1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6 #include "flow.h"
7 #include "datapath.h"
8 #include "flow_netlink.h"
9 #include <linux/uaccess.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/if_ether.h>
13 #include <linux/if_vlan.h>
14 #include <net/llc_pdu.h>
15 #include <linux/kernel.h>
16 #include <linux/jhash.h>
17 #include <linux/jiffies.h>
18 #include <linux/llc.h>
19 #include <linux/module.h>
20 #include <linux/in.h>
21 #include <linux/rcupdate.h>
22 #include <linux/cpumask.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <linux/sort.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36
37 #define TBL_MIN_BUCKETS 1024
38 #define MASK_ARRAY_SIZE_MIN 16
39 #define REHASH_INTERVAL (10 * 60 * HZ)
40
41 #define MC_DEFAULT_HASH_ENTRIES 256
42 #define MC_HASH_SHIFT 8
43 #define MC_HASH_SEGS ((sizeof(uint32_t) * 8) / MC_HASH_SHIFT)
44
45 static struct kmem_cache *flow_cache;
46 struct kmem_cache *flow_stats_cache __read_mostly;
47
range_n_bytes(const struct sw_flow_key_range * range)48 static u16 range_n_bytes(const struct sw_flow_key_range *range)
49 {
50 return range->end - range->start;
51 }
52
ovs_flow_mask_key(struct sw_flow_key * dst,const struct sw_flow_key * src,bool full,const struct sw_flow_mask * mask)53 void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src,
54 bool full, const struct sw_flow_mask *mask)
55 {
56 int start = full ? 0 : mask->range.start;
57 int len = full ? sizeof *dst : range_n_bytes(&mask->range);
58 const long *m = (const long *)((const u8 *)&mask->key + start);
59 const long *s = (const long *)((const u8 *)src + start);
60 long *d = (long *)((u8 *)dst + start);
61 int i;
62
63 /* If 'full' is true then all of 'dst' is fully initialized. Otherwise,
64 * if 'full' is false the memory outside of the 'mask->range' is left
65 * uninitialized. This can be used as an optimization when further
66 * operations on 'dst' only use contents within 'mask->range'.
67 */
68 for (i = 0; i < len; i += sizeof(long))
69 *d++ = *s++ & *m++;
70 }
71
ovs_flow_alloc(void)72 struct sw_flow *ovs_flow_alloc(void)
73 {
74 struct sw_flow *flow;
75 struct sw_flow_stats *stats;
76
77 flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL);
78 if (!flow)
79 return ERR_PTR(-ENOMEM);
80
81 flow->stats_last_writer = -1;
82 flow->cpu_used_mask = (struct cpumask *)&flow->stats[nr_cpu_ids];
83
84 /* Initialize the default stat node. */
85 stats = kmem_cache_alloc_node(flow_stats_cache,
86 GFP_KERNEL | __GFP_ZERO,
87 node_online(0) ? 0 : NUMA_NO_NODE);
88 if (!stats)
89 goto err;
90
91 spin_lock_init(&stats->lock);
92
93 RCU_INIT_POINTER(flow->stats[0], stats);
94
95 cpumask_set_cpu(0, flow->cpu_used_mask);
96
97 return flow;
98 err:
99 kmem_cache_free(flow_cache, flow);
100 return ERR_PTR(-ENOMEM);
101 }
102
ovs_flow_tbl_count(const struct flow_table * table)103 int ovs_flow_tbl_count(const struct flow_table *table)
104 {
105 return table->count;
106 }
107
flow_free(struct sw_flow * flow)108 static void flow_free(struct sw_flow *flow)
109 {
110 int cpu;
111
112 if (ovs_identifier_is_key(&flow->id))
113 kfree(flow->id.unmasked_key);
114 if (flow->sf_acts)
115 ovs_nla_free_flow_actions((struct sw_flow_actions __force *)
116 flow->sf_acts);
117 /* We open code this to make sure cpu 0 is always considered */
118 for (cpu = 0; cpu < nr_cpu_ids;
119 cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
120 if (flow->stats[cpu])
121 kmem_cache_free(flow_stats_cache,
122 (struct sw_flow_stats __force *)flow->stats[cpu]);
123 }
124
125 kmem_cache_free(flow_cache, flow);
126 }
127
rcu_free_flow_callback(struct rcu_head * rcu)128 static void rcu_free_flow_callback(struct rcu_head *rcu)
129 {
130 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
131
132 flow_free(flow);
133 }
134
ovs_flow_free(struct sw_flow * flow,bool deferred)135 void ovs_flow_free(struct sw_flow *flow, bool deferred)
136 {
137 if (!flow)
138 return;
139
140 if (deferred)
141 call_rcu(&flow->rcu, rcu_free_flow_callback);
142 else
143 flow_free(flow);
144 }
145
__table_instance_destroy(struct table_instance * ti)146 static void __table_instance_destroy(struct table_instance *ti)
147 {
148 kvfree(ti->buckets);
149 kfree(ti);
150 }
151
table_instance_alloc(int new_size)152 static struct table_instance *table_instance_alloc(int new_size)
153 {
154 struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL);
155 int i;
156
157 if (!ti)
158 return NULL;
159
160 ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head),
161 GFP_KERNEL);
162 if (!ti->buckets) {
163 kfree(ti);
164 return NULL;
165 }
166
167 for (i = 0; i < new_size; i++)
168 INIT_HLIST_HEAD(&ti->buckets[i]);
169
170 ti->n_buckets = new_size;
171 ti->node_ver = 0;
172 get_random_bytes(&ti->hash_seed, sizeof(u32));
173
174 return ti;
175 }
176
__mask_array_destroy(struct mask_array * ma)177 static void __mask_array_destroy(struct mask_array *ma)
178 {
179 free_percpu(ma->masks_usage_stats);
180 kfree(ma);
181 }
182
mask_array_rcu_cb(struct rcu_head * rcu)183 static void mask_array_rcu_cb(struct rcu_head *rcu)
184 {
185 struct mask_array *ma = container_of(rcu, struct mask_array, rcu);
186
187 __mask_array_destroy(ma);
188 }
189
tbl_mask_array_reset_counters(struct mask_array * ma)190 static void tbl_mask_array_reset_counters(struct mask_array *ma)
191 {
192 int i, cpu;
193
194 /* As the per CPU counters are not atomic we can not go ahead and
195 * reset them from another CPU. To be able to still have an approximate
196 * zero based counter we store the value at reset, and subtract it
197 * later when processing.
