1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53
54 #include "internal.h"
55
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 struct writeback_control *wbc);
59
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
touch_buffer(struct buffer_head * bh)62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
__lock_buffer(struct buffer_head * bh)69 void __lock_buffer(struct buffer_head *bh)
70 {
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
unlock_buffer(struct buffer_head * bh)75 void unlock_buffer(struct buffer_head *bh)
76 {
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
87 */
buffer_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)88 void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
90 {
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!folio_test_locked(folio));
96
97 head = folio_buffers(folio);
98 if (!head)
99 return;
100
101 if (folio_test_writeback(folio))
102 *writeback = true;
103
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114 }
115
116 /*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
__wait_on_buffer(struct buffer_head * bh)121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
buffer_io_error(struct buffer_head * bh,char * msg)127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
142 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
152 }
153
154 /*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
157 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
end_buffer_write_sync(struct buffer_head * bh,int uptodate)165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * private_lock.
184 *
185 * Hack idea: for the blockdev mapping, private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take private_lock.
188 */
189 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 struct inode *bd_inode = bdev->bd_inode;
193 struct address_space *bd_mapping = bd_inode->i_mapping;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
198 struct folio *folio;
199 int all_mapped = 1;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
205 goto out;
206
207 spin_lock(&bd_mapping->private_lock);
208 head = folio_buffers(folio);
209 if (!head)
210 goto out_unlock;
211 bh = head;
212 do {
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << bd_inode->i_blkbits);
237 }
238 out_unlock:
239 spin_unlock(&bd_mapping->private_lock);
240 folio_put(folio);
241 out:
242 return ret;
243 }
244
end_buffer_async_read(struct buffer_head * bh,int uptodate)245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 unsigned long flags;
248 struct buffer_head *first;
249 struct buffer_head *tmp;
250 struct folio *folio;
251 int folio_uptodate = 1;
252
253 BUG_ON(!buffer_async_read(bh));
254
255 folio = bh->b_folio;
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
261 folio_set_error(folio);
262 }
263
264 /*
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
268 */
269 first = folio_buffers(folio);
270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 clear_buffer_async_read(bh);
272 unlock_buffer(bh);
273 tmp = bh;
274 do {
275 if (!buffer_uptodate(tmp))
276 folio_uptodate = 0;
277 if (buffer_async_read(tmp)) {
278 BUG_ON(!buffer_locked(tmp));
279 goto still_busy;
280 }
281 tmp = tmp->b_this_page;
282 } while (tmp != bh);
283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285 /*
286 * If all of the buffers are uptodate then we can set the page
287 * uptodate.
288 */
289 if (folio_uptodate)
290 folio_mark_uptodate(folio);
291 folio_unlock(folio);
292 return;
293
294 still_busy:
295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296 return;
297 }
298
299 struct postprocess_bh_ctx {
300 struct work_struct work;
301 struct buffer_head *bh;
302 };
303
verify_bh(struct work_struct * work)304 static void verify_bh(struct work_struct *work)
305 {
306 struct postprocess_bh_ctx *ctx =
307 container_of(work, struct postprocess_bh_ctx, work);
308 struct buffer_head *bh = ctx->bh;
309 bool valid;
310
311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312 end_buffer_async_read(bh, valid);
313 kfree(ctx);
314 }
315
need_fsverity(struct buffer_head * bh)316 static bool need_fsverity(struct buffer_head *bh)
317 {
318 struct folio *folio = bh->b_folio;
319 struct inode *inode = folio->mapping->host;
320
321 return fsverity_active(inode) &&
322 /* needed by ext4 */
323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
324 }
325
decrypt_bh(struct work_struct * work)326 static void decrypt_bh(struct work_struct *work)
327 {
328 struct postprocess_bh_ctx *ctx =
329 container_of(work, struct postprocess_bh_ctx, work);
330 struct buffer_head *bh = ctx->bh;
331 int err;
332
333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334 bh_offset(bh));
335 if (err == 0 && need_fsverity(bh)) {
336 /*
337 * We use different work queues for decryption and for verity
338 * because verity may require reading metadata pages that need
339 * decryption, and we shouldn't recurse to the same workqueue.
340 */
341 INIT_WORK(&ctx->work, verify_bh);
342 fsverity_enqueue_verify_work(&ctx->work);
343 return;
344 }
345 end_buffer_async_read(bh, err == 0);
346 kfree(ctx);
347 }
348
349 /*
350 * I/O completion handler for block_read_full_folio() - pages
351 * which come unlocked at the end of I/O.
352 */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 {
355 struct inode *inode = bh->b_folio->mapping->host;
356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357 bool verify = need_fsverity(bh);
358
359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 if (uptodate && (decrypt || verify)) {
361 struct postprocess_bh_ctx *ctx =
362 kmalloc(sizeof(*ctx), GFP_ATOMIC);
363
364 if (ctx) {
365 ctx->bh = bh;
366 if (decrypt) {
367 INIT_WORK(&ctx->work, decrypt_bh);
368 fscrypt_enqueue_decrypt_work(&ctx->work);
369 } else {
370 INIT_WORK(&ctx->work, verify_bh);
371 fsverity_enqueue_verify_work(&ctx->work);
372 }
373 return;
374 }
375 uptodate = 0;
376 }
377 end_buffer_async_read(bh, uptodate);
378 }
379
380 /*
381 * Completion handler for block_write_full_page() - pages which are unlocked
382 * during I/O, and which have PageWriteback cleared upon I/O completion.
383 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386 unsigned long flags;
387 struct buffer_head *first;
388 struct buffer_head *tmp;
389 struct folio *folio;
390
391 BUG_ON(!buffer_async_write(bh));
392
393 folio = bh->b_folio;
394 if (uptodate) {
395 set_buffer_uptodate(bh);
396 } else {
397 buffer_io_error(bh, ", lost async page write");
398 mark_buffer_write_io_error(bh);
399 clear_buffer_uptodate(bh);
400 folio_set_error(folio);
401 }
402
403 first = folio_buffers(folio);
404 spin_lock_irqsave(&first->b_uptodate_lock, flags);
405
406 clear_buffer_async_write(bh);
407 unlock_buffer(bh);
408 tmp = bh->b_this_page;
409 while (tmp != bh) {
410 if (buffer_async_write(tmp)) {
411 BUG_ON(!buffer_locked(tmp));
412 goto still_busy;
413 }
414 tmp = tmp->b_this_page;
415 }
416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417 folio_end_writeback(folio);
418 return;
419
420 still_busy:
421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
422 return;
423 }
424 EXPORT_SYMBOL(end_buffer_async_write);
425
426 /*
427 * If a page's buffers are under async readin (end_buffer_async_read
428 * completion) then there is a possibility that another thread of
429 * control could lock one of the buffers after it has completed
430 * but while some of the other buffers have not completed. This
431 * locked buffer would confuse end_buffer_async_read() into not unlocking
432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
433 * that this buffer is not under async I/O.
434 *
435 * The page comes unlocked when it has no locked buffer_async buffers
436 * left.
437 *
438 * PageLocked prevents anyone starting new async I/O reads any of
439 * the buffers.
440 *
441 * PageWriteback is used to prevent simultaneous writeout of the same
442 * page.
443 *
444 * PageLocked prevents anyone from starting writeback of a page which is
445 * under read I/O (PageWriteback is only ever set against a locked page).
446 */
mark_buffer_async_read(struct buffer_head * bh)447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449 bh->b_end_io = end_buffer_async_read_io;
450 set_buffer_async_read(bh);
451 }
452
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 bh_end_io_t *handler)
455 {
456 bh->b_end_io = handler;
457 set_buffer_async_write(bh);
458 }
459
mark_buffer_async_write(struct buffer_head * bh)460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462 mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465
466
467 /*
468 * fs/buffer.c contains helper functions for buffer-backed address space's
469 * fsync functions. A common requirement for buffer-based filesystems is
470 * that certain data from the backing blockdev needs to be written out for
471 * a successful fsync(). For example, ext2 indirect blocks need to be
472 * written back and waited upon before fsync() returns.
473 *
474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476 * management of a list of dependent buffers at ->i_mapping->private_list.
477 *
478 * Locking is a little subtle: try_to_free_buffers() will remove buffers
479 * from their controlling inode's queue when they are being freed. But
480 * try_to_free_buffers() will be operating against the *blockdev* mapping
481 * at the time, not against the S_ISREG file which depends on those buffers.
482 * So the locking for private_list is via the private_lock in the address_space
483 * which backs the buffers. Which is different from the address_space
484 * against which the buffers are listed. So for a particular address_space,
485 * mapping->private_lock does *not* protect mapping->private_list! In fact,
486 * mapping->private_list will always be protected by the backing blockdev's
487 * ->private_lock.
488 *
489 * Which introduces a requirement: all buffers on an address_space's
490 * ->private_list must be from the same address_space: the blockdev's.
491 *
492 * address_spaces which do not place buffers at ->private_list via these
493 * utility functions are free to use private_lock and private_list for
494 * whatever they want. The only requirement is that list_empty(private_list)
495 * be true at clear_inode() time.
496 *
497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
498 * filesystems should do that. invalidate_inode_buffers() should just go
499 * BUG_ON(!list_empty).
500 *
501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
502 * take an address_space, not an inode. And it should be called
503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504 * queued up.
505 *
506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507 * list if it is already on a list. Because if the buffer is on a list,
508 * it *must* already be on the right one. If not, the filesystem is being
509 * silly. This will save a ton of locking. But first we have to ensure
510 * that buffers are taken *off* the old inode's list when they are freed
511 * (presumably in truncate). That requires careful auditing of all
512 * filesystems (do it inside bforget()). It could also be done by bringing
513 * b_inode back.
514 */
515
516 /*
517 * The buffer's backing address_space's private_lock must be held
518 */
__remove_assoc_queue(struct buffer_head * bh)519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521 list_del_init(&bh->b_assoc_buffers);
522 WARN_ON(!bh->b_assoc_map);
523 bh->b_assoc_map = NULL;
524 }
525
inode_has_buffers(struct inode * inode)526 int inode_has_buffers(struct inode *inode)
527 {
528 return !list_empty(&inode->i_data.private_list);
529 }
530
531 /*
532 * osync is designed to support O_SYNC io. It waits synchronously for
533 * all already-submitted IO to complete, but does not queue any new
534 * writes to the disk.
535 *
536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537 * as you dirty the buffers, and then use osync_inode_buffers to wait for
538 * completion. Any other dirty buffers which are not yet queued for
539 * write will not be flushed to disk by the osync.
540 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543 struct buffer_head *bh;
544 struct list_head *p;
545 int err = 0;
546
547 spin_lock(lock);
548 repeat:
549 list_for_each_prev(p, list) {
550 bh = BH_ENTRY(p);
551 if (buffer_locked(bh)) {
552 get_bh(bh);
553 spin_unlock(lock);
554 wait_on_buffer(bh);
555 if (!buffer_uptodate(bh))
556 err = -EIO;
557 brelse(bh);
558 spin_lock(lock);
559 goto repeat;
560 }
561 }
562 spin_unlock(lock);
563 return err;
564 }
565
566 /**
567 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
568 * @mapping: the mapping which wants those buffers written
569 *
570 * Starts I/O against the buffers at mapping->private_list, and waits upon
571 * that I/O.
572 *
573 * Basically, this is a convenience function for fsync().
574 * @mapping is a file or directory which needs those buffers to be written for
575 * a successful fsync().
576 */
sync_mapping_buffers(struct address_space * mapping)577 int sync_mapping_buffers(struct address_space *mapping)
578 {
579 struct address_space *buffer_mapping = mapping->private_data;
580
581 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
582 return 0;
583
584 return fsync_buffers_list(&buffer_mapping->private_lock,
585 &mapping->private_list);
586 }
587 EXPORT_SYMBOL(sync_mapping_buffers);
588
589 /**
590 * generic_buffers_fsync_noflush - generic buffer fsync implementation
591 * for simple filesystems with no inode lock
592 *
593 * @file: file to synchronize
594 * @start: start offset in bytes
595 * @end: end offset in bytes (inclusive)
596 * @datasync: only synchronize essential metadata if true
597 *
598 * This is a generic implementation of the fsync method for simple
599 * filesystems which track all non-inode metadata in the buffers list
600 * hanging off the address_space structure.
