1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30
31 #include "disasm.h"
32
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43
44 /* bpf_check() is a static code analyzer that walks eBPF program
45 * instruction by instruction and updates register/stack state.
46 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47 *
48 * The first pass is depth-first-search to check that the program is a DAG.
49 * It rejects the following programs:
50 * - larger than BPF_MAXINSNS insns
51 * - if loop is present (detected via back-edge)
52 * - unreachable insns exist (shouldn't be a forest. program = one function)
53 * - out of bounds or malformed jumps
54 * The second pass is all possible path descent from the 1st insn.
55 * Since it's analyzing all paths through the program, the length of the
56 * analysis is limited to 64k insn, which may be hit even if total number of
57 * insn is less then 4K, but there are too many branches that change stack/regs.
58 * Number of 'branches to be analyzed' is limited to 1k
59 *
60 * On entry to each instruction, each register has a type, and the instruction
61 * changes the types of the registers depending on instruction semantics.
62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63 * copied to R1.
64 *
65 * All registers are 64-bit.
66 * R0 - return register
67 * R1-R5 argument passing registers
68 * R6-R9 callee saved registers
69 * R10 - frame pointer read-only
70 *
71 * At the start of BPF program the register R1 contains a pointer to bpf_context
72 * and has type PTR_TO_CTX.
73 *
74 * Verifier tracks arithmetic operations on pointers in case:
75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77 * 1st insn copies R10 (which has FRAME_PTR) type into R1
78 * and 2nd arithmetic instruction is pattern matched to recognize
79 * that it wants to construct a pointer to some element within stack.
80 * So after 2nd insn, the register R1 has type PTR_TO_STACK
81 * (and -20 constant is saved for further stack bounds checking).
82 * Meaning that this reg is a pointer to stack plus known immediate constant.
83 *
84 * Most of the time the registers have SCALAR_VALUE type, which
85 * means the register has some value, but it's not a valid pointer.
86 * (like pointer plus pointer becomes SCALAR_VALUE type)
87 *
88 * When verifier sees load or store instructions the type of base register
89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90 * four pointer types recognized by check_mem_access() function.
91 *
92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93 * and the range of [ptr, ptr + map's value_size) is accessible.
94 *
95 * registers used to pass values to function calls are checked against
96 * function argument constraints.
97 *
98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99 * It means that the register type passed to this function must be
100 * PTR_TO_STACK and it will be used inside the function as
101 * 'pointer to map element key'
102 *
103 * For example the argument constraints for bpf_map_lookup_elem():
104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105 * .arg1_type = ARG_CONST_MAP_PTR,
106 * .arg2_type = ARG_PTR_TO_MAP_KEY,
107 *
108 * ret_type says that this function returns 'pointer to map elem value or null'
109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110 * 2nd argument should be a pointer to stack, which will be used inside
111 * the helper function as a pointer to map element key.
112 *
113 * On the kernel side the helper function looks like:
114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115 * {
116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117 * void *key = (void *) (unsigned long) r2;
118 * void *value;
119 *
120 * here kernel can access 'key' and 'map' pointers safely, knowing that
121 * [key, key + map->key_size) bytes are valid and were initialized on
122 * the stack of eBPF program.
123 * }
124 *
125 * Corresponding eBPF program may look like:
126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130 * here verifier looks at prototype of map_lookup_elem() and sees:
131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133 *
134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136 * and were initialized prior to this call.
137 * If it's ok, then verifier allows this BPF_CALL insn and looks at
138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140 * returns either pointer to map value or NULL.
141 *
142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143 * insn, the register holding that pointer in the true branch changes state to
144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145 * branch. See check_cond_jmp_op().
146 *
147 * After the call R0 is set to return type of the function and registers R1-R5
148 * are set to NOT_INIT to indicate that they are no longer readable.
149 *
150 * The following reference types represent a potential reference to a kernel
151 * resource which, after first being allocated, must be checked and freed by
152 * the BPF program:
153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154 *
155 * When the verifier sees a helper call return a reference type, it allocates a
156 * pointer id for the reference and stores it in the current function state.
157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159 * passes through a NULL-check conditional. For the branch wherein the state is
160 * changed to CONST_IMM, the verifier releases the reference.
161 *
162 * For each helper function that allocates a reference, such as
163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164 * bpf_sk_release(). When a reference type passes into the release function,
165 * the verifier also releases the reference. If any unchecked or unreleased
166 * reference remains at the end of the program, the verifier rejects it.
167 */
168
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 /* verifer state is 'st'
172 * before processing instruction 'insn_idx'
173 * and after processing instruction 'prev_insn_idx'
174 */
175 struct bpf_verifier_state st;
176 int insn_idx;
177 int prev_insn_idx;
178 struct bpf_verifier_stack_elem *next;
179 /* length of verifier log at the time this state was pushed on stack */
180 u32 log_pos;
181 };
182
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
184 #define BPF_COMPLEXITY_LIMIT_STATES 64
185
186 #define BPF_MAP_KEY_POISON (1ULL << 63)
187 #define BPF_MAP_KEY_SEEN (1ULL << 62)
188
189 #define BPF_MAP_PTR_UNPRIV 1UL
190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
191 POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 const struct bpf_map *map, bool unpriv)
216 {
217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 unpriv |= bpf_map_ptr_unpriv(aux);
219 aux->map_ptr_state = (unsigned long)map |
220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 bool poisoned = bpf_map_key_poisoned(aux);
241
242 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245
bpf_helper_call(const struct bpf_insn * insn)246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 return insn->code == (BPF_JMP | BPF_CALL) &&
249 insn->src_reg == 0;
250 }
251
bpf_pseudo_call(const struct bpf_insn * insn)252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == BPF_PSEUDO_CALL;
256 }
257
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263
264 struct bpf_call_arg_meta {
265 struct bpf_map *map_ptr;
266 bool raw_mode;
267 bool pkt_access;
268 u8 release_regno;
269 int regno;
270 int access_size;
271 int mem_size;
272 u64 msize_max_value;
273 int ref_obj_id;
274 int dynptr_id;
275 int map_uid;
276 int func_id;
277 struct btf *btf;
278 u32 btf_id;
279 struct btf *ret_btf;
280 u32 ret_btf_id;
281 u32 subprogno;
282 struct btf_field *kptr_field;
283 };
284
285 struct bpf_kfunc_call_arg_meta {
286 /* In parameters */
287 struct btf *btf;
288 u32 func_id;
289 u32 kfunc_flags;
290 const struct btf_type *func_proto;
291 const char *func_name;
292 /* Out parameters */
293 u32 ref_obj_id;
294 u8 release_regno;
295 bool r0_rdonly;
296 u32 ret_btf_id;
297 u64 r0_size;
298 u32 subprogno;
299 struct {
300 u64 value;
301 bool found;
302 } arg_constant;
303
304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 * generally to pass info about user-defined local kptr types to later
306 * verification logic
307 * bpf_obj_drop
308 * Record the local kptr type to be drop'd
309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 * Record the local kptr type to be refcount_incr'd and use
311 * arg_owning_ref to determine whether refcount_acquire should be
312 * fallible
313 */
314 struct btf *arg_btf;
315 u32 arg_btf_id;
316 bool arg_owning_ref;
317
318 struct {
319 struct btf_field *field;
320 } arg_list_head;
321 struct {
322 struct btf_field *field;
323 } arg_rbtree_root;
324 struct {
325 enum bpf_dynptr_type type;
326 u32 id;
327 u32 ref_obj_id;
328 } initialized_dynptr;
329 struct {
330 u8 spi;
331 u8 frameno;
332 } iter;
333 u64 mem_size;
334 };
335
336 struct btf *btf_vmlinux;
337
338 static DEFINE_MUTEX(bpf_verifier_lock);
339
340 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 const struct bpf_line_info *linfo;
344 const struct bpf_prog *prog;
345 u32 i, nr_linfo;
346
347 prog = env->prog;
348 nr_linfo = prog->aux->nr_linfo;
349
350 if (!nr_linfo || insn_off >= prog->len)
351 return NULL;
352
353 linfo = prog->aux->linfo;
354 for (i = 1; i < nr_linfo; i++)
355 if (insn_off < linfo[i].insn_off)
356 break;
357
358 return &linfo[i - 1];
359 }
360
verbose(void * private_data,const char * fmt,...)361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 struct bpf_verifier_env *env = private_data;
364 va_list args;
365
366 if (!bpf_verifier_log_needed(&env->log))
367 return;
368
369 va_start(args, fmt);
370 bpf_verifier_vlog(&env->log, fmt, args);
371 va_end(args);
372 }
373
ltrim(const char * s)374 static const char *ltrim(const char *s)
375 {
376 while (isspace(*s))
377 s++;
378
379 return s;
380 }
381
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 u32 insn_off,
384 const char *prefix_fmt, ...)
385 {
386 const struct bpf_line_info *linfo;
387
388 if (!bpf_verifier_log_needed(&env->log))
389 return;
390
391 linfo = find_linfo(env, insn_off);
392 if (!linfo || linfo == env->prev_linfo)
393 return;
394
395 if (prefix_fmt) {
396 va_list args;
397
398 va_start(args, prefix_fmt);
399 bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 va_end(args);
401 }
402
403 verbose(env, "%s\n",
404 ltrim(btf_name_by_offset(env->prog->aux->btf,
405 linfo->line_off)));
406
407 env->prev_linfo = linfo;
408 }
409
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 struct bpf_reg_state *reg,
412 struct tnum *range, const char *ctx,
413 const char *reg_name)
414 {
415 char tn_buf[48];
416
417 verbose(env, "At %s the register %s ", ctx, reg_name);
418 if (!tnum_is_unknown(reg->var_off)) {
419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 verbose(env, "has value %s", tn_buf);
421 } else {
422 verbose(env, "has unknown scalar value");
423 }
424 tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 verbose(env, " should have been in %s\n", tn_buf);
426 }
427
type_is_pkt_pointer(enum bpf_reg_type type)428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 type = base_type(type);
431 return type == PTR_TO_PACKET ||
432 type == PTR_TO_PACKET_META;
433 }
434
type_is_sk_pointer(enum bpf_reg_type type)435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 return type == PTR_TO_SOCKET ||
438 type == PTR_TO_SOCK_COMMON ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_XDP_SOCK;
441 }
442
type_may_be_null(u32 type)443 static bool type_may_be_null(u32 type)
444 {
445 return type & PTR_MAYBE_NULL;
446 }
447
reg_not_null(const struct bpf_reg_state * reg)448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 enum bpf_reg_type type;
451
452 type = reg->type;
453 if (type_may_be_null(type))
454 return false;
455
456 type = base_type(type);
457 return type == PTR_TO_SOCKET ||
458 type == PTR_TO_TCP_SOCK ||
459 type == PTR_TO_MAP_VALUE ||
460 type == PTR_TO_MAP_KEY ||
461 type == PTR_TO_SOCK_COMMON ||
462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 type == PTR_TO_MEM;
464 }
465
type_is_ptr_alloc_obj(u32 type)466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470
type_is_non_owning_ref(u32 type)471 static bool type_is_non_owning_ref(u32 type)
472 {
473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475
reg_btf_record(const struct bpf_reg_state * reg)476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 struct btf_record *rec = NULL;
479 struct btf_struct_meta *meta;
480
481 if (reg->type == PTR_TO_MAP_VALUE) {
482 rec = reg->map_ptr->record;
483 } else if (type_is_ptr_alloc_obj(reg->type)) {
484 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 if (meta)
486 rec = meta->record;
487 }
488 return rec;
489 }
490
subprog_is_global(const struct bpf_verifier_env * env,int subprog)491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494
495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502
type_is_rdonly_mem(u32 type)503 static bool type_is_rdonly_mem(u32 type)
504 {
505 return type & MEM_RDONLY;
506 }
507
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)508 static bool is_acquire_function(enum bpf_func_id func_id,
509 const struct bpf_map *map)
510 {
511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512
513 if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 func_id == BPF_FUNC_sk_lookup_udp ||
515 func_id == BPF_FUNC_skc_lookup_tcp ||
516 func_id == BPF_FUNC_ringbuf_reserve ||
517 func_id == BPF_FUNC_kptr_xchg)
518 return true;
519
520 if (func_id == BPF_FUNC_map_lookup_elem &&
521 (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 map_type == BPF_MAP_TYPE_SOCKHASH))
523 return true;
524
525 return false;
526 }
527
is_ptr_cast_function(enum bpf_func_id func_id)528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 return func_id == BPF_FUNC_tcp_sock ||
531 func_id == BPF_FUNC_sk_fullsock ||
532 func_id == BPF_FUNC_skc_to_tcp_sock ||
533 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 func_id == BPF_FUNC_skc_to_udp6_sock ||
535 func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539
is_dynptr_ref_function(enum bpf_func_id func_id)540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 return func_id == BPF_FUNC_dynptr_data;
543 }
544
545 static bool is_sync_callback_calling_kfunc(u32 btf_id);
546
is_sync_callback_calling_function(enum bpf_func_id func_id)547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
548 {
549 return func_id == BPF_FUNC_for_each_map_elem ||
550 func_id == BPF_FUNC_find_vma ||
551 func_id == BPF_FUNC_loop ||
552 func_id == BPF_FUNC_user_ringbuf_drain;
553 }
554
is_async_callback_calling_function(enum bpf_func_id func_id)555 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
556 {
557 return func_id == BPF_FUNC_timer_set_callback;
558 }
559
is_callback_calling_function(enum bpf_func_id func_id)560 static bool is_callback_calling_function(enum bpf_func_id func_id)
561 {
562 return is_sync_callback_calling_function(func_id) ||
563 is_async_callback_calling_function(func_id);
564 }
565
is_sync_callback_calling_insn(struct bpf_insn * insn)566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
567 {
568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
570 }
571
is_storage_get_function(enum bpf_func_id func_id)572 static bool is_storage_get_function(enum bpf_func_id func_id)
573 {
574 return func_id == BPF_FUNC_sk_storage_get ||
575 func_id == BPF_FUNC_inode_storage_get ||
576 func_id == BPF_FUNC_task_storage_get ||
577 func_id == BPF_FUNC_cgrp_storage_get;
578 }
579
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
581 const struct bpf_map *map)
582 {
583 int ref_obj_uses = 0;
584
585 if (is_ptr_cast_function(func_id))
586 ref_obj_uses++;
587 if (is_acquire_function(func_id, map))
588 ref_obj_uses++;
589 if (is_dynptr_ref_function(func_id))
590 ref_obj_uses++;
591
592 return ref_obj_uses > 1;
593 }
594
is_cmpxchg_insn(const struct bpf_insn * insn)595 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
596 {
597 return BPF_CLASS(insn->code) == BPF_STX &&
598 BPF_MODE(insn->code) == BPF_ATOMIC &&
599 insn->imm == BPF_CMPXCHG;
600 }
601
602 /* string representation of 'enum bpf_reg_type'
603 *
604 * Note that reg_type_str() can not appear more than once in a single verbose()
605 * statement.
606 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)607 static const char *reg_type_str(struct bpf_verifier_env *env,
608 enum bpf_reg_type type)
609 {
610 char postfix[16] = {0}, prefix[64] = {0};
611 static const char * const str[] = {
612 [NOT_INIT] = "?",
613 [SCALAR_VALUE] = "scalar",
614 [PTR_TO_CTX] = "ctx",
615 [CONST_PTR_TO_MAP] = "map_ptr",
616 [PTR_TO_MAP_VALUE] = "map_value",
617 [PTR_TO_STACK] = "fp",
618 [PTR_TO_PACKET] = "pkt",
619 [PTR_TO_PACKET_META] = "pkt_meta",
620 [PTR_TO_PACKET_END] = "pkt_end",
621 [PTR_TO_FLOW_KEYS] = "flow_keys",
622 [PTR_TO_SOCKET] = "sock",
623 [PTR_TO_SOCK_COMMON] = "sock_common",
624 [PTR_TO_TCP_SOCK] = "tcp_sock",
625 [PTR_TO_TP_BUFFER] = "tp_buffer",
626 [PTR_TO_XDP_SOCK] = "xdp_sock",
627 [PTR_TO_BTF_ID] = "ptr_",
628 [PTR_TO_MEM] = "mem",
629 [PTR_TO_BUF] = "buf",
630 [PTR_TO_FUNC] = "func",
631 [PTR_TO_MAP_KEY] = "map_key",
632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
633 };
634
635 if (type & PTR_MAYBE_NULL) {
636 if (base_type(type) == PTR_TO_BTF_ID)
637 strncpy(postfix, "or_null_", 16);
638 else
639 strncpy(postfix, "_or_null", 16);
640 }
641
642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
643 type & MEM_RDONLY ? "rdonly_" : "",
644 type & MEM_RINGBUF ? "ringbuf_" : "",
645 type & MEM_USER ? "user_" : "",
646 type & MEM_PERCPU ? "percpu_" : "",
647 type & MEM_RCU ? "rcu_" : "",
648 type & PTR_UNTRUSTED ? "untrusted_" : "",
649 type & PTR_TRUSTED ? "trusted_" : ""
650 );
651
652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
653 prefix, str[base_type(type)], postfix);
654 return env->tmp_str_buf;
655 }
656
657 static char slot_type_char[] = {
658 [STACK_INVALID] = '?',
659 [STACK_SPILL] = 'r',
660 [STACK_MISC] = 'm',
661 [STACK_ZERO] = '0',
662 [STACK_DYNPTR] = 'd',
663 [STACK_ITER] = 'i',
664 };
665
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)666 static void print_liveness(struct bpf_verifier_env *env,
667 enum bpf_reg_liveness live)
668 {
669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
670 verbose(env, "_");
671 if (live & REG_LIVE_READ)
672 verbose(env, "r");
673 if (live & REG_LIVE_WRITTEN)
674 verbose(env, "w");
675 if (live & REG_LIVE_DONE)
676 verbose(env, "D");
677 }
678
__get_spi(s32 off)679 static int __get_spi(s32 off)
680 {
681 return (-off - 1) / BPF_REG_SIZE;
682 }
683
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)684 static struct bpf_func_state *func(struct bpf_verifier_env *env,
685 const struct bpf_reg_state *reg)
686 {
687 struct bpf_verifier_state *cur = env->cur_state;
688
689 return cur->frame[reg->frameno];
690 }
691
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
693 {
694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
695
696 /* We need to check that slots between [spi - nr_slots + 1, spi] are
697 * within [0, allocated_stack).
698 *
699 * Please note that the spi grows downwards. For example, a dynptr
700 * takes the size of two stack slots; the first slot will be at
701 * spi and the second slot will be at spi - 1.
702 */
703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
704 }
705
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
707 const char *obj_kind, int nr_slots)
708 {
709 int off, spi;
710
711 if (!tnum_is_const(reg->var_off)) {
712 verbose(env, "%s has to be at a constant offset\n", obj_kind);
713 return -EINVAL;
714 }
715
716 off = reg->off + reg->var_off.value;
717 if (off % BPF_REG_SIZE) {
718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
719 return -EINVAL;
720 }
721
722 spi = __get_spi(off);
723 if (spi + 1 < nr_slots) {
724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 return -EINVAL;
726 }
727
728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
729 return -ERANGE;
730 return spi;
731 }
732
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
734 {
735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
736 }
737
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
739 {
740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
741 }
742
btf_type_name(const struct btf * btf,u32 id)743 static const char *btf_type_name(const struct btf *btf, u32 id)
744 {
745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
746 }
747
dynptr_type_str(enum bpf_dynptr_type type)748 static const char *dynptr_type_str(enum bpf_dynptr_type type)
749 {
750 switch (type) {
751 case BPF_DYNPTR_TYPE_LOCAL:
752 return "local";
753 case BPF_DYNPTR_TYPE_RINGBUF:
754 return "ringbuf";
755 case BPF_DYNPTR_TYPE_SKB:
756 return "skb";
757 case BPF_DYNPTR_TYPE_XDP:
758 return "xdp";
759 case BPF_DYNPTR_TYPE_INVALID:
760 return "<invalid>";
761 default:
762 WARN_ONCE(1, "unknown dynptr type %d\n", type);
763 return "<unknown>";
764 }
765 }
766
iter_type_str(const struct btf * btf,u32 btf_id)767 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
768 {
769 if (!btf || btf_id == 0)
770 return "<invalid>";
771
772 /* we already validated that type is valid and has conforming name */
773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
774 }
775
iter_state_str(enum bpf_iter_state state)776 static const char *iter_state_str(enum bpf_iter_state state)
777 {
778 switch (state) {
779 case BPF_ITER_STATE_ACTIVE:
780 return "active";
781 case BPF_ITER_STATE_DRAINED:
782 return "drained";
783 case BPF_ITER_STATE_INVALID:
784 return "<invalid>";
785 default:
786 WARN_ONCE(1, "unknown iter state %d\n", state);
787 return "<unknown>";
788 }
789 }
790
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
792 {
793 env->scratched_regs |= 1U << regno;
794 }
795
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
797 {
798 env->scratched_stack_slots |= 1ULL << spi;
799 }
800
reg_scratched(const struct bpf_verifier_env * env,u32 regno)801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
802 {
803 return (env->scratched_regs >> regno) & 1;
804 }
805
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
807 {
808 return (env->scratched_stack_slots >> regno) & 1;
809 }
810
verifier_state_scratched(const struct bpf_verifier_env * env)811 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
812 {
813 return env->scratched_regs || env->scratched_stack_slots;
814 }
815
mark_verifier_state_clean(struct bpf_verifier_env * env)816 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
817 {
818 env->scratched_regs = 0U;
819 env->scratched_stack_slots = 0ULL;
820 }
821
822 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
824 {
825 env->scratched_regs = ~0U;
826 env->scratched_stack_slots = ~0ULL;
827 }
828
arg_to_dynptr_type(enum bpf_arg_type arg_type)829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
830 {
831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
832 case DYNPTR_TYPE_LOCAL:
833 return BPF_DYNPTR_TYPE_LOCAL;
834 case DYNPTR_TYPE_RINGBUF:
835 return BPF_DYNPTR_TYPE_RINGBUF;
836 case DYNPTR_TYPE_SKB:
837 return BPF_DYNPTR_TYPE_SKB;
838 case DYNPTR_TYPE_XDP:
839 return BPF_DYNPTR_TYPE_XDP;
840 default:
841 return BPF_DYNPTR_TYPE_INVALID;
842 }
843 }
844
get_dynptr_type_flag(enum bpf_dynptr_type type)845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
846 {
847 switch (type) {
848 case BPF_DYNPTR_TYPE_LOCAL:
849 return DYNPTR_TYPE_LOCAL;
850 case BPF_DYNPTR_TYPE_RINGBUF:
851 return DYNPTR_TYPE_RINGBUF;
852 case BPF_DYNPTR_TYPE_SKB:
853 return DYNPTR_TYPE_SKB;
854 case BPF_DYNPTR_TYPE_XDP:
855 return DYNPTR_TYPE_XDP;
856 default:
857 return 0;
858 }
859 }
860
dynptr_type_refcounted(enum bpf_dynptr_type type)861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
862 {
863 return type == BPF_DYNPTR_TYPE_RINGBUF;
864 }
865
866 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
867 enum bpf_dynptr_type type,
868 bool first_slot, int dynptr_id);
869
870 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
871 struct bpf_reg_state *reg);
872
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
874 struct bpf_reg_state *sreg1,
875 struct bpf_reg_state *sreg2,
876 enum bpf_dynptr_type type)
877 {
878 int id = ++env->id_gen;
879
880 __mark_dynptr_reg(sreg1, type, true, id);
881 __mark_dynptr_reg(sreg2, type, false, id);
882 }
883
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
885 struct bpf_reg_state *reg,
886 enum bpf_dynptr_type type)
887 {
888 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
889 }
890
891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
892 struct bpf_func_state *state, int spi);
893
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
896 {
897 struct bpf_func_state *state = func(env, reg);
898 enum bpf_dynptr_type type;
899 int spi, i, err;
900
901 spi = dynptr_get_spi(env, reg);
902 if (spi < 0)
903 return spi;
904
905 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
906 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
907 * to ensure that for the following example:
908 * [d1][d1][d2][d2]
909 * spi 3 2 1 0
910 * So marking spi = 2 should lead to destruction of both d1 and d2. In
911 * case they do belong to same dynptr, second call won't see slot_type
912 * as STACK_DYNPTR and will simply skip destruction.
913 */
914 err = destroy_if_dynptr_stack_slot(env, state, spi);
915 if (err)
916 return err;
917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
918 if (err)
919 return err;
920
921 for (i = 0; i < BPF_REG_SIZE; i++) {
922 state->stack[spi].slot_type[i] = STACK_DYNPTR;
923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
924 }
925
926 type = arg_to_dynptr_type(arg_type);
927 if (type == BPF_DYNPTR_TYPE_INVALID)
928 return -EINVAL;
929
930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
931 &state->stack[spi - 1].spilled_ptr, type);
932
933 if (dynptr_type_refcounted(type)) {
934 /* The id is used to track proper releasing */
935 int id;
936
937 if (clone_ref_obj_id)
938 id = clone_ref_obj_id;
939 else
940 id = acquire_reference_state(env, insn_idx);
941
942 if (id < 0)
943 return id;
944
945 state->stack[spi].spilled_ptr.ref_obj_id = id;
946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
947 }
948
949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
951
952 return 0;
953 }
954
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
956 {
957 int i;
958
959 for (i = 0; i < BPF_REG_SIZE; i++) {
960 state->stack[spi].slot_type[i] = STACK_INVALID;
961 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
962 }
963
964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
966
967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
968 *
969 * While we don't allow reading STACK_INVALID, it is still possible to
970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
971 * helpers or insns can do partial read of that part without failing,
972 * but check_stack_range_initialized, check_stack_read_var_off, and
973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
974 * the slot conservatively. Hence we need to prevent those liveness
975 * marking walks.
976 *
977 * This was not a problem before because STACK_INVALID is only set by
978 * default (where the default reg state has its reg->parent as NULL), or
979 * in clean_live_states after REG_LIVE_DONE (at which point
980 * mark_reg_read won't walk reg->parent chain), but not randomly during
981 * verifier state exploration (like we did above). Hence, for our case
982 * parentage chain will still be live (i.e. reg->parent may be
983 * non-NULL), while earlier reg->parent was NULL, so we need
984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
985 * done later on reads or by mark_dynptr_read as well to unnecessary
986 * mark registers in verifier state.
987 */
988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
990 }
991
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
993 {
994 struct bpf_func_state *state = func(env, reg);
995 int spi, ref_obj_id, i;
996
997 spi = dynptr_get_spi(env, reg);
998 if (spi < 0)
999 return spi;
1000
1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1002 invalidate_dynptr(env, state, spi);
1003 return 0;
1004 }
1005
1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1007
1008 /* If the dynptr has a ref_obj_id, then we need to invalidate
1009 * two things:
1010 *
1011 * 1) Any dynptrs with a matching ref_obj_id (clones)
1012 * 2) Any slices derived from this dynptr.
1013 */
1014
1015 /* Invalidate any slices associated with this dynptr */
1016 WARN_ON_ONCE(release_reference(env, ref_obj_id));
1017
1018 /* Invalidate any dynptr clones */
1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1021 continue;
1022
1023 /* it should always be the case that if the ref obj id
1024 * matches then the stack slot also belongs to a
1025 * dynptr
1026 */
1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1029 return -EFAULT;
1030 }
1031 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1032 invalidate_dynptr(env, state, i);
1033 }
1034
1035 return 0;
1036 }
1037
1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1039 struct bpf_reg_state *reg);
1040
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1042 {
1043 if (!env->allow_ptr_leaks)
1044 __mark_reg_not_init(env, reg);
1045 else
1046 __mark_reg_unknown(env, reg);
1047 }
1048
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1050 struct bpf_func_state *state, int spi)
1051 {
1052 struct bpf_func_state *fstate;
1053 struct bpf_reg_state *dreg;
1054 int i, dynptr_id;
1055
1056 /* We always ensure that STACK_DYNPTR is never set partially,
1057 * hence just checking for slot_type[0] is enough. This is
1058 * different for STACK_SPILL, where it may be only set for
1059 * 1 byte, so code has to use is_spilled_reg.
1060 */
1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1062 return 0;
1063
1064 /* Reposition spi to first slot */
1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1066 spi = spi + 1;
1067
1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1069 verbose(env, "cannot overwrite referenced dynptr\n");
1070 return -EINVAL;
1071 }
1072
1073 mark_stack_slot_scratched(env, spi);
1074 mark_stack_slot_scratched(env, spi - 1);
1075
1076 /* Writing partially to one dynptr stack slot destroys both. */
1077 for (i = 0; i < BPF_REG_SIZE; i++) {
1078 state->stack[spi].slot_type[i] = STACK_INVALID;
1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1080 }
1081
1082 dynptr_id = state->stack[spi].spilled_ptr.id;
1083 /* Invalidate any slices associated with this dynptr */
1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1087 continue;
1088 if (dreg->dynptr_id == dynptr_id)
1089 mark_reg_invalid(env, dreg);
1090 }));
1091
1092 /* Do not release reference state, we are destroying dynptr on stack,
1093 * not using some helper to release it. Just reset register.
1094 */
1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1097
1098 /* Same reason as unmark_stack_slots_dynptr above */
1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1101
1102 return 0;
1103 }
1104
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1106 {
1107 int spi;
1108
1109 if (reg->type == CONST_PTR_TO_DYNPTR)
1110 return false;
1111
1112 spi = dynptr_get_spi(env, reg);
1113
1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1115 * error because this just means the stack state hasn't been updated yet.
1116 * We will do check_mem_access to check and update stack bounds later.
1117 */
1118 if (spi < 0 && spi != -ERANGE)
1119 return false;
1120
1121 /* We don't need to check if the stack slots are marked by previous
1122 * dynptr initializations because we allow overwriting existing unreferenced
1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1125 * touching are completely destructed before we reinitialize them for a new
1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1127 * instead of delaying it until the end where the user will get "Unreleased
1128 * reference" error.
1129 */
1130 return true;
1131 }
1132
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1134 {
1135 struct bpf_func_state *state = func(env, reg);
1136 int i, spi;
1137
1138 /* This already represents first slot of initialized bpf_dynptr.
1139 *
1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1141 * check_func_arg_reg_off's logic, so we don't need to check its
1142 * offset and alignment.
1143 */
1144 if (reg->type == CONST_PTR_TO_DYNPTR)
1145 return true;
1146
1147 spi = dynptr_get_spi(env, reg);
1148 if (spi < 0)
1149 return false;
1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1151 return false;
1152
1153 for (i = 0; i < BPF_REG_SIZE; i++) {
1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1156 return false;
1157 }
1158
1159 return true;
1160 }
1161
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1163 enum bpf_arg_type arg_type)
1164 {
1165 struct bpf_func_state *state = func(env, reg);
1166 enum bpf_dynptr_type dynptr_type;
1167 int spi;
1168
1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1170 if (arg_type == ARG_PTR_TO_DYNPTR)
1171 return true;
1172
1173 dynptr_type = arg_to_dynptr_type(arg_type);
1174 if (reg->type == CONST_PTR_TO_DYNPTR) {
1175 return reg->dynptr.type == dynptr_type;
1176 } else {
1177 spi = dynptr_get_spi(env, reg);
1178 if (spi < 0)
1179 return false;
1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1181 }
1182 }
1183
1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1185
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1187 struct bpf_reg_state *reg, int insn_idx,
1188 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 struct bpf_func_state *state = func(env, reg);
1191 int spi, i, j, id;
1192
1193 spi = iter_get_spi(env, reg, nr_slots);
1194 if (spi < 0)
1195 return spi;
1196
1197 id = acquire_reference_state(env, insn_idx);
1198 if (id < 0)
1199 return id;
1200
1201 for (i = 0; i < nr_slots; i++) {
1202 struct bpf_stack_state *slot = &state->stack[spi - i];
1203 struct bpf_reg_state *st = &slot->spilled_ptr;
1204
1205 __mark_reg_known_zero(st);
1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 st->live |= REG_LIVE_WRITTEN;
1208 st->ref_obj_id = i == 0 ? id : 0;
1209 st->iter.btf = btf;
1210 st->iter.btf_id = btf_id;
1211 st->iter.state = BPF_ITER_STATE_ACTIVE;
1212 st->iter.depth = 0;
1213
1214 for (j = 0; j < BPF_REG_SIZE; j++)
1215 slot->slot_type[j] = STACK_ITER;
1216
1217 mark_stack_slot_scratched(env, spi - i);
1218 }
1219
1220 return 0;
1221 }
1222
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1224 struct bpf_reg_state *reg, int nr_slots)
1225 {
1226 struct bpf_func_state *state = func(env, reg);
1227 int spi, i, j;
1228
1229 spi = iter_get_spi(env, reg, nr_slots);
1230 if (spi < 0)
1231 return spi;
1232
1233 for (i = 0; i < nr_slots; i++) {
1234 struct bpf_stack_state *slot = &state->stack[spi - i];
1235 struct bpf_reg_state *st = &slot->spilled_ptr;
1236
1237 if (i == 0)
1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1239
1240 __mark_reg_not_init(env, st);
1241
1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1243 st->live |= REG_LIVE_WRITTEN;
1244
1245 for (j = 0; j < BPF_REG_SIZE; j++)
1246 slot->slot_type[j] = STACK_INVALID;
1247
1248 mark_stack_slot_scratched(env, spi - i);
1249 }
1250
1251 return 0;
1252 }
1253
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1255 struct bpf_reg_state *reg, int nr_slots)
1256 {
1257 struct bpf_func_state *state = func(env, reg);
1258 int spi, i, j;
1259
1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 * will do check_mem_access to check and update stack bounds later, so
1262 * return true for that case.
1263 */
1264 spi = iter_get_spi(env, reg, nr_slots);
1265 if (spi == -ERANGE)
1266 return true;
1267 if (spi < 0)
1268 return false;
1269
1270 for (i = 0; i < nr_slots; i++) {
1271 struct bpf_stack_state *slot = &state->stack[spi - i];
1272
1273 for (j = 0; j < BPF_REG_SIZE; j++)
1274 if (slot->slot_type[j] == STACK_ITER)
1275 return false;
1276 }
1277
1278 return true;
1279 }
1280
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1282 struct btf *btf, u32 btf_id, int nr_slots)
1283 {
1284 struct bpf_func_state *state = func(env, reg);
1285 int spi, i, j;
1286
1287 spi = iter_get_spi(env, reg, nr_slots);
1288 if (spi < 0)
1289 return false;
1290
1291 for (i = 0; i < nr_slots; i++) {
1292 struct bpf_stack_state *slot = &state->stack[spi - i];
1293 struct bpf_reg_state *st = &slot->spilled_ptr;
1294
1295 /* only main (first) slot has ref_obj_id set */
1296 if (i == 0 && !st->ref_obj_id)
1297 return false;
1298 if (i != 0 && st->ref_obj_id)
1299 return false;
1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1301 return false;
1302
1303 for (j = 0; j < BPF_REG_SIZE; j++)
1304 if (slot->slot_type[j] != STACK_ITER)
1305 return false;
1306 }
1307
1308 return true;
1309 }
1310
1311 /* Check if given stack slot is "special":
1312 * - spilled register state (STACK_SPILL);
1313 * - dynptr state (STACK_DYNPTR);
1314 * - iter state (STACK_ITER).
1315 */
is_stack_slot_special(const struct bpf_stack_state * stack)1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319
1320 switch (type) {
1321 case STACK_SPILL:
1322 case STACK_DYNPTR:
1323 case STACK_ITER:
1324 return true;
1325 case STACK_INVALID:
1326 case STACK_MISC:
1327 case STACK_ZERO:
1328 return false;
1329 default:
1330 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1331 return true;
1332 }
1333 }
1334
1335 /* The reg state of a pointer or a bounded scalar was saved when
1336 * it was spilled to the stack.
1337 */
is_spilled_reg(const struct bpf_stack_state * stack)1338 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1339 {
1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1341 }
1342
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1344 {
1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1346 stack->spilled_ptr.type == SCALAR_VALUE;
1347 }
1348
scrub_spilled_slot(u8 * stype)1349 static void scrub_spilled_slot(u8 *stype)
1350 {
1351 if (*stype != STACK_INVALID)
1352 *stype = STACK_MISC;
1353 }
1354
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)1355 static void print_verifier_state(struct bpf_verifier_env *env,
1356 const struct bpf_func_state *state,
1357 bool print_all)
1358 {
1359 const struct bpf_reg_state *reg;
1360 enum bpf_reg_type t;
1361 int i;
1362
1363 if (state->frameno)
1364 verbose(env, " frame%d:", state->frameno);
1365 for (i = 0; i < MAX_BPF_REG; i++) {
1366 reg = &state->regs[i];
1367 t = reg->type;
1368 if (t == NOT_INIT)
1369 continue;
1370 if (!print_all && !reg_scratched(env, i))
1371 continue;
1372 verbose(env, " R%d", i);
1373 print_liveness(env, reg->live);
1374 verbose(env, "=");
1375 if (t == SCALAR_VALUE && reg->precise)
1376 verbose(env, "P");
1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1378 tnum_is_const(reg->var_off)) {
1379 /* reg->off should be 0 for SCALAR_VALUE */
1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1381 verbose(env, "%lld", reg->var_off.value + reg->off);
1382 } else {
1383 const char *sep = "";
1384
1385 verbose(env, "%s", reg_type_str(env, t));
1386 if (base_type(t) == PTR_TO_BTF_ID)
1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1388 verbose(env, "(");
1389 /*
1390 * _a stands for append, was shortened to avoid multiline statements below.
1391 * This macro is used to output a comma separated list of attributes.
1392 */
1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1394
1395 if (reg->id)
1396 verbose_a("id=%d", reg->id);
1397 if (reg->ref_obj_id)
1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1399 if (type_is_non_owning_ref(reg->type))
1400 verbose_a("%s", "non_own_ref");
1401 if (t != SCALAR_VALUE)
1402 verbose_a("off=%d", reg->off);
1403 if (type_is_pkt_pointer(t))
1404 verbose_a("r=%d", reg->range);
1405 else if (base_type(t) == CONST_PTR_TO_MAP ||
1406 base_type(t) == PTR_TO_MAP_KEY ||
1407 base_type(t) == PTR_TO_MAP_VALUE)
1408 verbose_a("ks=%d,vs=%d",
1409 reg->map_ptr->key_size,
1410 reg->map_ptr->value_size);
1411 if (tnum_is_const(reg->var_off)) {
1412 /* Typically an immediate SCALAR_VALUE, but
1413 * could be a pointer whose offset is too big
1414 * for reg->off
1415 */
1416 verbose_a("imm=%llx", reg->var_off.value);
1417 } else {
1418 if (reg->smin_value != reg->umin_value &&
1419 reg->smin_value != S64_MIN)
1420 verbose_a("smin=%lld", (long long)reg->smin_value);
1421 if (reg->smax_value != reg->umax_value &&
1422 reg->smax_value != S64_MAX)
1423 verbose_a("smax=%lld", (long long)reg->smax_value);
1424 if (reg->umin_value != 0)
1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1426 if (reg->umax_value != U64_MAX)
1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1428 if (!tnum_is_unknown(reg->var_off)) {
1429 char tn_buf[48];
1430
1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 verbose_a("var_off=%s", tn_buf);
1433 }
1434 if (reg->s32_min_value != reg->smin_value &&
1435 reg->s32_min_value != S32_MIN)
1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1437 if (reg->s32_max_value != reg->smax_value &&
1438 reg->s32_max_value != S32_MAX)
1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1440 if (reg->u32_min_value != reg->umin_value &&
1441 reg->u32_min_value != U32_MIN)
1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1443 if (reg->u32_max_value != reg->umax_value &&
1444 reg->u32_max_value != U32_MAX)
1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1446 }
1447 #undef verbose_a
1448
1449 verbose(env, ")");
1450 }
1451 }
1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1453 char types_buf[BPF_REG_SIZE + 1];
1454 bool valid = false;
1455 int j;
1456
1457 for (j = 0; j < BPF_REG_SIZE; j++) {
1458 if (state->stack[i].slot_type[j] != STACK_INVALID)
1459 valid = true;
1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1461 }
1462 types_buf[BPF_REG_SIZE] = 0;
1463 if (!valid)
1464 continue;
1465 if (!print_all && !stack_slot_scratched(env, i))
1466 continue;
1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1468 case STACK_SPILL:
1469 reg = &state->stack[i].spilled_ptr;
1470 t = reg->type;
1471
1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 print_liveness(env, reg->live);
1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1475 if (t == SCALAR_VALUE && reg->precise)
1476 verbose(env, "P");
1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1478 verbose(env, "%lld", reg->var_off.value + reg->off);
1479 break;
1480 case STACK_DYNPTR:
1481 i += BPF_DYNPTR_NR_SLOTS - 1;
1482 reg = &state->stack[i].spilled_ptr;
1483
1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1485 print_liveness(env, reg->live);
1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1487 if (reg->ref_obj_id)
1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1489 break;
1490 case STACK_ITER:
1491 /* only main slot has ref_obj_id set; skip others */
1492 reg = &state->stack[i].spilled_ptr;
1493 if (!reg->ref_obj_id)
1494 continue;
1495
1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1497 print_liveness(env, reg->live);
1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1499 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1500 reg->ref_obj_id, iter_state_str(reg->iter.state),
1501 reg->iter.depth);
1502 break;
1503 case STACK_MISC:
1504 case STACK_ZERO:
1505 default:
1506 reg = &state->stack[i].spilled_ptr;
1507
1508 for (j = 0; j < BPF_REG_SIZE; j++)
1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1510 types_buf[BPF_REG_SIZE] = 0;
1511
1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1513 print_liveness(env, reg->live);
1514 verbose(env, "=%s", types_buf);
1515 break;
1516 }
1517 }
1518 if (state->acquired_refs && state->refs[0].id) {
1519 verbose(env, " refs=%d", state->refs[0].id);
1520 for (i = 1; i < state->acquired_refs; i++)
1521 if (state->refs[i].id)
1522 verbose(env, ",%d", state->refs[i].id);
1523 }
1524 if (state->in_callback_fn)
1525 verbose(env, " cb");
1526 if (state->in_async_callback_fn)
1527 verbose(env, " async_cb");
1528 verbose(env, "\n");
1529 if (!print_all)
1530 mark_verifier_state_clean(env);
1531 }
1532
vlog_alignment(u32 pos)1533 static inline u32 vlog_alignment(u32 pos)
1534 {
1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1537 }
1538
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)1539 static void print_insn_state(struct bpf_verifier_env *env,
1540 const struct bpf_func_state *state)
1541 {
1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1543 /* remove new line character */
1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1546 } else {
1547 verbose(env, "%d:", env->insn_idx);
1548 }
1549 print_verifier_state(env, state, false);
1550 }
1551
1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1553 * small to hold src. This is different from krealloc since we don't want to preserve
1554 * the contents of dst.
1555 *
1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1557 * not be allocated.
1558 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1560 {
1561 size_t alloc_bytes;
1562 void *orig = dst;
1563 size_t bytes;
1564
1565 if (ZERO_OR_NULL_PTR(src))
1566 goto out;
1567
1568 if (unlikely(check_mul_overflow(n, size, &bytes)))
1569 return NULL;
1570
1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1572 dst = krealloc(orig, alloc_bytes, flags);
1573 if (!dst) {
1574 kfree(orig);
1575 return NULL;
1576 }
1577
1578 memcpy(dst, src, bytes);
1579 out:
1580 return dst ? dst : ZERO_SIZE_PTR;
1581 }
1582
1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1584 * small to hold new_n items. new items are zeroed out if the array grows.
1585 *
1586 * Contrary to krealloc_array, does not free arr if new_n is zero.
1587 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1589 {
1590 size_t alloc_size;
1591 void *new_arr;
1592
1593 if (!new_n || old_n == new_n)
1594 goto out;
1595
1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1598 if (!new_arr) {
1599 kfree(arr);
1600 return NULL;
1601 }
1602 arr = new_arr;
1603
1604 if (new_n > old_n)
1605 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1606
1607 out:
1608 return arr ? arr : ZERO_SIZE_PTR;
1609 }
1610
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1614 sizeof(struct bpf_reference_state), GFP_KERNEL);
1615 if (!dst->refs)
1616 return -ENOMEM;
1617
1618 dst->acquired_refs = src->acquired_refs;
1619 return 0;
1620 }
1621
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1623 {
1624 size_t n = src->allocated_stack / BPF_REG_SIZE;
1625
1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1627 GFP_KERNEL);
1628 if (!dst->stack)
1629 return -ENOMEM;
1630
1631 dst->allocated_stack = src->allocated_stack;
1632 return 0;
1633 }
1634
resize_reference_state(struct bpf_func_state * state,size_t n)1635 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1636 {
1637 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1638 sizeof(struct bpf_reference_state));
1639 if (!state->refs)
1640 return -ENOMEM;
1641
1642 state->acquired_refs = n;
1643 return 0;
1644 }
1645
1646 /* Possibly update state->allocated_stack to be at least size bytes. Also
1647 * possibly update the function's high-water mark in its bpf_subprog_info.
1648 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1650 {
1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1652
1653 if (old_n >= n)
1654 return 0;
1655
1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1657 if (!state->stack)
1658 return -ENOMEM;
1659
1660 state->allocated_stack = size;
1661
1662 /* update known max for given subprogram */
1663 if (env->subprog_info[state->subprogno].stack_depth < size)
1664 env->subprog_info[state->subprogno].stack_depth = size;
1665
1666 return 0;
1667 }
1668
1669 /* Acquire a pointer id from the env and update the state->refs to include
1670 * this new pointer reference.
1671 * On success, returns a valid pointer id to associate with the register
1672 * On failure, returns a negative errno.
1673 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1675 {
1676 struct bpf_func_state *state = cur_func(env);
1677 int new_ofs = state->acquired_refs;
1678 int id, err;
1679
1680 err = resize_reference_state(state, state->acquired_refs + 1);
1681 if (err)
1682 return err;
1683 id = ++env->id_gen;
1684 state->refs[new_ofs].id = id;
1685 state->refs[new_ofs].insn_idx = insn_idx;
1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1687
1688 return id;
1689 }
1690
1691 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1693 {
1694 int i, last_idx;
1695
1696 last_idx = state->acquired_refs - 1;
1697 for (i = 0; i < state->acquired_refs; i++) {
1698 if (state->refs[i].id == ptr_id) {
1699 /* Cannot release caller references in callbacks */
1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1701 return -EINVAL;
1702 if (last_idx && i != last_idx)
1703 memcpy(&state->refs[i], &state->refs[last_idx],
1704 sizeof(*state->refs));
1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1706 state->acquired_refs--;
1707 return 0;
1708 }
1709 }
1710 return -EINVAL;
1711 }
1712
free_func_state(struct bpf_func_state * state)1713 static void free_func_state(struct bpf_func_state *state)
1714 {
1715 if (!state)
1716 return;
1717 kfree(state->refs);
1718 kfree(state->stack);
1719 kfree(state);
1720 }
1721
clear_jmp_history(struct bpf_verifier_state * state)1722 static void clear_jmp_history(struct bpf_verifier_state *state)
1723 {
1724 kfree(state->jmp_history);
1725 state->jmp_history = NULL;
1726 state->jmp_history_cnt = 0;
1727 }
1728
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1729 static void free_verifier_state(struct bpf_verifier_state *state,
1730 bool free_self)
1731 {
1732 int i;
1733
1734 for (i = 0; i <= state->curframe; i++) {
1735 free_func_state(state->frame[i]);
1736 state->frame[i] = NULL;
1737 }
1738 clear_jmp_history(state);
1739 if (free_self)
1740 kfree(state);
1741 }
1742
1743 /* copy verifier state from src to dst growing dst stack space
1744 * when necessary to accommodate larger src stack
1745 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1746 static int copy_func_state(struct bpf_func_state *dst,
1747 const struct bpf_func_state *src)
1748 {
1749 int err;
1750
1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1752 err = copy_reference_state(dst, src);
1753 if (err)
1754 return err;
1755 return copy_stack_state(dst, src);
1756 }
1757
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1759 const struct bpf_verifier_state *src)
1760 {
1761 struct bpf_func_state *dst;
1762 int i, err;
1763
1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1765 src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1766 GFP_USER);
1767 if (!dst_state->jmp_history)
1768 return -ENOMEM;
1769 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1770
1771 /* if dst has more stack frames then src frame, free them */
1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1773 free_func_state(dst_state->frame[i]);
1774 dst_state->frame[i] = NULL;
1775 }
1776 dst_state->speculative = src->speculative;
1777 dst_state->active_rcu_lock = src->active_rcu_lock;
1778 dst_state->curframe = src->curframe;
1779 dst_state->active_lock.ptr = src->active_lock.ptr;
1780 dst_state->active_lock.id = src->active_lock.id;
1781 dst_state->branches = src->branches;
1782 dst_state->parent = src->parent;
1783 dst_state->first_insn_idx = src->first_insn_idx;
1784 dst_state->last_insn_idx = src->last_insn_idx;
1785 dst_state->dfs_depth = src->dfs_depth;
1786 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1787 dst_state->used_as_loop_entry = src->used_as_loop_entry;
1788 for (i = 0; i <= src->curframe; i++) {
1789 dst = dst_state->frame[i];
1790 if (!dst) {
1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1792 if (!dst)
1793 return -ENOMEM;
1794 dst_state->frame[i] = dst;
1795 }
1796 err = copy_func_state(dst, src->frame[i]);
1797 if (err)
1798 return err;
1799 }
1800 return 0;
1801 }
1802
state_htab_size(struct bpf_verifier_env * env)1803 static u32 state_htab_size(struct bpf_verifier_env *env)
1804 {
1805 return env->prog->len;
1806 }
1807
explored_state(struct bpf_verifier_env * env,int idx)1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1809 {
1810 struct bpf_verifier_state *cur = env->cur_state;
1811 struct bpf_func_state *state = cur->frame[cur->curframe];
1812
1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1814 }
1815
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1817 {
1818 int fr;
1819
1820 if (a->curframe != b->curframe)
1821 return false;
1822
1823 for (fr = a->curframe; fr >= 0; fr--)
1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1825 return false;
1826
1827 return true;
1828 }
1829
1830 /* Open coded iterators allow back-edges in the state graph in order to
1831 * check unbounded loops that iterators.
