1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 #include <asm/uprobes.h>
45 #include <asm/ibt.h>
46
47 #include "perf_event.h"
48
49 struct x86_pmu x86_pmu __read_mostly;
50 static struct pmu pmu;
51
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
53 .enabled = 1,
54 .pmu = &pmu,
55 };
56
57 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
58 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
59 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
60
61 /*
62 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
63 * from just a typename, as opposed to an actual function.
64 */
65 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
72
73 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
76
77 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
84
85 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
86 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
88
89 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
90 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
91
92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
94
95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
96
97 /*
98 * This one is magic, it will get called even when PMU init fails (because
99 * there is no PMU), in which case it should simply return NULL.
100 */
101 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
102
103 u64 __read_mostly hw_cache_event_ids
104 [PERF_COUNT_HW_CACHE_MAX]
105 [PERF_COUNT_HW_CACHE_OP_MAX]
106 [PERF_COUNT_HW_CACHE_RESULT_MAX];
107 u64 __read_mostly hw_cache_extra_regs
108 [PERF_COUNT_HW_CACHE_MAX]
109 [PERF_COUNT_HW_CACHE_OP_MAX]
110 [PERF_COUNT_HW_CACHE_RESULT_MAX];
111
112 /*
113 * Propagate event elapsed time into the generic event.
114 * Can only be executed on the CPU where the event is active.
115 * Returns the delta events processed.
116 */
x86_perf_event_update(struct perf_event * event)117 u64 x86_perf_event_update(struct perf_event *event)
118 {
119 struct hw_perf_event *hwc = &event->hw;
120 int shift = 64 - x86_pmu.cntval_bits;
121 u64 prev_raw_count, new_raw_count;
122 u64 delta;
123
124 if (unlikely(!hwc->event_base))
125 return 0;
126
127 /*
128 * Careful: an NMI might modify the previous event value.
129 *
130 * Our tactic to handle this is to first atomically read and
131 * exchange a new raw count - then add that new-prev delta
132 * count to the generic event atomically:
133 */
134 prev_raw_count = local64_read(&hwc->prev_count);
135 do {
136 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
137 } while (!local64_try_cmpxchg(&hwc->prev_count,
138 &prev_raw_count, new_raw_count));
139
140 /*
141 * Now we have the new raw value and have updated the prev
142 * timestamp already. We can now calculate the elapsed delta
143 * (event-)time and add that to the generic event.
144 *
145 * Careful, not all hw sign-extends above the physical width
146 * of the count.
147 */
148 delta = (new_raw_count << shift) - (prev_raw_count << shift);
149 delta >>= shift;
150
151 local64_add(delta, &event->count);
152 local64_sub(delta, &hwc->period_left);
153
154 return new_raw_count;
155 }
156
157 /*
158 * Find and validate any extra registers to set up.
159 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
161 {
162 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163 struct hw_perf_event_extra *reg;
164 struct extra_reg *er;
165
166 reg = &event->hw.extra_reg;
167
168 if (!extra_regs)
169 return 0;
170
171 for (er = extra_regs; er->msr; er++) {
172 if (er->event != (config & er->config_mask))
173 continue;
174 if (event->attr.config1 & ~er->valid_mask)
175 return -EINVAL;
176 /* Check if the extra msrs can be safely accessed*/
177 if (!er->extra_msr_access)
178 return -ENXIO;
179
180 reg->idx = er->idx;
181 reg->config = event->attr.config1;
182 reg->reg = er->msr;
183 break;
184 }
185 return 0;
186 }
187
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
191
192 #ifdef CONFIG_X86_LOCAL_APIC
193
get_possible_num_counters(void)194 static inline int get_possible_num_counters(void)
195 {
196 int i, num_counters = x86_pmu.num_counters;
197
198 if (!is_hybrid())
199 return num_counters;
200
201 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
202 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
203
204 return num_counters;
205 }
206
reserve_pmc_hardware(void)207 static bool reserve_pmc_hardware(void)
208 {
209 int i, num_counters = get_possible_num_counters();
210
211 for (i = 0; i < num_counters; i++) {
212 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
213 goto perfctr_fail;
214 }
215
216 for (i = 0; i < num_counters; i++) {
217 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
218 goto eventsel_fail;
219 }
220
221 return true;
222
223 eventsel_fail:
224 for (i--; i >= 0; i--)
225 release_evntsel_nmi(x86_pmu_config_addr(i));
226
227 i = num_counters;
228
229 perfctr_fail:
230 for (i--; i >= 0; i--)
231 release_perfctr_nmi(x86_pmu_event_addr(i));
232
233 return false;
234 }
235
release_pmc_hardware(void)236 static void release_pmc_hardware(void)
237 {
238 int i, num_counters = get_possible_num_counters();
239
240 for (i = 0; i < num_counters; i++) {
241 release_perfctr_nmi(x86_pmu_event_addr(i));
242 release_evntsel_nmi(x86_pmu_config_addr(i));
243 }
244 }
245
246 #else
247
reserve_pmc_hardware(void)248 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)249 static void release_pmc_hardware(void) {}
250
251 #endif
252
check_hw_exists(struct pmu * pmu,int num_counters,int num_counters_fixed)253 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
254 {
255 u64 val, val_fail = -1, val_new= ~0;
256 int i, reg, reg_fail = -1, ret = 0;
257 int bios_fail = 0;
258 int reg_safe = -1;
259
260 /*
261 * Check to see if the BIOS enabled any of the counters, if so
262 * complain and bail.
263 */
264 for (i = 0; i < num_counters; i++) {
265 reg = x86_pmu_config_addr(i);
266 ret = rdmsrl_safe(reg, &val);
267 if (ret)
268 goto msr_fail;
269 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
270 bios_fail = 1;
271 val_fail = val;
272 reg_fail = reg;
273 } else {
274 reg_safe = i;
275 }
276 }
277
278 if (num_counters_fixed) {
279 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
280 ret = rdmsrl_safe(reg, &val);
281 if (ret)
282 goto msr_fail;
283 for (i = 0; i < num_counters_fixed; i++) {
284 if (fixed_counter_disabled(i, pmu))
285 continue;
286 if (val & (0x03ULL << i*4)) {
287 bios_fail = 1;
288 val_fail = val;
289 reg_fail = reg;
290 }
291 }
292 }
293
294 /*
295 * If all the counters are enabled, the below test will always
296 * fail. The tools will also become useless in this scenario.
297 * Just fail and disable the hardware counters.
298 */
299
300 if (reg_safe == -1) {
301 reg = reg_safe;
302 goto msr_fail;
303 }
304
305 /*
306 * Read the current value, change it and read it back to see if it
307 * matches, this is needed to detect certain hardware emulators
308 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
309 */
310 reg = x86_pmu_event_addr(reg_safe);
311 if (rdmsrl_safe(reg, &val))
312 goto msr_fail;
313 val ^= 0xffffUL;
314 ret = wrmsrl_safe(reg, val);
315 ret |= rdmsrl_safe(reg, &val_new);
316 if (ret || val != val_new)
317 goto msr_fail;
318
319 /*
320 * We still allow the PMU driver to operate:
321 */
322 if (bios_fail) {
323 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
324 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
325 reg_fail, val_fail);
326 }
327
328 return true;
329
330 msr_fail:
331 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
332 pr_cont("PMU not available due to virtualization, using software events only.\n");
333 } else {
334 pr_cont("Broken PMU hardware detected, using software events only.\n");
335 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
336 reg, val_new);
337 }
338
339 return false;
340 }
341
hw_perf_event_destroy(struct perf_event * event)342 static void hw_perf_event_destroy(struct perf_event *event)
343 {
344 x86_release_hardware();
345 atomic_dec(&active_events);
346 }
347
hw_perf_lbr_event_destroy(struct perf_event * event)348 void hw_perf_lbr_event_destroy(struct perf_event *event)
349 {
350 hw_perf_event_destroy(event);
351
352 /* undo the lbr/bts event accounting */
353 x86_del_exclusive(x86_lbr_exclusive_lbr);
354 }
355
x86_pmu_initialized(void)356 static inline int x86_pmu_initialized(void)
357 {
358 return x86_pmu.handle_irq != NULL;
359 }
360
361 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)362 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
363 {
364 struct perf_event_attr *attr = &event->attr;
365 unsigned int cache_type, cache_op, cache_result;
366 u64 config, val;
367
368 config = attr->config;
369
370 cache_type = (config >> 0) & 0xff;
371 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
372 return -EINVAL;
373 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
374
375 cache_op = (config >> 8) & 0xff;
376 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
377 return -EINVAL;
378 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
379
380 cache_result = (config >> 16) & 0xff;
381 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
382 return -EINVAL;
383 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
384
385 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
386 if (val == 0)
387 return -ENOENT;
388
389 if (val == -1)
390 return -EINVAL;
391
392 hwc->config |= val;
393 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
394 return x86_pmu_extra_regs(val, event);
395 }
396
x86_reserve_hardware(void)397 int x86_reserve_hardware(void)
398 {
399 int err = 0;
400
401 if (!atomic_inc_not_zero(&pmc_refcount)) {
402 mutex_lock(&pmc_reserve_mutex);
403 if (atomic_read(&pmc_refcount) == 0) {
404 if (!reserve_pmc_hardware()) {
405 err = -EBUSY;
406 } else {
407 reserve_ds_buffers();
408 reserve_lbr_buffers();
409 }
410 }
411 if (!err)
412 atomic_inc(&pmc_refcount);
413 mutex_unlock(&pmc_reserve_mutex);
414 }
415
416 return err;
417 }
418
x86_release_hardware(void)419 void x86_release_hardware(void)
420 {
421 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
422 release_pmc_hardware();
423 release_ds_buffers();
424 release_lbr_buffers();
425 mutex_unlock(&pmc_reserve_mutex);
426 }
427 }
428
429 /*
430 * Check if we can create event of a certain type (that no conflicting events
431 * are present).
432 */
x86_add_exclusive(unsigned int what)433 int x86_add_exclusive(unsigned int what)
434 {
435 int i;
436
437 /*
438 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
439 * LBR and BTS are still mutually exclusive.
440 */
441 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
442 goto out;
443
444 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
445 mutex_lock(&pmc_reserve_mutex);
446 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
447 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
448 goto fail_unlock;
449 }
450 atomic_inc(&x86_pmu.lbr_exclusive[what]);
451 mutex_unlock(&pmc_reserve_mutex);
452 }
453
454 out:
455 atomic_inc(&active_events);
456 return 0;
457
458 fail_unlock:
459 mutex_unlock(&pmc_reserve_mutex);
460 return -EBUSY;
461 }
462
x86_del_exclusive(unsigned int what)463 void x86_del_exclusive(unsigned int what)
464 {
465 atomic_dec(&active_events);
466
467 /*
468 * See the comment in x86_add_exclusive().