198 */
199 for (i = 0; i < ma->max; i++) {
200 ma->masks_usage_zero_cntr[i] = 0;
201
202 for_each_possible_cpu(cpu) {
203 struct mask_array_stats *stats;
204 unsigned int start;
205 u64 counter;
206
207 stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
208 do {
209 start = u64_stats_fetch_begin(&stats->syncp);
210 counter = stats->usage_cntrs[i];
211 } while (u64_stats_fetch_retry(&stats->syncp, start));
212
213 ma->masks_usage_zero_cntr[i] += counter;
214 }
215 }
216 }
217
tbl_mask_array_alloc(int size)218 static struct mask_array *tbl_mask_array_alloc(int size)
219 {
220 struct mask_array *new;
221
222 size = max(MASK_ARRAY_SIZE_MIN, size);
223 new = kzalloc(sizeof(struct mask_array) +
224 sizeof(struct sw_flow_mask *) * size +
225 sizeof(u64) * size, GFP_KERNEL);
226 if (!new)
227 return NULL;
228
229 new->masks_usage_zero_cntr = (u64 *)((u8 *)new +
230 sizeof(struct mask_array) +
231 sizeof(struct sw_flow_mask *) *
232 size);
233
234 new->masks_usage_stats = __alloc_percpu(sizeof(struct mask_array_stats) +
235 sizeof(u64) * size,
236 __alignof__(u64));
237 if (!new->masks_usage_stats) {
238 kfree(new);
239 return NULL;
240 }
241
242 new->count = 0;
243 new->max = size;
244
245 return new;
246 }
247
tbl_mask_array_realloc(struct flow_table * tbl,int size)248 static int tbl_mask_array_realloc(struct flow_table *tbl, int size)
249 {
250 struct mask_array *old;
251 struct mask_array *new;
252
253 new = tbl_mask_array_alloc(size);
254 if (!new)
255 return -ENOMEM;
256
257 old = ovsl_dereference(tbl->mask_array);
258 if (old) {
259 int i;
260
261 for (i = 0; i < old->max; i++) {
262 if (ovsl_dereference(old->masks[i]))
263 new->masks[new->count++] = old->masks[i];
264 }
265 call_rcu(&old->rcu, mask_array_rcu_cb);
266 }
267
268 rcu_assign_pointer(tbl->mask_array, new);
269
270 return 0;
271 }
272
tbl_mask_array_add_mask(struct flow_table * tbl,struct sw_flow_mask * new)273 static int tbl_mask_array_add_mask(struct flow_table *tbl,
274 struct sw_flow_mask *new)
275 {
276 struct mask_array *ma = ovsl_dereference(tbl->mask_array);
277 int err, ma_count = READ_ONCE(ma->count);
278
279 if (ma_count >= ma->max) {
280 err = tbl_mask_array_realloc(tbl, ma->max +
281 MASK_ARRAY_SIZE_MIN);
282 if (err)
283 return err;
284
285 ma = ovsl_dereference(tbl->mask_array);
286 } else {
287 /* On every add or delete we need to reset the counters so
288 * every new mask gets a fair chance of being prioritized.
289 */
290 tbl_mask_array_reset_counters(ma);
291 }
292
293 BUG_ON(ovsl_dereference(ma->masks[ma_count]));
294
295 rcu_assign_pointer(ma->masks[ma_count], new);
296 WRITE_ONCE(ma->count, ma_count + 1);
297
298 return 0;
299 }
300
tbl_mask_array_del_mask(struct flow_table * tbl,struct sw_flow_mask * mask)301 static void tbl_mask_array_del_mask(struct flow_table *tbl,
302 struct sw_flow_mask *mask)
303 {
304 struct mask_array *ma = ovsl_dereference(tbl->mask_array);
305 int i, ma_count = READ_ONCE(ma->count);
306
307 /* Remove the deleted mask pointers from the array */
308 for (i = 0; i < ma_count; i++) {
309 if (mask == ovsl_dereference(ma->masks[i]))
310 goto found;
311 }
312
313 BUG();
314 return;
315
316 found:
317 WRITE_ONCE(ma->count, ma_count - 1);
318
319 rcu_assign_pointer(ma->masks[i], ma->masks[ma_count - 1]);
320 RCU_INIT_POINTER(ma->masks[ma_count - 1], NULL);
321
322 kfree_rcu(mask, rcu);
323
324 /* Shrink the mask array if necessary. */
325 if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) &&
326 ma_count <= (ma->max / 3))
327 tbl_mask_array_realloc(tbl, ma->max / 2);
328 else
329 tbl_mask_array_reset_counters(ma);
330
331 }
332
333 /* Remove 'mask' from the mask list, if it is not needed any more. */
flow_mask_remove(struct flow_table * tbl,struct sw_flow_mask * mask)334 static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask)
335 {
336 if (mask) {
337 /* ovs-lock is required to protect mask-refcount and
338 * mask list.
