1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/cpufreq/cpufreq_ondemand.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
7 * Jun Nakajima <jun.nakajima@intel.com>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/cpu.h>
13 #include <linux/percpu-defs.h>
14 #include <linux/slab.h>
15 #include <linux/tick.h>
16 #include <linux/sched/cpufreq.h>
17
18 #include "cpufreq_ondemand.h"
19
20 /* On-demand governor macros */
21 #define DEF_FREQUENCY_UP_THRESHOLD (80)
22 #define DEF_SAMPLING_DOWN_FACTOR (1)
23 #define MAX_SAMPLING_DOWN_FACTOR (100000)
24 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
25 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
26 #define MIN_FREQUENCY_UP_THRESHOLD (1)
27 #define MAX_FREQUENCY_UP_THRESHOLD (100)
28
29 static struct od_ops od_ops;
30
31 static unsigned int default_powersave_bias;
32
33 /*
34 * Not all CPUs want IO time to be accounted as busy; this depends on how
35 * efficient idling at a higher frequency/voltage is.
36 * Pavel Machek says this is not so for various generations of AMD and old
37 * Intel systems.
38 * Mike Chan (android.com) claims this is also not true for ARM.
39 * Because of this, whitelist specific known (series) of CPUs by default, and
40 * leave all others up to the user.
41 */
should_io_be_busy(void)42 static int should_io_be_busy(void)
43 {
44 #if defined(CONFIG_X86)
45 /*
46 * For Intel, Core 2 (model 15) and later have an efficient idle.
47 */
48 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
49 boot_cpu_data.x86 == 6 &&
50 boot_cpu_data.x86_model >= 15)
51 return 1;
52 #endif
53 return 0;
54 }
55
56 /*
57 * Find right freq to be set now with powersave_bias on.
58 * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
59 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
60 */
generic_powersave_bias_target(struct cpufreq_policy * policy,unsigned int freq_next,unsigned int relation)61 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
62 unsigned int freq_next, unsigned int relation)
63 {
64 unsigned int freq_req, freq_reduc, freq_avg;
65 unsigned int freq_hi, freq_lo;
66 unsigned int index;
67 unsigned int delay_hi_us;
68 struct policy_dbs_info *policy_dbs = policy->governor_data;
69 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
70 struct dbs_data *dbs_data = policy_dbs->dbs_data;
71 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
72 struct cpufreq_frequency_table *freq_table = policy->freq_table;
73
74 if (!freq_table) {
75 dbs_info->freq_lo = 0;
76 dbs_info->freq_lo_delay_us = 0;
77 return freq_next;
78 }
79
80 index = cpufreq_frequency_table_target(policy, freq_next, policy->min,
81 policy->max, relation);
82 freq_req = freq_table[index].frequency;
83 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
84 freq_avg = freq_req - freq_reduc;
85
86 /* Find freq bounds for freq_avg in freq_table */
87 index = cpufreq_table_find_index_h(policy, freq_avg,
88 relation & CPUFREQ_RELATION_E);
89 freq_lo = freq_table[index].frequency;
90 index = cpufreq_table_find_index_l(policy, freq_avg,
91 relation & CPUFREQ_RELATION_E);
92 freq_hi = freq_table[index].frequency;
93
94 /* Find out how long we have to be in hi and lo freqs */
95 if (freq_hi == freq_lo) {
96 dbs_info->freq_lo = 0;
97 dbs_info->freq_lo_delay_us = 0;
98 return freq_lo;
99 }
100 delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
101 delay_hi_us += (freq_hi - freq_lo) / 2;
102 delay_hi_us /= freq_hi - freq_lo;
103 dbs_info->freq_hi_delay_us = delay_hi_us;
104 dbs_info->freq_lo = freq_lo;
105 dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
106 return freq_hi;
107 }
108
ondemand_powersave_bias_init(struct cpufreq_policy * policy)109 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
110 {
111 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
112
113 dbs_info->freq_lo = 0;
114 }
115
dbs_freq_increase(struct cpufreq_policy * policy,unsigned int freq)116 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
117 {
118 struct policy_dbs_info *policy_dbs = policy->governor_data;
119 struct dbs_data *dbs_data = policy_dbs->dbs_data;
120 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
121
122 if (od_tuners->powersave_bias)
123 freq = od_ops.powersave_bias_target(policy, freq,
124 CPUFREQ_RELATION_HE);
125 else if (policy->cur == policy->max)
126 return;
127
128 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
129 CPUFREQ_RELATION_LE : CPUFREQ_RELATION_HE);
130 }
131
132 /*
133 * Every sampling_rate, we check, if current idle time is less than 20%
134 * (default), then we try to increase frequency. Else, we adjust the frequency
135 * proportional to load.