469 */
470 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
471 return;
472
473 atomic_dec(&x86_pmu.lbr_exclusive[what]);
474 }
475
x86_setup_perfctr(struct perf_event * event)476 int x86_setup_perfctr(struct perf_event *event)
477 {
478 struct perf_event_attr *attr = &event->attr;
479 struct hw_perf_event *hwc = &event->hw;
480 u64 config;
481
482 if (!is_sampling_event(event)) {
483 hwc->sample_period = x86_pmu.max_period;
484 hwc->last_period = hwc->sample_period;
485 local64_set(&hwc->period_left, hwc->sample_period);
486 }
487
488 if (attr->type == event->pmu->type)
489 return x86_pmu_extra_regs(event->attr.config, event);
490
491 if (attr->type == PERF_TYPE_HW_CACHE)
492 return set_ext_hw_attr(hwc, event);
493
494 if (attr->config >= x86_pmu.max_events)
495 return -EINVAL;
496
497 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
498
499 /*
500 * The generic map:
501 */
502 config = x86_pmu.event_map(attr->config);
503
504 if (config == 0)
505 return -ENOENT;
506
507 if (config == -1LL)
508 return -EINVAL;
509
510 hwc->config |= config;
511
512 return 0;
513 }
514
515 /*
516 * check that branch_sample_type is compatible with
517 * settings needed for precise_ip > 1 which implies
518 * using the LBR to capture ALL taken branches at the
519 * priv levels of the measurement
520 */
precise_br_compat(struct perf_event * event)521 static inline int precise_br_compat(struct perf_event *event)
522 {
523 u64 m = event->attr.branch_sample_type;
524 u64 b = 0;
525
526 /* must capture all branches */
527 if (!(m & PERF_SAMPLE_BRANCH_ANY))
528 return 0;
529
530 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
531
532 if (!event->attr.exclude_user)
533 b |= PERF_SAMPLE_BRANCH_USER;
534
535 if (!event->attr.exclude_kernel)
536 b |= PERF_SAMPLE_BRANCH_KERNEL;
537
538 /*
539 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
540 */
541
542 return m == b;
543 }
544
x86_pmu_max_precise(void)545 int x86_pmu_max_precise(void)
546 {
547 int precise = 0;
548
549 /* Support for constant skid */
550 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
551 precise++;
552
553 /* Support for IP fixup */
554 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
555 precise++;
556
557 if (x86_pmu.pebs_prec_dist)
558 precise++;
559 }
560 return precise;
561 }
562
x86_pmu_hw_config(struct perf_event * event)563 int x86_pmu_hw_config(struct perf_event *event)
564 {
565 if (event->attr.precise_ip) {
566 int precise = x86_pmu_max_precise();
567
568 if (event->attr.precise_ip > precise)
569 return -EOPNOTSUPP;
570
571 /* There's no sense in having PEBS for non sampling events: */
572 if (!is_sampling_event(event))
573 return -EINVAL;
574 }
575 /*
576 * check that PEBS LBR correction does not conflict with
577 * whatever the user is asking with attr->branch_sample_type
578 */
579 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
580 u64 *br_type = &event->attr.branch_sample_type;
581
582 if (has_branch_stack(event)) {
583 if (!precise_br_compat(event))
584 return -EOPNOTSUPP;
585
586 /* branch_sample_type is compatible */
587
588 } else {
589 /*
590 * user did not specify branch_sample_type
591 *
592 * For PEBS fixups, we capture all
593 * the branches at the priv level of the
594 * event.
595 */
596 *br_type = PERF_SAMPLE_BRANCH_ANY;
597
598 if (!event->attr.exclude_user)
599 *br_type |= PERF_SAMPLE_BRANCH_USER;
600
601 if (!event->attr.exclude_kernel)
602 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
603 }
604 }
605
606 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
607 event->attach_state |= PERF_ATTACH_TASK_DATA;
608
609 /*
610 * Generate PMC IRQs:
611 * (keep 'enabled' bit clear for now)
612 */
613 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
614
615 /*
616 * Count user and OS events unless requested not to
617 */
618 if (!event->attr.exclude_user)
619 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
620 if (!event->attr.exclude_kernel)
621 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
622
623 if (event->attr.type == event->pmu->type)
624 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
625
626 if (event->attr.sample_period && x86_pmu.limit_period) {
627 s64 left = event->attr.sample_period;
628 x86_pmu.limit_period(event, &left);
629 if (left > event->attr.sample_period)
630 return -EINVAL;
631 }
632
633 /* sample_regs_user never support XMM registers */
634 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
635 return -EINVAL;
636 /*
637 * Besides the general purpose registers, XMM registers may
638 * be collected in PEBS on some platforms, e.g. Icelake
639 */
640 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
641 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
642 return -EINVAL;
643
644 if (!event->attr.precise_ip)
645 return -EINVAL;
646 }
647
648 return x86_setup_perfctr(event);
649 }
650
651 /*
652 * Setup the hardware configuration for a given attr_type
653 */
__x86_pmu_event_init(struct perf_event * event)654 static int __x86_pmu_event_init(struct perf_event *event)
655 {
656 int err;
657
658 if (!x86_pmu_initialized())
659 return -ENODEV;
660
661 err = x86_reserve_hardware();
662 if (err)
663 return err;
664
665 atomic_inc(&active_events);
666 event->destroy = hw_perf_event_destroy;
667
668 event->hw.idx = -1;
669 event->hw.last_cpu = -1;
670 event->hw.last_tag = ~0ULL;
671
672 /* mark unused */
673 event->hw.extra_reg.idx = EXTRA_REG_NONE;
674 event->hw.branch_reg.idx = EXTRA_REG_NONE;
675
676 return x86_pmu.hw_config(event);
677 }
678
x86_pmu_disable_all(void)679 void x86_pmu_disable_all(void)
680 {
681 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
682 int idx;
683
684 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
685 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
686 u64 val;
687
688 if (!test_bit(idx, cpuc->active_mask))
689 continue;
690 rdmsrl(x86_pmu_config_addr(idx), val);
691 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
692 continue;
693 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
694 wrmsrl(x86_pmu_config_addr(idx), val);
695 if (is_counter_pair(hwc))
696 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
697 }
698 }
699
perf_guest_get_msrs(int * nr,void * data)700 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
701 {
702 return static_call(x86_pmu_guest_get_msrs)(nr, data);
703 }
704 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
705
706 /*
707 * There may be PMI landing after enabled=0. The PMI hitting could be before or
708 * after disable_all.
709 *
710 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
711 * It will not be re-enabled in the NMI handler again, because enabled=0. After
712 * handling the NMI, disable_all will be called, which will not change the
713 * state either. If PMI hits after disable_all, the PMU is already disabled
714 * before entering NMI handler. The NMI handler will not change the state
715 * either.
716 *
717 * So either situation is harmless.
718 */
x86_pmu_disable(struct pmu * pmu)719 static void x86_pmu_disable(struct pmu *pmu)
720 {
721 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
722
723 if (!x86_pmu_initialized())
724 return;
725
726 if (!cpuc->enabled)
727 return;
728
729 cpuc->n_added = 0;
730 cpuc->enabled = 0;
731 barrier();
732
733 static_call(x86_pmu_disable_all)();
734 }
735
x86_pmu_enable_all(int added)736 void x86_pmu_enable_all(int added)
737 {
738 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
739 int idx;
740
741 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
742 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
743
744 if (!test_bit(idx, cpuc->active_mask))
745 continue;
746
747 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
748 }
749 }
750
is_x86_event(struct perf_event * event)751 static inline int is_x86_event(struct perf_event *event)
752 {
753 int i;
754
755 if (!is_hybrid())
756 return event->pmu == &pmu;
757
758 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
759 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
760 return true;
761 }
762
763 return false;
764 }
765
x86_get_pmu(unsigned int cpu)766 struct pmu *x86_get_pmu(unsigned int cpu)
767 {
768 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
769
770 /*
771 * All CPUs of the hybrid type have been offline.
772 * The x86_get_pmu() should not be invoked.
773 */
774 if (WARN_ON_ONCE(!cpuc->pmu))
775 return &pmu;
776
777 return cpuc->pmu;
778 }
779 /*
780 * Event scheduler state:
781 *
782 * Assign events iterating over all events and counters, beginning
783 * with events with least weights first. Keep the current iterator
784 * state in struct sched_state.
785 */
786 struct sched_state {
787 int weight;
788 int event; /* event index */
789 int counter; /* counter index */
790 int unassigned; /* number of events to be assigned left */
791 int nr_gp; /* number of GP counters used */
792 u64 used;
793 };
794
795 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
796 #define SCHED_STATES_MAX 2
797
798 struct perf_sched {
799 int max_weight;
800 int max_events;
801 int max_gp;
802 int saved_states;
803 struct event_constraint **constraints;
804 struct sched_state state;
805 struct sched_state saved[SCHED_STATES_MAX];
806 };
807
808 /*
809 * Initialize iterator that runs through all events and counters.
810 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)811 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
812 int num, int wmin, int wmax, int gpmax)
813 {
814 int idx;
815
816 memset(sched, 0, sizeof(*sched));
817 sched->max_events = num;
818 sched->max_weight = wmax;
819 sched->max_gp = gpmax;
820 sched->constraints = constraints;
821
822 for (idx = 0; idx < num; idx++) {
823 if (constraints[idx]->weight == wmin)
824 break;
825 }
826
827 sched->state.event = idx; /* start with min weight */
828 sched->state.weight = wmin;
829 sched->state.unassigned = num;
830 }
831
perf_sched_save_state(struct perf_sched * sched)832 static void perf_sched_save_state(struct perf_sched *sched)
833 {
834 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
835 return;
836
837 sched->saved[sched->saved_states] = sched->state;
838 sched->saved_states++;
839 }
840
perf_sched_restore_state(struct perf_sched * sched)841 static bool perf_sched_restore_state(struct perf_sched *sched)
842 {
843 if (!sched->saved_states)
844 return false;
845
846 sched->saved_states--;
847 sched->state = sched->saved[sched->saved_states];
848
849 /* this assignment didn't work out */
850 /* XXX broken vs EVENT_PAIR */
851 sched->state.used &= ~BIT_ULL(sched->state.counter);
852
853 /* try the next one */
854 sched->state.counter++;
855
856 return true;
857 }
858
859 /*
860 * Select a counter for the current event to schedule. Return true on
861 * success.
