1 /*
2 * RISC-V implementation of KVM hooks
3 *
4 * Copyright (c) 2020 Huawei Technologies Co., Ltd
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include <sys/ioctl.h>
21 #include <sys/prctl.h>
22
23 #include <linux/kvm.h>
24
25 #include "qemu/timer.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/kvm_int.h"
33 #include "cpu.h"
34 #include "trace.h"
35 #include "hw/core/accel-cpu.h"
36 #include "hw/pci/pci.h"
37 #include "exec/memattrs.h"
38 #include "exec/address-spaces.h"
39 #include "hw/boards.h"
40 #include "hw/irq.h"
41 #include "hw/intc/riscv_imsic.h"
42 #include "qemu/log.h"
43 #include "hw/loader.h"
44 #include "kvm_riscv.h"
45 #include "sbi_ecall_interface.h"
46 #include "chardev/char-fe.h"
47 #include "migration/misc.h"
48 #include "sysemu/runstate.h"
49 #include "hw/riscv/numa.h"
50
51 #define PR_RISCV_V_SET_CONTROL 69
52 #define PR_RISCV_V_VSTATE_CTRL_ON 2
53
riscv_kvm_aplic_request(void * opaque,int irq,int level)54 void riscv_kvm_aplic_request(void *opaque, int irq, int level)
55 {
56 kvm_set_irq(kvm_state, irq, !!level);
57 }
58
59 static bool cap_has_mp_state;
60
kvm_riscv_reg_id_ulong(CPURISCVState * env,uint64_t type,uint64_t idx)61 static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type,
62 uint64_t idx)
63 {
64 uint64_t id = KVM_REG_RISCV | type | idx;
65
66 switch (riscv_cpu_mxl(env)) {
67 case MXL_RV32:
68 id |= KVM_REG_SIZE_U32;
69 break;
70 case MXL_RV64:
71 id |= KVM_REG_SIZE_U64;
72 break;
73 default:
74 g_assert_not_reached();
75 }
76 return id;
77 }
78
kvm_riscv_reg_id_u32(uint64_t type,uint64_t idx)79 static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx)
80 {
81 return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx;
82 }
83
kvm_riscv_reg_id_u64(uint64_t type,uint64_t idx)84 static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx)
85 {
86 return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx;
87 }
88
kvm_encode_reg_size_id(uint64_t id,size_t size_b)89 static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b)
90 {
91 uint64_t size_ctz = __builtin_ctz(size_b);
92
93 return id | (size_ctz << KVM_REG_SIZE_SHIFT);
94 }
95
kvm_riscv_vector_reg_id(RISCVCPU * cpu,uint64_t idx)96 static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu,
97 uint64_t idx)
98 {
99 uint64_t id;
100 size_t size_b;
101
102 g_assert(idx < 32);
103
104 id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx);
105 size_b = cpu->cfg.vlenb;
106
107 return kvm_encode_reg_size_id(id, size_b);
108 }
109
110 #define RISCV_CORE_REG(env, name) \
111 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \
112 KVM_REG_RISCV_CORE_REG(name))
113
114 #define RISCV_CSR_REG(env, name) \
115 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \
116 KVM_REG_RISCV_CSR_REG(name))
117
118 #define RISCV_CONFIG_REG(env, name) \
119 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \
120 KVM_REG_RISCV_CONFIG_REG(name))
121
122 #define RISCV_TIMER_REG(name) kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \
123 KVM_REG_RISCV_TIMER_REG(name))
124
125 #define RISCV_FP_F_REG(idx) kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx)
126
127 #define RISCV_FP_D_REG(idx) kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx)
128
129 #define RISCV_VECTOR_CSR_REG(env, name) \
130 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \
131 KVM_REG_RISCV_VECTOR_CSR_REG(name))
132
133 #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \
134 do { \
135 int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \
136 if (_ret) { \
137 return _ret; \
138 } \
139 } while (0)
140
141 #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \
142 do { \
143 int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \
144 if (_ret) { \
145 return _ret; \
146 } \
147 } while (0)
148
149 #define KVM_RISCV_GET_TIMER(cs, name, reg) \
150 do { \
151 int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), ®); \
152 if (ret) { \
153 abort(); \
154 } \
155 } while (0)
156
157 #define KVM_RISCV_SET_TIMER(cs, name, reg) \
158 do { \
159 int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), ®); \
160 if (ret) { \
161 abort(); \
162 } \
163 } while (0)
164
165 typedef struct KVMCPUConfig {
166 const char *name;
167 const char *description;
168 target_ulong offset;
169 uint64_t kvm_reg_id;
170 bool user_set;
171 bool supported;
172 } KVMCPUConfig;
173
174 #define KVM_MISA_CFG(_bit, _reg_id) \
175 {.offset = _bit, .kvm_reg_id = _reg_id}
176
177 /* KVM ISA extensions */
178 static KVMCPUConfig kvm_misa_ext_cfgs[] = {
179 KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A),
180 KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C),
181 KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D),
182 KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F),
183 KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H),
184 KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I),
185 KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M),
186 KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V),
187 };
188
kvm_cpu_get_misa_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)189 static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v,
190 const char *name,
191 void *opaque, Error **errp)
192 {
193 KVMCPUConfig *misa_ext_cfg = opaque;
194 target_ulong misa_bit = misa_ext_cfg->offset;
195 RISCVCPU *cpu = RISCV_CPU(obj);
196 CPURISCVState *env = &cpu->env;
197 bool value = env->misa_ext_mask & misa_bit;
198
199 visit_type_bool(v, name, &value, errp);
200 }
201
kvm_cpu_set_misa_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)202 static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v,
203 const char *name,
204 void *opaque, Error **errp)
205 {
206 KVMCPUConfig *misa_ext_cfg = opaque;
207 target_ulong misa_bit = misa_ext_cfg->offset;
208 RISCVCPU *cpu = RISCV_CPU(obj);
209 CPURISCVState *env = &cpu->env;
210 bool value, host_bit;
211
212 if (!visit_type_bool(v, name, &value, errp)) {
213 return;
214 }
215
216 host_bit = env->misa_ext_mask & misa_bit;
217
218 if (value == host_bit) {
219 return;
220 }
221
222 if (!value) {
223 misa_ext_cfg->user_set = true;
224 return;
225 }
226
227 /*
228 * Forbid users to enable extensions that aren't
229 * available in the hart.
230 */
231 error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not "
232 "enabled in the host", misa_ext_cfg->name);
233 }
234
kvm_riscv_update_cpu_misa_ext(RISCVCPU * cpu,CPUState * cs)235 static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs)
236 {
237 CPURISCVState *env = &cpu->env;
238 uint64_t id, reg;
239 int i, ret;
240
241 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
242 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
243 target_ulong misa_bit = misa_cfg->offset;
244
245 if (!misa_cfg->user_set) {
246 continue;
247 }
248
249 /* If we're here we're going to disable the MISA bit */
250 reg = 0;
251 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
252 misa_cfg->kvm_reg_id);
253 ret = kvm_set_one_reg(cs, id, ®);
254 if (ret != 0) {
255 /*
256 * We're not checking for -EINVAL because if the bit is about
257 * to be disabled, it means that it was already enabled by
258 * KVM. We determined that by fetching the 'isa' register
259 * during init() time. Any error at this point is worth
260 * aborting.