1832 *
1833 * In is_state_visited() it is necessary to know if explored states are
1834 * part of some loops in order to decide whether non-exact states
1835 * comparison could be used:
1836 * - non-exact states comparison establishes sub-state relation and uses
1837 * read and precision marks to do so, these marks are propagated from
1838 * children states and thus are not guaranteed to be final in a loop;
1839 * - exact states comparison just checks if current and explored states
1840 * are identical (and thus form a back-edge).
1841 *
1842 * Paper "A New Algorithm for Identifying Loops in Decompilation"
1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1844 * algorithm for loop structure detection and gives an overview of
1845 * relevant terminology. It also has helpful illustrations.
1846 *
1847 * [1] https://api.semanticscholar.org/CorpusID:15784067
1848 *
1849 * We use a similar algorithm but because loop nested structure is
1850 * irrelevant for verifier ours is significantly simpler and resembles
1851 * strongly connected components algorithm from Sedgewick's textbook.
1852 *
1853 * Define topmost loop entry as a first node of the loop traversed in a
1854 * depth first search starting from initial state. The goal of the loop
1855 * tracking algorithm is to associate topmost loop entries with states
1856 * derived from these entries.
1857 *
1858 * For each step in the DFS states traversal algorithm needs to identify
1859 * the following situations:
1860 *
1861 * initial initial initial
1862 * | | |
1863 * V V V
1864 * ... ... .---------> hdr
1865 * | | | |
1866 * V V | V
1867 * cur .-> succ | .------...
1868 * | | | | | |
1869 * V | V | V V
1870 * succ '-- cur | ... ...
1871 * | | |
1872 * | V V
1873 * | succ <- cur
1874 * | |
1875 * | V
1876 * | ...
1877 * | |
1878 * '----'
1879 *
1880 * (A) successor state of cur (B) successor state of cur or it's entry
1881 * not yet traversed are in current DFS path, thus cur and succ
1882 * are members of the same outermost loop
1883 *
1884 * initial initial
1885 * | |
1886 * V V
1887 * ... ...
1888 * | |
1889 * V V
1890 * .------... .------...
1891 * | | | |
1892 * V V V V
1893 * .-> hdr ... ... ...
1894 * | | | | |
1895 * | V V V V
1896 * | succ <- cur succ <- cur
1897 * | | |
1898 * | V V
1899 * | ... ...
1900 * | | |
1901 * '----' exit
1902 *
1903 * (C) successor state of cur is a part of some loop but this loop
1904 * does not include cur or successor state is not in a loop at all.
1905 *
1906 * Algorithm could be described as the following python code:
1907 *
1908 * traversed = set() # Set of traversed nodes
1909 * entries = {} # Mapping from node to loop entry
1910 * depths = {} # Depth level assigned to graph node
1911 * path = set() # Current DFS path
1912 *
1913 * # Find outermost loop entry known for n
1914 * def get_loop_entry(n):
1915 * h = entries.get(n, None)
1916 * while h in entries and entries[h] != h:
1917 * h = entries[h]
1918 * return h
1919 *
1920 * # Update n's loop entry if h's outermost entry comes
1921 * # before n's outermost entry in current DFS path.
1922 * def update_loop_entry(n, h):
1923 * n1 = get_loop_entry(n) or n
1924 * h1 = get_loop_entry(h) or h
1925 * if h1 in path and depths[h1] <= depths[n1]:
1926 * entries[n] = h1
1927 *
1928 * def dfs(n, depth):
1929 * traversed.add(n)
1930 * path.add(n)
1931 * depths[n] = depth
1932 * for succ in G.successors(n):
1933 * if succ not in traversed:
1934 * # Case A: explore succ and update cur's loop entry
1935 * # only if succ's entry is in current DFS path.
1936 * dfs(succ, depth + 1)
1937 * h = get_loop_entry(succ)
1938 * update_loop_entry(n, h)
1939 * else:
1940 * # Case B or C depending on `h1 in path` check in update_loop_entry().
1941 * update_loop_entry(n, succ)
1942 * path.remove(n)
1943 *
1944 * To adapt this algorithm for use with verifier:
1945 * - use st->branch == 0 as a signal that DFS of succ had been finished
1946 * and cur's loop entry has to be updated (case A), handle this in
1947 * update_branch_counts();
1948 * - use st->branch > 0 as a signal that st is in the current DFS path;
1949 * - handle cases B and C in is_state_visited();
1950 * - update topmost loop entry for intermediate states in get_loop_entry().
1951 */
get_loop_entry(struct bpf_verifier_state * st)1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1953 {
1954 struct bpf_verifier_state *topmost = st->loop_entry, *old;
1955
1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1957 topmost = topmost->loop_entry;
1958 /* Update loop entries for intermediate states to avoid this
1959 * traversal in future get_loop_entry() calls.
1960 */
1961 while (st && st->loop_entry != topmost) {
1962 old = st->loop_entry;
1963 st->loop_entry = topmost;
1964 st = old;
1965 }
1966 return topmost;
1967 }
1968
update_loop_entry(struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1970 {
1971 struct bpf_verifier_state *cur1, *hdr1;
1972
1973 cur1 = get_loop_entry(cur) ?: cur;
1974 hdr1 = get_loop_entry(hdr) ?: hdr;
1975 /* The head1->branches check decides between cases B and C in
1976 * comment for get_loop_entry(). If hdr1->branches == 0 then
1977 * head's topmost loop entry is not in current DFS path,
1978 * hence 'cur' and 'hdr' are not in the same loop and there is
1979 * no need to update cur->loop_entry.
1980 */
1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1982 cur->loop_entry = hdr;
1983 hdr->used_as_loop_entry = true;
1984 }
1985 }
1986
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1988 {
1989 while (st) {
1990 u32 br = --st->branches;
1991
1992 /* br == 0 signals that DFS exploration for 'st' is finished,
1993 * thus it is necessary to update parent's loop entry if it
1994 * turned out that st is a part of some loop.
1995 * This is a part of 'case A' in get_loop_entry() comment.
1996 */
1997 if (br == 0 && st->parent && st->loop_entry)
1998 update_loop_entry(st->parent, st->loop_entry);
1999
2000 /* WARN_ON(br > 1) technically makes sense here,
2001 * but see comment in push_stack(), hence:
2002 */
2003 WARN_ONCE((int)br < 0,
2004 "BUG update_branch_counts:branches_to_explore=%d\n",
2005 br);
2006 if (br)
2007 break;
2008 st = st->parent;
2009 }
2010 }
2011
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2013 int *insn_idx, bool pop_log)
2014 {
2015 struct bpf_verifier_state *cur = env->cur_state;
2016 struct bpf_verifier_stack_elem *elem, *head = env->head;
2017 int err;
2018
2019 if (env->head == NULL)
2020 return -ENOENT;
2021
2022 if (cur) {
2023 err = copy_verifier_state(cur, &head->st);
2024 if (err)
2025 return err;
2026 }
2027 if (pop_log)
2028 bpf_vlog_reset(&env->log, head->log_pos);
2029 if (insn_idx)
2030 *insn_idx = head->insn_idx;
2031 if (prev_insn_idx)
2032 *prev_insn_idx = head->prev_insn_idx;
2033 elem = head->next;
2034 free_verifier_state(&head->st, false);
2035 kfree(head);
2036 env->head = elem;
2037 env->stack_size--;
2038 return 0;
2039 }
2040
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2042 int insn_idx, int prev_insn_idx,
2043 bool speculative)
2044 {
2045 struct bpf_verifier_state *cur = env->cur_state;
2046 struct bpf_verifier_stack_elem *elem;
2047 int err;
2048
2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2050 if (!elem)
2051 goto err;
2052
2053 elem->insn_idx = insn_idx;
2054 elem->prev_insn_idx = prev_insn_idx;
2055 elem->next = env->head;
2056 elem->log_pos = env->log.end_pos;
2057 env->head = elem;
2058 env->stack_size++;
2059 err = copy_verifier_state(&elem->st, cur);
2060 if (err)
2061 goto err;
2062 elem->st.speculative |= speculative;
2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2064 verbose(env, "The sequence of %d jumps is too complex.\n",
2065 env->stack_size);
2066 goto err;
2067 }
2068 if (elem->st.parent) {
2069 ++elem->st.parent->branches;
2070 /* WARN_ON(branches > 2) technically makes sense here,
2071 * but
2072 * 1. speculative states will bump 'branches' for non-branch
2073 * instructions
2074 * 2. is_state_visited() heuristics may decide not to create
2075 * a new state for a sequence of branches and all such current
2076 * and cloned states will be pointing to a single parent state
2077 * which might have large 'branches' count.
2078 */
2079 }
2080 return &elem->st;
2081 err:
2082 free_verifier_state(env->cur_state, true);
2083 env->cur_state = NULL;
2084 /* pop all elements and return */
2085 while (!pop_stack(env, NULL, NULL, false));
2086 return NULL;
2087 }
2088
2089 #define CALLER_SAVED_REGS 6
2090 static const int caller_saved[CALLER_SAVED_REGS] = {
2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2092 };
2093
2094 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2096 {
2097 reg->var_off = tnum_const(imm);
2098 reg->smin_value = (s64)imm;
2099 reg->smax_value = (s64)imm;
2100 reg->umin_value = imm;
2101 reg->umax_value = imm;
2102
2103 reg->s32_min_value = (s32)imm;
2104 reg->s32_max_value = (s32)imm;
2105 reg->u32_min_value = (u32)imm;
2106 reg->u32_max_value = (u32)imm;
2107 }
2108
2109 /* Mark the unknown part of a register (variable offset or scalar value) as
2110 * known to have the value @imm.
2111 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2113 {
2114 /* Clear off and union(map_ptr, range) */
2115 memset(((u8 *)reg) + sizeof(reg->type), 0,
2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2117 reg->id = 0;
2118 reg->ref_obj_id = 0;
2119 ___mark_reg_known(reg, imm);
2120 }
2121
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2123 {
2124 reg->var_off = tnum_const_subreg(reg->var_off, imm);
2125 reg->s32_min_value = (s32)imm;
2126 reg->s32_max_value = (s32)imm;
2127 reg->u32_min_value = (u32)imm;
2128 reg->u32_max_value = (u32)imm;
2129 }
2130
2131 /* Mark the 'variable offset' part of a register as zero. This should be
2132 * used only on registers holding a pointer type.
2133 */
__mark_reg_known_zero(struct bpf_reg_state * reg)2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2135 {
2136 __mark_reg_known(reg, 0);
2137 }
2138
__mark_reg_const_zero(struct bpf_reg_state * reg)2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2140 {
2141 __mark_reg_known(reg, 0);
2142 reg->type = SCALAR_VALUE;
2143 }
2144
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2145 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2146 struct bpf_reg_state *regs, u32 regno)
2147 {
2148 if (WARN_ON(regno >= MAX_BPF_REG)) {
2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2150 /* Something bad happened, let's kill all regs */
2151 for (regno = 0; regno < MAX_BPF_REG; regno++)
2152 __mark_reg_not_init(env, regs + regno);
2153 return;
2154 }
2155 __mark_reg_known_zero(regs + regno);
2156 }
2157
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2159 bool first_slot, int dynptr_id)
2160 {
2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2164 */
2165 __mark_reg_known_zero(reg);
2166 reg->type = CONST_PTR_TO_DYNPTR;
2167 /* Give each dynptr a unique id to uniquely associate slices to it. */
2168 reg->id = dynptr_id;
2169 reg->dynptr.type = type;
2170 reg->dynptr.first_slot = first_slot;
2171 }
2172
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2174 {
2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2176 const struct bpf_map *map = reg->map_ptr;
2177
2178 if (map->inner_map_meta) {
2179 reg->type = CONST_PTR_TO_MAP;
2180 reg->map_ptr = map->inner_map_meta;
2181 /* transfer reg's id which is unique for every map_lookup_elem
2182 * as UID of the inner map.
2183 */
2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2185 reg->map_uid = reg->id;
2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2187 reg->type = PTR_TO_XDP_SOCK;
2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2190 reg->type = PTR_TO_SOCKET;
2191 } else {
2192 reg->type = PTR_TO_MAP_VALUE;
2193 }
2194 return;
2195 }
2196
2197 reg->type &= ~PTR_MAYBE_NULL;
2198 }
2199
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2201 struct btf_field_graph_root *ds_head)
2202 {
2203 __mark_reg_known_zero(®s[regno]);
2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2205 regs[regno].btf = ds_head->btf;
2206 regs[regno].btf_id = ds_head->value_btf_id;
2207 regs[regno].off = ds_head->node_offset;
2208 }
2209
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2211 {
2212 return type_is_pkt_pointer(reg->type);
2213 }
2214
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2216 {
2217 return reg_is_pkt_pointer(reg) ||
2218 reg->type == PTR_TO_PACKET_END;
2219 }
2220
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2222 {
2223 return base_type(reg->type) == PTR_TO_MEM &&
2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2225 }
2226
2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2229 enum bpf_reg_type which)
2230 {
2231 /* The register can already have a range from prior markings.
2232 * This is fine as long as it hasn't been advanced from its
2233 * origin.
2234 */
2235 return reg->type == which &&
2236 reg->id == 0 &&
2237 reg->off == 0 &&
2238 tnum_equals_const(reg->var_off, 0);
2239 }
2240
2241 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2243 {
2244 reg->smin_value = S64_MIN;
2245 reg->smax_value = S64_MAX;
2246 reg->umin_value = 0;
2247 reg->umax_value = U64_MAX;
2248
2249 reg->s32_min_value = S32_MIN;
2250 reg->s32_max_value = S32_MAX;
2251 reg->u32_min_value = 0;
2252 reg->u32_max_value = U32_MAX;
2253 }
2254
__mark_reg64_unbounded(struct bpf_reg_state * reg)2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2256 {
2257 reg->smin_value = S64_MIN;
2258 reg->smax_value = S64_MAX;
2259 reg->umin_value = 0;
2260 reg->umax_value = U64_MAX;
2261 }
2262
__mark_reg32_unbounded(struct bpf_reg_state * reg)2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2264 {
2265 reg->s32_min_value = S32_MIN;
2266 reg->s32_max_value = S32_MAX;
2267 reg->u32_min_value = 0;
2268 reg->u32_max_value = U32_MAX;
2269 }
2270
__update_reg32_bounds(struct bpf_reg_state * reg)2271 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2272 {
2273 struct tnum var32_off = tnum_subreg(reg->var_off);
2274
2275 /* min signed is max(sign bit) | min(other bits) */
2276 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2277 var32_off.value | (var32_off.mask & S32_MIN));
2278 /* max signed is min(sign bit) | max(other bits) */
2279 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2280 var32_off.value | (var32_off.mask & S32_MAX));
2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2282 reg->u32_max_value = min(reg->u32_max_value,
2283 (u32)(var32_off.value | var32_off.mask));
2284 }
2285
__update_reg64_bounds(struct bpf_reg_state * reg)2286 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2287 {
2288 /* min signed is max(sign bit) | min(other bits) */
2289 reg->smin_value = max_t(s64, reg->smin_value,
2290 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2291 /* max signed is min(sign bit) | max(other bits) */
2292 reg->smax_value = min_t(s64, reg->smax_value,
2293 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2294 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2295 reg->umax_value = min(reg->umax_value,
2296 reg->var_off.value | reg->var_off.mask);
2297 }
2298
__update_reg_bounds(struct bpf_reg_state * reg)2299 static void __update_reg_bounds(struct bpf_reg_state *reg)
2300 {
2301 __update_reg32_bounds(reg);
2302 __update_reg64_bounds(reg);
2303 }
2304
2305 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2307 {
2308 /* Learn sign from signed bounds.
2309 * If we cannot cross the sign boundary, then signed and unsigned bounds
2310 * are the same, so combine. This works even in the negative case, e.g.
2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2312 */
2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2314 reg->s32_min_value = reg->u32_min_value =
2315 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2316 reg->s32_max_value = reg->u32_max_value =
2317 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2318 return;
2319 }
2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2321 * boundary, so we must be careful.
2322 */
2323 if ((s32)reg->u32_max_value >= 0) {
2324 /* Positive. We can't learn anything from the smin, but smax
2325 * is positive, hence safe.
2326 */
2327 reg->s32_min_value = reg->u32_min_value;
2328 reg->s32_max_value = reg->u32_max_value =
2329 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2330 } else if ((s32)reg->u32_min_value < 0) {
2331 /* Negative. We can't learn anything from the smax, but smin
2332 * is negative, hence safe.
2333 */
2334 reg->s32_min_value = reg->u32_min_value =
2335 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2336 reg->s32_max_value = reg->u32_max_value;
2337 }
2338 }
2339
__reg64_deduce_bounds(struct bpf_reg_state * reg)2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2341 {
2342 /* Learn sign from signed bounds.
2343 * If we cannot cross the sign boundary, then signed and unsigned bounds
2344 * are the same, so combine. This works even in the negative case, e.g.
2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2346 */
2347 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2349 reg->umin_value);
2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2351 reg->umax_value);
2352 return;
2353 }
2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2355 * boundary, so we must be careful.
2356 */
2357 if ((s64)reg->umax_value >= 0) {
2358 /* Positive. We can't learn anything from the smin, but smax
2359 * is positive, hence safe.
2360 */
2361 reg->smin_value = reg->umin_value;
2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2363 reg->umax_value);
2364 } else if ((s64)reg->umin_value < 0) {
2365 /* Negative. We can't learn anything from the smax, but smin
2366 * is negative, hence safe.
2367 */
2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2369 reg->umin_value);
2370 reg->smax_value = reg->umax_value;
2371 }
2372 }
2373
__reg_deduce_bounds(struct bpf_reg_state * reg)2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2375 {
2376 __reg32_deduce_bounds(reg);
2377 __reg64_deduce_bounds(reg);
2378 }
2379
2380 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2381 static void __reg_bound_offset(struct bpf_reg_state *reg)
2382 {
2383 struct tnum var64_off = tnum_intersect(reg->var_off,
2384 tnum_range(reg->umin_value,
2385 reg->umax_value));
2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2387 tnum_range(reg->u32_min_value,
2388 reg->u32_max_value));
2389
2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2391 }
2392
reg_bounds_sync(struct bpf_reg_state * reg)2393 static void reg_bounds_sync(struct bpf_reg_state *reg)
2394 {
2395 /* We might have learned new bounds from the var_off. */
2396 __update_reg_bounds(reg);
2397 /* We might have learned something about the sign bit. */
2398 __reg_deduce_bounds(reg);
2399 /* We might have learned some bits from the bounds. */
2400 __reg_bound_offset(reg);
2401 /* Intersecting with the old var_off might have improved our bounds
2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2403 * then new var_off is (0; 0x7f...fc) which improves our umax.
2404 */
2405 __update_reg_bounds(reg);
2406 }
2407
__reg32_bound_s64(s32 a)2408 static bool __reg32_bound_s64(s32 a)
2409 {
2410 return a >= 0 && a <= S32_MAX;
2411 }
2412
__reg_assign_32_into_64(struct bpf_reg_state * reg)2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2414 {
2415 reg->umin_value = reg->u32_min_value;
2416 reg->umax_value = reg->u32_max_value;
2417
2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2419 * be positive otherwise set to worse case bounds and refine later
2420 * from tnum.
2421 */
2422 if (__reg32_bound_s64(reg->s32_min_value) &&
2423 __reg32_bound_s64(reg->s32_max_value)) {
2424 reg->smin_value = reg->s32_min_value;
2425 reg->smax_value = reg->s32_max_value;
2426 } else {
2427 reg->smin_value = 0;
2428 reg->smax_value = U32_MAX;
2429 }
2430 }
2431
__reg_combine_32_into_64(struct bpf_reg_state * reg)2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 /* special case when 64-bit register has upper 32-bit register
2435 * zeroed. Typically happens after zext or <<32, >>32 sequence
2436 * allowing us to use 32-bit bounds directly,
2437 */
2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2439 __reg_assign_32_into_64(reg);
2440 } else {
2441 /* Otherwise the best we can do is push lower 32bit known and
2442 * unknown bits into register (var_off set from jmp logic)
2443 * then learn as much as possible from the 64-bit tnum
2444 * known and unknown bits. The previous smin/smax bounds are
2445 * invalid here because of jmp32 compare so mark them unknown
2446 * so they do not impact tnum bounds calculation.
2447 */
2448 __mark_reg64_unbounded(reg);
2449 }
2450 reg_bounds_sync(reg);
2451 }
2452
__reg64_bound_s32(s64 a)2453 static bool __reg64_bound_s32(s64 a)
2454 {
2455 return a >= S32_MIN && a <= S32_MAX;
2456 }
2457
__reg64_bound_u32(u64 a)2458 static bool __reg64_bound_u32(u64 a)
2459 {
2460 return a >= U32_MIN && a <= U32_MAX;
2461 }
2462
__reg_combine_64_into_32(struct bpf_reg_state * reg)2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2464 {
2465 __mark_reg32_unbounded(reg);
2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2467 reg->s32_min_value = (s32)reg->smin_value;
2468 reg->s32_max_value = (s32)reg->smax_value;
2469 }
2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2471 reg->u32_min_value = (u32)reg->umin_value;
2472 reg->u32_max_value = (u32)reg->umax_value;
2473 }
2474 reg_bounds_sync(reg);
2475 }
2476
2477 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2479 struct bpf_reg_state *reg)
2480 {
2481 /*
2482 * Clear type, off, and union(map_ptr, range) and
2483 * padding between 'type' and union
2484 */
2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2486 reg->type = SCALAR_VALUE;
2487 reg->id = 0;
2488 reg->ref_obj_id = 0;
2489 reg->var_off = tnum_unknown;
2490 reg->frameno = 0;
2491 reg->precise = !env->bpf_capable;
2492 __mark_reg_unbounded(reg);
2493 }
2494
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2495 static void mark_reg_unknown(struct bpf_verifier_env *env,
2496 struct bpf_reg_state *regs, u32 regno)
2497 {
2498 if (WARN_ON(regno >= MAX_BPF_REG)) {
2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2500 /* Something bad happened, let's kill all regs except FP */
2501 for (regno = 0; regno < BPF_REG_FP; regno++)
2502 __mark_reg_not_init(env, regs + regno);
2503 return;
2504 }
2505 __mark_reg_unknown(env, regs + regno);
2506 }
2507
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2509 struct bpf_reg_state *reg)
2510 {
2511 __mark_reg_unknown(env, reg);
2512 reg->type = NOT_INIT;
2513 }
2514
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2515 static void mark_reg_not_init(struct bpf_verifier_env *env,
2516 struct bpf_reg_state *regs, u32 regno)
2517 {
2518 if (WARN_ON(regno >= MAX_BPF_REG)) {
2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2520 /* Something bad happened, let's kill all regs except FP */
2521 for (regno = 0; regno < BPF_REG_FP; regno++)
2522 __mark_reg_not_init(env, regs + regno);
2523 return;
2524 }
2525 __mark_reg_not_init(env, regs + regno);
2526 }
2527
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2529 struct bpf_reg_state *regs, u32 regno,
2530 enum bpf_reg_type reg_type,
2531 struct btf *btf, u32 btf_id,
2532 enum bpf_type_flag flag)
2533 {
2534 if (reg_type == SCALAR_VALUE) {
2535 mark_reg_unknown(env, regs, regno);
2536 return;
2537 }
2538 mark_reg_known_zero(env, regs, regno);
2539 regs[regno].type = PTR_TO_BTF_ID | flag;
2540 regs[regno].btf = btf;
2541 regs[regno].btf_id = btf_id;
2542 if (type_may_be_null(flag))
2543 regs[regno].id = ++env->id_gen;
2544 }
2545
2546 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2547 static void init_reg_state(struct bpf_verifier_env *env,
2548 struct bpf_func_state *state)
2549 {
2550 struct bpf_reg_state *regs = state->regs;
2551 int i;
2552
2553 for (i = 0; i < MAX_BPF_REG; i++) {
2554 mark_reg_not_init(env, regs, i);
2555 regs[i].live = REG_LIVE_NONE;
2556 regs[i].parent = NULL;
2557 regs[i].subreg_def = DEF_NOT_SUBREG;
2558 }
2559
2560 /* frame pointer */
2561 regs[BPF_REG_FP].type = PTR_TO_STACK;
2562 mark_reg_known_zero(env, regs, BPF_REG_FP);
2563 regs[BPF_REG_FP].frameno = state->frameno;
2564 }
2565
2566 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2567 static void init_func_state(struct bpf_verifier_env *env,
2568 struct bpf_func_state *state,
2569 int callsite, int frameno, int subprogno)
2570 {
2571 state->callsite = callsite;
2572 state->frameno = frameno;
2573 state->subprogno = subprogno;
2574 state->callback_ret_range = tnum_range(0, 0);
2575 init_reg_state(env, state);
2576 mark_verifier_state_scratched(env);
2577 }
2578
2579 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2581 int insn_idx, int prev_insn_idx,
2582 int subprog)
2583 {
2584 struct bpf_verifier_stack_elem *elem;
2585 struct bpf_func_state *frame;
2586
2587 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2588 if (!elem)
2589 goto err;
2590
2591 elem->insn_idx = insn_idx;
2592 elem->prev_insn_idx = prev_insn_idx;
2593 elem->next = env->head;
2594 elem->log_pos = env->log.end_pos;
2595 env->head = elem;
2596 env->stack_size++;
2597 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2598 verbose(env,
2599 "The sequence of %d jumps is too complex for async cb.\n",
2600 env->stack_size);
2601 goto err;
2602 }
2603 /* Unlike push_stack() do not copy_verifier_state().
2604 * The caller state doesn't matter.
2605 * This is async callback. It starts in a fresh stack.
2606 * Initialize it similar to do_check_common().
2607 */
2608 elem->st.branches = 1;
2609 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2610 if (!frame)
2611 goto err;
2612 init_func_state(env, frame,
2613 BPF_MAIN_FUNC /* callsite */,
2614 0 /* frameno within this callchain */,
2615 subprog /* subprog number within this prog */);
2616 elem->st.frame[0] = frame;
2617 return &elem->st;
2618 err:
2619 free_verifier_state(env->cur_state, true);
2620 env->cur_state = NULL;
2621 /* pop all elements and return */
2622 while (!pop_stack(env, NULL, NULL, false));
2623 return NULL;
2624 }
2625
2626
2627 enum reg_arg_type {
2628 SRC_OP, /* register is used as source operand */
2629 DST_OP, /* register is used as destination operand */
2630 DST_OP_NO_MARK /* same as above, check only, don't mark */
2631 };
2632
cmp_subprogs(const void * a,const void * b)2633 static int cmp_subprogs(const void *a, const void *b)
2634 {
2635 return ((struct bpf_subprog_info *)a)->start -
2636 ((struct bpf_subprog_info *)b)->start;
2637 }
2638
find_subprog(struct bpf_verifier_env * env,int off)2639 static int find_subprog(struct bpf_verifier_env *env, int off)
2640 {
2641 struct bpf_subprog_info *p;
2642
2643 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2644 sizeof(env->subprog_info[0]), cmp_subprogs);
2645 if (!p)
2646 return -ENOENT;
2647 return p - env->subprog_info;
2648
2649 }
2650
add_subprog(struct bpf_verifier_env * env,int off)2651 static int add_subprog(struct bpf_verifier_env *env, int off)
2652 {
2653 int insn_cnt = env->prog->len;
2654 int ret;
2655
2656 if (off >= insn_cnt || off < 0) {
2657 verbose(env, "call to invalid destination\n");
2658 return -EINVAL;
2659 }
2660 ret = find_subprog(env, off);
2661 if (ret >= 0)
2662 return ret;
2663 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2664 verbose(env, "too many subprograms\n");
2665 return -E2BIG;
2666 }
2667 /* determine subprog starts. The end is one before the next starts */
2668 env->subprog_info[env->subprog_cnt++].start = off;
2669 sort(env->subprog_info, env->subprog_cnt,
2670 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2671 return env->subprog_cnt - 1;
2672 }
2673
2674 #define MAX_KFUNC_DESCS 256
2675 #define MAX_KFUNC_BTFS 256
2676
2677 struct bpf_kfunc_desc {
2678 struct btf_func_model func_model;
2679 u32 func_id;
2680 s32 imm;
2681 u16 offset;
2682 unsigned long addr;
2683 };
2684
2685 struct bpf_kfunc_btf {
2686 struct btf *btf;
2687 struct module *module;
2688 u16 offset;
2689 };
2690
2691 struct bpf_kfunc_desc_tab {
2692 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2693 * verification. JITs do lookups by bpf_insn, where func_id may not be
2694 * available, therefore at the end of verification do_misc_fixups()
2695 * sorts this by imm and offset.
2696 */
2697 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2698 u32 nr_descs;
2699 };
2700
2701 struct bpf_kfunc_btf_tab {
2702 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2703 u32 nr_descs;
2704 };
2705
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2707 {
2708 const struct bpf_kfunc_desc *d0 = a;
2709 const struct bpf_kfunc_desc *d1 = b;
2710
2711 /* func_id is not greater than BTF_MAX_TYPE */
2712 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2713 }
2714
kfunc_btf_cmp_by_off(const void * a,const void * b)2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2716 {
2717 const struct bpf_kfunc_btf *d0 = a;
2718 const struct bpf_kfunc_btf *d1 = b;
2719
2720 return d0->offset - d1->offset;
2721 }
2722
2723 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2725 {
2726 struct bpf_kfunc_desc desc = {
2727 .func_id = func_id,
2728 .offset = offset,
2729 };
2730 struct bpf_kfunc_desc_tab *tab;
2731
2732 tab = prog->aux->kfunc_tab;
2733 return bsearch(&desc, tab->descs, tab->nr_descs,
2734 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2735 }
2736
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2738 u16 btf_fd_idx, u8 **func_addr)
2739 {
2740 const struct bpf_kfunc_desc *desc;
2741
2742 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2743 if (!desc)
2744 return -EFAULT;
2745
2746 *func_addr = (u8 *)desc->addr;
2747 return 0;
2748 }
2749
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2751 s16 offset)
2752 {
2753 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2754 struct bpf_kfunc_btf_tab *tab;
2755 struct bpf_kfunc_btf *b;
2756 struct module *mod;
2757 struct btf *btf;
2758 int btf_fd;
2759
2760 tab = env->prog->aux->kfunc_btf_tab;
2761 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2762 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2763 if (!b) {
2764 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2765 verbose(env, "too many different module BTFs\n");
2766 return ERR_PTR(-E2BIG);
2767 }
2768
2769 if (bpfptr_is_null(env->fd_array)) {
2770 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2771 return ERR_PTR(-EPROTO);
2772 }
2773
2774 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2775 offset * sizeof(btf_fd),
2776 sizeof(btf_fd)))
2777 return ERR_PTR(-EFAULT);
2778
2779 btf = btf_get_by_fd(btf_fd);
2780 if (IS_ERR(btf)) {
2781 verbose(env, "invalid module BTF fd specified\n");
2782 return btf;
2783 }
2784
2785 if (!btf_is_module(btf)) {
2786 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2787 btf_put(btf);
2788 return ERR_PTR(-EINVAL);
2789 }
2790
2791 mod = btf_try_get_module(btf);
2792 if (!mod) {
2793 btf_put(btf);
2794 return ERR_PTR(-ENXIO);
2795 }
2796
2797 b = &tab->descs[tab->nr_descs++];
2798 b->btf = btf;
2799 b->module = mod;
2800 b->offset = offset;
2801
2802 /* sort() reorders entries by value, so b may no longer point
2803 * to the right entry after this
2804 */
2805 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2806 kfunc_btf_cmp_by_off, NULL);
2807 } else {
2808 btf = b->btf;
2809 }
2810
2811 return btf;
2812 }
2813
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2814 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2815 {
2816 if (!tab)
2817 return;
2818
2819 while (tab->nr_descs--) {
2820 module_put(tab->descs[tab->nr_descs].module);
2821 btf_put(tab->descs[tab->nr_descs].btf);
2822 }
2823 kfree(tab);
2824 }
2825
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2826 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2827 {
2828 if (offset) {
2829 if (offset < 0) {
2830 /* In the future, this can be allowed to increase limit
2831 * of fd index into fd_array, interpreted as u16.
2832 */
2833 verbose(env, "negative offset disallowed for kernel module function call\n");
2834 return ERR_PTR(-EINVAL);
2835 }
2836
2837 return __find_kfunc_desc_btf(env, offset);
2838 }
2839 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2840 }
2841
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2842 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2843 {
2844 const struct btf_type *func, *func_proto;
2845 struct bpf_kfunc_btf_tab *btf_tab;
2846 struct bpf_kfunc_desc_tab *tab;
2847 struct bpf_prog_aux *prog_aux;
2848 struct bpf_kfunc_desc *desc;
2849 const char *func_name;
2850 struct btf *desc_btf;
2851 unsigned long call_imm;
2852 unsigned long addr;
2853 int err;
2854
2855 prog_aux = env->prog->aux;
2856 tab = prog_aux->kfunc_tab;
2857 btf_tab = prog_aux->kfunc_btf_tab;
2858 if (!tab) {
2859 if (!btf_vmlinux) {
2860 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2861 return -ENOTSUPP;
2862 }
2863
2864 if (!env->prog->jit_requested) {
2865 verbose(env, "JIT is required for calling kernel function\n");
2866 return -ENOTSUPP;
2867 }
2868
2869 if (!bpf_jit_supports_kfunc_call()) {
2870 verbose(env, "JIT does not support calling kernel function\n");
2871 return -ENOTSUPP;
2872 }
2873
2874 if (!env->prog->gpl_compatible) {
2875 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2876 return -EINVAL;
2877 }
2878
2879 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2880 if (!tab)
2881 return -ENOMEM;
2882 prog_aux->kfunc_tab = tab;
2883 }
2884
2885 /* func_id == 0 is always invalid, but instead of returning an error, be
2886 * conservative and wait until the code elimination pass before returning
2887 * error, so that invalid calls that get pruned out can be in BPF programs
2888 * loaded from userspace. It is also required that offset be untouched
2889 * for such calls.
2890 */
2891 if (!func_id && !offset)
2892 return 0;
2893
2894 if (!btf_tab && offset) {
2895 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2896 if (!btf_tab)
2897 return -ENOMEM;
2898 prog_aux->kfunc_btf_tab = btf_tab;
2899 }
2900
2901 desc_btf = find_kfunc_desc_btf(env, offset);
2902 if (IS_ERR(desc_btf)) {
2903 verbose(env, "failed to find BTF for kernel function\n");
2904 return PTR_ERR(desc_btf);
2905 }
2906
2907 if (find_kfunc_desc(env->prog, func_id, offset))
2908 return 0;
2909
2910 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2911 verbose(env, "too many different kernel function calls\n");
2912 return -E2BIG;
2913 }
2914
2915 func = btf_type_by_id(desc_btf, func_id);
2916 if (!func || !btf_type_is_func(func)) {
2917 verbose(env, "kernel btf_id %u is not a function\n",
2918 func_id);
2919 return -EINVAL;
2920 }
2921 func_proto = btf_type_by_id(desc_btf, func->type);
2922 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2923 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2924 func_id);
2925 return -EINVAL;
2926 }
2927
2928 func_name = btf_name_by_offset(desc_btf, func->name_off);
2929 addr = kallsyms_lookup_name(func_name);
2930 if (!addr) {
2931 verbose(env, "cannot find address for kernel function %s\n",
2932 func_name);
2933 return -EINVAL;
2934 }
2935 specialize_kfunc(env, func_id, offset, &addr);
2936
2937 if (bpf_jit_supports_far_kfunc_call()) {
2938 call_imm = func_id;
2939 } else {
2940 call_imm = BPF_CALL_IMM(addr);
2941 /* Check whether the relative offset overflows desc->imm */
2942 if ((unsigned long)(s32)call_imm != call_imm) {
2943 verbose(env, "address of kernel function %s is out of range\n",
2944 func_name);
2945 return -EINVAL;
2946 }
2947 }
2948
2949 if (bpf_dev_bound_kfunc_id(func_id)) {
2950 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2951 if (err)
2952 return err;
2953 }
2954
2955 desc = &tab->descs[tab->nr_descs++];
2956 desc->func_id = func_id;
2957 desc->imm = call_imm;
2958 desc->offset = offset;
2959 desc->addr = addr;
2960 err = btf_distill_func_proto(&env->log, desc_btf,
2961 func_proto, func_name,
2962 &desc->func_model);
2963 if (!err)
2964 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2965 kfunc_desc_cmp_by_id_off, NULL);
2966 return err;
2967 }
2968
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)2969 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2970 {
2971 const struct bpf_kfunc_desc *d0 = a;
2972 const struct bpf_kfunc_desc *d1 = b;
2973
2974 if (d0->imm != d1->imm)
2975 return d0->imm < d1->imm ? -1 : 1;
2976 if (d0->offset != d1->offset)
2977 return d0->offset < d1->offset ? -1 : 1;
2978 return 0;
2979 }
2980
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)2981 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2982 {
2983 struct bpf_kfunc_desc_tab *tab;
2984
2985 tab = prog->aux->kfunc_tab;
2986 if (!tab)
2987 return;
2988
2989 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2990 kfunc_desc_cmp_by_imm_off, NULL);
2991 }
2992
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2993 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2994 {
2995 return !!prog->aux->kfunc_tab;
2996 }
2997
2998 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2999 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3000 const struct bpf_insn *insn)
3001 {
3002 const struct bpf_kfunc_desc desc = {
3003 .imm = insn->imm,
3004 .offset = insn->off,
3005 };
3006 const struct bpf_kfunc_desc *res;
3007 struct bpf_kfunc_desc_tab *tab;
3008
3009 tab = prog->aux->kfunc_tab;
3010 res = bsearch(&desc, tab->descs, tab->nr_descs,
3011 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3012
3013 return res ? &res->func_model : NULL;
3014 }
3015
add_subprog_and_kfunc(struct bpf_verifier_env * env)3016 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3017 {
3018 struct bpf_subprog_info *subprog = env->subprog_info;
3019 struct bpf_insn *insn = env->prog->insnsi;
3020 int i, ret, insn_cnt = env->prog->len;
3021
3022 /* Add entry function. */
3023 ret = add_subprog(env, 0);
3024 if (ret)
3025 return ret;
3026
3027 for (i = 0; i < insn_cnt; i++, insn++) {
3028 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3029 !bpf_pseudo_kfunc_call(insn))
3030 continue;
3031
3032 if (!env->bpf_capable) {
3033 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3034 return -EPERM;
3035 }
3036
3037 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3038 ret = add_subprog(env, i + insn->imm + 1);
3039 else
3040 ret = add_kfunc_call(env, insn->imm, insn->off);
3041
3042 if (ret < 0)
3043 return ret;
3044 }
3045
3046 /* Add a fake 'exit' subprog which could simplify subprog iteration
3047 * logic. 'subprog_cnt' should not be increased.
3048 */
3049 subprog[env->subprog_cnt].start = insn_cnt;
3050
3051 if (env->log.level & BPF_LOG_LEVEL2)
3052 for (i = 0; i < env->subprog_cnt; i++)
3053 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3054
3055 return 0;
3056 }
3057
check_subprogs(struct bpf_verifier_env * env)3058 static int check_subprogs(struct bpf_verifier_env *env)
3059 {
3060 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3061 struct bpf_subprog_info *subprog = env->subprog_info;
3062 struct bpf_insn *insn = env->prog->insnsi;
3063 int insn_cnt = env->prog->len;
3064
3065 /* now check that all jumps are within the same subprog */
3066 subprog_start = subprog[cur_subprog].start;
3067 subprog_end = subprog[cur_subprog + 1].start;
3068 for (i = 0; i < insn_cnt; i++) {
3069 u8 code = insn[i].code;
3070
3071 if (code == (BPF_JMP | BPF_CALL) &&
3072 insn[i].src_reg == 0 &&
3073 insn[i].imm == BPF_FUNC_tail_call) {
3074 subprog[cur_subprog].has_tail_call = true;
3075 subprog[cur_subprog].tail_call_reachable = true;
3076 }
3077 if (BPF_CLASS(code) == BPF_LD &&
3078 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3079 subprog[cur_subprog].has_ld_abs = true;
3080 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3081 goto next;
3082 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3083 goto next;
3084 if (code == (BPF_JMP32 | BPF_JA))
3085 off = i + insn[i].imm + 1;
3086 else
3087 off = i + insn[i].off + 1;
3088 if (off < subprog_start || off >= subprog_end) {
3089 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3090 return -EINVAL;
3091 }
3092 next:
3093 if (i == subprog_end - 1) {
3094 /* to avoid fall-through from one subprog into another
3095 * the last insn of the subprog should be either exit
3096 * or unconditional jump back
3097 */
3098 if (code != (BPF_JMP | BPF_EXIT) &&
3099 code != (BPF_JMP32 | BPF_JA) &&
3100 code != (BPF_JMP | BPF_JA)) {
3101 verbose(env, "last insn is not an exit or jmp\n");
3102 return -EINVAL;
3103 }
3104 subprog_start = subprog_end;
3105 cur_subprog++;
3106 if (cur_subprog < env->subprog_cnt)
3107 subprog_end = subprog[cur_subprog + 1].start;
3108 }
3109 }
3110 return 0;
3111 }
3112
3113 /* Parentage chain of this register (or stack slot) should take care of all
3114 * issues like callee-saved registers, stack slot allocation time, etc.
3115 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3116 static int mark_reg_read(struct bpf_verifier_env *env,
3117 const struct bpf_reg_state *state,
3118 struct bpf_reg_state *parent, u8 flag)
3119 {
3120 bool writes = parent == state->parent; /* Observe write marks */
3121 int cnt = 0;
3122
3123 while (parent) {
3124 /* if read wasn't screened by an earlier write ... */
3125 if (writes && state->live & REG_LIVE_WRITTEN)
3126 break;
3127 if (parent->live & REG_LIVE_DONE) {
3128 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3129 reg_type_str(env, parent->type),
3130 parent->var_off.value, parent->off);
3131 return -EFAULT;
3132 }
3133 /* The first condition is more likely to be true than the
3134 * second, checked it first.
3135 */
3136 if ((parent->live & REG_LIVE_READ) == flag ||
3137 parent->live & REG_LIVE_READ64)
3138 /* The parentage chain never changes and
3139 * this parent was already marked as LIVE_READ.
3140 * There is no need to keep walking the chain again and
3141 * keep re-marking all parents as LIVE_READ.
3142 * This case happens when the same register is read
3143 * multiple times without writes into it in-between.
3144 * Also, if parent has the stronger REG_LIVE_READ64 set,
3145 * then no need to set the weak REG_LIVE_READ32.
3146 */
3147 break;
3148 /* ... then we depend on parent's value */
3149 parent->live |= flag;
3150 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3151 if (flag == REG_LIVE_READ64)
3152 parent->live &= ~REG_LIVE_READ32;
3153 state = parent;
3154 parent = state->parent;
3155 writes = true;
3156 cnt++;
3157 }
3158
3159 if (env->longest_mark_read_walk < cnt)
3160 env->longest_mark_read_walk = cnt;
3161 return 0;
3162 }
3163
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3164 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3165 {
3166 struct bpf_func_state *state = func(env, reg);
3167 int spi, ret;
3168
3169 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3170 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3171 * check_kfunc_call.
3172 */
3173 if (reg->type == CONST_PTR_TO_DYNPTR)
3174 return 0;
3175 spi = dynptr_get_spi(env, reg);
3176 if (spi < 0)
3177 return spi;
3178 /* Caller ensures dynptr is valid and initialized, which means spi is in
3179 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3180 * read.
3181 */
3182 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3183 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3184 if (ret)
3185 return ret;
3186 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3187 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3188 }
3189
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3190 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3191 int spi, int nr_slots)
3192 {
3193 struct bpf_func_state *state = func(env, reg);
3194 int err, i;
3195
3196 for (i = 0; i < nr_slots; i++) {
3197 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3198
3199 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3200 if (err)
3201 return err;
3202
3203 mark_stack_slot_scratched(env, spi - i);
3204 }
3205
3206 return 0;
3207 }
3208
3209 /* This function is supposed to be used by the following 32-bit optimization
3210 * code only. It returns TRUE if the source or destination register operates
3211 * on 64-bit, otherwise return FALSE.
3212 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3213 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3214 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3215 {
3216 u8 code, class, op;
3217
3218 code = insn->code;
3219 class = BPF_CLASS(code);
3220 op = BPF_OP(code);
3221 if (class == BPF_JMP) {
3222 /* BPF_EXIT for "main" will reach here. Return TRUE
3223 * conservatively.
3224 */
3225 if (op == BPF_EXIT)
3226 return true;
3227 if (op == BPF_CALL) {
3228 /* BPF to BPF call will reach here because of marking
3229 * caller saved clobber with DST_OP_NO_MARK for which we
3230 * don't care the register def because they are anyway
3231 * marked as NOT_INIT already.
3232 */
3233 if (insn->src_reg == BPF_PSEUDO_CALL)
3234 return false;
3235 /* Helper call will reach here because of arg type
3236 * check, conservatively return TRUE.
3237 */
3238 if (t == SRC_OP)
3239 return true;
3240
3241 return false;
3242 }
3243 }
3244
3245 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3246 return false;
3247
3248 if (class == BPF_ALU64 || class == BPF_JMP ||
3249 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3250 return true;
3251
3252 if (class == BPF_ALU || class == BPF_JMP32)
3253 return false;
3254
3255 if (class == BPF_LDX) {
3256 if (t != SRC_OP)
3257 return BPF_SIZE(code) == BPF_DW;
3258 /* LDX source must be ptr. */
3259 return true;
3260 }
3261
3262 if (class == BPF_STX) {
3263 /* BPF_STX (including atomic variants) has multiple source
3264 * operands, one of which is a ptr. Check whether the caller is
3265 * asking about it.
3266 */
3267 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3268 return true;
3269 return BPF_SIZE(code) == BPF_DW;
3270 }
3271
3272 if (class == BPF_LD) {
3273 u8 mode = BPF_MODE(code);
3274
3275 /* LD_IMM64 */
3276 if (mode == BPF_IMM)
3277 return true;
3278
3279 /* Both LD_IND and LD_ABS return 32-bit data. */
3280 if (t != SRC_OP)
3281 return false;
3282
3283 /* Implicit ctx ptr. */
3284 if (regno == BPF_REG_6)
3285 return true;
3286
3287 /* Explicit source could be any width. */
3288 return true;
3289 }
3290
3291 if (class == BPF_ST)
3292 /* The only source register for BPF_ST is a ptr. */
3293 return true;
3294
3295 /* Conservatively return true at default. */
3296 return true;
3297 }
3298
3299 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3300 static int insn_def_regno(const struct bpf_insn *insn)
3301 {
3302 switch (BPF_CLASS(insn->code)) {
3303 case BPF_JMP:
3304 case BPF_JMP32:
3305 case BPF_ST:
3306 return -1;
3307 case BPF_STX:
3308 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3309 (insn->imm & BPF_FETCH)) {
3310 if (insn->imm == BPF_CMPXCHG)
3311 return BPF_REG_0;
3312 else
3313 return insn->src_reg;
3314 } else {
3315 return -1;
3316 }
3317 default:
3318 return insn->dst_reg;
3319 }
3320 }
3321
3322 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3323 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3324 {
3325 int dst_reg = insn_def_regno(insn);
3326
3327 if (dst_reg == -1)
3328 return false;
3329
3330 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3331 }
3332
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3333 static void mark_insn_zext(struct bpf_verifier_env *env,
3334 struct bpf_reg_state *reg)
3335 {
3336 s32 def_idx = reg->subreg_def;
3337
3338 if (def_idx == DEF_NOT_SUBREG)
3339 return;
3340
3341 env->insn_aux_data[def_idx - 1].zext_dst = true;
3342 /* The dst will be zero extended, so won't be sub-register anymore. */
3343 reg->subreg_def = DEF_NOT_SUBREG;
3344 }
3345
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3346 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3347 enum reg_arg_type t)
3348 {
3349 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3350 struct bpf_reg_state *reg;
3351 bool rw64;
3352
3353 if (regno >= MAX_BPF_REG) {
3354 verbose(env, "R%d is invalid\n", regno);
3355 return -EINVAL;
3356 }
3357
3358 mark_reg_scratched(env, regno);
3359
3360 reg = ®s[regno];
3361 rw64 = is_reg64(env, insn, regno, reg, t);
3362 if (t == SRC_OP) {
3363 /* check whether register used as source operand can be read */
3364 if (reg->type == NOT_INIT) {
3365 verbose(env, "R%d !read_ok\n", regno);
3366 return -EACCES;
3367 }
3368 /* We don't need to worry about FP liveness because it's read-only */
3369 if (regno == BPF_REG_FP)
3370 return 0;
3371
3372 if (rw64)
3373 mark_insn_zext(env, reg);
3374
3375 return mark_reg_read(env, reg, reg->parent,
3376 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3377 } else {
3378 /* check whether register used as dest operand can be written to */
3379 if (regno == BPF_REG_FP) {
3380 verbose(env, "frame pointer is read only\n");
3381 return -EACCES;
3382 }
3383 reg->live |= REG_LIVE_WRITTEN;
3384 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3385 if (t == DST_OP)
3386 mark_reg_unknown(env, regs, regno);
3387 }
3388 return 0;
3389 }
3390
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3391 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3392 enum reg_arg_type t)
3393 {
3394 struct bpf_verifier_state *vstate = env->cur_state;
3395 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3396
3397 return __check_reg_arg(env, state->regs, regno, t);
3398 }
3399
insn_stack_access_flags(int frameno,int spi)3400 static int insn_stack_access_flags(int frameno, int spi)
3401 {
3402 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3403 }
3404
insn_stack_access_spi(int insn_flags)3405 static int insn_stack_access_spi(int insn_flags)
3406 {
3407 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3408 }
3409
insn_stack_access_frameno(int insn_flags)3410 static int insn_stack_access_frameno(int insn_flags)
3411 {
3412 return insn_flags & INSN_F_FRAMENO_MASK;
3413 }
3414
mark_jmp_point(struct bpf_verifier_env * env,int idx)3415 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3416 {
3417 env->insn_aux_data[idx].jmp_point = true;
3418 }
3419
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3420 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3421 {
3422 return env->insn_aux_data[insn_idx].jmp_point;
3423 }
3424
3425 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_flags)3426 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3427 int insn_flags)
3428 {
3429 u32 cnt = cur->jmp_history_cnt;
3430 struct bpf_jmp_history_entry *p;
3431 size_t alloc_size;
3432
3433 /* combine instruction flags if we already recorded this instruction */
3434 if (env->cur_hist_ent) {
3435 /* atomic instructions push insn_flags twice, for READ and
3436 * WRITE sides, but they should agree on stack slot
3437 */
3438 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3439 (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3440 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3441 env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3442 env->cur_hist_ent->flags |= insn_flags;
3443 return 0;
3444 }
3445
3446 cnt++;
3447 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3448 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3449 if (!p)
3450 return -ENOMEM;
3451 cur->jmp_history = p;
3452
3453 p = &cur->jmp_history[cnt - 1];
3454 p->idx = env->insn_idx;
3455 p->prev_idx = env->prev_insn_idx;
3456 p->flags = insn_flags;
3457 cur->jmp_history_cnt = cnt;
3458 env->cur_hist_ent = p;
3459
3460 return 0;
3461 }
3462
get_jmp_hist_entry(struct bpf_verifier_state * st,u32 hist_end,int insn_idx)3463 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3464 u32 hist_end, int insn_idx)
3465 {
3466 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3467 return &st->jmp_history[hist_end - 1];
3468 return NULL;
3469 }
3470
3471 /* Backtrack one insn at a time. If idx is not at the top of recorded
3472 * history then previous instruction came from straight line execution.