136 */
od_update(struct cpufreq_policy * policy)137 static void od_update(struct cpufreq_policy *policy)
138 {
139 struct policy_dbs_info *policy_dbs = policy->governor_data;
140 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
141 struct dbs_data *dbs_data = policy_dbs->dbs_data;
142 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
143 unsigned int load = dbs_update(policy);
144
145 dbs_info->freq_lo = 0;
146
147 /* Check for frequency increase */
148 if (load > dbs_data->up_threshold) {
149 /* If switching to max speed, apply sampling_down_factor */
150 if (policy->cur < policy->max)
151 policy_dbs->rate_mult = dbs_data->sampling_down_factor;
152 dbs_freq_increase(policy, policy->max);
153 } else {
154 /* Calculate the next frequency proportional to load */
155 unsigned int freq_next, min_f, max_f;
156
157 min_f = policy->cpuinfo.min_freq;
158 max_f = policy->cpuinfo.max_freq;
159 freq_next = min_f + load * (max_f - min_f) / 100;
160
161 /* No longer fully busy, reset rate_mult */
162 policy_dbs->rate_mult = 1;
163
164 if (od_tuners->powersave_bias)
165 freq_next = od_ops.powersave_bias_target(policy,
166 freq_next,
167 CPUFREQ_RELATION_LE);
168
169 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_CE);
170 }
171 }
172
od_dbs_update(struct cpufreq_policy * policy)173 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
174 {
175 struct policy_dbs_info *policy_dbs = policy->governor_data;
176 struct dbs_data *dbs_data = policy_dbs->dbs_data;
177 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
178 int sample_type = dbs_info->sample_type;
179
180 /* Common NORMAL_SAMPLE setup */
181 dbs_info->sample_type = OD_NORMAL_SAMPLE;
182 /*
183 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
184 * it then.
185 */
186 if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
187 __cpufreq_driver_target(policy, dbs_info->freq_lo,
188 CPUFREQ_RELATION_HE);
189 return dbs_info->freq_lo_delay_us;
190 }
191
192 od_update(policy);
193
194 if (dbs_info->freq_lo) {
195 /* Setup SUB_SAMPLE */
196 dbs_info->sample_type = OD_SUB_SAMPLE;
197 return dbs_info->freq_hi_delay_us;
198 }
199
200 return dbs_data->sampling_rate * policy_dbs->rate_mult;
201 }
202
203 /************************** sysfs interface ************************/
204 static struct dbs_governor od_dbs_gov;
205
io_is_busy_store(struct gov_attr_set * attr_set,const char * buf,size_t count)206 static ssize_t io_is_busy_store(struct gov_attr_set *attr_set, const char *buf,
207 size_t count)
208 {
209 struct dbs_data *dbs_data = to_dbs_data(attr_set);
210 unsigned int input;
211 int ret;
212
213 ret = sscanf(buf, "%u", &input);
214 if (ret != 1)
215 return -EINVAL;
216 dbs_data->io_is_busy = !!input;
217
218 /* we need to re-evaluate prev_cpu_idle */
219 gov_update_cpu_data(dbs_data);
220
221 return count;
222 }
223
up_threshold_store(struct gov_attr_set * attr_set,const char * buf,size_t count)224 static ssize_t up_threshold_store(struct gov_attr_set *attr_set,
225 const char *buf, size_t count)
226 {
227 struct dbs_data *dbs_data = to_dbs_data(attr_set);
228 unsigned int input;
229 int ret;
230 ret = sscanf(buf, "%u", &input);
231
232 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
233 input < MIN_FREQUENCY_UP_THRESHOLD) {
234 return -EINVAL;
235 }
236
237 dbs_data->up_threshold = input;
238 return count;
239 }
240
sampling_down_factor_store(struct gov_attr_set * attr_set,const char * buf,size_t count)241 static ssize_t sampling_down_factor_store(struct gov_attr_set *attr_set,
242 const char *buf, size_t count)
243 {
244 struct dbs_data *dbs_data = to_dbs_data(attr_set);
245 struct policy_dbs_info *policy_dbs;
246 unsigned int input;
247 int ret;
248 ret = sscanf(buf, "%u", &input);
249
250 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
251 return -EINVAL;
252
253 dbs_data->sampling_down_factor = input;
254
255 /* Reset down sampling multiplier in case it was active */
256 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
257 /*
258 * Doing this without locking might lead to using different
259 * rate_mult values in od_update() and od_dbs_update().