601 */
generic_buffers_fsync_noflush(struct file * file,loff_t start,loff_t end,bool datasync)602 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
603 bool datasync)
604 {
605 struct inode *inode = file->f_mapping->host;
606 int err;
607 int ret;
608
609 err = file_write_and_wait_range(file, start, end);
610 if (err)
611 return err;
612
613 ret = sync_mapping_buffers(inode->i_mapping);
614 if (!(inode->i_state & I_DIRTY_ALL))
615 goto out;
616 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
617 goto out;
618
619 err = sync_inode_metadata(inode, 1);
620 if (ret == 0)
621 ret = err;
622
623 out:
624 /* check and advance again to catch errors after syncing out buffers */
625 err = file_check_and_advance_wb_err(file);
626 if (ret == 0)
627 ret = err;
628 return ret;
629 }
630 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
631
632 /**
633 * generic_buffers_fsync - generic buffer fsync implementation
634 * for simple filesystems with no inode lock
635 *
636 * @file: file to synchronize
637 * @start: start offset in bytes
638 * @end: end offset in bytes (inclusive)
639 * @datasync: only synchronize essential metadata if true
640 *
641 * This is a generic implementation of the fsync method for simple
642 * filesystems which track all non-inode metadata in the buffers list
643 * hanging off the address_space structure. This also makes sure that
644 * a device cache flush operation is called at the end.
645 */
generic_buffers_fsync(struct file * file,loff_t start,loff_t end,bool datasync)646 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
647 bool datasync)
648 {
649 struct inode *inode = file->f_mapping->host;
650 int ret;
651
652 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
653 if (!ret)
654 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
655 return ret;
656 }
657 EXPORT_SYMBOL(generic_buffers_fsync);
658
659 /*
660 * Called when we've recently written block `bblock', and it is known that
661 * `bblock' was for a buffer_boundary() buffer. This means that the block at
662 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
663 * dirty, schedule it for IO. So that indirects merge nicely with their data.
664 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)665 void write_boundary_block(struct block_device *bdev,
666 sector_t bblock, unsigned blocksize)
667 {
668 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
669 if (bh) {
670 if (buffer_dirty(bh))
671 write_dirty_buffer(bh, 0);
672 put_bh(bh);
673 }
674 }
675
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)676 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
677 {
678 struct address_space *mapping = inode->i_mapping;
679 struct address_space *buffer_mapping = bh->b_folio->mapping;
680
681 mark_buffer_dirty(bh);
682 if (!mapping->private_data) {
683 mapping->private_data = buffer_mapping;
684 } else {
685 BUG_ON(mapping->private_data != buffer_mapping);
686 }
687 if (!bh->b_assoc_map) {
688 spin_lock(&buffer_mapping->private_lock);
689 list_move_tail(&bh->b_assoc_buffers,
690 &mapping->private_list);
691 bh->b_assoc_map = mapping;
692 spin_unlock(&buffer_mapping->private_lock);
693 }
694 }
695 EXPORT_SYMBOL(mark_buffer_dirty_inode);
696
697 /*
698 * Add a page to the dirty page list.
699 *
700 * It is a sad fact of life that this function is called from several places
701 * deeply under spinlocking. It may not sleep.
702 *
703 * If the page has buffers, the uptodate buffers are set dirty, to preserve
704 * dirty-state coherency between the page and the buffers. It the page does
705 * not have buffers then when they are later attached they will all be set
706 * dirty.
707 *
708 * The buffers are dirtied before the page is dirtied. There's a small race
709 * window in which a writepage caller may see the page cleanness but not the
710 * buffer dirtiness. That's fine. If this code were to set the page dirty
711 * before the buffers, a concurrent writepage caller could clear the page dirty
712 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
713 * page on the dirty page list.
714 *
715 * We use private_lock to lock against try_to_free_buffers while using the
716 * page's buffer list. Also use this to protect against clean buffers being
717 * added to the page after it was set dirty.
718 *
719 * FIXME: may need to call ->reservepage here as well. That's rather up to the
720 * address_space though.
721 */
block_dirty_folio(struct address_space * mapping,struct folio * folio)722 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
723 {
724 struct buffer_head *head;
725 bool newly_dirty;
726
727 spin_lock(&mapping->private_lock);
728 head = folio_buffers(folio);
729 if (head) {
730 struct buffer_head *bh = head;
731
732 do {
733 set_buffer_dirty(bh);
734 bh = bh->b_this_page;
735 } while (bh != head);
736 }
737 /*
738 * Lock out page's memcg migration to keep PageDirty
739 * synchronized with per-memcg dirty page counters.
740 */
741 folio_memcg_lock(folio);
742 newly_dirty = !folio_test_set_dirty(folio);
743 spin_unlock(&mapping->private_lock);
744
745 if (newly_dirty)
746 __folio_mark_dirty(folio, mapping, 1);
747
748 folio_memcg_unlock(folio);
749
750 if (newly_dirty)
751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752
753 return newly_dirty;
754 }
755 EXPORT_SYMBOL(block_dirty_folio);
756
757 /*
758 * Write out and wait upon a list of buffers.
759 *
760 * We have conflicting pressures: we want to make sure that all
761 * initially dirty buffers get waited on, but that any subsequently
762 * dirtied buffers don't. After all, we don't want fsync to last
763 * forever if somebody is actively writing to the file.
764 *
765 * Do this in two main stages: first we copy dirty buffers to a
766 * temporary inode list, queueing the writes as we go. Then we clean
767 * up, waiting for those writes to complete.
768 *
769 * During this second stage, any subsequent updates to the file may end
770 * up refiling the buffer on the original inode's dirty list again, so
771 * there is a chance we will end up with a buffer queued for write but
772 * not yet completed on that list. So, as a final cleanup we go through
773 * the osync code to catch these locked, dirty buffers without requeuing
774 * any newly dirty buffers for write.
775 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)776 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
777 {
778 struct buffer_head *bh;
779 struct list_head tmp;
780 struct address_space *mapping;
781 int err = 0, err2;
782 struct blk_plug plug;
783
784 INIT_LIST_HEAD(&tmp);
785 blk_start_plug(&plug);
786
787 spin_lock(lock);
788 while (!list_empty(list)) {
789 bh = BH_ENTRY(list->next);
790 mapping = bh->b_assoc_map;
791 __remove_assoc_queue(bh);
792 /* Avoid race with mark_buffer_dirty_inode() which does
793 * a lockless check and we rely on seeing the dirty bit */
794 smp_mb();
795 if (buffer_dirty(bh) || buffer_locked(bh)) {
796 list_add(&bh->b_assoc_buffers, &tmp);
797 bh->b_assoc_map = mapping;
798 if (buffer_dirty(bh)) {
799 get_bh(bh);
800 spin_unlock(lock);
801 /*
802 * Ensure any pending I/O completes so that
803 * write_dirty_buffer() actually writes the
804 * current contents - it is a noop if I/O is
805 * still in flight on potentially older
806 * contents.
807 */
808 write_dirty_buffer(bh, REQ_SYNC);
809
810 /*
811 * Kick off IO for the previous mapping. Note
812 * that we will not run the very last mapping,
813 * wait_on_buffer() will do that for us
814 * through sync_buffer().
815 */
816 brelse(bh);
817 spin_lock(lock);
818 }
819 }
820 }
821
822 spin_unlock(lock);
823 blk_finish_plug(&plug);
824 spin_lock(lock);
825
826 while (!list_empty(&tmp)) {
827 bh = BH_ENTRY(tmp.prev);
828 get_bh(bh);
829 mapping = bh->b_assoc_map;
830 __remove_assoc_queue(bh);
831 /* Avoid race with mark_buffer_dirty_inode() which does
832 * a lockless check and we rely on seeing the dirty bit */
833 smp_mb();
834 if (buffer_dirty(bh)) {
835 list_add(&bh->b_assoc_buffers,
836 &mapping->private_list);
837 bh->b_assoc_map = mapping;
838 }
839 spin_unlock(lock);
840 wait_on_buffer(bh);
841 if (!buffer_uptodate(bh))
842 err = -EIO;
843 brelse(bh);
844 spin_lock(lock);
845 }
846
847 spin_unlock(lock);
848 err2 = osync_buffers_list(lock, list);
849 if (err)
850 return err;
851 else
852 return err2;
853 }
854
855 /*
856 * Invalidate any and all dirty buffers on a given inode. We are
857 * probably unmounting the fs, but that doesn't mean we have already
858 * done a sync(). Just drop the buffers from the inode list.
859 *
860 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
861 * assumes that all the buffers are against the blockdev. Not true
862 * for reiserfs.
863 */
invalidate_inode_buffers(struct inode * inode)864 void invalidate_inode_buffers(struct inode *inode)
865 {
866 if (inode_has_buffers(inode)) {
867 struct address_space *mapping = &inode->i_data;
868 struct list_head *list = &mapping->private_list;
869 struct address_space *buffer_mapping = mapping->private_data;
870
871 spin_lock(&buffer_mapping->private_lock);
872 while (!list_empty(list))
873 __remove_assoc_queue(BH_ENTRY(list->next));
874 spin_unlock(&buffer_mapping->private_lock);
875 }
876 }
877 EXPORT_SYMBOL(invalidate_inode_buffers);
878
879 /*
880 * Remove any clean buffers from the inode's buffer list. This is called
881 * when we're trying to free the inode itself. Those buffers can pin it.
882 *
883 * Returns true if all buffers were removed.
884 */
remove_inode_buffers(struct inode * inode)885 int remove_inode_buffers(struct inode *inode)
886 {
887 int ret = 1;
888
889 if (inode_has_buffers(inode)) {
890 struct address_space *mapping = &inode->i_data;
891 struct list_head *list = &mapping->private_list;
892 struct address_space *buffer_mapping = mapping->private_data;
893
894 spin_lock(&buffer_mapping->private_lock);
895 while (!list_empty(list)) {
896 struct buffer_head *bh = BH_ENTRY(list->next);
897 if (buffer_dirty(bh)) {
898 ret = 0;
899 break;
900 }
901 __remove_assoc_queue(bh);
902 }
903 spin_unlock(&buffer_mapping->private_lock);
904 }
905 return ret;
906 }
907
908 /*
909 * Create the appropriate buffers when given a folio for data area and
910 * the size of each buffer.. Use the bh->b_this_page linked list to
911 * follow the buffers created. Return NULL if unable to create more
912 * buffers.
913 *
914 * The retry flag is used to differentiate async IO (paging, swapping)
915 * which may not fail from ordinary buffer allocations.
916 */
folio_alloc_buffers(struct folio * folio,unsigned long size,bool retry)917 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
918 bool retry)
919 {
920 struct buffer_head *bh, *head;
921 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
922 long offset;
923 struct mem_cgroup *memcg, *old_memcg;
924
925 if (retry)
926 gfp |= __GFP_NOFAIL;
927
928 /* The folio lock pins the memcg */
929 memcg = folio_memcg(folio);
930 old_memcg = set_active_memcg(memcg);
931
932 head = NULL;
933 offset = folio_size(folio);
934 while ((offset -= size) >= 0) {
935 bh = alloc_buffer_head(gfp);
936 if (!bh)
937 goto no_grow;
938
939 bh->b_this_page = head;
940 bh->b_blocknr = -1;
941 head = bh;
942
943 bh->b_size = size;
944
945 /* Link the buffer to its folio */
946 folio_set_bh(bh, folio, offset);
947 }
948 out:
949 set_active_memcg(old_memcg);
950 return head;
951 /*
952 * In case anything failed, we just free everything we got.