3473 * Return -ENOENT if we exhausted all instructions within given state.
3474 *
3475 * It's legal to have a bit of a looping with the same starting and ending
3476 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3477 * instruction index is the same as state's first_idx doesn't mean we are
3478 * done. If there is still some jump history left, we should keep going. We
3479 * need to take into account that we might have a jump history between given
3480 * state's parent and itself, due to checkpointing. In this case, we'll have
3481 * history entry recording a jump from last instruction of parent state and
3482 * first instruction of given state.
3483 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3484 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3485 u32 *history)
3486 {
3487 u32 cnt = *history;
3488
3489 if (i == st->first_insn_idx) {
3490 if (cnt == 0)
3491 return -ENOENT;
3492 if (cnt == 1 && st->jmp_history[0].idx == i)
3493 return -ENOENT;
3494 }
3495
3496 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3497 i = st->jmp_history[cnt - 1].prev_idx;
3498 (*history)--;
3499 } else {
3500 i--;
3501 }
3502 return i;
3503 }
3504
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3505 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3506 {
3507 const struct btf_type *func;
3508 struct btf *desc_btf;
3509
3510 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3511 return NULL;
3512
3513 desc_btf = find_kfunc_desc_btf(data, insn->off);
3514 if (IS_ERR(desc_btf))
3515 return "<error>";
3516
3517 func = btf_type_by_id(desc_btf, insn->imm);
3518 return btf_name_by_offset(desc_btf, func->name_off);
3519 }
3520
bt_init(struct backtrack_state * bt,u32 frame)3521 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3522 {
3523 bt->frame = frame;
3524 }
3525
bt_reset(struct backtrack_state * bt)3526 static inline void bt_reset(struct backtrack_state *bt)
3527 {
3528 struct bpf_verifier_env *env = bt->env;
3529
3530 memset(bt, 0, sizeof(*bt));
3531 bt->env = env;
3532 }
3533
bt_empty(struct backtrack_state * bt)3534 static inline u32 bt_empty(struct backtrack_state *bt)
3535 {
3536 u64 mask = 0;
3537 int i;
3538
3539 for (i = 0; i <= bt->frame; i++)
3540 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3541
3542 return mask == 0;
3543 }
3544
bt_subprog_enter(struct backtrack_state * bt)3545 static inline int bt_subprog_enter(struct backtrack_state *bt)
3546 {
3547 if (bt->frame == MAX_CALL_FRAMES - 1) {
3548 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3549 WARN_ONCE(1, "verifier backtracking bug");
3550 return -EFAULT;
3551 }
3552 bt->frame++;
3553 return 0;
3554 }
3555
bt_subprog_exit(struct backtrack_state * bt)3556 static inline int bt_subprog_exit(struct backtrack_state *bt)
3557 {
3558 if (bt->frame == 0) {
3559 verbose(bt->env, "BUG subprog exit from frame 0\n");
3560 WARN_ONCE(1, "verifier backtracking bug");
3561 return -EFAULT;
3562 }
3563 bt->frame--;
3564 return 0;
3565 }
3566
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3567 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3568 {
3569 bt->reg_masks[frame] |= 1 << reg;
3570 }
3571
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3572 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3573 {
3574 bt->reg_masks[frame] &= ~(1 << reg);
3575 }
3576
bt_set_reg(struct backtrack_state * bt,u32 reg)3577 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3578 {
3579 bt_set_frame_reg(bt, bt->frame, reg);
3580 }
3581
bt_clear_reg(struct backtrack_state * bt,u32 reg)3582 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3583 {
3584 bt_clear_frame_reg(bt, bt->frame, reg);
3585 }
3586
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3587 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3588 {
3589 bt->stack_masks[frame] |= 1ull << slot;
3590 }
3591
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3592 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3593 {
3594 bt->stack_masks[frame] &= ~(1ull << slot);
3595 }
3596
bt_set_slot(struct backtrack_state * bt,u32 slot)3597 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3598 {
3599 bt_set_frame_slot(bt, bt->frame, slot);
3600 }
3601
bt_clear_slot(struct backtrack_state * bt,u32 slot)3602 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3603 {
3604 bt_clear_frame_slot(bt, bt->frame, slot);
3605 }
3606
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)3607 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3608 {
3609 return bt->reg_masks[frame];
3610 }
3611
bt_reg_mask(struct backtrack_state * bt)3612 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3613 {
3614 return bt->reg_masks[bt->frame];
3615 }
3616
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)3617 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3618 {
3619 return bt->stack_masks[frame];
3620 }
3621
bt_stack_mask(struct backtrack_state * bt)3622 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3623 {
3624 return bt->stack_masks[bt->frame];
3625 }
3626
bt_is_reg_set(struct backtrack_state * bt,u32 reg)3627 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3628 {
3629 return bt->reg_masks[bt->frame] & (1 << reg);
3630 }
3631
bt_is_frame_slot_set(struct backtrack_state * bt,u32 frame,u32 slot)3632 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3633 {
3634 return bt->stack_masks[frame] & (1ull << slot);
3635 }
3636
bt_is_slot_set(struct backtrack_state * bt,u32 slot)3637 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3638 {
3639 return bt_is_frame_slot_set(bt, bt->frame, slot);
3640 }
3641
3642 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)3643 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3644 {
3645 DECLARE_BITMAP(mask, 64);
3646 bool first = true;
3647 int i, n;
3648
3649 buf[0] = '\0';
3650
3651 bitmap_from_u64(mask, reg_mask);
3652 for_each_set_bit(i, mask, 32) {
3653 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3654 first = false;
3655 buf += n;
3656 buf_sz -= n;
3657 if (buf_sz < 0)
3658 break;
3659 }
3660 }
3661 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)3662 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3663 {
3664 DECLARE_BITMAP(mask, 64);
3665 bool first = true;
3666 int i, n;
3667
3668 buf[0] = '\0';
3669
3670 bitmap_from_u64(mask, stack_mask);
3671 for_each_set_bit(i, mask, 64) {
3672 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3673 first = false;
3674 buf += n;
3675 buf_sz -= n;
3676 if (buf_sz < 0)
3677 break;
3678 }
3679 }
3680
3681 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3682
3683 /* For given verifier state backtrack_insn() is called from the last insn to
3684 * the first insn. Its purpose is to compute a bitmask of registers and
3685 * stack slots that needs precision in the parent verifier state.
3686 *
3687 * @idx is an index of the instruction we are currently processing;
3688 * @subseq_idx is an index of the subsequent instruction that:
3689 * - *would be* executed next, if jump history is viewed in forward order;
3690 * - *was* processed previously during backtracking.
3691 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct bpf_jmp_history_entry * hist,struct backtrack_state * bt)3692 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3693 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3694 {
3695 const struct bpf_insn_cbs cbs = {
3696 .cb_call = disasm_kfunc_name,
3697 .cb_print = verbose,
3698 .private_data = env,
3699 };
3700 struct bpf_insn *insn = env->prog->insnsi + idx;
3701 u8 class = BPF_CLASS(insn->code);
3702 u8 opcode = BPF_OP(insn->code);
3703 u8 mode = BPF_MODE(insn->code);
3704 u32 dreg = insn->dst_reg;
3705 u32 sreg = insn->src_reg;
3706 u32 spi, i, fr;
3707
3708 if (insn->code == 0)
3709 return 0;
3710 if (env->log.level & BPF_LOG_LEVEL2) {
3711 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3712 verbose(env, "mark_precise: frame%d: regs=%s ",
3713 bt->frame, env->tmp_str_buf);
3714 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3715 verbose(env, "stack=%s before ", env->tmp_str_buf);
3716 verbose(env, "%d: ", idx);
3717 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3718 }
3719
3720 if (class == BPF_ALU || class == BPF_ALU64) {
3721 if (!bt_is_reg_set(bt, dreg))
3722 return 0;
3723 if (opcode == BPF_END || opcode == BPF_NEG) {
3724 /* sreg is reserved and unused
3725 * dreg still need precision before this insn
3726 */
3727 return 0;
3728 } else if (opcode == BPF_MOV) {
3729 if (BPF_SRC(insn->code) == BPF_X) {
3730 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3731 * dreg needs precision after this insn
3732 * sreg needs precision before this insn
3733 */
3734 bt_clear_reg(bt, dreg);
3735 if (sreg != BPF_REG_FP)
3736 bt_set_reg(bt, sreg);
3737 } else {
3738 /* dreg = K
3739 * dreg needs precision after this insn.
3740 * Corresponding register is already marked
3741 * as precise=true in this verifier state.
3742 * No further markings in parent are necessary
3743 */
3744 bt_clear_reg(bt, dreg);
3745 }
3746 } else {
3747 if (BPF_SRC(insn->code) == BPF_X) {
3748 /* dreg += sreg
3749 * both dreg and sreg need precision
3750 * before this insn
3751 */
3752 if (sreg != BPF_REG_FP)
3753 bt_set_reg(bt, sreg);
3754 } /* else dreg += K
3755 * dreg still needs precision before this insn
3756 */
3757 }
3758 } else if (class == BPF_LDX) {
3759 if (!bt_is_reg_set(bt, dreg))
3760 return 0;
3761 bt_clear_reg(bt, dreg);
3762
3763 /* scalars can only be spilled into stack w/o losing precision.
3764 * Load from any other memory can be zero extended.
3765 * The desire to keep that precision is already indicated
3766 * by 'precise' mark in corresponding register of this state.
3767 * No further tracking necessary.
3768 */
3769 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3770 return 0;
3771 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3772 * that [fp - off] slot contains scalar that needs to be
3773 * tracked with precision
3774 */
3775 spi = insn_stack_access_spi(hist->flags);
3776 fr = insn_stack_access_frameno(hist->flags);
3777 bt_set_frame_slot(bt, fr, spi);
3778 } else if (class == BPF_STX || class == BPF_ST) {
3779 if (bt_is_reg_set(bt, dreg))
3780 /* stx & st shouldn't be using _scalar_ dst_reg
3781 * to access memory. It means backtracking
3782 * encountered a case of pointer subtraction.
3783 */
3784 return -ENOTSUPP;
3785 /* scalars can only be spilled into stack */
3786 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3787 return 0;
3788 spi = insn_stack_access_spi(hist->flags);
3789 fr = insn_stack_access_frameno(hist->flags);
3790 if (!bt_is_frame_slot_set(bt, fr, spi))
3791 return 0;
3792 bt_clear_frame_slot(bt, fr, spi);
3793 if (class == BPF_STX)
3794 bt_set_reg(bt, sreg);
3795 } else if (class == BPF_JMP || class == BPF_JMP32) {
3796 if (bpf_pseudo_call(insn)) {
3797 int subprog_insn_idx, subprog;
3798
3799 subprog_insn_idx = idx + insn->imm + 1;
3800 subprog = find_subprog(env, subprog_insn_idx);
3801 if (subprog < 0)
3802 return -EFAULT;
3803
3804 if (subprog_is_global(env, subprog)) {
3805 /* check that jump history doesn't have any
3806 * extra instructions from subprog; the next
3807 * instruction after call to global subprog
3808 * should be literally next instruction in
3809 * caller program
3810 */
3811 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3812 /* r1-r5 are invalidated after subprog call,
3813 * so for global func call it shouldn't be set
3814 * anymore
3815 */
3816 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3817 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3818 WARN_ONCE(1, "verifier backtracking bug");
3819 return -EFAULT;
3820 }
3821 /* global subprog always sets R0 */
3822 bt_clear_reg(bt, BPF_REG_0);
3823 return 0;
3824 } else {
3825 /* static subprog call instruction, which
3826 * means that we are exiting current subprog,
3827 * so only r1-r5 could be still requested as
3828 * precise, r0 and r6-r10 or any stack slot in
3829 * the current frame should be zero by now
3830 */
3831 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3832 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3833 WARN_ONCE(1, "verifier backtracking bug");
3834 return -EFAULT;
3835 }
3836 /* we are now tracking register spills correctly,
3837 * so any instance of leftover slots is a bug
3838 */
3839 if (bt_stack_mask(bt) != 0) {
3840 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3841 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3842 return -EFAULT;
3843 }
3844 /* propagate r1-r5 to the caller */
3845 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3846 if (bt_is_reg_set(bt, i)) {
3847 bt_clear_reg(bt, i);
3848 bt_set_frame_reg(bt, bt->frame - 1, i);
3849 }
3850 }
3851 if (bt_subprog_exit(bt))
3852 return -EFAULT;
3853 return 0;
3854 }
3855 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3856 /* exit from callback subprog to callback-calling helper or
3857 * kfunc call. Use idx/subseq_idx check to discern it from
3858 * straight line code backtracking.
3859 * Unlike the subprog call handling above, we shouldn't
3860 * propagate precision of r1-r5 (if any requested), as they are
3861 * not actually arguments passed directly to callback subprogs
3862 */
3863 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3864 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3865 WARN_ONCE(1, "verifier backtracking bug");
3866 return -EFAULT;
3867 }
3868 if (bt_stack_mask(bt) != 0) {
3869 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3870 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3871 return -EFAULT;
3872 }
3873 /* clear r1-r5 in callback subprog's mask */
3874 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3875 bt_clear_reg(bt, i);
3876 if (bt_subprog_exit(bt))
3877 return -EFAULT;
3878 return 0;
3879 } else if (opcode == BPF_CALL) {
3880 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3881 * catch this error later. Make backtracking conservative
3882 * with ENOTSUPP.
3883 */
3884 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3885 return -ENOTSUPP;
3886 /* regular helper call sets R0 */
3887 bt_clear_reg(bt, BPF_REG_0);
3888 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3889 /* if backtracing was looking for registers R1-R5
3890 * they should have been found already.
3891 */
3892 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3893 WARN_ONCE(1, "verifier backtracking bug");
3894 return -EFAULT;
3895 }
3896 } else if (opcode == BPF_EXIT) {
3897 bool r0_precise;
3898
3899 /* Backtracking to a nested function call, 'idx' is a part of
3900 * the inner frame 'subseq_idx' is a part of the outer frame.
3901 * In case of a regular function call, instructions giving
3902 * precision to registers R1-R5 should have been found already.
3903 * In case of a callback, it is ok to have R1-R5 marked for
3904 * backtracking, as these registers are set by the function
3905 * invoking callback.
3906 */
3907 if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3908 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3909 bt_clear_reg(bt, i);
3910 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3911 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3912 WARN_ONCE(1, "verifier backtracking bug");
3913 return -EFAULT;
3914 }
3915
3916 /* BPF_EXIT in subprog or callback always returns
3917 * right after the call instruction, so by checking
3918 * whether the instruction at subseq_idx-1 is subprog
3919 * call or not we can distinguish actual exit from
3920 * *subprog* from exit from *callback*. In the former
3921 * case, we need to propagate r0 precision, if
3922 * necessary. In the former we never do that.
3923 */
3924 r0_precise = subseq_idx - 1 >= 0 &&
3925 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3926 bt_is_reg_set(bt, BPF_REG_0);
3927
3928 bt_clear_reg(bt, BPF_REG_0);
3929 if (bt_subprog_enter(bt))
3930 return -EFAULT;
3931
3932 if (r0_precise)
3933 bt_set_reg(bt, BPF_REG_0);
3934 /* r6-r9 and stack slots will stay set in caller frame
3935 * bitmasks until we return back from callee(s)
3936 */
3937 return 0;
3938 } else if (BPF_SRC(insn->code) == BPF_X) {
3939 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3940 return 0;
3941 /* dreg <cond> sreg
3942 * Both dreg and sreg need precision before
3943 * this insn. If only sreg was marked precise
3944 * before it would be equally necessary to
3945 * propagate it to dreg.
3946 */
3947 bt_set_reg(bt, dreg);
3948 bt_set_reg(bt, sreg);
3949 /* else dreg <cond> K
3950 * Only dreg still needs precision before
3951 * this insn, so for the K-based conditional
3952 * there is nothing new to be marked.
3953 */
3954 }
3955 } else if (class == BPF_LD) {
3956 if (!bt_is_reg_set(bt, dreg))
3957 return 0;
3958 bt_clear_reg(bt, dreg);
3959 /* It's ld_imm64 or ld_abs or ld_ind.
3960 * For ld_imm64 no further tracking of precision
3961 * into parent is necessary
3962 */
3963 if (mode == BPF_IND || mode == BPF_ABS)
3964 /* to be analyzed */
3965 return -ENOTSUPP;
3966 }
3967 return 0;
3968 }
3969
3970 /* the scalar precision tracking algorithm:
3971 * . at the start all registers have precise=false.
3972 * . scalar ranges are tracked as normal through alu and jmp insns.
3973 * . once precise value of the scalar register is used in:
3974 * . ptr + scalar alu
3975 * . if (scalar cond K|scalar)
3976 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3977 * backtrack through the verifier states and mark all registers and
3978 * stack slots with spilled constants that these scalar regisers
3979 * should be precise.
3980 * . during state pruning two registers (or spilled stack slots)
3981 * are equivalent if both are not precise.
3982 *
3983 * Note the verifier cannot simply walk register parentage chain,
3984 * since many different registers and stack slots could have been
3985 * used to compute single precise scalar.
3986 *
3987 * The approach of starting with precise=true for all registers and then
3988 * backtrack to mark a register as not precise when the verifier detects
3989 * that program doesn't care about specific value (e.g., when helper
3990 * takes register as ARG_ANYTHING parameter) is not safe.
3991 *
3992 * It's ok to walk single parentage chain of the verifier states.
3993 * It's possible that this backtracking will go all the way till 1st insn.
3994 * All other branches will be explored for needing precision later.
3995 *
3996 * The backtracking needs to deal with cases like:
3997 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3998 * r9 -= r8
3999 * r5 = r9
4000 * if r5 > 0x79f goto pc+7
4001 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4002 * r5 += 1
4003 * ...
4004 * call bpf_perf_event_output#25
4005 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4006 *
4007 * and this case:
4008 * r6 = 1
4009 * call foo // uses callee's r6 inside to compute r0
4010 * r0 += r6
4011 * if r0 == 0 goto
4012 *
4013 * to track above reg_mask/stack_mask needs to be independent for each frame.
4014 *
4015 * Also if parent's curframe > frame where backtracking started,
4016 * the verifier need to mark registers in both frames, otherwise callees
4017 * may incorrectly prune callers. This is similar to
4018 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4019 *
4020 * For now backtracking falls back into conservative marking.
4021 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4022 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4023 struct bpf_verifier_state *st)
4024 {
4025 struct bpf_func_state *func;
4026 struct bpf_reg_state *reg;
4027 int i, j;
4028
4029 if (env->log.level & BPF_LOG_LEVEL2) {
4030 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4031 st->curframe);
4032 }
4033
4034 /* big hammer: mark all scalars precise in this path.
4035 * pop_stack may still get !precise scalars.
4036 * We also skip current state and go straight to first parent state,
4037 * because precision markings in current non-checkpointed state are
4038 * not needed. See why in the comment in __mark_chain_precision below.
4039 */
4040 for (st = st->parent; st; st = st->parent) {
4041 for (i = 0; i <= st->curframe; i++) {
4042 func = st->frame[i];
4043 for (j = 0; j < BPF_REG_FP; j++) {
4044 reg = &func->regs[j];
4045 if (reg->type != SCALAR_VALUE || reg->precise)
4046 continue;
4047 reg->precise = true;
4048 if (env->log.level & BPF_LOG_LEVEL2) {
4049 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4050 i, j);
4051 }
4052 }
4053 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4054 if (!is_spilled_reg(&func->stack[j]))
4055 continue;
4056 reg = &func->stack[j].spilled_ptr;
4057 if (reg->type != SCALAR_VALUE || reg->precise)
4058 continue;
4059 reg->precise = true;
4060 if (env->log.level & BPF_LOG_LEVEL2) {
4061 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4062 i, -(j + 1) * 8);
4063 }
4064 }
4065 }
4066 }
4067 }
4068
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4069 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4070 {
4071 struct bpf_func_state *func;
4072 struct bpf_reg_state *reg;
4073 int i, j;
4074
4075 for (i = 0; i <= st->curframe; i++) {
4076 func = st->frame[i];
4077 for (j = 0; j < BPF_REG_FP; j++) {
4078 reg = &func->regs[j];
4079 if (reg->type != SCALAR_VALUE)
4080 continue;
4081 reg->precise = false;
4082 }
4083 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4084 if (!is_spilled_reg(&func->stack[j]))
4085 continue;
4086 reg = &func->stack[j].spilled_ptr;
4087 if (reg->type != SCALAR_VALUE)
4088 continue;
4089 reg->precise = false;
4090 }
4091 }
4092 }
4093
idset_contains(struct bpf_idset * s,u32 id)4094 static bool idset_contains(struct bpf_idset *s, u32 id)
4095 {
4096 u32 i;
4097
4098 for (i = 0; i < s->count; ++i)
4099 if (s->ids[i] == id)
4100 return true;
4101
4102 return false;
4103 }
4104
idset_push(struct bpf_idset * s,u32 id)4105 static int idset_push(struct bpf_idset *s, u32 id)
4106 {
4107 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4108 return -EFAULT;
4109 s->ids[s->count++] = id;
4110 return 0;
4111 }
4112
idset_reset(struct bpf_idset * s)4113 static void idset_reset(struct bpf_idset *s)
4114 {
4115 s->count = 0;
4116 }
4117
4118 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4119 * Mark all registers with these IDs as precise.
4120 */
mark_precise_scalar_ids(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4121 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4122 {
4123 struct bpf_idset *precise_ids = &env->idset_scratch;
4124 struct backtrack_state *bt = &env->bt;
4125 struct bpf_func_state *func;
4126 struct bpf_reg_state *reg;
4127 DECLARE_BITMAP(mask, 64);
4128 int i, fr;
4129
4130 idset_reset(precise_ids);
4131
4132 for (fr = bt->frame; fr >= 0; fr--) {
4133 func = st->frame[fr];
4134
4135 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4136 for_each_set_bit(i, mask, 32) {
4137 reg = &func->regs[i];
4138 if (!reg->id || reg->type != SCALAR_VALUE)
4139 continue;
4140 if (idset_push(precise_ids, reg->id))
4141 return -EFAULT;
4142 }
4143
4144 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4145 for_each_set_bit(i, mask, 64) {
4146 if (i >= func->allocated_stack / BPF_REG_SIZE)
4147 break;
4148 if (!is_spilled_scalar_reg(&func->stack[i]))
4149 continue;
4150 reg = &func->stack[i].spilled_ptr;
4151 if (!reg->id)
4152 continue;
4153 if (idset_push(precise_ids, reg->id))
4154 return -EFAULT;
4155 }
4156 }
4157
4158 for (fr = 0; fr <= st->curframe; ++fr) {
4159 func = st->frame[fr];
4160
4161 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4162 reg = &func->regs[i];
4163 if (!reg->id)
4164 continue;
4165 if (!idset_contains(precise_ids, reg->id))
4166 continue;
4167 bt_set_frame_reg(bt, fr, i);
4168 }
4169 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4170 if (!is_spilled_scalar_reg(&func->stack[i]))
4171 continue;
4172 reg = &func->stack[i].spilled_ptr;
4173 if (!reg->id)
4174 continue;
4175 if (!idset_contains(precise_ids, reg->id))
4176 continue;
4177 bt_set_frame_slot(bt, fr, i);
4178 }
4179 }
4180
4181 return 0;
4182 }
4183
4184 /*
4185 * __mark_chain_precision() backtracks BPF program instruction sequence and
4186 * chain of verifier states making sure that register *regno* (if regno >= 0)
4187 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4188 * SCALARS, as well as any other registers and slots that contribute to
4189 * a tracked state of given registers/stack slots, depending on specific BPF
4190 * assembly instructions (see backtrack_insns() for exact instruction handling
4191 * logic). This backtracking relies on recorded jmp_history and is able to
4192 * traverse entire chain of parent states. This process ends only when all the
4193 * necessary registers/slots and their transitive dependencies are marked as
4194 * precise.
4195 *
4196 * One important and subtle aspect is that precise marks *do not matter* in
4197 * the currently verified state (current state). It is important to understand
4198 * why this is the case.
4199 *
4200 * First, note that current state is the state that is not yet "checkpointed",
4201 * i.e., it is not yet put into env->explored_states, and it has no children
4202 * states as well. It's ephemeral, and can end up either a) being discarded if
4203 * compatible explored state is found at some point or BPF_EXIT instruction is
4204 * reached or b) checkpointed and put into env->explored_states, branching out
4205 * into one or more children states.
4206 *
4207 * In the former case, precise markings in current state are completely
4208 * ignored by state comparison code (see regsafe() for details). Only
4209 * checkpointed ("old") state precise markings are important, and if old
4210 * state's register/slot is precise, regsafe() assumes current state's
4211 * register/slot as precise and checks value ranges exactly and precisely. If
4212 * states turn out to be compatible, current state's necessary precise
4213 * markings and any required parent states' precise markings are enforced
4214 * after the fact with propagate_precision() logic, after the fact. But it's
4215 * important to realize that in this case, even after marking current state
4216 * registers/slots as precise, we immediately discard current state. So what
4217 * actually matters is any of the precise markings propagated into current
4218 * state's parent states, which are always checkpointed (due to b) case above).
4219 * As such, for scenario a) it doesn't matter if current state has precise
4220 * markings set or not.
4221 *
4222 * Now, for the scenario b), checkpointing and forking into child(ren)
4223 * state(s). Note that before current state gets to checkpointing step, any
4224 * processed instruction always assumes precise SCALAR register/slot
4225 * knowledge: if precise value or range is useful to prune jump branch, BPF
4226 * verifier takes this opportunity enthusiastically. Similarly, when
4227 * register's value is used to calculate offset or memory address, exact
4228 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4229 * what we mentioned above about state comparison ignoring precise markings
4230 * during state comparison, BPF verifier ignores and also assumes precise
4231 * markings *at will* during instruction verification process. But as verifier
4232 * assumes precision, it also propagates any precision dependencies across
4233 * parent states, which are not yet finalized, so can be further restricted
4234 * based on new knowledge gained from restrictions enforced by their children
4235 * states. This is so that once those parent states are finalized, i.e., when
4236 * they have no more active children state, state comparison logic in
4237 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4238 * required for correctness.
4239 *
4240 * To build a bit more intuition, note also that once a state is checkpointed,
4241 * the path we took to get to that state is not important. This is crucial
4242 * property for state pruning. When state is checkpointed and finalized at
4243 * some instruction index, it can be correctly and safely used to "short
4244 * circuit" any *compatible* state that reaches exactly the same instruction
4245 * index. I.e., if we jumped to that instruction from a completely different
4246 * code path than original finalized state was derived from, it doesn't
4247 * matter, current state can be discarded because from that instruction
4248 * forward having a compatible state will ensure we will safely reach the
4249 * exit. States describe preconditions for further exploration, but completely
4250 * forget the history of how we got here.
4251 *
4252 * This also means that even if we needed precise SCALAR range to get to
4253 * finalized state, but from that point forward *that same* SCALAR register is
4254 * never used in a precise context (i.e., it's precise value is not needed for
4255 * correctness), it's correct and safe to mark such register as "imprecise"
4256 * (i.e., precise marking set to false). This is what we rely on when we do
4257 * not set precise marking in current state. If no child state requires
4258 * precision for any given SCALAR register, it's safe to dictate that it can
4259 * be imprecise. If any child state does require this register to be precise,
4260 * we'll mark it precise later retroactively during precise markings
4261 * propagation from child state to parent states.
4262 *
4263 * Skipping precise marking setting in current state is a mild version of
4264 * relying on the above observation. But we can utilize this property even
4265 * more aggressively by proactively forgetting any precise marking in the
4266 * current state (which we inherited from the parent state), right before we
4267 * checkpoint it and branch off into new child state. This is done by
4268 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4269 * finalized states which help in short circuiting more future states.
4270 */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4271 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4272 {
4273 struct backtrack_state *bt = &env->bt;
4274 struct bpf_verifier_state *st = env->cur_state;
4275 int first_idx = st->first_insn_idx;
4276 int last_idx = env->insn_idx;
4277 int subseq_idx = -1;
4278 struct bpf_func_state *func;
4279 struct bpf_reg_state *reg;
4280 bool skip_first = true;
4281 int i, fr, err;
4282
4283 if (!env->bpf_capable)
4284 return 0;
4285
4286 /* set frame number from which we are starting to backtrack */
4287 bt_init(bt, env->cur_state->curframe);
4288
4289 /* Do sanity checks against current state of register and/or stack
4290 * slot, but don't set precise flag in current state, as precision
4291 * tracking in the current state is unnecessary.
4292 */
4293 func = st->frame[bt->frame];
4294 if (regno >= 0) {
4295 reg = &func->regs[regno];
4296 if (reg->type != SCALAR_VALUE) {
4297 WARN_ONCE(1, "backtracing misuse");
4298 return -EFAULT;
4299 }
4300 bt_set_reg(bt, regno);
4301 }
4302
4303 if (bt_empty(bt))
4304 return 0;
4305
4306 for (;;) {
4307 DECLARE_BITMAP(mask, 64);
4308 u32 history = st->jmp_history_cnt;
4309 struct bpf_jmp_history_entry *hist;
4310
4311 if (env->log.level & BPF_LOG_LEVEL2) {
4312 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4313 bt->frame, last_idx, first_idx, subseq_idx);
4314 }
4315
4316 /* If some register with scalar ID is marked as precise,
4317 * make sure that all registers sharing this ID are also precise.
4318 * This is needed to estimate effect of find_equal_scalars().
4319 * Do this at the last instruction of each state,
4320 * bpf_reg_state::id fields are valid for these instructions.
4321 *
4322 * Allows to track precision in situation like below:
4323 *
4324 * r2 = unknown value
4325 * ...
4326 * --- state #0 ---
4327 * ...
4328 * r1 = r2 // r1 and r2 now share the same ID
4329 * ...
4330 * --- state #1 {r1.id = A, r2.id = A} ---
4331 * ...
4332 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4333 * ...
4334 * --- state #2 {r1.id = A, r2.id = A} ---
4335 * r3 = r10
4336 * r3 += r1 // need to mark both r1 and r2
4337 */
4338 if (mark_precise_scalar_ids(env, st))
4339 return -EFAULT;
4340
4341 if (last_idx < 0) {
4342 /* we are at the entry into subprog, which
4343 * is expected for global funcs, but only if
4344 * requested precise registers are R1-R5
4345 * (which are global func's input arguments)
4346 */
4347 if (st->curframe == 0 &&
4348 st->frame[0]->subprogno > 0 &&
4349 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4350 bt_stack_mask(bt) == 0 &&
4351 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4352 bitmap_from_u64(mask, bt_reg_mask(bt));
4353 for_each_set_bit(i, mask, 32) {
4354 reg = &st->frame[0]->regs[i];
4355 bt_clear_reg(bt, i);
4356 if (reg->type == SCALAR_VALUE)
4357 reg->precise = true;
4358 }
4359 return 0;
4360 }
4361
4362 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4363 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4364 WARN_ONCE(1, "verifier backtracking bug");
4365 return -EFAULT;
4366 }
4367
4368 for (i = last_idx;;) {
4369 if (skip_first) {
4370 err = 0;
4371 skip_first = false;
4372 } else {
4373 hist = get_jmp_hist_entry(st, history, i);
4374 err = backtrack_insn(env, i, subseq_idx, hist, bt);
4375 }
4376 if (err == -ENOTSUPP) {
4377 mark_all_scalars_precise(env, env->cur_state);
4378 bt_reset(bt);
4379 return 0;
4380 } else if (err) {
4381 return err;
4382 }
4383 if (bt_empty(bt))
4384 /* Found assignment(s) into tracked register in this state.
4385 * Since this state is already marked, just return.
4386 * Nothing to be tracked further in the parent state.
4387 */
4388 return 0;
4389 subseq_idx = i;
4390 i = get_prev_insn_idx(st, i, &history);
4391 if (i == -ENOENT)
4392 break;
4393 if (i >= env->prog->len) {
4394 /* This can happen if backtracking reached insn 0
4395 * and there are still reg_mask or stack_mask
4396 * to backtrack.
4397 * It means the backtracking missed the spot where
4398 * particular register was initialized with a constant.
4399 */
4400 verbose(env, "BUG backtracking idx %d\n", i);
4401 WARN_ONCE(1, "verifier backtracking bug");
4402 return -EFAULT;
4403 }
4404 }
4405 st = st->parent;
4406 if (!st)
4407 break;
4408
4409 for (fr = bt->frame; fr >= 0; fr--) {
4410 func = st->frame[fr];
4411 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4412 for_each_set_bit(i, mask, 32) {
4413 reg = &func->regs[i];
4414 if (reg->type != SCALAR_VALUE) {
4415 bt_clear_frame_reg(bt, fr, i);
4416 continue;
4417 }
4418 if (reg->precise)
4419 bt_clear_frame_reg(bt, fr, i);
4420 else
4421 reg->precise = true;
4422 }
4423
4424 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4425 for_each_set_bit(i, mask, 64) {
4426 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4427 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4428 i, func->allocated_stack / BPF_REG_SIZE);
4429 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4430 return -EFAULT;
4431 }
4432
4433 if (!is_spilled_scalar_reg(&func->stack[i])) {
4434 bt_clear_frame_slot(bt, fr, i);
4435 continue;
4436 }
4437 reg = &func->stack[i].spilled_ptr;
4438 if (reg->precise)
4439 bt_clear_frame_slot(bt, fr, i);
4440 else
4441 reg->precise = true;
4442 }
4443 if (env->log.level & BPF_LOG_LEVEL2) {
4444 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4445 bt_frame_reg_mask(bt, fr));
4446 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4447 fr, env->tmp_str_buf);
4448 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4449 bt_frame_stack_mask(bt, fr));
4450 verbose(env, "stack=%s: ", env->tmp_str_buf);
4451 print_verifier_state(env, func, true);
4452 }
4453 }
4454
4455 if (bt_empty(bt))
4456 return 0;
4457
4458 subseq_idx = first_idx;
4459 last_idx = st->last_insn_idx;
4460 first_idx = st->first_insn_idx;
4461 }
4462
4463 /* if we still have requested precise regs or slots, we missed
4464 * something (e.g., stack access through non-r10 register), so
4465 * fallback to marking all precise
4466 */
4467 if (!bt_empty(bt)) {
4468 mark_all_scalars_precise(env, env->cur_state);
4469 bt_reset(bt);
4470 }
4471
4472 return 0;
4473 }
4474
mark_chain_precision(struct bpf_verifier_env * env,int regno)4475 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4476 {
4477 return __mark_chain_precision(env, regno);
4478 }
4479
4480 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4481 * desired reg and stack masks across all relevant frames
4482 */
mark_chain_precision_batch(struct bpf_verifier_env * env)4483 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4484 {
4485 return __mark_chain_precision(env, -1);
4486 }
4487
is_spillable_regtype(enum bpf_reg_type type)4488 static bool is_spillable_regtype(enum bpf_reg_type type)
4489 {
4490 switch (base_type(type)) {
4491 case PTR_TO_MAP_VALUE:
4492 case PTR_TO_STACK:
4493 case PTR_TO_CTX:
4494 case PTR_TO_PACKET:
4495 case PTR_TO_PACKET_META:
4496 case PTR_TO_PACKET_END:
4497 case PTR_TO_FLOW_KEYS:
4498 case CONST_PTR_TO_MAP:
4499 case PTR_TO_SOCKET:
4500 case PTR_TO_SOCK_COMMON:
4501 case PTR_TO_TCP_SOCK:
4502 case PTR_TO_XDP_SOCK:
4503 case PTR_TO_BTF_ID:
4504 case PTR_TO_BUF:
4505 case PTR_TO_MEM:
4506 case PTR_TO_FUNC:
4507 case PTR_TO_MAP_KEY:
4508 return true;
4509 default:
4510 return false;
4511 }
4512 }
4513
4514 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4515 static bool register_is_null(struct bpf_reg_state *reg)
4516 {
4517 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4518 }
4519
register_is_const(struct bpf_reg_state * reg)4520 static bool register_is_const(struct bpf_reg_state *reg)
4521 {
4522 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4523 }
4524
__is_scalar_unbounded(struct bpf_reg_state * reg)4525 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4526 {
4527 return tnum_is_unknown(reg->var_off) &&
4528 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4529 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4530 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4531 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4532 }
4533
register_is_bounded(struct bpf_reg_state * reg)4534 static bool register_is_bounded(struct bpf_reg_state *reg)
4535 {
4536 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4537 }
4538
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4539 static bool __is_pointer_value(bool allow_ptr_leaks,
4540 const struct bpf_reg_state *reg)
4541 {
4542 if (allow_ptr_leaks)
4543 return false;
4544
4545 return reg->type != SCALAR_VALUE;
4546 }
4547
4548 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4549 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4550 {
4551 struct bpf_reg_state *parent = dst->parent;
4552 enum bpf_reg_liveness live = dst->live;
4553
4554 *dst = *src;
4555 dst->parent = parent;
4556 dst->live = live;
4557 }
4558
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4559 static void save_register_state(struct bpf_func_state *state,
4560 int spi, struct bpf_reg_state *reg,
4561 int size)
4562 {
4563 int i;
4564
4565 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4566 if (size == BPF_REG_SIZE)
4567 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4568
4569 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4570 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4571
4572 /* size < 8 bytes spill */
4573 for (; i; i--)
4574 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4575 }
4576
is_bpf_st_mem(struct bpf_insn * insn)4577 static bool is_bpf_st_mem(struct bpf_insn *insn)
4578 {
4579 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4580 }
4581
4582 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4583 * stack boundary and alignment are checked in check_mem_access()
4584 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4585 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4586 /* stack frame we're writing to */
4587 struct bpf_func_state *state,
4588 int off, int size, int value_regno,
4589 int insn_idx)
4590 {
4591 struct bpf_func_state *cur; /* state of the current function */
4592 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4593 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4594 struct bpf_reg_state *reg = NULL;
4595 int insn_flags = insn_stack_access_flags(state->frameno, spi);
4596
4597 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4598 * so it's aligned access and [off, off + size) are within stack limits
4599 */
4600 if (!env->allow_ptr_leaks &&
4601 is_spilled_reg(&state->stack[spi]) &&
4602 !is_spilled_scalar_reg(&state->stack[spi]) &&
4603 size != BPF_REG_SIZE) {
4604 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4605 return -EACCES;
4606 }
4607
4608 cur = env->cur_state->frame[env->cur_state->curframe];
4609 if (value_regno >= 0)
4610 reg = &cur->regs[value_regno];
4611 if (!env->bypass_spec_v4) {
4612 bool sanitize = reg && is_spillable_regtype(reg->type);
4613
4614 for (i = 0; i < size; i++) {
4615 u8 type = state->stack[spi].slot_type[i];
4616
4617 if (type != STACK_MISC && type != STACK_ZERO) {
4618 sanitize = true;
4619 break;
4620 }
4621 }
4622
4623 if (sanitize)
4624 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4625 }
4626
4627 err = destroy_if_dynptr_stack_slot(env, state, spi);
4628 if (err)
4629 return err;
4630
4631 mark_stack_slot_scratched(env, spi);
4632 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4633 !register_is_null(reg) && env->bpf_capable) {
4634 save_register_state(state, spi, reg, size);
4635 /* Break the relation on a narrowing spill. */
4636 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4637 state->stack[spi].spilled_ptr.id = 0;
4638 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4639 insn->imm != 0 && env->bpf_capable) {
4640 struct bpf_reg_state fake_reg = {};
4641
4642 __mark_reg_known(&fake_reg, insn->imm);
4643 fake_reg.type = SCALAR_VALUE;
4644 save_register_state(state, spi, &fake_reg, size);
4645 insn_flags = 0; /* not a register spill */
4646 } else if (reg && is_spillable_regtype(reg->type)) {
4647 /* register containing pointer is being spilled into stack */
4648 if (size != BPF_REG_SIZE) {
4649 verbose_linfo(env, insn_idx, "; ");
4650 verbose(env, "invalid size of register spill\n");
4651 return -EACCES;
4652 }
4653 if (state != cur && reg->type == PTR_TO_STACK) {
4654 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4655 return -EINVAL;
4656 }
4657 save_register_state(state, spi, reg, size);
4658 } else {
4659 u8 type = STACK_MISC;
4660
4661 /* regular write of data into stack destroys any spilled ptr */
4662 state->stack[spi].spilled_ptr.type = NOT_INIT;
4663 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4664 if (is_stack_slot_special(&state->stack[spi]))
4665 for (i = 0; i < BPF_REG_SIZE; i++)
4666 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4667
4668 /* only mark the slot as written if all 8 bytes were written
4669 * otherwise read propagation may incorrectly stop too soon
4670 * when stack slots are partially written.
4671 * This heuristic means that read propagation will be
4672 * conservative, since it will add reg_live_read marks
4673 * to stack slots all the way to first state when programs
4674 * writes+reads less than 8 bytes
4675 */
4676 if (size == BPF_REG_SIZE)
4677 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4678
4679 /* when we zero initialize stack slots mark them as such */
4680 if ((reg && register_is_null(reg)) ||
4681 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4682 /* backtracking doesn't work for STACK_ZERO yet. */
4683 err = mark_chain_precision(env, value_regno);
4684 if (err)
4685 return err;
4686 type = STACK_ZERO;
4687 }
4688
4689 /* Mark slots affected by this stack write. */
4690 for (i = 0; i < size; i++)
4691 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4692 insn_flags = 0; /* not a register spill */
4693 }
4694
4695 if (insn_flags)
4696 return push_jmp_history(env, env->cur_state, insn_flags);
4697 return 0;
4698 }
4699
4700 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4701 * known to contain a variable offset.
4702 * This function checks whether the write is permitted and conservatively
4703 * tracks the effects of the write, considering that each stack slot in the
4704 * dynamic range is potentially written to.
4705 *
4706 * 'off' includes 'regno->off'.
4707 * 'value_regno' can be -1, meaning that an unknown value is being written to
4708 * the stack.
4709 *
4710 * Spilled pointers in range are not marked as written because we don't know
4711 * what's going to be actually written. This means that read propagation for
4712 * future reads cannot be terminated by this write.
4713 *
4714 * For privileged programs, uninitialized stack slots are considered
4715 * initialized by this write (even though we don't know exactly what offsets
4716 * are going to be written to). The idea is that we don't want the verifier to
4717 * reject future reads that access slots written to through variable offsets.
4718 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)4719 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4720 /* func where register points to */
4721 struct bpf_func_state *state,
4722 int ptr_regno, int off, int size,
4723 int value_regno, int insn_idx)
4724 {
4725 struct bpf_func_state *cur; /* state of the current function */
4726 int min_off, max_off;
4727 int i, err;
4728 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4729 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4730 bool writing_zero = false;
4731 /* set if the fact that we're writing a zero is used to let any
4732 * stack slots remain STACK_ZERO
4733 */
4734 bool zero_used = false;
4735
4736 cur = env->cur_state->frame[env->cur_state->curframe];
4737 ptr_reg = &cur->regs[ptr_regno];
4738 min_off = ptr_reg->smin_value + off;
4739 max_off = ptr_reg->smax_value + off + size;
4740 if (value_regno >= 0)
4741 value_reg = &cur->regs[value_regno];
4742 if ((value_reg && register_is_null(value_reg)) ||
4743 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4744 writing_zero = true;
4745
4746 for (i = min_off; i < max_off; i++) {
4747 int spi;
4748
4749 spi = __get_spi(i);
4750 err = destroy_if_dynptr_stack_slot(env, state, spi);
4751 if (err)
4752 return err;
4753 }
4754
4755 /* Variable offset writes destroy any spilled pointers in range. */
4756 for (i = min_off; i < max_off; i++) {
4757 u8 new_type, *stype;
4758 int slot, spi;
4759
4760 slot = -i - 1;
4761 spi = slot / BPF_REG_SIZE;
4762 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4763 mark_stack_slot_scratched(env, spi);
4764
4765 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4766 /* Reject the write if range we may write to has not
4767 * been initialized beforehand. If we didn't reject
4768 * here, the ptr status would be erased below (even
4769 * though not all slots are actually overwritten),
4770 * possibly opening the door to leaks.
4771 *
4772 * We do however catch STACK_INVALID case below, and
4773 * only allow reading possibly uninitialized memory
4774 * later for CAP_PERFMON, as the write may not happen to
4775 * that slot.
4776 */
4777 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4778 insn_idx, i);
4779 return -EINVAL;
4780 }
4781
4782 /* Erase all spilled pointers. */
4783 state->stack[spi].spilled_ptr.type = NOT_INIT;
4784
4785 /* Update the slot type. */
4786 new_type = STACK_MISC;
4787 if (writing_zero && *stype == STACK_ZERO) {
4788 new_type = STACK_ZERO;
4789 zero_used = true;
4790 }
4791 /* If the slot is STACK_INVALID, we check whether it's OK to
4792 * pretend that it will be initialized by this write. The slot
4793 * might not actually be written to, and so if we mark it as
4794 * initialized future reads might leak uninitialized memory.
4795 * For privileged programs, we will accept such reads to slots
4796 * that may or may not be written because, if we're reject
4797 * them, the error would be too confusing.
4798 */
4799 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4800 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4801 insn_idx, i);
4802 return -EINVAL;
4803 }
4804 *stype = new_type;
4805 }
4806 if (zero_used) {
4807 /* backtracking doesn't work for STACK_ZERO yet. */
4808 err = mark_chain_precision(env, value_regno);
4809 if (err)
4810 return err;
4811 }
4812 return 0;
4813 }
4814
4815 /* When register 'dst_regno' is assigned some values from stack[min_off,
4816 * max_off), we set the register's type according to the types of the
4817 * respective stack slots. If all the stack values are known to be zeros, then
4818 * so is the destination reg. Otherwise, the register is considered to be
4819 * SCALAR. This function does not deal with register filling; the caller must
4820 * ensure that all spilled registers in the stack range have been marked as
4821 * read.
4822 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)4823 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4824 /* func where src register points to */
4825 struct bpf_func_state *ptr_state,
4826 int min_off, int max_off, int dst_regno)
4827 {
4828 struct bpf_verifier_state *vstate = env->cur_state;
4829 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4830 int i, slot, spi;
4831 u8 *stype;
4832 int zeros = 0;
4833
4834 for (i = min_off; i < max_off; i++) {
4835 slot = -i - 1;
4836 spi = slot / BPF_REG_SIZE;
4837 mark_stack_slot_scratched(env, spi);
4838 stype = ptr_state->stack[spi].slot_type;
4839 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4840 break;
4841 zeros++;
4842 }
4843 if (zeros == max_off - min_off) {
4844 /* any access_size read into register is zero extended,
4845 * so the whole register == const_zero
4846 */
4847 __mark_reg_const_zero(&state->regs[dst_regno]);
4848 /* backtracking doesn't support STACK_ZERO yet,
4849 * so mark it precise here, so that later
4850 * backtracking can stop here.
4851 * Backtracking may not need this if this register
4852 * doesn't participate in pointer adjustment.
4853 * Forward propagation of precise flag is not
4854 * necessary either. This mark is only to stop
4855 * backtracking. Any register that contributed
4856 * to const 0 was marked precise before spill.
4857 */
4858 state->regs[dst_regno].precise = true;
4859 } else {
4860 /* have read misc data from the stack */
4861 mark_reg_unknown(env, state->regs, dst_regno);
4862 }
4863 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4864 }
4865
4866 /* Read the stack at 'off' and put the results into the register indicated by
4867 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4868 * spilled reg.