339 */
340 ASSERT_OVSL();
341 BUG_ON(!mask->ref_count);
342 mask->ref_count--;
343
344 if (!mask->ref_count)
345 tbl_mask_array_del_mask(tbl, mask);
346 }
347 }
348
__mask_cache_destroy(struct mask_cache * mc)349 static void __mask_cache_destroy(struct mask_cache *mc)
350 {
351 free_percpu(mc->mask_cache);
352 kfree(mc);
353 }
354
mask_cache_rcu_cb(struct rcu_head * rcu)355 static void mask_cache_rcu_cb(struct rcu_head *rcu)
356 {
357 struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu);
358
359 __mask_cache_destroy(mc);
360 }
361
tbl_mask_cache_alloc(u32 size)362 static struct mask_cache *tbl_mask_cache_alloc(u32 size)
363 {
364 struct mask_cache_entry __percpu *cache = NULL;
365 struct mask_cache *new;
366
367 /* Only allow size to be 0, or a power of 2, and does not exceed
368 * percpu allocation size.
369 */
370 if ((!is_power_of_2(size) && size != 0) ||
371 (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
372 return NULL;
373
374 new = kzalloc(sizeof(*new), GFP_KERNEL);
375 if (!new)
376 return NULL;
377
378 new->cache_size = size;
379 if (new->cache_size > 0) {
380 cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry),
381 new->cache_size),
382 __alignof__(struct mask_cache_entry));
383 if (!cache) {
384 kfree(new);
385 return NULL;
386 }
387 }
388
389 new->mask_cache = cache;
390 return new;
391 }
ovs_flow_tbl_masks_cache_resize(struct flow_table * table,u32 size)392 int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size)
393 {
394 struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
395 struct mask_cache *new;
396
397 if (size == mc->cache_size)
398 return 0;
399
400 if ((!is_power_of_2(size) && size != 0) ||
401 (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
402 return -EINVAL;
403
404 new = tbl_mask_cache_alloc(size);
405 if (!new)
406 return -ENOMEM;
407
408 rcu_assign_pointer(table->mask_cache, new);
409 call_rcu(&mc->rcu, mask_cache_rcu_cb);
410
411 return 0;
412 }
413
ovs_flow_tbl_init(struct flow_table * table)414 int ovs_flow_tbl_init(struct flow_table *table)
415 {
416 struct table_instance *ti, *ufid_ti;
417 struct mask_cache *mc;
418 struct mask_array *ma;
419
420 mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES);
421 if (!mc)
422 return -ENOMEM;
423
424 ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN);
425 if (!ma)
426 goto free_mask_cache;
427
428 ti = table_instance_alloc(TBL_MIN_BUCKETS);
429 if (!ti)
430 goto free_mask_array;
431
432 ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
433 if (!ufid_ti)
434 goto free_ti;
435
436 rcu_assign_pointer(table->ti, ti);
437 rcu_assign_pointer(table->ufid_ti, ufid_ti);
438 rcu_assign_pointer(table->mask_array, ma);
439 rcu_assign_pointer(table->mask_cache, mc);
440 table->last_rehash = jiffies;
441 table->count = 0;
442 table->ufid_count = 0;
443 return 0;
444
445 free_ti:
446 __table_instance_destroy(ti);
447 free_mask_array:
448 __mask_array_destroy(ma);
449 free_mask_cache:
450 __mask_cache_destroy(mc);
451 return -ENOMEM;
452 }
453
flow_tbl_destroy_rcu_cb(struct rcu_head * rcu)454 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
455 {
456 struct table_instance *ti;
457
458 ti = container_of(rcu, struct table_instance, rcu);
459 __table_instance_destroy(ti);
460 }
461
table_instance_flow_free(struct flow_table * table,struct table_instance * ti,struct table_instance * ufid_ti,struct sw_flow * flow)462 static void table_instance_flow_free(struct flow_table *table,
463 struct table_instance *ti,
464 struct table_instance *ufid_ti,
465 struct sw_flow *flow)
466 {
467 hlist_del_rcu(&flow->flow_table.node[ti->node_ver]);
468 table->count--;
469
470 if (ovs_identifier_is_ufid(&flow->id)) {
471 hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]);
472 table->ufid_count--;
473 }
474
475 flow_mask_remove(table, flow->mask);
476 }
477
478 /* Must be called with OVS mutex held. */
table_instance_flow_flush(struct flow_table * table,struct table_instance * ti,struct table_instance * ufid_ti)479 void table_instance_flow_flush(struct flow_table *table,
480 struct table_instance *ti,
481 struct table_instance *ufid_ti)
482 {
483 int i;
484
485 for (i = 0; i < ti->n_buckets; i++) {
486 struct hlist_head *head = &ti->buckets[i];
487 struct hlist_node *n;
488 struct sw_flow *flow;
489
490 hlist_for_each_entry_safe(flow, n, head,
491 flow_table.node[ti->node_ver]) {
492
493 table_instance_flow_free(table, ti, ufid_ti,
494 flow);
495 ovs_flow_free(flow, true);
496 }
497 }
498
499 if (WARN_ON(table->count != 0 ||
500 table->ufid_count != 0)) {
501 table->count = 0;
502 table->ufid_count = 0;
503 }
504 }
505
table_instance_destroy(struct table_instance * ti,struct table_instance * ufid_ti)506 static void table_instance_destroy(struct table_instance *ti,
507 struct table_instance *ufid_ti)
508 {
509 call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
510 call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb);
511 }
512
513 /* No need for locking this function is called from RCU callback or
514 * error path.