953 */
954 no_grow:
955 if (head) {
956 do {
957 bh = head;
958 head = head->b_this_page;
959 free_buffer_head(bh);
960 } while (head);
961 }
962
963 goto out;
964 }
965 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
966
alloc_page_buffers(struct page * page,unsigned long size,bool retry)967 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
968 bool retry)
969 {
970 return folio_alloc_buffers(page_folio(page), size, retry);
971 }
972 EXPORT_SYMBOL_GPL(alloc_page_buffers);
973
link_dev_buffers(struct folio * folio,struct buffer_head * head)974 static inline void link_dev_buffers(struct folio *folio,
975 struct buffer_head *head)
976 {
977 struct buffer_head *bh, *tail;
978
979 bh = head;
980 do {
981 tail = bh;
982 bh = bh->b_this_page;
983 } while (bh);
984 tail->b_this_page = head;
985 folio_attach_private(folio, head);
986 }
987
blkdev_max_block(struct block_device * bdev,unsigned int size)988 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
989 {
990 sector_t retval = ~((sector_t)0);
991 loff_t sz = bdev_nr_bytes(bdev);
992
993 if (sz) {
994 unsigned int sizebits = blksize_bits(size);
995 retval = (sz >> sizebits);
996 }
997 return retval;
998 }
999
1000 /*
1001 * Initialise the state of a blockdev folio's buffers.
1002 */
folio_init_buffers(struct folio * folio,struct block_device * bdev,sector_t block,int size)1003 static sector_t folio_init_buffers(struct folio *folio,
1004 struct block_device *bdev, sector_t block, int size)
1005 {
1006 struct buffer_head *head = folio_buffers(folio);
1007 struct buffer_head *bh = head;
1008 bool uptodate = folio_test_uptodate(folio);
1009 sector_t end_block = blkdev_max_block(bdev, size);
1010
1011 do {
1012 if (!buffer_mapped(bh)) {
1013 bh->b_end_io = NULL;
1014 bh->b_private = NULL;
1015 bh->b_bdev = bdev;
1016 bh->b_blocknr = block;
1017 if (uptodate)
1018 set_buffer_uptodate(bh);
1019 if (block < end_block)
1020 set_buffer_mapped(bh);
1021 }
1022 block++;
1023 bh = bh->b_this_page;
1024 } while (bh != head);
1025
1026 /*
1027 * Caller needs to validate requested block against end of device.
1028 */
1029 return end_block;
1030 }
1031
1032 /*
1033 * Create the page-cache page that contains the requested block.
1034 *
1035 * This is used purely for blockdev mappings.
1036 */
1037 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits,gfp_t gfp)1038 grow_dev_page(struct block_device *bdev, sector_t block,
1039 pgoff_t index, int size, int sizebits, gfp_t gfp)
1040 {
1041 struct inode *inode = bdev->bd_inode;
1042 struct folio *folio;
1043 struct buffer_head *bh;
1044 sector_t end_block;
1045 int ret = 0;
1046 gfp_t gfp_mask;
1047
1048 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1049
1050 /*
1051 * XXX: __getblk_slow() can not really deal with failure and
1052 * will endlessly loop on improvised global reclaim. Prefer
1053 * looping in the allocator rather than here, at least that
1054 * code knows what it's doing.
1055 */
1056 gfp_mask |= __GFP_NOFAIL;
1057
1058 folio = __filemap_get_folio(inode->i_mapping, index,
1059 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1060
1061 bh = folio_buffers(folio);
1062 if (bh) {
1063 if (bh->b_size == size) {
1064 end_block = folio_init_buffers(folio, bdev,
1065 (sector_t)index << sizebits, size);
1066 goto done;
1067 }
1068 if (!try_to_free_buffers(folio))
1069 goto failed;
1070 }
1071
1072 bh = folio_alloc_buffers(folio, size, true);
1073
1074 /*
1075 * Link the folio to the buffers and initialise them. Take the
1076 * lock to be atomic wrt __find_get_block(), which does not
1077 * run under the folio lock.
1078 */
1079 spin_lock(&inode->i_mapping->private_lock);
1080 link_dev_buffers(folio, bh);
1081 end_block = folio_init_buffers(folio, bdev,
1082 (sector_t)index << sizebits, size);
1083 spin_unlock(&inode->i_mapping->private_lock);
1084 done:
1085 ret = (block < end_block) ? 1 : -ENXIO;
1086 failed:
1087 folio_unlock(folio);
1088 folio_put(folio);
1089 return ret;
1090 }
1091
1092 /*
1093 * Create buffers for the specified block device block's page. If
1094 * that page was dirty, the buffers are set dirty also.
1095 */
1096 static int
grow_buffers(struct block_device * bdev,sector_t block,int size,gfp_t gfp)1097 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1098 {
1099 pgoff_t index;
1100 int sizebits;
1101
1102 sizebits = PAGE_SHIFT - __ffs(size);
1103 index = block >> sizebits;
1104
1105 /*
1106 * Check for a block which wants to lie outside our maximum possible
1107 * pagecache index. (this comparison is done using sector_t types).
1108 */
1109 if (unlikely(index != block >> sizebits)) {
1110 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1111 "device %pg\n",
1112 __func__, (unsigned long long)block,
1113 bdev);
1114 return -EIO;
1115 }
1116
1117 /* Create a page with the proper size buffers.. */
1118 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1119 }
1120
1121 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1122 __getblk_slow(struct block_device *bdev, sector_t block,
1123 unsigned size, gfp_t gfp)
1124 {
1125 /* Size must be multiple of hard sectorsize */
1126 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1127 (size < 512 || size > PAGE_SIZE))) {
1128 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1129 size);
1130 printk(KERN_ERR "logical block size: %d\n",
1131 bdev_logical_block_size(bdev));
1132
1133 dump_stack();
1134 return NULL;
1135 }
1136
1137 for (;;) {
1138 struct buffer_head *bh;
1139 int ret;
1140
1141 bh = __find_get_block(bdev, block, size);
1142 if (bh)
1143 return bh;
1144
1145 ret = grow_buffers(bdev, block, size, gfp);
1146 if (ret < 0)
1147 return NULL;
1148 }
1149 }
1150
1151 /*
1152 * The relationship between dirty buffers and dirty pages:
1153 *
1154 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1155 * the page is tagged dirty in the page cache.
1156 *
1157 * At all times, the dirtiness of the buffers represents the dirtiness of
1158 * subsections of the page. If the page has buffers, the page dirty bit is
1159 * merely a hint about the true dirty state.
1160 *
1161 * When a page is set dirty in its entirety, all its buffers are marked dirty
1162 * (if the page has buffers).
1163 *
1164 * When a buffer is marked dirty, its page is dirtied, but the page's other
1165 * buffers are not.
1166 *
1167 * Also. When blockdev buffers are explicitly read with bread(), they
1168 * individually become uptodate. But their backing page remains not
1169 * uptodate - even if all of its buffers are uptodate. A subsequent
1170 * block_read_full_folio() against that folio will discover all the uptodate
1171 * buffers, will set the folio uptodate and will perform no I/O.
1172 */
1173
1174 /**
1175 * mark_buffer_dirty - mark a buffer_head as needing writeout
1176 * @bh: the buffer_head to mark dirty
1177 *
1178 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1179 * its backing page dirty, then tag the page as dirty in the page cache
1180 * and then attach the address_space's inode to its superblock's dirty
1181 * inode list.
1182 *
1183 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
1184 * i_pages lock and mapping->host->i_lock.
1185 */
mark_buffer_dirty(struct buffer_head * bh)1186 void mark_buffer_dirty(struct buffer_head *bh)
1187 {
1188 WARN_ON_ONCE(!buffer_uptodate(bh));
1189
1190 trace_block_dirty_buffer(bh);
1191
1192 /*
1193 * Very *carefully* optimize the it-is-already-dirty case.
1194 *
1195 * Don't let the final "is it dirty" escape to before we
1196 * perhaps modified the buffer.
1197 */
1198 if (buffer_dirty(bh)) {
1199 smp_mb();
1200 if (buffer_dirty(bh))
1201 return;
1202 }
1203
1204 if (!test_set_buffer_dirty(bh)) {
1205 struct folio *folio = bh->b_folio;
1206 struct address_space *mapping = NULL;
1207
1208 folio_memcg_lock(folio);
1209 if (!folio_test_set_dirty(folio)) {
1210 mapping = folio->mapping;
1211 if (mapping)
1212 __folio_mark_dirty(folio, mapping, 0);
1213 }
1214 folio_memcg_unlock(folio);
1215 if (mapping)
1216 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1217 }
1218 }
1219 EXPORT_SYMBOL(mark_buffer_dirty);
1220
mark_buffer_write_io_error(struct buffer_head * bh)1221 void mark_buffer_write_io_error(struct buffer_head *bh)
1222 {
1223 set_buffer_write_io_error(bh);
1224 /* FIXME: do we need to set this in both places? */
1225 if (bh->b_folio && bh->b_folio->mapping)
1226 mapping_set_error(bh->b_folio->mapping, -EIO);
1227 if (bh->b_assoc_map) {
1228 mapping_set_error(bh->b_assoc_map, -EIO);
1229 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1230 }
1231 }
1232 EXPORT_SYMBOL(mark_buffer_write_io_error);
1233
1234 /*
1235 * Decrement a buffer_head's reference count. If all buffers against a page
1236 * have zero reference count, are clean and unlocked, and if the page is clean
1237 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1238 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1239 * a page but it ends up not being freed, and buffers may later be reattached).
1240 */
__brelse(struct buffer_head * buf)1241 void __brelse(struct buffer_head * buf)
1242 {
1243 if (atomic_read(&buf->b_count)) {
1244 put_bh(buf);
1245 return;
1246 }
1247 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1248 }
1249 EXPORT_SYMBOL(__brelse);
1250
1251 /*
1252 * bforget() is like brelse(), except it discards any
1253 * potentially dirty data.
1254 */
__bforget(struct buffer_head * bh)1255 void __bforget(struct buffer_head *bh)
1256 {
1257 clear_buffer_dirty(bh);
1258 if (bh->b_assoc_map) {
1259 struct address_space *buffer_mapping = bh->b_folio->mapping;
1260
1261 spin_lock(&buffer_mapping->private_lock);
1262 list_del_init(&bh->b_assoc_buffers);
1263 bh->b_assoc_map = NULL;
1264 spin_unlock(&buffer_mapping->private_lock);
1265 }
1266 __brelse(bh);
1267 }
1268 EXPORT_SYMBOL(__bforget);
1269
__bread_slow(struct buffer_head * bh)1270 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1271 {
1272 lock_buffer(bh);
1273 if (buffer_uptodate(bh)) {
1274 unlock_buffer(bh);
1275 return bh;
1276 } else {
1277 get_bh(bh);
1278 bh->b_end_io = end_buffer_read_sync;
1279 submit_bh(REQ_OP_READ, bh);
1280 wait_on_buffer(bh);
1281 if (buffer_uptodate(bh))
1282 return bh;
1283 }
1284 brelse(bh);
1285 return NULL;
1286 }
1287
1288 /*
1289 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1290 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1291 * refcount elevated by one when they're in an LRU. A buffer can only appear
1292 * once in a particular CPU's LRU. A single buffer can be present in multiple
1293 * CPU's LRUs at the same time.
1294 *
1295 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1296 * sb_find_get_block().
1297 *
1298 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1299 * a local interrupt disable for that.
1300 */
1301
1302 #define BH_LRU_SIZE 16
1303
1304 struct bh_lru {
1305 struct buffer_head *bhs[BH_LRU_SIZE];
1306 };
1307
1308 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1309
1310 #ifdef CONFIG_SMP
1311 #define bh_lru_lock() local_irq_disable()
1312 #define bh_lru_unlock() local_irq_enable()
1313 #else
1314 #define bh_lru_lock() preempt_disable()
1315 #define bh_lru_unlock() preempt_enable()
1316 #endif
1317
check_irqs_on(void)1318 static inline void check_irqs_on(void)
1319 {
1320 #ifdef irqs_disabled
1321 BUG_ON(irqs_disabled());
1322 #endif
1323 }
1324
1325 /*
1326 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1327 * inserted at the front, and the buffer_head at the back if any is evicted.
1328 * Or, if already in the LRU it is moved to the front.