4869 *
4870 * 'dst_regno' can be -1, meaning that the read value is not going to a
4871 * register.
4872 *
4873 * The access is assumed to be within the current stack bounds.
4874 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)4875 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4876 /* func where src register points to */
4877 struct bpf_func_state *reg_state,
4878 int off, int size, int dst_regno)
4879 {
4880 struct bpf_verifier_state *vstate = env->cur_state;
4881 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4882 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4883 struct bpf_reg_state *reg;
4884 u8 *stype, type;
4885 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4886
4887 stype = reg_state->stack[spi].slot_type;
4888 reg = ®_state->stack[spi].spilled_ptr;
4889
4890 mark_stack_slot_scratched(env, spi);
4891
4892 if (is_spilled_reg(®_state->stack[spi])) {
4893 u8 spill_size = 1;
4894
4895 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4896 spill_size++;
4897
4898 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4899 if (reg->type != SCALAR_VALUE) {
4900 verbose_linfo(env, env->insn_idx, "; ");
4901 verbose(env, "invalid size of register fill\n");
4902 return -EACCES;
4903 }
4904
4905 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4906 if (dst_regno < 0)
4907 return 0;
4908
4909 if (!(off % BPF_REG_SIZE) && size == spill_size) {
4910 /* The earlier check_reg_arg() has decided the
4911 * subreg_def for this insn. Save it first.
4912 */
4913 s32 subreg_def = state->regs[dst_regno].subreg_def;
4914
4915 copy_register_state(&state->regs[dst_regno], reg);
4916 state->regs[dst_regno].subreg_def = subreg_def;
4917 } else {
4918 for (i = 0; i < size; i++) {
4919 type = stype[(slot - i) % BPF_REG_SIZE];
4920 if (type == STACK_SPILL)
4921 continue;
4922 if (type == STACK_MISC)
4923 continue;
4924 if (type == STACK_INVALID && env->allow_uninit_stack)
4925 continue;
4926 verbose(env, "invalid read from stack off %d+%d size %d\n",
4927 off, i, size);
4928 return -EACCES;
4929 }
4930 mark_reg_unknown(env, state->regs, dst_regno);
4931 insn_flags = 0; /* not restoring original register state */
4932 }
4933 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4934 } else if (dst_regno >= 0) {
4935 /* restore register state from stack */
4936 copy_register_state(&state->regs[dst_regno], reg);
4937 /* mark reg as written since spilled pointer state likely
4938 * has its liveness marks cleared by is_state_visited()
4939 * which resets stack/reg liveness for state transitions
4940 */
4941 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4942 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4943 /* If dst_regno==-1, the caller is asking us whether
4944 * it is acceptable to use this value as a SCALAR_VALUE
4945 * (e.g. for XADD).
4946 * We must not allow unprivileged callers to do that
4947 * with spilled pointers.
4948 */
4949 verbose(env, "leaking pointer from stack off %d\n",
4950 off);
4951 return -EACCES;
4952 }
4953 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4954 } else {
4955 for (i = 0; i < size; i++) {
4956 type = stype[(slot - i) % BPF_REG_SIZE];
4957 if (type == STACK_MISC)
4958 continue;
4959 if (type == STACK_ZERO)
4960 continue;
4961 if (type == STACK_INVALID && env->allow_uninit_stack)
4962 continue;
4963 verbose(env, "invalid read from stack off %d+%d size %d\n",
4964 off, i, size);
4965 return -EACCES;
4966 }
4967 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4968 if (dst_regno >= 0)
4969 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4970 insn_flags = 0; /* we are not restoring spilled register */
4971 }
4972 if (insn_flags)
4973 return push_jmp_history(env, env->cur_state, insn_flags);
4974 return 0;
4975 }
4976
4977 enum bpf_access_src {
4978 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4979 ACCESS_HELPER = 2, /* the access is performed by a helper */
4980 };
4981
4982 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4983 int regno, int off, int access_size,
4984 bool zero_size_allowed,
4985 enum bpf_access_src type,
4986 struct bpf_call_arg_meta *meta);
4987
reg_state(struct bpf_verifier_env * env,int regno)4988 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4989 {
4990 return cur_regs(env) + regno;
4991 }
4992
4993 /* Read the stack at 'ptr_regno + off' and put the result into the register
4994 * 'dst_regno'.
4995 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4996 * but not its variable offset.
4997 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4998 *
4999 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5000 * filling registers (i.e. reads of spilled register cannot be detected when
5001 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5002 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5003 * offset; for a fixed offset check_stack_read_fixed_off should be used
5004 * instead.
5005 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5006 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5007 int ptr_regno, int off, int size, int dst_regno)
5008 {
5009 /* The state of the source register. */
5010 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5011 struct bpf_func_state *ptr_state = func(env, reg);
5012 int err;
5013 int min_off, max_off;
5014
5015 /* Note that we pass a NULL meta, so raw access will not be permitted.
5016 */
5017 err = check_stack_range_initialized(env, ptr_regno, off, size,
5018 false, ACCESS_DIRECT, NULL);
5019 if (err)
5020 return err;
5021
5022 min_off = reg->smin_value + off;
5023 max_off = reg->smax_value + off;
5024 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5025 return 0;
5026 }
5027
5028 /* check_stack_read dispatches to check_stack_read_fixed_off or
5029 * check_stack_read_var_off.
5030 *
5031 * The caller must ensure that the offset falls within the allocated stack
5032 * bounds.
5033 *
5034 * 'dst_regno' is a register which will receive the value from the stack. It
5035 * can be -1, meaning that the read value is not going to a register.
5036 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5037 static int check_stack_read(struct bpf_verifier_env *env,
5038 int ptr_regno, int off, int size,
5039 int dst_regno)
5040 {
5041 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5042 struct bpf_func_state *state = func(env, reg);
5043 int err;
5044 /* Some accesses are only permitted with a static offset. */
5045 bool var_off = !tnum_is_const(reg->var_off);
5046
5047 /* The offset is required to be static when reads don't go to a
5048 * register, in order to not leak pointers (see
5049 * check_stack_read_fixed_off).
5050 */
5051 if (dst_regno < 0 && var_off) {
5052 char tn_buf[48];
5053
5054 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5055 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5056 tn_buf, off, size);
5057 return -EACCES;
5058 }
5059 /* Variable offset is prohibited for unprivileged mode for simplicity
5060 * since it requires corresponding support in Spectre masking for stack
5061 * ALU. See also retrieve_ptr_limit(). The check in
5062 * check_stack_access_for_ptr_arithmetic() called by
5063 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5064 * with variable offsets, therefore no check is required here. Further,
5065 * just checking it here would be insufficient as speculative stack
5066 * writes could still lead to unsafe speculative behaviour.
5067 */
5068 if (!var_off) {
5069 off += reg->var_off.value;
5070 err = check_stack_read_fixed_off(env, state, off, size,
5071 dst_regno);
5072 } else {
5073 /* Variable offset stack reads need more conservative handling
5074 * than fixed offset ones. Note that dst_regno >= 0 on this
5075 * branch.
5076 */
5077 err = check_stack_read_var_off(env, ptr_regno, off, size,
5078 dst_regno);
5079 }
5080 return err;
5081 }
5082
5083
5084 /* check_stack_write dispatches to check_stack_write_fixed_off or
5085 * check_stack_write_var_off.
5086 *
5087 * 'ptr_regno' is the register used as a pointer into the stack.
5088 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5089 * 'value_regno' is the register whose value we're writing to the stack. It can
5090 * be -1, meaning that we're not writing from a register.
5091 *
5092 * The caller must ensure that the offset falls within the maximum stack size.
5093 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5094 static int check_stack_write(struct bpf_verifier_env *env,
5095 int ptr_regno, int off, int size,
5096 int value_regno, int insn_idx)
5097 {
5098 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5099 struct bpf_func_state *state = func(env, reg);
5100 int err;
5101
5102 if (tnum_is_const(reg->var_off)) {
5103 off += reg->var_off.value;
5104 err = check_stack_write_fixed_off(env, state, off, size,
5105 value_regno, insn_idx);
5106 } else {
5107 /* Variable offset stack reads need more conservative handling
5108 * than fixed offset ones.
5109 */
5110 err = check_stack_write_var_off(env, state,
5111 ptr_regno, off, size,
5112 value_regno, insn_idx);
5113 }
5114 return err;
5115 }
5116
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5117 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5118 int off, int size, enum bpf_access_type type)
5119 {
5120 struct bpf_reg_state *regs = cur_regs(env);
5121 struct bpf_map *map = regs[regno].map_ptr;
5122 u32 cap = bpf_map_flags_to_cap(map);
5123
5124 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5125 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5126 map->value_size, off, size);
5127 return -EACCES;
5128 }
5129
5130 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5131 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5132 map->value_size, off, size);
5133 return -EACCES;
5134 }
5135
5136 return 0;
5137 }
5138
5139 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5140 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5141 int off, int size, u32 mem_size,
5142 bool zero_size_allowed)
5143 {
5144 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5145 struct bpf_reg_state *reg;
5146
5147 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5148 return 0;
5149
5150 reg = &cur_regs(env)[regno];
5151 switch (reg->type) {
5152 case PTR_TO_MAP_KEY:
5153 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5154 mem_size, off, size);
5155 break;
5156 case PTR_TO_MAP_VALUE:
5157 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5158 mem_size, off, size);
5159 break;
5160 case PTR_TO_PACKET:
5161 case PTR_TO_PACKET_META:
5162 case PTR_TO_PACKET_END:
5163 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5164 off, size, regno, reg->id, off, mem_size);
5165 break;
5166 case PTR_TO_MEM:
5167 default:
5168 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5169 mem_size, off, size);
5170 }
5171
5172 return -EACCES;
5173 }
5174
5175 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5176 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5177 int off, int size, u32 mem_size,
5178 bool zero_size_allowed)
5179 {
5180 struct bpf_verifier_state *vstate = env->cur_state;
5181 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5182 struct bpf_reg_state *reg = &state->regs[regno];
5183 int err;
5184
5185 /* We may have adjusted the register pointing to memory region, so we
5186 * need to try adding each of min_value and max_value to off
5187 * to make sure our theoretical access will be safe.
5188 *
5189 * The minimum value is only important with signed
5190 * comparisons where we can't assume the floor of a
5191 * value is 0. If we are using signed variables for our
5192 * index'es we need to make sure that whatever we use
5193 * will have a set floor within our range.
5194 */
5195 if (reg->smin_value < 0 &&
5196 (reg->smin_value == S64_MIN ||
5197 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5198 reg->smin_value + off < 0)) {
5199 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5200 regno);
5201 return -EACCES;
5202 }
5203 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5204 mem_size, zero_size_allowed);
5205 if (err) {
5206 verbose(env, "R%d min value is outside of the allowed memory range\n",
5207 regno);
5208 return err;
5209 }
5210
5211 /* If we haven't set a max value then we need to bail since we can't be
5212 * sure we won't do bad things.
5213 * If reg->umax_value + off could overflow, treat that as unbounded too.
5214 */
5215 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5216 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5217 regno);
5218 return -EACCES;
5219 }
5220 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5221 mem_size, zero_size_allowed);
5222 if (err) {
5223 verbose(env, "R%d max value is outside of the allowed memory range\n",
5224 regno);
5225 return err;
5226 }
5227
5228 return 0;
5229 }
5230
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5231 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5232 const struct bpf_reg_state *reg, int regno,
5233 bool fixed_off_ok)
5234 {
5235 /* Access to this pointer-typed register or passing it to a helper
5236 * is only allowed in its original, unmodified form.
5237 */
5238
5239 if (reg->off < 0) {
5240 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5241 reg_type_str(env, reg->type), regno, reg->off);
5242 return -EACCES;
5243 }
5244
5245 if (!fixed_off_ok && reg->off) {
5246 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5247 reg_type_str(env, reg->type), regno, reg->off);
5248 return -EACCES;
5249 }
5250
5251 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5252 char tn_buf[48];
5253
5254 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5255 verbose(env, "variable %s access var_off=%s disallowed\n",
5256 reg_type_str(env, reg->type), tn_buf);
5257 return -EACCES;
5258 }
5259
5260 return 0;
5261 }
5262
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5263 int check_ptr_off_reg(struct bpf_verifier_env *env,
5264 const struct bpf_reg_state *reg, int regno)
5265 {
5266 return __check_ptr_off_reg(env, reg, regno, false);
5267 }
5268
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5269 static int map_kptr_match_type(struct bpf_verifier_env *env,
5270 struct btf_field *kptr_field,
5271 struct bpf_reg_state *reg, u32 regno)
5272 {
5273 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5274 int perm_flags;
5275 const char *reg_name = "";
5276
5277 if (btf_is_kernel(reg->btf)) {
5278 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5279
5280 /* Only unreferenced case accepts untrusted pointers */
5281 if (kptr_field->type == BPF_KPTR_UNREF)
5282 perm_flags |= PTR_UNTRUSTED;
5283 } else {
5284 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5285 }
5286
5287 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5288 goto bad_type;
5289
5290 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5291 reg_name = btf_type_name(reg->btf, reg->btf_id);
5292
5293 /* For ref_ptr case, release function check should ensure we get one
5294 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5295 * normal store of unreferenced kptr, we must ensure var_off is zero.
5296 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5297 * reg->off and reg->ref_obj_id are not needed here.
5298 */
5299 if (__check_ptr_off_reg(env, reg, regno, true))
5300 return -EACCES;
5301
5302 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5303 * we also need to take into account the reg->off.
5304 *
5305 * We want to support cases like:
5306 *
5307 * struct foo {
5308 * struct bar br;
5309 * struct baz bz;
5310 * };
5311 *
5312 * struct foo *v;
5313 * v = func(); // PTR_TO_BTF_ID
5314 * val->foo = v; // reg->off is zero, btf and btf_id match type
5315 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5316 * // first member type of struct after comparison fails
5317 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5318 * // to match type
5319 *
5320 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5321 * is zero. We must also ensure that btf_struct_ids_match does not walk
5322 * the struct to match type against first member of struct, i.e. reject
5323 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5324 * strict mode to true for type match.
5325 */
5326 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5327 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5328 kptr_field->type == BPF_KPTR_REF))
5329 goto bad_type;
5330 return 0;
5331 bad_type:
5332 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5333 reg_type_str(env, reg->type), reg_name);
5334 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5335 if (kptr_field->type == BPF_KPTR_UNREF)
5336 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5337 targ_name);
5338 else
5339 verbose(env, "\n");
5340 return -EINVAL;
5341 }
5342
5343 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5344 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5345 */
in_rcu_cs(struct bpf_verifier_env * env)5346 static bool in_rcu_cs(struct bpf_verifier_env *env)
5347 {
5348 return env->cur_state->active_rcu_lock ||
5349 env->cur_state->active_lock.ptr ||
5350 !env->prog->aux->sleepable;
5351 }
5352
5353 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5354 BTF_SET_START(rcu_protected_types)
BTF_ID(struct,prog_test_ref_kfunc)5355 BTF_ID(struct, prog_test_ref_kfunc)
5356 BTF_ID(struct, cgroup)
5357 BTF_ID(struct, bpf_cpumask)
5358 BTF_ID(struct, task_struct)
5359 BTF_SET_END(rcu_protected_types)
5360
5361 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5362 {
5363 if (!btf_is_kernel(btf))
5364 return false;
5365 return btf_id_set_contains(&rcu_protected_types, btf_id);
5366 }
5367
rcu_safe_kptr(const struct btf_field * field)5368 static bool rcu_safe_kptr(const struct btf_field *field)
5369 {
5370 const struct btf_field_kptr *kptr = &field->kptr;
5371
5372 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5373 }
5374
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5375 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5376 int value_regno, int insn_idx,
5377 struct btf_field *kptr_field)
5378 {
5379 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5380 int class = BPF_CLASS(insn->code);
5381 struct bpf_reg_state *val_reg;
5382
5383 /* Things we already checked for in check_map_access and caller:
5384 * - Reject cases where variable offset may touch kptr
5385 * - size of access (must be BPF_DW)
5386 * - tnum_is_const(reg->var_off)
5387 * - kptr_field->offset == off + reg->var_off.value
5388 */
5389 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5390 if (BPF_MODE(insn->code) != BPF_MEM) {
5391 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5392 return -EACCES;
5393 }
5394
5395 /* We only allow loading referenced kptr, since it will be marked as
5396 * untrusted, similar to unreferenced kptr.
5397 */
5398 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5399 verbose(env, "store to referenced kptr disallowed\n");
5400 return -EACCES;
5401 }
5402
5403 if (class == BPF_LDX) {
5404 val_reg = reg_state(env, value_regno);
5405 /* We can simply mark the value_regno receiving the pointer
5406 * value from map as PTR_TO_BTF_ID, with the correct type.
5407 */
5408 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5409 kptr_field->kptr.btf_id,
5410 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5411 PTR_MAYBE_NULL | MEM_RCU :
5412 PTR_MAYBE_NULL | PTR_UNTRUSTED);
5413 } else if (class == BPF_STX) {
5414 val_reg = reg_state(env, value_regno);
5415 if (!register_is_null(val_reg) &&
5416 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5417 return -EACCES;
5418 } else if (class == BPF_ST) {
5419 if (insn->imm) {
5420 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5421 kptr_field->offset);
5422 return -EACCES;
5423 }
5424 } else {
5425 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5426 return -EACCES;
5427 }
5428 return 0;
5429 }
5430
5431 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5432 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5433 int off, int size, bool zero_size_allowed,
5434 enum bpf_access_src src)
5435 {
5436 struct bpf_verifier_state *vstate = env->cur_state;
5437 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5438 struct bpf_reg_state *reg = &state->regs[regno];
5439 struct bpf_map *map = reg->map_ptr;
5440 struct btf_record *rec;
5441 int err, i;
5442
5443 err = check_mem_region_access(env, regno, off, size, map->value_size,
5444 zero_size_allowed);
5445 if (err)
5446 return err;
5447
5448 if (IS_ERR_OR_NULL(map->record))
5449 return 0;
5450 rec = map->record;
5451 for (i = 0; i < rec->cnt; i++) {
5452 struct btf_field *field = &rec->fields[i];
5453 u32 p = field->offset;
5454
5455 /* If any part of a field can be touched by load/store, reject
5456 * this program. To check that [x1, x2) overlaps with [y1, y2),
5457 * it is sufficient to check x1 < y2 && y1 < x2.
5458 */
5459 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5460 p < reg->umax_value + off + size) {
5461 switch (field->type) {
5462 case BPF_KPTR_UNREF:
5463 case BPF_KPTR_REF:
5464 if (src != ACCESS_DIRECT) {
5465 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5466 return -EACCES;
5467 }
5468 if (!tnum_is_const(reg->var_off)) {
5469 verbose(env, "kptr access cannot have variable offset\n");
5470 return -EACCES;
5471 }
5472 if (p != off + reg->var_off.value) {
5473 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5474 p, off + reg->var_off.value);
5475 return -EACCES;
5476 }
5477 if (size != bpf_size_to_bytes(BPF_DW)) {
5478 verbose(env, "kptr access size must be BPF_DW\n");
5479 return -EACCES;
5480 }
5481 break;
5482 default:
5483 verbose(env, "%s cannot be accessed directly by load/store\n",
5484 btf_field_type_name(field->type));
5485 return -EACCES;
5486 }
5487 }
5488 }
5489 return 0;
5490 }
5491
5492 #define MAX_PACKET_OFF 0xffff
5493
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)5494 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5495 const struct bpf_call_arg_meta *meta,
5496 enum bpf_access_type t)
5497 {
5498 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5499
5500 switch (prog_type) {
5501 /* Program types only with direct read access go here! */
5502 case BPF_PROG_TYPE_LWT_IN:
5503 case BPF_PROG_TYPE_LWT_OUT:
5504 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5505 case BPF_PROG_TYPE_SK_REUSEPORT:
5506 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5507 case BPF_PROG_TYPE_CGROUP_SKB:
5508 if (t == BPF_WRITE)
5509 return false;
5510 fallthrough;
5511
5512 /* Program types with direct read + write access go here! */
5513 case BPF_PROG_TYPE_SCHED_CLS:
5514 case BPF_PROG_TYPE_SCHED_ACT:
5515 case BPF_PROG_TYPE_XDP:
5516 case BPF_PROG_TYPE_LWT_XMIT:
5517 case BPF_PROG_TYPE_SK_SKB:
5518 case BPF_PROG_TYPE_SK_MSG:
5519 if (meta)
5520 return meta->pkt_access;
5521
5522 env->seen_direct_write = true;
5523 return true;
5524
5525 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5526 if (t == BPF_WRITE)
5527 env->seen_direct_write = true;
5528
5529 return true;
5530
5531 default:
5532 return false;
5533 }
5534 }
5535
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)5536 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5537 int size, bool zero_size_allowed)
5538 {
5539 struct bpf_reg_state *regs = cur_regs(env);
5540 struct bpf_reg_state *reg = ®s[regno];
5541 int err;
5542
5543 /* We may have added a variable offset to the packet pointer; but any
5544 * reg->range we have comes after that. We are only checking the fixed
5545 * offset.
5546 */
5547
5548 /* We don't allow negative numbers, because we aren't tracking enough
5549 * detail to prove they're safe.
5550 */
5551 if (reg->smin_value < 0) {
5552 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5553 regno);
5554 return -EACCES;
5555 }
5556
5557 err = reg->range < 0 ? -EINVAL :
5558 __check_mem_access(env, regno, off, size, reg->range,
5559 zero_size_allowed);
5560 if (err) {
5561 verbose(env, "R%d offset is outside of the packet\n", regno);
5562 return err;
5563 }
5564
5565 /* __check_mem_access has made sure "off + size - 1" is within u16.
5566 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5567 * otherwise find_good_pkt_pointers would have refused to set range info
5568 * that __check_mem_access would have rejected this pkt access.
5569 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5570 */
5571 env->prog->aux->max_pkt_offset =
5572 max_t(u32, env->prog->aux->max_pkt_offset,
5573 off + reg->umax_value + size - 1);
5574
5575 return err;
5576 }
5577
5578 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)5579 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5580 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5581 struct btf **btf, u32 *btf_id)
5582 {
5583 struct bpf_insn_access_aux info = {
5584 .reg_type = *reg_type,
5585 .log = &env->log,
5586 };
5587
5588 if (env->ops->is_valid_access &&
5589 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5590 /* A non zero info.ctx_field_size indicates that this field is a
5591 * candidate for later verifier transformation to load the whole
5592 * field and then apply a mask when accessed with a narrower
5593 * access than actual ctx access size. A zero info.ctx_field_size
5594 * will only allow for whole field access and rejects any other
5595 * type of narrower access.
5596 */
5597 *reg_type = info.reg_type;
5598
5599 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5600 *btf = info.btf;
5601 *btf_id = info.btf_id;
5602 } else {
5603 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5604 }
5605 /* remember the offset of last byte accessed in ctx */
5606 if (env->prog->aux->max_ctx_offset < off + size)
5607 env->prog->aux->max_ctx_offset = off + size;
5608 return 0;
5609 }
5610
5611 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5612 return -EACCES;
5613 }
5614
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)5615 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5616 int size)
5617 {
5618 if (size < 0 || off < 0 ||
5619 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5620 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5621 off, size);
5622 return -EACCES;
5623 }
5624 return 0;
5625 }
5626
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)5627 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5628 u32 regno, int off, int size,
5629 enum bpf_access_type t)
5630 {
5631 struct bpf_reg_state *regs = cur_regs(env);
5632 struct bpf_reg_state *reg = ®s[regno];
5633 struct bpf_insn_access_aux info = {};
5634 bool valid;
5635
5636 if (reg->smin_value < 0) {
5637 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5638 regno);
5639 return -EACCES;
5640 }
5641
5642 switch (reg->type) {
5643 case PTR_TO_SOCK_COMMON:
5644 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5645 break;
5646 case PTR_TO_SOCKET:
5647 valid = bpf_sock_is_valid_access(off, size, t, &info);
5648 break;
5649 case PTR_TO_TCP_SOCK:
5650 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5651 break;
5652 case PTR_TO_XDP_SOCK:
5653 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5654 break;
5655 default:
5656 valid = false;
5657 }
5658
5659
5660 if (valid) {
5661 env->insn_aux_data[insn_idx].ctx_field_size =
5662 info.ctx_field_size;
5663 return 0;
5664 }
5665
5666 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5667 regno, reg_type_str(env, reg->type), off, size);
5668
5669 return -EACCES;
5670 }
5671
is_pointer_value(struct bpf_verifier_env * env,int regno)5672 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5673 {
5674 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5675 }
5676
is_ctx_reg(struct bpf_verifier_env * env,int regno)5677 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5678 {
5679 const struct bpf_reg_state *reg = reg_state(env, regno);
5680
5681 return reg->type == PTR_TO_CTX;
5682 }
5683
is_sk_reg(struct bpf_verifier_env * env,int regno)5684 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5685 {
5686 const struct bpf_reg_state *reg = reg_state(env, regno);
5687
5688 return type_is_sk_pointer(reg->type);
5689 }
5690
is_pkt_reg(struct bpf_verifier_env * env,int regno)5691 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5692 {
5693 const struct bpf_reg_state *reg = reg_state(env, regno);
5694
5695 return type_is_pkt_pointer(reg->type);
5696 }
5697
is_flow_key_reg(struct bpf_verifier_env * env,int regno)5698 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5699 {
5700 const struct bpf_reg_state *reg = reg_state(env, regno);
5701
5702 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5703 return reg->type == PTR_TO_FLOW_KEYS;
5704 }
5705
5706 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5707 #ifdef CONFIG_NET
5708 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5709 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5710 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5711 #endif
5712 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5713 };
5714
is_trusted_reg(const struct bpf_reg_state * reg)5715 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5716 {
5717 /* A referenced register is always trusted. */
5718 if (reg->ref_obj_id)
5719 return true;
5720
5721 /* Types listed in the reg2btf_ids are always trusted */
5722 if (reg2btf_ids[base_type(reg->type)] &&
5723 !bpf_type_has_unsafe_modifiers(reg->type))
5724 return true;
5725
5726 /* If a register is not referenced, it is trusted if it has the
5727 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5728 * other type modifiers may be safe, but we elect to take an opt-in
5729 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5730 * not.
5731 *
5732 * Eventually, we should make PTR_TRUSTED the single source of truth
5733 * for whether a register is trusted.
5734 */
5735 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5736 !bpf_type_has_unsafe_modifiers(reg->type);
5737 }
5738
is_rcu_reg(const struct bpf_reg_state * reg)5739 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5740 {
5741 return reg->type & MEM_RCU;
5742 }
5743
clear_trusted_flags(enum bpf_type_flag * flag)5744 static void clear_trusted_flags(enum bpf_type_flag *flag)
5745 {
5746 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5747 }
5748
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)5749 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5750 const struct bpf_reg_state *reg,
5751 int off, int size, bool strict)
5752 {
5753 struct tnum reg_off;
5754 int ip_align;
5755
5756 /* Byte size accesses are always allowed. */
5757 if (!strict || size == 1)
5758 return 0;
5759
5760 /* For platforms that do not have a Kconfig enabling
5761 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5762 * NET_IP_ALIGN is universally set to '2'. And on platforms
5763 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5764 * to this code only in strict mode where we want to emulate
5765 * the NET_IP_ALIGN==2 checking. Therefore use an
5766 * unconditional IP align value of '2'.
5767 */
5768 ip_align = 2;
5769
5770 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5771 if (!tnum_is_aligned(reg_off, size)) {
5772 char tn_buf[48];
5773
5774 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5775 verbose(env,
5776 "misaligned packet access off %d+%s+%d+%d size %d\n",
5777 ip_align, tn_buf, reg->off, off, size);
5778 return -EACCES;
5779 }
5780
5781 return 0;
5782 }
5783
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)5784 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5785 const struct bpf_reg_state *reg,
5786 const char *pointer_desc,
5787 int off, int size, bool strict)
5788 {
5789 struct tnum reg_off;
5790
5791 /* Byte size accesses are always allowed. */
5792 if (!strict || size == 1)
5793 return 0;
5794
5795 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5796 if (!tnum_is_aligned(reg_off, size)) {
5797 char tn_buf[48];
5798
5799 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5800 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5801 pointer_desc, tn_buf, reg->off, off, size);
5802 return -EACCES;
5803 }
5804
5805 return 0;
5806 }
5807
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)5808 static int check_ptr_alignment(struct bpf_verifier_env *env,
5809 const struct bpf_reg_state *reg, int off,
5810 int size, bool strict_alignment_once)
5811 {
5812 bool strict = env->strict_alignment || strict_alignment_once;
5813 const char *pointer_desc = "";
5814
5815 switch (reg->type) {
5816 case PTR_TO_PACKET:
5817 case PTR_TO_PACKET_META:
5818 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5819 * right in front, treat it the very same way.
5820 */
5821 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5822 case PTR_TO_FLOW_KEYS:
5823 pointer_desc = "flow keys ";
5824 break;
5825 case PTR_TO_MAP_KEY:
5826 pointer_desc = "key ";
5827 break;
5828 case PTR_TO_MAP_VALUE:
5829 pointer_desc = "value ";
5830 break;
5831 case PTR_TO_CTX:
5832 pointer_desc = "context ";
5833 break;
5834 case PTR_TO_STACK:
5835 pointer_desc = "stack ";
5836 /* The stack spill tracking logic in check_stack_write_fixed_off()
5837 * and check_stack_read_fixed_off() relies on stack accesses being
5838 * aligned.
5839 */
5840 strict = true;
5841 break;
5842 case PTR_TO_SOCKET:
5843 pointer_desc = "sock ";
5844 break;
5845 case PTR_TO_SOCK_COMMON:
5846 pointer_desc = "sock_common ";
5847 break;
5848 case PTR_TO_TCP_SOCK:
5849 pointer_desc = "tcp_sock ";
5850 break;
5851 case PTR_TO_XDP_SOCK:
5852 pointer_desc = "xdp_sock ";
5853 break;
5854 default:
5855 break;
5856 }
5857 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5858 strict);
5859 }
5860
5861 /* starting from main bpf function walk all instructions of the function
5862 * and recursively walk all callees that given function can call.
5863 * Ignore jump and exit insns.
5864 * Since recursion is prevented by check_cfg() this algorithm
5865 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5866 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx)5867 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5868 {
5869 struct bpf_subprog_info *subprog = env->subprog_info;
5870 struct bpf_insn *insn = env->prog->insnsi;
5871 int depth = 0, frame = 0, i, subprog_end;
5872 bool tail_call_reachable = false;
5873 int ret_insn[MAX_CALL_FRAMES];
5874 int ret_prog[MAX_CALL_FRAMES];
5875 int j;
5876
5877 i = subprog[idx].start;
5878 process_func:
5879 /* protect against potential stack overflow that might happen when
5880 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5881 * depth for such case down to 256 so that the worst case scenario
5882 * would result in 8k stack size (32 which is tailcall limit * 256 =
5883 * 8k).
5884 *
5885 * To get the idea what might happen, see an example:
5886 * func1 -> sub rsp, 128
5887 * subfunc1 -> sub rsp, 256
5888 * tailcall1 -> add rsp, 256
5889 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5890 * subfunc2 -> sub rsp, 64
5891 * subfunc22 -> sub rsp, 128
5892 * tailcall2 -> add rsp, 128
5893 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5894 *
5895 * tailcall will unwind the current stack frame but it will not get rid
5896 * of caller's stack as shown on the example above.
5897 */
5898 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5899 verbose(env,
5900 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5901 depth);
5902 return -EACCES;
5903 }
5904 /* round up to 32-bytes, since this is granularity
5905 * of interpreter stack size
5906 */
5907 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5908 if (depth > MAX_BPF_STACK) {
5909 verbose(env, "combined stack size of %d calls is %d. Too large\n",
5910 frame + 1, depth);
5911 return -EACCES;
5912 }
5913 continue_func:
5914 subprog_end = subprog[idx + 1].start;
5915 for (; i < subprog_end; i++) {
5916 int next_insn, sidx;
5917
5918 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5919 continue;
5920 /* remember insn and function to return to */
5921 ret_insn[frame] = i + 1;
5922 ret_prog[frame] = idx;
5923
5924 /* find the callee */
5925 next_insn = i + insn[i].imm + 1;
5926 sidx = find_subprog(env, next_insn);
5927 if (sidx < 0) {
5928 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5929 next_insn);
5930 return -EFAULT;
5931 }
5932 if (subprog[sidx].is_async_cb) {
5933 if (subprog[sidx].has_tail_call) {
5934 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5935 return -EFAULT;
5936 }
5937 /* async callbacks don't increase bpf prog stack size unless called directly */
5938 if (!bpf_pseudo_call(insn + i))
5939 continue;
5940 }
5941 i = next_insn;
5942 idx = sidx;
5943
5944 if (subprog[idx].has_tail_call)
5945 tail_call_reachable = true;
5946
5947 frame++;
5948 if (frame >= MAX_CALL_FRAMES) {
5949 verbose(env, "the call stack of %d frames is too deep !\n",
5950 frame);
5951 return -E2BIG;
5952 }
5953 goto process_func;
5954 }
5955 /* if tail call got detected across bpf2bpf calls then mark each of the
5956 * currently present subprog frames as tail call reachable subprogs;
5957 * this info will be utilized by JIT so that we will be preserving the
5958 * tail call counter throughout bpf2bpf calls combined with tailcalls
5959 */
5960 if (tail_call_reachable)
5961 for (j = 0; j < frame; j++)
5962 subprog[ret_prog[j]].tail_call_reachable = true;
5963 if (subprog[0].tail_call_reachable)
5964 env->prog->aux->tail_call_reachable = true;
5965
5966 /* end of for() loop means the last insn of the 'subprog'
5967 * was reached. Doesn't matter whether it was JA or EXIT
5968 */
5969 if (frame == 0)
5970 return 0;
5971 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5972 frame--;
5973 i = ret_insn[frame];
5974 idx = ret_prog[frame];
5975 goto continue_func;
5976 }
5977
check_max_stack_depth(struct bpf_verifier_env * env)5978 static int check_max_stack_depth(struct bpf_verifier_env *env)
5979 {
5980 struct bpf_subprog_info *si = env->subprog_info;
5981 int ret;
5982
5983 for (int i = 0; i < env->subprog_cnt; i++) {
5984 if (!i || si[i].is_async_cb) {
5985 ret = check_max_stack_depth_subprog(env, i);
5986 if (ret < 0)
5987 return ret;
5988 }
5989 continue;
5990 }
5991 return 0;
5992 }
5993
5994 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)5995 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5996 const struct bpf_insn *insn, int idx)
5997 {
5998 int start = idx + insn->imm + 1, subprog;
5999
6000 subprog = find_subprog(env, start);
6001 if (subprog < 0) {
6002 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6003 start);
6004 return -EFAULT;
6005 }
6006 return env->subprog_info[subprog].stack_depth;
6007 }
6008 #endif
6009
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6010 static int __check_buffer_access(struct bpf_verifier_env *env,
6011 const char *buf_info,
6012 const struct bpf_reg_state *reg,
6013 int regno, int off, int size)
6014 {
6015 if (off < 0) {
6016 verbose(env,
6017 "R%d invalid %s buffer access: off=%d, size=%d\n",
6018 regno, buf_info, off, size);
6019 return -EACCES;
6020 }
6021 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6022 char tn_buf[48];
6023
6024 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6025 verbose(env,
6026 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6027 regno, off, tn_buf);
6028 return -EACCES;
6029 }
6030
6031 return 0;
6032 }
6033
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6034 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6035 const struct bpf_reg_state *reg,
6036 int regno, int off, int size)
6037 {
6038 int err;
6039
6040 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6041 if (err)
6042 return err;
6043
6044 if (off + size > env->prog->aux->max_tp_access)
6045 env->prog->aux->max_tp_access = off + size;
6046
6047 return 0;
6048 }
6049
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6050 static int check_buffer_access(struct bpf_verifier_env *env,
6051 const struct bpf_reg_state *reg,
6052 int regno, int off, int size,
6053 bool zero_size_allowed,
6054 u32 *max_access)
6055 {
6056 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6057 int err;
6058
6059 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6060 if (err)
6061 return err;
6062
6063 if (off + size > *max_access)
6064 *max_access = off + size;
6065
6066 return 0;
6067 }
6068
6069 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6070 static void zext_32_to_64(struct bpf_reg_state *reg)
6071 {
6072 reg->var_off = tnum_subreg(reg->var_off);
6073 __reg_assign_32_into_64(reg);
6074 }
6075
6076 /* truncate register to smaller size (in bytes)
6077 * must be called with size < BPF_REG_SIZE
6078 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6079 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6080 {
6081 u64 mask;
6082
6083 /* clear high bits in bit representation */
6084 reg->var_off = tnum_cast(reg->var_off, size);
6085
6086 /* fix arithmetic bounds */
6087 mask = ((u64)1 << (size * 8)) - 1;
6088 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6089 reg->umin_value &= mask;
6090 reg->umax_value &= mask;
6091 } else {
6092 reg->umin_value = 0;
6093 reg->umax_value = mask;
6094 }
6095 reg->smin_value = reg->umin_value;
6096 reg->smax_value = reg->umax_value;
6097
6098 /* If size is smaller than 32bit register the 32bit register
6099 * values are also truncated so we push 64-bit bounds into
6100 * 32-bit bounds. Above were truncated < 32-bits already.
6101 */
6102 if (size >= 4)
6103 return;
6104 __reg_combine_64_into_32(reg);
6105 }
6106
set_sext64_default_val(struct bpf_reg_state * reg,int size)6107 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6108 {
6109 if (size == 1) {
6110 reg->smin_value = reg->s32_min_value = S8_MIN;
6111 reg->smax_value = reg->s32_max_value = S8_MAX;
6112 } else if (size == 2) {
6113 reg->smin_value = reg->s32_min_value = S16_MIN;
6114 reg->smax_value = reg->s32_max_value = S16_MAX;
6115 } else {
6116 /* size == 4 */
6117 reg->smin_value = reg->s32_min_value = S32_MIN;
6118 reg->smax_value = reg->s32_max_value = S32_MAX;
6119 }
6120 reg->umin_value = reg->u32_min_value = 0;
6121 reg->umax_value = U64_MAX;
6122 reg->u32_max_value = U32_MAX;
6123 reg->var_off = tnum_unknown;
6124 }
6125
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6126 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6127 {
6128 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6129 u64 top_smax_value, top_smin_value;
6130 u64 num_bits = size * 8;
6131
6132 if (tnum_is_const(reg->var_off)) {
6133 u64_cval = reg->var_off.value;
6134 if (size == 1)
6135 reg->var_off = tnum_const((s8)u64_cval);
6136 else if (size == 2)
6137 reg->var_off = tnum_const((s16)u64_cval);
6138 else
6139 /* size == 4 */
6140 reg->var_off = tnum_const((s32)u64_cval);
6141
6142 u64_cval = reg->var_off.value;
6143 reg->smax_value = reg->smin_value = u64_cval;
6144 reg->umax_value = reg->umin_value = u64_cval;
6145 reg->s32_max_value = reg->s32_min_value = u64_cval;
6146 reg->u32_max_value = reg->u32_min_value = u64_cval;
6147 return;
6148 }
6149
6150 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6151 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6152
6153 if (top_smax_value != top_smin_value)
6154 goto out;
6155
6156 /* find the s64_min and s64_min after sign extension */
6157 if (size == 1) {
6158 init_s64_max = (s8)reg->smax_value;
6159 init_s64_min = (s8)reg->smin_value;
6160 } else if (size == 2) {
6161 init_s64_max = (s16)reg->smax_value;
6162 init_s64_min = (s16)reg->smin_value;
6163 } else {
6164 init_s64_max = (s32)reg->smax_value;
6165 init_s64_min = (s32)reg->smin_value;
6166 }
6167
6168 s64_max = max(init_s64_max, init_s64_min);
6169 s64_min = min(init_s64_max, init_s64_min);
6170
6171 /* both of s64_max/s64_min positive or negative */
6172 if ((s64_max >= 0) == (s64_min >= 0)) {
6173 reg->s32_min_value = reg->smin_value = s64_min;
6174 reg->s32_max_value = reg->smax_value = s64_max;
6175 reg->u32_min_value = reg->umin_value = s64_min;
6176 reg->u32_max_value = reg->umax_value = s64_max;
6177 reg->var_off = tnum_range(s64_min, s64_max);
6178 return;
6179 }
6180
6181 out:
6182 set_sext64_default_val(reg, size);
6183 }
6184
set_sext32_default_val(struct bpf_reg_state * reg,int size)6185 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6186 {
6187 if (size == 1) {
6188 reg->s32_min_value = S8_MIN;
6189 reg->s32_max_value = S8_MAX;
6190 } else {
6191 /* size == 2 */
6192 reg->s32_min_value = S16_MIN;
6193 reg->s32_max_value = S16_MAX;
6194 }
6195 reg->u32_min_value = 0;
6196 reg->u32_max_value = U32_MAX;
6197 reg->var_off = tnum_subreg(tnum_unknown);
6198 }
6199
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6200 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6201 {
6202 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6203 u32 top_smax_value, top_smin_value;
6204 u32 num_bits = size * 8;
6205
6206 if (tnum_is_const(reg->var_off)) {
6207 u32_val = reg->var_off.value;
6208 if (size == 1)
6209 reg->var_off = tnum_const((s8)u32_val);
6210 else
6211 reg->var_off = tnum_const((s16)u32_val);
6212
6213 u32_val = reg->var_off.value;
6214 reg->s32_min_value = reg->s32_max_value = u32_val;
6215 reg->u32_min_value = reg->u32_max_value = u32_val;
6216 return;
6217 }
6218
6219 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6220 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6221
6222 if (top_smax_value != top_smin_value)
6223 goto out;
6224
6225 /* find the s32_min and s32_min after sign extension */
6226 if (size == 1) {
6227 init_s32_max = (s8)reg->s32_max_value;
6228 init_s32_min = (s8)reg->s32_min_value;
6229 } else {
6230 /* size == 2 */
6231 init_s32_max = (s16)reg->s32_max_value;
6232 init_s32_min = (s16)reg->s32_min_value;
6233 }
6234 s32_max = max(init_s32_max, init_s32_min);
6235 s32_min = min(init_s32_max, init_s32_min);
6236
6237 if ((s32_min >= 0) == (s32_max >= 0)) {
6238 reg->s32_min_value = s32_min;
6239 reg->s32_max_value = s32_max;
6240 reg->u32_min_value = (u32)s32_min;
6241 reg->u32_max_value = (u32)s32_max;
6242 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6243 return;
6244 }
6245
6246 out:
6247 set_sext32_default_val(reg, size);
6248 }
6249
bpf_map_is_rdonly(const struct bpf_map * map)6250 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6251 {
6252 /* A map is considered read-only if the following condition are true:
6253 *
6254 * 1) BPF program side cannot change any of the map content. The
6255 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6256 * and was set at map creation time.
6257 * 2) The map value(s) have been initialized from user space by a
6258 * loader and then "frozen", such that no new map update/delete
6259 * operations from syscall side are possible for the rest of
6260 * the map's lifetime from that point onwards.
6261 * 3) Any parallel/pending map update/delete operations from syscall
6262 * side have been completed. Only after that point, it's safe to
6263 * assume that map value(s) are immutable.
6264 */
6265 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6266 READ_ONCE(map->frozen) &&
6267 !bpf_map_write_active(map);
6268 }
6269
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6270 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6271 bool is_ldsx)
6272 {
6273 void *ptr;
6274 u64 addr;
6275 int err;
6276
6277 err = map->ops->map_direct_value_addr(map, &addr, off);
6278 if (err)
6279 return err;
6280 ptr = (void *)(long)addr + off;
6281
6282 switch (size) {
6283 case sizeof(u8):
6284 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6285 break;
6286 case sizeof(u16):
6287 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6288 break;
6289 case sizeof(u32):
6290 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6291 break;
6292 case sizeof(u64):
6293 *val = *(u64 *)ptr;
6294 break;
6295 default:
6296 return -EINVAL;
6297 }
6298 return 0;
6299 }
6300
6301 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6302 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6303 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6304 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
6305
6306 /*
6307 * Allow list few fields as RCU trusted or full trusted.
6308 * This logic doesn't allow mix tagging and will be removed once GCC supports
6309 * btf_type_tag.
6310 */
6311
6312 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6313 BTF_TYPE_SAFE_RCU(struct task_struct) {
6314 const cpumask_t *cpus_ptr;
6315 struct css_set __rcu *cgroups;
6316 struct task_struct __rcu *real_parent;
6317 struct task_struct *group_leader;
6318 };
6319
BTF_TYPE_SAFE_RCU(struct cgroup)6320 BTF_TYPE_SAFE_RCU(struct cgroup) {
6321 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6322 struct kernfs_node *kn;
6323 };
6324
BTF_TYPE_SAFE_RCU(struct css_set)6325 BTF_TYPE_SAFE_RCU(struct css_set) {
6326 struct cgroup *dfl_cgrp;
6327 };
6328
6329 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6330 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6331 struct file __rcu *exe_file;
6332 };
6333
6334 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6335 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6336 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)6337 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6338 struct sock *sk;
6339 };
6340
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)6341 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6342 struct sock *sk;
6343 };
6344
6345 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)6346 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6347 struct seq_file *seq;
6348 };
6349
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)6350 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6351 struct bpf_iter_meta *meta;
6352 struct task_struct *task;
6353 };
6354
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)6355 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6356 struct file *file;
6357 };
6358
BTF_TYPE_SAFE_TRUSTED(struct file)6359 BTF_TYPE_SAFE_TRUSTED(struct file) {
6360 struct inode *f_inode;
6361 };
6362
BTF_TYPE_SAFE_TRUSTED(struct dentry)6363 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6364 /* no negative dentry-s in places where bpf can see it */
6365 struct inode *d_inode;
6366 };
6367
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)6368 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6369 struct sock *sk;
6370 };
6371
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6372 static bool type_is_rcu(struct bpf_verifier_env *env,
6373 struct bpf_reg_state *reg,
6374 const char *field_name, u32 btf_id)
6375 {
6376 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6377 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6378 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6379
6380 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6381 }
6382
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6383 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6384 struct bpf_reg_state *reg,
6385 const char *field_name, u32 btf_id)
6386 {
6387 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6388 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6389 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6390
6391 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6392 }
6393
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6394 static bool type_is_trusted(struct bpf_verifier_env *env,
6395 struct bpf_reg_state *reg,
6396 const char *field_name, u32 btf_id)
6397 {
6398 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6399 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6400 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6401 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6402 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6403
6404 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6405 }
6406
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6407 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6408 struct bpf_reg_state *reg,
6409 const char *field_name, u32 btf_id)
6410 {
6411 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6412
6413 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6414 "__safe_trusted_or_null");
6415 }
6416
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6417 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6418 struct bpf_reg_state *regs,
6419 int regno, int off, int size,
6420 enum bpf_access_type atype,
6421 int value_regno)
6422 {
6423 struct bpf_reg_state *reg = regs + regno;
6424 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6425 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6426 const char *field_name = NULL;
6427 enum bpf_type_flag flag = 0;
6428 u32 btf_id = 0;
6429 int ret;
6430
6431 if (!env->allow_ptr_leaks) {
6432 verbose(env,
6433 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6434 tname);
6435 return -EPERM;
6436 }
6437 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6438 verbose(env,
6439 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6440 tname);
6441 return -EINVAL;
6442 }
6443 if (off < 0) {
6444 verbose(env,
6445 "R%d is ptr_%s invalid negative access: off=%d\n",
6446 regno, tname, off);
6447 return -EACCES;
6448 }
6449 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6450 char tn_buf[48];
6451
6452 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6453 verbose(env,
6454 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6455 regno, tname, off, tn_buf);
6456 return -EACCES;
6457 }
6458
6459 if (reg->type & MEM_USER) {
6460 verbose(env,
6461 "R%d is ptr_%s access user memory: off=%d\n",
6462 regno, tname, off);
6463 return -EACCES;
6464 }
6465
6466 if (reg->type & MEM_PERCPU) {
6467 verbose(env,
6468 "R%d is ptr_%s access percpu memory: off=%d\n",
6469 regno, tname, off);
6470 return -EACCES;
6471 }
6472
6473 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6474 if (!btf_is_kernel(reg->btf)) {
6475 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6476 return -EFAULT;
6477 }
6478 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6479 } else {
6480 /* Writes are permitted with default btf_struct_access for
6481 * program allocated objects (which always have ref_obj_id > 0),
6482 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6483 */
6484 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6485 verbose(env, "only read is supported\n");
6486 return -EACCES;
6487 }
6488
6489 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6490 !reg->ref_obj_id) {
6491 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6492 return -EFAULT;
6493 }
6494
6495 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6496 }
6497
6498 if (ret < 0)
6499 return ret;
6500
6501 if (ret != PTR_TO_BTF_ID) {
6502 /* just mark; */
6503
6504 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6505 /* If this is an untrusted pointer, all pointers formed by walking it
6506 * also inherit the untrusted flag.
6507 */
6508 flag = PTR_UNTRUSTED;
6509
6510 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6511 /* By default any pointer obtained from walking a trusted pointer is no
6512 * longer trusted, unless the field being accessed has explicitly been
6513 * marked as inheriting its parent's state of trust (either full or RCU).
6514 * For example:
6515 * 'cgroups' pointer is untrusted if task->cgroups dereference
6516 * happened in a sleepable program outside of bpf_rcu_read_lock()
6517 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6518 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6519 *
6520 * A regular RCU-protected pointer with __rcu tag can also be deemed
6521 * trusted if we are in an RCU CS. Such pointer can be NULL.