261 */
262 error_report("Unable to set KVM reg %s, error %d",
263 misa_cfg->name, ret);
264 exit(EXIT_FAILURE);
265 }
266 env->misa_ext &= ~misa_bit;
267 }
268 }
269
270 #define KVM_EXT_CFG(_name, _prop, _reg_id) \
271 {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \
272 .kvm_reg_id = _reg_id}
273
274 static KVMCPUConfig kvm_multi_ext_cfgs[] = {
275 KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM),
276 KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ),
277 KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR),
278 KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND),
279 KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR),
280 KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI),
281 KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL),
282 KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE),
283 KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM),
284 KVM_EXT_CFG("zimop", ext_zimop, KVM_RISCV_ISA_EXT_ZIMOP),
285 KVM_EXT_CFG("zcmop", ext_zcmop, KVM_RISCV_ISA_EXT_ZCMOP),
286 KVM_EXT_CFG("zacas", ext_zacas, KVM_RISCV_ISA_EXT_ZACAS),
287 KVM_EXT_CFG("zawrs", ext_zawrs, KVM_RISCV_ISA_EXT_ZAWRS),
288 KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA),
289 KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH),
290 KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN),
291 KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA),
292 KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB),
293 KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC),
294 KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB),
295 KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC),
296 KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX),
297 KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS),
298 KVM_EXT_CFG("zca", ext_zca, KVM_RISCV_ISA_EXT_ZCA),
299 KVM_EXT_CFG("zcb", ext_zcb, KVM_RISCV_ISA_EXT_ZCB),
300 KVM_EXT_CFG("zcd", ext_zcd, KVM_RISCV_ISA_EXT_ZCD),
301 KVM_EXT_CFG("zcf", ext_zcf, KVM_RISCV_ISA_EXT_ZCF),
302 KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND),
303 KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE),
304 KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH),
305 KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR),
306 KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED),
307 KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH),
308 KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT),
309 KVM_EXT_CFG("ztso", ext_ztso, KVM_RISCV_ISA_EXT_ZTSO),
310 KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB),
311 KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC),
312 KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH),
313 KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN),
314 KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB),
315 KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG),
316 KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED),
317 KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA),
318 KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB),
319 KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED),
320 KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH),
321 KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT),
322 KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN),
323 KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA),
324 KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC),
325 KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL),
326 KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT),
327 KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT),
328 };
329
kvmconfig_get_cfg_addr(RISCVCPU * cpu,KVMCPUConfig * kvmcfg)330 static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg)
331 {
332 return (void *)&cpu->cfg + kvmcfg->offset;
333 }
334
kvm_cpu_cfg_set(RISCVCPU * cpu,KVMCPUConfig * multi_ext,uint32_t val)335 static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext,
336 uint32_t val)
337 {
338 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
339
340 *ext_enabled = val;
341 }
342
kvm_cpu_cfg_get(RISCVCPU * cpu,KVMCPUConfig * multi_ext)343 static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu,
344 KVMCPUConfig *multi_ext)
345 {
346 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
347
348 return *ext_enabled;
349 }
350
kvm_cpu_get_multi_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)351 static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v,
352 const char *name,
353 void *opaque, Error **errp)
354 {
355 KVMCPUConfig *multi_ext_cfg = opaque;
356 RISCVCPU *cpu = RISCV_CPU(obj);
357 bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
358
359 visit_type_bool(v, name, &value, errp);
360 }
361
kvm_cpu_set_multi_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)362 static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v,
363 const char *name,
364 void *opaque, Error **errp)
365 {
366 KVMCPUConfig *multi_ext_cfg = opaque;
367 RISCVCPU *cpu = RISCV_CPU(obj);
368 bool value, host_val;
369
370 if (!visit_type_bool(v, name, &value, errp)) {
371 return;
372 }
373
374 host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
375
376 /*
377 * Ignore if the user is setting the same value
378 * as the host.
379 */
380 if (value == host_val) {
381 return;
382 }
383
384 if (!multi_ext_cfg->supported) {
385 /*
386 * Error out if the user is trying to enable an
387 * extension that KVM doesn't support. Ignore
388 * option otherwise.
389 */
390 if (value) {
391 error_setg(errp, "KVM does not support disabling extension %s",
392 multi_ext_cfg->name);
393 }
394
395 return;
396 }
397
398 multi_ext_cfg->user_set = true;
399 kvm_cpu_cfg_set(cpu, multi_ext_cfg, value);
400 }
401
402 static KVMCPUConfig kvm_cbom_blocksize = {
403 .name = "cbom_blocksize",
404 .offset = CPU_CFG_OFFSET(cbom_blocksize),
405 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size)
406 };
407
408 static KVMCPUConfig kvm_cboz_blocksize = {
409 .name = "cboz_blocksize",
410 .offset = CPU_CFG_OFFSET(cboz_blocksize),
411 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size)
412 };
413
414 static KVMCPUConfig kvm_v_vlenb = {
415 .name = "vlenb",
416 .offset = CPU_CFG_OFFSET(vlenb),
417 .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR |
418 KVM_REG_RISCV_VECTOR_CSR_REG(vlenb)
419 };
420
421 static KVMCPUConfig kvm_sbi_dbcn = {
422 .name = "sbi_dbcn",
423 .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 |
424 KVM_REG_RISCV_SBI_EXT | KVM_RISCV_SBI_EXT_DBCN
425 };
426
kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU * cpu,CPUState * cs)427 static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs)
428 {
429 CPURISCVState *env = &cpu->env;
430 uint64_t id, reg;
431 int i, ret;
432
433 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
434 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
435
436 if (!multi_ext_cfg->user_set) {
437 continue;
438 }
439
440 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
441 multi_ext_cfg->kvm_reg_id);
442 reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
443 ret = kvm_set_one_reg(cs, id, ®);
444 if (ret != 0) {
445 if (!reg && ret == -EINVAL) {
446 warn_report("KVM cannot disable extension %s",
447 multi_ext_cfg->name);
448 } else {
449 error_report("Unable to enable extension %s in KVM, error %d",
450 multi_ext_cfg->name, ret);
451 exit(EXIT_FAILURE);
452 }
453 }
454 }
455 }
456
cpu_get_cfg_unavailable(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)457 static void cpu_get_cfg_unavailable(Object *obj, Visitor *v,
458 const char *name,
459 void *opaque, Error **errp)
460 {
461 bool value = false;
462
463 visit_type_bool(v, name, &value, errp);
464 }
465
cpu_set_cfg_unavailable(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)466 static void cpu_set_cfg_unavailable(Object *obj, Visitor *v,
467 const char *name,
468 void *opaque, Error **errp)
469 {
470 const char *propname = opaque;
471 bool value;
472
473 if (!visit_type_bool(v, name, &value, errp)) {
474 return;
475 }
476
477 if (value) {
478 error_setg(errp, "'%s' is not available with KVM",
479 propname);
480 }
481 }
482
riscv_cpu_add_kvm_unavail_prop(Object * obj,const char * prop_name)483 static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name)
484 {
485 /* Check if KVM created the property already */
486 if (object_property_find(obj, prop_name)) {
487 return;
488 }
489
490 /*
491 * Set the default to disabled for every extension
492 * unknown to KVM and error out if the user attempts
493 * to enable any of them.