260 */
261 mutex_lock(&policy_dbs->update_mutex);
262 policy_dbs->rate_mult = 1;
263 mutex_unlock(&policy_dbs->update_mutex);
264 }
265
266 return count;
267 }
268
ignore_nice_load_store(struct gov_attr_set * attr_set,const char * buf,size_t count)269 static ssize_t ignore_nice_load_store(struct gov_attr_set *attr_set,
270 const char *buf, size_t count)
271 {
272 struct dbs_data *dbs_data = to_dbs_data(attr_set);
273 unsigned int input;
274 int ret;
275
276 ret = sscanf(buf, "%u", &input);
277 if (ret != 1)
278 return -EINVAL;
279
280 if (input > 1)
281 input = 1;
282
283 if (input == dbs_data->ignore_nice_load) { /* nothing to do */
284 return count;
285 }
286 dbs_data->ignore_nice_load = input;
287
288 /* we need to re-evaluate prev_cpu_idle */
289 gov_update_cpu_data(dbs_data);
290
291 return count;
292 }
293
powersave_bias_store(struct gov_attr_set * attr_set,const char * buf,size_t count)294 static ssize_t powersave_bias_store(struct gov_attr_set *attr_set,
295 const char *buf, size_t count)
296 {
297 struct dbs_data *dbs_data = to_dbs_data(attr_set);
298 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
299 struct policy_dbs_info *policy_dbs;
300 unsigned int input;
301 int ret;
302 ret = sscanf(buf, "%u", &input);
303
304 if (ret != 1)
305 return -EINVAL;
306
307 if (input > 1000)
308 input = 1000;
309
310 od_tuners->powersave_bias = input;
311
312 list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
313 ondemand_powersave_bias_init(policy_dbs->policy);
314
315 return count;
316 }
317
318 gov_show_one_common(sampling_rate);
319 gov_show_one_common(up_threshold);
320 gov_show_one_common(sampling_down_factor);
321 gov_show_one_common(ignore_nice_load);
322 gov_show_one_common(io_is_busy);
323 gov_show_one(od, powersave_bias);
324
325 gov_attr_rw(sampling_rate);
326 gov_attr_rw(io_is_busy);
327 gov_attr_rw(up_threshold);
328 gov_attr_rw(sampling_down_factor);
329 gov_attr_rw(ignore_nice_load);
330 gov_attr_rw(powersave_bias);
331
332 static struct attribute *od_attrs[] = {
333 &sampling_rate.attr,
334 &up_threshold.attr,
335 &sampling_down_factor.attr,
336 &ignore_nice_load.attr,
337 &powersave_bias.attr,
338 &io_is_busy.attr,
339 NULL
340 };
341 ATTRIBUTE_GROUPS(od);
342
343 /************************** sysfs end ************************/
344
od_alloc(void)345 static struct policy_dbs_info *od_alloc(void)
346 {
347 struct od_policy_dbs_info *dbs_info;
348
349 dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
350 return dbs_info ? &dbs_info->policy_dbs : NULL;
351 }
352
od_free(struct policy_dbs_info * policy_dbs)353 static void od_free(struct policy_dbs_info *policy_dbs)
354 {
355 kfree(to_dbs_info(policy_dbs));
356 }
357
od_init(struct dbs_data * dbs_data)358 static int od_init(struct dbs_data *dbs_data)
359 {
360 struct od_dbs_tuners *tuners;
361 u64 idle_time;
362 int cpu;
363
364 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
365 if (!tuners)
366 return -ENOMEM;
367
368 cpu = get_cpu();
369 idle_time = get_cpu_idle_time_us(cpu, NULL);
370 put_cpu();
371 if (idle_time != -1ULL) {
372 /* Idle micro accounting is supported. Use finer thresholds */
373 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
374 } else {
375 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
376 }
377
378 dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