862 */
__perf_sched_find_counter(struct perf_sched * sched)863 static bool __perf_sched_find_counter(struct perf_sched *sched)
864 {
865 struct event_constraint *c;
866 int idx;
867
868 if (!sched->state.unassigned)
869 return false;
870
871 if (sched->state.event >= sched->max_events)
872 return false;
873
874 c = sched->constraints[sched->state.event];
875 /* Prefer fixed purpose counters */
876 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
877 idx = INTEL_PMC_IDX_FIXED;
878 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
879 u64 mask = BIT_ULL(idx);
880
881 if (sched->state.used & mask)
882 continue;
883
884 sched->state.used |= mask;
885 goto done;
886 }
887 }
888
889 /* Grab the first unused counter starting with idx */
890 idx = sched->state.counter;
891 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
892 u64 mask = BIT_ULL(idx);
893
894 if (c->flags & PERF_X86_EVENT_PAIR)
895 mask |= mask << 1;
896
897 if (sched->state.used & mask)
898 continue;
899
900 if (sched->state.nr_gp++ >= sched->max_gp)
901 return false;
902
903 sched->state.used |= mask;
904 goto done;
905 }
906
907 return false;
908
909 done:
910 sched->state.counter = idx;
911
912 if (c->overlap)
913 perf_sched_save_state(sched);
914
915 return true;
916 }
917
perf_sched_find_counter(struct perf_sched * sched)918 static bool perf_sched_find_counter(struct perf_sched *sched)
919 {
920 while (!__perf_sched_find_counter(sched)) {
921 if (!perf_sched_restore_state(sched))
922 return false;
923 }
924
925 return true;
926 }
927
928 /*
929 * Go through all unassigned events and find the next one to schedule.
930 * Take events with the least weight first. Return true on success.
931 */
perf_sched_next_event(struct perf_sched * sched)932 static bool perf_sched_next_event(struct perf_sched *sched)
933 {
934 struct event_constraint *c;
935
936 if (!sched->state.unassigned || !--sched->state.unassigned)
937 return false;
938
939 do {
940 /* next event */
941 sched->state.event++;
942 if (sched->state.event >= sched->max_events) {
943 /* next weight */
944 sched->state.event = 0;
945 sched->state.weight++;
946 if (sched->state.weight > sched->max_weight)
947 return false;
948 }
949 c = sched->constraints[sched->state.event];
950 } while (c->weight != sched->state.weight);
951
952 sched->state.counter = 0; /* start with first counter */
953
954 return true;
955 }
956
957 /*
958 * Assign a counter for each event.
959 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)960 int perf_assign_events(struct event_constraint **constraints, int n,
961 int wmin, int wmax, int gpmax, int *assign)
962 {
963 struct perf_sched sched;
964
965 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
966
967 do {
968 if (!perf_sched_find_counter(&sched))
969 break; /* failed */
970 if (assign)
971 assign[sched.state.event] = sched.state.counter;
972 } while (perf_sched_next_event(&sched));
973
974 return sched.state.unassigned;
975 }
976 EXPORT_SYMBOL_GPL(perf_assign_events);
977
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)978 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
979 {
980 int num_counters = hybrid(cpuc->pmu, num_counters);
981 struct event_constraint *c;
982 struct perf_event *e;
983 int n0, i, wmin, wmax, unsched = 0;
984 struct hw_perf_event *hwc;
985 u64 used_mask = 0;
986
987 /*
988 * Compute the number of events already present; see x86_pmu_add(),
989 * validate_group() and x86_pmu_commit_txn(). For the former two
990 * cpuc->n_events hasn't been updated yet, while for the latter
991 * cpuc->n_txn contains the number of events added in the current
992 * transaction.
993 */
994 n0 = cpuc->n_events;
995 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
996 n0 -= cpuc->n_txn;
997
998 static_call_cond(x86_pmu_start_scheduling)(cpuc);
999
1000 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1001 c = cpuc->event_constraint[i];
1002
1003 /*
1004 * Previously scheduled events should have a cached constraint,
1005 * while new events should not have one.
1006 */
1007 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1008
1009 /*
1010 * Request constraints for new events; or for those events that
1011 * have a dynamic constraint -- for those the constraint can
1012 * change due to external factors (sibling state, allow_tfa).
1013 */
1014 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1015 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1016 cpuc->event_constraint[i] = c;
1017 }
1018
1019 wmin = min(wmin, c->weight);
1020 wmax = max(wmax, c->weight);
1021 }
1022
1023 /*
1024 * fastpath, try to reuse previous register
1025 */
1026 for (i = 0; i < n; i++) {
1027 u64 mask;
1028
1029 hwc = &cpuc->event_list[i]->hw;
1030 c = cpuc->event_constraint[i];
1031
1032 /* never assigned */
1033 if (hwc->idx == -1)
1034 break;
1035
1036 /* constraint still honored */
1037 if (!test_bit(hwc->idx, c->idxmsk))
1038 break;
1039
1040 mask = BIT_ULL(hwc->idx);
1041 if (is_counter_pair(hwc))
1042 mask |= mask << 1;
1043
1044 /* not already used */
1045 if (used_mask & mask)
1046 break;
1047
1048 used_mask |= mask;
1049
1050 if (assign)
1051 assign[i] = hwc->idx;
1052 }
1053
1054 /* slow path */
1055 if (i != n) {
1056 int gpmax = num_counters;
1057
1058 /*
1059 * Do not allow scheduling of more than half the available
1060 * generic counters.
1061 *
1062 * This helps avoid counter starvation of sibling thread by
1063 * ensuring at most half the counters cannot be in exclusive
1064 * mode. There is no designated counters for the limits. Any
1065 * N/2 counters can be used. This helps with events with
1066 * specific counter constraints.
1067 */
1068 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1069 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1070 gpmax /= 2;
1071
1072 /*
1073 * Reduce the amount of available counters to allow fitting
1074 * the extra Merge events needed by large increment events.
1075 */
1076 if (x86_pmu.flags & PMU_FL_PAIR) {
1077 gpmax = num_counters - cpuc->n_pair;
1078 WARN_ON(gpmax <= 0);
1079 }
1080
1081 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1082 wmax, gpmax, assign);
1083 }
1084
1085 /*
1086 * In case of success (unsched = 0), mark events as committed,
1087 * so we do not put_constraint() in case new events are added
1088 * and fail to be scheduled
1089 *
1090 * We invoke the lower level commit callback to lock the resource
1091 *
1092 * We do not need to do all of this in case we are called to
1093 * validate an event group (assign == NULL)
1094 */
1095 if (!unsched && assign) {
1096 for (i = 0; i < n; i++)
1097 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1098 } else {
1099 for (i = n0; i < n; i++) {
1100 e = cpuc->event_list[i];
1101
1102 /*
1103 * release events that failed scheduling
1104 */
1105 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1106
1107 cpuc->event_constraint[i] = NULL;
1108 }
1109 }
1110
1111 static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1112
1113 return unsched ? -EINVAL : 0;
1114 }
1115
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1116 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1117 struct perf_event *event)
1118 {
1119 if (is_metric_event(event)) {
1120 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1121 return -EINVAL;
1122 cpuc->n_metric++;
1123 cpuc->n_txn_metric++;
1124 }
1125
1126 return 0;
1127 }
1128
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1129 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1130 struct perf_event *event)
1131 {
1132 if (is_metric_event(event))
1133 cpuc->n_metric--;
1134 }
1135
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1136 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1137 int max_count, int n)
1138 {
1139 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1140
1141 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1142 return -EINVAL;
1143
1144 if (n >= max_count + cpuc->n_metric)
1145 return -EINVAL;
1146
1147 cpuc->event_list[n] = event;
1148 if (is_counter_pair(&event->hw)) {
1149 cpuc->n_pair++;
1150 cpuc->n_txn_pair++;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * dogrp: true if must collect siblings events (group)
1158 * returns total number of events and error code
1159 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1160 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1161 {
1162 int num_counters = hybrid(cpuc->pmu, num_counters);
1163 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1164 struct perf_event *event;
1165 int n, max_count;
1166
1167 max_count = num_counters + num_counters_fixed;
1168
1169 /* current number of events already accepted */
1170 n = cpuc->n_events;
1171 if (!cpuc->n_events)
1172 cpuc->pebs_output = 0;
1173
1174 if (!cpuc->is_fake && leader->attr.precise_ip) {
1175 /*
1176 * For PEBS->PT, if !aux_event, the group leader (PT) went
1177 * away, the group was broken down and this singleton event
1178 * can't schedule any more.
1179 */
1180 if (is_pebs_pt(leader) && !leader->aux_event)
1181 return -EINVAL;
1182
1183 /*
1184 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1185 */
1186 if (cpuc->pebs_output &&
1187 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1188 return -EINVAL;
1189
1190 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1191 }
1192
1193 if (is_x86_event(leader)) {
1194 if (collect_event(cpuc, leader, max_count, n))
1195 return -EINVAL;
1196 n++;
1197 }
1198
1199 if (!dogrp)
1200 return n;
1201
1202 for_each_sibling_event(event, leader) {
1203 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1204 continue;
1205
1206 if (collect_event(cpuc, event, max_count, n))
1207 return -EINVAL;
1208
1209 n++;
1210 }
1211 return n;
1212 }
1213
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1214 static inline void x86_assign_hw_event(struct perf_event *event,
1215 struct cpu_hw_events *cpuc, int i)
1216 {
1217 struct hw_perf_event *hwc = &event->hw;
1218 int idx;
1219
1220 idx = hwc->idx = cpuc->assign[i];
1221 hwc->last_cpu = smp_processor_id();
1222 hwc->last_tag = ++cpuc->tags[i];
1223
1224 static_call_cond(x86_pmu_assign)(event, idx);
1225
1226 switch (hwc->idx) {
1227 case INTEL_PMC_IDX_FIXED_BTS:
1228 case INTEL_PMC_IDX_FIXED_VLBR:
1229 hwc->config_base = 0;
1230 hwc->event_base = 0;
1231 break;
1232
1233 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1234 /* All the metric events are mapped onto the fixed counter 3. */
1235 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1236 fallthrough;
1237 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1238 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1239 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1240 (idx - INTEL_PMC_IDX_FIXED);
1241 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1242 INTEL_PMC_FIXED_RDPMC_BASE;
1243 break;
1244
1245 default:
1246 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1247 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1248 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1249 break;
1250 }
1251 }
1252
1253 /**
1254 * x86_perf_rdpmc_index - Return PMC counter used for event
1255 * @event: the perf_event to which the PMC counter was assigned
1256 *
1257 * The counter assigned to this performance event may change if interrupts
1258 * are enabled. This counter should thus never be used while interrupts are
1259 * enabled. Before this function is used to obtain the assigned counter the
1260 * event should be checked for validity using, for example,
1261 * perf_event_read_local(), within the same interrupt disabled section in
1262 * which this counter is planned to be used.
1263 *
1264 * Return: The index of the performance monitoring counter assigned to
1265 * @perf_event.