515 */
ovs_flow_tbl_destroy(struct flow_table * table)516 void ovs_flow_tbl_destroy(struct flow_table *table)
517 {
518 struct table_instance *ti = rcu_dereference_raw(table->ti);
519 struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti);
520 struct mask_cache *mc = rcu_dereference_raw(table->mask_cache);
521 struct mask_array *ma = rcu_dereference_raw(table->mask_array);
522
523 call_rcu(&mc->rcu, mask_cache_rcu_cb);
524 call_rcu(&ma->rcu, mask_array_rcu_cb);
525 table_instance_destroy(ti, ufid_ti);
526 }
527
ovs_flow_tbl_dump_next(struct table_instance * ti,u32 * bucket,u32 * last)528 struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti,
529 u32 *bucket, u32 *last)
530 {
531 struct sw_flow *flow;
532 struct hlist_head *head;
533 int ver;
534 int i;
535
536 ver = ti->node_ver;
537 while (*bucket < ti->n_buckets) {
538 i = 0;
539 head = &ti->buckets[*bucket];
540 hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) {
541 if (i < *last) {
542 i++;
543 continue;
544 }
545 *last = i + 1;
546 return flow;
547 }
548 (*bucket)++;
549 *last = 0;
550 }
551
552 return NULL;
553 }
554
find_bucket(struct table_instance * ti,u32 hash)555 static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash)
556 {
557 hash = jhash_1word(hash, ti->hash_seed);
558 return &ti->buckets[hash & (ti->n_buckets - 1)];
559 }
560
table_instance_insert(struct table_instance * ti,struct sw_flow * flow)561 static void table_instance_insert(struct table_instance *ti,
562 struct sw_flow *flow)
563 {
564 struct hlist_head *head;
565
566 head = find_bucket(ti, flow->flow_table.hash);
567 hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head);
568 }
569
ufid_table_instance_insert(struct table_instance * ti,struct sw_flow * flow)570 static void ufid_table_instance_insert(struct table_instance *ti,
571 struct sw_flow *flow)
572 {
573 struct hlist_head *head;
574
575 head = find_bucket(ti, flow->ufid_table.hash);
576 hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head);
577 }
578
flow_table_copy_flows(struct table_instance * old,struct table_instance * new,bool ufid)579 static void flow_table_copy_flows(struct table_instance *old,
580 struct table_instance *new, bool ufid)
581 {
582 int old_ver;
583 int i;
584
585 old_ver = old->node_ver;
586 new->node_ver = !old_ver;
587
588 /* Insert in new table. */
589 for (i = 0; i < old->n_buckets; i++) {
590 struct sw_flow *flow;
591 struct hlist_head *head = &old->buckets[i];
592
593 if (ufid)
594 hlist_for_each_entry_rcu(flow, head,
595 ufid_table.node[old_ver],
596 lockdep_ovsl_is_held())
597 ufid_table_instance_insert(new, flow);
598 else
599 hlist_for_each_entry_rcu(flow, head,
600 flow_table.node[old_ver],
601 lockdep_ovsl_is_held())
602 table_instance_insert(new, flow);
603 }
604 }
605
table_instance_rehash(struct table_instance * ti,int n_buckets,bool ufid)606 static struct table_instance *table_instance_rehash(struct table_instance *ti,
607 int n_buckets, bool ufid)
608 {
609 struct table_instance *new_ti;
610
611 new_ti = table_instance_alloc(n_buckets);
612 if (!new_ti)
613 return NULL;
614
615 flow_table_copy_flows(ti, new_ti, ufid);
616
617 return new_ti;
618 }
619
ovs_flow_tbl_flush(struct flow_table * flow_table)620 int ovs_flow_tbl_flush(struct flow_table *flow_table)
621 {
622 struct table_instance *old_ti, *new_ti;
623 struct table_instance *old_ufid_ti, *new_ufid_ti;
624
625 new_ti = table_instance_alloc(TBL_MIN_BUCKETS);
626 if (!new_ti)
627 return -ENOMEM;
628 new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
629 if (!new_ufid_ti)
630 goto err_free_ti;
631
632 old_ti = ovsl_dereference(flow_table->ti);
633 old_ufid_ti = ovsl_dereference(flow_table->ufid_ti);
634
635 rcu_assign_pointer(flow_table->ti, new_ti);
636 rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti);
637 flow_table->last_rehash = jiffies;
638
639 table_instance_flow_flush(flow_table, old_ti, old_ufid_ti);
640 table_instance_destroy(old_ti, old_ufid_ti);
641 return 0;
642
643 err_free_ti:
644 __table_instance_destroy(new_ti);
645 return -ENOMEM;
646 }
647
flow_hash(const struct sw_flow_key * key,const struct sw_flow_key_range * range)648 static u32 flow_hash(const struct sw_flow_key *key,
649 const struct sw_flow_key_range *range)
650 {
651 const u32 *hash_key = (const u32 *)((const u8 *)key + range->start);