494 */
495 object_property_add(obj, prop_name, "bool",
496 cpu_get_cfg_unavailable,
497 cpu_set_cfg_unavailable,
498 NULL, (void *)prop_name);
499 }
500
riscv_cpu_add_kvm_unavail_prop_array(Object * obj,const RISCVCPUMultiExtConfig * array)501 static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj,
502 const RISCVCPUMultiExtConfig *array)
503 {
504 const RISCVCPUMultiExtConfig *prop;
505
506 g_assert(array);
507
508 for (prop = array; prop && prop->name; prop++) {
509 riscv_cpu_add_kvm_unavail_prop(obj, prop->name);
510 }
511 }
512
kvm_riscv_add_cpu_user_properties(Object * cpu_obj)513 static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj)
514 {
515 int i;
516
517 riscv_add_satp_mode_properties(cpu_obj);
518
519 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
520 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
521 int bit = misa_cfg->offset;
522
523 misa_cfg->name = riscv_get_misa_ext_name(bit);
524 misa_cfg->description = riscv_get_misa_ext_description(bit);
525
526 object_property_add(cpu_obj, misa_cfg->name, "bool",
527 kvm_cpu_get_misa_ext_cfg,
528 kvm_cpu_set_misa_ext_cfg,
529 NULL, misa_cfg);
530 object_property_set_description(cpu_obj, misa_cfg->name,
531 misa_cfg->description);
532 }
533
534 for (i = 0; misa_bits[i] != 0; i++) {
535 const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]);
536 riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name);
537 }
538
539 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
540 KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i];
541
542 object_property_add(cpu_obj, multi_cfg->name, "bool",
543 kvm_cpu_get_multi_ext_cfg,
544 kvm_cpu_set_multi_ext_cfg,
545 NULL, multi_cfg);
546 }
547
548 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions);
549 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts);
550 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts);
551
552 /* We don't have the needed KVM support for profiles */
553 for (i = 0; riscv_profiles[i] != NULL; i++) {
554 riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name);
555 }
556 }
557
kvm_riscv_get_regs_core(CPUState * cs)558 static int kvm_riscv_get_regs_core(CPUState *cs)
559 {
560 int ret = 0;
561 int i;
562 target_ulong reg;
563 CPURISCVState *env = &RISCV_CPU(cs)->env;
564
565 ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®);
566 if (ret) {
567 return ret;
568 }
569 env->pc = reg;
570
571 for (i = 1; i < 32; i++) {
572 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
573 ret = kvm_get_one_reg(cs, id, ®);
574 if (ret) {
575 return ret;
576 }
577 env->gpr[i] = reg;
578 }
579
580 return ret;
581 }
582
kvm_riscv_put_regs_core(CPUState * cs)583 static int kvm_riscv_put_regs_core(CPUState *cs)
584 {
585 int ret = 0;
586 int i;
587 target_ulong reg;
588 CPURISCVState *env = &RISCV_CPU(cs)->env;
589
590 reg = env->pc;
591 ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®);
592 if (ret) {
593 return ret;
594 }
595
596 for (i = 1; i < 32; i++) {
597 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
598 reg = env->gpr[i];
599 ret = kvm_set_one_reg(cs, id, ®);
600 if (ret) {
601 return ret;
602 }
603 }
604
605 return ret;
606 }
607
kvm_riscv_get_regs_csr(CPUState * cs)608 static int kvm_riscv_get_regs_csr(CPUState *cs)
609 {
610 CPURISCVState *env = &RISCV_CPU(cs)->env;
611
612 KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus);
613 KVM_RISCV_GET_CSR(cs, env, sie, env->mie);
614 KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec);
615 KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch);
616 KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc);
617 KVM_RISCV_GET_CSR(cs, env, scause, env->scause);
618 KVM_RISCV_GET_CSR(cs, env, stval, env->stval);
619 KVM_RISCV_GET_CSR(cs, env, sip, env->mip);
620 KVM_RISCV_GET_CSR(cs, env, satp, env->satp);
621
622 return 0;
623 }
624
kvm_riscv_put_regs_csr(CPUState * cs)625 static int kvm_riscv_put_regs_csr(CPUState *cs)
626 {
627 CPURISCVState *env = &RISCV_CPU(cs)->env;
628
629 KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus);
630 KVM_RISCV_SET_CSR(cs, env, sie, env->mie);
631 KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec);
632 KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch);
633 KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc);
634 KVM_RISCV_SET_CSR(cs, env, scause, env->scause);
635 KVM_RISCV_SET_CSR(cs, env, stval, env->stval);
636 KVM_RISCV_SET_CSR(cs, env, sip, env->mip);
637 KVM_RISCV_SET_CSR(cs, env, satp, env->satp);
638
639 return 0;
640 }
641
kvm_riscv_get_regs_fp(CPUState * cs)642 static int kvm_riscv_get_regs_fp(CPUState *cs)
643 {
644 int ret = 0;
645 int i;
646 CPURISCVState *env = &RISCV_CPU(cs)->env;
647
648 if (riscv_has_ext(env, RVD)) {
649 uint64_t reg;
650 for (i = 0; i < 32; i++) {
651 ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), ®);
652 if (ret) {
653 return ret;
654 }
655 env->fpr[i] = reg;
656 }
657 return ret;
658 }
659
660 if (riscv_has_ext(env, RVF)) {
661 uint32_t reg;
662 for (i = 0; i < 32; i++) {
663 ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), ®);
664 if (ret) {
665 return ret;
666 }
667 env->fpr[i] = reg;
668 }
669 return ret;
670 }
671
672 return ret;
673 }
674
kvm_riscv_put_regs_fp(CPUState * cs)675 static int kvm_riscv_put_regs_fp(CPUState *cs)
676 {
677 int ret = 0;
678 int i;
679 CPURISCVState *env = &RISCV_CPU(cs)->env;
680
681 if (riscv_has_ext(env, RVD)) {
682 uint64_t reg;
683 for (i = 0; i < 32; i++) {
684 reg = env->fpr[i];
685 ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), ®);
686 if (ret) {
687 return ret;
688 }
689 }
690 return ret;
691 }
692
693 if (riscv_has_ext(env, RVF)) {
694 uint32_t reg;
695 for (i = 0; i < 32; i++) {
696 reg = env->fpr[i];
697 ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), ®);
698 if (ret) {
699 return ret;
700 }
701 }
702 return ret;
703 }
704
705 return ret;
706 }
707
kvm_riscv_get_regs_timer(CPUState * cs)708 static void kvm_riscv_get_regs_timer(CPUState *cs)
709 {
710 CPURISCVState *env = &RISCV_CPU(cs)->env;
711
712 if (env->kvm_timer_dirty) {
713 return;
714 }
715
716 KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time);
717 KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare);
718 KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state);
719 KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency);
720
721 env->kvm_timer_dirty = true;
722 }
723
kvm_riscv_put_regs_timer(CPUState * cs)724 static void kvm_riscv_put_regs_timer(CPUState *cs)
725 {
726 uint64_t reg;
727 CPURISCVState *env = &RISCV_CPU(cs)->env;
728
729 if (!env->kvm_timer_dirty) {
730 return;
731 }
732
733 KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time);
734 KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare);
735
736 /*
737 * To set register of RISCV_TIMER_REG(state) will occur a error from KVM
738 * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it
739 * doesn't matter that adaping in QEMU now.
740 * TODO If KVM changes, adapt here.
741 */
742 if (env->kvm_timer_state) {
743 KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state);
744 }
745
746 /*
747 * For now, migration will not work between Hosts with different timer
748 * frequency. Therefore, we should check whether they are the same here
749 * during the migration.
750 */
751 if (migration_is_running()) {
752 KVM_RISCV_GET_TIMER(cs, frequency, reg);
753 if (reg != env->kvm_timer_frequency) {
754 error_report("Dst Hosts timer frequency != Src Hosts");
755 }
756 }
757
758 env->kvm_timer_dirty = false;
759 }
760
kvm_riscv_get_timebase_frequency(CPUState * cs)761 uint64_t kvm_riscv_get_timebase_frequency(CPUState *cs)
762 {
763 uint64_t reg;
764
765 KVM_RISCV_GET_TIMER(cs, frequency, reg);
766
767 return reg;
768 }
769
kvm_riscv_get_regs_vector(CPUState * cs)770 static int kvm_riscv_get_regs_vector(CPUState *cs)
771 {
772 RISCVCPU *cpu = RISCV_CPU(cs);
773 CPURISCVState *env = &cpu->env;
774 target_ulong reg;
775 uint64_t vreg_id;
776 int vreg_idx, ret = 0;
777
778 if (!riscv_has_ext(env, RVV)) {
779 return 0;
780 }
781
782 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®);
783 if (ret) {
784 return ret;
785 }
786 env->vstart = reg;
787
788 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®);
789 if (ret) {
790 return ret;
791 }
792 env->vl = reg;
793
794 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®);
795 if (ret) {
796 return ret;
797 }
798 env->vtype = reg;
799
800 if (kvm_v_vlenb.supported) {
801 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®);
802 if (ret) {
803 return ret;
804 }
805 cpu->cfg.vlenb = reg;
806
807 for (int i = 0; i < 32; i++) {
808 /*
809 * vreg[] is statically allocated using RV_VLEN_MAX.
810 * Use it instead of vlenb to calculate vreg_idx for
811 * simplicity.