6522 */
6523 if (type_is_trusted(env, reg, field_name, btf_id)) {
6524 flag |= PTR_TRUSTED;
6525 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6526 flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6527 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6528 if (type_is_rcu(env, reg, field_name, btf_id)) {
6529 /* ignore __rcu tag and mark it MEM_RCU */
6530 flag |= MEM_RCU;
6531 } else if (flag & MEM_RCU ||
6532 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6533 /* __rcu tagged pointers can be NULL */
6534 flag |= MEM_RCU | PTR_MAYBE_NULL;
6535
6536 /* We always trust them */
6537 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6538 flag & PTR_UNTRUSTED)
6539 flag &= ~PTR_UNTRUSTED;
6540 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6541 /* keep as-is */
6542 } else {
6543 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6544 clear_trusted_flags(&flag);
6545 }
6546 } else {
6547 /*
6548 * If not in RCU CS or MEM_RCU pointer can be NULL then
6549 * aggressively mark as untrusted otherwise such
6550 * pointers will be plain PTR_TO_BTF_ID without flags
6551 * and will be allowed to be passed into helpers for
6552 * compat reasons.
6553 */
6554 flag = PTR_UNTRUSTED;
6555 }
6556 } else {
6557 /* Old compat. Deprecated */
6558 clear_trusted_flags(&flag);
6559 }
6560
6561 if (atype == BPF_READ && value_regno >= 0)
6562 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6563
6564 return 0;
6565 }
6566
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6567 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6568 struct bpf_reg_state *regs,
6569 int regno, int off, int size,
6570 enum bpf_access_type atype,
6571 int value_regno)
6572 {
6573 struct bpf_reg_state *reg = regs + regno;
6574 struct bpf_map *map = reg->map_ptr;
6575 struct bpf_reg_state map_reg;
6576 enum bpf_type_flag flag = 0;
6577 const struct btf_type *t;
6578 const char *tname;
6579 u32 btf_id;
6580 int ret;
6581
6582 if (!btf_vmlinux) {
6583 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6584 return -ENOTSUPP;
6585 }
6586
6587 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6588 verbose(env, "map_ptr access not supported for map type %d\n",
6589 map->map_type);
6590 return -ENOTSUPP;
6591 }
6592
6593 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6594 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6595
6596 if (!env->allow_ptr_leaks) {
6597 verbose(env,
6598 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6599 tname);
6600 return -EPERM;
6601 }
6602
6603 if (off < 0) {
6604 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6605 regno, tname, off);
6606 return -EACCES;
6607 }
6608
6609 if (atype != BPF_READ) {
6610 verbose(env, "only read from %s is supported\n", tname);
6611 return -EACCES;
6612 }
6613
6614 /* Simulate access to a PTR_TO_BTF_ID */
6615 memset(&map_reg, 0, sizeof(map_reg));
6616 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6617 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6618 if (ret < 0)
6619 return ret;
6620
6621 if (value_regno >= 0)
6622 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6623
6624 return 0;
6625 }
6626
6627 /* Check that the stack access at the given offset is within bounds. The
6628 * maximum valid offset is -1.
6629 *
6630 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6631 * -state->allocated_stack for reads.
6632 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)6633 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6634 s64 off,
6635 struct bpf_func_state *state,
6636 enum bpf_access_type t)
6637 {
6638 int min_valid_off;
6639
6640 if (t == BPF_WRITE || env->allow_uninit_stack)
6641 min_valid_off = -MAX_BPF_STACK;
6642 else
6643 min_valid_off = -state->allocated_stack;
6644
6645 if (off < min_valid_off || off > -1)
6646 return -EACCES;
6647 return 0;
6648 }
6649
6650 /* Check that the stack access at 'regno + off' falls within the maximum stack
6651 * bounds.
6652 *
6653 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6654 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)6655 static int check_stack_access_within_bounds(
6656 struct bpf_verifier_env *env,
6657 int regno, int off, int access_size,
6658 enum bpf_access_src src, enum bpf_access_type type)
6659 {
6660 struct bpf_reg_state *regs = cur_regs(env);
6661 struct bpf_reg_state *reg = regs + regno;
6662 struct bpf_func_state *state = func(env, reg);
6663 s64 min_off, max_off;
6664 int err;
6665 char *err_extra;
6666
6667 if (src == ACCESS_HELPER)
6668 /* We don't know if helpers are reading or writing (or both). */
6669 err_extra = " indirect access to";
6670 else if (type == BPF_READ)
6671 err_extra = " read from";
6672 else
6673 err_extra = " write to";
6674
6675 if (tnum_is_const(reg->var_off)) {
6676 min_off = (s64)reg->var_off.value + off;
6677 max_off = min_off + access_size;
6678 } else {
6679 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6680 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6681 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6682 err_extra, regno);
6683 return -EACCES;
6684 }
6685 min_off = reg->smin_value + off;
6686 max_off = reg->smax_value + off + access_size;
6687 }
6688
6689 err = check_stack_slot_within_bounds(env, min_off, state, type);
6690 if (!err && max_off > 0)
6691 err = -EINVAL; /* out of stack access into non-negative offsets */
6692 if (!err && access_size < 0)
6693 /* access_size should not be negative (or overflow an int); others checks
6694 * along the way should have prevented such an access.
6695 */
6696 err = -EFAULT; /* invalid negative access size; integer overflow? */
6697
6698 if (err) {
6699 if (tnum_is_const(reg->var_off)) {
6700 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6701 err_extra, regno, off, access_size);
6702 } else {
6703 char tn_buf[48];
6704
6705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6706 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6707 err_extra, regno, tn_buf, access_size);
6708 }
6709 return err;
6710 }
6711
6712 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6713 }
6714
6715 /* check whether memory at (regno + off) is accessible for t = (read | write)
6716 * if t==write, value_regno is a register which value is stored into memory
6717 * if t==read, value_regno is a register which will receive the value from memory
6718 * if t==write && value_regno==-1, some unknown value is stored into memory
6719 * if t==read && value_regno==-1, don't care what we read from memory
6720 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)6721 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6722 int off, int bpf_size, enum bpf_access_type t,
6723 int value_regno, bool strict_alignment_once, bool is_ldsx)
6724 {
6725 struct bpf_reg_state *regs = cur_regs(env);
6726 struct bpf_reg_state *reg = regs + regno;
6727 int size, err = 0;
6728
6729 size = bpf_size_to_bytes(bpf_size);
6730 if (size < 0)
6731 return size;
6732
6733 /* alignment checks will add in reg->off themselves */
6734 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6735 if (err)
6736 return err;
6737
6738 /* for access checks, reg->off is just part of off */
6739 off += reg->off;
6740
6741 if (reg->type == PTR_TO_MAP_KEY) {
6742 if (t == BPF_WRITE) {
6743 verbose(env, "write to change key R%d not allowed\n", regno);
6744 return -EACCES;
6745 }
6746
6747 err = check_mem_region_access(env, regno, off, size,
6748 reg->map_ptr->key_size, false);
6749 if (err)
6750 return err;
6751 if (value_regno >= 0)
6752 mark_reg_unknown(env, regs, value_regno);
6753 } else if (reg->type == PTR_TO_MAP_VALUE) {
6754 struct btf_field *kptr_field = NULL;
6755
6756 if (t == BPF_WRITE && value_regno >= 0 &&
6757 is_pointer_value(env, value_regno)) {
6758 verbose(env, "R%d leaks addr into map\n", value_regno);
6759 return -EACCES;
6760 }
6761 err = check_map_access_type(env, regno, off, size, t);
6762 if (err)
6763 return err;
6764 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6765 if (err)
6766 return err;
6767 if (tnum_is_const(reg->var_off))
6768 kptr_field = btf_record_find(reg->map_ptr->record,
6769 off + reg->var_off.value, BPF_KPTR);
6770 if (kptr_field) {
6771 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6772 } else if (t == BPF_READ && value_regno >= 0) {
6773 struct bpf_map *map = reg->map_ptr;
6774
6775 /* if map is read-only, track its contents as scalars */
6776 if (tnum_is_const(reg->var_off) &&
6777 bpf_map_is_rdonly(map) &&
6778 map->ops->map_direct_value_addr) {
6779 int map_off = off + reg->var_off.value;
6780 u64 val = 0;
6781
6782 err = bpf_map_direct_read(map, map_off, size,
6783 &val, is_ldsx);
6784 if (err)
6785 return err;
6786
6787 regs[value_regno].type = SCALAR_VALUE;
6788 __mark_reg_known(®s[value_regno], val);
6789 } else {
6790 mark_reg_unknown(env, regs, value_regno);
6791 }
6792 }
6793 } else if (base_type(reg->type) == PTR_TO_MEM) {
6794 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6795
6796 if (type_may_be_null(reg->type)) {
6797 verbose(env, "R%d invalid mem access '%s'\n", regno,
6798 reg_type_str(env, reg->type));
6799 return -EACCES;
6800 }
6801
6802 if (t == BPF_WRITE && rdonly_mem) {
6803 verbose(env, "R%d cannot write into %s\n",
6804 regno, reg_type_str(env, reg->type));
6805 return -EACCES;
6806 }
6807
6808 if (t == BPF_WRITE && value_regno >= 0 &&
6809 is_pointer_value(env, value_regno)) {
6810 verbose(env, "R%d leaks addr into mem\n", value_regno);
6811 return -EACCES;
6812 }
6813
6814 err = check_mem_region_access(env, regno, off, size,
6815 reg->mem_size, false);
6816 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6817 mark_reg_unknown(env, regs, value_regno);
6818 } else if (reg->type == PTR_TO_CTX) {
6819 enum bpf_reg_type reg_type = SCALAR_VALUE;
6820 struct btf *btf = NULL;
6821 u32 btf_id = 0;
6822
6823 if (t == BPF_WRITE && value_regno >= 0 &&
6824 is_pointer_value(env, value_regno)) {
6825 verbose(env, "R%d leaks addr into ctx\n", value_regno);
6826 return -EACCES;
6827 }
6828
6829 err = check_ptr_off_reg(env, reg, regno);
6830 if (err < 0)
6831 return err;
6832
6833 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
6834 &btf_id);
6835 if (err)
6836 verbose_linfo(env, insn_idx, "; ");
6837 if (!err && t == BPF_READ && value_regno >= 0) {
6838 /* ctx access returns either a scalar, or a
6839 * PTR_TO_PACKET[_META,_END]. In the latter
6840 * case, we know the offset is zero.
6841 */
6842 if (reg_type == SCALAR_VALUE) {
6843 mark_reg_unknown(env, regs, value_regno);
6844 } else {
6845 mark_reg_known_zero(env, regs,
6846 value_regno);
6847 if (type_may_be_null(reg_type))
6848 regs[value_regno].id = ++env->id_gen;
6849 /* A load of ctx field could have different
6850 * actual load size with the one encoded in the
6851 * insn. When the dst is PTR, it is for sure not
6852 * a sub-register.
6853 */
6854 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6855 if (base_type(reg_type) == PTR_TO_BTF_ID) {
6856 regs[value_regno].btf = btf;
6857 regs[value_regno].btf_id = btf_id;
6858 }
6859 }
6860 regs[value_regno].type = reg_type;
6861 }
6862
6863 } else if (reg->type == PTR_TO_STACK) {
6864 /* Basic bounds checks. */
6865 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6866 if (err)
6867 return err;
6868
6869 if (t == BPF_READ)
6870 err = check_stack_read(env, regno, off, size,
6871 value_regno);
6872 else
6873 err = check_stack_write(env, regno, off, size,
6874 value_regno, insn_idx);
6875 } else if (reg_is_pkt_pointer(reg)) {
6876 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6877 verbose(env, "cannot write into packet\n");
6878 return -EACCES;
6879 }
6880 if (t == BPF_WRITE && value_regno >= 0 &&
6881 is_pointer_value(env, value_regno)) {
6882 verbose(env, "R%d leaks addr into packet\n",
6883 value_regno);
6884 return -EACCES;
6885 }
6886 err = check_packet_access(env, regno, off, size, false);
6887 if (!err && t == BPF_READ && value_regno >= 0)
6888 mark_reg_unknown(env, regs, value_regno);
6889 } else if (reg->type == PTR_TO_FLOW_KEYS) {
6890 if (t == BPF_WRITE && value_regno >= 0 &&
6891 is_pointer_value(env, value_regno)) {
6892 verbose(env, "R%d leaks addr into flow keys\n",
6893 value_regno);
6894 return -EACCES;
6895 }
6896
6897 err = check_flow_keys_access(env, off, size);
6898 if (!err && t == BPF_READ && value_regno >= 0)
6899 mark_reg_unknown(env, regs, value_regno);
6900 } else if (type_is_sk_pointer(reg->type)) {
6901 if (t == BPF_WRITE) {
6902 verbose(env, "R%d cannot write into %s\n",
6903 regno, reg_type_str(env, reg->type));
6904 return -EACCES;
6905 }
6906 err = check_sock_access(env, insn_idx, regno, off, size, t);
6907 if (!err && value_regno >= 0)
6908 mark_reg_unknown(env, regs, value_regno);
6909 } else if (reg->type == PTR_TO_TP_BUFFER) {
6910 err = check_tp_buffer_access(env, reg, regno, off, size);
6911 if (!err && t == BPF_READ && value_regno >= 0)
6912 mark_reg_unknown(env, regs, value_regno);
6913 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6914 !type_may_be_null(reg->type)) {
6915 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6916 value_regno);
6917 } else if (reg->type == CONST_PTR_TO_MAP) {
6918 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6919 value_regno);
6920 } else if (base_type(reg->type) == PTR_TO_BUF) {
6921 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6922 u32 *max_access;
6923
6924 if (rdonly_mem) {
6925 if (t == BPF_WRITE) {
6926 verbose(env, "R%d cannot write into %s\n",
6927 regno, reg_type_str(env, reg->type));
6928 return -EACCES;
6929 }
6930 max_access = &env->prog->aux->max_rdonly_access;
6931 } else {
6932 max_access = &env->prog->aux->max_rdwr_access;
6933 }
6934
6935 err = check_buffer_access(env, reg, regno, off, size, false,
6936 max_access);
6937
6938 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6939 mark_reg_unknown(env, regs, value_regno);
6940 } else {
6941 verbose(env, "R%d invalid mem access '%s'\n", regno,
6942 reg_type_str(env, reg->type));
6943 return -EACCES;
6944 }
6945
6946 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6947 regs[value_regno].type == SCALAR_VALUE) {
6948 if (!is_ldsx)
6949 /* b/h/w load zero-extends, mark upper bits as known 0 */
6950 coerce_reg_to_size(®s[value_regno], size);
6951 else
6952 coerce_reg_to_size_sx(®s[value_regno], size);
6953 }
6954 return err;
6955 }
6956
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)6957 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6958 {
6959 int load_reg;
6960 int err;
6961
6962 switch (insn->imm) {
6963 case BPF_ADD:
6964 case BPF_ADD | BPF_FETCH:
6965 case BPF_AND:
6966 case BPF_AND | BPF_FETCH:
6967 case BPF_OR:
6968 case BPF_OR | BPF_FETCH:
6969 case BPF_XOR:
6970 case BPF_XOR | BPF_FETCH:
6971 case BPF_XCHG:
6972 case BPF_CMPXCHG:
6973 break;
6974 default:
6975 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6976 return -EINVAL;
6977 }
6978
6979 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6980 verbose(env, "invalid atomic operand size\n");
6981 return -EINVAL;
6982 }
6983
6984 /* check src1 operand */
6985 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6986 if (err)
6987 return err;
6988
6989 /* check src2 operand */
6990 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6991 if (err)
6992 return err;
6993
6994 if (insn->imm == BPF_CMPXCHG) {
6995 /* Check comparison of R0 with memory location */
6996 const u32 aux_reg = BPF_REG_0;
6997
6998 err = check_reg_arg(env, aux_reg, SRC_OP);
6999 if (err)
7000 return err;
7001
7002 if (is_pointer_value(env, aux_reg)) {
7003 verbose(env, "R%d leaks addr into mem\n", aux_reg);
7004 return -EACCES;
7005 }
7006 }
7007
7008 if (is_pointer_value(env, insn->src_reg)) {
7009 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7010 return -EACCES;
7011 }
7012
7013 if (is_ctx_reg(env, insn->dst_reg) ||
7014 is_pkt_reg(env, insn->dst_reg) ||
7015 is_flow_key_reg(env, insn->dst_reg) ||
7016 is_sk_reg(env, insn->dst_reg)) {
7017 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7018 insn->dst_reg,
7019 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7020 return -EACCES;
7021 }
7022
7023 if (insn->imm & BPF_FETCH) {
7024 if (insn->imm == BPF_CMPXCHG)
7025 load_reg = BPF_REG_0;
7026 else
7027 load_reg = insn->src_reg;
7028
7029 /* check and record load of old value */
7030 err = check_reg_arg(env, load_reg, DST_OP);
7031 if (err)
7032 return err;
7033 } else {
7034 /* This instruction accesses a memory location but doesn't
7035 * actually load it into a register.
7036 */
7037 load_reg = -1;
7038 }
7039
7040 /* Check whether we can read the memory, with second call for fetch
7041 * case to simulate the register fill.
7042 */
7043 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7044 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7045 if (!err && load_reg >= 0)
7046 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7047 BPF_SIZE(insn->code), BPF_READ, load_reg,
7048 true, false);
7049 if (err)
7050 return err;
7051
7052 /* Check whether we can write into the same memory. */
7053 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7054 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7055 if (err)
7056 return err;
7057 return 0;
7058 }
7059
7060 /* When register 'regno' is used to read the stack (either directly or through
7061 * a helper function) make sure that it's within stack boundary and, depending
7062 * on the access type and privileges, that all elements of the stack are
7063 * initialized.
7064 *
7065 * 'off' includes 'regno->off', but not its dynamic part (if any).
7066 *
7067 * All registers that have been spilled on the stack in the slots within the
7068 * read offsets are marked as read.
7069 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)7070 static int check_stack_range_initialized(
7071 struct bpf_verifier_env *env, int regno, int off,
7072 int access_size, bool zero_size_allowed,
7073 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7074 {
7075 struct bpf_reg_state *reg = reg_state(env, regno);
7076 struct bpf_func_state *state = func(env, reg);
7077 int err, min_off, max_off, i, j, slot, spi;
7078 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7079 enum bpf_access_type bounds_check_type;
7080 /* Some accesses can write anything into the stack, others are
7081 * read-only.
7082 */
7083 bool clobber = false;
7084
7085 if (access_size == 0 && !zero_size_allowed) {
7086 verbose(env, "invalid zero-sized read\n");
7087 return -EACCES;
7088 }
7089
7090 if (type == ACCESS_HELPER) {
7091 /* The bounds checks for writes are more permissive than for
7092 * reads. However, if raw_mode is not set, we'll do extra
7093 * checks below.
7094 */
7095 bounds_check_type = BPF_WRITE;
7096 clobber = true;
7097 } else {
7098 bounds_check_type = BPF_READ;
7099 }
7100 err = check_stack_access_within_bounds(env, regno, off, access_size,
7101 type, bounds_check_type);
7102 if (err)
7103 return err;
7104
7105
7106 if (tnum_is_const(reg->var_off)) {
7107 min_off = max_off = reg->var_off.value + off;
7108 } else {
7109 /* Variable offset is prohibited for unprivileged mode for
7110 * simplicity since it requires corresponding support in
7111 * Spectre masking for stack ALU.
7112 * See also retrieve_ptr_limit().
7113 */
7114 if (!env->bypass_spec_v1) {
7115 char tn_buf[48];
7116
7117 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7118 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7119 regno, err_extra, tn_buf);
7120 return -EACCES;
7121 }
7122 /* Only initialized buffer on stack is allowed to be accessed
7123 * with variable offset. With uninitialized buffer it's hard to
7124 * guarantee that whole memory is marked as initialized on
7125 * helper return since specific bounds are unknown what may
7126 * cause uninitialized stack leaking.
7127 */
7128 if (meta && meta->raw_mode)
7129 meta = NULL;
7130
7131 min_off = reg->smin_value + off;
7132 max_off = reg->smax_value + off;
7133 }
7134
7135 if (meta && meta->raw_mode) {
7136 /* Ensure we won't be overwriting dynptrs when simulating byte
7137 * by byte access in check_helper_call using meta.access_size.
7138 * This would be a problem if we have a helper in the future
7139 * which takes:
7140 *
7141 * helper(uninit_mem, len, dynptr)
7142 *
7143 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7144 * may end up writing to dynptr itself when touching memory from
7145 * arg 1. This can be relaxed on a case by case basis for known
7146 * safe cases, but reject due to the possibilitiy of aliasing by
7147 * default.
7148 */
7149 for (i = min_off; i < max_off + access_size; i++) {
7150 int stack_off = -i - 1;
7151
7152 spi = __get_spi(i);
7153 /* raw_mode may write past allocated_stack */
7154 if (state->allocated_stack <= stack_off)
7155 continue;
7156 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7157 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7158 return -EACCES;
7159 }
7160 }
7161 meta->access_size = access_size;
7162 meta->regno = regno;
7163 return 0;
7164 }
7165
7166 for (i = min_off; i < max_off + access_size; i++) {
7167 u8 *stype;
7168
7169 slot = -i - 1;
7170 spi = slot / BPF_REG_SIZE;
7171 if (state->allocated_stack <= slot) {
7172 verbose(env, "verifier bug: allocated_stack too small");
7173 return -EFAULT;
7174 }
7175
7176 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7177 if (*stype == STACK_MISC)
7178 goto mark;
7179 if ((*stype == STACK_ZERO) ||
7180 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7181 if (clobber) {
7182 /* helper can write anything into the stack */
7183 *stype = STACK_MISC;
7184 }
7185 goto mark;
7186 }
7187
7188 if (is_spilled_reg(&state->stack[spi]) &&
7189 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7190 env->allow_ptr_leaks)) {
7191 if (clobber) {
7192 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7193 for (j = 0; j < BPF_REG_SIZE; j++)
7194 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7195 }
7196 goto mark;
7197 }
7198
7199 if (tnum_is_const(reg->var_off)) {
7200 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7201 err_extra, regno, min_off, i - min_off, access_size);
7202 } else {
7203 char tn_buf[48];
7204
7205 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7206 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7207 err_extra, regno, tn_buf, i - min_off, access_size);
7208 }
7209 return -EACCES;
7210 mark:
7211 /* reading any byte out of 8-byte 'spill_slot' will cause
7212 * the whole slot to be marked as 'read'
7213 */
7214 mark_reg_read(env, &state->stack[spi].spilled_ptr,
7215 state->stack[spi].spilled_ptr.parent,
7216 REG_LIVE_READ64);
7217 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7218 * be sure that whether stack slot is written to or not. Hence,
7219 * we must still conservatively propagate reads upwards even if
7220 * helper may write to the entire memory range.
7221 */
7222 }
7223 return 0;
7224 }
7225
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7226 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7227 int access_size, enum bpf_access_type access_type,
7228 bool zero_size_allowed,
7229 struct bpf_call_arg_meta *meta)
7230 {
7231 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7232 u32 *max_access;
7233
7234 switch (base_type(reg->type)) {
7235 case PTR_TO_PACKET:
7236 case PTR_TO_PACKET_META:
7237 return check_packet_access(env, regno, reg->off, access_size,
7238 zero_size_allowed);
7239 case PTR_TO_MAP_KEY:
7240 if (access_type == BPF_WRITE) {
7241 verbose(env, "R%d cannot write into %s\n", regno,
7242 reg_type_str(env, reg->type));
7243 return -EACCES;
7244 }
7245 return check_mem_region_access(env, regno, reg->off, access_size,
7246 reg->map_ptr->key_size, false);
7247 case PTR_TO_MAP_VALUE:
7248 if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7249 return -EACCES;
7250 return check_map_access(env, regno, reg->off, access_size,
7251 zero_size_allowed, ACCESS_HELPER);
7252 case PTR_TO_MEM:
7253 if (type_is_rdonly_mem(reg->type)) {
7254 if (access_type == BPF_WRITE) {
7255 verbose(env, "R%d cannot write into %s\n", regno,
7256 reg_type_str(env, reg->type));
7257 return -EACCES;
7258 }
7259 }
7260 return check_mem_region_access(env, regno, reg->off,
7261 access_size, reg->mem_size,
7262 zero_size_allowed);
7263 case PTR_TO_BUF:
7264 if (type_is_rdonly_mem(reg->type)) {
7265 if (access_type == BPF_WRITE) {
7266 verbose(env, "R%d cannot write into %s\n", regno,
7267 reg_type_str(env, reg->type));
7268 return -EACCES;
7269 }
7270
7271 max_access = &env->prog->aux->max_rdonly_access;
7272 } else {
7273 max_access = &env->prog->aux->max_rdwr_access;
7274 }
7275 return check_buffer_access(env, reg, regno, reg->off,
7276 access_size, zero_size_allowed,
7277 max_access);
7278 case PTR_TO_STACK:
7279 return check_stack_range_initialized(
7280 env,
7281 regno, reg->off, access_size,
7282 zero_size_allowed, ACCESS_HELPER, meta);
7283 case PTR_TO_BTF_ID:
7284 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7285 access_size, BPF_READ, -1);
7286 case PTR_TO_CTX:
7287 /* in case the function doesn't know how to access the context,
7288 * (because we are in a program of type SYSCALL for example), we
7289 * can not statically check its size.
7290 * Dynamically check it now.
7291 */
7292 if (!env->ops->convert_ctx_access) {
7293 int offset = access_size - 1;
7294
7295 /* Allow zero-byte read from PTR_TO_CTX */
7296 if (access_size == 0)
7297 return zero_size_allowed ? 0 : -EACCES;
7298
7299 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7300 access_type, -1, false, false);
7301 }
7302
7303 fallthrough;
7304 default: /* scalar_value or invalid ptr */
7305 /* Allow zero-byte read from NULL, regardless of pointer type */
7306 if (zero_size_allowed && access_size == 0 &&
7307 register_is_null(reg))
7308 return 0;
7309
7310 verbose(env, "R%d type=%s ", regno,
7311 reg_type_str(env, reg->type));
7312 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7313 return -EACCES;
7314 }
7315 }
7316
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7317 static int check_mem_size_reg(struct bpf_verifier_env *env,
7318 struct bpf_reg_state *reg, u32 regno,
7319 enum bpf_access_type access_type,
7320 bool zero_size_allowed,
7321 struct bpf_call_arg_meta *meta)
7322 {
7323 int err;
7324
7325 /* This is used to refine r0 return value bounds for helpers
7326 * that enforce this value as an upper bound on return values.
7327 * See do_refine_retval_range() for helpers that can refine
7328 * the return value. C type of helper is u32 so we pull register
7329 * bound from umax_value however, if negative verifier errors
7330 * out. Only upper bounds can be learned because retval is an
7331 * int type and negative retvals are allowed.
7332 */
7333 meta->msize_max_value = reg->umax_value;
7334
7335 /* The register is SCALAR_VALUE; the access check happens using
7336 * its boundaries. For unprivileged variable accesses, disable
7337 * raw mode so that the program is required to initialize all
7338 * the memory that the helper could just partially fill up.
7339 */
7340 if (!tnum_is_const(reg->var_off))
7341 meta = NULL;
7342
7343 if (reg->smin_value < 0) {
7344 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7345 regno);
7346 return -EACCES;
7347 }
7348
7349 if (reg->umin_value == 0 && !zero_size_allowed) {
7350 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7351 regno, reg->umin_value, reg->umax_value);
7352 return -EACCES;
7353 }
7354
7355 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7356 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7357 regno);
7358 return -EACCES;
7359 }
7360 err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7361 access_type, zero_size_allowed, meta);
7362 if (!err)
7363 err = mark_chain_precision(env, regno);
7364 return err;
7365 }
7366
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)7367 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7368 u32 regno, u32 mem_size)
7369 {
7370 bool may_be_null = type_may_be_null(reg->type);
7371 struct bpf_reg_state saved_reg;
7372 int err;
7373
7374 if (register_is_null(reg))
7375 return 0;
7376
7377 /* Assuming that the register contains a value check if the memory
7378 * access is safe. Temporarily save and restore the register's state as
7379 * the conversion shouldn't be visible to a caller.
7380 */
7381 if (may_be_null) {
7382 saved_reg = *reg;
7383 mark_ptr_not_null_reg(reg);
7384 }
7385
7386 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7387 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7388
7389 if (may_be_null)
7390 *reg = saved_reg;
7391
7392 return err;
7393 }
7394
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)7395 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7396 u32 regno)
7397 {
7398 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7399 bool may_be_null = type_may_be_null(mem_reg->type);
7400 struct bpf_reg_state saved_reg;
7401 struct bpf_call_arg_meta meta;
7402 int err;
7403
7404 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7405
7406 memset(&meta, 0, sizeof(meta));
7407
7408 if (may_be_null) {
7409 saved_reg = *mem_reg;
7410 mark_ptr_not_null_reg(mem_reg);
7411 }
7412
7413 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7414 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7415
7416 if (may_be_null)
7417 *mem_reg = saved_reg;
7418
7419 return err;
7420 }
7421
7422 /* Implementation details:
7423 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7424 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7425 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7426 * Two separate bpf_obj_new will also have different reg->id.
7427 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7428 * clears reg->id after value_or_null->value transition, since the verifier only
7429 * cares about the range of access to valid map value pointer and doesn't care
7430 * about actual address of the map element.
7431 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7432 * reg->id > 0 after value_or_null->value transition. By doing so
7433 * two bpf_map_lookups will be considered two different pointers that
7434 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7435 * returned from bpf_obj_new.
7436 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7437 * dead-locks.
7438 * Since only one bpf_spin_lock is allowed the checks are simpler than
7439 * reg_is_refcounted() logic. The verifier needs to remember only
7440 * one spin_lock instead of array of acquired_refs.
7441 * cur_state->active_lock remembers which map value element or allocated
7442 * object got locked and clears it after bpf_spin_unlock.
7443 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)7444 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7445 bool is_lock)
7446 {
7447 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7448 struct bpf_verifier_state *cur = env->cur_state;
7449 bool is_const = tnum_is_const(reg->var_off);
7450 u64 val = reg->var_off.value;
7451 struct bpf_map *map = NULL;
7452 struct btf *btf = NULL;
7453 struct btf_record *rec;
7454
7455 if (!is_const) {
7456 verbose(env,
7457 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7458 regno);
7459 return -EINVAL;
7460 }
7461 if (reg->type == PTR_TO_MAP_VALUE) {
7462 map = reg->map_ptr;
7463 if (!map->btf) {
7464 verbose(env,
7465 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7466 map->name);
7467 return -EINVAL;
7468 }
7469 } else {
7470 btf = reg->btf;
7471 }
7472
7473 rec = reg_btf_record(reg);
7474 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7475 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7476 map ? map->name : "kptr");
7477 return -EINVAL;
7478 }
7479 if (rec->spin_lock_off != val + reg->off) {
7480 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7481 val + reg->off, rec->spin_lock_off);
7482 return -EINVAL;
7483 }
7484 if (is_lock) {
7485 if (cur->active_lock.ptr) {
7486 verbose(env,
7487 "Locking two bpf_spin_locks are not allowed\n");
7488 return -EINVAL;
7489 }
7490 if (map)
7491 cur->active_lock.ptr = map;
7492 else
7493 cur->active_lock.ptr = btf;
7494 cur->active_lock.id = reg->id;
7495 } else {
7496 void *ptr;
7497
7498 if (map)
7499 ptr = map;
7500 else
7501 ptr = btf;
7502
7503 if (!cur->active_lock.ptr) {
7504 verbose(env, "bpf_spin_unlock without taking a lock\n");
7505 return -EINVAL;
7506 }
7507 if (cur->active_lock.ptr != ptr ||
7508 cur->active_lock.id != reg->id) {
7509 verbose(env, "bpf_spin_unlock of different lock\n");
7510 return -EINVAL;
7511 }
7512
7513 invalidate_non_owning_refs(env);
7514
7515 cur->active_lock.ptr = NULL;
7516 cur->active_lock.id = 0;
7517 }
7518 return 0;
7519 }
7520
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7521 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7522 struct bpf_call_arg_meta *meta)
7523 {
7524 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7525 bool is_const = tnum_is_const(reg->var_off);
7526 struct bpf_map *map = reg->map_ptr;
7527 u64 val = reg->var_off.value;
7528
7529 if (!is_const) {
7530 verbose(env,
7531 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7532 regno);
7533 return -EINVAL;
7534 }
7535 if (!map->btf) {
7536 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7537 map->name);
7538 return -EINVAL;
7539 }
7540 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7541 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7542 return -EINVAL;
7543 }
7544 if (map->record->timer_off != val + reg->off) {
7545 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7546 val + reg->off, map->record->timer_off);
7547 return -EINVAL;
7548 }
7549 if (meta->map_ptr) {
7550 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7551 return -EFAULT;
7552 }
7553 meta->map_uid = reg->map_uid;
7554 meta->map_ptr = map;
7555 return 0;
7556 }
7557
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7558 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7559 struct bpf_call_arg_meta *meta)
7560 {
7561 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7562 struct bpf_map *map_ptr = reg->map_ptr;
7563 struct btf_field *kptr_field;
7564 u32 kptr_off;
7565
7566 if (!tnum_is_const(reg->var_off)) {
7567 verbose(env,
7568 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7569 regno);
7570 return -EINVAL;
7571 }
7572 if (!map_ptr->btf) {
7573 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7574 map_ptr->name);
7575 return -EINVAL;
7576 }
7577 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7578 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7579 return -EINVAL;
7580 }
7581
7582 meta->map_ptr = map_ptr;
7583 kptr_off = reg->off + reg->var_off.value;
7584 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7585 if (!kptr_field) {
7586 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7587 return -EACCES;
7588 }
7589 if (kptr_field->type != BPF_KPTR_REF) {
7590 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7591 return -EACCES;
7592 }
7593 meta->kptr_field = kptr_field;
7594 return 0;
7595 }
7596
7597 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7598 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7599 *
7600 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7601 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7602 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7603 *
7604 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7605 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7606 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7607 * mutate the view of the dynptr and also possibly destroy it. In the latter
7608 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7609 * memory that dynptr points to.
7610 *
7611 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7612 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7613 * readonly dynptr view yet, hence only the first case is tracked and checked.
7614 *
7615 * This is consistent with how C applies the const modifier to a struct object,
7616 * where the pointer itself inside bpf_dynptr becomes const but not what it
7617 * points to.
7618 *
7619 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7620 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7621 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)7622 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7623 enum bpf_arg_type arg_type, int clone_ref_obj_id)
7624 {
7625 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7626 int err;
7627
7628 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7629 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7630 */
7631 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7632 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7633 return -EFAULT;
7634 }
7635
7636 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7637 * constructing a mutable bpf_dynptr object.
7638 *
7639 * Currently, this is only possible with PTR_TO_STACK
7640 * pointing to a region of at least 16 bytes which doesn't
7641 * contain an existing bpf_dynptr.
7642 *
7643 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7644 * mutated or destroyed. However, the memory it points to
7645 * may be mutated.
7646 *
7647 * None - Points to a initialized dynptr that can be mutated and
7648 * destroyed, including mutation of the memory it points
7649 * to.
7650 */
7651 if (arg_type & MEM_UNINIT) {
7652 int i;
7653
7654 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7655 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7656 return -EINVAL;
7657 }
7658
7659 /* we write BPF_DW bits (8 bytes) at a time */
7660 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7661 err = check_mem_access(env, insn_idx, regno,
7662 i, BPF_DW, BPF_WRITE, -1, false, false);
7663 if (err)
7664 return err;
7665 }
7666
7667 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7668 } else /* MEM_RDONLY and None case from above */ {
7669 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7670 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7671 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7672 return -EINVAL;
7673 }
7674
7675 if (!is_dynptr_reg_valid_init(env, reg)) {
7676 verbose(env,
7677 "Expected an initialized dynptr as arg #%d\n",
7678 regno);
7679 return -EINVAL;
7680 }
7681
7682 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7683 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7684 verbose(env,
7685 "Expected a dynptr of type %s as arg #%d\n",
7686 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7687 return -EINVAL;
7688 }
7689
7690 err = mark_dynptr_read(env, reg);
7691 }
7692 return err;
7693 }
7694
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)7695 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7696 {
7697 struct bpf_func_state *state = func(env, reg);
7698
7699 return state->stack[spi].spilled_ptr.ref_obj_id;
7700 }
7701
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)7702 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7703 {
7704 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7705 }
7706
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)7707 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7708 {
7709 return meta->kfunc_flags & KF_ITER_NEW;
7710 }
7711
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)7712 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7713 {
7714 return meta->kfunc_flags & KF_ITER_NEXT;
7715 }
7716
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)7717 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7718 {
7719 return meta->kfunc_flags & KF_ITER_DESTROY;
7720 }
7721
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg)7722 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7723 {
7724 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7725 * kfunc is iter state pointer
7726 */
7727 return arg == 0 && is_iter_kfunc(meta);
7728 }
7729
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7730 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7731 struct bpf_kfunc_call_arg_meta *meta)
7732 {
7733 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7734 const struct btf_type *t;
7735 const struct btf_param *arg;
7736 int spi, err, i, nr_slots;
7737 u32 btf_id;
7738
7739 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7740 arg = &btf_params(meta->func_proto)[0];
7741 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
7742 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
7743 nr_slots = t->size / BPF_REG_SIZE;
7744
7745 if (is_iter_new_kfunc(meta)) {
7746 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7747 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7748 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7749 iter_type_str(meta->btf, btf_id), regno);
7750 return -EINVAL;
7751 }
7752
7753 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7754 err = check_mem_access(env, insn_idx, regno,
7755 i, BPF_DW, BPF_WRITE, -1, false, false);
7756 if (err)
7757 return err;
7758 }
7759
7760 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7761 if (err)
7762 return err;
7763 } else {
7764 /* iter_next() or iter_destroy() expect initialized iter state*/
7765 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7766 verbose(env, "expected an initialized iter_%s as arg #%d\n",
7767 iter_type_str(meta->btf, btf_id), regno);
7768 return -EINVAL;
7769 }
7770
7771 spi = iter_get_spi(env, reg, nr_slots);
7772 if (spi < 0)
7773 return spi;
7774
7775 err = mark_iter_read(env, reg, spi, nr_slots);
7776 if (err)
7777 return err;
7778
7779 /* remember meta->iter info for process_iter_next_call() */
7780 meta->iter.spi = spi;
7781 meta->iter.frameno = reg->frameno;
7782 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7783
7784 if (is_iter_destroy_kfunc(meta)) {
7785 err = unmark_stack_slots_iter(env, reg, nr_slots);
7786 if (err)
7787 return err;
7788 }
7789 }
7790
7791 return 0;
7792 }
7793
7794 /* Look for a previous loop entry at insn_idx: nearest parent state
7795 * stopped at insn_idx with callsites matching those in cur->frame.
7796 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)7797 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7798 struct bpf_verifier_state *cur,
7799 int insn_idx)
7800 {
7801 struct bpf_verifier_state_list *sl;
7802 struct bpf_verifier_state *st;
7803
7804 /* Explored states are pushed in stack order, most recent states come first */
7805 sl = *explored_state(env, insn_idx);
7806 for (; sl; sl = sl->next) {
7807 /* If st->branches != 0 state is a part of current DFS verification path,
7808 * hence cur & st for a loop.
7809 */
7810 st = &sl->state;
7811 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7812 st->dfs_depth < cur->dfs_depth)
7813 return st;
7814 }
7815
7816 return NULL;
7817 }
7818
7819 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7820 static bool regs_exact(const struct bpf_reg_state *rold,
7821 const struct bpf_reg_state *rcur,
7822 struct bpf_idmap *idmap);
7823
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)7824 static void maybe_widen_reg(struct bpf_verifier_env *env,
7825 struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7826 struct bpf_idmap *idmap)
7827 {
7828 if (rold->type != SCALAR_VALUE)
7829 return;
7830 if (rold->type != rcur->type)
7831 return;
7832 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7833 return;
7834 __mark_reg_unknown(env, rcur);
7835 }
7836
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)7837 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7838 struct bpf_verifier_state *old,
7839 struct bpf_verifier_state *cur)
7840 {
7841 struct bpf_func_state *fold, *fcur;
7842 int i, fr;
7843
7844 reset_idmap_scratch(env);
7845 for (fr = old->curframe; fr >= 0; fr--) {
7846 fold = old->frame[fr];
7847 fcur = cur->frame[fr];
7848
7849 for (i = 0; i < MAX_BPF_REG; i++)
7850 maybe_widen_reg(env,
7851 &fold->regs[i],
7852 &fcur->regs[i],
7853 &env->idmap_scratch);
7854
7855 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7856 if (!is_spilled_reg(&fold->stack[i]) ||
7857 !is_spilled_reg(&fcur->stack[i]))
7858 continue;
7859
7860 maybe_widen_reg(env,
7861 &fold->stack[i].spilled_ptr,
7862 &fcur->stack[i].spilled_ptr,
7863 &env->idmap_scratch);
7864 }
7865 }
7866 return 0;
7867 }
7868
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)7869 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
7870 struct bpf_kfunc_call_arg_meta *meta)
7871 {
7872 int iter_frameno = meta->iter.frameno;
7873 int iter_spi = meta->iter.spi;
7874
7875 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7876 }
7877
7878 /* process_iter_next_call() is called when verifier gets to iterator's next
7879 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7880 * to it as just "iter_next()" in comments below.
7881 *
7882 * BPF verifier relies on a crucial contract for any iter_next()
7883 * implementation: it should *eventually* return NULL, and once that happens
7884 * it should keep returning NULL. That is, once iterator exhausts elements to
7885 * iterate, it should never reset or spuriously return new elements.
7886 *
7887 * With the assumption of such contract, process_iter_next_call() simulates
7888 * a fork in the verifier state to validate loop logic correctness and safety
7889 * without having to simulate infinite amount of iterations.
7890 *
7891 * In current state, we first assume that iter_next() returned NULL and
7892 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7893 * conditions we should not form an infinite loop and should eventually reach
7894 * exit.
7895 *
7896 * Besides that, we also fork current state and enqueue it for later
7897 * verification. In a forked state we keep iterator state as ACTIVE
7898 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7899 * also bump iteration depth to prevent erroneous infinite loop detection
7900 * later on (see iter_active_depths_differ() comment for details). In this
7901 * state we assume that we'll eventually loop back to another iter_next()
7902 * calls (it could be in exactly same location or in some other instruction,
7903 * it doesn't matter, we don't make any unnecessary assumptions about this,
7904 * everything revolves around iterator state in a stack slot, not which
7905 * instruction is calling iter_next()). When that happens, we either will come
7906 * to iter_next() with equivalent state and can conclude that next iteration
7907 * will proceed in exactly the same way as we just verified, so it's safe to
7908 * assume that loop converges. If not, we'll go on another iteration
7909 * simulation with a different input state, until all possible starting states
7910 * are validated or we reach maximum number of instructions limit.
7911 *
7912 * This way, we will either exhaustively discover all possible input states
7913 * that iterator loop can start with and eventually will converge, or we'll
7914 * effectively regress into bounded loop simulation logic and either reach
7915 * maximum number of instructions if loop is not provably convergent, or there
7916 * is some statically known limit on number of iterations (e.g., if there is
7917 * an explicit `if n > 100 then break;` statement somewhere in the loop).
7918 *
7919 * Iteration convergence logic in is_state_visited() relies on exact
7920 * states comparison, which ignores read and precision marks.
7921 * This is necessary because read and precision marks are not finalized
7922 * while in the loop. Exact comparison might preclude convergence for
7923 * simple programs like below:
7924 *
7925 * i = 0;
7926 * while(iter_next(&it))
7927 * i++;
7928 *
7929 * At each iteration step i++ would produce a new distinct state and
7930 * eventually instruction processing limit would be reached.
7931 *
7932 * To avoid such behavior speculatively forget (widen) range for
7933 * imprecise scalar registers, if those registers were not precise at the
7934 * end of the previous iteration and do not match exactly.
7935 *
7936 * This is a conservative heuristic that allows to verify wide range of programs,
7937 * however it precludes verification of programs that conjure an
7938 * imprecise value on the first loop iteration and use it as precise on a second.
7939 * For example, the following safe program would fail to verify:
7940 *
7941 * struct bpf_num_iter it;
7942 * int arr[10];
7943 * int i = 0, a = 0;
7944 * bpf_iter_num_new(&it, 0, 10);
7945 * while (bpf_iter_num_next(&it)) {
7946 * if (a == 0) {
7947 * a = 1;
7948 * i = 7; // Because i changed verifier would forget
7949 * // it's range on second loop entry.
7950 * } else {
7951 * arr[i] = 42; // This would fail to verify.
7952 * }
7953 * }
7954 * bpf_iter_num_destroy(&it);
7955 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7956 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7957 struct bpf_kfunc_call_arg_meta *meta)
7958 {
7959 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7960 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7961 struct bpf_reg_state *cur_iter, *queued_iter;
7962
7963 BTF_TYPE_EMIT(struct bpf_iter);
7964
7965 cur_iter = get_iter_from_state(cur_st, meta);
7966
7967 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7968 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7969 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7970 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7971 return -EFAULT;
7972 }
7973
7974 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7975 /* Because iter_next() call is a checkpoint is_state_visitied()
7976 * should guarantee parent state with same call sites and insn_idx.
7977 */
7978 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7979 !same_callsites(cur_st->parent, cur_st)) {
7980 verbose(env, "bug: bad parent state for iter next call");
7981 return -EFAULT;
7982 }
7983 /* Note cur_st->parent in the call below, it is necessary to skip
7984 * checkpoint created for cur_st by is_state_visited()
7985 * right at this instruction.
7986 */
7987 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7988 /* branch out active iter state */
7989 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7990 if (!queued_st)
7991 return -ENOMEM;
7992
7993 queued_iter = get_iter_from_state(queued_st, meta);
7994 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7995 queued_iter->iter.depth++;
7996 if (prev_st)
7997 widen_imprecise_scalars(env, prev_st, queued_st);
7998
7999 queued_fr = queued_st->frame[queued_st->curframe];
8000 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8001 }
8002
8003 /* switch to DRAINED state, but keep the depth unchanged */
8004 /* mark current iter state as drained and assume returned NULL */
8005 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8006 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8007
8008 return 0;
8009 }
8010
arg_type_is_mem_size(enum bpf_arg_type type)8011 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8012 {
8013 return type == ARG_CONST_SIZE ||
8014 type == ARG_CONST_SIZE_OR_ZERO;
8015 }
8016
arg_type_is_raw_mem(enum bpf_arg_type type)8017 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8018 {
8019 return base_type(type) == ARG_PTR_TO_MEM &&
8020 type & MEM_UNINIT;
8021 }
8022
arg_type_is_release(enum bpf_arg_type type)8023 static bool arg_type_is_release(enum bpf_arg_type type)
8024 {
8025 return type & OBJ_RELEASE;
8026 }
8027
arg_type_is_dynptr(enum bpf_arg_type type)8028 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8029 {
8030 return base_type(type) == ARG_PTR_TO_DYNPTR;
8031 }
8032
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)8033 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8034 const struct bpf_call_arg_meta *meta,
8035 enum bpf_arg_type *arg_type)
8036 {
8037 if (!meta->map_ptr) {
8038 /* kernel subsystem misconfigured verifier */
8039 verbose(env, "invalid map_ptr to access map->type\n");
8040 return -EACCES;
8041 }
8042
8043 switch (meta->map_ptr->map_type) {
8044 case BPF_MAP_TYPE_SOCKMAP:
8045 case BPF_MAP_TYPE_SOCKHASH:
8046 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8047 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8048 } else {
8049 verbose(env, "invalid arg_type for sockmap/sockhash\n");
8050 return -EINVAL;
8051 }
8052 break;
8053 case BPF_MAP_TYPE_BLOOM_FILTER:
8054 if (meta->func_id == BPF_FUNC_map_peek_elem)
8055 *arg_type = ARG_PTR_TO_MAP_VALUE;
8056 break;
8057 default:
8058 break;
8059 }
8060 return 0;
8061 }
8062
8063 struct bpf_reg_types {
8064 const enum bpf_reg_type types[10];
8065 u32 *btf_id;
8066 };
8067
8068 static const struct bpf_reg_types sock_types = {
8069 .types = {
8070 PTR_TO_SOCK_COMMON,
8071 PTR_TO_SOCKET,
8072 PTR_TO_TCP_SOCK,
8073 PTR_TO_XDP_SOCK,
8074 },
8075 };
8076
8077 #ifdef CONFIG_NET
8078 static const struct bpf_reg_types btf_id_sock_common_types = {
8079 .types = {
8080 PTR_TO_SOCK_COMMON,
8081 PTR_TO_SOCKET,
8082 PTR_TO_TCP_SOCK,
8083 PTR_TO_XDP_SOCK,
8084 PTR_TO_BTF_ID,
8085 PTR_TO_BTF_ID | PTR_TRUSTED,
8086 },
8087 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8088 };
8089 #endif
8090
8091 static const struct bpf_reg_types mem_types = {
8092 .types = {
8093 PTR_TO_STACK,
8094 PTR_TO_PACKET,
8095 PTR_TO_PACKET_META,
8096 PTR_TO_MAP_KEY,
8097 PTR_TO_MAP_VALUE,
8098 PTR_TO_MEM,
8099 PTR_TO_MEM | MEM_RINGBUF,
8100 PTR_TO_BUF,
8101 PTR_TO_BTF_ID | PTR_TRUSTED,
8102 },
8103 };
8104
8105 static const struct bpf_reg_types spin_lock_types = {
8106 .types = {
8107 PTR_TO_MAP_VALUE,
8108 PTR_TO_BTF_ID | MEM_ALLOC,
8109 }
8110 };
8111
8112 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8113 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8114 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8115 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8116 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8117 static const struct bpf_reg_types btf_ptr_types = {
8118 .types = {
8119 PTR_TO_BTF_ID,
8120 PTR_TO_BTF_ID | PTR_TRUSTED,
8121 PTR_TO_BTF_ID | MEM_RCU,
8122 },
8123 };
8124 static const struct bpf_reg_types percpu_btf_ptr_types = {
8125 .types = {
8126 PTR_TO_BTF_ID | MEM_PERCPU,
8127 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8128 }
8129 };
8130 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8131 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8132 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8133 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8134 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8135 static const struct bpf_reg_types dynptr_types = {
8136 .types = {
8137 PTR_TO_STACK,
8138 CONST_PTR_TO_DYNPTR,
8139 }
8140 };
8141
8142 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8143 [ARG_PTR_TO_MAP_KEY] = &mem_types,
8144 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
8145 [ARG_CONST_SIZE] = &scalar_types,
8146 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
8147 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
8148 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
8149 [ARG_PTR_TO_CTX] = &context_types,
8150 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
8151 #ifdef CONFIG_NET
8152 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
8153 #endif
8154 [ARG_PTR_TO_SOCKET] = &fullsock_types,
8155 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
8156 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
8157 [ARG_PTR_TO_MEM] = &mem_types,
8158 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
8159 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
8160 [ARG_PTR_TO_FUNC] = &func_ptr_types,
8161 [ARG_PTR_TO_STACK] = &stack_ptr_types,
8162 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
8163 [ARG_PTR_TO_TIMER] = &timer_types,
8164 [ARG_PTR_TO_KPTR] = &kptr_types,
8165 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
8166 };
8167
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)8168 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8169 enum bpf_arg_type arg_type,
8170 const u32 *arg_btf_id,
8171 struct bpf_call_arg_meta *meta)
8172 {
8173 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8174 enum bpf_reg_type expected, type = reg->type;
8175 const struct bpf_reg_types *compatible;
8176 int i, j;
8177
8178 compatible = compatible_reg_types[base_type(arg_type)];
8179 if (!compatible) {
8180 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8181 return -EFAULT;
8182 }
8183
8184 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8185 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8186 *
8187 * Same for MAYBE_NULL:
8188 *
8189 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8190 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8191 *
8192 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8193 *
8194 * Therefore we fold these flags depending on the arg_type before comparison.