1266 */
x86_perf_rdpmc_index(struct perf_event * event)1267 int x86_perf_rdpmc_index(struct perf_event *event)
1268 {
1269 lockdep_assert_irqs_disabled();
1270
1271 return event->hw.event_base_rdpmc;
1272 }
1273
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1274 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1275 struct cpu_hw_events *cpuc,
1276 int i)
1277 {
1278 return hwc->idx == cpuc->assign[i] &&
1279 hwc->last_cpu == smp_processor_id() &&
1280 hwc->last_tag == cpuc->tags[i];
1281 }
1282
1283 static void x86_pmu_start(struct perf_event *event, int flags);
1284
x86_pmu_enable(struct pmu * pmu)1285 static void x86_pmu_enable(struct pmu *pmu)
1286 {
1287 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1288 struct perf_event *event;
1289 struct hw_perf_event *hwc;
1290 int i, added = cpuc->n_added;
1291
1292 if (!x86_pmu_initialized())
1293 return;
1294
1295 if (cpuc->enabled)
1296 return;
1297
1298 if (cpuc->n_added) {
1299 int n_running = cpuc->n_events - cpuc->n_added;
1300 /*
1301 * apply assignment obtained either from
1302 * hw_perf_group_sched_in() or x86_pmu_enable()
1303 *
1304 * step1: save events moving to new counters
1305 */
1306 for (i = 0; i < n_running; i++) {
1307 event = cpuc->event_list[i];
1308 hwc = &event->hw;
1309
1310 /*
1311 * we can avoid reprogramming counter if:
1312 * - assigned same counter as last time
1313 * - running on same CPU as last time
1314 * - no other event has used the counter since
1315 */
1316 if (hwc->idx == -1 ||
1317 match_prev_assignment(hwc, cpuc, i))
1318 continue;
1319
1320 /*
1321 * Ensure we don't accidentally enable a stopped
1322 * counter simply because we rescheduled.
1323 */
1324 if (hwc->state & PERF_HES_STOPPED)
1325 hwc->state |= PERF_HES_ARCH;
1326
1327 x86_pmu_stop(event, PERF_EF_UPDATE);
1328 }
1329
1330 /*
1331 * step2: reprogram moved events into new counters
1332 */
1333 for (i = 0; i < cpuc->n_events; i++) {
1334 event = cpuc->event_list[i];
1335 hwc = &event->hw;
1336
1337 if (!match_prev_assignment(hwc, cpuc, i))
1338 x86_assign_hw_event(event, cpuc, i);
1339 else if (i < n_running)
1340 continue;
1341
1342 if (hwc->state & PERF_HES_ARCH)
1343 continue;
1344
1345 /*
1346 * if cpuc->enabled = 0, then no wrmsr as
1347 * per x86_pmu_enable_event()
1348 */
1349 x86_pmu_start(event, PERF_EF_RELOAD);
1350 }
1351 cpuc->n_added = 0;
1352 perf_events_lapic_init();
1353 }
1354
1355 cpuc->enabled = 1;
1356 barrier();
1357
1358 static_call(x86_pmu_enable_all)(added);
1359 }
1360
1361 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1362
1363 /*
1364 * Set the next IRQ period, based on the hwc->period_left value.
1365 * To be called with the event disabled in hw:
1366 */
x86_perf_event_set_period(struct perf_event * event)1367 int x86_perf_event_set_period(struct perf_event *event)
1368 {
1369 struct hw_perf_event *hwc = &event->hw;
1370 s64 left = local64_read(&hwc->period_left);
1371 s64 period = hwc->sample_period;
1372 int ret = 0, idx = hwc->idx;
1373
1374 if (unlikely(!hwc->event_base))
1375 return 0;
1376
1377 /*
1378 * If we are way outside a reasonable range then just skip forward:
1379 */
1380 if (unlikely(left <= -period)) {
1381 left = period;
1382 local64_set(&hwc->period_left, left);
1383 hwc->last_period = period;
1384 ret = 1;
1385 }
1386
1387 if (unlikely(left <= 0)) {
1388 left += period;
1389 local64_set(&hwc->period_left, left);
1390 hwc->last_period = period;
1391 ret = 1;
1392 }
1393 /*
1394 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1395 */
1396 if (unlikely(left < 2))
1397 left = 2;
1398
1399 if (left > x86_pmu.max_period)
1400 left = x86_pmu.max_period;
1401
1402 static_call_cond(x86_pmu_limit_period)(event, &left);
1403
1404 this_cpu_write(pmc_prev_left[idx], left);
1405
1406 /*
1407 * The hw event starts counting from this event offset,
1408 * mark it to be able to extra future deltas:
1409 */
1410 local64_set(&hwc->prev_count, (u64)-left);
1411
1412 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1413
1414 /*
1415 * Sign extend the Merge event counter's upper 16 bits since
1416 * we currently declare a 48-bit counter width
1417 */
1418 if (is_counter_pair(hwc))
1419 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1420
1421 perf_event_update_userpage(event);
1422
1423 return ret;
1424 }
1425
x86_pmu_enable_event(struct perf_event * event)1426 void x86_pmu_enable_event(struct perf_event *event)
1427 {
1428 if (__this_cpu_read(cpu_hw_events.enabled))
1429 __x86_pmu_enable_event(&event->hw,
1430 ARCH_PERFMON_EVENTSEL_ENABLE);
1431 }
1432
1433 /*
1434 * Add a single event to the PMU.
1435 *
1436 * The event is added to the group of enabled events
1437 * but only if it can be scheduled with existing events.
1438 */
x86_pmu_add(struct perf_event * event,int flags)1439 static int x86_pmu_add(struct perf_event *event, int flags)
1440 {
1441 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1442 struct hw_perf_event *hwc;
1443 int assign[X86_PMC_IDX_MAX];
1444 int n, n0, ret;
1445
1446 hwc = &event->hw;
1447
1448 n0 = cpuc->n_events;
1449 ret = n = collect_events(cpuc, event, false);
1450 if (ret < 0)
1451 goto out;
1452
1453 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1454 if (!(flags & PERF_EF_START))
1455 hwc->state |= PERF_HES_ARCH;
1456
1457 /*
1458 * If group events scheduling transaction was started,
1459 * skip the schedulability test here, it will be performed
1460 * at commit time (->commit_txn) as a whole.
1461 *
1462 * If commit fails, we'll call ->del() on all events
1463 * for which ->add() was called.
1464 */
1465 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1466 goto done_collect;
1467
1468 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1469 if (ret)
1470 goto out;
1471 /*
1472 * copy new assignment, now we know it is possible
1473 * will be used by hw_perf_enable()
1474 */
1475 memcpy(cpuc->assign, assign, n*sizeof(int));
1476
1477 done_collect:
1478 /*
1479 * Commit the collect_events() state. See x86_pmu_del() and
1480 * x86_pmu_*_txn().
1481 */
1482 cpuc->n_events = n;
1483 cpuc->n_added += n - n0;
1484 cpuc->n_txn += n - n0;
1485
1486 /*
1487 * This is before x86_pmu_enable() will call x86_pmu_start(),
1488 * so we enable LBRs before an event needs them etc..
1489 */
1490 static_call_cond(x86_pmu_add)(event);
1491
1492 ret = 0;
1493 out:
1494 return ret;
1495 }
1496
x86_pmu_start(struct perf_event * event,int flags)1497 static void x86_pmu_start(struct perf_event *event, int flags)
1498 {
1499 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1500 int idx = event->hw.idx;
1501
1502 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1503 return;
1504
1505 if (WARN_ON_ONCE(idx == -1))
1506 return;
1507
1508 if (flags & PERF_EF_RELOAD) {
1509 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1510 static_call(x86_pmu_set_period)(event);
1511 }
1512
1513 event->hw.state = 0;
1514
1515 cpuc->events[idx] = event;
1516 __set_bit(idx, cpuc->active_mask);
1517 static_call(x86_pmu_enable)(event);
1518 perf_event_update_userpage(event);
1519 }
1520
perf_event_print_debug(void)1521 void perf_event_print_debug(void)
1522 {
1523 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1524 u64 pebs, debugctl;
1525 int cpu = smp_processor_id();
1526 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1527 int num_counters = hybrid(cpuc->pmu, num_counters);
1528 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1529 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1530 unsigned long flags;
1531 int idx;
1532
1533 if (!num_counters)
1534 return;
1535
1536 local_irq_save(flags);
1537
1538 if (x86_pmu.version >= 2) {
1539 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1540 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1541 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1542 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1543
1544 pr_info("\n");
1545 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1546 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1547 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1548 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1549 if (pebs_constraints) {
1550 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1551 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1552 }
1553 if (x86_pmu.lbr_nr) {
1554 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1555 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1556 }
1557 }
1558 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1559
1560 for (idx = 0; idx < num_counters; idx++) {
1561 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1562 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1563
1564 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1565
1566 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1567 cpu, idx, pmc_ctrl);
1568 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1569 cpu, idx, pmc_count);
1570 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1571 cpu, idx, prev_left);
1572 }
1573 for (idx = 0; idx < num_counters_fixed; idx++) {
1574 if (fixed_counter_disabled(idx, cpuc->pmu))
1575 continue;
1576 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1577
1578 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1579 cpu, idx, pmc_count);
1580 }
1581 local_irq_restore(flags);
1582 }
1583
x86_pmu_stop(struct perf_event * event,int flags)1584 void x86_pmu_stop(struct perf_event *event, int flags)
1585 {
1586 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1587 struct hw_perf_event *hwc = &event->hw;
1588
1589 if (test_bit(hwc->idx, cpuc->active_mask)) {
1590 static_call(x86_pmu_disable)(event);
1591 __clear_bit(hwc->idx, cpuc->active_mask);
1592 cpuc->events[hwc->idx] = NULL;
1593 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1594 hwc->state |= PERF_HES_STOPPED;
1595 }
1596
1597 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1598 /*
1599 * Drain the remaining delta count out of a event
1600 * that we are disabling:
1601 */
1602 static_call(x86_pmu_update)(event);
1603 hwc->state |= PERF_HES_UPTODATE;
1604 }
1605 }
1606
x86_pmu_del(struct perf_event * event,int flags)1607 static void x86_pmu_del(struct perf_event *event, int flags)
1608 {
1609 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1610 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1611 int i;
1612
1613 /*
1614 * If we're called during a txn, we only need to undo x86_pmu.add.
1615 * The events never got scheduled and ->cancel_txn will truncate
1616 * the event_list.
1617 *
1618 * XXX assumes any ->del() called during a TXN will only be on
1619 * an event added during that same TXN.
1620 */
1621 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1622 goto do_del;
1623
1624 __set_bit(event->hw.idx, cpuc->dirty);
1625
1626 /*
1627 * Not a TXN, therefore cleanup properly.