1329 */
bh_lru_install(struct buffer_head * bh)1330 static void bh_lru_install(struct buffer_head *bh)
1331 {
1332 struct buffer_head *evictee = bh;
1333 struct bh_lru *b;
1334 int i;
1335
1336 check_irqs_on();
1337 bh_lru_lock();
1338
1339 /*
1340 * the refcount of buffer_head in bh_lru prevents dropping the
1341 * attached page(i.e., try_to_free_buffers) so it could cause
1342 * failing page migration.
1343 * Skip putting upcoming bh into bh_lru until migration is done.
1344 */
1345 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1346 bh_lru_unlock();
1347 return;
1348 }
1349
1350 b = this_cpu_ptr(&bh_lrus);
1351 for (i = 0; i < BH_LRU_SIZE; i++) {
1352 swap(evictee, b->bhs[i]);
1353 if (evictee == bh) {
1354 bh_lru_unlock();
1355 return;
1356 }
1357 }
1358
1359 get_bh(bh);
1360 bh_lru_unlock();
1361 brelse(evictee);
1362 }
1363
1364 /*
1365 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1366 */
1367 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1368 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1369 {
1370 struct buffer_head *ret = NULL;
1371 unsigned int i;
1372
1373 check_irqs_on();
1374 bh_lru_lock();
1375 if (cpu_is_isolated(smp_processor_id())) {
1376 bh_lru_unlock();
1377 return NULL;
1378 }
1379 for (i = 0; i < BH_LRU_SIZE; i++) {
1380 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1381
1382 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1383 bh->b_size == size) {
1384 if (i) {
1385 while (i) {
1386 __this_cpu_write(bh_lrus.bhs[i],
1387 __this_cpu_read(bh_lrus.bhs[i - 1]));
1388 i--;
1389 }
1390 __this_cpu_write(bh_lrus.bhs[0], bh);
1391 }
1392 get_bh(bh);
1393 ret = bh;
1394 break;
1395 }
1396 }
1397 bh_lru_unlock();
1398 return ret;
1399 }
1400
1401 /*
1402 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1403 * it in the LRU and mark it as accessed. If it is not present then return
1404 * NULL
1405 */
1406 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1407 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1408 {
1409 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1410
1411 if (bh == NULL) {
1412 /* __find_get_block_slow will mark the page accessed */
1413 bh = __find_get_block_slow(bdev, block);
1414 if (bh)
1415 bh_lru_install(bh);
1416 } else
1417 touch_buffer(bh);
1418
1419 return bh;
1420 }
1421 EXPORT_SYMBOL(__find_get_block);
1422
1423 /*
1424 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1425 * which corresponds to the passed block_device, block and size. The
1426 * returned buffer has its reference count incremented.
1427 *
1428 * __getblk_gfp() will lock up the machine if grow_dev_page's
1429 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1430 */
1431 struct buffer_head *
__getblk_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1432 __getblk_gfp(struct block_device *bdev, sector_t block,
1433 unsigned size, gfp_t gfp)
1434 {
1435 struct buffer_head *bh = __find_get_block(bdev, block, size);
1436
1437 might_sleep();
1438 if (bh == NULL)
1439 bh = __getblk_slow(bdev, block, size, gfp);
1440 return bh;
1441 }
1442 EXPORT_SYMBOL(__getblk_gfp);
1443
1444 /*
1445 * Do async read-ahead on a buffer..
1446 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1447 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1448 {
1449 struct buffer_head *bh = __getblk(bdev, block, size);
1450 if (likely(bh)) {
1451 bh_readahead(bh, REQ_RAHEAD);
1452 brelse(bh);
1453 }
1454 }
1455 EXPORT_SYMBOL(__breadahead);
1456
1457 /**
1458 * __bread_gfp() - reads a specified block and returns the bh
1459 * @bdev: the block_device to read from
1460 * @block: number of block
1461 * @size: size (in bytes) to read
1462 * @gfp: page allocation flag
1463 *
1464 * Reads a specified block, and returns buffer head that contains it.
1465 * The page cache can be allocated from non-movable area
1466 * not to prevent page migration if you set gfp to zero.
1467 * It returns NULL if the block was unreadable.
1468 */
1469 struct buffer_head *
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1470 __bread_gfp(struct block_device *bdev, sector_t block,
1471 unsigned size, gfp_t gfp)
1472 {
1473 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1474
1475 if (likely(bh) && !buffer_uptodate(bh))
1476 bh = __bread_slow(bh);
1477 return bh;
1478 }
1479 EXPORT_SYMBOL(__bread_gfp);
1480
__invalidate_bh_lrus(struct bh_lru * b)1481 static void __invalidate_bh_lrus(struct bh_lru *b)
1482 {
1483 int i;
1484
1485 for (i = 0; i < BH_LRU_SIZE; i++) {
1486 brelse(b->bhs[i]);
1487 b->bhs[i] = NULL;
1488 }
1489 }
1490 /*
1491 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1492 * This doesn't race because it runs in each cpu either in irq
1493 * or with preempt disabled.
1494 */
invalidate_bh_lru(void * arg)1495 static void invalidate_bh_lru(void *arg)
1496 {
1497 struct bh_lru *b = &get_cpu_var(bh_lrus);
1498
1499 __invalidate_bh_lrus(b);
1500 put_cpu_var(bh_lrus);
1501 }
1502
has_bh_in_lru(int cpu,void * dummy)1503 bool has_bh_in_lru(int cpu, void *dummy)
1504 {
1505 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1506 int i;
1507
1508 for (i = 0; i < BH_LRU_SIZE; i++) {
1509 if (b->bhs[i])
1510 return true;
1511 }
1512
1513 return false;
1514 }
1515
invalidate_bh_lrus(void)1516 void invalidate_bh_lrus(void)
1517 {
1518 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1519 }
1520 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1521
1522 /*
1523 * It's called from workqueue context so we need a bh_lru_lock to close
1524 * the race with preemption/irq.
1525 */
invalidate_bh_lrus_cpu(void)1526 void invalidate_bh_lrus_cpu(void)
1527 {
1528 struct bh_lru *b;
1529
1530 bh_lru_lock();
1531 b = this_cpu_ptr(&bh_lrus);
1532 __invalidate_bh_lrus(b);
1533 bh_lru_unlock();
1534 }
1535
folio_set_bh(struct buffer_head * bh,struct folio * folio,unsigned long offset)1536 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1537 unsigned long offset)
1538 {
1539 bh->b_folio = folio;
1540 BUG_ON(offset >= folio_size(folio));
1541 if (folio_test_highmem(folio))
1542 /*
1543 * This catches illegal uses and preserves the offset:
1544 */
1545 bh->b_data = (char *)(0 + offset);
1546 else
1547 bh->b_data = folio_address(folio) + offset;
1548 }
1549 EXPORT_SYMBOL(folio_set_bh);
1550
1551 /*
1552 * Called when truncating a buffer on a page completely.
1553 */
1554
1555 /* Bits that are cleared during an invalidate */
1556 #define BUFFER_FLAGS_DISCARD \
1557 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1558 1 << BH_Delay | 1 << BH_Unwritten)
1559
discard_buffer(struct buffer_head * bh)1560 static void discard_buffer(struct buffer_head * bh)
1561 {
1562 unsigned long b_state;
1563
1564 lock_buffer(bh);
1565 clear_buffer_dirty(bh);
1566 bh->b_bdev = NULL;
1567 b_state = READ_ONCE(bh->b_state);
1568 do {
1569 } while (!try_cmpxchg(&bh->b_state, &b_state,
1570 b_state & ~BUFFER_FLAGS_DISCARD));
1571 unlock_buffer(bh);
1572 }
1573
1574 /**
1575 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1576 * @folio: The folio which is affected.
1577 * @offset: start of the range to invalidate
1578 * @length: length of the range to invalidate
1579 *
1580 * block_invalidate_folio() is called when all or part of the folio has been
1581 * invalidated by a truncate operation.
1582 *
1583 * block_invalidate_folio() does not have to release all buffers, but it must
1584 * ensure that no dirty buffer is left outside @offset and that no I/O
1585 * is underway against any of the blocks which are outside the truncation
1586 * point. Because the caller is about to free (and possibly reuse) those
1587 * blocks on-disk.
1588 */
block_invalidate_folio(struct folio * folio,size_t offset,size_t length)1589 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1590 {
1591 struct buffer_head *head, *bh, *next;
1592 size_t curr_off = 0;
1593 size_t stop = length + offset;
1594
1595 BUG_ON(!folio_test_locked(folio));
1596
1597 /*
1598 * Check for overflow
1599 */
1600 BUG_ON(stop > folio_size(folio) || stop < length);
1601
1602 head = folio_buffers(folio);
1603 if (!head)
1604 return;
1605
1606 bh = head;
1607 do {
1608 size_t next_off = curr_off + bh->b_size;
1609 next = bh->b_this_page;
1610
1611 /*
1612 * Are we still fully in range ?
1613 */
1614 if (next_off > stop)
1615 goto out;
1616
1617 /*
1618 * is this block fully invalidated?
1619 */
1620 if (offset <= curr_off)
1621 discard_buffer(bh);
1622 curr_off = next_off;
1623 bh = next;
1624 } while (bh != head);
1625
1626 /*
1627 * We release buffers only if the entire folio is being invalidated.
1628 * The get_block cached value has been unconditionally invalidated,
1629 * so real IO is not possible anymore.
1630 */
1631 if (length == folio_size(folio))
1632 filemap_release_folio(folio, 0);
1633 out:
1634 return;
1635 }
1636 EXPORT_SYMBOL(block_invalidate_folio);
1637
1638 /*
1639 * We attach and possibly dirty the buffers atomically wrt
1640 * block_dirty_folio() via private_lock. try_to_free_buffers
1641 * is already excluded via the folio lock.
1642 */
folio_create_empty_buffers(struct folio * folio,unsigned long blocksize,unsigned long b_state)1643 struct buffer_head *folio_create_empty_buffers(struct folio *folio,
1644 unsigned long blocksize, unsigned long b_state)
1645 {
1646 struct buffer_head *bh, *head, *tail;
1647
1648 head = folio_alloc_buffers(folio, blocksize, true);
1649 bh = head;
1650 do {
1651 bh->b_state |= b_state;
1652 tail = bh;
1653 bh = bh->b_this_page;
1654 } while (bh);
1655 tail->b_this_page = head;
1656
1657 spin_lock(&folio->mapping->private_lock);
1658 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1659 bh = head;
1660 do {
1661 if (folio_test_dirty(folio))
1662 set_buffer_dirty(bh);
1663 if (folio_test_uptodate(folio))
1664 set_buffer_uptodate(bh);
1665 bh = bh->b_this_page;
1666 } while (bh != head);
1667 }
1668 folio_attach_private(folio, head);
1669 spin_unlock(&folio->mapping->private_lock);
1670
1671 return head;
1672 }
1673 EXPORT_SYMBOL(folio_create_empty_buffers);
1674
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1675 void create_empty_buffers(struct page *page,
1676 unsigned long blocksize, unsigned long b_state)
1677 {
1678 folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1679 }
1680 EXPORT_SYMBOL(create_empty_buffers);
1681
1682 /**
1683 * clean_bdev_aliases: clean a range of buffers in block device
1684 * @bdev: Block device to clean buffers in
1685 * @block: Start of a range of blocks to clean
1686 * @len: Number of blocks to clean
1687 *
1688 * We are taking a range of blocks for data and we don't want writeback of any
1689 * buffer-cache aliases starting from return from this function and until the
1690 * moment when something will explicitly mark the buffer dirty (hopefully that
1691 * will not happen until we will free that block ;-) We don't even need to mark
1692 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1693 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1694 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1695 * would confuse anyone who might pick it with bread() afterwards...
1696 *
1697 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1698 * writeout I/O going on against recently-freed buffers. We don't wait on that
1699 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1700 * need to. That happens here.