8195 */
8196 if (arg_type & MEM_RDONLY)
8197 type &= ~MEM_RDONLY;
8198 if (arg_type & PTR_MAYBE_NULL)
8199 type &= ~PTR_MAYBE_NULL;
8200 if (base_type(arg_type) == ARG_PTR_TO_MEM)
8201 type &= ~DYNPTR_TYPE_FLAG_MASK;
8202
8203 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
8204 type &= ~MEM_ALLOC;
8205
8206 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8207 expected = compatible->types[i];
8208 if (expected == NOT_INIT)
8209 break;
8210
8211 if (type == expected)
8212 goto found;
8213 }
8214
8215 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8216 for (j = 0; j + 1 < i; j++)
8217 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8218 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8219 return -EACCES;
8220
8221 found:
8222 if (base_type(reg->type) != PTR_TO_BTF_ID)
8223 return 0;
8224
8225 if (compatible == &mem_types) {
8226 if (!(arg_type & MEM_RDONLY)) {
8227 verbose(env,
8228 "%s() may write into memory pointed by R%d type=%s\n",
8229 func_id_name(meta->func_id),
8230 regno, reg_type_str(env, reg->type));
8231 return -EACCES;
8232 }
8233 return 0;
8234 }
8235
8236 switch ((int)reg->type) {
8237 case PTR_TO_BTF_ID:
8238 case PTR_TO_BTF_ID | PTR_TRUSTED:
8239 case PTR_TO_BTF_ID | MEM_RCU:
8240 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8241 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8242 {
8243 /* For bpf_sk_release, it needs to match against first member
8244 * 'struct sock_common', hence make an exception for it. This
8245 * allows bpf_sk_release to work for multiple socket types.
8246 */
8247 bool strict_type_match = arg_type_is_release(arg_type) &&
8248 meta->func_id != BPF_FUNC_sk_release;
8249
8250 if (type_may_be_null(reg->type) &&
8251 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8252 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8253 return -EACCES;
8254 }
8255
8256 if (!arg_btf_id) {
8257 if (!compatible->btf_id) {
8258 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8259 return -EFAULT;
8260 }
8261 arg_btf_id = compatible->btf_id;
8262 }
8263
8264 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8265 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8266 return -EACCES;
8267 } else {
8268 if (arg_btf_id == BPF_PTR_POISON) {
8269 verbose(env, "verifier internal error:");
8270 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8271 regno);
8272 return -EACCES;
8273 }
8274
8275 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8276 btf_vmlinux, *arg_btf_id,
8277 strict_type_match)) {
8278 verbose(env, "R%d is of type %s but %s is expected\n",
8279 regno, btf_type_name(reg->btf, reg->btf_id),
8280 btf_type_name(btf_vmlinux, *arg_btf_id));
8281 return -EACCES;
8282 }
8283 }
8284 break;
8285 }
8286 case PTR_TO_BTF_ID | MEM_ALLOC:
8287 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8288 meta->func_id != BPF_FUNC_kptr_xchg) {
8289 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8290 return -EFAULT;
8291 }
8292 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8293 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8294 return -EACCES;
8295 }
8296 break;
8297 case PTR_TO_BTF_ID | MEM_PERCPU:
8298 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8299 /* Handled by helper specific checks */
8300 break;
8301 default:
8302 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8303 return -EFAULT;
8304 }
8305 return 0;
8306 }
8307
8308 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)8309 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8310 {
8311 struct btf_field *field;
8312 struct btf_record *rec;
8313
8314 rec = reg_btf_record(reg);
8315 if (!rec)
8316 return NULL;
8317
8318 field = btf_record_find(rec, off, fields);
8319 if (!field)
8320 return NULL;
8321
8322 return field;
8323 }
8324
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)8325 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8326 const struct bpf_reg_state *reg, int regno,
8327 enum bpf_arg_type arg_type)
8328 {
8329 u32 type = reg->type;
8330
8331 /* When referenced register is passed to release function, its fixed
8332 * offset must be 0.
8333 *
8334 * We will check arg_type_is_release reg has ref_obj_id when storing
8335 * meta->release_regno.
8336 */
8337 if (arg_type_is_release(arg_type)) {
8338 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8339 * may not directly point to the object being released, but to
8340 * dynptr pointing to such object, which might be at some offset
8341 * on the stack. In that case, we simply to fallback to the
8342 * default handling.
8343 */
8344 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8345 return 0;
8346
8347 /* Doing check_ptr_off_reg check for the offset will catch this
8348 * because fixed_off_ok is false, but checking here allows us
8349 * to give the user a better error message.
8350 */
8351 if (reg->off) {
8352 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8353 regno);
8354 return -EINVAL;
8355 }
8356 return __check_ptr_off_reg(env, reg, regno, false);
8357 }
8358
8359 switch (type) {
8360 /* Pointer types where both fixed and variable offset is explicitly allowed: */
8361 case PTR_TO_STACK:
8362 case PTR_TO_PACKET:
8363 case PTR_TO_PACKET_META:
8364 case PTR_TO_MAP_KEY:
8365 case PTR_TO_MAP_VALUE:
8366 case PTR_TO_MEM:
8367 case PTR_TO_MEM | MEM_RDONLY:
8368 case PTR_TO_MEM | MEM_RINGBUF:
8369 case PTR_TO_BUF:
8370 case PTR_TO_BUF | MEM_RDONLY:
8371 case SCALAR_VALUE:
8372 return 0;
8373 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8374 * fixed offset.
8375 */
8376 case PTR_TO_BTF_ID:
8377 case PTR_TO_BTF_ID | MEM_ALLOC:
8378 case PTR_TO_BTF_ID | PTR_TRUSTED:
8379 case PTR_TO_BTF_ID | MEM_RCU:
8380 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8381 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8382 /* When referenced PTR_TO_BTF_ID is passed to release function,
8383 * its fixed offset must be 0. In the other cases, fixed offset
8384 * can be non-zero. This was already checked above. So pass
8385 * fixed_off_ok as true to allow fixed offset for all other
8386 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8387 * still need to do checks instead of returning.
8388 */
8389 return __check_ptr_off_reg(env, reg, regno, true);
8390 default:
8391 return __check_ptr_off_reg(env, reg, regno, false);
8392 }
8393 }
8394
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)8395 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8396 const struct bpf_func_proto *fn,
8397 struct bpf_reg_state *regs)
8398 {
8399 struct bpf_reg_state *state = NULL;
8400 int i;
8401
8402 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8403 if (arg_type_is_dynptr(fn->arg_type[i])) {
8404 if (state) {
8405 verbose(env, "verifier internal error: multiple dynptr args\n");
8406 return NULL;
8407 }
8408 state = ®s[BPF_REG_1 + i];
8409 }
8410
8411 if (!state)
8412 verbose(env, "verifier internal error: no dynptr arg found\n");
8413
8414 return state;
8415 }
8416
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8417 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8418 {
8419 struct bpf_func_state *state = func(env, reg);
8420 int spi;
8421
8422 if (reg->type == CONST_PTR_TO_DYNPTR)
8423 return reg->id;
8424 spi = dynptr_get_spi(env, reg);
8425 if (spi < 0)
8426 return spi;
8427 return state->stack[spi].spilled_ptr.id;
8428 }
8429
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8430 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8431 {
8432 struct bpf_func_state *state = func(env, reg);
8433 int spi;
8434
8435 if (reg->type == CONST_PTR_TO_DYNPTR)
8436 return reg->ref_obj_id;
8437 spi = dynptr_get_spi(env, reg);
8438 if (spi < 0)
8439 return spi;
8440 return state->stack[spi].spilled_ptr.ref_obj_id;
8441 }
8442
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8443 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8444 struct bpf_reg_state *reg)
8445 {
8446 struct bpf_func_state *state = func(env, reg);
8447 int spi;
8448
8449 if (reg->type == CONST_PTR_TO_DYNPTR)
8450 return reg->dynptr.type;
8451
8452 spi = __get_spi(reg->off);
8453 if (spi < 0) {
8454 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8455 return BPF_DYNPTR_TYPE_INVALID;
8456 }
8457
8458 return state->stack[spi].spilled_ptr.dynptr.type;
8459 }
8460
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)8461 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8462 struct bpf_call_arg_meta *meta,
8463 const struct bpf_func_proto *fn,
8464 int insn_idx)
8465 {
8466 u32 regno = BPF_REG_1 + arg;
8467 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8468 enum bpf_arg_type arg_type = fn->arg_type[arg];
8469 enum bpf_reg_type type = reg->type;
8470 u32 *arg_btf_id = NULL;
8471 int err = 0;
8472
8473 if (arg_type == ARG_DONTCARE)
8474 return 0;
8475
8476 err = check_reg_arg(env, regno, SRC_OP);
8477 if (err)
8478 return err;
8479
8480 if (arg_type == ARG_ANYTHING) {
8481 if (is_pointer_value(env, regno)) {
8482 verbose(env, "R%d leaks addr into helper function\n",
8483 regno);
8484 return -EACCES;
8485 }
8486 return 0;
8487 }
8488
8489 if (type_is_pkt_pointer(type) &&
8490 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8491 verbose(env, "helper access to the packet is not allowed\n");
8492 return -EACCES;
8493 }
8494
8495 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8496 err = resolve_map_arg_type(env, meta, &arg_type);
8497 if (err)
8498 return err;
8499 }
8500
8501 if (register_is_null(reg) && type_may_be_null(arg_type))
8502 /* A NULL register has a SCALAR_VALUE type, so skip
8503 * type checking.
8504 */
8505 goto skip_type_check;
8506
8507 /* arg_btf_id and arg_size are in a union. */
8508 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8509 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8510 arg_btf_id = fn->arg_btf_id[arg];
8511
8512 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8513 if (err)
8514 return err;
8515
8516 err = check_func_arg_reg_off(env, reg, regno, arg_type);
8517 if (err)
8518 return err;
8519
8520 skip_type_check:
8521 if (arg_type_is_release(arg_type)) {
8522 if (arg_type_is_dynptr(arg_type)) {
8523 struct bpf_func_state *state = func(env, reg);
8524 int spi;
8525
8526 /* Only dynptr created on stack can be released, thus
8527 * the get_spi and stack state checks for spilled_ptr
8528 * should only be done before process_dynptr_func for
8529 * PTR_TO_STACK.
8530 */
8531 if (reg->type == PTR_TO_STACK) {
8532 spi = dynptr_get_spi(env, reg);
8533 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8534 verbose(env, "arg %d is an unacquired reference\n", regno);
8535 return -EINVAL;
8536 }
8537 } else {
8538 verbose(env, "cannot release unowned const bpf_dynptr\n");
8539 return -EINVAL;
8540 }
8541 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8542 verbose(env, "R%d must be referenced when passed to release function\n",
8543 regno);
8544 return -EINVAL;
8545 }
8546 if (meta->release_regno) {
8547 verbose(env, "verifier internal error: more than one release argument\n");
8548 return -EFAULT;
8549 }
8550 meta->release_regno = regno;
8551 }
8552
8553 if (reg->ref_obj_id) {
8554 if (meta->ref_obj_id) {
8555 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8556 regno, reg->ref_obj_id,
8557 meta->ref_obj_id);
8558 return -EFAULT;
8559 }
8560 meta->ref_obj_id = reg->ref_obj_id;
8561 }
8562
8563 switch (base_type(arg_type)) {
8564 case ARG_CONST_MAP_PTR:
8565 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8566 if (meta->map_ptr) {
8567 /* Use map_uid (which is unique id of inner map) to reject:
8568 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8569 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8570 * if (inner_map1 && inner_map2) {
8571 * timer = bpf_map_lookup_elem(inner_map1);
8572 * if (timer)
8573 * // mismatch would have been allowed
8574 * bpf_timer_init(timer, inner_map2);
8575 * }
8576 *
8577 * Comparing map_ptr is enough to distinguish normal and outer maps.
8578 */
8579 if (meta->map_ptr != reg->map_ptr ||
8580 meta->map_uid != reg->map_uid) {
8581 verbose(env,
8582 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8583 meta->map_uid, reg->map_uid);
8584 return -EINVAL;
8585 }
8586 }
8587 meta->map_ptr = reg->map_ptr;
8588 meta->map_uid = reg->map_uid;
8589 break;
8590 case ARG_PTR_TO_MAP_KEY:
8591 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8592 * check that [key, key + map->key_size) are within
8593 * stack limits and initialized
8594 */
8595 if (!meta->map_ptr) {
8596 /* in function declaration map_ptr must come before
8597 * map_key, so that it's verified and known before
8598 * we have to check map_key here. Otherwise it means
8599 * that kernel subsystem misconfigured verifier
8600 */
8601 verbose(env, "invalid map_ptr to access map->key\n");
8602 return -EACCES;
8603 }
8604 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8605 BPF_READ, false, NULL);
8606 break;
8607 case ARG_PTR_TO_MAP_VALUE:
8608 if (type_may_be_null(arg_type) && register_is_null(reg))
8609 return 0;
8610
8611 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8612 * check [value, value + map->value_size) validity
8613 */
8614 if (!meta->map_ptr) {
8615 /* kernel subsystem misconfigured verifier */
8616 verbose(env, "invalid map_ptr to access map->value\n");
8617 return -EACCES;
8618 }
8619 meta->raw_mode = arg_type & MEM_UNINIT;
8620 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8621 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8622 false, meta);
8623 break;
8624 case ARG_PTR_TO_PERCPU_BTF_ID:
8625 if (!reg->btf_id) {
8626 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8627 return -EACCES;
8628 }
8629 meta->ret_btf = reg->btf;
8630 meta->ret_btf_id = reg->btf_id;
8631 break;
8632 case ARG_PTR_TO_SPIN_LOCK:
8633 if (in_rbtree_lock_required_cb(env)) {
8634 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8635 return -EACCES;
8636 }
8637 if (meta->func_id == BPF_FUNC_spin_lock) {
8638 err = process_spin_lock(env, regno, true);
8639 if (err)
8640 return err;
8641 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8642 err = process_spin_lock(env, regno, false);
8643 if (err)
8644 return err;
8645 } else {
8646 verbose(env, "verifier internal error\n");
8647 return -EFAULT;
8648 }
8649 break;
8650 case ARG_PTR_TO_TIMER:
8651 err = process_timer_func(env, regno, meta);
8652 if (err)
8653 return err;
8654 break;
8655 case ARG_PTR_TO_FUNC:
8656 meta->subprogno = reg->subprogno;
8657 break;
8658 case ARG_PTR_TO_MEM:
8659 /* The access to this pointer is only checked when we hit the
8660 * next is_mem_size argument below.
8661 */
8662 meta->raw_mode = arg_type & MEM_UNINIT;
8663 if (arg_type & MEM_FIXED_SIZE) {
8664 err = check_helper_mem_access(env, regno, fn->arg_size[arg],
8665 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8666 false, meta);
8667 if (err)
8668 return err;
8669 if (arg_type & MEM_ALIGNED)
8670 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
8671 }
8672 break;
8673 case ARG_CONST_SIZE:
8674 err = check_mem_size_reg(env, reg, regno,
8675 fn->arg_type[arg - 1] & MEM_WRITE ?
8676 BPF_WRITE : BPF_READ,
8677 false, meta);
8678 break;
8679 case ARG_CONST_SIZE_OR_ZERO:
8680 err = check_mem_size_reg(env, reg, regno,
8681 fn->arg_type[arg - 1] & MEM_WRITE ?
8682 BPF_WRITE : BPF_READ,
8683 true, meta);
8684 break;
8685 case ARG_PTR_TO_DYNPTR:
8686 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8687 if (err)
8688 return err;
8689 break;
8690 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8691 if (!tnum_is_const(reg->var_off)) {
8692 verbose(env, "R%d is not a known constant'\n",
8693 regno);
8694 return -EACCES;
8695 }
8696 meta->mem_size = reg->var_off.value;
8697 err = mark_chain_precision(env, regno);
8698 if (err)
8699 return err;
8700 break;
8701 case ARG_PTR_TO_CONST_STR:
8702 {
8703 struct bpf_map *map = reg->map_ptr;
8704 int map_off;
8705 u64 map_addr;
8706 char *str_ptr;
8707
8708 if (!bpf_map_is_rdonly(map)) {
8709 verbose(env, "R%d does not point to a readonly map'\n", regno);
8710 return -EACCES;
8711 }
8712
8713 if (!tnum_is_const(reg->var_off)) {
8714 verbose(env, "R%d is not a constant address'\n", regno);
8715 return -EACCES;
8716 }
8717
8718 if (!map->ops->map_direct_value_addr) {
8719 verbose(env, "no direct value access support for this map type\n");
8720 return -EACCES;
8721 }
8722
8723 err = check_map_access(env, regno, reg->off,
8724 map->value_size - reg->off, false,
8725 ACCESS_HELPER);
8726 if (err)
8727 return err;
8728
8729 map_off = reg->off + reg->var_off.value;
8730 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8731 if (err) {
8732 verbose(env, "direct value access on string failed\n");
8733 return err;
8734 }
8735
8736 str_ptr = (char *)(long)(map_addr);
8737 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8738 verbose(env, "string is not zero-terminated\n");
8739 return -EINVAL;
8740 }
8741 break;
8742 }
8743 case ARG_PTR_TO_KPTR:
8744 err = process_kptr_func(env, regno, meta);
8745 if (err)
8746 return err;
8747 break;
8748 }
8749
8750 return err;
8751 }
8752
may_update_sockmap(struct bpf_verifier_env * env,int func_id)8753 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8754 {
8755 enum bpf_attach_type eatype = env->prog->expected_attach_type;
8756 enum bpf_prog_type type = resolve_prog_type(env->prog);
8757
8758 if (func_id != BPF_FUNC_map_update_elem &&
8759 func_id != BPF_FUNC_map_delete_elem)
8760 return false;
8761
8762 /* It's not possible to get access to a locked struct sock in these
8763 * contexts, so updating is safe.
8764 */
8765 switch (type) {
8766 case BPF_PROG_TYPE_TRACING:
8767 if (eatype == BPF_TRACE_ITER)
8768 return true;
8769 break;
8770 case BPF_PROG_TYPE_SOCK_OPS:
8771 /* map_update allowed only via dedicated helpers with event type checks */
8772 if (func_id == BPF_FUNC_map_delete_elem)
8773 return true;
8774 break;
8775 case BPF_PROG_TYPE_SOCKET_FILTER:
8776 case BPF_PROG_TYPE_SCHED_CLS:
8777 case BPF_PROG_TYPE_SCHED_ACT:
8778 case BPF_PROG_TYPE_XDP:
8779 case BPF_PROG_TYPE_SK_REUSEPORT:
8780 case BPF_PROG_TYPE_FLOW_DISSECTOR:
8781 case BPF_PROG_TYPE_SK_LOOKUP:
8782 return true;
8783 default:
8784 break;
8785 }
8786
8787 verbose(env, "cannot update sockmap in this context\n");
8788 return false;
8789 }
8790
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)8791 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8792 {
8793 return env->prog->jit_requested &&
8794 bpf_jit_supports_subprog_tailcalls();
8795 }
8796
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)8797 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8798 struct bpf_map *map, int func_id)
8799 {
8800 if (!map)
8801 return 0;
8802
8803 /* We need a two way check, first is from map perspective ... */
8804 switch (map->map_type) {
8805 case BPF_MAP_TYPE_PROG_ARRAY:
8806 if (func_id != BPF_FUNC_tail_call)
8807 goto error;
8808 break;
8809 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8810 if (func_id != BPF_FUNC_perf_event_read &&
8811 func_id != BPF_FUNC_perf_event_output &&
8812 func_id != BPF_FUNC_skb_output &&
8813 func_id != BPF_FUNC_perf_event_read_value &&
8814 func_id != BPF_FUNC_xdp_output)
8815 goto error;
8816 break;
8817 case BPF_MAP_TYPE_RINGBUF:
8818 if (func_id != BPF_FUNC_ringbuf_output &&
8819 func_id != BPF_FUNC_ringbuf_reserve &&
8820 func_id != BPF_FUNC_ringbuf_query &&
8821 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8822 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8823 func_id != BPF_FUNC_ringbuf_discard_dynptr)
8824 goto error;
8825 break;
8826 case BPF_MAP_TYPE_USER_RINGBUF:
8827 if (func_id != BPF_FUNC_user_ringbuf_drain)
8828 goto error;
8829 break;
8830 case BPF_MAP_TYPE_STACK_TRACE:
8831 if (func_id != BPF_FUNC_get_stackid)
8832 goto error;
8833 break;
8834 case BPF_MAP_TYPE_CGROUP_ARRAY:
8835 if (func_id != BPF_FUNC_skb_under_cgroup &&
8836 func_id != BPF_FUNC_current_task_under_cgroup)
8837 goto error;
8838 break;
8839 case BPF_MAP_TYPE_CGROUP_STORAGE:
8840 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8841 if (func_id != BPF_FUNC_get_local_storage)
8842 goto error;
8843 break;
8844 case BPF_MAP_TYPE_DEVMAP:
8845 case BPF_MAP_TYPE_DEVMAP_HASH:
8846 if (func_id != BPF_FUNC_redirect_map &&
8847 func_id != BPF_FUNC_map_lookup_elem)
8848 goto error;
8849 break;
8850 /* Restrict bpf side of cpumap and xskmap, open when use-cases
8851 * appear.
8852 */
8853 case BPF_MAP_TYPE_CPUMAP:
8854 if (func_id != BPF_FUNC_redirect_map)
8855 goto error;
8856 break;
8857 case BPF_MAP_TYPE_XSKMAP:
8858 if (func_id != BPF_FUNC_redirect_map &&
8859 func_id != BPF_FUNC_map_lookup_elem)
8860 goto error;
8861 break;
8862 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8863 case BPF_MAP_TYPE_HASH_OF_MAPS:
8864 if (func_id != BPF_FUNC_map_lookup_elem)
8865 goto error;
8866 break;
8867 case BPF_MAP_TYPE_SOCKMAP:
8868 if (func_id != BPF_FUNC_sk_redirect_map &&
8869 func_id != BPF_FUNC_sock_map_update &&
8870 func_id != BPF_FUNC_msg_redirect_map &&
8871 func_id != BPF_FUNC_sk_select_reuseport &&
8872 func_id != BPF_FUNC_map_lookup_elem &&
8873 !may_update_sockmap(env, func_id))
8874 goto error;
8875 break;
8876 case BPF_MAP_TYPE_SOCKHASH:
8877 if (func_id != BPF_FUNC_sk_redirect_hash &&
8878 func_id != BPF_FUNC_sock_hash_update &&
8879 func_id != BPF_FUNC_msg_redirect_hash &&
8880 func_id != BPF_FUNC_sk_select_reuseport &&
8881 func_id != BPF_FUNC_map_lookup_elem &&
8882 !may_update_sockmap(env, func_id))
8883 goto error;
8884 break;
8885 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8886 if (func_id != BPF_FUNC_sk_select_reuseport)
8887 goto error;
8888 break;
8889 case BPF_MAP_TYPE_QUEUE:
8890 case BPF_MAP_TYPE_STACK:
8891 if (func_id != BPF_FUNC_map_peek_elem &&
8892 func_id != BPF_FUNC_map_pop_elem &&
8893 func_id != BPF_FUNC_map_push_elem)
8894 goto error;
8895 break;
8896 case BPF_MAP_TYPE_SK_STORAGE:
8897 if (func_id != BPF_FUNC_sk_storage_get &&
8898 func_id != BPF_FUNC_sk_storage_delete &&
8899 func_id != BPF_FUNC_kptr_xchg)
8900 goto error;
8901 break;
8902 case BPF_MAP_TYPE_INODE_STORAGE:
8903 if (func_id != BPF_FUNC_inode_storage_get &&
8904 func_id != BPF_FUNC_inode_storage_delete &&
8905 func_id != BPF_FUNC_kptr_xchg)
8906 goto error;
8907 break;
8908 case BPF_MAP_TYPE_TASK_STORAGE:
8909 if (func_id != BPF_FUNC_task_storage_get &&
8910 func_id != BPF_FUNC_task_storage_delete &&
8911 func_id != BPF_FUNC_kptr_xchg)
8912 goto error;
8913 break;
8914 case BPF_MAP_TYPE_CGRP_STORAGE:
8915 if (func_id != BPF_FUNC_cgrp_storage_get &&
8916 func_id != BPF_FUNC_cgrp_storage_delete &&
8917 func_id != BPF_FUNC_kptr_xchg)
8918 goto error;
8919 break;
8920 case BPF_MAP_TYPE_BLOOM_FILTER:
8921 if (func_id != BPF_FUNC_map_peek_elem &&
8922 func_id != BPF_FUNC_map_push_elem)
8923 goto error;
8924 break;
8925 default:
8926 break;
8927 }
8928
8929 /* ... and second from the function itself. */
8930 switch (func_id) {
8931 case BPF_FUNC_tail_call:
8932 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8933 goto error;
8934 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8935 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8936 return -EINVAL;
8937 }
8938 break;
8939 case BPF_FUNC_perf_event_read:
8940 case BPF_FUNC_perf_event_output:
8941 case BPF_FUNC_perf_event_read_value:
8942 case BPF_FUNC_skb_output:
8943 case BPF_FUNC_xdp_output:
8944 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8945 goto error;
8946 break;
8947 case BPF_FUNC_ringbuf_output:
8948 case BPF_FUNC_ringbuf_reserve:
8949 case BPF_FUNC_ringbuf_query:
8950 case BPF_FUNC_ringbuf_reserve_dynptr:
8951 case BPF_FUNC_ringbuf_submit_dynptr:
8952 case BPF_FUNC_ringbuf_discard_dynptr:
8953 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8954 goto error;
8955 break;
8956 case BPF_FUNC_user_ringbuf_drain:
8957 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8958 goto error;
8959 break;
8960 case BPF_FUNC_get_stackid:
8961 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8962 goto error;
8963 break;
8964 case BPF_FUNC_current_task_under_cgroup:
8965 case BPF_FUNC_skb_under_cgroup:
8966 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8967 goto error;
8968 break;
8969 case BPF_FUNC_redirect_map:
8970 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8971 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8972 map->map_type != BPF_MAP_TYPE_CPUMAP &&
8973 map->map_type != BPF_MAP_TYPE_XSKMAP)
8974 goto error;
8975 break;
8976 case BPF_FUNC_sk_redirect_map:
8977 case BPF_FUNC_msg_redirect_map:
8978 case BPF_FUNC_sock_map_update:
8979 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8980 goto error;
8981 break;
8982 case BPF_FUNC_sk_redirect_hash:
8983 case BPF_FUNC_msg_redirect_hash:
8984 case BPF_FUNC_sock_hash_update:
8985 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8986 goto error;
8987 break;
8988 case BPF_FUNC_get_local_storage:
8989 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8990 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8991 goto error;
8992 break;
8993 case BPF_FUNC_sk_select_reuseport:
8994 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8995 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8996 map->map_type != BPF_MAP_TYPE_SOCKHASH)
8997 goto error;
8998 break;
8999 case BPF_FUNC_map_pop_elem:
9000 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9001 map->map_type != BPF_MAP_TYPE_STACK)
9002 goto error;
9003 break;
9004 case BPF_FUNC_map_peek_elem:
9005 case BPF_FUNC_map_push_elem:
9006 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9007 map->map_type != BPF_MAP_TYPE_STACK &&
9008 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9009 goto error;
9010 break;
9011 case BPF_FUNC_map_lookup_percpu_elem:
9012 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9013 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9014 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9015 goto error;
9016 break;
9017 case BPF_FUNC_sk_storage_get:
9018 case BPF_FUNC_sk_storage_delete:
9019 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9020 goto error;
9021 break;
9022 case BPF_FUNC_inode_storage_get:
9023 case BPF_FUNC_inode_storage_delete:
9024 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9025 goto error;
9026 break;
9027 case BPF_FUNC_task_storage_get:
9028 case BPF_FUNC_task_storage_delete:
9029 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9030 goto error;
9031 break;
9032 case BPF_FUNC_cgrp_storage_get:
9033 case BPF_FUNC_cgrp_storage_delete:
9034 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9035 goto error;
9036 break;
9037 default:
9038 break;
9039 }
9040
9041 return 0;
9042 error:
9043 verbose(env, "cannot pass map_type %d into func %s#%d\n",
9044 map->map_type, func_id_name(func_id), func_id);
9045 return -EINVAL;
9046 }
9047
check_raw_mode_ok(const struct bpf_func_proto * fn)9048 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9049 {
9050 int count = 0;
9051
9052 if (arg_type_is_raw_mem(fn->arg1_type))
9053 count++;
9054 if (arg_type_is_raw_mem(fn->arg2_type))
9055 count++;
9056 if (arg_type_is_raw_mem(fn->arg3_type))
9057 count++;
9058 if (arg_type_is_raw_mem(fn->arg4_type))
9059 count++;
9060 if (arg_type_is_raw_mem(fn->arg5_type))
9061 count++;
9062
9063 /* We only support one arg being in raw mode at the moment,
9064 * which is sufficient for the helper functions we have
9065 * right now.
9066 */
9067 return count <= 1;
9068 }
9069
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)9070 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9071 {
9072 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9073 bool has_size = fn->arg_size[arg] != 0;
9074 bool is_next_size = false;
9075
9076 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9077 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9078
9079 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9080 return is_next_size;
9081
9082 return has_size == is_next_size || is_next_size == is_fixed;
9083 }
9084
check_arg_pair_ok(const struct bpf_func_proto * fn)9085 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9086 {
9087 /* bpf_xxx(..., buf, len) call will access 'len'
9088 * bytes from memory 'buf'. Both arg types need
9089 * to be paired, so make sure there's no buggy
9090 * helper function specification.
9091 */
9092 if (arg_type_is_mem_size(fn->arg1_type) ||
9093 check_args_pair_invalid(fn, 0) ||
9094 check_args_pair_invalid(fn, 1) ||
9095 check_args_pair_invalid(fn, 2) ||
9096 check_args_pair_invalid(fn, 3) ||
9097 check_args_pair_invalid(fn, 4))
9098 return false;
9099
9100 return true;
9101 }
9102
check_btf_id_ok(const struct bpf_func_proto * fn)9103 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9104 {
9105 int i;
9106
9107 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9108 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9109 return !!fn->arg_btf_id[i];
9110 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9111 return fn->arg_btf_id[i] == BPF_PTR_POISON;
9112 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9113 /* arg_btf_id and arg_size are in a union. */
9114 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9115 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9116 return false;
9117 }
9118
9119 return true;
9120 }
9121
check_func_proto(const struct bpf_func_proto * fn,int func_id)9122 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9123 {
9124 return check_raw_mode_ok(fn) &&
9125 check_arg_pair_ok(fn) &&
9126 check_btf_id_ok(fn) ? 0 : -EINVAL;
9127 }
9128
9129 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9130 * are now invalid, so turn them into unknown SCALAR_VALUE.
9131 *
9132 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9133 * since these slices point to packet data.
9134 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)9135 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9136 {
9137 struct bpf_func_state *state;
9138 struct bpf_reg_state *reg;
9139
9140 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9141 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9142 mark_reg_invalid(env, reg);
9143 }));
9144 }
9145
9146 enum {
9147 AT_PKT_END = -1,
9148 BEYOND_PKT_END = -2,
9149 };
9150
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)9151 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9152 {
9153 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9154 struct bpf_reg_state *reg = &state->regs[regn];
9155
9156 if (reg->type != PTR_TO_PACKET)
9157 /* PTR_TO_PACKET_META is not supported yet */
9158 return;
9159
9160 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9161 * How far beyond pkt_end it goes is unknown.
9162 * if (!range_open) it's the case of pkt >= pkt_end
9163 * if (range_open) it's the case of pkt > pkt_end
9164 * hence this pointer is at least 1 byte bigger than pkt_end
9165 */
9166 if (range_open)
9167 reg->range = BEYOND_PKT_END;
9168 else
9169 reg->range = AT_PKT_END;
9170 }
9171
9172 /* The pointer with the specified id has released its reference to kernel
9173 * resources. Identify all copies of the same pointer and clear the reference.
9174 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)9175 static int release_reference(struct bpf_verifier_env *env,
9176 int ref_obj_id)
9177 {
9178 struct bpf_func_state *state;
9179 struct bpf_reg_state *reg;
9180 int err;
9181
9182 err = release_reference_state(cur_func(env), ref_obj_id);
9183 if (err)
9184 return err;
9185
9186 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9187 if (reg->ref_obj_id == ref_obj_id)
9188 mark_reg_invalid(env, reg);
9189 }));
9190
9191 return 0;
9192 }
9193
invalidate_non_owning_refs(struct bpf_verifier_env * env)9194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9195 {
9196 struct bpf_func_state *unused;
9197 struct bpf_reg_state *reg;
9198
9199 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9200 if (type_is_non_owning_ref(reg->type))
9201 mark_reg_invalid(env, reg);
9202 }));
9203 }
9204
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9205 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9206 struct bpf_reg_state *regs)
9207 {
9208 int i;
9209
9210 /* after the call registers r0 - r5 were scratched */
9211 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9212 mark_reg_not_init(env, regs, caller_saved[i]);
9213 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9214 }
9215 }
9216
9217 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9218 struct bpf_func_state *caller,
9219 struct bpf_func_state *callee,
9220 int insn_idx);
9221
9222 static int set_callee_state(struct bpf_verifier_env *env,
9223 struct bpf_func_state *caller,
9224 struct bpf_func_state *callee, int insn_idx);
9225
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)9226 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9227 set_callee_state_fn set_callee_state_cb,
9228 struct bpf_verifier_state *state)
9229 {
9230 struct bpf_func_state *caller, *callee;
9231 int err;
9232
9233 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9234 verbose(env, "the call stack of %d frames is too deep\n",
9235 state->curframe + 2);
9236 return -E2BIG;
9237 }
9238
9239 if (state->frame[state->curframe + 1]) {
9240 verbose(env, "verifier bug. Frame %d already allocated\n",
9241 state->curframe + 1);
9242 return -EFAULT;
9243 }
9244
9245 caller = state->frame[state->curframe];
9246 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9247 if (!callee)
9248 return -ENOMEM;
9249 state->frame[state->curframe + 1] = callee;
9250
9251 /* callee cannot access r0, r6 - r9 for reading and has to write
9252 * into its own stack before reading from it.
9253 * callee can read/write into caller's stack
9254 */
9255 init_func_state(env, callee,
9256 /* remember the callsite, it will be used by bpf_exit */
9257 callsite,
9258 state->curframe + 1 /* frameno within this callchain */,
9259 subprog /* subprog number within this prog */);
9260 /* Transfer references to the callee */
9261 err = copy_reference_state(callee, caller);
9262 err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9263 if (err)
9264 goto err_out;
9265
9266 /* only increment it after check_reg_arg() finished */
9267 state->curframe++;
9268
9269 return 0;
9270
9271 err_out:
9272 free_func_state(callee);
9273 state->frame[state->curframe + 1] = NULL;
9274 return err;
9275 }
9276
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)9277 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9278 int insn_idx, int subprog,
9279 set_callee_state_fn set_callee_state_cb)
9280 {
9281 struct bpf_verifier_state *state = env->cur_state, *callback_state;
9282 struct bpf_func_state *caller, *callee;
9283 int err;
9284
9285 caller = state->frame[state->curframe];
9286 err = btf_check_subprog_call(env, subprog, caller->regs);
9287 if (err == -EFAULT)
9288 return err;
9289
9290 /* set_callee_state is used for direct subprog calls, but we are
9291 * interested in validating only BPF helpers that can call subprogs as
9292 * callbacks
9293 */
9294 if (bpf_pseudo_kfunc_call(insn) &&
9295 !is_sync_callback_calling_kfunc(insn->imm)) {
9296 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9297 func_id_name(insn->imm), insn->imm);
9298 return -EFAULT;
9299 } else if (!bpf_pseudo_kfunc_call(insn) &&
9300 !is_callback_calling_function(insn->imm)) { /* helper */
9301 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9302 func_id_name(insn->imm), insn->imm);
9303 return -EFAULT;
9304 }
9305
9306 if (insn->code == (BPF_JMP | BPF_CALL) &&
9307 insn->src_reg == 0 &&
9308 insn->imm == BPF_FUNC_timer_set_callback) {
9309 struct bpf_verifier_state *async_cb;
9310
9311 /* there is no real recursion here. timer callbacks are async */
9312 env->subprog_info[subprog].is_async_cb = true;
9313 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9314 insn_idx, subprog);
9315 if (!async_cb)
9316 return -EFAULT;
9317 callee = async_cb->frame[0];
9318 callee->async_entry_cnt = caller->async_entry_cnt + 1;
9319
9320 /* Convert bpf_timer_set_callback() args into timer callback args */
9321 err = set_callee_state_cb(env, caller, callee, insn_idx);
9322 if (err)
9323 return err;
9324
9325 return 0;
9326 }
9327
9328 /* for callback functions enqueue entry to callback and
9329 * proceed with next instruction within current frame.
9330 */
9331 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9332 if (!callback_state)
9333 return -ENOMEM;
9334
9335 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9336 callback_state);
9337 if (err)
9338 return err;
9339
9340 callback_state->callback_unroll_depth++;
9341 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9342 caller->callback_depth = 0;
9343 return 0;
9344 }
9345
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9346 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9347 int *insn_idx)
9348 {
9349 struct bpf_verifier_state *state = env->cur_state;
9350 struct bpf_func_state *caller;
9351 int err, subprog, target_insn;
9352
9353 target_insn = *insn_idx + insn->imm + 1;
9354 subprog = find_subprog(env, target_insn);
9355 if (subprog < 0) {
9356 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9357 return -EFAULT;
9358 }
9359
9360 caller = state->frame[state->curframe];
9361 err = btf_check_subprog_call(env, subprog, caller->regs);
9362 if (err == -EFAULT)
9363 return err;
9364 if (subprog_is_global(env, subprog)) {
9365 if (err) {
9366 verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9367 return err;
9368 }
9369
9370 if (env->log.level & BPF_LOG_LEVEL)
9371 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9372 clear_caller_saved_regs(env, caller->regs);
9373
9374 /* All global functions return a 64-bit SCALAR_VALUE */
9375 mark_reg_unknown(env, caller->regs, BPF_REG_0);
9376 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9377
9378 /* continue with next insn after call */
9379 return 0;
9380 }
9381
9382 /* for regular function entry setup new frame and continue
9383 * from that frame.
9384 */
9385 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9386 if (err)
9387 return err;
9388
9389 clear_caller_saved_regs(env, caller->regs);
9390
9391 /* and go analyze first insn of the callee */
9392 *insn_idx = env->subprog_info[subprog].start - 1;
9393
9394 if (env->log.level & BPF_LOG_LEVEL) {
9395 verbose(env, "caller:\n");
9396 print_verifier_state(env, caller, true);
9397 verbose(env, "callee:\n");
9398 print_verifier_state(env, state->frame[state->curframe], true);
9399 }
9400
9401 return 0;
9402 }
9403
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)9404 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9405 struct bpf_func_state *caller,
9406 struct bpf_func_state *callee)
9407 {
9408 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9409 * void *callback_ctx, u64 flags);
9410 * callback_fn(struct bpf_map *map, void *key, void *value,
9411 * void *callback_ctx);
9412 */
9413 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9414
9415 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9416 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9417 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9418
9419 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9420 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9421 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9422
9423 /* pointer to stack or null */
9424 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9425
9426 /* unused */
9427 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9428 return 0;
9429 }
9430
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9431 static int set_callee_state(struct bpf_verifier_env *env,
9432 struct bpf_func_state *caller,
9433 struct bpf_func_state *callee, int insn_idx)
9434 {
9435 int i;
9436
9437 /* copy r1 - r5 args that callee can access. The copy includes parent
9438 * pointers, which connects us up to the liveness chain
9439 */
9440 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9441 callee->regs[i] = caller->regs[i];
9442 return 0;
9443 }
9444
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9445 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9446 struct bpf_func_state *caller,
9447 struct bpf_func_state *callee,
9448 int insn_idx)
9449 {
9450 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9451 struct bpf_map *map;
9452 int err;
9453
9454 if (bpf_map_ptr_poisoned(insn_aux)) {
9455 verbose(env, "tail_call abusing map_ptr\n");
9456 return -EINVAL;
9457 }
9458
9459 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9460 if (!map->ops->map_set_for_each_callback_args ||
9461 !map->ops->map_for_each_callback) {
9462 verbose(env, "callback function not allowed for map\n");
9463 return -ENOTSUPP;
9464 }
9465
9466 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9467 if (err)
9468 return err;
9469
9470 callee->in_callback_fn = true;
9471 callee->callback_ret_range = tnum_range(0, 1);
9472 return 0;
9473 }
9474
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9475 static int set_loop_callback_state(struct bpf_verifier_env *env,
9476 struct bpf_func_state *caller,
9477 struct bpf_func_state *callee,
9478 int insn_idx)
9479 {
9480 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9481 * u64 flags);
9482 * callback_fn(u32 index, void *callback_ctx);
9483 */
9484 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9485 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9486
9487 /* unused */
9488 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9489 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9490 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9491
9492 callee->in_callback_fn = true;
9493 callee->callback_ret_range = tnum_range(0, 1);
9494 return 0;
9495 }
9496
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9497 static int set_timer_callback_state(struct bpf_verifier_env *env,
9498 struct bpf_func_state *caller,
9499 struct bpf_func_state *callee,
9500 int insn_idx)
9501 {
9502 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9503
9504 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9505 * callback_fn(struct bpf_map *map, void *key, void *value);
9506 */
9507 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9508 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9509 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9510
9511 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9512 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9513 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9514
9515 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9516 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9517 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9518
9519 /* unused */
9520 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9521 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9522 callee->in_async_callback_fn = true;
9523 callee->callback_ret_range = tnum_range(0, 1);
9524 return 0;
9525 }
9526
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9527 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9528 struct bpf_func_state *caller,
9529 struct bpf_func_state *callee,
9530 int insn_idx)
9531 {
9532 /* bpf_find_vma(struct task_struct *task, u64 addr,
9533 * void *callback_fn, void *callback_ctx, u64 flags)
9534 * (callback_fn)(struct task_struct *task,
9535 * struct vm_area_struct *vma, void *callback_ctx);
9536 */
9537 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9538
9539 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9540 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9541 callee->regs[BPF_REG_2].btf = btf_vmlinux;
9542 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9543
9544 /* pointer to stack or null */
9545 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9546
9547 /* unused */
9548 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9549 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9550 callee->in_callback_fn = true;
9551 callee->callback_ret_range = tnum_range(0, 1);
9552 return 0;
9553 }
9554
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9555 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9556 struct bpf_func_state *caller,
9557 struct bpf_func_state *callee,
9558 int insn_idx)
9559 {
9560 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9561 * callback_ctx, u64 flags);
9562 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9563 */
9564 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9565 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9566 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9567
9568 /* unused */
9569 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9570 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9571 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9572
9573 callee->in_callback_fn = true;
9574 callee->callback_ret_range = tnum_range(0, 1);
9575 return 0;
9576 }
9577
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9578 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9579 struct bpf_func_state *caller,
9580 struct bpf_func_state *callee,
9581 int insn_idx)
9582 {
9583 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9584 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9585 *
9586 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9587 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9588 * by this point, so look at 'root'
9589 */
9590 struct btf_field *field;
9591
9592 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9593 BPF_RB_ROOT);
9594 if (!field || !field->graph_root.value_btf_id)
9595 return -EFAULT;
9596
9597 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9598 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9599 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9600 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9601
9602 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9603 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9604 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9605 callee->in_callback_fn = true;
9606 callee->callback_ret_range = tnum_range(0, 1);
9607 return 0;
9608 }
9609
9610 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9611
9612 /* Are we currently verifying the callback for a rbtree helper that must
9613 * be called with lock held? If so, no need to complain about unreleased
9614 * lock
9615 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)9616 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9617 {
9618 struct bpf_verifier_state *state = env->cur_state;
9619 struct bpf_insn *insn = env->prog->insnsi;
9620 struct bpf_func_state *callee;
9621 int kfunc_btf_id;
9622
9623 if (!state->curframe)
9624 return false;
9625
9626 callee = state->frame[state->curframe];
9627
9628 if (!callee->in_callback_fn)
9629 return false;
9630
9631 kfunc_btf_id = insn[callee->callsite].imm;
9632 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9633 }
9634
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)9635 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9636 {
9637 struct bpf_verifier_state *state = env->cur_state, *prev_st;
9638 struct bpf_func_state *caller, *callee;
9639 struct bpf_reg_state *r0;
9640 bool in_callback_fn;
9641 int err;
9642
9643 callee = state->frame[state->curframe];
9644 r0 = &callee->regs[BPF_REG_0];
9645 if (r0->type == PTR_TO_STACK) {
9646 /* technically it's ok to return caller's stack pointer
9647 * (or caller's caller's pointer) back to the caller,
9648 * since these pointers are valid. Only current stack
9649 * pointer will be invalid as soon as function exits,
9650 * but let's be conservative
9651 */
9652 verbose(env, "cannot return stack pointer to the caller\n");
9653 return -EINVAL;
9654 }
9655
9656 caller = state->frame[state->curframe - 1];
9657 if (callee->in_callback_fn) {
9658 /* enforce R0 return value range [0, 1]. */
9659 struct tnum range = callee->callback_ret_range;
9660
9661 if (r0->type != SCALAR_VALUE) {
9662 verbose(env, "R0 not a scalar value\n");
9663 return -EACCES;
9664 }
9665
9666 /* we are going to rely on register's precise value */
9667 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9668 err = err ?: mark_chain_precision(env, BPF_REG_0);
9669 if (err)
9670 return err;
9671
9672 if (!tnum_in(range, r0->var_off)) {
9673 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9674 return -EINVAL;
9675 }
9676 if (!calls_callback(env, callee->callsite)) {
9677 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9678 *insn_idx, callee->callsite);
9679 return -EFAULT;
9680 }
9681 } else {
9682 /* return to the caller whatever r0 had in the callee */
9683 caller->regs[BPF_REG_0] = *r0;
9684 }
9685
9686 /* callback_fn frame should have released its own additions to parent's
9687 * reference state at this point, or check_reference_leak would
9688 * complain, hence it must be the same as the caller. There is no need
9689 * to copy it back.
9690 */
9691 if (!callee->in_callback_fn) {
9692 /* Transfer references to the caller */
9693 err = copy_reference_state(caller, callee);
9694 if (err)
9695 return err;
9696 }
9697
9698 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9699 * there function call logic would reschedule callback visit. If iteration
9700 * converges is_state_visited() would prune that visit eventually.
9701 */
9702 in_callback_fn = callee->in_callback_fn;
9703 if (in_callback_fn)
9704 *insn_idx = callee->callsite;
9705 else
9706 *insn_idx = callee->callsite + 1;
9707
9708 if (env->log.level & BPF_LOG_LEVEL) {
9709 verbose(env, "returning from callee:\n");
9710 print_verifier_state(env, callee, true);
9711 verbose(env, "to caller at %d:\n", *insn_idx);
9712 print_verifier_state(env, caller, true);
9713 }
9714 /* clear everything in the callee */
9715 free_func_state(callee);
9716 state->frame[state->curframe--] = NULL;
9717
9718 /* for callbacks widen imprecise scalars to make programs like below verify:
9719 *
9720 * struct ctx { int i; }
9721 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9722 * ...
9723 * struct ctx = { .i = 0; }
9724 * bpf_loop(100, cb, &ctx, 0);
9725 *
9726 * This is similar to what is done in process_iter_next_call() for open
9727 * coded iterators.