1628 */
1629 x86_pmu_stop(event, PERF_EF_UPDATE);
1630
1631 for (i = 0; i < cpuc->n_events; i++) {
1632 if (event == cpuc->event_list[i])
1633 break;
1634 }
1635
1636 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1637 return;
1638
1639 /* If we have a newly added event; make sure to decrease n_added. */
1640 if (i >= cpuc->n_events - cpuc->n_added)
1641 --cpuc->n_added;
1642
1643 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1644
1645 /* Delete the array entry. */
1646 while (++i < cpuc->n_events) {
1647 cpuc->event_list[i-1] = cpuc->event_list[i];
1648 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1649 cpuc->assign[i-1] = cpuc->assign[i];
1650 }
1651 cpuc->event_constraint[i-1] = NULL;
1652 --cpuc->n_events;
1653 if (intel_cap.perf_metrics)
1654 del_nr_metric_event(cpuc, event);
1655
1656 perf_event_update_userpage(event);
1657
1658 do_del:
1659
1660 /*
1661 * This is after x86_pmu_stop(); so we disable LBRs after any
1662 * event can need them etc..
1663 */
1664 static_call_cond(x86_pmu_del)(event);
1665 }
1666
x86_pmu_handle_irq(struct pt_regs * regs)1667 int x86_pmu_handle_irq(struct pt_regs *regs)
1668 {
1669 struct perf_sample_data data;
1670 struct cpu_hw_events *cpuc;
1671 struct perf_event *event;
1672 int idx, handled = 0;
1673 u64 val;
1674
1675 cpuc = this_cpu_ptr(&cpu_hw_events);
1676
1677 /*
1678 * Some chipsets need to unmask the LVTPC in a particular spot
1679 * inside the nmi handler. As a result, the unmasking was pushed
1680 * into all the nmi handlers.
1681 *
1682 * This generic handler doesn't seem to have any issues where the
1683 * unmasking occurs so it was left at the top.
1684 */
1685 apic_write(APIC_LVTPC, APIC_DM_NMI);
1686
1687 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1688 if (!test_bit(idx, cpuc->active_mask))
1689 continue;
1690
1691 event = cpuc->events[idx];
1692
1693 val = static_call(x86_pmu_update)(event);
1694 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1695 continue;
1696
1697 /*
1698 * event overflow
1699 */
1700 handled++;
1701
1702 if (!static_call(x86_pmu_set_period)(event))
1703 continue;
1704
1705 perf_sample_data_init(&data, 0, event->hw.last_period);
1706
1707 if (has_branch_stack(event))
1708 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
1709
1710 if (perf_event_overflow(event, &data, regs))
1711 x86_pmu_stop(event, 0);
1712 }
1713
1714 if (handled)
1715 inc_irq_stat(apic_perf_irqs);
1716
1717 return handled;
1718 }
1719
perf_events_lapic_init(void)1720 void perf_events_lapic_init(void)
1721 {
1722 if (!x86_pmu.apic || !x86_pmu_initialized())
1723 return;
1724
1725 /*
1726 * Always use NMI for PMU
1727 */
1728 apic_write(APIC_LVTPC, APIC_DM_NMI);
1729 }
1730
1731 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1732 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1733 {
1734 u64 start_clock;
1735 u64 finish_clock;
1736 int ret;
1737
1738 /*
1739 * All PMUs/events that share this PMI handler should make sure to
1740 * increment active_events for their events.
1741 */
1742 if (!atomic_read(&active_events))
1743 return NMI_DONE;
1744
1745 start_clock = sched_clock();
1746 ret = static_call(x86_pmu_handle_irq)(regs);
1747 finish_clock = sched_clock();
1748
1749 perf_sample_event_took(finish_clock - start_clock);
1750
1751 return ret;
1752 }
1753 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1754
1755 struct event_constraint emptyconstraint;
1756 struct event_constraint unconstrained;
1757
x86_pmu_prepare_cpu(unsigned int cpu)1758 static int x86_pmu_prepare_cpu(unsigned int cpu)
1759 {
1760 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1761 int i;
1762
1763 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1764 cpuc->kfree_on_online[i] = NULL;
1765 if (x86_pmu.cpu_prepare)
1766 return x86_pmu.cpu_prepare(cpu);
1767 return 0;
1768 }
1769
x86_pmu_dead_cpu(unsigned int cpu)1770 static int x86_pmu_dead_cpu(unsigned int cpu)
1771 {
1772 if (x86_pmu.cpu_dead)
1773 x86_pmu.cpu_dead(cpu);
1774 return 0;
1775 }
1776
x86_pmu_online_cpu(unsigned int cpu)1777 static int x86_pmu_online_cpu(unsigned int cpu)
1778 {
1779 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1780 int i;
1781
1782 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1783 kfree(cpuc->kfree_on_online[i]);
1784 cpuc->kfree_on_online[i] = NULL;
1785 }
1786 return 0;
1787 }
1788
x86_pmu_starting_cpu(unsigned int cpu)1789 static int x86_pmu_starting_cpu(unsigned int cpu)
1790 {
1791 if (x86_pmu.cpu_starting)
1792 x86_pmu.cpu_starting(cpu);
1793 return 0;
1794 }
1795
x86_pmu_dying_cpu(unsigned int cpu)1796 static int x86_pmu_dying_cpu(unsigned int cpu)
1797 {
1798 if (x86_pmu.cpu_dying)
1799 x86_pmu.cpu_dying(cpu);
1800 return 0;
1801 }
1802
pmu_check_apic(void)1803 static void __init pmu_check_apic(void)
1804 {
1805 if (boot_cpu_has(X86_FEATURE_APIC))
1806 return;
1807
1808 x86_pmu.apic = 0;
1809 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1810 pr_info("no hardware sampling interrupt available.\n");
1811
1812 /*
1813 * If we have a PMU initialized but no APIC
1814 * interrupts, we cannot sample hardware
1815 * events (user-space has to fall back and
1816 * sample via a hrtimer based software event):
1817 */
1818 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1819
1820 }
1821
1822 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1823 .name = "format",
1824 .attrs = NULL,
1825 };
1826
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1827 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1828 {
1829 struct perf_pmu_events_attr *pmu_attr =
1830 container_of(attr, struct perf_pmu_events_attr, attr);
1831 u64 config = 0;
1832
1833 if (pmu_attr->id < x86_pmu.max_events)
1834 config = x86_pmu.event_map(pmu_attr->id);
1835
1836 /* string trumps id */
1837 if (pmu_attr->event_str)
1838 return sprintf(page, "%s\n", pmu_attr->event_str);
1839
1840 return x86_pmu.events_sysfs_show(page, config);
1841 }
1842 EXPORT_SYMBOL_GPL(events_sysfs_show);
1843
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1844 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1845 char *page)
1846 {
1847 struct perf_pmu_events_ht_attr *pmu_attr =
1848 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1849
1850 /*
1851 * Report conditional events depending on Hyper-Threading.
1852 *
1853 * This is overly conservative as usually the HT special
1854 * handling is not needed if the other CPU thread is idle.
1855 *
1856 * Note this does not (and cannot) handle the case when thread
1857 * siblings are invisible, for example with virtualization
1858 * if they are owned by some other guest. The user tool
1859 * has to re-read when a thread sibling gets onlined later.
1860 */
1861 return sprintf(page, "%s",
1862 topology_max_smt_threads() > 1 ?
1863 pmu_attr->event_str_ht :
1864 pmu_attr->event_str_noht);
1865 }
1866
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1867 ssize_t events_hybrid_sysfs_show(struct device *dev,
1868 struct device_attribute *attr,
1869 char *page)
1870 {
1871 struct perf_pmu_events_hybrid_attr *pmu_attr =
1872 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1873 struct x86_hybrid_pmu *pmu;
1874 const char *str, *next_str;
1875 int i;
1876
1877 if (hweight64(pmu_attr->pmu_type) == 1)
1878 return sprintf(page, "%s", pmu_attr->event_str);
1879
1880 /*
1881 * Hybrid PMUs may support the same event name, but with different
1882 * event encoding, e.g., the mem-loads event on an Atom PMU has
1883 * different event encoding from a Core PMU.
1884 *
1885 * The event_str includes all event encodings. Each event encoding
1886 * is divided by ";". The order of the event encodings must follow
1887 * the order of the hybrid PMU index.
1888 */
1889 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1890
1891 str = pmu_attr->event_str;
1892 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1893 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1894 continue;
1895 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1896 next_str = strchr(str, ';');
1897 if (next_str)
1898 return snprintf(page, next_str - str + 1, "%s", str);
1899 else
1900 return sprintf(page, "%s", str);
1901 }
1902 str = strchr(str, ';');
1903 str++;
1904 }
1905
1906 return 0;
1907 }
1908 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1909
1910 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1911 EVENT_ATTR(instructions, INSTRUCTIONS );
1912 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1913 EVENT_ATTR(cache-misses, CACHE_MISSES );
1914 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1915 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1916 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1917 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1918 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1919 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1920
1921 static struct attribute *empty_attrs;
1922
1923 static struct attribute *events_attr[] = {
1924 EVENT_PTR(CPU_CYCLES),
1925 EVENT_PTR(INSTRUCTIONS),
1926 EVENT_PTR(CACHE_REFERENCES),
1927 EVENT_PTR(CACHE_MISSES),
1928 EVENT_PTR(BRANCH_INSTRUCTIONS),
1929 EVENT_PTR(BRANCH_MISSES),
1930 EVENT_PTR(BUS_CYCLES),
1931 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1932 EVENT_PTR(STALLED_CYCLES_BACKEND),
1933 EVENT_PTR(REF_CPU_CYCLES),
1934 NULL,
1935 };
1936
1937 /*
1938 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1939 * out of events_attr attributes.
1940 */
1941 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1942 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1943 {
1944 struct perf_pmu_events_attr *pmu_attr;
1945
1946 if (idx >= x86_pmu.max_events)
1947 return 0;
1948
1949 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1950 /* str trumps id */
1951 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1952 }
1953
1954 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1955 .name = "events",
1956 .attrs = events_attr,
1957 .is_visible = is_visible,
1958 };
1959
x86_event_sysfs_show(char * page,u64 config,u64 event)1960 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1961 {
1962 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1963 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1964 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1965 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1966 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1967 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1968 ssize_t ret;
1969
1970 /*
1971 * We have whole page size to spend and just little data
1972 * to write, so we can safely use sprintf.