652
653 /* Make sure number of hash bytes are multiple of u32. */
654 int hash_u32s = range_n_bytes(range) >> 2;
655
656 return jhash2(hash_key, hash_u32s, 0);
657 }
658
flow_key_start(const struct sw_flow_key * key)659 static int flow_key_start(const struct sw_flow_key *key)
660 {
661 if (key->tun_proto)
662 return 0;
663 else
664 return rounddown(offsetof(struct sw_flow_key, phy),
665 sizeof(long));
666 }
667
cmp_key(const struct sw_flow_key * key1,const struct sw_flow_key * key2,int key_start,int key_end)668 static bool cmp_key(const struct sw_flow_key *key1,
669 const struct sw_flow_key *key2,
670 int key_start, int key_end)
671 {
672 const long *cp1 = (const long *)((const u8 *)key1 + key_start);
673 const long *cp2 = (const long *)((const u8 *)key2 + key_start);
674 int i;
675
676 for (i = key_start; i < key_end; i += sizeof(long))
677 if (*cp1++ ^ *cp2++)
678 return false;
679
680 return true;
681 }
682
flow_cmp_masked_key(const struct sw_flow * flow,const struct sw_flow_key * key,const struct sw_flow_key_range * range)683 static bool flow_cmp_masked_key(const struct sw_flow *flow,
684 const struct sw_flow_key *key,
685 const struct sw_flow_key_range *range)
686 {
687 return cmp_key(&flow->key, key, range->start, range->end);
688 }
689
ovs_flow_cmp_unmasked_key(const struct sw_flow * flow,const struct sw_flow_match * match)690 static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
691 const struct sw_flow_match *match)
692 {
693 struct sw_flow_key *key = match->key;
694 int key_start = flow_key_start(key);
695 int key_end = match->range.end;
696
697 BUG_ON(ovs_identifier_is_ufid(&flow->id));
698 return cmp_key(flow->id.unmasked_key, key, key_start, key_end);
699 }
700
masked_flow_lookup(struct table_instance * ti,const struct sw_flow_key * unmasked,const struct sw_flow_mask * mask,u32 * n_mask_hit)701 static struct sw_flow *masked_flow_lookup(struct table_instance *ti,
702 const struct sw_flow_key *unmasked,
703 const struct sw_flow_mask *mask,
704 u32 *n_mask_hit)
705 {
706 struct sw_flow *flow;
707 struct hlist_head *head;
708 u32 hash;
709 struct sw_flow_key masked_key;
710
711 ovs_flow_mask_key(&masked_key, unmasked, false, mask);
712 hash = flow_hash(&masked_key, &mask->range);
713 head = find_bucket(ti, hash);
714 (*n_mask_hit)++;
715
716 hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver],
717 lockdep_ovsl_is_held()) {
718 if (flow->mask == mask && flow->flow_table.hash == hash &&
719 flow_cmp_masked_key(flow, &masked_key, &mask->range))
720 return flow;
721 }
722 return NULL;
723 }
724
725 /* Flow lookup does full lookup on flow table. It starts with
726 * mask from index passed in *index.
727 * This function MUST be called with BH disabled due to the use
728 * of CPU specific variables.
729 */
flow_lookup(struct flow_table * tbl,struct table_instance * ti,struct mask_array * ma,const struct sw_flow_key * key,u32 * n_mask_hit,u32 * n_cache_hit,u32 * index)730 static struct sw_flow *flow_lookup(struct flow_table *tbl,
731 struct table_instance *ti,
732 struct mask_array *ma,
733 const struct sw_flow_key *key,
734 u32 *n_mask_hit,
735 u32 *n_cache_hit,
736 u32 *index)
737 {
738 struct mask_array_stats *stats = this_cpu_ptr(ma->masks_usage_stats);
739 struct sw_flow *flow;
740 struct sw_flow_mask *mask;
741 int i;
742
743 if (likely(*index < ma->max)) {
744 mask = rcu_dereference_ovsl(ma->masks[*index]);
745 if (mask) {
746 flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
747 if (flow) {
748 u64_stats_update_begin(&stats->syncp);
749 stats->usage_cntrs[*index]++;
750 u64_stats_update_end(&stats->syncp);
751 (*n_cache_hit)++;
752 return flow;
753 }
754 }
755 }
756
757 for (i = 0; i < ma->max; i++) {
758
759 if (i == *index)
760 continue;
761
762 mask = rcu_dereference_ovsl(ma->masks[i]);
763 if (unlikely(!mask))
764 break;
765
766 flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
767 if (flow) { /* Found */
768 *index = i;
769 u64_stats_update_begin(&stats->syncp);
770 stats->usage_cntrs[*index]++;
771 u64_stats_update_end(&stats->syncp);
772 return flow;
773 }
774 }
775
776 return NULL;
777 }
778
779 /*
780 * mask_cache maps flow to probable mask. This cache is not tightly
781 * coupled cache, It means updates to mask list can result in inconsistent
782 * cache entry in mask cache.