9728 */
9729 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9730 if (prev_st) {
9731 err = widen_imprecise_scalars(env, prev_st, state);
9732 if (err)
9733 return err;
9734 }
9735 return 0;
9736 }
9737
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)9738 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9739 int func_id,
9740 struct bpf_call_arg_meta *meta)
9741 {
9742 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
9743
9744 if (ret_type != RET_INTEGER)
9745 return;
9746
9747 switch (func_id) {
9748 case BPF_FUNC_get_stack:
9749 case BPF_FUNC_get_task_stack:
9750 case BPF_FUNC_probe_read_str:
9751 case BPF_FUNC_probe_read_kernel_str:
9752 case BPF_FUNC_probe_read_user_str:
9753 ret_reg->smax_value = meta->msize_max_value;
9754 ret_reg->s32_max_value = meta->msize_max_value;
9755 ret_reg->smin_value = -MAX_ERRNO;
9756 ret_reg->s32_min_value = -MAX_ERRNO;
9757 reg_bounds_sync(ret_reg);
9758 break;
9759 case BPF_FUNC_get_smp_processor_id:
9760 ret_reg->umax_value = nr_cpu_ids - 1;
9761 ret_reg->u32_max_value = nr_cpu_ids - 1;
9762 ret_reg->smax_value = nr_cpu_ids - 1;
9763 ret_reg->s32_max_value = nr_cpu_ids - 1;
9764 ret_reg->umin_value = 0;
9765 ret_reg->u32_min_value = 0;
9766 ret_reg->smin_value = 0;
9767 ret_reg->s32_min_value = 0;
9768 reg_bounds_sync(ret_reg);
9769 break;
9770 }
9771 }
9772
9773 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9774 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9775 int func_id, int insn_idx)
9776 {
9777 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9778 struct bpf_map *map = meta->map_ptr;
9779
9780 if (func_id != BPF_FUNC_tail_call &&
9781 func_id != BPF_FUNC_map_lookup_elem &&
9782 func_id != BPF_FUNC_map_update_elem &&
9783 func_id != BPF_FUNC_map_delete_elem &&
9784 func_id != BPF_FUNC_map_push_elem &&
9785 func_id != BPF_FUNC_map_pop_elem &&
9786 func_id != BPF_FUNC_map_peek_elem &&
9787 func_id != BPF_FUNC_for_each_map_elem &&
9788 func_id != BPF_FUNC_redirect_map &&
9789 func_id != BPF_FUNC_map_lookup_percpu_elem)
9790 return 0;
9791
9792 if (map == NULL) {
9793 verbose(env, "kernel subsystem misconfigured verifier\n");
9794 return -EINVAL;
9795 }
9796
9797 /* In case of read-only, some additional restrictions
9798 * need to be applied in order to prevent altering the
9799 * state of the map from program side.
9800 */
9801 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9802 (func_id == BPF_FUNC_map_delete_elem ||
9803 func_id == BPF_FUNC_map_update_elem ||
9804 func_id == BPF_FUNC_map_push_elem ||
9805 func_id == BPF_FUNC_map_pop_elem)) {
9806 verbose(env, "write into map forbidden\n");
9807 return -EACCES;
9808 }
9809
9810 if (!BPF_MAP_PTR(aux->map_ptr_state))
9811 bpf_map_ptr_store(aux, meta->map_ptr,
9812 !meta->map_ptr->bypass_spec_v1);
9813 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9814 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9815 !meta->map_ptr->bypass_spec_v1);
9816 return 0;
9817 }
9818
9819 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9820 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9821 int func_id, int insn_idx)
9822 {
9823 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9824 struct bpf_reg_state *regs = cur_regs(env), *reg;
9825 struct bpf_map *map = meta->map_ptr;
9826 u64 val, max;
9827 int err;
9828
9829 if (func_id != BPF_FUNC_tail_call)
9830 return 0;
9831 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9832 verbose(env, "kernel subsystem misconfigured verifier\n");
9833 return -EINVAL;
9834 }
9835
9836 reg = ®s[BPF_REG_3];
9837 val = reg->var_off.value;
9838 max = map->max_entries;
9839
9840 if (!(register_is_const(reg) && val < max)) {
9841 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9842 return 0;
9843 }
9844
9845 err = mark_chain_precision(env, BPF_REG_3);
9846 if (err)
9847 return err;
9848 if (bpf_map_key_unseen(aux))
9849 bpf_map_key_store(aux, val);
9850 else if (!bpf_map_key_poisoned(aux) &&
9851 bpf_map_key_immediate(aux) != val)
9852 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9853 return 0;
9854 }
9855
check_reference_leak(struct bpf_verifier_env * env)9856 static int check_reference_leak(struct bpf_verifier_env *env)
9857 {
9858 struct bpf_func_state *state = cur_func(env);
9859 bool refs_lingering = false;
9860 int i;
9861
9862 if (state->frameno && !state->in_callback_fn)
9863 return 0;
9864
9865 for (i = 0; i < state->acquired_refs; i++) {
9866 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9867 continue;
9868 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9869 state->refs[i].id, state->refs[i].insn_idx);
9870 refs_lingering = true;
9871 }
9872 return refs_lingering ? -EINVAL : 0;
9873 }
9874
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9875 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9876 struct bpf_reg_state *regs)
9877 {
9878 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
9879 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
9880 struct bpf_map *fmt_map = fmt_reg->map_ptr;
9881 struct bpf_bprintf_data data = {};
9882 int err, fmt_map_off, num_args;
9883 u64 fmt_addr;
9884 char *fmt;
9885
9886 /* data must be an array of u64 */
9887 if (data_len_reg->var_off.value % 8)
9888 return -EINVAL;
9889 num_args = data_len_reg->var_off.value / 8;
9890
9891 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9892 * and map_direct_value_addr is set.
9893 */
9894 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9895 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9896 fmt_map_off);
9897 if (err) {
9898 verbose(env, "verifier bug\n");
9899 return -EFAULT;
9900 }
9901 fmt = (char *)(long)fmt_addr + fmt_map_off;
9902
9903 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9904 * can focus on validating the format specifiers.
9905 */
9906 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9907 if (err < 0)
9908 verbose(env, "Invalid format string\n");
9909
9910 return err;
9911 }
9912
check_get_func_ip(struct bpf_verifier_env * env)9913 static int check_get_func_ip(struct bpf_verifier_env *env)
9914 {
9915 enum bpf_prog_type type = resolve_prog_type(env->prog);
9916 int func_id = BPF_FUNC_get_func_ip;
9917
9918 if (type == BPF_PROG_TYPE_TRACING) {
9919 if (!bpf_prog_has_trampoline(env->prog)) {
9920 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9921 func_id_name(func_id), func_id);
9922 return -ENOTSUPP;
9923 }
9924 return 0;
9925 } else if (type == BPF_PROG_TYPE_KPROBE) {
9926 return 0;
9927 }
9928
9929 verbose(env, "func %s#%d not supported for program type %d\n",
9930 func_id_name(func_id), func_id, type);
9931 return -ENOTSUPP;
9932 }
9933
cur_aux(struct bpf_verifier_env * env)9934 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9935 {
9936 return &env->insn_aux_data[env->insn_idx];
9937 }
9938
loop_flag_is_zero(struct bpf_verifier_env * env)9939 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9940 {
9941 struct bpf_reg_state *regs = cur_regs(env);
9942 struct bpf_reg_state *reg = ®s[BPF_REG_4];
9943 bool reg_is_null = register_is_null(reg);
9944
9945 if (reg_is_null)
9946 mark_chain_precision(env, BPF_REG_4);
9947
9948 return reg_is_null;
9949 }
9950
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)9951 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9952 {
9953 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9954
9955 if (!state->initialized) {
9956 state->initialized = 1;
9957 state->fit_for_inline = loop_flag_is_zero(env);
9958 state->callback_subprogno = subprogno;
9959 return;
9960 }
9961
9962 if (!state->fit_for_inline)
9963 return;
9964
9965 state->fit_for_inline = (loop_flag_is_zero(env) &&
9966 state->callback_subprogno == subprogno);
9967 }
9968
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)9969 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9970 int *insn_idx_p)
9971 {
9972 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9973 const struct bpf_func_proto *fn = NULL;
9974 enum bpf_return_type ret_type;
9975 enum bpf_type_flag ret_flag;
9976 struct bpf_reg_state *regs;
9977 struct bpf_call_arg_meta meta;
9978 int insn_idx = *insn_idx_p;
9979 bool changes_data;
9980 int i, err, func_id;
9981
9982 /* find function prototype */
9983 func_id = insn->imm;
9984 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9985 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9986 func_id);
9987 return -EINVAL;
9988 }
9989
9990 if (env->ops->get_func_proto)
9991 fn = env->ops->get_func_proto(func_id, env->prog);
9992 if (!fn) {
9993 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9994 func_id);
9995 return -EINVAL;
9996 }
9997
9998 /* eBPF programs must be GPL compatible to use GPL-ed functions */
9999 if (!env->prog->gpl_compatible && fn->gpl_only) {
10000 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10001 return -EINVAL;
10002 }
10003
10004 if (fn->allowed && !fn->allowed(env->prog)) {
10005 verbose(env, "helper call is not allowed in probe\n");
10006 return -EINVAL;
10007 }
10008
10009 if (!env->prog->aux->sleepable && fn->might_sleep) {
10010 verbose(env, "helper call might sleep in a non-sleepable prog\n");
10011 return -EINVAL;
10012 }
10013
10014 /* With LD_ABS/IND some JITs save/restore skb from r1. */
10015 changes_data = bpf_helper_changes_pkt_data(fn->func);
10016 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10017 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10018 func_id_name(func_id), func_id);
10019 return -EINVAL;
10020 }
10021
10022 memset(&meta, 0, sizeof(meta));
10023 meta.pkt_access = fn->pkt_access;
10024
10025 err = check_func_proto(fn, func_id);
10026 if (err) {
10027 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10028 func_id_name(func_id), func_id);
10029 return err;
10030 }
10031
10032 if (env->cur_state->active_rcu_lock) {
10033 if (fn->might_sleep) {
10034 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10035 func_id_name(func_id), func_id);
10036 return -EINVAL;
10037 }
10038
10039 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10040 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10041 }
10042
10043 meta.func_id = func_id;
10044 /* check args */
10045 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10046 err = check_func_arg(env, i, &meta, fn, insn_idx);
10047 if (err)
10048 return err;
10049 }
10050
10051 err = record_func_map(env, &meta, func_id, insn_idx);
10052 if (err)
10053 return err;
10054
10055 err = record_func_key(env, &meta, func_id, insn_idx);
10056 if (err)
10057 return err;
10058
10059 /* Mark slots with STACK_MISC in case of raw mode, stack offset
10060 * is inferred from register state.
10061 */
10062 for (i = 0; i < meta.access_size; i++) {
10063 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10064 BPF_WRITE, -1, false, false);
10065 if (err)
10066 return err;
10067 }
10068
10069 regs = cur_regs(env);
10070
10071 if (meta.release_regno) {
10072 err = -EINVAL;
10073 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10074 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10075 * is safe to do directly.
10076 */
10077 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10078 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10079 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10080 return -EFAULT;
10081 }
10082 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
10083 } else if (meta.ref_obj_id) {
10084 err = release_reference(env, meta.ref_obj_id);
10085 } else if (register_is_null(®s[meta.release_regno])) {
10086 /* meta.ref_obj_id can only be 0 if register that is meant to be
10087 * released is NULL, which must be > R0.
10088 */
10089 err = 0;
10090 }
10091 if (err) {
10092 verbose(env, "func %s#%d reference has not been acquired before\n",
10093 func_id_name(func_id), func_id);
10094 return err;
10095 }
10096 }
10097
10098 switch (func_id) {
10099 case BPF_FUNC_tail_call:
10100 err = check_reference_leak(env);
10101 if (err) {
10102 verbose(env, "tail_call would lead to reference leak\n");
10103 return err;
10104 }
10105 break;
10106 case BPF_FUNC_get_local_storage:
10107 /* check that flags argument in get_local_storage(map, flags) is 0,
10108 * this is required because get_local_storage() can't return an error.
10109 */
10110 if (!register_is_null(®s[BPF_REG_2])) {
10111 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10112 return -EINVAL;
10113 }
10114 break;
10115 case BPF_FUNC_for_each_map_elem:
10116 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10117 set_map_elem_callback_state);
10118 break;
10119 case BPF_FUNC_timer_set_callback:
10120 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10121 set_timer_callback_state);
10122 break;
10123 case BPF_FUNC_find_vma:
10124 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10125 set_find_vma_callback_state);
10126 break;
10127 case BPF_FUNC_snprintf:
10128 err = check_bpf_snprintf_call(env, regs);
10129 break;
10130 case BPF_FUNC_loop:
10131 update_loop_inline_state(env, meta.subprogno);
10132 /* Verifier relies on R1 value to determine if bpf_loop() iteration
10133 * is finished, thus mark it precise.
10134 */
10135 err = mark_chain_precision(env, BPF_REG_1);
10136 if (err)
10137 return err;
10138 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10139 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10140 set_loop_callback_state);
10141 } else {
10142 cur_func(env)->callback_depth = 0;
10143 if (env->log.level & BPF_LOG_LEVEL2)
10144 verbose(env, "frame%d bpf_loop iteration limit reached\n",
10145 env->cur_state->curframe);
10146 }
10147 break;
10148 case BPF_FUNC_dynptr_from_mem:
10149 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10150 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10151 reg_type_str(env, regs[BPF_REG_1].type));
10152 return -EACCES;
10153 }
10154 break;
10155 case BPF_FUNC_set_retval:
10156 if (prog_type == BPF_PROG_TYPE_LSM &&
10157 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10158 if (!env->prog->aux->attach_func_proto->type) {
10159 /* Make sure programs that attach to void
10160 * hooks don't try to modify return value.
10161 */
10162 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10163 return -EINVAL;
10164 }
10165 }
10166 break;
10167 case BPF_FUNC_dynptr_data:
10168 {
10169 struct bpf_reg_state *reg;
10170 int id, ref_obj_id;
10171
10172 reg = get_dynptr_arg_reg(env, fn, regs);
10173 if (!reg)
10174 return -EFAULT;
10175
10176
10177 if (meta.dynptr_id) {
10178 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10179 return -EFAULT;
10180 }
10181 if (meta.ref_obj_id) {
10182 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10183 return -EFAULT;
10184 }
10185
10186 id = dynptr_id(env, reg);
10187 if (id < 0) {
10188 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10189 return id;
10190 }
10191
10192 ref_obj_id = dynptr_ref_obj_id(env, reg);
10193 if (ref_obj_id < 0) {
10194 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10195 return ref_obj_id;
10196 }
10197
10198 meta.dynptr_id = id;
10199 meta.ref_obj_id = ref_obj_id;
10200
10201 break;
10202 }
10203 case BPF_FUNC_dynptr_write:
10204 {
10205 enum bpf_dynptr_type dynptr_type;
10206 struct bpf_reg_state *reg;
10207
10208 reg = get_dynptr_arg_reg(env, fn, regs);
10209 if (!reg)
10210 return -EFAULT;
10211
10212 dynptr_type = dynptr_get_type(env, reg);
10213 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10214 return -EFAULT;
10215
10216 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10217 /* this will trigger clear_all_pkt_pointers(), which will
10218 * invalidate all dynptr slices associated with the skb
10219 */
10220 changes_data = true;
10221
10222 break;
10223 }
10224 case BPF_FUNC_user_ringbuf_drain:
10225 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10226 set_user_ringbuf_callback_state);
10227 break;
10228 }
10229
10230 if (err)
10231 return err;
10232
10233 /* reset caller saved regs */
10234 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10235 mark_reg_not_init(env, regs, caller_saved[i]);
10236 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10237 }
10238
10239 /* helper call returns 64-bit value. */
10240 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10241
10242 /* update return register (already marked as written above) */
10243 ret_type = fn->ret_type;
10244 ret_flag = type_flag(ret_type);
10245
10246 switch (base_type(ret_type)) {
10247 case RET_INTEGER:
10248 /* sets type to SCALAR_VALUE */
10249 mark_reg_unknown(env, regs, BPF_REG_0);
10250 break;
10251 case RET_VOID:
10252 regs[BPF_REG_0].type = NOT_INIT;
10253 break;
10254 case RET_PTR_TO_MAP_VALUE:
10255 /* There is no offset yet applied, variable or fixed */
10256 mark_reg_known_zero(env, regs, BPF_REG_0);
10257 /* remember map_ptr, so that check_map_access()
10258 * can check 'value_size' boundary of memory access
10259 * to map element returned from bpf_map_lookup_elem()
10260 */
10261 if (meta.map_ptr == NULL) {
10262 verbose(env,
10263 "kernel subsystem misconfigured verifier\n");
10264 return -EINVAL;
10265 }
10266 regs[BPF_REG_0].map_ptr = meta.map_ptr;
10267 regs[BPF_REG_0].map_uid = meta.map_uid;
10268 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10269 if (!type_may_be_null(ret_type) &&
10270 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10271 regs[BPF_REG_0].id = ++env->id_gen;
10272 }
10273 break;
10274 case RET_PTR_TO_SOCKET:
10275 mark_reg_known_zero(env, regs, BPF_REG_0);
10276 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10277 break;
10278 case RET_PTR_TO_SOCK_COMMON:
10279 mark_reg_known_zero(env, regs, BPF_REG_0);
10280 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10281 break;
10282 case RET_PTR_TO_TCP_SOCK:
10283 mark_reg_known_zero(env, regs, BPF_REG_0);
10284 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10285 break;
10286 case RET_PTR_TO_MEM:
10287 mark_reg_known_zero(env, regs, BPF_REG_0);
10288 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10289 regs[BPF_REG_0].mem_size = meta.mem_size;
10290 break;
10291 case RET_PTR_TO_MEM_OR_BTF_ID:
10292 {
10293 const struct btf_type *t;
10294
10295 mark_reg_known_zero(env, regs, BPF_REG_0);
10296 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10297 if (!btf_type_is_struct(t)) {
10298 u32 tsize;
10299 const struct btf_type *ret;
10300 const char *tname;
10301
10302 /* resolve the type size of ksym. */
10303 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10304 if (IS_ERR(ret)) {
10305 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10306 verbose(env, "unable to resolve the size of type '%s': %ld\n",
10307 tname, PTR_ERR(ret));
10308 return -EINVAL;
10309 }
10310 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10311 regs[BPF_REG_0].mem_size = tsize;
10312 } else {
10313 /* MEM_RDONLY may be carried from ret_flag, but it
10314 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10315 * it will confuse the check of PTR_TO_BTF_ID in
10316 * check_mem_access().
10317 */
10318 ret_flag &= ~MEM_RDONLY;
10319
10320 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10321 regs[BPF_REG_0].btf = meta.ret_btf;
10322 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10323 }
10324 break;
10325 }
10326 case RET_PTR_TO_BTF_ID:
10327 {
10328 struct btf *ret_btf;
10329 int ret_btf_id;
10330
10331 mark_reg_known_zero(env, regs, BPF_REG_0);
10332 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10333 if (func_id == BPF_FUNC_kptr_xchg) {
10334 ret_btf = meta.kptr_field->kptr.btf;
10335 ret_btf_id = meta.kptr_field->kptr.btf_id;
10336 if (!btf_is_kernel(ret_btf))
10337 regs[BPF_REG_0].type |= MEM_ALLOC;
10338 } else {
10339 if (fn->ret_btf_id == BPF_PTR_POISON) {
10340 verbose(env, "verifier internal error:");
10341 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10342 func_id_name(func_id));
10343 return -EINVAL;
10344 }
10345 ret_btf = btf_vmlinux;
10346 ret_btf_id = *fn->ret_btf_id;
10347 }
10348 if (ret_btf_id == 0) {
10349 verbose(env, "invalid return type %u of func %s#%d\n",
10350 base_type(ret_type), func_id_name(func_id),
10351 func_id);
10352 return -EINVAL;
10353 }
10354 regs[BPF_REG_0].btf = ret_btf;
10355 regs[BPF_REG_0].btf_id = ret_btf_id;
10356 break;
10357 }
10358 default:
10359 verbose(env, "unknown return type %u of func %s#%d\n",
10360 base_type(ret_type), func_id_name(func_id), func_id);
10361 return -EINVAL;
10362 }
10363
10364 if (type_may_be_null(regs[BPF_REG_0].type))
10365 regs[BPF_REG_0].id = ++env->id_gen;
10366
10367 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10368 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10369 func_id_name(func_id), func_id);
10370 return -EFAULT;
10371 }
10372
10373 if (is_dynptr_ref_function(func_id))
10374 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10375
10376 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10377 /* For release_reference() */
10378 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10379 } else if (is_acquire_function(func_id, meta.map_ptr)) {
10380 int id = acquire_reference_state(env, insn_idx);
10381
10382 if (id < 0)
10383 return id;
10384 /* For mark_ptr_or_null_reg() */
10385 regs[BPF_REG_0].id = id;
10386 /* For release_reference() */
10387 regs[BPF_REG_0].ref_obj_id = id;
10388 }
10389
10390 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10391
10392 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10393 if (err)
10394 return err;
10395
10396 if ((func_id == BPF_FUNC_get_stack ||
10397 func_id == BPF_FUNC_get_task_stack) &&
10398 !env->prog->has_callchain_buf) {
10399 const char *err_str;
10400
10401 #ifdef CONFIG_PERF_EVENTS
10402 err = get_callchain_buffers(sysctl_perf_event_max_stack);
10403 err_str = "cannot get callchain buffer for func %s#%d\n";
10404 #else
10405 err = -ENOTSUPP;
10406 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10407 #endif
10408 if (err) {
10409 verbose(env, err_str, func_id_name(func_id), func_id);
10410 return err;
10411 }
10412
10413 env->prog->has_callchain_buf = true;
10414 }
10415
10416 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10417 env->prog->call_get_stack = true;
10418
10419 if (func_id == BPF_FUNC_get_func_ip) {
10420 if (check_get_func_ip(env))
10421 return -ENOTSUPP;
10422 env->prog->call_get_func_ip = true;
10423 }
10424
10425 if (changes_data)
10426 clear_all_pkt_pointers(env);
10427 return 0;
10428 }
10429
10430 /* mark_btf_func_reg_size() is used when the reg size is determined by
10431 * the BTF func_proto's return value size and argument.
10432 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)10433 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10434 size_t reg_size)
10435 {
10436 struct bpf_reg_state *reg = &cur_regs(env)[regno];
10437
10438 if (regno == BPF_REG_0) {
10439 /* Function return value */
10440 reg->live |= REG_LIVE_WRITTEN;
10441 reg->subreg_def = reg_size == sizeof(u64) ?
10442 DEF_NOT_SUBREG : env->insn_idx + 1;
10443 } else {
10444 /* Function argument */
10445 if (reg_size == sizeof(u64)) {
10446 mark_insn_zext(env, reg);
10447 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10448 } else {
10449 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10450 }
10451 }
10452 }
10453
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)10454 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10455 {
10456 return meta->kfunc_flags & KF_ACQUIRE;
10457 }
10458
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)10459 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10460 {
10461 return meta->kfunc_flags & KF_RELEASE;
10462 }
10463
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)10464 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10465 {
10466 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10467 }
10468
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)10469 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10470 {
10471 return meta->kfunc_flags & KF_SLEEPABLE;
10472 }
10473
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)10474 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10475 {
10476 return meta->kfunc_flags & KF_DESTRUCTIVE;
10477 }
10478
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)10479 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10480 {
10481 return meta->kfunc_flags & KF_RCU;
10482 }
10483
__kfunc_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)10484 static bool __kfunc_param_match_suffix(const struct btf *btf,
10485 const struct btf_param *arg,
10486 const char *suffix)
10487 {
10488 int suffix_len = strlen(suffix), len;
10489 const char *param_name;
10490
10491 /* In the future, this can be ported to use BTF tagging */
10492 param_name = btf_name_by_offset(btf, arg->name_off);
10493 if (str_is_empty(param_name))
10494 return false;
10495 len = strlen(param_name);
10496 if (len < suffix_len)
10497 return false;
10498 param_name += len - suffix_len;
10499 return !strncmp(param_name, suffix, suffix_len);
10500 }
10501
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10502 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10503 const struct btf_param *arg,
10504 const struct bpf_reg_state *reg)
10505 {
10506 const struct btf_type *t;
10507
10508 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10509 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10510 return false;
10511
10512 return __kfunc_param_match_suffix(btf, arg, "__sz");
10513 }
10514
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10515 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10516 const struct btf_param *arg,
10517 const struct bpf_reg_state *reg)
10518 {
10519 const struct btf_type *t;
10520
10521 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10522 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10523 return false;
10524
10525 return __kfunc_param_match_suffix(btf, arg, "__szk");
10526 }
10527
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)10528 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10529 {
10530 return __kfunc_param_match_suffix(btf, arg, "__opt");
10531 }
10532
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)10533 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10534 {
10535 return __kfunc_param_match_suffix(btf, arg, "__k");
10536 }
10537
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)10538 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10539 {
10540 return __kfunc_param_match_suffix(btf, arg, "__ign");
10541 }
10542
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)10543 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10544 {
10545 return __kfunc_param_match_suffix(btf, arg, "__alloc");
10546 }
10547
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)10548 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10549 {
10550 return __kfunc_param_match_suffix(btf, arg, "__uninit");
10551 }
10552
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)10553 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10554 {
10555 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10556 }
10557
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)10558 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10559 const struct btf_param *arg,
10560 const char *name)
10561 {
10562 int len, target_len = strlen(name);
10563 const char *param_name;
10564
10565 param_name = btf_name_by_offset(btf, arg->name_off);
10566 if (str_is_empty(param_name))
10567 return false;
10568 len = strlen(param_name);
10569 if (len != target_len)
10570 return false;
10571 if (strcmp(param_name, name))
10572 return false;
10573
10574 return true;
10575 }
10576
10577 enum {
10578 KF_ARG_DYNPTR_ID,
10579 KF_ARG_LIST_HEAD_ID,
10580 KF_ARG_LIST_NODE_ID,
10581 KF_ARG_RB_ROOT_ID,
10582 KF_ARG_RB_NODE_ID,
10583 };
10584
10585 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr_kern)10586 BTF_ID(struct, bpf_dynptr_kern)
10587 BTF_ID(struct, bpf_list_head)
10588 BTF_ID(struct, bpf_list_node)
10589 BTF_ID(struct, bpf_rb_root)
10590 BTF_ID(struct, bpf_rb_node)
10591
10592 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10593 const struct btf_param *arg, int type)
10594 {
10595 const struct btf_type *t;
10596 u32 res_id;
10597
10598 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10599 if (!t)
10600 return false;
10601 if (!btf_type_is_ptr(t))
10602 return false;
10603 t = btf_type_skip_modifiers(btf, t->type, &res_id);
10604 if (!t)
10605 return false;
10606 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10607 }
10608
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)10609 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10610 {
10611 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10612 }
10613
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)10614 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10615 {
10616 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10617 }
10618
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)10619 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10620 {
10621 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10622 }
10623
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)10624 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10625 {
10626 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10627 }
10628
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)10629 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10630 {
10631 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10632 }
10633
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)10634 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10635 const struct btf_param *arg)
10636 {
10637 const struct btf_type *t;
10638
10639 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10640 if (!t)
10641 return false;
10642
10643 return true;
10644 }
10645
10646 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)10647 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10648 const struct btf *btf,
10649 const struct btf_type *t, int rec)
10650 {
10651 const struct btf_type *member_type;
10652 const struct btf_member *member;
10653 u32 i;
10654
10655 if (!btf_type_is_struct(t))
10656 return false;
10657
10658 for_each_member(i, t, member) {
10659 const struct btf_array *array;
10660
10661 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10662 if (btf_type_is_struct(member_type)) {
10663 if (rec >= 3) {
10664 verbose(env, "max struct nesting depth exceeded\n");
10665 return false;
10666 }
10667 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10668 return false;
10669 continue;
10670 }
10671 if (btf_type_is_array(member_type)) {
10672 array = btf_array(member_type);
10673 if (!array->nelems)
10674 return false;
10675 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10676 if (!btf_type_is_scalar(member_type))
10677 return false;
10678 continue;
10679 }
10680 if (!btf_type_is_scalar(member_type))
10681 return false;
10682 }
10683 return true;
10684 }
10685
10686 enum kfunc_ptr_arg_type {
10687 KF_ARG_PTR_TO_CTX,
10688 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
10689 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10690 KF_ARG_PTR_TO_DYNPTR,
10691 KF_ARG_PTR_TO_ITER,
10692 KF_ARG_PTR_TO_LIST_HEAD,
10693 KF_ARG_PTR_TO_LIST_NODE,
10694 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
10695 KF_ARG_PTR_TO_MEM,
10696 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
10697 KF_ARG_PTR_TO_CALLBACK,
10698 KF_ARG_PTR_TO_RB_ROOT,
10699 KF_ARG_PTR_TO_RB_NODE,
10700 };
10701
10702 enum special_kfunc_type {
10703 KF_bpf_obj_new_impl,
10704 KF_bpf_obj_drop_impl,
10705 KF_bpf_refcount_acquire_impl,
10706 KF_bpf_list_push_front_impl,
10707 KF_bpf_list_push_back_impl,
10708 KF_bpf_list_pop_front,
10709 KF_bpf_list_pop_back,
10710 KF_bpf_cast_to_kern_ctx,
10711 KF_bpf_rdonly_cast,
10712 KF_bpf_rcu_read_lock,
10713 KF_bpf_rcu_read_unlock,
10714 KF_bpf_rbtree_remove,
10715 KF_bpf_rbtree_add_impl,
10716 KF_bpf_rbtree_first,
10717 KF_bpf_dynptr_from_skb,
10718 KF_bpf_dynptr_from_xdp,
10719 KF_bpf_dynptr_slice,
10720 KF_bpf_dynptr_slice_rdwr,
10721 KF_bpf_dynptr_clone,
10722 };
10723
10724 BTF_SET_START(special_kfunc_set)
BTF_ID(func,bpf_obj_new_impl)10725 BTF_ID(func, bpf_obj_new_impl)
10726 BTF_ID(func, bpf_obj_drop_impl)
10727 BTF_ID(func, bpf_refcount_acquire_impl)
10728 BTF_ID(func, bpf_list_push_front_impl)
10729 BTF_ID(func, bpf_list_push_back_impl)
10730 BTF_ID(func, bpf_list_pop_front)
10731 BTF_ID(func, bpf_list_pop_back)
10732 BTF_ID(func, bpf_cast_to_kern_ctx)
10733 BTF_ID(func, bpf_rdonly_cast)
10734 BTF_ID(func, bpf_rbtree_remove)
10735 BTF_ID(func, bpf_rbtree_add_impl)
10736 BTF_ID(func, bpf_rbtree_first)
10737 BTF_ID(func, bpf_dynptr_from_skb)
10738 BTF_ID(func, bpf_dynptr_from_xdp)
10739 BTF_ID(func, bpf_dynptr_slice)
10740 BTF_ID(func, bpf_dynptr_slice_rdwr)
10741 BTF_ID(func, bpf_dynptr_clone)
10742 BTF_SET_END(special_kfunc_set)
10743
10744 BTF_ID_LIST(special_kfunc_list)
10745 BTF_ID(func, bpf_obj_new_impl)
10746 BTF_ID(func, bpf_obj_drop_impl)
10747 BTF_ID(func, bpf_refcount_acquire_impl)
10748 BTF_ID(func, bpf_list_push_front_impl)
10749 BTF_ID(func, bpf_list_push_back_impl)
10750 BTF_ID(func, bpf_list_pop_front)
10751 BTF_ID(func, bpf_list_pop_back)
10752 BTF_ID(func, bpf_cast_to_kern_ctx)
10753 BTF_ID(func, bpf_rdonly_cast)
10754 BTF_ID(func, bpf_rcu_read_lock)
10755 BTF_ID(func, bpf_rcu_read_unlock)
10756 BTF_ID(func, bpf_rbtree_remove)
10757 BTF_ID(func, bpf_rbtree_add_impl)
10758 BTF_ID(func, bpf_rbtree_first)
10759 BTF_ID(func, bpf_dynptr_from_skb)
10760 BTF_ID(func, bpf_dynptr_from_xdp)
10761 BTF_ID(func, bpf_dynptr_slice)
10762 BTF_ID(func, bpf_dynptr_slice_rdwr)
10763 BTF_ID(func, bpf_dynptr_clone)
10764
10765 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10766 {
10767 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10768 meta->arg_owning_ref) {
10769 return false;
10770 }
10771
10772 return meta->kfunc_flags & KF_RET_NULL;
10773 }
10774
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)10775 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10776 {
10777 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10778 }
10779
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)10780 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10781 {
10782 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10783 }
10784
10785 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)10786 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10787 struct bpf_kfunc_call_arg_meta *meta,
10788 const struct btf_type *t, const struct btf_type *ref_t,
10789 const char *ref_tname, const struct btf_param *args,
10790 int argno, int nargs)
10791 {
10792 u32 regno = argno + 1;
10793 struct bpf_reg_state *regs = cur_regs(env);
10794 struct bpf_reg_state *reg = ®s[regno];
10795 bool arg_mem_size = false;
10796
10797 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10798 return KF_ARG_PTR_TO_CTX;
10799
10800 /* In this function, we verify the kfunc's BTF as per the argument type,
10801 * leaving the rest of the verification with respect to the register
10802 * type to our caller. When a set of conditions hold in the BTF type of
10803 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10804 */
10805 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10806 return KF_ARG_PTR_TO_CTX;
10807
10808 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10809 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10810
10811 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10812 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10813
10814 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10815 return KF_ARG_PTR_TO_DYNPTR;
10816
10817 if (is_kfunc_arg_iter(meta, argno))
10818 return KF_ARG_PTR_TO_ITER;
10819
10820 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10821 return KF_ARG_PTR_TO_LIST_HEAD;
10822
10823 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10824 return KF_ARG_PTR_TO_LIST_NODE;
10825
10826 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10827 return KF_ARG_PTR_TO_RB_ROOT;
10828
10829 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10830 return KF_ARG_PTR_TO_RB_NODE;
10831
10832 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10833 if (!btf_type_is_struct(ref_t)) {
10834 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10835 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10836 return -EINVAL;
10837 }
10838 return KF_ARG_PTR_TO_BTF_ID;
10839 }
10840
10841 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10842 return KF_ARG_PTR_TO_CALLBACK;
10843
10844
10845 if (argno + 1 < nargs &&
10846 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
10847 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
10848 arg_mem_size = true;
10849
10850 /* This is the catch all argument type of register types supported by
10851 * check_helper_mem_access. However, we only allow when argument type is
10852 * pointer to scalar, or struct composed (recursively) of scalars. When
10853 * arg_mem_size is true, the pointer can be void *.
10854 */
10855 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10856 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10857 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10858 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10859 return -EINVAL;
10860 }
10861 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10862 }
10863
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)10864 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10865 struct bpf_reg_state *reg,
10866 const struct btf_type *ref_t,
10867 const char *ref_tname, u32 ref_id,
10868 struct bpf_kfunc_call_arg_meta *meta,
10869 int argno)
10870 {
10871 const struct btf_type *reg_ref_t;
10872 bool strict_type_match = false;
10873 const struct btf *reg_btf;
10874 const char *reg_ref_tname;
10875 u32 reg_ref_id;
10876
10877 if (base_type(reg->type) == PTR_TO_BTF_ID) {
10878 reg_btf = reg->btf;
10879 reg_ref_id = reg->btf_id;
10880 } else {
10881 reg_btf = btf_vmlinux;
10882 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10883 }
10884
10885 /* Enforce strict type matching for calls to kfuncs that are acquiring
10886 * or releasing a reference, or are no-cast aliases. We do _not_
10887 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10888 * as we want to enable BPF programs to pass types that are bitwise
10889 * equivalent without forcing them to explicitly cast with something
10890 * like bpf_cast_to_kern_ctx().
10891 *
10892 * For example, say we had a type like the following:
10893 *
10894 * struct bpf_cpumask {
10895 * cpumask_t cpumask;
10896 * refcount_t usage;
10897 * };
10898 *
10899 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10900 * to a struct cpumask, so it would be safe to pass a struct
10901 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10902 *
10903 * The philosophy here is similar to how we allow scalars of different
10904 * types to be passed to kfuncs as long as the size is the same. The
10905 * only difference here is that we're simply allowing
10906 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10907 * resolve types.
10908 */
10909 if (is_kfunc_acquire(meta) ||
10910 (is_kfunc_release(meta) && reg->ref_obj_id) ||
10911 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10912 strict_type_match = true;
10913
10914 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10915
10916 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
10917 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10918 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10919 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10920 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10921 btf_type_str(reg_ref_t), reg_ref_tname);
10922 return -EINVAL;
10923 }
10924 return 0;
10925 }
10926
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)10927 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10928 {
10929 struct bpf_verifier_state *state = env->cur_state;
10930 struct btf_record *rec = reg_btf_record(reg);
10931
10932 if (!state->active_lock.ptr) {
10933 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10934 return -EFAULT;
10935 }
10936
10937 if (type_flag(reg->type) & NON_OWN_REF) {
10938 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10939 return -EFAULT;
10940 }
10941
10942 reg->type |= NON_OWN_REF;
10943 if (rec->refcount_off >= 0)
10944 reg->type |= MEM_RCU;
10945
10946 return 0;
10947 }
10948
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)10949 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10950 {
10951 struct bpf_func_state *state, *unused;
10952 struct bpf_reg_state *reg;
10953 int i;
10954
10955 state = cur_func(env);
10956
10957 if (!ref_obj_id) {
10958 verbose(env, "verifier internal error: ref_obj_id is zero for "
10959 "owning -> non-owning conversion\n");
10960 return -EFAULT;
10961 }
10962
10963 for (i = 0; i < state->acquired_refs; i++) {
10964 if (state->refs[i].id != ref_obj_id)
10965 continue;
10966
10967 /* Clear ref_obj_id here so release_reference doesn't clobber
10968 * the whole reg
10969 */
10970 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10971 if (reg->ref_obj_id == ref_obj_id) {
10972 reg->ref_obj_id = 0;
10973 ref_set_non_owning(env, reg);
10974 }
10975 }));
10976 return 0;
10977 }
10978
10979 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10980 return -EFAULT;
10981 }
10982
10983 /* Implementation details:
10984 *
10985 * Each register points to some region of memory, which we define as an
10986 * allocation. Each allocation may embed a bpf_spin_lock which protects any
10987 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10988 * allocation. The lock and the data it protects are colocated in the same
10989 * memory region.
10990 *
10991 * Hence, everytime a register holds a pointer value pointing to such
10992 * allocation, the verifier preserves a unique reg->id for it.
10993 *
10994 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10995 * bpf_spin_lock is called.
10996 *
10997 * To enable this, lock state in the verifier captures two values:
10998 * active_lock.ptr = Register's type specific pointer
10999 * active_lock.id = A unique ID for each register pointer value
11000 *
11001 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11002 * supported register types.
11003 *
11004 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11005 * allocated objects is the reg->btf pointer.
11006 *
11007 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11008 * can establish the provenance of the map value statically for each distinct
11009 * lookup into such maps. They always contain a single map value hence unique
11010 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11011 *
11012 * So, in case of global variables, they use array maps with max_entries = 1,
11013 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11014 * into the same map value as max_entries is 1, as described above).
11015 *
11016 * In case of inner map lookups, the inner map pointer has same map_ptr as the
11017 * outer map pointer (in verifier context), but each lookup into an inner map
11018 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11019 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11020 * will get different reg->id assigned to each lookup, hence different
11021 * active_lock.id.
11022 *
11023 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11024 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11025 * returned from bpf_obj_new. Each allocation receives a new reg->id.
11026 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11027 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11028 {
11029 void *ptr;
11030 u32 id;
11031
11032 switch ((int)reg->type) {
11033 case PTR_TO_MAP_VALUE:
11034 ptr = reg->map_ptr;
11035 break;
11036 case PTR_TO_BTF_ID | MEM_ALLOC:
11037 ptr = reg->btf;
11038 break;
11039 default:
11040 verbose(env, "verifier internal error: unknown reg type for lock check\n");
11041 return -EFAULT;
11042 }
11043 id = reg->id;
11044
11045 if (!env->cur_state->active_lock.ptr)
11046 return -EINVAL;
11047 if (env->cur_state->active_lock.ptr != ptr ||
11048 env->cur_state->active_lock.id != id) {
11049 verbose(env, "held lock and object are not in the same allocation\n");
11050 return -EINVAL;
11051 }
11052 return 0;
11053 }
11054
is_bpf_list_api_kfunc(u32 btf_id)11055 static bool is_bpf_list_api_kfunc(u32 btf_id)
11056 {
11057 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11058 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11059 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11060 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11061 }
11062
is_bpf_rbtree_api_kfunc(u32 btf_id)11063 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11064 {
11065 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11066 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11067 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11068 }
11069
is_bpf_graph_api_kfunc(u32 btf_id)11070 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11071 {
11072 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11073 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11074 }
11075
is_sync_callback_calling_kfunc(u32 btf_id)11076 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11077 {
11078 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11079 }
11080
is_rbtree_lock_required_kfunc(u32 btf_id)11081 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11082 {
11083 return is_bpf_rbtree_api_kfunc(btf_id);
11084 }
11085
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)11086 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11087 enum btf_field_type head_field_type,
11088 u32 kfunc_btf_id)
11089 {
11090 bool ret;
11091
11092 switch (head_field_type) {
11093 case BPF_LIST_HEAD:
11094 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11095 break;
11096 case BPF_RB_ROOT:
11097 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11098 break;
11099 default:
11100 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11101 btf_field_type_name(head_field_type));
11102 return false;
11103 }
11104
11105 if (!ret)
11106 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11107 btf_field_type_name(head_field_type));
11108 return ret;
11109 }
11110
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)11111 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11112 enum btf_field_type node_field_type,
11113 u32 kfunc_btf_id)
11114 {
11115 bool ret;
11116
11117 switch (node_field_type) {
11118 case BPF_LIST_NODE:
11119 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11120 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11121 break;
11122 case BPF_RB_NODE:
11123 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11124 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11125 break;
11126 default:
11127 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11128 btf_field_type_name(node_field_type));
11129 return false;
11130 }
11131
11132 if (!ret)
11133 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11134 btf_field_type_name(node_field_type));
11135 return ret;
11136 }
11137
11138 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)11139 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11140 struct bpf_reg_state *reg, u32 regno,
11141 struct bpf_kfunc_call_arg_meta *meta,
11142 enum btf_field_type head_field_type,
11143 struct btf_field **head_field)
11144 {
11145 const char *head_type_name;
11146 struct btf_field *field;
11147 struct btf_record *rec;
11148 u32 head_off;
11149
11150 if (meta->btf != btf_vmlinux) {
11151 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11152 return -EFAULT;
11153 }
11154
11155 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11156 return -EFAULT;
11157
11158 head_type_name = btf_field_type_name(head_field_type);
11159 if (!tnum_is_const(reg->var_off)) {
11160 verbose(env,
11161 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11162 regno, head_type_name);
11163 return -EINVAL;
11164 }
11165
11166 rec = reg_btf_record(reg);
11167 head_off = reg->off + reg->var_off.value;
11168 field = btf_record_find(rec, head_off, head_field_type);
11169 if (!field) {
11170 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11171 return -EINVAL;
11172 }
11173
11174 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11175 if (check_reg_allocation_locked(env, reg)) {
11176 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11177 rec->spin_lock_off, head_type_name);
11178 return -EINVAL;
11179 }
11180
11181 if (*head_field) {
11182 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11183 return -EFAULT;
11184 }
11185 *head_field = field;
11186 return 0;
11187 }
11188
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11189 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11190 struct bpf_reg_state *reg, u32 regno,
11191 struct bpf_kfunc_call_arg_meta *meta)
11192 {
11193 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11194 &meta->arg_list_head.field);
11195 }
11196
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11197 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11198 struct bpf_reg_state *reg, u32 regno,
11199 struct bpf_kfunc_call_arg_meta *meta)
11200 {
11201 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11202 &meta->arg_rbtree_root.field);
11203 }
11204
11205 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)11206 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11207 struct bpf_reg_state *reg, u32 regno,
11208 struct bpf_kfunc_call_arg_meta *meta,
11209 enum btf_field_type head_field_type,
11210 enum btf_field_type node_field_type,
11211 struct btf_field **node_field)
11212 {
11213 const char *node_type_name;
11214 const struct btf_type *et, *t;
11215 struct btf_field *field;
11216 u32 node_off;
11217
11218 if (meta->btf != btf_vmlinux) {
11219 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11220 return -EFAULT;
11221 }
11222
11223 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11224 return -EFAULT;
11225
11226 node_type_name = btf_field_type_name(node_field_type);
11227 if (!tnum_is_const(reg->var_off)) {
11228 verbose(env,
11229 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11230 regno, node_type_name);
11231 return -EINVAL;
11232 }
11233
11234 node_off = reg->off + reg->var_off.value;
11235 field = reg_find_field_offset(reg, node_off, node_field_type);
11236 if (!field || field->offset != node_off) {
11237 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11238 return -EINVAL;
11239 }
11240
11241 field = *node_field;
11242
11243 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11244 t = btf_type_by_id(reg->btf, reg->btf_id);
11245 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11246 field->graph_root.value_btf_id, true)) {
11247 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11248 "in struct %s, but arg is at offset=%d in struct %s\n",
11249 btf_field_type_name(head_field_type),
11250 btf_field_type_name(node_field_type),
11251 field->graph_root.node_offset,
11252 btf_name_by_offset(field->graph_root.btf, et->name_off),
11253 node_off, btf_name_by_offset(reg->btf, t->name_off));
11254 return -EINVAL;
11255 }
11256 meta->arg_btf = reg->btf;
11257 meta->arg_btf_id = reg->btf_id;
11258
11259 if (node_off != field->graph_root.node_offset) {
11260 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11261 node_off, btf_field_type_name(node_field_type),
11262 field->graph_root.node_offset,
11263 btf_name_by_offset(field->graph_root.btf, et->name_off));
11264 return -EINVAL;
11265 }
11266
11267 return 0;
11268 }
11269
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11270 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11271 struct bpf_reg_state *reg, u32 regno,
11272 struct bpf_kfunc_call_arg_meta *meta)
11273 {
11274 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11275 BPF_LIST_HEAD, BPF_LIST_NODE,
11276 &meta->arg_list_head.field);
11277 }
11278
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11279 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11280 struct bpf_reg_state *reg, u32 regno,
11281 struct bpf_kfunc_call_arg_meta *meta)
11282 {
11283 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11284 BPF_RB_ROOT, BPF_RB_NODE,
11285 &meta->arg_rbtree_root.field);
11286 }
11287
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)11288 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11289 int insn_idx)
11290 {
11291 const char *func_name = meta->func_name, *ref_tname;
11292 const struct btf *btf = meta->btf;
11293 const struct btf_param *args;
11294 struct btf_record *rec;
11295 u32 i, nargs;
11296 int ret;
11297
11298 args = (const struct btf_param *)(meta->func_proto + 1);
11299 nargs = btf_type_vlen(meta->func_proto);
11300 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11301 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11302 MAX_BPF_FUNC_REG_ARGS);
11303 return -EINVAL;
11304 }
11305
11306 /* Check that BTF function arguments match actual types that the
11307 * verifier sees.