812 */
813 vreg_idx = i * RV_VLEN_MAX / 64;
814 vreg_id = kvm_riscv_vector_reg_id(cpu, i);
815
816 ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
817 if (ret) {
818 return ret;
819 }
820 }
821 }
822
823 return 0;
824 }
825
kvm_riscv_put_regs_vector(CPUState * cs)826 static int kvm_riscv_put_regs_vector(CPUState *cs)
827 {
828 RISCVCPU *cpu = RISCV_CPU(cs);
829 CPURISCVState *env = &cpu->env;
830 target_ulong reg;
831 uint64_t vreg_id;
832 int vreg_idx, ret = 0;
833
834 if (!riscv_has_ext(env, RVV)) {
835 return 0;
836 }
837
838 reg = env->vstart;
839 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®);
840 if (ret) {
841 return ret;
842 }
843
844 reg = env->vl;
845 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®);
846 if (ret) {
847 return ret;
848 }
849
850 reg = env->vtype;
851 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®);
852 if (ret) {
853 return ret;
854 }
855
856 if (kvm_v_vlenb.supported) {
857 reg = cpu->cfg.vlenb;
858 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®);
859
860 for (int i = 0; i < 32; i++) {
861 /*
862 * vreg[] is statically allocated using RV_VLEN_MAX.
863 * Use it instead of vlenb to calculate vreg_idx for
864 * simplicity.
865 */
866 vreg_idx = i * RV_VLEN_MAX / 64;
867 vreg_id = kvm_riscv_vector_reg_id(cpu, i);
868
869 ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
870 if (ret) {
871 return ret;
872 }
873 }
874 }
875
876 return ret;
877 }
878
879 typedef struct KVMScratchCPU {
880 int kvmfd;
881 int vmfd;
882 int cpufd;
883 } KVMScratchCPU;
884
885 /*
886 * Heavily inspired by kvm_arm_create_scratch_host_vcpu()
887 * from target/arm/kvm.c.
888 */
kvm_riscv_create_scratch_vcpu(KVMScratchCPU * scratch)889 static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch)
890 {
891 int kvmfd = -1, vmfd = -1, cpufd = -1;
892
893 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
894 if (kvmfd < 0) {
895 goto err;
896 }
897 do {
898 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
899 } while (vmfd == -1 && errno == EINTR);
900 if (vmfd < 0) {
901 goto err;
902 }
903 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
904 if (cpufd < 0) {
905 goto err;
906 }
907
908 scratch->kvmfd = kvmfd;
909 scratch->vmfd = vmfd;
910 scratch->cpufd = cpufd;
911
912 return true;
913
914 err:
915 if (cpufd >= 0) {
916 close(cpufd);
917 }
918 if (vmfd >= 0) {
919 close(vmfd);
920 }
921 if (kvmfd >= 0) {
922 close(kvmfd);
923 }
924
925 return false;
926 }
927
kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU * scratch)928 static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch)
929 {
930 close(scratch->cpufd);
931 close(scratch->vmfd);
932 close(scratch->kvmfd);
933 }
934
kvm_riscv_init_machine_ids(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)935 static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
936 {
937 CPURISCVState *env = &cpu->env;
938 struct kvm_one_reg reg;
939 int ret;
940
941 reg.id = RISCV_CONFIG_REG(env, mvendorid);
942 reg.addr = (uint64_t)&cpu->cfg.mvendorid;
943 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
944 if (ret != 0) {
945 error_report("Unable to retrieve mvendorid from host, error %d", ret);
946 }
947
948 reg.id = RISCV_CONFIG_REG(env, marchid);
949 reg.addr = (uint64_t)&cpu->cfg.marchid;
950 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
951 if (ret != 0) {
952 error_report("Unable to retrieve marchid from host, error %d", ret);
953 }
954
955 reg.id = RISCV_CONFIG_REG(env, mimpid);
956 reg.addr = (uint64_t)&cpu->cfg.mimpid;
957 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
958 if (ret != 0) {
959 error_report("Unable to retrieve mimpid from host, error %d", ret);
960 }
961 }
962
kvm_riscv_init_misa_ext_mask(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)963 static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu,
964 KVMScratchCPU *kvmcpu)
965 {
966 CPURISCVState *env = &cpu->env;
967 struct kvm_one_reg reg;
968 int ret;
969
970 reg.id = RISCV_CONFIG_REG(env, isa);
971 reg.addr = (uint64_t)&env->misa_ext_mask;
972 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
973
974 if (ret) {
975 error_report("Unable to fetch ISA register from KVM, "
976 "error %d", ret);
977 kvm_riscv_destroy_scratch_vcpu(kvmcpu);
978 exit(EXIT_FAILURE);
979 }
980
981 env->misa_ext = env->misa_ext_mask;
982 }
983
kvm_riscv_read_cbomz_blksize(RISCVCPU * cpu,KVMScratchCPU * kvmcpu,KVMCPUConfig * cbomz_cfg)984 static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
985 KVMCPUConfig *cbomz_cfg)
986 {
987 CPURISCVState *env = &cpu->env;
988 struct kvm_one_reg reg;
989 int ret;
990
991 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
992 cbomz_cfg->kvm_reg_id);
993 reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg);
994 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
995 if (ret != 0) {
996 error_report("Unable to read KVM reg %s, error %d",
997 cbomz_cfg->name, ret);
998 exit(EXIT_FAILURE);
999 }
1000 }
1001
kvm_riscv_read_multiext_legacy(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)1002 static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu,
1003 KVMScratchCPU *kvmcpu)
1004 {
1005 CPURISCVState *env = &cpu->env;
1006 uint64_t val;
1007 int i, ret;
1008
1009 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1010 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1011 struct kvm_one_reg reg;
1012
1013 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
1014 multi_ext_cfg->kvm_reg_id);
1015 reg.addr = (uint64_t)&val;
1016 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
1017 if (ret != 0) {
1018 if (errno == EINVAL) {
1019 /* Silently default to 'false' if KVM does not support it. */
1020 multi_ext_cfg->supported = false;
1021 val = false;
1022 } else {
1023 error_report("Unable to read ISA_EXT KVM register %s: %s",
1024 multi_ext_cfg->name, strerror(errno));
1025 exit(EXIT_FAILURE);
1026 }
1027 } else {
1028 multi_ext_cfg->supported = true;
1029 }
1030
1031 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1032 }
1033
1034 if (cpu->cfg.ext_zicbom) {
1035 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1036 }
1037
1038 if (cpu->cfg.ext_zicboz) {
1039 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1040 }
1041 }
1042
uint64_cmp(const void * a,const void * b)1043 static int uint64_cmp(const void *a, const void *b)
1044 {
1045 uint64_t val1 = *(const uint64_t *)a;
1046 uint64_t val2 = *(const uint64_t *)b;
1047
1048 if (val1 < val2) {
1049 return -1;
1050 }
1051
1052 if (val1 > val2) {
1053 return 1;
1054 }
1055
1056 return 0;
1057 }
1058
kvm_riscv_check_sbi_dbcn_support(RISCVCPU * cpu,KVMScratchCPU * kvmcpu,struct kvm_reg_list * reglist)1059 static void kvm_riscv_check_sbi_dbcn_support(RISCVCPU *cpu,
1060 KVMScratchCPU *kvmcpu,
1061 struct kvm_reg_list *reglist)
1062 {
1063 struct kvm_reg_list *reg_search;
1064
1065 reg_search = bsearch(&kvm_sbi_dbcn.kvm_reg_id, reglist->reg, reglist->n,
1066 sizeof(uint64_t), uint64_cmp);
1067
1068 if (reg_search) {
1069 kvm_sbi_dbcn.supported = true;
1070 }
1071 }
1072
kvm_riscv_read_vlenb(RISCVCPU * cpu,KVMScratchCPU * kvmcpu,struct kvm_reg_list * reglist)1073 static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
1074 struct kvm_reg_list *reglist)
1075 {
1076 struct kvm_one_reg reg;
1077 struct kvm_reg_list *reg_search;
1078 uint64_t val;
1079 int ret;
1080
1081 reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n,
1082 sizeof(uint64_t), uint64_cmp);
1083
1084 if (reg_search) {
1085 reg.id = kvm_v_vlenb.kvm_reg_id;
1086 reg.addr = (uint64_t)&val;
1087
1088 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
1089 if (ret != 0) {
1090 error_report("Unable to read vlenb register, error code: %d",
1091 errno);
1092 exit(EXIT_FAILURE);
1093 }
1094
1095 kvm_v_vlenb.supported = true;
1096 cpu->cfg.vlenb = val;
1097 }
1098 }
1099
kvm_riscv_init_multiext_cfg(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)1100 static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
1101 {
1102 KVMCPUConfig *multi_ext_cfg;
1103 struct kvm_one_reg reg;
1104 struct kvm_reg_list rl_struct;
1105 struct kvm_reg_list *reglist;
1106 uint64_t val, reg_id, *reg_search;
1107 int i, ret;
1108
1109 rl_struct.n = 0;
1110 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct);
1111
1112 /*
1113 * If KVM_GET_REG_LIST isn't supported we'll get errno 22
1114 * (EINVAL). Use read_legacy() in this case.