783 * This is per cpu cache and is divided in MC_HASH_SEGS segments.
784 * In case of a hash collision the entry is hashed in next segment.
785 * */
ovs_flow_tbl_lookup_stats(struct flow_table * tbl,const struct sw_flow_key * key,u32 skb_hash,u32 * n_mask_hit,u32 * n_cache_hit)786 struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl,
787 const struct sw_flow_key *key,
788 u32 skb_hash,
789 u32 *n_mask_hit,
790 u32 *n_cache_hit)
791 {
792 struct mask_cache *mc = rcu_dereference(tbl->mask_cache);
793 struct mask_array *ma = rcu_dereference(tbl->mask_array);
794 struct table_instance *ti = rcu_dereference(tbl->ti);
795 struct mask_cache_entry *entries, *ce;
796 struct sw_flow *flow;
797 u32 hash;
798 int seg;
799
800 *n_mask_hit = 0;
801 *n_cache_hit = 0;
802 if (unlikely(!skb_hash || mc->cache_size == 0)) {
803 u32 mask_index = 0;
804 u32 cache = 0;
805
806 return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache,
807 &mask_index);
808 }
809
810 /* Pre and post recirulation flows usually have the same skb_hash
811 * value. To avoid hash collisions, rehash the 'skb_hash' with
812 * 'recirc_id'. */
813 if (key->recirc_id)
814 skb_hash = jhash_1word(skb_hash, key->recirc_id);
815
816 ce = NULL;
817 hash = skb_hash;
818 entries = this_cpu_ptr(mc->mask_cache);
819
820 /* Find the cache entry 'ce' to operate on. */
821 for (seg = 0; seg < MC_HASH_SEGS; seg++) {
822 int index = hash & (mc->cache_size - 1);
823 struct mask_cache_entry *e;
824
825 e = &entries[index];
826 if (e->skb_hash == skb_hash) {
827 flow = flow_lookup(tbl, ti, ma, key, n_mask_hit,
828 n_cache_hit, &e->mask_index);
829 if (!flow)
830 e->skb_hash = 0;
831 return flow;
832 }
833
834 if (!ce || e->skb_hash < ce->skb_hash)
835 ce = e; /* A better replacement cache candidate. */
836
837 hash >>= MC_HASH_SHIFT;
838 }
839
840 /* Cache miss, do full lookup. */
841 flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit,
842 &ce->mask_index);
843 if (flow)
844 ce->skb_hash = skb_hash;
845
846 *n_cache_hit = 0;
847 return flow;
848 }
849
ovs_flow_tbl_lookup(struct flow_table * tbl,const struct sw_flow_key * key)850 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl,
851 const struct sw_flow_key *key)
852 {
853 struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
854 struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array);
855 u32 __always_unused n_mask_hit;
856 u32 __always_unused n_cache_hit;
857 struct sw_flow *flow;
858 u32 index = 0;
859
860 /* This function gets called trough the netlink interface and therefore
861 * is preemptible. However, flow_lookup() function needs to be called
862 * with BH disabled due to CPU specific variables.
863 */
864 local_bh_disable();
865 flow = flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index);
866 local_bh_enable();
867 return flow;
868 }
869
ovs_flow_tbl_lookup_exact(struct flow_table * tbl,const struct sw_flow_match * match)870 struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl,
871 const struct sw_flow_match *match)
872 {
873 struct mask_array *ma = ovsl_dereference(tbl->mask_array);
874 int i;
875
876 /* Always called under ovs-mutex. */
877 for (i = 0; i < ma->max; i++) {
878 struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
879 u32 __always_unused n_mask_hit;
880 struct sw_flow_mask *mask;
881 struct sw_flow *flow;
882
883 mask = ovsl_dereference(ma->masks[i]);
884 if (!mask)
885 continue;
886
887 flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit);
888 if (flow && ovs_identifier_is_key(&flow->id) &&
889 ovs_flow_cmp_unmasked_key(flow, match)) {
890 return flow;
891 }
892 }
893
894 return NULL;
895 }
896
ufid_hash(const struct sw_flow_id * sfid)897 static u32 ufid_hash(const struct sw_flow_id *sfid)
898 {
899 return jhash(sfid->ufid, sfid->ufid_len, 0);
900 }
901
ovs_flow_cmp_ufid(const struct sw_flow * flow,const struct sw_flow_id * sfid)902 static bool ovs_flow_cmp_ufid(const struct sw_flow *flow,
903 const struct sw_flow_id *sfid)
904 {
905 if (flow->id.ufid_len != sfid->ufid_len)
906 return false;
907
908 return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len);
909 }
910
ovs_flow_cmp(const struct sw_flow * flow,const struct sw_flow_match * match)911 bool ovs_flow_cmp(const struct sw_flow *flow,
912 const struct sw_flow_match *match)
913 {
914 if (ovs_identifier_is_ufid(&flow->id))
915 return flow_cmp_masked_key(flow, match->key, &match->range);
916
917 return ovs_flow_cmp_unmasked_key(flow, match);
918 }
919
ovs_flow_tbl_lookup_ufid(struct flow_table * tbl,const struct sw_flow_id * ufid)920 struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl,
921 const struct sw_flow_id *ufid)
922 {