1973 */
1974 ret = sprintf(page, "event=0x%02llx", event);
1975
1976 if (umask)
1977 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1978
1979 if (edge)
1980 ret += sprintf(page + ret, ",edge");
1981
1982 if (pc)
1983 ret += sprintf(page + ret, ",pc");
1984
1985 if (any)
1986 ret += sprintf(page + ret, ",any");
1987
1988 if (inv)
1989 ret += sprintf(page + ret, ",inv");
1990
1991 if (cmask)
1992 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1993
1994 ret += sprintf(page + ret, "\n");
1995
1996 return ret;
1997 }
1998
1999 static struct attribute_group x86_pmu_attr_group;
2000 static struct attribute_group x86_pmu_caps_group;
2001
x86_pmu_static_call_update(void)2002 static void x86_pmu_static_call_update(void)
2003 {
2004 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2005 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2006 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2007 static_call_update(x86_pmu_enable, x86_pmu.enable);
2008 static_call_update(x86_pmu_disable, x86_pmu.disable);
2009
2010 static_call_update(x86_pmu_assign, x86_pmu.assign);
2011
2012 static_call_update(x86_pmu_add, x86_pmu.add);
2013 static_call_update(x86_pmu_del, x86_pmu.del);
2014 static_call_update(x86_pmu_read, x86_pmu.read);
2015
2016 static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2017 static_call_update(x86_pmu_update, x86_pmu.update);
2018 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2019
2020 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2021 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2022 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2023
2024 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2025 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2026 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2027
2028 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2029 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2030
2031 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2032 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2033
2034 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2035 static_call_update(x86_pmu_filter, x86_pmu.filter);
2036 }
2037
_x86_pmu_read(struct perf_event * event)2038 static void _x86_pmu_read(struct perf_event *event)
2039 {
2040 static_call(x86_pmu_update)(event);
2041 }
2042
x86_pmu_show_pmu_cap(int num_counters,int num_counters_fixed,u64 intel_ctrl)2043 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2044 u64 intel_ctrl)
2045 {
2046 pr_info("... version: %d\n", x86_pmu.version);
2047 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2048 pr_info("... generic registers: %d\n", num_counters);
2049 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
2050 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2051 pr_info("... fixed-purpose events: %lu\n",
2052 hweight64((((1ULL << num_counters_fixed) - 1)
2053 << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2054 pr_info("... event mask: %016Lx\n", intel_ctrl);
2055 }
2056
init_hw_perf_events(void)2057 static int __init init_hw_perf_events(void)
2058 {
2059 struct x86_pmu_quirk *quirk;
2060 int err;
2061
2062 pr_info("Performance Events: ");
2063
2064 switch (boot_cpu_data.x86_vendor) {
2065 case X86_VENDOR_INTEL:
2066 err = intel_pmu_init();
2067 break;
2068 case X86_VENDOR_AMD:
2069 err = amd_pmu_init();
2070 break;
2071 case X86_VENDOR_HYGON:
2072 err = amd_pmu_init();
2073 x86_pmu.name = "HYGON";
2074 break;
2075 case X86_VENDOR_ZHAOXIN:
2076 case X86_VENDOR_CENTAUR:
2077 err = zhaoxin_pmu_init();
2078 break;
2079 default:
2080 err = -ENOTSUPP;
2081 }
2082 if (err != 0) {
2083 pr_cont("no PMU driver, software events only.\n");
2084 err = 0;
2085 goto out_bad_pmu;
2086 }
2087
2088 pmu_check_apic();
2089
2090 /* sanity check that the hardware exists or is emulated */
2091 if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2092 goto out_bad_pmu;
2093
2094 pr_cont("%s PMU driver.\n", x86_pmu.name);
2095
2096 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2097
2098 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2099 quirk->func();
2100
2101 if (!x86_pmu.intel_ctrl)
2102 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2103
2104 perf_events_lapic_init();
2105 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2106
2107 unconstrained = (struct event_constraint)
2108 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2109 0, x86_pmu.num_counters, 0, 0);
2110
2111 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2112
2113 if (!x86_pmu.events_sysfs_show)
2114 x86_pmu_events_group.attrs = &empty_attrs;
2115
2116 pmu.attr_update = x86_pmu.attr_update;
2117
2118 if (!is_hybrid()) {
2119 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2120 x86_pmu.num_counters_fixed,
2121 x86_pmu.intel_ctrl);
2122 }
2123
2124 if (!x86_pmu.read)
2125 x86_pmu.read = _x86_pmu_read;
2126
2127 if (!x86_pmu.guest_get_msrs)
2128 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2129
2130 if (!x86_pmu.set_period)
2131 x86_pmu.set_period = x86_perf_event_set_period;
2132
2133 if (!x86_pmu.update)
2134 x86_pmu.update = x86_perf_event_update;
2135
2136 x86_pmu_static_call_update();
2137
2138 /*
2139 * Install callbacks. Core will call them for each online
2140 * cpu.
2141 */
2142 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2143 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2144 if (err)
2145 return err;
2146
2147 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2148 "perf/x86:starting", x86_pmu_starting_cpu,
2149 x86_pmu_dying_cpu);
2150 if (err)
2151 goto out;
2152
2153 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2154 x86_pmu_online_cpu, NULL);
2155 if (err)
2156 goto out1;
2157
2158 if (!is_hybrid()) {
2159 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2160 if (err)
2161 goto out2;
2162 } else {
2163 struct x86_hybrid_pmu *hybrid_pmu;
2164 int i, j;
2165
2166 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2167 hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2168
2169 hybrid_pmu->pmu = pmu;
2170 hybrid_pmu->pmu.type = -1;
2171 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2172 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2173
2174 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2175 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2176 if (err)
2177 break;
2178 }
2179
2180 if (i < x86_pmu.num_hybrid_pmus) {
2181 for (j = 0; j < i; j++)
2182 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2183 pr_warn("Failed to register hybrid PMUs\n");
2184 kfree(x86_pmu.hybrid_pmu);
2185 x86_pmu.hybrid_pmu = NULL;
2186 x86_pmu.num_hybrid_pmus = 0;
2187 goto out2;
2188 }
2189 }
2190
2191 return 0;
2192
2193 out2:
2194 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2195 out1:
2196 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2197 out:
2198 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2199 out_bad_pmu:
2200 memset(&x86_pmu, 0, sizeof(x86_pmu));
2201 return err;
2202 }
2203 early_initcall(init_hw_perf_events);
2204
x86_pmu_read(struct perf_event * event)2205 static void x86_pmu_read(struct perf_event *event)
2206 {
2207 static_call(x86_pmu_read)(event);
2208 }
2209
2210 /*
2211 * Start group events scheduling transaction
2212 * Set the flag to make pmu::enable() not perform the
2213 * schedulability test, it will be performed at commit time
2214 *
2215 * We only support PERF_PMU_TXN_ADD transactions. Save the
2216 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2217 * transactions.
2218 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2219 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2220 {
2221 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2222
2223 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2224
2225 cpuc->txn_flags = txn_flags;
2226 if (txn_flags & ~PERF_PMU_TXN_ADD)
2227 return;
2228
2229 perf_pmu_disable(pmu);
2230 __this_cpu_write(cpu_hw_events.n_txn, 0);
2231 __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2232 __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2233 }
2234
2235 /*
2236 * Stop group events scheduling transaction
2237 * Clear the flag and pmu::enable() will perform the
2238 * schedulability test.
2239 */
x86_pmu_cancel_txn(struct pmu * pmu)2240 static void x86_pmu_cancel_txn(struct pmu *pmu)
2241 {
2242 unsigned int txn_flags;
2243 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2244
2245 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2246
2247 txn_flags = cpuc->txn_flags;
2248 cpuc->txn_flags = 0;
2249 if (txn_flags & ~PERF_PMU_TXN_ADD)
2250 return;
2251
2252 /*
2253 * Truncate collected array by the number of events added in this
2254 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2255 */
2256 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2257 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2258 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2259 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2260 perf_pmu_enable(pmu);
2261 }
2262
2263 /*
2264 * Commit group events scheduling transaction
2265 * Perform the group schedulability test as a whole
2266 * Return 0 if success
2267 *
2268 * Does not cancel the transaction on failure; expects the caller to do this.
2269 */
x86_pmu_commit_txn(struct pmu * pmu)2270 static int x86_pmu_commit_txn(struct pmu *pmu)
2271 {
2272 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273 int assign[X86_PMC_IDX_MAX];
2274 int n, ret;
2275
2276 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2277
2278 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2279 cpuc->txn_flags = 0;
2280 return 0;
2281 }
2282
2283 n = cpuc->n_events;
2284
2285 if (!x86_pmu_initialized())
2286 return -EAGAIN;
2287
2288 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2289 if (ret)
2290 return ret;
2291
2292 /*
2293 * copy new assignment, now we know it is possible
2294 * will be used by hw_perf_enable()
2295 */
2296 memcpy(cpuc->assign, assign, n*sizeof(int));
2297
2298 cpuc->txn_flags = 0;
2299 perf_pmu_enable(pmu);
2300 return 0;
2301 }
2302 /*
2303 * a fake_cpuc is used to validate event groups. Due to
2304 * the extra reg logic, we need to also allocate a fake
2305 * per_core and per_cpu structure. Otherwise, group events
2306 * using extra reg may conflict without the kernel being
2307 * able to catch this when the last event gets added to
2308 * the group.
2309 */
free_fake_cpuc(struct cpu_hw_events * cpuc)2310 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2311 {
2312 intel_cpuc_finish(cpuc);
2313 kfree(cpuc);
2314 }
2315
allocate_fake_cpuc(struct pmu * event_pmu)2316 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2317 {
2318 struct cpu_hw_events *cpuc;
2319 int cpu;
2320
2321 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2322 if (!cpuc)
2323 return ERR_PTR(-ENOMEM);
2324 cpuc->is_fake = 1;
2325
2326 if (is_hybrid()) {
2327 struct x86_hybrid_pmu *h_pmu;
2328
2329 h_pmu = hybrid_pmu(event_pmu);
2330 if (cpumask_empty(&h_pmu->supported_cpus))
2331 goto error;
2332 cpu = cpumask_first(&h_pmu->supported_cpus);
2333 } else
2334 cpu = raw_smp_processor_id();
2335 cpuc->pmu = event_pmu;
2336
2337 if (intel_cpuc_prepare(cpuc, cpu))
2338 goto error;
2339
2340 return cpuc;
2341 error:
2342 free_fake_cpuc(cpuc);
2343 return ERR_PTR(-ENOMEM);
2344 }
2345
2346 /*
2347 * validate that we can schedule this event
2348 */
validate_event(struct perf_event * event)2349 static int validate_event(struct perf_event *event)
2350 {
2351 struct cpu_hw_events *fake_cpuc;
2352 struct event_constraint *c;
2353 int ret = 0;
2354
2355 fake_cpuc = allocate_fake_cpuc(event->pmu);
2356 if (IS_ERR(fake_cpuc))
2357 return PTR_ERR(fake_cpuc);
2358
2359 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2360
2361 if (!c || !c->weight)
2362 ret = -EINVAL;
2363
2364 if (x86_pmu.put_event_constraints)
2365 x86_pmu.put_event_constraints(fake_cpuc, event);
2366
2367 free_fake_cpuc(fake_cpuc);
2368
2369 return ret;
2370 }
2371
2372 /*
2373 * validate a single event group
2374 *
2375 * validation include:
2376 * - check events are compatible which each other
2377 * - events do not compete for the same counter
2378 * - number of events <= number of counters
2379 *
2380 * validation ensures the group can be loaded onto the
2381 * PMU if it was the only group available.