1115 */
1116 if (errno == EINVAL) {
1117 return kvm_riscv_read_multiext_legacy(cpu, kvmcpu);
1118 } else if (errno != E2BIG) {
1119 /*
1120 * E2BIG is an expected error message for the API since we
1121 * don't know the number of registers. The right amount will
1122 * be written in rl_struct.n.
1123 *
1124 * Error out if we get any other errno.
1125 */
1126 error_report("Error when accessing get-reg-list: %s",
1127 strerror(errno));
1128 exit(EXIT_FAILURE);
1129 }
1130
1131 reglist = g_malloc(sizeof(struct kvm_reg_list) +
1132 rl_struct.n * sizeof(uint64_t));
1133 reglist->n = rl_struct.n;
1134 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist);
1135 if (ret) {
1136 error_report("Error when reading KVM_GET_REG_LIST: %s",
1137 strerror(errno));
1138 exit(EXIT_FAILURE);
1139 }
1140
1141 /* sort reglist to use bsearch() */
1142 qsort(®list->reg, reglist->n, sizeof(uint64_t), uint64_cmp);
1143
1144 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1145 multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1146 reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT,
1147 multi_ext_cfg->kvm_reg_id);
1148 reg_search = bsearch(®_id, reglist->reg, reglist->n,
1149 sizeof(uint64_t), uint64_cmp);
1150 if (!reg_search) {
1151 continue;
1152 }
1153
1154 reg.id = reg_id;
1155 reg.addr = (uint64_t)&val;
1156 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
1157 if (ret != 0) {
1158 error_report("Unable to read ISA_EXT KVM register %s: %s",
1159 multi_ext_cfg->name, strerror(errno));
1160 exit(EXIT_FAILURE);
1161 }
1162
1163 multi_ext_cfg->supported = true;
1164 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1165 }
1166
1167 if (cpu->cfg.ext_zicbom) {
1168 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1169 }
1170
1171 if (cpu->cfg.ext_zicboz) {
1172 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1173 }
1174
1175 if (riscv_has_ext(&cpu->env, RVV)) {
1176 kvm_riscv_read_vlenb(cpu, kvmcpu, reglist);
1177 }
1178
1179 kvm_riscv_check_sbi_dbcn_support(cpu, kvmcpu, reglist);
1180 }
1181
riscv_init_kvm_registers(Object * cpu_obj)1182 static void riscv_init_kvm_registers(Object *cpu_obj)
1183 {
1184 RISCVCPU *cpu = RISCV_CPU(cpu_obj);
1185 KVMScratchCPU kvmcpu;
1186
1187 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1188 return;
1189 }
1190
1191 kvm_riscv_init_machine_ids(cpu, &kvmcpu);
1192 kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu);
1193 kvm_riscv_init_multiext_cfg(cpu, &kvmcpu);
1194
1195 kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1196 }
1197
1198 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
1199 KVM_CAP_LAST_INFO
1200 };
1201
kvm_arch_get_registers(CPUState * cs,Error ** errp)1202 int kvm_arch_get_registers(CPUState *cs, Error **errp)
1203 {
1204 int ret = 0;
1205
1206 ret = kvm_riscv_get_regs_core(cs);
1207 if (ret) {
1208 return ret;
1209 }
1210
1211 ret = kvm_riscv_get_regs_csr(cs);
1212 if (ret) {
1213 return ret;
1214 }
1215
1216 ret = kvm_riscv_get_regs_fp(cs);
1217 if (ret) {
1218 return ret;
1219 }
1220
1221 ret = kvm_riscv_get_regs_vector(cs);
1222 if (ret) {
1223 return ret;
1224 }
1225
1226 return ret;
1227 }
1228
kvm_riscv_sync_mpstate_to_kvm(RISCVCPU * cpu,int state)1229 int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state)
1230 {
1231 if (cap_has_mp_state) {
1232 struct kvm_mp_state mp_state = {
1233 .mp_state = state
1234 };
1235
1236 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1237 if (ret) {
1238 fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n",
1239 __func__, ret, strerror(-ret));
1240 return -1;
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)1247 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
1248 {
1249 int ret = 0;
1250
1251 ret = kvm_riscv_put_regs_core(cs);
1252 if (ret) {
1253 return ret;
1254 }
1255
1256 ret = kvm_riscv_put_regs_csr(cs);
1257 if (ret) {
1258 return ret;
1259 }
1260
1261 ret = kvm_riscv_put_regs_fp(cs);
1262 if (ret) {
1263 return ret;
1264 }
1265
1266 ret = kvm_riscv_put_regs_vector(cs);
1267 if (ret) {
1268 return ret;
1269 }
1270
1271 if (KVM_PUT_RESET_STATE == level) {
1272 RISCVCPU *cpu = RISCV_CPU(cs);
1273 if (cs->cpu_index == 0) {
1274 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE);
1275 } else {
1276 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED);
1277 }
1278 if (ret) {
1279 return ret;
1280 }
1281 }
1282
1283 return ret;
1284 }
1285
kvm_arch_release_virq_post(int virq)1286 int kvm_arch_release_virq_post(int virq)
1287 {
1288 return 0;
1289 }
1290
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)1291 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1292 uint64_t address, uint32_t data, PCIDevice *dev)
1293 {
1294 return 0;
1295 }
1296
kvm_arch_destroy_vcpu(CPUState * cs)1297 int kvm_arch_destroy_vcpu(CPUState *cs)
1298 {
1299 return 0;
1300 }
1301
kvm_arch_vcpu_id(CPUState * cpu)1302 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
1303 {
1304 return cpu->cpu_index;
1305 }
1306
kvm_riscv_vm_state_change(void * opaque,bool running,RunState state)1307 static void kvm_riscv_vm_state_change(void *opaque, bool running,
1308 RunState state)
1309 {
1310 CPUState *cs = opaque;
1311
1312 if (running) {
1313 kvm_riscv_put_regs_timer(cs);
1314 } else {
1315 kvm_riscv_get_regs_timer(cs);
1316 }
1317 }
1318
kvm_arch_init_irq_routing(KVMState * s)1319 void kvm_arch_init_irq_routing(KVMState *s)
1320 {
1321 }
1322
kvm_vcpu_set_machine_ids(RISCVCPU * cpu,CPUState * cs)1323 static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs)
1324 {
1325 CPURISCVState *env = &cpu->env;
1326 target_ulong reg;
1327 uint64_t id;
1328 int ret;
1329
1330 id = RISCV_CONFIG_REG(env, mvendorid);
1331 /*
1332 * cfg.mvendorid is an uint32 but a target_ulong will
1333 * be written. Assign it to a target_ulong var to avoid
1334 * writing pieces of other cpu->cfg fields in the reg.