379 dbs_data->ignore_nice_load = 0;
380 tuners->powersave_bias = default_powersave_bias;
381 dbs_data->io_is_busy = should_io_be_busy();
382
383 dbs_data->tuners = tuners;
384 return 0;
385 }
386
od_exit(struct dbs_data * dbs_data)387 static void od_exit(struct dbs_data *dbs_data)
388 {
389 kfree(dbs_data->tuners);
390 }
391
od_start(struct cpufreq_policy * policy)392 static void od_start(struct cpufreq_policy *policy)
393 {
394 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
395
396 dbs_info->sample_type = OD_NORMAL_SAMPLE;
397 ondemand_powersave_bias_init(policy);
398 }
399
400 static struct od_ops od_ops = {
401 .powersave_bias_target = generic_powersave_bias_target,
402 };
403
404 static struct dbs_governor od_dbs_gov = {
405 .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
406 .kobj_type = { .default_groups = od_groups },
407 .gov_dbs_update = od_dbs_update,
408 .alloc = od_alloc,
409 .free = od_free,
410 .init = od_init,
411 .exit = od_exit,
412 .start = od_start,
413 };
414
415 #define CPU_FREQ_GOV_ONDEMAND (od_dbs_gov.gov)
416
od_set_powersave_bias(unsigned int powersave_bias)417 static void od_set_powersave_bias(unsigned int powersave_bias)
418 {
419 unsigned int cpu;
420 cpumask_var_t done;
421
422 if (!alloc_cpumask_var(&done, GFP_KERNEL))
423 return;
424
425 default_powersave_bias = powersave_bias;
426 cpumask_clear(done);
427
428 cpus_read_lock();
429 for_each_online_cpu(cpu) {
430 struct cpufreq_policy *policy;
431 struct policy_dbs_info *policy_dbs;
432 struct dbs_data *dbs_data;
433 struct od_dbs_tuners *od_tuners;
434
435 if (cpumask_test_cpu(cpu, done))
436 continue;
437
438 policy = cpufreq_cpu_get_raw(cpu);
439 if (!policy || policy->governor != &CPU_FREQ_GOV_ONDEMAND)
440 continue;
441
442 policy_dbs = policy->governor_data;
443 if (!policy_dbs)
444 continue;
445
446 cpumask_or(done, done, policy->cpus);
447
448 dbs_data = policy_dbs->dbs_data;
449 od_tuners = dbs_data->tuners;
450 od_tuners->powersave_bias = default_powersave_bias;
451 }
452 cpus_read_unlock();
453
454 free_cpumask_var(done);
455 }
456
od_register_powersave_bias_handler(unsigned int (* f)(struct cpufreq_policy *,unsigned int,unsigned int),unsigned int powersave_bias)457 void od_register_powersave_bias_handler(unsigned int (*f)
458 (struct cpufreq_policy *, unsigned int, unsigned int),
459 unsigned int powersave_bias)
460 {
461 od_ops.powersave_bias_target = f;
462 od_set_powersave_bias(powersave_bias);
463 }
464 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
465
od_unregister_powersave_bias_handler(void)466 void od_unregister_powersave_bias_handler(void)
467 {
468 od_ops.powersave_bias_target = generic_powersave_bias_target;
469 od_set_powersave_bias(0);
470 }
471 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
472
473 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
474 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
475 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
476 "Low Latency Frequency Transition capable processors");
477 MODULE_LICENSE("GPL");
478
479 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
cpufreq_default_governor(void)480 struct cpufreq_governor *cpufreq_default_governor(void)
481 {
482 return &CPU_FREQ_GOV_ONDEMAND;
483 }
484 #endif
485
486 cpufreq_governor_init(CPU_FREQ_GOV_ONDEMAND);
487 cpufreq_governor_exit(CPU_FREQ_GOV_ONDEMAND);
488