2382 */
validate_group(struct perf_event * event)2383 static int validate_group(struct perf_event *event)
2384 {
2385 struct perf_event *leader = event->group_leader;
2386 struct cpu_hw_events *fake_cpuc;
2387 int ret = -EINVAL, n;
2388
2389 /*
2390 * Reject events from different hybrid PMUs.
2391 */
2392 if (is_hybrid()) {
2393 struct perf_event *sibling;
2394 struct pmu *pmu = NULL;
2395
2396 if (is_x86_event(leader))
2397 pmu = leader->pmu;
2398
2399 for_each_sibling_event(sibling, leader) {
2400 if (!is_x86_event(sibling))
2401 continue;
2402 if (!pmu)
2403 pmu = sibling->pmu;
2404 else if (pmu != sibling->pmu)
2405 return ret;
2406 }
2407 }
2408
2409 fake_cpuc = allocate_fake_cpuc(event->pmu);
2410 if (IS_ERR(fake_cpuc))
2411 return PTR_ERR(fake_cpuc);
2412 /*
2413 * the event is not yet connected with its
2414 * siblings therefore we must first collect
2415 * existing siblings, then add the new event
2416 * before we can simulate the scheduling
2417 */
2418 n = collect_events(fake_cpuc, leader, true);
2419 if (n < 0)
2420 goto out;
2421
2422 fake_cpuc->n_events = n;
2423 n = collect_events(fake_cpuc, event, false);
2424 if (n < 0)
2425 goto out;
2426
2427 fake_cpuc->n_events = 0;
2428 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2429
2430 out:
2431 free_fake_cpuc(fake_cpuc);
2432 return ret;
2433 }
2434
x86_pmu_event_init(struct perf_event * event)2435 static int x86_pmu_event_init(struct perf_event *event)
2436 {
2437 struct x86_hybrid_pmu *pmu = NULL;
2438 int err;
2439
2440 if ((event->attr.type != event->pmu->type) &&
2441 (event->attr.type != PERF_TYPE_HARDWARE) &&
2442 (event->attr.type != PERF_TYPE_HW_CACHE))
2443 return -ENOENT;
2444
2445 if (is_hybrid() && (event->cpu != -1)) {
2446 pmu = hybrid_pmu(event->pmu);
2447 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2448 return -ENOENT;
2449 }
2450
2451 err = __x86_pmu_event_init(event);
2452 if (!err) {
2453 if (event->group_leader != event)
2454 err = validate_group(event);
2455 else
2456 err = validate_event(event);
2457 }
2458 if (err) {
2459 if (event->destroy)
2460 event->destroy(event);
2461 event->destroy = NULL;
2462 }
2463
2464 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2465 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2466 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2467
2468 return err;
2469 }
2470
perf_clear_dirty_counters(void)2471 void perf_clear_dirty_counters(void)
2472 {
2473 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2474 int i;
2475
2476 /* Don't need to clear the assigned counter. */
2477 for (i = 0; i < cpuc->n_events; i++)
2478 __clear_bit(cpuc->assign[i], cpuc->dirty);
2479
2480 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2481 return;
2482
2483 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2484 if (i >= INTEL_PMC_IDX_FIXED) {
2485 /* Metrics and fake events don't have corresponding HW counters. */
2486 if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2487 continue;
2488
2489 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2490 } else {
2491 wrmsrl(x86_pmu_event_addr(i), 0);
2492 }
2493 }
2494
2495 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2496 }
2497
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2498 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2499 {
2500 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2501 return;
2502
2503 /*
2504 * This function relies on not being called concurrently in two
2505 * tasks in the same mm. Otherwise one task could observe
2506 * perf_rdpmc_allowed > 1 and return all the way back to
2507 * userspace with CR4.PCE clear while another task is still
2508 * doing on_each_cpu_mask() to propagate CR4.PCE.
2509 *
2510 * For now, this can't happen because all callers hold mmap_lock
2511 * for write. If this changes, we'll need a different solution.
2512 */
2513 mmap_assert_write_locked(mm);
2514
2515 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2516 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2517 }
2518
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2519 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2520 {
2521 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2522 return;
2523
2524 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2525 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2526 }
2527
x86_pmu_event_idx(struct perf_event * event)2528 static int x86_pmu_event_idx(struct perf_event *event)
2529 {
2530 struct hw_perf_event *hwc = &event->hw;
2531
2532 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2533 return 0;
2534
2535 if (is_metric_idx(hwc->idx))
2536 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2537 else
2538 return hwc->event_base_rdpmc + 1;
2539 }
2540
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2541 static ssize_t get_attr_rdpmc(struct device *cdev,
2542 struct device_attribute *attr,
2543 char *buf)
2544 {
2545 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2546 }
2547
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2548 static ssize_t set_attr_rdpmc(struct device *cdev,
2549 struct device_attribute *attr,
2550 const char *buf, size_t count)
2551 {
2552 static DEFINE_MUTEX(rdpmc_mutex);
2553 unsigned long val;
2554 ssize_t ret;
2555
2556 ret = kstrtoul(buf, 0, &val);
2557 if (ret)
2558 return ret;
2559
2560 if (val > 2)
2561 return -EINVAL;
2562
2563 if (x86_pmu.attr_rdpmc_broken)
2564 return -ENOTSUPP;
2565
2566 guard(mutex)(&rdpmc_mutex);
2567
2568 if (val != x86_pmu.attr_rdpmc) {
2569 /*
2570 * Changing into or out of never available or always available,
2571 * aka perf-event-bypassing mode. This path is extremely slow,
2572 * but only root can trigger it, so it's okay.
2573 */
2574 if (val == 0)
2575 static_branch_inc(&rdpmc_never_available_key);
2576 else if (x86_pmu.attr_rdpmc == 0)
2577 static_branch_dec(&rdpmc_never_available_key);
2578
2579 if (val == 2)
2580 static_branch_inc(&rdpmc_always_available_key);
2581 else if (x86_pmu.attr_rdpmc == 2)
2582 static_branch_dec(&rdpmc_always_available_key);
2583
2584 on_each_cpu(cr4_update_pce, NULL, 1);
2585 x86_pmu.attr_rdpmc = val;
2586 }
2587
2588 return count;
2589 }
2590
2591 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2592
2593 static struct attribute *x86_pmu_attrs[] = {
2594 &dev_attr_rdpmc.attr,
2595 NULL,
2596 };
2597
2598 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2599 .attrs = x86_pmu_attrs,
2600 };
2601
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2602 static ssize_t max_precise_show(struct device *cdev,
2603 struct device_attribute *attr,
2604 char *buf)
2605 {
2606 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2607 }
2608
2609 static DEVICE_ATTR_RO(max_precise);
2610
2611 static struct attribute *x86_pmu_caps_attrs[] = {
2612 &dev_attr_max_precise.attr,
2613 NULL
2614 };
2615
2616 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2617 .name = "caps",
2618 .attrs = x86_pmu_caps_attrs,
2619 };
2620
2621 static const struct attribute_group *x86_pmu_attr_groups[] = {
2622 &x86_pmu_attr_group,
2623 &x86_pmu_format_group,
2624 &x86_pmu_events_group,
2625 &x86_pmu_caps_group,
2626 NULL,
2627 };
2628
x86_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)2629 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2630 {
2631 static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2632 }
2633
x86_pmu_swap_task_ctx(struct perf_event_pmu_context * prev_epc,struct perf_event_pmu_context * next_epc)2634 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2635 struct perf_event_pmu_context *next_epc)
2636 {
2637 static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2638 }
2639
perf_check_microcode(void)2640 void perf_check_microcode(void)
2641 {
2642 if (x86_pmu.check_microcode)
2643 x86_pmu.check_microcode();
2644 }
2645
x86_pmu_check_period(struct perf_event * event,u64 value)2646 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2647 {
2648 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2649 return -EINVAL;
2650
2651 if (value && x86_pmu.limit_period) {
2652 s64 left = value;
2653 x86_pmu.limit_period(event, &left);
2654 if (left > value)
2655 return -EINVAL;
2656 }
2657
2658 return 0;
2659 }
2660
x86_pmu_aux_output_match(struct perf_event * event)2661 static int x86_pmu_aux_output_match(struct perf_event *event)
2662 {
2663 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2664 return 0;
2665
2666 if (x86_pmu.aux_output_match)
2667 return x86_pmu.aux_output_match(event);
2668
2669 return 0;
2670 }
2671
x86_pmu_filter(struct pmu * pmu,int cpu)2672 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2673 {
2674 bool ret = false;
2675
2676 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2677
2678 return ret;
2679 }
2680
2681 static struct pmu pmu = {
2682 .pmu_enable = x86_pmu_enable,
2683 .pmu_disable = x86_pmu_disable,
2684
2685 .attr_groups = x86_pmu_attr_groups,
2686
2687 .event_init = x86_pmu_event_init,
2688
2689 .event_mapped = x86_pmu_event_mapped,
2690 .event_unmapped = x86_pmu_event_unmapped,
2691
2692 .add = x86_pmu_add,
2693 .del = x86_pmu_del,
2694 .start = x86_pmu_start,
2695 .stop = x86_pmu_stop,
2696 .read = x86_pmu_read,
2697
2698 .start_txn = x86_pmu_start_txn,
2699 .cancel_txn = x86_pmu_cancel_txn,
2700 .commit_txn = x86_pmu_commit_txn,
2701
2702 .event_idx = x86_pmu_event_idx,
2703 .sched_task = x86_pmu_sched_task,
2704 .swap_task_ctx = x86_pmu_swap_task_ctx,
2705 .check_period = x86_pmu_check_period,
2706
2707 .aux_output_match = x86_pmu_aux_output_match,
2708
2709 .filter = x86_pmu_filter,
2710 };
2711
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2712 void arch_perf_update_userpage(struct perf_event *event,
2713 struct perf_event_mmap_page *userpg, u64 now)
2714 {
2715 struct cyc2ns_data data;
2716 u64 offset;
2717
2718 userpg->cap_user_time = 0;
2719 userpg->cap_user_time_zero = 0;
2720 userpg->cap_user_rdpmc =
2721 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2722 userpg->pmc_width = x86_pmu.cntval_bits;
2723
2724 if (!using_native_sched_clock() || !sched_clock_stable())
2725 return;
2726
2727 cyc2ns_read_begin(&data);
2728
2729 offset = data.cyc2ns_offset + __sched_clock_offset;
2730
2731 /*
2732 * Internal timekeeping for enabled/running/stopped times
2733 * is always in the local_clock domain.