1335 */
1336 reg = cpu->cfg.mvendorid;
1337 ret = kvm_set_one_reg(cs, id, ®);
1338 if (ret != 0) {
1339 return ret;
1340 }
1341
1342 id = RISCV_CONFIG_REG(env, marchid);
1343 ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid);
1344 if (ret != 0) {
1345 return ret;
1346 }
1347
1348 id = RISCV_CONFIG_REG(env, mimpid);
1349 ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid);
1350
1351 return ret;
1352 }
1353
kvm_vcpu_enable_sbi_dbcn(RISCVCPU * cpu,CPUState * cs)1354 static int kvm_vcpu_enable_sbi_dbcn(RISCVCPU *cpu, CPUState *cs)
1355 {
1356 target_ulong reg = 1;
1357
1358 if (!kvm_sbi_dbcn.supported) {
1359 return 0;
1360 }
1361
1362 return kvm_set_one_reg(cs, kvm_sbi_dbcn.kvm_reg_id, ®);
1363 }
1364
kvm_arch_init_vcpu(CPUState * cs)1365 int kvm_arch_init_vcpu(CPUState *cs)
1366 {
1367 int ret = 0;
1368 RISCVCPU *cpu = RISCV_CPU(cs);
1369
1370 qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs);
1371
1372 if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) {
1373 ret = kvm_vcpu_set_machine_ids(cpu, cs);
1374 if (ret != 0) {
1375 return ret;
1376 }
1377 }
1378
1379 kvm_riscv_update_cpu_misa_ext(cpu, cs);
1380 kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs);
1381
1382 ret = kvm_vcpu_enable_sbi_dbcn(cpu, cs);
1383
1384 return ret;
1385 }
1386
kvm_arch_msi_data_to_gsi(uint32_t data)1387 int kvm_arch_msi_data_to_gsi(uint32_t data)
1388 {
1389 abort();
1390 }
1391
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)1392 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1393 int vector, PCIDevice *dev)
1394 {
1395 return 0;
1396 }
1397
kvm_arch_get_default_type(MachineState * ms)1398 int kvm_arch_get_default_type(MachineState *ms)
1399 {
1400 return 0;
1401 }
1402
kvm_arch_init(MachineState * ms,KVMState * s)1403 int kvm_arch_init(MachineState *ms, KVMState *s)
1404 {
1405 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
1406 return 0;
1407 }
1408
kvm_arch_irqchip_create(KVMState * s)1409 int kvm_arch_irqchip_create(KVMState *s)
1410 {
1411 if (kvm_kernel_irqchip_split()) {
1412 error_report("-machine kernel_irqchip=split is not supported on RISC-V.");
1413 exit(1);
1414 }
1415
1416 /*
1417 * We can create the VAIA using the newer device control API.
1418 */
1419 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1420 }
1421
kvm_arch_process_async_events(CPUState * cs)1422 int kvm_arch_process_async_events(CPUState *cs)
1423 {
1424 return 0;
1425 }
1426
kvm_arch_pre_run(CPUState * cs,struct kvm_run * run)1427 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1428 {
1429 }
1430
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1431 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1432 {
1433 return MEMTXATTRS_UNSPECIFIED;
1434 }
1435
kvm_arch_stop_on_emulation_error(CPUState * cs)1436 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1437 {
1438 return true;
1439 }
1440
kvm_riscv_handle_sbi_dbcn(CPUState * cs,struct kvm_run * run)1441 static void kvm_riscv_handle_sbi_dbcn(CPUState *cs, struct kvm_run *run)
1442 {
1443 g_autofree uint8_t *buf = NULL;
1444 RISCVCPU *cpu = RISCV_CPU(cs);
1445 target_ulong num_bytes;
1446 uint64_t addr;
1447 unsigned char ch;
1448 int ret;
1449
1450 switch (run->riscv_sbi.function_id) {
1451 case SBI_EXT_DBCN_CONSOLE_READ:
1452 case SBI_EXT_DBCN_CONSOLE_WRITE:
1453 num_bytes = run->riscv_sbi.args[0];
1454
1455 if (num_bytes == 0) {
1456 run->riscv_sbi.ret[0] = SBI_SUCCESS;
1457 run->riscv_sbi.ret[1] = 0;
1458 break;
1459 }
1460
1461 addr = run->riscv_sbi.args[1];
1462
1463 /*
1464 * Handle the case where a 32 bit CPU is running in a
1465 * 64 bit addressing env.
1466 */
1467 if (riscv_cpu_mxl(&cpu->env) == MXL_RV32) {
1468 addr |= (uint64_t)run->riscv_sbi.args[2] << 32;
1469 }
1470
1471 buf = g_malloc0(num_bytes);
1472
1473 if (run->riscv_sbi.function_id == SBI_EXT_DBCN_CONSOLE_READ) {
1474 ret = qemu_chr_fe_read_all(serial_hd(0)->be, buf, num_bytes);
1475 if (ret < 0) {
1476 error_report("SBI_EXT_DBCN_CONSOLE_READ: error when "
1477 "reading chardev");
1478 exit(1);
1479 }
1480
1481 cpu_physical_memory_write(addr, buf, ret);
1482 } else {
1483 cpu_physical_memory_read(addr, buf, num_bytes);
1484
1485 ret = qemu_chr_fe_write_all(serial_hd(0)->be, buf, num_bytes);
1486 if (ret < 0) {
1487 error_report("SBI_EXT_DBCN_CONSOLE_WRITE: error when "
1488 "writing chardev");
1489 exit(1);
1490 }
1491 }
1492
1493 run->riscv_sbi.ret[0] = SBI_SUCCESS;
1494 run->riscv_sbi.ret[1] = ret;
1495 break;
1496 case SBI_EXT_DBCN_CONSOLE_WRITE_BYTE:
1497 ch = run->riscv_sbi.args[0];
1498 ret = qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1499
1500 if (ret < 0) {
1501 error_report("SBI_EXT_DBCN_CONSOLE_WRITE_BYTE: error when "
1502 "writing chardev");
1503 exit(1);
1504 }
1505
1506 run->riscv_sbi.ret[0] = SBI_SUCCESS;
1507 run->riscv_sbi.ret[1] = 0;
1508 break;
1509 default:
1510 run->riscv_sbi.ret[0] = SBI_ERR_NOT_SUPPORTED;
1511 }
1512 }
1513
kvm_riscv_handle_sbi(CPUState * cs,struct kvm_run * run)1514 static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run)
1515 {
1516 int ret = 0;
1517 unsigned char ch;
1518 switch (run->riscv_sbi.extension_id) {
1519 case SBI_EXT_0_1_CONSOLE_PUTCHAR:
1520 ch = run->riscv_sbi.args[0];
1521 qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1522 break;
1523 case SBI_EXT_0_1_CONSOLE_GETCHAR:
1524 ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch));
1525 if (ret == sizeof(ch)) {
1526 run->riscv_sbi.ret[0] = ch;
1527 } else {
1528 run->riscv_sbi.ret[0] = -1;
1529 }
1530 ret = 0;
1531 break;
1532 case SBI_EXT_DBCN:
1533 kvm_riscv_handle_sbi_dbcn(cs, run);
1534 break;
1535 default:
1536 qemu_log_mask(LOG_UNIMP,
1537 "%s: un-handled SBI EXIT, specific reasons is %lu\n",
1538 __func__, run->riscv_sbi.extension_id);
1539 ret = -1;
1540 break;
1541 }
1542 return ret;
1543 }
1544
kvm_riscv_handle_csr(CPUState * cs,struct kvm_run * run)1545 static int kvm_riscv_handle_csr(CPUState *cs, struct kvm_run *run)
1546 {
1547 target_ulong csr_num = run->riscv_csr.csr_num;
1548 target_ulong new_value = run->riscv_csr.new_value;
1549 target_ulong write_mask = run->riscv_csr.write_mask;
1550 int ret = 0;
1551
1552 switch (csr_num) {
1553 case CSR_SEED:
1554 run->riscv_csr.ret_value = riscv_new_csr_seed(new_value, write_mask);
1555 break;
1556 default:
1557 qemu_log_mask(LOG_UNIMP,
1558 "%s: un-handled CSR EXIT for CSR %lx\n",
1559 __func__, csr_num);
1560 ret = -1;
1561 break;
1562 }
1563
1564 return ret;
1565 }
1566
kvm_riscv_handle_debug(CPUState * cs)1567 static bool kvm_riscv_handle_debug(CPUState *cs)
1568 {
1569 RISCVCPU *cpu = RISCV_CPU(cs);
1570 CPURISCVState *env = &cpu->env;
1571
1572 /* Ensure PC is synchronised */
1573 kvm_cpu_synchronize_state(cs);
1574
1575 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1576 return true;
1577 }
1578
1579 return false;
1580 }
1581
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1582 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1583 {
1584 int ret = 0;
1585 switch (run->exit_reason) {
1586 case KVM_EXIT_RISCV_SBI:
1587 ret = kvm_riscv_handle_sbi(cs, run);
1588 break;
1589 case KVM_EXIT_RISCV_CSR:
1590 ret = kvm_riscv_handle_csr(cs, run);
1591 break;
1592 case KVM_EXIT_DEBUG:
1593 if (kvm_riscv_handle_debug(cs)) {
1594 ret = EXCP_DEBUG;
1595 }
1596 break;
1597 default:
1598 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1599 __func__, run->exit_reason);
1600 ret = -1;
1601 break;
1602 }
1603 return ret;
1604 }
1605
kvm_riscv_reset_vcpu(RISCVCPU * cpu)1606 void kvm_riscv_reset_vcpu(RISCVCPU *cpu)
1607 {
1608 CPURISCVState *env = &cpu->env;
1609 int i;
1610
1611 if (!kvm_enabled()) {
1612 return;
1613 }
1614 for (i = 0; i < 32; i++) {
1615 env->gpr[i] = 0;
1616 }
1617 env->pc = cpu->env.kernel_addr;
1618 env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */
1619 env->gpr[11] = cpu->env.fdt_addr; /* a1 */
1620 env->satp = 0;
1621 env->mie = 0;
1622 env->stvec = 0;
1623 env->sscratch = 0;
1624 env->sepc = 0;
1625 env->scause = 0;
1626 env->stval = 0;
1627 env->mip = 0;
1628 }
1629
kvm_riscv_set_irq(RISCVCPU * cpu,int irq,int level)1630 void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level)
1631 {
1632 int ret;
1633 unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET;
1634
1635 if (irq != IRQ_S_EXT) {
1636 perror("kvm riscv set irq != IRQ_S_EXT\n");
1637 abort();
1638 }
1639
1640 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1641 if (ret < 0) {
1642 perror("Set irq failed");
1643 abort();
1644 }
1645 }
1646
1647 static int aia_mode;
1648
kvm_aia_mode_str(uint64_t mode)1649 static const char *kvm_aia_mode_str(uint64_t mode)
1650 {
1651 switch (mode) {
1652 case KVM_DEV_RISCV_AIA_MODE_EMUL:
1653 return "emul";
1654 case KVM_DEV_RISCV_AIA_MODE_HWACCEL:
1655 return "hwaccel";
1656 case KVM_DEV_RISCV_AIA_MODE_AUTO:
1657 default:
1658 return "auto";
1659 };
1660 }
1661
riscv_get_kvm_aia(Object * obj,Error ** errp)1662 static char *riscv_get_kvm_aia(Object *obj, Error **errp)
1663 {
1664 return g_strdup(kvm_aia_mode_str(aia_mode));
1665 }
1666
riscv_set_kvm_aia(Object * obj,const char * val,Error ** errp)1667 static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp)
1668 {
1669 if (!strcmp(val, "emul")) {
1670 aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL;
1671 } else if (!strcmp(val, "hwaccel")) {
1672 aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL;
1673 } else if (!strcmp(val, "auto")) {
1674 aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO;
1675 } else {
1676 error_setg(errp, "Invalid KVM AIA mode");
1677 error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n");
1678 }
1679 }
1680
kvm_arch_accel_class_init(ObjectClass * oc)1681 void kvm_arch_accel_class_init(ObjectClass *oc)
1682 {
1683 object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia,
1684 riscv_set_kvm_aia);
1685 object_class_property_set_description(oc, "riscv-aia",
1686 "Set KVM AIA mode. Valid values are 'emul', 'hwaccel' and 'auto'. "
1687 "Changing KVM AIA modes relies on host support. Defaults to 'auto' "
1688 "if the host supports it");
1689 object_property_set_default_str(object_class_property_find(oc, "riscv-aia"),
1690 "auto");
1691 }
1692
kvm_riscv_aia_create(MachineState * machine,uint64_t group_shift,uint64_t aia_irq_num,uint64_t aia_msi_num,uint64_t aplic_base,uint64_t imsic_base,uint64_t guest_num)1693 void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift,
1694 uint64_t aia_irq_num, uint64_t aia_msi_num,
1695 uint64_t aplic_base, uint64_t imsic_base,
1696 uint64_t guest_num)
1697 {
1698 int ret, i;
1699 int aia_fd = -1;
1700 uint64_t default_aia_mode;
1701 uint64_t socket_count = riscv_socket_count(machine);
1702 uint64_t max_hart_per_socket = 0;
1703 uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr;
1704 uint64_t socket_bits, hart_bits, guest_bits;
1705 uint64_t max_group_id;
1706
1707 aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false);
1708
1709 if (aia_fd < 0) {
1710 error_report("Unable to create in-kernel irqchip");
1711 exit(1);
1712 }
1713
1714 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1715 KVM_DEV_RISCV_AIA_CONFIG_MODE,
1716 &default_aia_mode, false, NULL);
1717 if (ret < 0) {
1718 error_report("KVM AIA: failed to get current KVM AIA mode");
1719 exit(1);
1720 }
1721
1722 if (default_aia_mode != aia_mode) {
1723 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1724 KVM_DEV_RISCV_AIA_CONFIG_MODE,
1725 &aia_mode, true, NULL);
1726 if (ret < 0) {
1727 warn_report("KVM AIA: failed to set KVM AIA mode '%s', using "
1728 "default host mode '%s'",
1729 kvm_aia_mode_str(aia_mode),
1730 kvm_aia_mode_str(default_aia_mode));
1731
1732 /* failed to change AIA mode, use default */
1733 aia_mode = default_aia_mode;
1734 }
1735 }
1736
1737 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1738 KVM_DEV_RISCV_AIA_CONFIG_SRCS,
1739 &aia_irq_num, true, NULL);
1740 if (ret < 0) {
1741 error_report("KVM AIA: failed to set number of input irq lines");
1742 exit(1);
1743 }
1744
1745 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1746 KVM_DEV_RISCV_AIA_CONFIG_IDS,
1747 &aia_msi_num, true, NULL);
1748 if (ret < 0) {
1749 error_report("KVM AIA: failed to set number of msi");
1750 exit(1);
1751 }
1752
1753
1754 if (socket_count > 1) {
1755 max_group_id = socket_count - 1;
1756 socket_bits = find_last_bit(&max_group_id, BITS_PER_LONG) + 1;
1757 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1758 KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS,
1759 &socket_bits, true, NULL);
1760 if (ret < 0) {
1761 error_report("KVM AIA: failed to set group_bits");
1762 exit(1);
1763 }
1764
1765 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1766 KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT,
1767 &group_shift, true, NULL);
1768 if (ret < 0) {
1769 error_report("KVM AIA: failed to set group_shift");
1770 exit(1);
1771 }
1772 }
1773
1774 guest_bits = guest_num == 0 ? 0 :
1775 find_last_bit(&guest_num, BITS_PER_LONG) + 1;
1776 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1777 KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS,
1778 &guest_bits, true, NULL);
1779 if (ret < 0) {
1780 error_report("KVM AIA: failed to set guest_bits");
1781 exit(1);
1782 }
1783
1784 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1785 KVM_DEV_RISCV_AIA_ADDR_APLIC,
1786 &aplic_base, true, NULL);
1787 if (ret < 0) {
1788 error_report("KVM AIA: failed to set the base address of APLIC");
1789 exit(1);
1790 }
1791
1792 for (socket = 0; socket < socket_count; socket++) {
1793 socket_imsic_base = imsic_base + socket * (1U << group_shift);
1794 hart_count = riscv_socket_hart_count(machine, socket);
1795 base_hart = riscv_socket_first_hartid(machine, socket);
1796
1797 if (max_hart_per_socket < hart_count) {
1798 max_hart_per_socket = hart_count;
1799 }
1800
1801 for (i = 0; i < hart_count; i++) {
1802 imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits);
1803 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1804 KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart),
1805 &imsic_addr, true, NULL);
1806 if (ret < 0) {
1807 error_report("KVM AIA: failed to set the IMSIC address for hart %d", i);
1808 exit(1);
1809 }
1810 }
1811 }
1812
1813
1814 if (max_hart_per_socket > 1) {
1815 max_hart_per_socket--;
1816 hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1;
1817 } else {
1818 hart_bits = 0;
1819 }
1820
1821 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1822 KVM_DEV_RISCV_AIA_CONFIG_HART_BITS,
1823 &hart_bits, true, NULL);
1824 if (ret < 0) {
1825 error_report("KVM AIA: failed to set hart_bits");
1826 exit(1);
1827 }
1828
1829 if (kvm_has_gsi_routing()) {