923 struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti);
924 struct sw_flow *flow;
925 struct hlist_head *head;
926 u32 hash;
927
928 hash = ufid_hash(ufid);
929 head = find_bucket(ti, hash);
930 hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver],
931 lockdep_ovsl_is_held()) {
932 if (flow->ufid_table.hash == hash &&
933 ovs_flow_cmp_ufid(flow, ufid))
934 return flow;
935 }
936 return NULL;
937 }
938
ovs_flow_tbl_num_masks(const struct flow_table * table)939 int ovs_flow_tbl_num_masks(const struct flow_table *table)
940 {
941 struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
942 return READ_ONCE(ma->count);
943 }
944
ovs_flow_tbl_masks_cache_size(const struct flow_table * table)945 u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table)
946 {
947 struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
948
949 return READ_ONCE(mc->cache_size);
950 }
951
table_instance_expand(struct table_instance * ti,bool ufid)952 static struct table_instance *table_instance_expand(struct table_instance *ti,
953 bool ufid)
954 {
955 return table_instance_rehash(ti, ti->n_buckets * 2, ufid);
956 }
957
958 /* Must be called with OVS mutex held. */
ovs_flow_tbl_remove(struct flow_table * table,struct sw_flow * flow)959 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
960 {
961 struct table_instance *ti = ovsl_dereference(table->ti);
962 struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti);
963
964 BUG_ON(table->count == 0);
965 table_instance_flow_free(table, ti, ufid_ti, flow);
966 }
967
mask_alloc(void)968 static struct sw_flow_mask *mask_alloc(void)
969 {
970 struct sw_flow_mask *mask;
971
972 mask = kmalloc(sizeof(*mask), GFP_KERNEL);
973 if (mask)
974 mask->ref_count = 1;
975
976 return mask;
977 }
978
mask_equal(const struct sw_flow_mask * a,const struct sw_flow_mask * b)979 static bool mask_equal(const struct sw_flow_mask *a,
980 const struct sw_flow_mask *b)
981 {
982 const u8 *a_ = (const u8 *)&a->key + a->range.start;
983 const u8 *b_ = (const u8 *)&b->key + b->range.start;
984
985 return (a->range.end == b->range.end)
986 && (a->range.start == b->range.start)
987 && (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
988 }
989
flow_mask_find(const struct flow_table * tbl,const struct sw_flow_mask * mask)990 static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl,
991 const struct sw_flow_mask *mask)
992 {
993 struct mask_array *ma;
994 int i;
995
996 ma = ovsl_dereference(tbl->mask_array);
997 for (i = 0; i < ma->max; i++) {
998 struct sw_flow_mask *t;
999 t = ovsl_dereference(ma->masks[i]);
1000
1001 if (t && mask_equal(mask, t))
1002 return t;
1003 }
1004
1005 return NULL;
1006 }
1007
1008 /* Add 'mask' into the mask list, if it is not already there. */
flow_mask_insert(struct flow_table * tbl,struct sw_flow * flow,const struct sw_flow_mask * new)1009 static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow,
1010 const struct sw_flow_mask *new)
1011 {
1012 struct sw_flow_mask *mask;
1013
1014 mask = flow_mask_find(tbl, new);
1015 if (!mask) {
1016 /* Allocate a new mask if none exists. */
1017 mask = mask_alloc();
1018 if (!mask)
1019 return -ENOMEM;
1020 mask->key = new->key;
1021 mask->range = new->range;
1022
1023 /* Add mask to mask-list. */
1024 if (tbl_mask_array_add_mask(tbl, mask)) {
1025 kfree(mask);
1026 return -ENOMEM;
1027 }
1028 } else {
1029 BUG_ON(!mask->ref_count);
1030 mask->ref_count++;
1031 }
1032
1033 flow->mask = mask;
1034 return 0;
1035 }
1036
1037 /* Must be called with OVS mutex held. */
flow_key_insert(struct flow_table * table,struct sw_flow * flow)1038 static void flow_key_insert(struct flow_table *table, struct sw_flow *flow)
1039 {
1040 struct table_instance *new_ti = NULL;
1041 struct table_instance *ti;
1042
1043 flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range);
1044 ti = ovsl_dereference(table->ti);
1045 table_instance_insert(ti, flow);
1046 table->count++;
1047
1048 /* Expand table, if necessary, to make room. */
1049 if (table->count > ti->n_buckets)
1050 new_ti = table_instance_expand(ti, false);
1051 else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL))
1052 new_ti = table_instance_rehash(ti, ti->n_buckets, false);
1053
1054 if (new_ti) {
1055 rcu_assign_pointer(table->ti, new_ti);
1056 call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1057 table->last_rehash = jiffies;
1058 }
1059 }
1060
1061 /* Must be called with OVS mutex held. */
flow_ufid_insert(struct flow_table * table,struct sw_flow * flow)1062 static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow)
1063 {
1064 struct table_instance *ti;
1065
1066 flow->ufid_table.hash = ufid_hash(&flow->id);