2734 */
2735 userpg->cap_user_time = 1;
2736 userpg->time_mult = data.cyc2ns_mul;
2737 userpg->time_shift = data.cyc2ns_shift;
2738 userpg->time_offset = offset - now;
2739
2740 /*
2741 * cap_user_time_zero doesn't make sense when we're using a different
2742 * time base for the records.
2743 */
2744 if (!event->attr.use_clockid) {
2745 userpg->cap_user_time_zero = 1;
2746 userpg->time_zero = offset;
2747 }
2748
2749 cyc2ns_read_end();
2750 }
2751
2752 /*
2753 * Determine whether the regs were taken from an irq/exception handler rather
2754 * than from perf_arch_fetch_caller_regs().
2755 */
perf_hw_regs(struct pt_regs * regs)2756 static bool perf_hw_regs(struct pt_regs *regs)
2757 {
2758 return regs->flags & X86_EFLAGS_FIXED;
2759 }
2760
2761 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2762 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2763 {
2764 struct unwind_state state;
2765 unsigned long addr;
2766
2767 if (perf_guest_state()) {
2768 /* TODO: We don't support guest os callchain now */
2769 return;
2770 }
2771
2772 if (perf_callchain_store(entry, regs->ip))
2773 return;
2774
2775 if (perf_hw_regs(regs))
2776 unwind_start(&state, current, regs, NULL);
2777 else
2778 unwind_start(&state, current, NULL, (void *)regs->sp);
2779
2780 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2781 addr = unwind_get_return_address(&state);
2782 if (!addr || perf_callchain_store(entry, addr))
2783 return;
2784 }
2785 }
2786
2787 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2788 valid_user_frame(const void __user *fp, unsigned long size)
2789 {
2790 return __access_ok(fp, size);
2791 }
2792
get_segment_base(unsigned int segment)2793 static unsigned long get_segment_base(unsigned int segment)
2794 {
2795 struct desc_struct *desc;
2796 unsigned int idx = segment >> 3;
2797
2798 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2799 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2800 struct ldt_struct *ldt;
2801
2802 /* IRQs are off, so this synchronizes with smp_store_release */
2803 ldt = READ_ONCE(current->active_mm->context.ldt);
2804 if (!ldt || idx >= ldt->nr_entries)
2805 return 0;
2806
2807 desc = &ldt->entries[idx];
2808 #else
2809 return 0;
2810 #endif
2811 } else {
2812 if (idx >= GDT_ENTRIES)
2813 return 0;
2814
2815 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2816 }
2817
2818 return get_desc_base(desc);
2819 }
2820
2821 #ifdef CONFIG_UPROBES
2822 /*
2823 * Heuristic-based check if uprobe is installed at the function entry.
2824 *
2825 * Under assumption of user code being compiled with frame pointers,
2826 * `push %rbp/%ebp` is a good indicator that we indeed are.
2827 *
2828 * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2829 * If we get this wrong, captured stack trace might have one extra bogus
2830 * entry, but the rest of stack trace will still be meaningful.
2831 */
is_uprobe_at_func_entry(struct pt_regs * regs)2832 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2833 {
2834 struct arch_uprobe *auprobe;
2835
2836 if (!current->utask)
2837 return false;
2838
2839 auprobe = current->utask->auprobe;
2840 if (!auprobe)
2841 return false;
2842
2843 /* push %rbp/%ebp */
2844 if (auprobe->insn[0] == 0x55)
2845 return true;
2846
2847 /* endbr64 (64-bit only) */
2848 if (user_64bit_mode(regs) && is_endbr(*(u32 *)auprobe->insn))
2849 return true;
2850
2851 return false;
2852 }
2853
2854 #else
is_uprobe_at_func_entry(struct pt_regs * regs)2855 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2856 {
2857 return false;
2858 }
2859 #endif /* CONFIG_UPROBES */
2860
2861 #ifdef CONFIG_IA32_EMULATION
2862
2863 #include <linux/compat.h>
2864
2865 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2866 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2867 {
2868 /* 32-bit process in 64-bit kernel. */
2869 unsigned long ss_base, cs_base;
2870 struct stack_frame_ia32 frame;
2871 const struct stack_frame_ia32 __user *fp;
2872 u32 ret_addr;
2873
2874 if (user_64bit_mode(regs))
2875 return 0;
2876
2877 cs_base = get_segment_base(regs->cs);
2878 ss_base = get_segment_base(regs->ss);
2879
2880 fp = compat_ptr(ss_base + regs->bp);
2881 pagefault_disable();
2882
2883 /* see perf_callchain_user() below for why we do this */
2884 if (is_uprobe_at_func_entry(regs) &&
2885 !get_user(ret_addr, (const u32 __user *)regs->sp))
2886 perf_callchain_store(entry, ret_addr);
2887
2888 while (entry->nr < entry->max_stack) {
2889 if (!valid_user_frame(fp, sizeof(frame)))
2890 break;
2891
2892 if (__get_user(frame.next_frame, &fp->next_frame))
2893 break;
2894 if (__get_user(frame.return_address, &fp->return_address))
2895 break;
2896
2897 perf_callchain_store(entry, cs_base + frame.return_address);
2898 fp = compat_ptr(ss_base + frame.next_frame);
2899 }
2900 pagefault_enable();
2901 return 1;
2902 }
2903 #else
2904 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2905 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2906 {
2907 return 0;
2908 }
2909 #endif
2910
2911 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2912 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2913 {
2914 struct stack_frame frame;
2915 const struct stack_frame __user *fp;
2916 unsigned long ret_addr;
2917
2918 if (perf_guest_state()) {
2919 /* TODO: We don't support guest os callchain now */
2920 return;
2921 }
2922
2923 /*
2924 * We don't know what to do with VM86 stacks.. ignore them for now.
2925 */
2926 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2927 return;
2928
2929 fp = (void __user *)regs->bp;
2930
2931 perf_callchain_store(entry, regs->ip);
2932
2933 if (!nmi_uaccess_okay())
2934 return;
2935
2936 if (perf_callchain_user32(regs, entry))
2937 return;
2938
2939 pagefault_disable();
2940
2941 /*
2942 * If we are called from uprobe handler, and we are indeed at the very
2943 * entry to user function (which is normally a `push %rbp` instruction,
2944 * under assumption of application being compiled with frame pointers),
2945 * we should read return address from *regs->sp before proceeding
2946 * to follow frame pointers, otherwise we'll skip immediate caller
2947 * as %rbp is not yet setup.
2948 */
2949 if (is_uprobe_at_func_entry(regs) &&
2950 !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2951 perf_callchain_store(entry, ret_addr);
2952
2953 while (entry->nr < entry->max_stack) {
2954 if (!valid_user_frame(fp, sizeof(frame)))
2955 break;
2956
2957 if (__get_user(frame.next_frame, &fp->next_frame))
2958 break;
2959 if (__get_user(frame.return_address, &fp->return_address))
2960 break;
2961
2962 perf_callchain_store(entry, frame.return_address);
2963 fp = (void __user *)frame.next_frame;
2964 }
2965 pagefault_enable();
2966 }
2967
2968 /*
2969 * Deal with code segment offsets for the various execution modes:
2970 *
2971 * VM86 - the good olde 16 bit days, where the linear address is
2972 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2973 *
2974 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2975 * to figure out what the 32bit base address is.
2976 *
2977 * X32 - has TIF_X32 set, but is running in x86_64
2978 *
2979 * X86_64 - CS,DS,SS,ES are all zero based.
2980 */
code_segment_base(struct pt_regs * regs)2981 static unsigned long code_segment_base(struct pt_regs *regs)
2982 {
2983 /*
2984 * For IA32 we look at the GDT/LDT segment base to convert the
2985 * effective IP to a linear address.
2986 */
2987
2988 #ifdef CONFIG_X86_32
2989 /*
2990 * If we are in VM86 mode, add the segment offset to convert to a
2991 * linear address.
2992 */
2993 if (regs->flags & X86_VM_MASK)
2994 return 0x10 * regs->cs;
2995
2996 if (user_mode(regs) && regs->cs != __USER_CS)
2997 return get_segment_base(regs->cs);
2998 #else
2999 if (user_mode(regs) && !user_64bit_mode(regs) &&
3000 regs->cs != __USER32_CS)
3001 return get_segment_base(regs->cs);
3002 #endif
3003 return 0;
3004 }
3005
perf_instruction_pointer(struct pt_regs * regs)3006 unsigned long perf_instruction_pointer(struct pt_regs *regs)
3007 {
3008 if (perf_guest_state())
3009 return perf_guest_get_ip();
3010
3011 return regs->ip + code_segment_base(regs);
3012 }
3013
perf_misc_flags(struct pt_regs * regs)3014 unsigned long perf_misc_flags(struct pt_regs *regs)
3015 {
3016 unsigned int guest_state = perf_guest_state();
3017 int misc = 0;
3018
3019 if (guest_state) {
3020 if (guest_state & PERF_GUEST_USER)
3021 misc |= PERF_RECORD_MISC_GUEST_USER;
3022 else
3023 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
3024 } else {
3025 if (user_mode(regs))
3026 misc |= PERF_RECORD_MISC_USER;
3027 else
3028 misc |= PERF_RECORD_MISC_KERNEL;
3029 }
3030
3031 if (regs->flags & PERF_EFLAGS_EXACT)
3032 misc |= PERF_RECORD_MISC_EXACT_IP;
3033
3034 return misc;
3035 }
3036
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)3037 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3038 {
3039 /* This API doesn't currently support enumerating hybrid PMUs. */
3040 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3041 !x86_pmu_initialized()) {
3042 memset(cap, 0, sizeof(*cap));
3043 return;
3044 }
3045
3046 /*
3047 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3048 * all E-cores are disabled via BIOS. When E-cores are disabled, the
3049 * base PMU holds the correct number of counters for P-cores.
3050 */
3051 cap->version = x86_pmu.version;
3052 cap->num_counters_gp = x86_pmu.num_counters;
3053 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
3054 cap->bit_width_gp = x86_pmu.cntval_bits;
3055 cap->bit_width_fixed = x86_pmu.cntval_bits;
3056 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
3057 cap->events_mask_len = x86_pmu.events_mask_len;
3058 cap->pebs_ept = x86_pmu.pebs_ept;
3059 }
3060 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3061
perf_get_hw_event_config(int hw_event)3062 u64 perf_get_hw_event_config(int hw_event)
3063 {
3064 int max = x86_pmu.max_events;
3065
3066 if (hw_event < max)
3067 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3068
3069 return 0;
3070 }
3071 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3072