1701 */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1702 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1703 {
1704 struct inode *bd_inode = bdev->bd_inode;
1705 struct address_space *bd_mapping = bd_inode->i_mapping;
1706 struct folio_batch fbatch;
1707 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1708 pgoff_t end;
1709 int i, count;
1710 struct buffer_head *bh;
1711 struct buffer_head *head;
1712
1713 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1714 folio_batch_init(&fbatch);
1715 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1716 count = folio_batch_count(&fbatch);
1717 for (i = 0; i < count; i++) {
1718 struct folio *folio = fbatch.folios[i];
1719
1720 if (!folio_buffers(folio))
1721 continue;
1722 /*
1723 * We use folio lock instead of bd_mapping->private_lock
1724 * to pin buffers here since we can afford to sleep and
1725 * it scales better than a global spinlock lock.
1726 */
1727 folio_lock(folio);
1728 /* Recheck when the folio is locked which pins bhs */
1729 head = folio_buffers(folio);
1730 if (!head)
1731 goto unlock_page;
1732 bh = head;
1733 do {
1734 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1735 goto next;
1736 if (bh->b_blocknr >= block + len)
1737 break;
1738 clear_buffer_dirty(bh);
1739 wait_on_buffer(bh);
1740 clear_buffer_req(bh);
1741 next:
1742 bh = bh->b_this_page;
1743 } while (bh != head);
1744 unlock_page:
1745 folio_unlock(folio);
1746 }
1747 folio_batch_release(&fbatch);
1748 cond_resched();
1749 /* End of range already reached? */
1750 if (index > end || !index)
1751 break;
1752 }
1753 }
1754 EXPORT_SYMBOL(clean_bdev_aliases);
1755
1756 /*
1757 * Size is a power-of-two in the range 512..PAGE_SIZE,
1758 * and the case we care about most is PAGE_SIZE.
1759 *
1760 * So this *could* possibly be written with those
1761 * constraints in mind (relevant mostly if some
1762 * architecture has a slow bit-scan instruction)
1763 */
block_size_bits(unsigned int blocksize)1764 static inline int block_size_bits(unsigned int blocksize)
1765 {
1766 return ilog2(blocksize);
1767 }
1768
folio_create_buffers(struct folio * folio,struct inode * inode,unsigned int b_state)1769 static struct buffer_head *folio_create_buffers(struct folio *folio,
1770 struct inode *inode,
1771 unsigned int b_state)
1772 {
1773 struct buffer_head *bh;
1774
1775 BUG_ON(!folio_test_locked(folio));
1776
1777 bh = folio_buffers(folio);
1778 if (!bh)
1779 bh = folio_create_empty_buffers(folio,
1780 1 << READ_ONCE(inode->i_blkbits), b_state);
1781 return bh;
1782 }
1783
1784 /*
1785 * NOTE! All mapped/uptodate combinations are valid:
1786 *
1787 * Mapped Uptodate Meaning
1788 *
1789 * No No "unknown" - must do get_block()
1790 * No Yes "hole" - zero-filled
1791 * Yes No "allocated" - allocated on disk, not read in
1792 * Yes Yes "valid" - allocated and up-to-date in memory.
1793 *
1794 * "Dirty" is valid only with the last case (mapped+uptodate).
1795 */
1796
1797 /*
1798 * While block_write_full_page is writing back the dirty buffers under
1799 * the page lock, whoever dirtied the buffers may decide to clean them
1800 * again at any time. We handle that by only looking at the buffer
1801 * state inside lock_buffer().
1802 *
1803 * If block_write_full_page() is called for regular writeback
1804 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1805 * locked buffer. This only can happen if someone has written the buffer
1806 * directly, with submit_bh(). At the address_space level PageWriteback
1807 * prevents this contention from occurring.
1808 *
1809 * If block_write_full_page() is called with wbc->sync_mode ==
1810 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1811 * causes the writes to be flagged as synchronous writes.
1812 */
__block_write_full_folio(struct inode * inode,struct folio * folio,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1813 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1814 get_block_t *get_block, struct writeback_control *wbc,
1815 bh_end_io_t *handler)
1816 {
1817 int err;
1818 sector_t block;
1819 sector_t last_block;
1820 struct buffer_head *bh, *head;
1821 unsigned int blocksize, bbits;
1822 int nr_underway = 0;
1823 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1824
1825 head = folio_create_buffers(folio, inode,
1826 (1 << BH_Dirty) | (1 << BH_Uptodate));
1827
1828 /*
1829 * Be very careful. We have no exclusion from block_dirty_folio
1830 * here, and the (potentially unmapped) buffers may become dirty at
1831 * any time. If a buffer becomes dirty here after we've inspected it
1832 * then we just miss that fact, and the folio stays dirty.
1833 *
1834 * Buffers outside i_size may be dirtied by block_dirty_folio;
1835 * handle that here by just cleaning them.
1836 */
1837
1838 bh = head;
1839 blocksize = bh->b_size;
1840 bbits = block_size_bits(blocksize);
1841
1842 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1843 last_block = (i_size_read(inode) - 1) >> bbits;
1844
1845 /*
1846 * Get all the dirty buffers mapped to disk addresses and
1847 * handle any aliases from the underlying blockdev's mapping.
1848 */
1849 do {
1850 if (block > last_block) {
1851 /*
1852 * mapped buffers outside i_size will occur, because
1853 * this folio can be outside i_size when there is a
1854 * truncate in progress.
1855 */
1856 /*
1857 * The buffer was zeroed by block_write_full_page()
1858 */
1859 clear_buffer_dirty(bh);
1860 set_buffer_uptodate(bh);
1861 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1862 buffer_dirty(bh)) {
1863 WARN_ON(bh->b_size != blocksize);
1864 err = get_block(inode, block, bh, 1);
1865 if (err)
1866 goto recover;
1867 clear_buffer_delay(bh);
1868 if (buffer_new(bh)) {
1869 /* blockdev mappings never come here */
1870 clear_buffer_new(bh);
1871 clean_bdev_bh_alias(bh);
1872 }
1873 }
1874 bh = bh->b_this_page;
1875 block++;
1876 } while (bh != head);
1877
1878 do {
1879 if (!buffer_mapped(bh))
1880 continue;
1881 /*
1882 * If it's a fully non-blocking write attempt and we cannot
1883 * lock the buffer then redirty the folio. Note that this can
1884 * potentially cause a busy-wait loop from writeback threads
1885 * and kswapd activity, but those code paths have their own
1886 * higher-level throttling.
1887 */
1888 if (wbc->sync_mode != WB_SYNC_NONE) {
1889 lock_buffer(bh);
1890 } else if (!trylock_buffer(bh)) {
1891 folio_redirty_for_writepage(wbc, folio);
1892 continue;
1893 }
1894 if (test_clear_buffer_dirty(bh)) {
1895 mark_buffer_async_write_endio(bh, handler);
1896 } else {
1897 unlock_buffer(bh);
1898 }
1899 } while ((bh = bh->b_this_page) != head);
1900
1901 /*
1902 * The folio and its buffers are protected by the writeback flag,
1903 * so we can drop the bh refcounts early.
1904 */
1905 BUG_ON(folio_test_writeback(folio));
1906 folio_start_writeback(folio);
1907
1908 do {
1909 struct buffer_head *next = bh->b_this_page;
1910 if (buffer_async_write(bh)) {
1911 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1912 nr_underway++;
1913 }
1914 bh = next;
1915 } while (bh != head);
1916 folio_unlock(folio);
1917
1918 err = 0;
1919 done:
1920 if (nr_underway == 0) {
1921 /*
1922 * The folio was marked dirty, but the buffers were
1923 * clean. Someone wrote them back by hand with
1924 * write_dirty_buffer/submit_bh. A rare case.
1925 */
1926 folio_end_writeback(folio);
1927
1928 /*
1929 * The folio and buffer_heads can be released at any time from
1930 * here on.
1931 */
1932 }
1933 return err;
1934
1935 recover:
1936 /*
1937 * ENOSPC, or some other error. We may already have added some
1938 * blocks to the file, so we need to write these out to avoid
1939 * exposing stale data.
1940 * The folio is currently locked and not marked for writeback
1941 */
1942 bh = head;
1943 /* Recovery: lock and submit the mapped buffers */
1944 do {
1945 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1946 !buffer_delay(bh)) {
1947 lock_buffer(bh);
1948 mark_buffer_async_write_endio(bh, handler);
1949 } else {
1950 /*
1951 * The buffer may have been set dirty during
1952 * attachment to a dirty folio.
1953 */
1954 clear_buffer_dirty(bh);
1955 }
1956 } while ((bh = bh->b_this_page) != head);
1957 folio_set_error(folio);
1958 BUG_ON(folio_test_writeback(folio));
1959 mapping_set_error(folio->mapping, err);
1960 folio_start_writeback(folio);
1961 do {
1962 struct buffer_head *next = bh->b_this_page;
1963 if (buffer_async_write(bh)) {
1964 clear_buffer_dirty(bh);
1965 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1966 nr_underway++;
1967 }
1968 bh = next;
1969 } while (bh != head);
1970 folio_unlock(folio);
1971 goto done;
1972 }
1973 EXPORT_SYMBOL(__block_write_full_folio);
1974
1975 /*
1976 * If a folio has any new buffers, zero them out here, and mark them uptodate
1977 * and dirty so they'll be written out (in order to prevent uninitialised
1978 * block data from leaking). And clear the new bit.
1979 */
folio_zero_new_buffers(struct folio * folio,size_t from,size_t to)1980 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1981 {
1982 size_t block_start, block_end;
1983 struct buffer_head *head, *bh;
1984
1985 BUG_ON(!folio_test_locked(folio));
1986 head = folio_buffers(folio);
1987 if (!head)
1988 return;
1989
1990 bh = head;
1991 block_start = 0;
1992 do {
1993 block_end = block_start + bh->b_size;
1994
1995 if (buffer_new(bh)) {
1996 if (block_end > from && block_start < to) {
1997 if (!folio_test_uptodate(folio)) {
1998 size_t start, xend;
1999
2000 start = max(from, block_start);
2001 xend = min(to, block_end);
2002
2003 folio_zero_segment(folio, start, xend);
2004 set_buffer_uptodate(bh);
2005 }
2006
2007 clear_buffer_new(bh);
2008 mark_buffer_dirty(bh);
2009 }
2010 }
2011
2012 block_start = block_end;
2013 bh = bh->b_this_page;
2014 } while (bh != head);
2015 }
2016 EXPORT_SYMBOL(folio_zero_new_buffers);
2017
2018 static int
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,const struct iomap * iomap)2019 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2020 const struct iomap *iomap)
2021 {
2022 loff_t offset = block << inode->i_blkbits;
2023
2024 bh->b_bdev = iomap->bdev;
2025
2026 /*
2027 * Block points to offset in file we need to map, iomap contains
2028 * the offset at which the map starts. If the map ends before the
2029 * current block, then do not map the buffer and let the caller
2030 * handle it.
2031 */
2032 if (offset >= iomap->offset + iomap->length)
2033 return -EIO;
2034
2035 switch (iomap->type) {
2036 case IOMAP_HOLE:
2037 /*
2038 * If the buffer is not up to date or beyond the current EOF,
2039 * we need to mark it as new to ensure sub-block zeroing is
2040 * executed if necessary.
2041 */
2042 if (!buffer_uptodate(bh) ||
2043 (offset >= i_size_read(inode)))
2044 set_buffer_new(bh);
2045 return 0;
2046 case IOMAP_DELALLOC:
2047 if (!buffer_uptodate(bh) ||
2048 (offset >= i_size_read(inode)))
2049 set_buffer_new(bh);
2050 set_buffer_uptodate(bh);
2051 set_buffer_mapped(bh);
2052 set_buffer_delay(bh);
2053 return 0;
2054 case IOMAP_UNWRITTEN:
2055 /*
2056 * For unwritten regions, we always need to ensure that regions
2057 * in the block we are not writing to are zeroed. Mark the
2058 * buffer as new to ensure this.