1830 for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) {
1831 /* KVM AIA only has one APLIC instance */
1832 kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx);
1833 }
1834 kvm_gsi_routing_allowed = true;
1835 kvm_irqchip_commit_routes(kvm_state);
1836 }
1837
1838 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL,
1839 KVM_DEV_RISCV_AIA_CTRL_INIT,
1840 NULL, true, NULL);
1841 if (ret < 0) {
1842 error_report("KVM AIA: initialized fail");
1843 exit(1);
1844 }
1845
1846 kvm_msi_via_irqfd_allowed = true;
1847 }
1848
kvm_cpu_instance_init(CPUState * cs)1849 static void kvm_cpu_instance_init(CPUState *cs)
1850 {
1851 Object *obj = OBJECT(RISCV_CPU(cs));
1852
1853 riscv_init_kvm_registers(obj);
1854
1855 kvm_riscv_add_cpu_user_properties(obj);
1856 }
1857
1858 /*
1859 * We'll get here via the following path:
1860 *
1861 * riscv_cpu_realize()
1862 * -> cpu_exec_realizefn()
1863 * -> kvm_cpu_realize() (via accel_cpu_common_realize())
1864 */
kvm_cpu_realize(CPUState * cs,Error ** errp)1865 static bool kvm_cpu_realize(CPUState *cs, Error **errp)
1866 {
1867 RISCVCPU *cpu = RISCV_CPU(cs);
1868 int ret;
1869
1870 if (riscv_has_ext(&cpu->env, RVV)) {
1871 ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON);
1872 if (ret) {
1873 error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s",
1874 strerrorname_np(errno));
1875 return false;
1876 }
1877 }
1878
1879 return true;
1880 }
1881
riscv_kvm_cpu_finalize_features(RISCVCPU * cpu,Error ** errp)1882 void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp)
1883 {
1884 CPURISCVState *env = &cpu->env;
1885 KVMScratchCPU kvmcpu;
1886 struct kvm_one_reg reg;
1887 uint64_t val;
1888 int ret;
1889
1890 /* short-circuit without spinning the scratch CPU */
1891 if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz &&
1892 !riscv_has_ext(env, RVV)) {
1893 return;
1894 }
1895
1896 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1897 error_setg(errp, "Unable to create scratch KVM cpu");
1898 return;
1899 }
1900
1901 if (cpu->cfg.ext_zicbom &&
1902 riscv_cpu_option_set(kvm_cbom_blocksize.name)) {
1903
1904 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1905 kvm_cbom_blocksize.kvm_reg_id);
1906 reg.addr = (uint64_t)&val;
1907 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
1908 if (ret != 0) {
1909 error_setg(errp, "Unable to read cbom_blocksize, error %d", errno);
1910 return;
1911 }
1912
1913 if (cpu->cfg.cbom_blocksize != val) {
1914 error_setg(errp, "Unable to set cbom_blocksize to a different "
1915 "value than the host (%lu)", val);
1916 return;
1917 }
1918 }
1919
1920 if (cpu->cfg.ext_zicboz &&
1921 riscv_cpu_option_set(kvm_cboz_blocksize.name)) {
1922
1923 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1924 kvm_cboz_blocksize.kvm_reg_id);
1925 reg.addr = (uint64_t)&val;
1926 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
1927 if (ret != 0) {
1928 error_setg(errp, "Unable to read cboz_blocksize, error %d", errno);
1929 return;
1930 }
1931
1932 if (cpu->cfg.cboz_blocksize != val) {
1933 error_setg(errp, "Unable to set cboz_blocksize to a different "
1934 "value than the host (%lu)", val);
1935 return;
1936 }
1937 }
1938
1939 /* Users are setting vlen, not vlenb */
1940 if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) {
1941 if (!kvm_v_vlenb.supported) {
1942 error_setg(errp, "Unable to set 'vlenb': register not supported");
1943 return;
1944 }
1945
1946 reg.id = kvm_v_vlenb.kvm_reg_id;
1947 reg.addr = (uint64_t)&val;
1948 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
1949 if (ret != 0) {
1950 error_setg(errp, "Unable to read vlenb register, error %d", errno);
1951 return;
1952 }
1953
1954 if (cpu->cfg.vlenb != val) {
1955 error_setg(errp, "Unable to set 'vlen' to a different "
1956 "value than the host (%lu)", val * 8);
1957 return;
1958 }
1959 }
1960
1961 kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1962 }
1963
kvm_cpu_accel_class_init(ObjectClass * oc,void * data)1964 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data)
1965 {
1966 AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
1967
1968 acc->cpu_instance_init = kvm_cpu_instance_init;
1969 acc->cpu_target_realize = kvm_cpu_realize;
1970 }
1971
1972 static const TypeInfo kvm_cpu_accel_type_info = {
1973 .name = ACCEL_CPU_NAME("kvm"),
1974
1975 .parent = TYPE_ACCEL_CPU,
1976 .class_init = kvm_cpu_accel_class_init,
1977 .abstract = true,
1978 };
kvm_cpu_accel_register_types(void)1979 static void kvm_cpu_accel_register_types(void)
1980 {
1981 type_register_static(&kvm_cpu_accel_type_info);
1982 }
1983 type_init(kvm_cpu_accel_register_types);
1984
riscv_host_cpu_class_init(ObjectClass * c,void * data)1985 static void riscv_host_cpu_class_init(ObjectClass *c, void *data)
1986 {
1987 RISCVCPUClass *mcc = RISCV_CPU_CLASS(c);
1988
1989 #if defined(TARGET_RISCV32)
1990 mcc->misa_mxl_max = MXL_RV32;
1991 #elif defined(TARGET_RISCV64)
1992 mcc->misa_mxl_max = MXL_RV64;
1993 #endif
1994 }
1995
1996 static const TypeInfo riscv_kvm_cpu_type_infos[] = {
1997 {
1998 .name = TYPE_RISCV_CPU_HOST,
1999 .parent = TYPE_RISCV_CPU,
2000 .class_init = riscv_host_cpu_class_init,
2001 }
2002 };
2003
2004 DEFINE_TYPES(riscv_kvm_cpu_type_infos)
2005
2006 static const uint32_t ebreak_insn = 0x00100073;
2007 static const uint16_t c_ebreak_insn = 0x9002;
2008
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2009 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2010 {
2011 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 0)) {
2012 return -EINVAL;
2013 }
2014
2015 if ((bp->saved_insn & 0x3) == 0x3) {
2016 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0)
2017 || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak_insn, 4, 1)) {
2018 return -EINVAL;
2019 }
2020 } else {
2021 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak_insn, 2, 1)) {
2022 return -EINVAL;
2023 }
2024 }
2025
2026 return 0;
2027 }
2028
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2029 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2030 {
2031 uint32_t ebreak;
2032 uint16_t c_ebreak;
2033
2034 if ((bp->saved_insn & 0x3) == 0x3) {
2035 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak, 4, 0) ||
2036 ebreak != ebreak_insn ||
2037 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2038 return -EINVAL;
2039 }
2040 } else {
2041 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak, 2, 0) ||
2042 c_ebreak != c_ebreak_insn ||
2043 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 1)) {
2044 return -EINVAL;
2045 }
2046 }
2047
2048 return 0;
2049 }
2050
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)2051 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2052 {
2053 /* TODO; To be implemented later. */
2054 return -EINVAL;
2055 }
2056
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)2057 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2058 {
2059 /* TODO; To be implemented later. */
2060 return -EINVAL;
2061 }
2062
kvm_arch_remove_all_hw_breakpoints(void)2063 void kvm_arch_remove_all_hw_breakpoints(void)
2064 {
2065 /* TODO; To be implemented later. */
2066 }
2067
kvm_arch_update_guest_debug(CPUState * cs,struct kvm_guest_debug * dbg)2068 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
2069 {
2070 if (kvm_sw_breakpoints_active(cs)) {
2071 dbg->control |= KVM_GUESTDBG_ENABLE;
2072 }
2073 }
2074