1067 ti = ovsl_dereference(table->ufid_ti);
1068 ufid_table_instance_insert(ti, flow);
1069 table->ufid_count++;
1070
1071 /* Expand table, if necessary, to make room. */
1072 if (table->ufid_count > ti->n_buckets) {
1073 struct table_instance *new_ti;
1074
1075 new_ti = table_instance_expand(ti, true);
1076 if (new_ti) {
1077 rcu_assign_pointer(table->ufid_ti, new_ti);
1078 call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1079 }
1080 }
1081 }
1082
1083 /* Must be called with OVS mutex held. */
ovs_flow_tbl_insert(struct flow_table * table,struct sw_flow * flow,const struct sw_flow_mask * mask)1084 int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
1085 const struct sw_flow_mask *mask)
1086 {
1087 int err;
1088
1089 err = flow_mask_insert(table, flow, mask);
1090 if (err)
1091 return err;
1092 flow_key_insert(table, flow);
1093 if (ovs_identifier_is_ufid(&flow->id))
1094 flow_ufid_insert(table, flow);
1095
1096 return 0;
1097 }
1098
compare_mask_and_count(const void * a,const void * b)1099 static int compare_mask_and_count(const void *a, const void *b)
1100 {
1101 const struct mask_count *mc_a = a;
1102 const struct mask_count *mc_b = b;
1103
1104 return (s64)mc_b->counter - (s64)mc_a->counter;
1105 }
1106
1107 /* Must be called with OVS mutex held. */
ovs_flow_masks_rebalance(struct flow_table * table)1108 void ovs_flow_masks_rebalance(struct flow_table *table)
1109 {
1110 struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
1111 struct mask_count *masks_and_count;
1112 struct mask_array *new;
1113 int masks_entries = 0;
1114 int i;
1115
1116 /* Build array of all current entries with use counters. */
1117 masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count),
1118 GFP_KERNEL);
1119 if (!masks_and_count)
1120 return;
1121
1122 for (i = 0; i < ma->max; i++) {
1123 struct sw_flow_mask *mask;
1124 int cpu;
1125
1126 mask = rcu_dereference_ovsl(ma->masks[i]);
1127 if (unlikely(!mask))
1128 break;
1129
1130 masks_and_count[i].index = i;
1131 masks_and_count[i].counter = 0;
1132
1133 for_each_possible_cpu(cpu) {
1134 struct mask_array_stats *stats;
1135 unsigned int start;
1136 u64 counter;
1137
1138 stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
1139 do {
1140 start = u64_stats_fetch_begin(&stats->syncp);
1141 counter = stats->usage_cntrs[i];
1142 } while (u64_stats_fetch_retry(&stats->syncp, start));
1143
1144 masks_and_count[i].counter += counter;
1145 }
1146
1147 /* Subtract the zero count value. */
1148 masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i];
1149
1150 /* Rather than calling tbl_mask_array_reset_counters()
1151 * below when no change is needed, do it inline here.
1152 */
1153 ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter;
1154 }
1155
1156 if (i == 0)
1157 goto free_mask_entries;
1158
1159 /* Sort the entries */
1160 masks_entries = i;
1161 sort(masks_and_count, masks_entries, sizeof(*masks_and_count),
1162 compare_mask_and_count, NULL);
1163
1164 /* If the order is the same, nothing to do... */
1165 for (i = 0; i < masks_entries; i++) {
1166 if (i != masks_and_count[i].index)
1167 break;
1168 }
1169 if (i == masks_entries)
1170 goto free_mask_entries;
1171
1172 /* Rebuilt the new list in order of usage. */
1173 new = tbl_mask_array_alloc(ma->max);
1174 if (!new)
1175 goto free_mask_entries;
1176
1177 for (i = 0; i < masks_entries; i++) {
1178 int index = masks_and_count[i].index;
1179
1180 if (ovsl_dereference(ma->masks[index]))
1181 new->masks[new->count++] = ma->masks[index];
1182 }
1183
1184 rcu_assign_pointer(table->mask_array, new);
1185 call_rcu(&ma->rcu, mask_array_rcu_cb);
1186
1187 free_mask_entries:
1188 kfree(masks_and_count);
1189 }
1190
1191 /* Initializes the flow module.
1192 * Returns zero if successful or a negative error code. */
ovs_flow_init(void)1193 int ovs_flow_init(void)
1194 {
1195 BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
1196 BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1197
1198 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow)
1199 + (nr_cpu_ids
1200 * sizeof(struct sw_flow_stats *))
1201 + cpumask_size(),
1202 0, 0, NULL);
1203 if (flow_cache == NULL)
1204 return -ENOMEM;
1205
1206 flow_stats_cache
1207 = kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats),
1208 0, SLAB_HWCACHE_ALIGN, NULL);
1209 if (flow_stats_cache == NULL) {
1210 kmem_cache_destroy(flow_cache);
1211 flow_cache = NULL;
1212 return -ENOMEM;
1213 }
1214
1215 return 0;
1216 }
1217
1218 /* Uninitializes the flow module. */
ovs_flow_exit(void)1219 void ovs_flow_exit(void)
1220 {
1221 kmem_cache_destroy(flow_stats_cache);
1222 kmem_cache_destroy(flow_cache);
1223 }
1224