2059 */
2060 set_buffer_new(bh);
2061 set_buffer_unwritten(bh);
2062 fallthrough;
2063 case IOMAP_MAPPED:
2064 if ((iomap->flags & IOMAP_F_NEW) ||
2065 offset >= i_size_read(inode)) {
2066 /*
2067 * This can happen if truncating the block device races
2068 * with the check in the caller as i_size updates on
2069 * block devices aren't synchronized by i_rwsem for
2070 * block devices.
2071 */
2072 if (S_ISBLK(inode->i_mode))
2073 return -EIO;
2074 set_buffer_new(bh);
2075 }
2076 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2077 inode->i_blkbits;
2078 set_buffer_mapped(bh);
2079 return 0;
2080 default:
2081 WARN_ON_ONCE(1);
2082 return -EIO;
2083 }
2084 }
2085
__block_write_begin_int(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block,const struct iomap * iomap)2086 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2087 get_block_t *get_block, const struct iomap *iomap)
2088 {
2089 unsigned from = pos & (PAGE_SIZE - 1);
2090 unsigned to = from + len;
2091 struct inode *inode = folio->mapping->host;
2092 unsigned block_start, block_end;
2093 sector_t block;
2094 int err = 0;
2095 unsigned blocksize, bbits;
2096 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2097
2098 BUG_ON(!folio_test_locked(folio));
2099 BUG_ON(from > PAGE_SIZE);
2100 BUG_ON(to > PAGE_SIZE);
2101 BUG_ON(from > to);
2102
2103 head = folio_create_buffers(folio, inode, 0);
2104 blocksize = head->b_size;
2105 bbits = block_size_bits(blocksize);
2106
2107 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2108
2109 for(bh = head, block_start = 0; bh != head || !block_start;
2110 block++, block_start=block_end, bh = bh->b_this_page) {
2111 block_end = block_start + blocksize;
2112 if (block_end <= from || block_start >= to) {
2113 if (folio_test_uptodate(folio)) {
2114 if (!buffer_uptodate(bh))
2115 set_buffer_uptodate(bh);
2116 }
2117 continue;
2118 }
2119 if (buffer_new(bh))
2120 clear_buffer_new(bh);
2121 if (!buffer_mapped(bh)) {
2122 WARN_ON(bh->b_size != blocksize);
2123 if (get_block)
2124 err = get_block(inode, block, bh, 1);
2125 else
2126 err = iomap_to_bh(inode, block, bh, iomap);
2127 if (err)
2128 break;
2129
2130 if (buffer_new(bh)) {
2131 clean_bdev_bh_alias(bh);
2132 if (folio_test_uptodate(folio)) {
2133 clear_buffer_new(bh);
2134 set_buffer_uptodate(bh);
2135 mark_buffer_dirty(bh);
2136 continue;
2137 }
2138 if (block_end > to || block_start < from)
2139 folio_zero_segments(folio,
2140 to, block_end,
2141 block_start, from);
2142 continue;
2143 }
2144 }
2145 if (folio_test_uptodate(folio)) {
2146 if (!buffer_uptodate(bh))
2147 set_buffer_uptodate(bh);
2148 continue;
2149 }
2150 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2151 !buffer_unwritten(bh) &&
2152 (block_start < from || block_end > to)) {
2153 bh_read_nowait(bh, 0);
2154 *wait_bh++=bh;
2155 }
2156 }
2157 /*
2158 * If we issued read requests - let them complete.
2159 */
2160 while(wait_bh > wait) {
2161 wait_on_buffer(*--wait_bh);
2162 if (!buffer_uptodate(*wait_bh))
2163 err = -EIO;
2164 }
2165 if (unlikely(err))
2166 folio_zero_new_buffers(folio, from, to);
2167 return err;
2168 }
2169
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)2170 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2171 get_block_t *get_block)
2172 {
2173 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2174 NULL);
2175 }
2176 EXPORT_SYMBOL(__block_write_begin);
2177
__block_commit_write(struct folio * folio,size_t from,size_t to)2178 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2179 {
2180 size_t block_start, block_end;
2181 bool partial = false;
2182 unsigned blocksize;
2183 struct buffer_head *bh, *head;
2184
2185 bh = head = folio_buffers(folio);
2186 if (!bh)
2187 return;
2188 blocksize = bh->b_size;
2189
2190 block_start = 0;
2191 do {
2192 block_end = block_start + blocksize;
2193 if (block_end <= from || block_start >= to) {
2194 if (!buffer_uptodate(bh))
2195 partial = true;
2196 } else {
2197 set_buffer_uptodate(bh);
2198 mark_buffer_dirty(bh);
2199 }
2200 if (buffer_new(bh))
2201 clear_buffer_new(bh);
2202
2203 block_start = block_end;
2204 bh = bh->b_this_page;
2205 } while (bh != head);
2206
2207 /*
2208 * If this is a partial write which happened to make all buffers
2209 * uptodate then we can optimize away a bogus read_folio() for
2210 * the next read(). Here we 'discover' whether the folio went
2211 * uptodate as a result of this (potentially partial) write.
2212 */
2213 if (!partial)
2214 folio_mark_uptodate(folio);
2215 }
2216
2217 /*
2218 * block_write_begin takes care of the basic task of block allocation and
2219 * bringing partial write blocks uptodate first.
2220 *
2221 * The filesystem needs to handle block truncation upon failure.
2222 */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,get_block_t * get_block)2223 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2224 struct page **pagep, get_block_t *get_block)
2225 {
2226 pgoff_t index = pos >> PAGE_SHIFT;
2227 struct page *page;
2228 int status;
2229
2230 page = grab_cache_page_write_begin(mapping, index);
2231 if (!page)
2232 return -ENOMEM;
2233
2234 status = __block_write_begin(page, pos, len, get_block);
2235 if (unlikely(status)) {
2236 unlock_page(page);
2237 put_page(page);
2238 page = NULL;
2239 }
2240
2241 *pagep = page;
2242 return status;
2243 }
2244 EXPORT_SYMBOL(block_write_begin);
2245
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2246 int block_write_end(struct file *file, struct address_space *mapping,
2247 loff_t pos, unsigned len, unsigned copied,
2248 struct page *page, void *fsdata)
2249 {
2250 struct folio *folio = page_folio(page);
2251 size_t start = pos - folio_pos(folio);
2252
2253 if (unlikely(copied < len)) {
2254 /*
2255 * The buffers that were written will now be uptodate, so
2256 * we don't have to worry about a read_folio reading them
2257 * and overwriting a partial write. However if we have
2258 * encountered a short write and only partially written
2259 * into a buffer, it will not be marked uptodate, so a
2260 * read_folio might come in and destroy our partial write.
2261 *
2262 * Do the simplest thing, and just treat any short write to a
2263 * non uptodate folio as a zero-length write, and force the
2264 * caller to redo the whole thing.
2265 */
2266 if (!folio_test_uptodate(folio))
2267 copied = 0;
2268
2269 folio_zero_new_buffers(folio, start+copied, start+len);
2270 }
2271 flush_dcache_folio(folio);
2272
2273 /* This could be a short (even 0-length) commit */
2274 __block_commit_write(folio, start, start + copied);
2275
2276 return copied;
2277 }
2278 EXPORT_SYMBOL(block_write_end);
2279
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2280 int generic_write_end(struct file *file, struct address_space *mapping,
2281 loff_t pos, unsigned len, unsigned copied,
2282 struct page *page, void *fsdata)
2283 {
2284 struct inode *inode = mapping->host;
2285 loff_t old_size = inode->i_size;
2286 bool i_size_changed = false;
2287
2288 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2289
2290 /*
2291 * No need to use i_size_read() here, the i_size cannot change under us
2292 * because we hold i_rwsem.
2293 *
2294 * But it's important to update i_size while still holding page lock:
2295 * page writeout could otherwise come in and zero beyond i_size.
2296 */
2297 if (pos + copied > inode->i_size) {
2298 i_size_write(inode, pos + copied);
2299 i_size_changed = true;
2300 }
2301
2302 unlock_page(page);
2303 put_page(page);
2304
2305 if (old_size < pos)
2306 pagecache_isize_extended(inode, old_size, pos);
2307 /*
2308 * Don't mark the inode dirty under page lock. First, it unnecessarily
2309 * makes the holding time of page lock longer. Second, it forces lock
2310 * ordering of page lock and transaction start for journaling
2311 * filesystems.
2312 */
2313 if (i_size_changed)
2314 mark_inode_dirty(inode);
2315 return copied;
2316 }
2317 EXPORT_SYMBOL(generic_write_end);
2318
2319 /*
2320 * block_is_partially_uptodate checks whether buffers within a folio are
2321 * uptodate or not.
2322 *
2323 * Returns true if all buffers which correspond to the specified part
2324 * of the folio are uptodate.
2325 */
block_is_partially_uptodate(struct folio * folio,size_t from,size_t count)2326 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2327 {
2328 unsigned block_start, block_end, blocksize;
2329 unsigned to;
2330 struct buffer_head *bh, *head;
2331 bool ret = true;
2332
2333 head = folio_buffers(folio);
2334 if (!head)
2335 return false;
2336 blocksize = head->b_size;
2337 to = min_t(unsigned, folio_size(folio) - from, count);
2338 to = from + to;
2339 if (from < blocksize && to > folio_size(folio) - blocksize)
2340 return false;
2341
2342 bh = head;
2343 block_start = 0;
2344 do {
2345 block_end = block_start + blocksize;
2346 if (block_end > from && block_start < to) {
2347 if (!buffer_uptodate(bh)) {
2348 ret = false;
2349 break;
2350 }
2351 if (block_end >= to)
2352 break;
2353 }
2354 block_start = block_end;
2355 bh = bh->b_this_page;
2356 } while (bh != head);
2357
2358 return ret;
2359 }
2360 EXPORT_SYMBOL(block_is_partially_uptodate);
2361
2362 /*
2363 * Generic "read_folio" function for block devices that have the normal
2364 * get_block functionality. This is most of the block device filesystems.
2365 * Reads the folio asynchronously --- the unlock_buffer() and
2366 * set/clear_buffer_uptodate() functions propagate buffer state into the
2367 * folio once IO has completed.
2368 */
block_read_full_folio(struct folio * folio,get_block_t * get_block)2369 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2370 {
2371 struct inode *inode = folio->mapping->host;
2372 sector_t iblock, lblock;
2373 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2374 unsigned int blocksize, bbits;
2375 int nr, i;
2376 int fully_mapped = 1;
2377 bool page_error = false;
2378 loff_t limit = i_size_read(inode);
2379
2380 /* This is needed for ext4. */
2381 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2382 limit = inode->i_sb->s_maxbytes;
2383
2384 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2385
2386 head = folio_create_buffers(folio, inode, 0);
2387 blocksize = head->b_size;
2388 bbits = block_size_bits(blocksize);
2389
2390 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2391 lblock = (limit+blocksize-1) >> bbits;
2392 bh = head;
2393 nr = 0;
2394 i = 0;
2395
2396 do {
2397 if (buffer_uptodate(bh))
2398 continue;
2399
2400 if (!buffer_mapped(bh)) {
2401 int err = 0;
2402
2403 fully_mapped = 0;
2404 if (iblock < lblock) {
2405 WARN_ON(bh->b_size != blocksize);
2406 err = get_block(inode, iblock, bh, 0);
2407 if (err) {
2408 folio_set_error(folio);
2409 page_error = true;
2410 }
2411 }
2412 if (!buffer_mapped(bh)) {
2413 folio_zero_range(folio, i * blocksize,
2414 blocksize);
2415 if (!err)
2416 set_buffer_uptodate(bh);
2417 continue;
2418 }
2419 /*
2420 * get_block() might have updated the buffer
2421 * synchronously
2422 */
2423 if (buffer_uptodate(bh))
2424 continue;
2425 }
2426 arr[nr++] = bh;
2427 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2428
2429 if (fully_mapped)
2430 folio_set_mappedtodisk(folio);
2431
2432 if (!nr) {
2433 /*
2434 * All buffers are uptodate - we can set the folio uptodate
2435 * as well. But not if get_block() returned an error.
