportunity to perform garbage
373 * collection. However, we interpret an incomplete pulse (a missed
374 * heartbeat) as an indication that the system is no longer responsive,
375 * i.e. hung, and perform an engine or full GPU reset. Given that the
376 * preemption granularity can be very coarse on a system, the optimal
377 * value for any workload is unknowable!
378 */
379
380 err = kstrtoull(buf, 0, &delay);
381 if (err)
382 return err;
383
384 clamped = intel_clamp_heartbeat_interval_ms(engine, delay);
385 if (delay != clamped)
386 return -EINVAL;
387
388 err = intel_engine_set_heartbeat(engine, delay);
389 if (err)
390 return err;
391
392 return count;
393 }
394
395 static ssize_t
heartbeat_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)396 heartbeat_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
397 {
398 struct intel_engine_cs *engine = kobj_to_engine(kobj);
399
400 return sysfs_emit(buf, "%lu\n", engine->props.heartbeat_interval_ms);
401 }
402
403 static const struct kobj_attribute heartbeat_interval_attr =
404 __ATTR(heartbeat_interval_ms, 0644, heartbeat_show, heartbeat_store);
405
406 static ssize_t
heartbeat_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)407 heartbeat_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
408 {
409 struct intel_engine_cs *engine = kobj_to_engine(kobj);
410
411 return sysfs_emit(buf, "%lu\n", engine->defaults.heartbeat_interval_ms);
412 }
413
414 static const struct kobj_attribute heartbeat_interval_def =
415 __ATTR(heartbeat_interval_ms, 0444, heartbeat_default, NULL);
416
kobj_engine_release(struct kobject * kobj)417 static void kobj_engine_release(struct kobject *kobj)
418 {
419 kfree(kobj);
420 }
421
422 static const struct kobj_type kobj_engine_type = {
423 .release = kobj_engine_release,
424 .sysfs_ops = &kobj_sysfs_ops
425 };
426
427 static struct kobject *
kobj_engine(struct kobject * dir,struct intel_engine_cs * engine)428 kobj_engine(struct kobject *dir, struct intel_engine_cs *engine)
429 {
430 struct kobj_engine *ke;
431
432 ke = kzalloc(sizeof(*ke), GFP_KERNEL);
433 if (!ke)
434 return NULL;
435
436 kobject_init(&ke->base, &kobj_engine_type);
437 ke->engine = engine;
438
439 if (kobject_add(&ke->base, dir, "%s", engine->name)) {
440 kobject_put(&ke->base);
441 return NULL;
442 }
443
444 /* xfer ownership to sysfs tree */
445 return &ke->base;
446 }
447
add_defaults(struct kobj_engine * parent)448 static void add_defaults(struct kobj_engine *parent)
449 {
450 static const struct attribute * const files[] = {
451 &max_spin_def.attr,
452 &stop_timeout_def.attr,
453 #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
454 &heartbeat_interval_def.attr,
455 #endif
456 NULL
457 };
458 struct kobj_engine *ke;
459
460 ke = kzalloc(sizeof(*ke), GFP_KERNEL);
461 if (!ke)
462 return;
463
464 kobject_init(&ke->base, &kobj_engine_type);
465 ke->engine = parent->engine;
466
467 if (kobject_add(&ke->base, &parent->base, "%s", ".defaults")) {
468 kobject_put(&ke->base);
469 return;
470 }
471
472 if (sysfs_create_files(&ke->base, files))
473 return;
474
475 if (intel_engine_has_timeslices(ke->engine) &&
476 sysfs_create_file(&ke->base, ×lice_duration_def.attr))
477 return;
478
479 if (intel_engine_has_preempt_reset(ke->engine) &&
480 sysfs_create_file(&ke->base, &preempt_timeout_def.attr))
481 return;
482 }
483
intel_engines_add_sysfs(struct drm_i915_private * i915)484 void intel_engines_add_sysfs(struct drm_i915_private *i915)
485 {
486 static const struct attribute * const files[] = {
487 &name_attr.attr,
488 &class_attr.attr,
489 &inst_attr.attr,
490 &mmio_attr.attr,
491 &caps_attr.attr,
492 &all_caps_attr.attr,
493 &max_spin_attr.attr,
494 &stop_timeout_attr.attr,
495 #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
496 &heartbeat_interval_attr.attr,
497 #endif
498 NULL
499 };
500
501 struct device *kdev = i915->drm.primary->kdev;
502 struct intel_engine_cs *engine;
503 struct kobject *dir;
504
505 dir = kobject_create_and_add("engine", &kdev->kobj);
506 if (!dir)
507 return;
508
509 for_each_uabi_engine(engine, i915) {
510 struct kobject *kobj;
511
512 kobj = kobj_engine(dir, engine);
513 if (!kobj)
514 goto err_engine;
515
516 if (sysfs_create_files(kobj, files))
517 goto err_object;
518
519 if (intel_engine_has_timeslices(engine) &&
520 sysfs_create_file(kobj, ×lice_duration_attr.attr))
521 goto err_engine;
522
523 if (intel_engine_has_preempt_reset(engine) &&
524 sysfs_create_file(kobj, &preempt_timeout_attr.attr))
525 goto err_engine;
526
527 add_defaults(container_of(kobj, struct kobj_engine, base));
528
529 if (0) {
530 err_object:
531 kobject_put(kobj);
532 err_engine:
533 dev_err(kdev, "Failed to add sysfs engine '%s'\n",
534 engine->name);
535 break;
536 }
537 }
538 }
539