2436 */
2437 if (!page_error)
2438 folio_mark_uptodate(folio);
2439 folio_unlock(folio);
2440 return 0;
2441 }
2442
2443 /* Stage two: lock the buffers */
2444 for (i = 0; i < nr; i++) {
2445 bh = arr[i];
2446 lock_buffer(bh);
2447 mark_buffer_async_read(bh);
2448 }
2449
2450 /*
2451 * Stage 3: start the IO. Check for uptodateness
2452 * inside the buffer lock in case another process reading
2453 * the underlying blockdev brought it uptodate (the sct fix).
2454 */
2455 for (i = 0; i < nr; i++) {
2456 bh = arr[i];
2457 if (buffer_uptodate(bh))
2458 end_buffer_async_read(bh, 1);
2459 else
2460 submit_bh(REQ_OP_READ, bh);
2461 }
2462 return 0;
2463 }
2464 EXPORT_SYMBOL(block_read_full_folio);
2465
2466 /* utility function for filesystems that need to do work on expanding
2467 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2468 * deal with the hole.
2469 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2470 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2471 {
2472 struct address_space *mapping = inode->i_mapping;
2473 const struct address_space_operations *aops = mapping->a_ops;
2474 struct page *page;
2475 void *fsdata = NULL;
2476 int err;
2477
2478 err = inode_newsize_ok(inode, size);
2479 if (err)
2480 goto out;
2481
2482 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2483 if (err)
2484 goto out;
2485
2486 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2487 BUG_ON(err > 0);
2488
2489 out:
2490 return err;
2491 }
2492 EXPORT_SYMBOL(generic_cont_expand_simple);
2493
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2494 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2495 loff_t pos, loff_t *bytes)
2496 {
2497 struct inode *inode = mapping->host;
2498 const struct address_space_operations *aops = mapping->a_ops;
2499 unsigned int blocksize = i_blocksize(inode);
2500 struct page *page;
2501 void *fsdata = NULL;
2502 pgoff_t index, curidx;
2503 loff_t curpos;
2504 unsigned zerofrom, offset, len;
2505 int err = 0;
2506
2507 index = pos >> PAGE_SHIFT;
2508 offset = pos & ~PAGE_MASK;
2509
2510 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2511 zerofrom = curpos & ~PAGE_MASK;
2512 if (zerofrom & (blocksize-1)) {
2513 *bytes |= (blocksize-1);
2514 (*bytes)++;
2515 }
2516 len = PAGE_SIZE - zerofrom;
2517
2518 err = aops->write_begin(file, mapping, curpos, len,
2519 &page, &fsdata);
2520 if (err)
2521 goto out;
2522 zero_user(page, zerofrom, len);
2523 err = aops->write_end(file, mapping, curpos, len, len,
2524 page, fsdata);
2525 if (err < 0)
2526 goto out;
2527 BUG_ON(err != len);
2528 err = 0;
2529
2530 balance_dirty_pages_ratelimited(mapping);
2531
2532 if (fatal_signal_pending(current)) {
2533 err = -EINTR;
2534 goto out;
2535 }
2536 }
2537
2538 /* page covers the boundary, find the boundary offset */
2539 if (index == curidx) {
2540 zerofrom = curpos & ~PAGE_MASK;
2541 /* if we will expand the thing last block will be filled */
2542 if (offset <= zerofrom) {
2543 goto out;
2544 }
2545 if (zerofrom & (blocksize-1)) {
2546 *bytes |= (blocksize-1);
2547 (*bytes)++;
2548 }
2549 len = offset - zerofrom;
2550
2551 err = aops->write_begin(file, mapping, curpos, len,
2552 &page, &fsdata);
2553 if (err)
2554 goto out;
2555 zero_user(page, zerofrom, len);
2556 err = aops->write_end(file, mapping, curpos, len, len,
2557 page, fsdata);
2558 if (err < 0)
2559 goto out;
2560 BUG_ON(err != len);
2561 err = 0;
2562 }
2563 out:
2564 return err;
2565 }
2566
2567 /*
2568 * For moronic filesystems that do not allow holes in file.
2569 * We may have to extend the file.
2570 */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2571 int cont_write_begin(struct file *file, struct address_space *mapping,
2572 loff_t pos, unsigned len,
2573 struct page **pagep, void **fsdata,
2574 get_block_t *get_block, loff_t *bytes)
2575 {
2576 struct inode *inode = mapping->host;
2577 unsigned int blocksize = i_blocksize(inode);
2578 unsigned int zerofrom;
2579 int err;
2580
2581 err = cont_expand_zero(file, mapping, pos, bytes);
2582 if (err)
2583 return err;
2584
2585 zerofrom = *bytes & ~PAGE_MASK;
2586 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2587 *bytes |= (blocksize-1);
2588 (*bytes)++;
2589 }
2590
2591 return block_write_begin(mapping, pos, len, pagep, get_block);
2592 }
2593 EXPORT_SYMBOL(cont_write_begin);
2594
block_commit_write(struct page * page,unsigned from,unsigned to)2595 void block_commit_write(struct page *page, unsigned from, unsigned to)
2596 {
2597 struct folio *folio = page_folio(page);
2598 __block_commit_write(folio, from, to);
2599 }
2600 EXPORT_SYMBOL(block_commit_write);
2601
2602 /*
2603 * block_page_mkwrite() is not allowed to change the file size as it gets
2604 * called from a page fault handler when a page is first dirtied. Hence we must
2605 * be careful to check for EOF conditions here. We set the page up correctly
2606 * for a written page which means we get ENOSPC checking when writing into
2607 * holes and correct delalloc and unwritten extent mapping on filesystems that
2608 * support these features.
2609 *
2610 * We are not allowed to take the i_mutex here so we have to play games to
2611 * protect against truncate races as the page could now be beyond EOF. Because
2612 * truncate writes the inode size before removing pages, once we have the
2613 * page lock we can determine safely if the page is beyond EOF. If it is not
2614 * beyond EOF, then the page is guaranteed safe against truncation until we
2615 * unlock the page.
2616 *
2617 * Direct callers of this function should protect against filesystem freezing
2618 * using sb_start_pagefault() - sb_end_pagefault() functions.
2619 */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2620 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2621 get_block_t get_block)
2622 {
2623 struct folio *folio = page_folio(vmf->page);
2624 struct inode *inode = file_inode(vma->vm_file);
2625 unsigned long end;
2626 loff_t size;
2627 int ret;
2628
2629 folio_lock(folio);
2630 size = i_size_read(inode);
2631 if ((folio->mapping != inode->i_mapping) ||
2632 (folio_pos(folio) >= size)) {
2633 /* We overload EFAULT to mean page got truncated */
2634 ret = -EFAULT;
2635 goto out_unlock;
2636 }
2637
2638 end = folio_size(folio);
2639 /* folio is wholly or partially inside EOF */
2640 if (folio_pos(folio) + end > size)
2641 end = size - folio_pos(folio);
2642
2643 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2644 if (unlikely(ret))
2645 goto out_unlock;
2646
2647 __block_commit_write(folio, 0, end);
2648
2649 folio_mark_dirty(folio);
2650 folio_wait_stable(folio);
2651 return 0;
2652 out_unlock:
2653 folio_unlock(folio);
2654 return ret;
2655 }
2656 EXPORT_SYMBOL(block_page_mkwrite);
2657
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2658 int block_truncate_page(struct address_space *mapping,
2659 loff_t from, get_block_t *get_block)
2660 {
2661 pgoff_t index = from >> PAGE_SHIFT;
2662 unsigned blocksize;
2663 sector_t iblock;
2664 size_t offset, length, pos;
2665 struct inode *inode = mapping->host;
2666 struct folio *folio;
2667 struct buffer_head *bh;
2668 int err = 0;
2669
2670 blocksize = i_blocksize(inode);
2671 length = from & (blocksize - 1);
2672
2673 /* Block boundary? Nothing to do */
2674 if (!length)
2675 return 0;
2676
2677 length = blocksize - length;
2678 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2679
2680 folio = filemap_grab_folio(mapping, index);
2681 if (IS_ERR(folio))
2682 return PTR_ERR(folio);
2683
2684 bh = folio_buffers(folio);
2685 if (!bh)
2686 bh = folio_create_empty_buffers(folio, blocksize, 0);
2687
2688 /* Find the buffer that contains "offset" */
2689 offset = offset_in_folio(folio, from);
2690 pos = blocksize;
2691 while (offset >= pos) {
2692 bh = bh->b_this_page;
2693 iblock++;
2694 pos += blocksize;
2695 }
2696
2697 if (!buffer_mapped(bh)) {
2698 WARN_ON(bh->b_size != blocksize);
2699 err = get_block(inode, iblock, bh, 0);
2700 if (err)
2701 goto unlock;
2702 /* unmapped? It's a hole - nothing to do */
2703 if (!buffer_mapped(bh))
2704 goto unlock;
2705 }
2706
2707 /* Ok, it's mapped. Make sure it's up-to-date */
2708 if (folio_test_uptodate(folio))
2709 set_buffer_uptodate(bh);
2710
2711 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2712 err = bh_read(bh, 0);
2713 /* Uhhuh. Read error. Complain and punt. */
2714 if (err < 0)
2715 goto unlock;
2716 }
2717
2718 folio_zero_range(folio, offset, length);
2719 mark_buffer_dirty(bh);
2720
2721 unlock:
2722 folio_unlock(folio);
2723 folio_put(folio);
2724
2725 return err;
2726 }
2727 EXPORT_SYMBOL(block_truncate_page);
2728
2729 /*
2730 * The generic ->writepage function for buffer-backed address_spaces
2731 */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2732 int block_write_full_page(struct page *page, get_block_t *get_block,
2733 struct writeback_control *wbc)
2734 {
2735 struct folio *folio = page_folio(page);
2736 struct inode * const inode = folio->mapping->host;
2737 loff_t i_size = i_size_read(inode);
2738
2739 /* Is the folio fully inside i_size? */
2740 if (folio_pos(folio) + folio_size(folio) <= i_size)
2741 return __block_write_full_folio(inode, folio, get_block, wbc,
2742 end_buffer_async_write);
2743
2744 /* Is the folio fully outside i_size? (truncate in progress) */
2745 if (folio_pos(folio) >= i_size) {
2746 folio_unlock(folio);
2747 return 0; /* don't care */
2748 }
2749
2750 /*
2751 * The folio straddles i_size. It must be zeroed out on each and every
2752 * writepage invocation because it may be mmapped. "A file is mapped
2753 * in multiples of the page size. For a file that is not a multiple of
2754 * the page size, the remaining memory is zeroed when mapped, and
2755 * writes to that region are not written out to the file."
2756 */
2757 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2758 folio_size(folio));
2759 return __block_write_full_folio(inode, folio, get_block, wbc,
2760 end_buffer_async_write);
2761 }
2762 EXPORT_SYMBOL(block_write_full_page);
2763
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2764 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2765 get_block_t *get_block)
2766 {
2767 struct inode *inode = mapping->host;
2768 struct buffer_head tmp = {
2769 .b_size = i_blocksize(inode),
2770 };
2771
2772 get_block(inode, block, &tmp, 0);
2773 return tmp.b_blocknr;
2774 }
2775 EXPORT_SYMBOL(generic_block_bmap);
2776
end_bio_bh_io_sync(struct bio * bio)2777 static void end_bio_bh_io_sync(struct bio *bio)
2778 {
2779 struct buffer_head *bh = bio->bi_private;
2780
2781 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2782 set_bit(BH_Quiet, &bh->b_state);
2783
2784 bh->b_end_io(bh, !bio->bi_status);
2785 bio_put(bio);
2786 }
2787
submit_bh_wbc(blk_opf_t opf,struct buffer_head * bh,struct writeback_control * wbc)2788 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2789 struct writeback_control *wbc)
2790 {
2791 const enum req_op op = opf & REQ_OP_MASK;
2792 struct bio *bio;
2793
2794 BUG_ON(!buffer_locked(bh));
2795 BUG_ON(!buffer_mapped(bh));
2796 BUG_ON(!bh->b_end_io);
2797 BUG_ON(buffer_delay(bh));
2798 BUG_ON(buffer_unwritten(bh));
2799
2800 /*
2801 * Only clear out a write error when rewriting
2802 */
2803 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2804 clear_buffer_write_io_error(bh);
2805
2806 if (buffer_meta(bh))
2807 opf |= REQ_META;
2808 if (buffer_prio(bh))
2809 opf |= REQ_PRIO;
2810
2811 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2812
2813 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2814
2815 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2816
2817 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2818
2819 bio->bi_end_io = end_bio_bh_io_sync;
2820 bio->bi_private = bh;
2821
2822 /* Take care of bh's that straddle the end of the device */
2823 guard_bio_eod(bio);
2824
2825 if (wbc) {
2826 wbc_init_bio(wbc, bio);
2827 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2828 }
2829
2830 submit_bio(bio);
2831 }
2832
submit_bh(blk_opf_t opf,struct buffer_head * bh)2833 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2834 {
2835 submit_bh_wbc(opf, bh, NULL);
2836 }
2837 EXPORT_SYMBOL(submit_bh);
2838
write_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2839 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2840 {
2841 lock_buffer(bh);
2842 if (!test_clear_buffer_dirty(bh)) {
2843 unlock_buffer(bh);
2844 return;
2845 }
2846 bh->b_end_io = end_buffer_write_sync;
2847 get_bh(bh);
2848 submit_bh(REQ_OP_WRITE | op_flags, bh);
2849 }
2850 EXPORT_SYMBOL(write_dirty_buffer);
2851
2852 /*
2853 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2854 * and then start new I/O and then wait upon it. The caller must have a ref on
2855 * the buffer_head.
2856 */
__sync_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2857 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2858 {
2859 WARN_ON(atomic_read(&bh->b_count) < 1);
2860 lock_buffer(bh);
2861 if (test_clear_buffer_dirty(bh)) {
2862 /*
2863 * The bh should be mapped, but it might not be if the
2864 * device was hot-removed. Not much we can do but fail the I/O.
2865 */
2866 if (!buffer_mapped(bh)) {
2867 unlock_buffer(bh);
2868 return -EIO;
2869 }
2870
2871 get_bh(bh);
2872 bh->b_end_io = end_buffer_write_sync;
2873 submit_bh(REQ_OP_WRITE | op_flags, bh);
2874 wait_on_buffer(bh);
2875 if (!buffer_uptodate(bh))
2876 return -EIO;
2877 } else {
2878 unlock_buffer(bh);
2879 }
2880 return 0;
2881 }
2882 EXPORT_SYMBOL(__sync_dirty_buffer);
2883
sync_dirty_buffer(struct buffer_head * bh)2884 int sync_dirty_buffer(struct buffer_head *bh)
2885 {
2886 return __sync_dirty_buffer(bh, REQ_SYNC);
2887 }
2888 EXPORT_SYMBOL(sync_dirty_buffer);
2889
2890 /*
2891 * try_to_free_buffers() checks if all the buffers on this particular folio
2892 * are unused, and releases them if so.
2893 *
2894 * Exclusion against try_to_free_buffers may be obtained by either
2895 * locking the folio or by holding its mapping's private_lock.
2896 *
2897 * If the folio is dirty but all the buffers are clean then we need to
2898 * be sure to mark the folio clean as well. This is because the folio
2899 * may be against a block device, and a later reattachment of buffers
2900 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2901 * filesystem data on the same device.
2902 *
2903 * The same applies to regular filesystem folios: if all the buffers are
2904 * clean then we set the folio clean and proceed. To do that, we require
2905 * total exclusion from block_dirty_folio(). That is obtained with
2906 * private_lock.
2907 *
2908 * try_to_free_buffers() is non-blocking.
2909 */
buffer_busy(struct buffer_head * bh)2910 static inline int buffer_busy(struct buffer_head *bh)
2911 {
2912 return atomic_read(&bh->b_count) |
2913 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2914 }
2915
2916 static bool
drop_buffers(struct folio * folio,struct buffer_head ** buffers_to_free)2917 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2918 {
2919 struct buffer_head *head = folio_buffers(folio);
2920 struct buffer_head *bh;
2921
2922 bh = head;
2923 do {
2924 if (buffer_busy(bh))
2925 goto failed;
2926 bh = bh->b_this_page;
2927 } while (bh != head);
2928
2929 do {
2930 struct buffer_head *next = bh->b_this_page;
2931
2932 if (bh->b_assoc_map)
2933 __remove_assoc_queue(bh);
2934 bh = next;
2935 } while (bh != head);
2936 *buffers_to_free = head;
2937 folio_detach_private(folio);
2938 return true;
2939 failed:
2940 return false;
2941 }
2942
try_to_free_buffers(struct folio * folio)2943 bool try_to_free_buffers(struct folio *folio)
2944 {
2945 struct address_space * const mapping = folio->mapping;
2946 struct buffer_head *buffers_to_free = NULL;
2947 bool ret = 0;
2948
2949 BUG_ON(!folio_test_locked(folio));
2950 if (folio_test_writeback(folio))
2951 return false;
2952
2953 if (mapping == NULL) { /* can this still happen? */
2954 ret = drop_buffers(folio, &buffers_to_free);
2955 goto out;
2956 }
2957
2958 spin_lock(&mapping->private_lock);
2959 ret = drop_buffers(folio, &buffers_to_free);
2960
2961 /*
2962 * If the filesystem writes its buffers by hand (eg ext3)
2963 * then we can have clean buffers against a dirty folio. We
2964 * clean the folio here; otherwise the VM will never notice
2965 * that the filesystem did any IO at all.
2966 *
2967 * Also, during truncate, discard_buffer will have marked all
2968 * the folio's buffers clean. We discover that here and clean
2969 * the folio also.
2970 *
2971 * private_lock must be held over this entire operation in order
2972 * to synchronise against block_dirty_folio and prevent the
2973 * dirty bit from being lost.
2974 */
2975 if (ret)
2976 folio_cancel_dirty(folio);
2977 spin_unlock(&mapping->private_lock);
2978 out:
2979 if (buffers_to_free) {
2980 struct buffer_head *bh = buffers_to_free;
2981
2982 do {
2983 struct buffer_head *next = bh->b_this_page;
2984 free_buffer_head(bh);
2985 bh = next;
2986 } while (bh != buffers_to_free);
2987 }
2988 return ret;
2989 }
2990 EXPORT_SYMBOL(try_to_free_buffers);
2991
2992 /*
2993 * Buffer-head allocation
2994 */
2995 static struct kmem_cache *bh_cachep __read_mostly;
2996
2997 /*
2998 * Once the number of bh's in the machine exceeds this level, we start
2999 * stripping them in writeback.
3000 */
3001 static unsigned long max_buffer_heads;
3002
3003 int buffer_heads_over_limit;
3004
3005 struct bh_accounting {
3006 int nr; /* Number of live bh's */
3007 int ratelimit; /* Limit cacheline bouncing */
3008 };
3009
3010 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3011
recalc_bh_state(void)3012 static void recalc_bh_state(void)
3013 {
3014 int i;
3015 int tot = 0;
3016
3017 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3018 return;
3019 __this_cpu_write(bh_accounting.ratelimit, 0);
3020 for_each_online_cpu(i)
3021 tot += per_cpu(bh_accounting, i).nr;
3022 buffer_heads_over_limit = (tot > max_buffer_heads);
3023 }
3024
alloc_buffer_head(gfp_t gfp_flags)3025 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3026 {
3027 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3028 if (ret) {
3029 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3030 spin_lock_init(&ret->b_uptodate_lock);
3031 preempt_disable();
3032 __this_cpu_inc(bh_accounting.nr);
3033 recalc_bh_state();
3034 preempt_enable();
3035 }
3036 return ret;
3037 }
3038 EXPORT_SYMBOL(alloc_buffer_head);
3039
free_buffer_head(struct buffer_head * bh)3040 void free_buffer_head(struct buffer_head *bh)
3041 {
3042 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3043 kmem_cache_free(bh_cachep, bh);
3044 preempt_disable();
3045 __this_cpu_dec(bh_accounting.nr);
3046 recalc_bh_state();
3047 preempt_enable();
3048 }
3049 EXPORT_SYMBOL(free_buffer_head);
3050
buffer_exit_cpu_dead(unsigned int cpu)3051 static int buffer_exit_cpu_dead(unsigned int cpu)
3052 {
3053 int i;
3054 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3055
3056 for (i = 0; i < BH_LRU_SIZE; i++) {
3057 brelse(b->bhs[i]);
3058 b->bhs[i] = NULL;
3059 }
3060 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3061 per_cpu(bh_accounting, cpu).nr = 0;
3062 return 0;
3063 }
3064
3065 /**
3066 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3067 * @bh: struct buffer_head
3068 *
3069 * Return true if the buffer is up-to-date and false,
3070 * with the buffer locked, if not.
3071 */
bh_uptodate_or_lock(struct buffer_head * bh)3072 int bh_uptodate_or_lock(struct buffer_head *bh)
3073 {
3074 if (!buffer_uptodate(bh)) {
3075 lock_buffer(bh);
3076 if (!buffer_uptodate(bh))
3077 return 0;
3078 unlock_buffer(bh);
3079 }
3080 return 1;
3081 }
3082 EXPORT_SYMBOL(bh_uptodate_or_lock);
3083
3084 /**
3085 * __bh_read - Submit read for a locked buffer
3086 * @bh: struct buffer_head
3087 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3088 * @wait: wait until reading finish
3089 *
3090 * Returns zero on success or don't wait, and -EIO on error.
3091 */
__bh_read(struct buffer_head * bh,blk_opf_t op_flags,bool wait)3092 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3093 {
3094 int ret = 0;
3095
3096 BUG_ON(!buffer_locked(bh));
3097
3098 get_bh(bh);
3099 bh->b_end_io = end_buffer_read_sync;
3100 submit_bh(REQ_OP_READ | op_flags, bh);
3101 if (wait) {
3102 wait_on_buffer(bh);
3103 if (!buffer_uptodate(bh))
3104 ret = -EIO;
3105 }
3106 return ret;
3107 }
3108 EXPORT_SYMBOL(__bh_read);
3109
3110 /**
3111 * __bh_read_batch - Submit read for a batch of unlocked buffers
3112 * @nr: entry number of the buffer batch
3113 * @bhs: a batch of struct buffer_head
3114 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3115 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3116 * buffer that cannot lock.
3117 *
3118 * Returns zero on success or don't wait, and -EIO on error.
3119 */
__bh_read_batch(int nr,struct buffer_head * bhs[],blk_opf_t op_flags,bool force_lock)3120 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3121 blk_opf_t op_flags, bool force_lock)
3122 {
3123 int i;
3124
3125 for (i = 0; i < nr; i++) {
3126 struct buffer_head *bh = bhs[i];
3127
3128 if (buffer_uptodate(bh))
3129 continue;
3130
3131 if (force_lock)
3132 lock_buffer(bh);
3133 else
3134 if (!trylock_buffer(bh))
3135 continue;
3136
3137 if (buffer_uptodate(bh)) {
3138 unlock_buffer(bh);
3139 continue;
3140 }
3141
3142 bh->b_end_io = end_buffer_read_sync;
3143 get_bh(bh);
3144 submit_bh(REQ_OP_READ | op_flags, bh);
3145 }
3146 }
3147 EXPORT_SYMBOL(__bh_read_batch);
3148
buffer_init(void)3149 void __init buffer_init(void)
3150 {
3151 unsigned long nrpages;
3152 int ret;
3153
3154 bh_cachep = kmem_cache_create("buffer_head",
3155 sizeof(struct buffer_head), 0,
3156 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3157 SLAB_MEM_SPREAD),
3158 NULL);
3159
3160 /*
3161 * Limit the bh occupancy to 10% of ZONE_NORMAL
3162 */
3163 nrpages = (nr_free_buffer_pages() * 10) / 100;
3164 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3165 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3166 NULL, buffer_exit_cpu_dead);
3167 WARN_ON(ret < 0);
3168 }
3169