11308 */
11309 for (i = 0; i < nargs; i++) {
11310 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
11311 const struct btf_type *t, *ref_t, *resolve_ret;
11312 enum bpf_arg_type arg_type = ARG_DONTCARE;
11313 u32 regno = i + 1, ref_id, type_size;
11314 bool is_ret_buf_sz = false;
11315 int kf_arg_type;
11316
11317 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11318
11319 if (is_kfunc_arg_ignore(btf, &args[i]))
11320 continue;
11321
11322 if (btf_type_is_scalar(t)) {
11323 if (reg->type != SCALAR_VALUE) {
11324 verbose(env, "R%d is not a scalar\n", regno);
11325 return -EINVAL;
11326 }
11327
11328 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11329 if (meta->arg_constant.found) {
11330 verbose(env, "verifier internal error: only one constant argument permitted\n");
11331 return -EFAULT;
11332 }
11333 if (!tnum_is_const(reg->var_off)) {
11334 verbose(env, "R%d must be a known constant\n", regno);
11335 return -EINVAL;
11336 }
11337 ret = mark_chain_precision(env, regno);
11338 if (ret < 0)
11339 return ret;
11340 meta->arg_constant.found = true;
11341 meta->arg_constant.value = reg->var_off.value;
11342 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11343 meta->r0_rdonly = true;
11344 is_ret_buf_sz = true;
11345 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11346 is_ret_buf_sz = true;
11347 }
11348
11349 if (is_ret_buf_sz) {
11350 if (meta->r0_size) {
11351 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11352 return -EINVAL;
11353 }
11354
11355 if (!tnum_is_const(reg->var_off)) {
11356 verbose(env, "R%d is not a const\n", regno);
11357 return -EINVAL;
11358 }
11359
11360 meta->r0_size = reg->var_off.value;
11361 ret = mark_chain_precision(env, regno);
11362 if (ret)
11363 return ret;
11364 }
11365 continue;
11366 }
11367
11368 if (!btf_type_is_ptr(t)) {
11369 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11370 return -EINVAL;
11371 }
11372
11373 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11374 (register_is_null(reg) || type_may_be_null(reg->type))) {
11375 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11376 return -EACCES;
11377 }
11378
11379 if (reg->ref_obj_id) {
11380 if (is_kfunc_release(meta) && meta->ref_obj_id) {
11381 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11382 regno, reg->ref_obj_id,
11383 meta->ref_obj_id);
11384 return -EFAULT;
11385 }
11386 meta->ref_obj_id = reg->ref_obj_id;
11387 if (is_kfunc_release(meta))
11388 meta->release_regno = regno;
11389 }
11390
11391 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11392 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11393
11394 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11395 if (kf_arg_type < 0)
11396 return kf_arg_type;
11397
11398 switch (kf_arg_type) {
11399 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11400 case KF_ARG_PTR_TO_BTF_ID:
11401 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11402 break;
11403
11404 if (!is_trusted_reg(reg)) {
11405 if (!is_kfunc_rcu(meta)) {
11406 verbose(env, "R%d must be referenced or trusted\n", regno);
11407 return -EINVAL;
11408 }
11409 if (!is_rcu_reg(reg)) {
11410 verbose(env, "R%d must be a rcu pointer\n", regno);
11411 return -EINVAL;
11412 }
11413 }
11414
11415 fallthrough;
11416 case KF_ARG_PTR_TO_CTX:
11417 /* Trusted arguments have the same offset checks as release arguments */
11418 arg_type |= OBJ_RELEASE;
11419 break;
11420 case KF_ARG_PTR_TO_DYNPTR:
11421 case KF_ARG_PTR_TO_ITER:
11422 case KF_ARG_PTR_TO_LIST_HEAD:
11423 case KF_ARG_PTR_TO_LIST_NODE:
11424 case KF_ARG_PTR_TO_RB_ROOT:
11425 case KF_ARG_PTR_TO_RB_NODE:
11426 case KF_ARG_PTR_TO_MEM:
11427 case KF_ARG_PTR_TO_MEM_SIZE:
11428 case KF_ARG_PTR_TO_CALLBACK:
11429 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11430 /* Trusted by default */
11431 break;
11432 default:
11433 WARN_ON_ONCE(1);
11434 return -EFAULT;
11435 }
11436
11437 if (is_kfunc_release(meta) && reg->ref_obj_id)
11438 arg_type |= OBJ_RELEASE;
11439 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11440 if (ret < 0)
11441 return ret;
11442
11443 switch (kf_arg_type) {
11444 case KF_ARG_PTR_TO_CTX:
11445 if (reg->type != PTR_TO_CTX) {
11446 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11447 return -EINVAL;
11448 }
11449
11450 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11451 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11452 if (ret < 0)
11453 return -EINVAL;
11454 meta->ret_btf_id = ret;
11455 }
11456 break;
11457 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11458 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11459 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11460 return -EINVAL;
11461 }
11462 if (!reg->ref_obj_id) {
11463 verbose(env, "allocated object must be referenced\n");
11464 return -EINVAL;
11465 }
11466 if (meta->btf == btf_vmlinux &&
11467 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11468 meta->arg_btf = reg->btf;
11469 meta->arg_btf_id = reg->btf_id;
11470 }
11471 break;
11472 case KF_ARG_PTR_TO_DYNPTR:
11473 {
11474 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11475 int clone_ref_obj_id = 0;
11476
11477 if (reg->type != PTR_TO_STACK &&
11478 reg->type != CONST_PTR_TO_DYNPTR) {
11479 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11480 return -EINVAL;
11481 }
11482
11483 if (reg->type == CONST_PTR_TO_DYNPTR)
11484 dynptr_arg_type |= MEM_RDONLY;
11485
11486 if (is_kfunc_arg_uninit(btf, &args[i]))
11487 dynptr_arg_type |= MEM_UNINIT;
11488
11489 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11490 dynptr_arg_type |= DYNPTR_TYPE_SKB;
11491 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11492 dynptr_arg_type |= DYNPTR_TYPE_XDP;
11493 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11494 (dynptr_arg_type & MEM_UNINIT)) {
11495 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11496
11497 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11498 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11499 return -EFAULT;
11500 }
11501
11502 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11503 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11504 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11505 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11506 return -EFAULT;
11507 }
11508 }
11509
11510 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11511 if (ret < 0)
11512 return ret;
11513
11514 if (!(dynptr_arg_type & MEM_UNINIT)) {
11515 int id = dynptr_id(env, reg);
11516
11517 if (id < 0) {
11518 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11519 return id;
11520 }
11521 meta->initialized_dynptr.id = id;
11522 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11523 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11524 }
11525
11526 break;
11527 }
11528 case KF_ARG_PTR_TO_ITER:
11529 ret = process_iter_arg(env, regno, insn_idx, meta);
11530 if (ret < 0)
11531 return ret;
11532 break;
11533 case KF_ARG_PTR_TO_LIST_HEAD:
11534 if (reg->type != PTR_TO_MAP_VALUE &&
11535 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11536 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11537 return -EINVAL;
11538 }
11539 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11540 verbose(env, "allocated object must be referenced\n");
11541 return -EINVAL;
11542 }
11543 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11544 if (ret < 0)
11545 return ret;
11546 break;
11547 case KF_ARG_PTR_TO_RB_ROOT:
11548 if (reg->type != PTR_TO_MAP_VALUE &&
11549 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11550 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11551 return -EINVAL;
11552 }
11553 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11554 verbose(env, "allocated object must be referenced\n");
11555 return -EINVAL;
11556 }
11557 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11558 if (ret < 0)
11559 return ret;
11560 break;
11561 case KF_ARG_PTR_TO_LIST_NODE:
11562 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11563 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11564 return -EINVAL;
11565 }
11566 if (!reg->ref_obj_id) {
11567 verbose(env, "allocated object must be referenced\n");
11568 return -EINVAL;
11569 }
11570 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11571 if (ret < 0)
11572 return ret;
11573 break;
11574 case KF_ARG_PTR_TO_RB_NODE:
11575 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11576 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11577 verbose(env, "rbtree_remove node input must be non-owning ref\n");
11578 return -EINVAL;
11579 }
11580 if (in_rbtree_lock_required_cb(env)) {
11581 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11582 return -EINVAL;
11583 }
11584 } else {
11585 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11586 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11587 return -EINVAL;
11588 }
11589 if (!reg->ref_obj_id) {
11590 verbose(env, "allocated object must be referenced\n");
11591 return -EINVAL;
11592 }
11593 }
11594
11595 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11596 if (ret < 0)
11597 return ret;
11598 break;
11599 case KF_ARG_PTR_TO_BTF_ID:
11600 /* Only base_type is checked, further checks are done here */
11601 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11602 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11603 !reg2btf_ids[base_type(reg->type)]) {
11604 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11605 verbose(env, "expected %s or socket\n",
11606 reg_type_str(env, base_type(reg->type) |
11607 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11608 return -EINVAL;
11609 }
11610 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11611 if (ret < 0)
11612 return ret;
11613 break;
11614 case KF_ARG_PTR_TO_MEM:
11615 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11616 if (IS_ERR(resolve_ret)) {
11617 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11618 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11619 return -EINVAL;
11620 }
11621 ret = check_mem_reg(env, reg, regno, type_size);
11622 if (ret < 0)
11623 return ret;
11624 break;
11625 case KF_ARG_PTR_TO_MEM_SIZE:
11626 {
11627 struct bpf_reg_state *buff_reg = ®s[regno];
11628 const struct btf_param *buff_arg = &args[i];
11629 struct bpf_reg_state *size_reg = ®s[regno + 1];
11630 const struct btf_param *size_arg = &args[i + 1];
11631
11632 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11633 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11634 if (ret < 0) {
11635 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11636 return ret;
11637 }
11638 }
11639
11640 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11641 if (meta->arg_constant.found) {
11642 verbose(env, "verifier internal error: only one constant argument permitted\n");
11643 return -EFAULT;
11644 }
11645 if (!tnum_is_const(size_reg->var_off)) {
11646 verbose(env, "R%d must be a known constant\n", regno + 1);
11647 return -EINVAL;
11648 }
11649 meta->arg_constant.found = true;
11650 meta->arg_constant.value = size_reg->var_off.value;
11651 }
11652
11653 /* Skip next '__sz' or '__szk' argument */
11654 i++;
11655 break;
11656 }
11657 case KF_ARG_PTR_TO_CALLBACK:
11658 if (reg->type != PTR_TO_FUNC) {
11659 verbose(env, "arg%d expected pointer to func\n", i);
11660 return -EINVAL;
11661 }
11662 meta->subprogno = reg->subprogno;
11663 break;
11664 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11665 if (!type_is_ptr_alloc_obj(reg->type)) {
11666 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11667 return -EINVAL;
11668 }
11669 if (!type_is_non_owning_ref(reg->type))
11670 meta->arg_owning_ref = true;
11671
11672 rec = reg_btf_record(reg);
11673 if (!rec) {
11674 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11675 return -EFAULT;
11676 }
11677
11678 if (rec->refcount_off < 0) {
11679 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11680 return -EINVAL;
11681 }
11682
11683 meta->arg_btf = reg->btf;
11684 meta->arg_btf_id = reg->btf_id;
11685 break;
11686 }
11687 }
11688
11689 if (is_kfunc_release(meta) && !meta->release_regno) {
11690 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11691 func_name);
11692 return -EINVAL;
11693 }
11694
11695 return 0;
11696 }
11697
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)11698 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11699 struct bpf_insn *insn,
11700 struct bpf_kfunc_call_arg_meta *meta,
11701 const char **kfunc_name)
11702 {
11703 const struct btf_type *func, *func_proto;
11704 u32 func_id, *kfunc_flags;
11705 const char *func_name;
11706 struct btf *desc_btf;
11707
11708 if (kfunc_name)
11709 *kfunc_name = NULL;
11710
11711 if (!insn->imm)
11712 return -EINVAL;
11713
11714 desc_btf = find_kfunc_desc_btf(env, insn->off);
11715 if (IS_ERR(desc_btf))
11716 return PTR_ERR(desc_btf);
11717
11718 func_id = insn->imm;
11719 func = btf_type_by_id(desc_btf, func_id);
11720 func_name = btf_name_by_offset(desc_btf, func->name_off);
11721 if (kfunc_name)
11722 *kfunc_name = func_name;
11723 func_proto = btf_type_by_id(desc_btf, func->type);
11724
11725 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11726 if (!kfunc_flags) {
11727 return -EACCES;
11728 }
11729
11730 memset(meta, 0, sizeof(*meta));
11731 meta->btf = desc_btf;
11732 meta->func_id = func_id;
11733 meta->kfunc_flags = *kfunc_flags;
11734 meta->func_proto = func_proto;
11735 meta->func_name = func_name;
11736
11737 return 0;
11738 }
11739
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11740 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11741 int *insn_idx_p)
11742 {
11743 const struct btf_type *t, *ptr_type;
11744 u32 i, nargs, ptr_type_id, release_ref_obj_id;
11745 struct bpf_reg_state *regs = cur_regs(env);
11746 const char *func_name, *ptr_type_name;
11747 bool sleepable, rcu_lock, rcu_unlock;
11748 struct bpf_kfunc_call_arg_meta meta;
11749 struct bpf_insn_aux_data *insn_aux;
11750 int err, insn_idx = *insn_idx_p;
11751 const struct btf_param *args;
11752 const struct btf_type *ret_t;
11753 struct btf *desc_btf;
11754
11755 /* skip for now, but return error when we find this in fixup_kfunc_call */
11756 if (!insn->imm)
11757 return 0;
11758
11759 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11760 if (err == -EACCES && func_name)
11761 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11762 if (err)
11763 return err;
11764 desc_btf = meta.btf;
11765 insn_aux = &env->insn_aux_data[insn_idx];
11766
11767 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11768
11769 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11770 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11771 return -EACCES;
11772 }
11773
11774 sleepable = is_kfunc_sleepable(&meta);
11775 if (sleepable && !env->prog->aux->sleepable) {
11776 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11777 return -EACCES;
11778 }
11779
11780 /* Check the arguments */
11781 err = check_kfunc_args(env, &meta, insn_idx);
11782 if (err < 0)
11783 return err;
11784
11785 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11786 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11787 set_rbtree_add_callback_state);
11788 if (err) {
11789 verbose(env, "kfunc %s#%d failed callback verification\n",
11790 func_name, meta.func_id);
11791 return err;
11792 }
11793 }
11794
11795 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11796 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11797
11798 if (env->cur_state->active_rcu_lock) {
11799 struct bpf_func_state *state;
11800 struct bpf_reg_state *reg;
11801
11802 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11803 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11804 return -EACCES;
11805 }
11806
11807 if (rcu_lock) {
11808 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11809 return -EINVAL;
11810 } else if (rcu_unlock) {
11811 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11812 if (reg->type & MEM_RCU) {
11813 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11814 reg->type |= PTR_UNTRUSTED;
11815 }
11816 }));
11817 env->cur_state->active_rcu_lock = false;
11818 } else if (sleepable) {
11819 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11820 return -EACCES;
11821 }
11822 } else if (rcu_lock) {
11823 env->cur_state->active_rcu_lock = true;
11824 } else if (rcu_unlock) {
11825 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11826 return -EINVAL;
11827 }
11828
11829 /* In case of release function, we get register number of refcounted
11830 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11831 */
11832 if (meta.release_regno) {
11833 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11834 if (err) {
11835 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11836 func_name, meta.func_id);
11837 return err;
11838 }
11839 }
11840
11841 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11842 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11843 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11844 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11845 insn_aux->insert_off = regs[BPF_REG_2].off;
11846 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11847 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11848 if (err) {
11849 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11850 func_name, meta.func_id);
11851 return err;
11852 }
11853
11854 err = release_reference(env, release_ref_obj_id);
11855 if (err) {
11856 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11857 func_name, meta.func_id);
11858 return err;
11859 }
11860 }
11861
11862 for (i = 0; i < CALLER_SAVED_REGS; i++)
11863 mark_reg_not_init(env, regs, caller_saved[i]);
11864
11865 /* Check return type */
11866 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11867
11868 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11869 /* Only exception is bpf_obj_new_impl */
11870 if (meta.btf != btf_vmlinux ||
11871 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11872 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11873 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11874 return -EINVAL;
11875 }
11876 }
11877
11878 if (btf_type_is_scalar(t)) {
11879 mark_reg_unknown(env, regs, BPF_REG_0);
11880 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11881 } else if (btf_type_is_ptr(t)) {
11882 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11883
11884 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11885 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11886 struct btf *ret_btf;
11887 u32 ret_btf_id;
11888
11889 if (unlikely(!bpf_global_ma_set))
11890 return -ENOMEM;
11891
11892 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11893 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11894 return -EINVAL;
11895 }
11896
11897 ret_btf = env->prog->aux->btf;
11898 ret_btf_id = meta.arg_constant.value;
11899
11900 /* This may be NULL due to user not supplying a BTF */
11901 if (!ret_btf) {
11902 verbose(env, "bpf_obj_new requires prog BTF\n");
11903 return -EINVAL;
11904 }
11905
11906 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11907 if (!ret_t || !__btf_type_is_struct(ret_t)) {
11908 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11909 return -EINVAL;
11910 }
11911
11912 mark_reg_known_zero(env, regs, BPF_REG_0);
11913 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11914 regs[BPF_REG_0].btf = ret_btf;
11915 regs[BPF_REG_0].btf_id = ret_btf_id;
11916
11917 insn_aux->obj_new_size = ret_t->size;
11918 insn_aux->kptr_struct_meta =
11919 btf_find_struct_meta(ret_btf, ret_btf_id);
11920 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11921 mark_reg_known_zero(env, regs, BPF_REG_0);
11922 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11923 regs[BPF_REG_0].btf = meta.arg_btf;
11924 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11925
11926 insn_aux->kptr_struct_meta =
11927 btf_find_struct_meta(meta.arg_btf,
11928 meta.arg_btf_id);
11929 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11930 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11931 struct btf_field *field = meta.arg_list_head.field;
11932
11933 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11934 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11935 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11936 struct btf_field *field = meta.arg_rbtree_root.field;
11937
11938 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11939 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11940 mark_reg_known_zero(env, regs, BPF_REG_0);
11941 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11942 regs[BPF_REG_0].btf = desc_btf;
11943 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11944 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11945 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11946 if (!ret_t || !btf_type_is_struct(ret_t)) {
11947 verbose(env,
11948 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11949 return -EINVAL;
11950 }
11951
11952 mark_reg_known_zero(env, regs, BPF_REG_0);
11953 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11954 regs[BPF_REG_0].btf = desc_btf;
11955 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11956 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11957 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11958 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11959
11960 mark_reg_known_zero(env, regs, BPF_REG_0);
11961
11962 if (!meta.arg_constant.found) {
11963 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11964 return -EFAULT;
11965 }
11966
11967 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11968
11969 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11970 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11971
11972 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11973 regs[BPF_REG_0].type |= MEM_RDONLY;
11974 } else {
11975 /* this will set env->seen_direct_write to true */
11976 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11977 verbose(env, "the prog does not allow writes to packet data\n");
11978 return -EINVAL;
11979 }
11980 }
11981
11982 if (!meta.initialized_dynptr.id) {
11983 verbose(env, "verifier internal error: no dynptr id\n");
11984 return -EFAULT;
11985 }
11986 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11987
11988 /* we don't need to set BPF_REG_0's ref obj id
11989 * because packet slices are not refcounted (see
11990 * dynptr_type_refcounted)
11991 */
11992 } else {
11993 verbose(env, "kernel function %s unhandled dynamic return type\n",
11994 meta.func_name);
11995 return -EFAULT;
11996 }
11997 } else if (!__btf_type_is_struct(ptr_type)) {
11998 if (!meta.r0_size) {
11999 __u32 sz;
12000
12001 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12002 meta.r0_size = sz;
12003 meta.r0_rdonly = true;
12004 }
12005 }
12006 if (!meta.r0_size) {
12007 ptr_type_name = btf_name_by_offset(desc_btf,
12008 ptr_type->name_off);
12009 verbose(env,
12010 "kernel function %s returns pointer type %s %s is not supported\n",
12011 func_name,
12012 btf_type_str(ptr_type),
12013 ptr_type_name);
12014 return -EINVAL;
12015 }
12016
12017 mark_reg_known_zero(env, regs, BPF_REG_0);
12018 regs[BPF_REG_0].type = PTR_TO_MEM;
12019 regs[BPF_REG_0].mem_size = meta.r0_size;
12020
12021 if (meta.r0_rdonly)
12022 regs[BPF_REG_0].type |= MEM_RDONLY;
12023
12024 /* Ensures we don't access the memory after a release_reference() */
12025 if (meta.ref_obj_id)
12026 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12027 } else {
12028 mark_reg_known_zero(env, regs, BPF_REG_0);
12029 regs[BPF_REG_0].btf = desc_btf;
12030 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12031 regs[BPF_REG_0].btf_id = ptr_type_id;
12032
12033 if (is_iter_next_kfunc(&meta)) {
12034 struct bpf_reg_state *cur_iter;
12035
12036 cur_iter = get_iter_from_state(env->cur_state, &meta);
12037
12038 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12039 regs[BPF_REG_0].type |= MEM_RCU;
12040 else
12041 regs[BPF_REG_0].type |= PTR_TRUSTED;
12042 }
12043 }
12044
12045 if (is_kfunc_ret_null(&meta)) {
12046 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12047 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12048 regs[BPF_REG_0].id = ++env->id_gen;
12049 }
12050 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12051 if (is_kfunc_acquire(&meta)) {
12052 int id = acquire_reference_state(env, insn_idx);
12053
12054 if (id < 0)
12055 return id;
12056 if (is_kfunc_ret_null(&meta))
12057 regs[BPF_REG_0].id = id;
12058 regs[BPF_REG_0].ref_obj_id = id;
12059 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12060 ref_set_non_owning(env, ®s[BPF_REG_0]);
12061 }
12062
12063 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
12064 regs[BPF_REG_0].id = ++env->id_gen;
12065 } else if (btf_type_is_void(t)) {
12066 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12067 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
12068 insn_aux->kptr_struct_meta =
12069 btf_find_struct_meta(meta.arg_btf,
12070 meta.arg_btf_id);
12071 }
12072 }
12073 }
12074
12075 nargs = btf_type_vlen(meta.func_proto);
12076 args = (const struct btf_param *)(meta.func_proto + 1);
12077 for (i = 0; i < nargs; i++) {
12078 u32 regno = i + 1;
12079
12080 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12081 if (btf_type_is_ptr(t))
12082 mark_btf_func_reg_size(env, regno, sizeof(void *));
12083 else
12084 /* scalar. ensured by btf_check_kfunc_arg_match() */
12085 mark_btf_func_reg_size(env, regno, t->size);
12086 }
12087
12088 if (is_iter_next_kfunc(&meta)) {
12089 err = process_iter_next_call(env, insn_idx, &meta);
12090 if (err)
12091 return err;
12092 }
12093
12094 return 0;
12095 }
12096
signed_add_overflows(s64 a,s64 b)12097 static bool signed_add_overflows(s64 a, s64 b)
12098 {
12099 /* Do the add in u64, where overflow is well-defined */
12100 s64 res = (s64)((u64)a + (u64)b);
12101
12102 if (b < 0)
12103 return res > a;
12104 return res < a;
12105 }
12106
signed_add32_overflows(s32 a,s32 b)12107 static bool signed_add32_overflows(s32 a, s32 b)
12108 {
12109 /* Do the add in u32, where overflow is well-defined */
12110 s32 res = (s32)((u32)a + (u32)b);
12111
12112 if (b < 0)
12113 return res > a;
12114 return res < a;
12115 }
12116
signed_sub_overflows(s64 a,s64 b)12117 static bool signed_sub_overflows(s64 a, s64 b)
12118 {
12119 /* Do the sub in u64, where overflow is well-defined */
12120 s64 res = (s64)((u64)a - (u64)b);
12121
12122 if (b < 0)
12123 return res < a;
12124 return res > a;
12125 }
12126
signed_sub32_overflows(s32 a,s32 b)12127 static bool signed_sub32_overflows(s32 a, s32 b)
12128 {
12129 /* Do the sub in u32, where overflow is well-defined */
12130 s32 res = (s32)((u32)a - (u32)b);
12131
12132 if (b < 0)
12133 return res < a;
12134 return res > a;
12135 }
12136
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)12137 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12138 const struct bpf_reg_state *reg,
12139 enum bpf_reg_type type)
12140 {
12141 bool known = tnum_is_const(reg->var_off);
12142 s64 val = reg->var_off.value;
12143 s64 smin = reg->smin_value;
12144
12145 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12146 verbose(env, "math between %s pointer and %lld is not allowed\n",
12147 reg_type_str(env, type), val);
12148 return false;
12149 }
12150
12151 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12152 verbose(env, "%s pointer offset %d is not allowed\n",
12153 reg_type_str(env, type), reg->off);
12154 return false;
12155 }
12156
12157 if (smin == S64_MIN) {
12158 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12159 reg_type_str(env, type));
12160 return false;
12161 }
12162
12163 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12164 verbose(env, "value %lld makes %s pointer be out of bounds\n",
12165 smin, reg_type_str(env, type));
12166 return false;
12167 }
12168
12169 return true;
12170 }
12171
12172 enum {
12173 REASON_BOUNDS = -1,
12174 REASON_TYPE = -2,
12175 REASON_PATHS = -3,
12176 REASON_LIMIT = -4,
12177 REASON_STACK = -5,
12178 };
12179
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)12180 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12181 u32 *alu_limit, bool mask_to_left)
12182 {
12183 u32 max = 0, ptr_limit = 0;
12184
12185 switch (ptr_reg->type) {
12186 case PTR_TO_STACK:
12187 /* Offset 0 is out-of-bounds, but acceptable start for the
12188 * left direction, see BPF_REG_FP. Also, unknown scalar
12189 * offset where we would need to deal with min/max bounds is
12190 * currently prohibited for unprivileged.
12191 */
12192 max = MAX_BPF_STACK + mask_to_left;
12193 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12194 break;
12195 case PTR_TO_MAP_VALUE:
12196 max = ptr_reg->map_ptr->value_size;
12197 ptr_limit = (mask_to_left ?
12198 ptr_reg->smin_value :
12199 ptr_reg->umax_value) + ptr_reg->off;
12200 break;
12201 default:
12202 return REASON_TYPE;
12203 }
12204
12205 if (ptr_limit >= max)
12206 return REASON_LIMIT;
12207 *alu_limit = ptr_limit;
12208 return 0;
12209 }
12210
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)12211 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12212 const struct bpf_insn *insn)
12213 {
12214 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12215 }
12216
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)12217 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12218 u32 alu_state, u32 alu_limit)
12219 {
12220 /* If we arrived here from different branches with different
12221 * state or limits to sanitize, then this won't work.
12222 */
12223 if (aux->alu_state &&
12224 (aux->alu_state != alu_state ||
12225 aux->alu_limit != alu_limit))
12226 return REASON_PATHS;
12227
12228 /* Corresponding fixup done in do_misc_fixups(). */
12229 aux->alu_state = alu_state;
12230 aux->alu_limit = alu_limit;
12231 return 0;
12232 }
12233
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)12234 static int sanitize_val_alu(struct bpf_verifier_env *env,
12235 struct bpf_insn *insn)
12236 {
12237 struct bpf_insn_aux_data *aux = cur_aux(env);
12238
12239 if (can_skip_alu_sanitation(env, insn))
12240 return 0;
12241
12242 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12243 }
12244
sanitize_needed(u8 opcode)12245 static bool sanitize_needed(u8 opcode)
12246 {
12247 return opcode == BPF_ADD || opcode == BPF_SUB;
12248 }
12249
12250 struct bpf_sanitize_info {
12251 struct bpf_insn_aux_data aux;
12252 bool mask_to_left;
12253 };
12254
12255 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)12256 sanitize_speculative_path(struct bpf_verifier_env *env,
12257 const struct bpf_insn *insn,
12258 u32 next_idx, u32 curr_idx)
12259 {
12260 struct bpf_verifier_state *branch;
12261 struct bpf_reg_state *regs;
12262
12263 branch = push_stack(env, next_idx, curr_idx, true);
12264 if (branch && insn) {
12265 regs = branch->frame[branch->curframe]->regs;
12266 if (BPF_SRC(insn->code) == BPF_K) {
12267 mark_reg_unknown(env, regs, insn->dst_reg);
12268 } else if (BPF_SRC(insn->code) == BPF_X) {
12269 mark_reg_unknown(env, regs, insn->dst_reg);
12270 mark_reg_unknown(env, regs, insn->src_reg);
12271 }
12272 }
12273 return branch;
12274 }
12275
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)12276 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12277 struct bpf_insn *insn,
12278 const struct bpf_reg_state *ptr_reg,
12279 const struct bpf_reg_state *off_reg,
12280 struct bpf_reg_state *dst_reg,
12281 struct bpf_sanitize_info *info,
12282 const bool commit_window)
12283 {
12284 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12285 struct bpf_verifier_state *vstate = env->cur_state;
12286 bool off_is_imm = tnum_is_const(off_reg->var_off);
12287 bool off_is_neg = off_reg->smin_value < 0;
12288 bool ptr_is_dst_reg = ptr_reg == dst_reg;
12289 u8 opcode = BPF_OP(insn->code);
12290 u32 alu_state, alu_limit;
12291 struct bpf_reg_state tmp;
12292 bool ret;
12293 int err;
12294
12295 if (can_skip_alu_sanitation(env, insn))
12296 return 0;
12297
12298 /* We already marked aux for masking from non-speculative
12299 * paths, thus we got here in the first place. We only care
12300 * to explore bad access from here.
12301 */
12302 if (vstate->speculative)
12303 goto do_sim;
12304
12305 if (!commit_window) {
12306 if (!tnum_is_const(off_reg->var_off) &&
12307 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12308 return REASON_BOUNDS;
12309
12310 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
12311 (opcode == BPF_SUB && !off_is_neg);
12312 }
12313
12314 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12315 if (err < 0)
12316 return err;
12317
12318 if (commit_window) {
12319 /* In commit phase we narrow the masking window based on
12320 * the observed pointer move after the simulated operation.
12321 */
12322 alu_state = info->aux.alu_state;
12323 alu_limit = abs(info->aux.alu_limit - alu_limit);
12324 } else {
12325 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12326 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12327 alu_state |= ptr_is_dst_reg ?
12328 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12329
12330 /* Limit pruning on unknown scalars to enable deep search for
12331 * potential masking differences from other program paths.
12332 */
12333 if (!off_is_imm)
12334 env->explore_alu_limits = true;
12335 }
12336
12337 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12338 if (err < 0)
12339 return err;
12340 do_sim:
12341 /* If we're in commit phase, we're done here given we already
12342 * pushed the truncated dst_reg into the speculative verification
12343 * stack.
12344 *
12345 * Also, when register is a known constant, we rewrite register-based
12346 * operation to immediate-based, and thus do not need masking (and as
12347 * a consequence, do not need to simulate the zero-truncation either).
12348 */
12349 if (commit_window || off_is_imm)
12350 return 0;
12351
12352 /* Simulate and find potential out-of-bounds access under
12353 * speculative execution from truncation as a result of
12354 * masking when off was not within expected range. If off
12355 * sits in dst, then we temporarily need to move ptr there
12356 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12357 * for cases where we use K-based arithmetic in one direction
12358 * and truncated reg-based in the other in order to explore
12359 * bad access.
12360 */
12361 if (!ptr_is_dst_reg) {
12362 tmp = *dst_reg;
12363 copy_register_state(dst_reg, ptr_reg);
12364 }
12365 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12366 env->insn_idx);
12367 if (!ptr_is_dst_reg && ret)
12368 *dst_reg = tmp;
12369 return !ret ? REASON_STACK : 0;
12370 }
12371
sanitize_mark_insn_seen(struct bpf_verifier_env * env)12372 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12373 {
12374 struct bpf_verifier_state *vstate = env->cur_state;
12375
12376 /* If we simulate paths under speculation, we don't update the
12377 * insn as 'seen' such that when we verify unreachable paths in
12378 * the non-speculative domain, sanitize_dead_code() can still
12379 * rewrite/sanitize them.
12380 */
12381 if (!vstate->speculative)
12382 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12383 }
12384
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)12385 static int sanitize_err(struct bpf_verifier_env *env,
12386 const struct bpf_insn *insn, int reason,
12387 const struct bpf_reg_state *off_reg,
12388 const struct bpf_reg_state *dst_reg)
12389 {
12390 static const char *err = "pointer arithmetic with it prohibited for !root";
12391 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12392 u32 dst = insn->dst_reg, src = insn->src_reg;
12393
12394 switch (reason) {
12395 case REASON_BOUNDS:
12396 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12397 off_reg == dst_reg ? dst : src, err);
12398 break;
12399 case REASON_TYPE:
12400 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12401 off_reg == dst_reg ? src : dst, err);
12402 break;
12403 case REASON_PATHS:
12404 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12405 dst, op, err);
12406 break;
12407 case REASON_LIMIT:
12408 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12409 dst, op, err);
12410 break;
12411 case REASON_STACK:
12412 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12413 dst, err);
12414 break;
12415 default:
12416 verbose(env, "verifier internal error: unknown reason (%d)\n",
12417 reason);
12418 break;
12419 }
12420
12421 return -EACCES;
12422 }
12423
12424 /* check that stack access falls within stack limits and that 'reg' doesn't
12425 * have a variable offset.
12426 *
12427 * Variable offset is prohibited for unprivileged mode for simplicity since it
12428 * requires corresponding support in Spectre masking for stack ALU. See also
12429 * retrieve_ptr_limit().
12430 *
12431 *
12432 * 'off' includes 'reg->off'.
12433 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)12434 static int check_stack_access_for_ptr_arithmetic(
12435 struct bpf_verifier_env *env,
12436 int regno,
12437 const struct bpf_reg_state *reg,
12438 int off)
12439 {
12440 if (!tnum_is_const(reg->var_off)) {
12441 char tn_buf[48];
12442
12443 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12444 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12445 regno, tn_buf, off);
12446 return -EACCES;
12447 }
12448
12449 if (off >= 0 || off < -MAX_BPF_STACK) {
12450 verbose(env, "R%d stack pointer arithmetic goes out of range, "
12451 "prohibited for !root; off=%d\n", regno, off);
12452 return -EACCES;
12453 }
12454
12455 return 0;
12456 }
12457
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)12458 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12459 const struct bpf_insn *insn,
12460 const struct bpf_reg_state *dst_reg)
12461 {
12462 u32 dst = insn->dst_reg;
12463
12464 /* For unprivileged we require that resulting offset must be in bounds
12465 * in order to be able to sanitize access later on.
12466 */
12467 if (env->bypass_spec_v1)
12468 return 0;
12469
12470 switch (dst_reg->type) {
12471 case PTR_TO_STACK:
12472 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12473 dst_reg->off + dst_reg->var_off.value))
12474 return -EACCES;
12475 break;
12476 case PTR_TO_MAP_VALUE:
12477 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12478 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12479 "prohibited for !root\n", dst);
12480 return -EACCES;
12481 }
12482 break;
12483 default:
12484 break;
12485 }
12486
12487 return 0;
12488 }
12489
12490 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12491 * Caller should also handle BPF_MOV case separately.
12492 * If we return -EACCES, caller may want to try again treating pointer as a
12493 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
12494 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)12495 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12496 struct bpf_insn *insn,
12497 const struct bpf_reg_state *ptr_reg,
12498 const struct bpf_reg_state *off_reg)
12499 {
12500 struct bpf_verifier_state *vstate = env->cur_state;
12501 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12502 struct bpf_reg_state *regs = state->regs, *dst_reg;
12503 bool known = tnum_is_const(off_reg->var_off);
12504 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12505 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12506 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12507 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12508 struct bpf_sanitize_info info = {};
12509 u8 opcode = BPF_OP(insn->code);
12510 u32 dst = insn->dst_reg;
12511 int ret;
12512
12513 dst_reg = ®s[dst];
12514
12515 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12516 smin_val > smax_val || umin_val > umax_val) {
12517 /* Taint dst register if offset had invalid bounds derived from
12518 * e.g. dead branches.
12519 */
12520 __mark_reg_unknown(env, dst_reg);
12521 return 0;
12522 }
12523
12524 if (BPF_CLASS(insn->code) != BPF_ALU64) {
12525 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
12526 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12527 __mark_reg_unknown(env, dst_reg);
12528 return 0;
12529 }
12530
12531 verbose(env,
12532 "R%d 32-bit pointer arithmetic prohibited\n",
12533 dst);
12534 return -EACCES;
12535 }
12536
12537 if (ptr_reg->type & PTR_MAYBE_NULL) {
12538 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12539 dst, reg_type_str(env, ptr_reg->type));
12540 return -EACCES;
12541 }
12542
12543 switch (base_type(ptr_reg->type)) {
12544 case PTR_TO_FLOW_KEYS:
12545 if (known)
12546 break;
12547 fallthrough;
12548 case CONST_PTR_TO_MAP:
12549 /* smin_val represents the known value */
12550 if (known && smin_val == 0 && opcode == BPF_ADD)
12551 break;
12552 fallthrough;
12553 case PTR_TO_PACKET_END:
12554 case PTR_TO_SOCKET:
12555 case PTR_TO_SOCK_COMMON:
12556 case PTR_TO_TCP_SOCK:
12557 case PTR_TO_XDP_SOCK:
12558 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12559 dst, reg_type_str(env, ptr_reg->type));
12560 return -EACCES;
12561 default:
12562 break;
12563 }
12564
12565 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12566 * The id may be overwritten later if we create a new variable offset.
12567 */
12568 dst_reg->type = ptr_reg->type;
12569 dst_reg->id = ptr_reg->id;
12570
12571 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12572 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12573 return -EINVAL;
12574
12575 /* pointer types do not carry 32-bit bounds at the moment. */
12576 __mark_reg32_unbounded(dst_reg);
12577
12578 if (sanitize_needed(opcode)) {
12579 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12580 &info, false);
12581 if (ret < 0)
12582 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12583 }
12584
12585 switch (opcode) {
12586 case BPF_ADD:
12587 /* We can take a fixed offset as long as it doesn't overflow
12588 * the s32 'off' field
12589 */
12590 if (known && (ptr_reg->off + smin_val ==
12591 (s64)(s32)(ptr_reg->off + smin_val))) {
12592 /* pointer += K. Accumulate it into fixed offset */
12593 dst_reg->smin_value = smin_ptr;
12594 dst_reg->smax_value = smax_ptr;
12595 dst_reg->umin_value = umin_ptr;
12596 dst_reg->umax_value = umax_ptr;
12597 dst_reg->var_off = ptr_reg->var_off;
12598 dst_reg->off = ptr_reg->off + smin_val;
12599 dst_reg->raw = ptr_reg->raw;
12600 break;
12601 }
12602 /* A new variable offset is created. Note that off_reg->off
12603 * == 0, since it's a scalar.
12604 * dst_reg gets the pointer type and since some positive
12605 * integer value was added to the pointer, give it a new 'id'
12606 * if it's a PTR_TO_PACKET.
12607 * this creates a new 'base' pointer, off_reg (variable) gets
12608 * added into the variable offset, and we copy the fixed offset
12609 * from ptr_reg.
12610 */
12611 if (signed_add_overflows(smin_ptr, smin_val) ||
12612 signed_add_overflows(smax_ptr, smax_val)) {
12613 dst_reg->smin_value = S64_MIN;
12614 dst_reg->smax_value = S64_MAX;
12615 } else {
12616 dst_reg->smin_value = smin_ptr + smin_val;
12617 dst_reg->smax_value = smax_ptr + smax_val;
12618 }
12619 if (umin_ptr + umin_val < umin_ptr ||
12620 umax_ptr + umax_val < umax_ptr) {
12621 dst_reg->umin_value = 0;
12622 dst_reg->umax_value = U64_MAX;
12623 } else {
12624 dst_reg->umin_value = umin_ptr + umin_val;
12625 dst_reg->umax_value = umax_ptr + umax_val;
12626 }
12627 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12628 dst_reg->off = ptr_reg->off;
12629 dst_reg->raw = ptr_reg->raw;
12630 if (reg_is_pkt_pointer(ptr_reg)) {
12631 dst_reg->id = ++env->id_gen;
12632 /* something was added to pkt_ptr, set range to zero */
12633 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12634 }
12635 break;
12636 case BPF_SUB:
12637 if (dst_reg == off_reg) {
12638 /* scalar -= pointer. Creates an unknown scalar */
12639 verbose(env, "R%d tried to subtract pointer from scalar\n",
12640 dst);
12641 return -EACCES;
12642 }
12643 /* We don't allow subtraction from FP, because (according to
12644 * test_verifier.c test "invalid fp arithmetic", JITs might not
12645 * be able to deal with it.
12646 */
12647 if (ptr_reg->type == PTR_TO_STACK) {
12648 verbose(env, "R%d subtraction from stack pointer prohibited\n",
12649 dst);
12650 return -EACCES;
12651 }
12652 if (known && (ptr_reg->off - smin_val ==
12653 (s64)(s32)(ptr_reg->off - smin_val))) {
12654 /* pointer -= K. Subtract it from fixed offset */
12655 dst_reg->smin_value = smin_ptr;
12656 dst_reg->smax_value = smax_ptr;
12657 dst_reg->umin_value = umin_ptr;
12658 dst_reg->umax_value = umax_ptr;
12659 dst_reg->var_off = ptr_reg->var_off;
12660 dst_reg->id = ptr_reg->id;
12661 dst_reg->off = ptr_reg->off - smin_val;
12662 dst_reg->raw = ptr_reg->raw;
12663 break;
12664 }
12665 /* A new variable offset is created. If the subtrahend is known
12666 * nonnegative, then any reg->range we had before is still good.
12667 */
12668 if (signed_sub_overflows(smin_ptr, smax_val) ||
12669 signed_sub_overflows(smax_ptr, smin_val)) {
12670 /* Overflow possible, we know nothing */
12671 dst_reg->smin_value = S64_MIN;
12672 dst_reg->smax_value = S64_MAX;
12673 } else {
12674 dst_reg->smin_value = smin_ptr - smax_val;
12675 dst_reg->smax_value = smax_ptr - smin_val;
12676 }
12677 if (umin_ptr < umax_val) {
12678 /* Overflow possible, we know nothing */
12679 dst_reg->umin_value = 0;
12680 dst_reg->umax_value = U64_MAX;
12681 } else {
12682 /* Cannot overflow (as long as bounds are consistent) */
12683 dst_reg->umin_value = umin_ptr - umax_val;
12684 dst_reg->umax_value = umax_ptr - umin_val;
12685 }
12686 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12687 dst_reg->off = ptr_reg->off;
12688 dst_reg->raw = ptr_reg->raw;
12689 if (reg_is_pkt_pointer(ptr_reg)) {
12690 dst_reg->id = ++env->id_gen;
12691 /* something was added to pkt_ptr, set range to zero */
12692 if (smin_val < 0)
12693 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12694 }
12695 break;
12696 case BPF_AND:
12697 case BPF_OR:
12698 case BPF_XOR:
12699 /* bitwise ops on pointers are troublesome, prohibit. */
12700 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12701 dst, bpf_alu_string[opcode >> 4]);
12702 return -EACCES;
12703 default:
12704 /* other operators (e.g. MUL,LSH) produce non-pointer results */
12705 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12706 dst, bpf_alu_string[opcode >> 4]);
12707 return -EACCES;
12708 }
12709
12710 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12711 return -EINVAL;
12712 reg_bounds_sync(dst_reg);
12713 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12714 return -EACCES;
12715 if (sanitize_needed(opcode)) {
12716 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12717 &info, true);
12718 if (ret < 0)
12719 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12720 }
12721
12722 return 0;
12723 }
12724
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12725 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12726 struct bpf_reg_state *src_reg)
12727 {
12728 s32 smin_val = src_reg->s32_min_value;
12729 s32 smax_val = src_reg->s32_max_value;
12730 u32 umin_val = src_reg->u32_min_value;
12731 u32 umax_val = src_reg->u32_max_value;
12732
12733 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12734 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12735 dst_reg->s32_min_value = S32_MIN;
12736 dst_reg->s32_max_value = S32_MAX;
12737 } else {
12738 dst_reg->s32_min_value += smin_val;
12739 dst_reg->s32_max_value += smax_val;
12740 }
12741 if (dst_reg->u32_min_value + umin_val < umin_val ||
12742 dst_reg->u32_max_value + umax_val < umax_val) {
12743 dst_reg->u32_min_value = 0;
12744 dst_reg->u32_max_value = U32_MAX;
12745 } else {
12746 dst_reg->u32_min_value += umin_val;
12747 dst_reg->u32_max_value += umax_val;
12748 }
12749 }
12750
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12751 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12752 struct bpf_reg_state *src_reg)
12753 {
12754 s64 smin_val = src_reg->smin_value;
12755 s64 smax_val = src_reg->smax_value;
12756 u64 umin_val = src_reg->umin_value;
12757 u64 umax_val = src_reg->umax_value;
12758
12759 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12760 signed_add_overflows(dst_reg->smax_value, smax_val)) {
12761 dst_reg->smin_value = S64_MIN;
12762 dst_reg->smax_value = S64_MAX;
12763 } else {
12764 dst_reg->smin_value += smin_val;
12765 dst_reg->smax_value += smax_val;
12766 }
12767 if (dst_reg->umin_value + umin_val < umin_val ||
12768 dst_reg->umax_value + umax_val < umax_val) {
12769 dst_reg->umin_value = 0;
12770 dst_reg->umax_value = U64_MAX;
12771 } else {
12772 dst_reg->umin_value += umin_val;
12773 dst_reg->umax_value += umax_val;
12774 }
12775 }
12776
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12777 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12778 struct bpf_reg_state *src_reg)
12779 {
12780 s32 smin_val = src_reg->s32_min_value;
12781 s32 smax_val = src_reg->s32_max_value;
12782 u32 umin_val = src_reg->u32_min_value;
12783 u32 umax_val = src_reg->u32_max_value;
12784
12785 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12786 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12787 /* Overflow possible, we know nothing */
12788 dst_reg->s32_min_value = S32_MIN;
12789 dst_reg->s32_max_value = S32_MAX;
12790 } else {
12791 dst_reg->s32_min_value -= smax_val;
12792 dst_reg->s32_max_value -= smin_val;
12793 }
12794 if (dst_reg->u32_min_value < umax_val) {
12795 /* Overflow possible, we know nothing */
12796 dst_reg->u32_min_value = 0;
12797 dst_reg->u32_max_value = U32_MAX;
12798 } else {
12799 /* Cannot overflow (as long as bounds are consistent) */
12800 dst_reg->u32_min_value -= umax_val;
12801 dst_reg->u32_max_value -= umin_val;
12802 }
12803 }
12804
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12805 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12806 struct bpf_reg_state *src_reg)
12807 {
12808 s64 smin_val = src_reg->smin_value;
12809 s64 smax_val = src_reg->smax_value;
12810 u64 umin_val = src_reg->umin_value;
12811 u64 umax_val = src_reg->umax_value;
12812
12813 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12814 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12815 /* Overflow possible, we know nothing */
12816 dst_reg->smin_value = S64_MIN;
12817 dst_reg->smax_value = S64_MAX;
12818 } else {
12819 dst_reg->smin_value -= smax_val;
12820 dst_reg->smax_value -= smin_val;
12821 }
12822 if (dst_reg->umin_value < umax_val) {
12823 /* Overflow possible, we know nothing */
12824 dst_reg->umin_value = 0;
12825 dst_reg->umax_value = U64_MAX;
12826 } else {
12827 /* Cannot overflow (as long as bounds are consistent) */
12828 dst_reg->umin_value -= umax_val;
12829 dst_reg->umax_value -= umin_val;
12830 }
12831 }
12832
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12833 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12834 struct bpf_reg_state *src_reg)
12835 {
12836 s32 smin_val = src_reg->s32_min_value;
12837 u32 umin_val = src_reg->u32_min_value;
12838 u32 umax_val = src_reg->u32_max_value;
12839
12840 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12841 /* Ain't nobody got time to multiply that sign */
12842 __mark_reg32_unbounded(dst_reg);
12843 return;
12844 }
12845 /* Both values are positive, so we can work with unsigned and
12846 * copy the result to signed (unless it exceeds S32_MAX).
12847 */
12848 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12849 /* Potential overflow, we know nothing */
12850 __mark_reg32_unbounded(dst_reg);
12851 return;
12852 }
12853 dst_reg->u32_min_value *= umin_val;
12854 dst_reg->u32_max_value *= umax_val;
12855 if (dst_reg->u32_max_value > S32_MAX) {
12856 /* Overflow possible, we know nothing */
12857 dst_reg->s32_min_value = S32_MIN;
12858 dst_reg->s32_max_value = S32_MAX;
12859 } else {
12860 dst_reg->s32_min_value = dst_reg->u32_min_value;
12861 dst_reg->s32_max_value = dst_reg->u32_max_value;
12862 }
12863 }
12864
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12865 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12866 struct bpf_reg_state *src_reg)
12867 {
12868 s64 smin_val = src_reg->smin_value;
12869 u64 umin_val = src_reg->umin_value;
12870 u64 umax_val = src_reg->umax_value;
12871
12872 if (smin_val < 0 || dst_reg->smin_value < 0) {
12873 /* Ain't nobody got time to multiply that sign */
12874 __mark_reg64_unbounded(dst_reg);
12875 return;
12876 }
12877 /* Both values are positive, so we can work with unsigned and
12878 * copy the result to signed (unless it exceeds S64_MAX).
12879 */
12880 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12881 /* Potential overflow, we know nothing */
12882 __mark_reg64_unbounded(dst_reg);
12883 return;
12884 }
12885 dst_reg->umin_value *= umin_val;
12886 dst_reg->umax_value *= umax_val;
12887 if (dst_reg->umax_value > S64_MAX) {
12888 /* Overflow possible, we know nothing */
12889 dst_reg->smin_value = S64_MIN;
12890 dst_reg->smax_value = S64_MAX;
12891 } else {
12892 dst_reg->smin_value = dst_reg->umin_value;
12893 dst_reg->smax_value = dst_reg->umax_value;
12894 }
12895 }
12896
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12897 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12898 struct bpf_reg_state *src_reg)
12899 {
12900 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12901 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12902 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12903 s32 smin_val = src_reg->s32_min_value;
12904 u32 umax_val = src_reg->u32_max_value;
12905
12906 if (src_known && dst_known) {
12907 __mark_reg32_known(dst_reg, var32_off.value);
12908 return;
12909 }
12910
12911 /* We get our minimum from the var_off, since that's inherently
12912 * bitwise. Our maximum is the minimum of the operands' maxima.
12913 */
12914 dst_reg->u32_min_value = var32_off.value;
12915 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12916 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12917 /* Lose signed bounds when ANDing negative numbers,
12918 * ain't nobody got time for that.
12919 */
12920 dst_reg->s32_min_value = S32_MIN;
12921 dst_reg->s32_max_value = S32_MAX;
12922 } else {
12923 /* ANDing two positives gives a positive, so safe to
12924 * cast result into s64.
12925 */
12926 dst_reg->s32_min_value = dst_reg->u32_min_value;
12927 dst_reg->s32_max_value = dst_reg->u32_max_value;
12928 }
12929 }
12930
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12931 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12932 struct bpf_reg_state *src_reg)
12933 {
12934 bool src_known = tnum_is_const(src_reg->var_off);
12935 bool dst_known = tnum_is_const(dst_reg->var_off);
12936 s64 smin_val = src_reg->smin_value;
12937 u64 umax_val = src_reg->umax_value;
12938
12939 if (src_known && dst_known) {
12940 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12941 return;
12942 }
12943
12944 /* We get our minimum from the var_off, since that's inherently
12945 * bitwise. Our maximum is the minimum of the operands' maxima.
12946 */
12947 dst_reg->umin_value = dst_reg->var_off.value;
12948 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12949 if (dst_reg->smin_value < 0 || smin_val < 0) {
12950 /* Lose signed bounds when ANDing negative numbers,
12951 * ain't nobody got time for that.
12952 */
12953 dst_reg->smin_value = S64_MIN;
12954 dst_reg->smax_value = S64_MAX;
12955 } else {
12956 /* ANDing two positives gives a positive, so safe to
12957 * cast result into s64.
12958 */
12959 dst_reg->smin_value = dst_reg->umin_value;
12960 dst_reg->smax_value = dst_reg->umax_value;
12961 }
12962 /* We may learn something more from the var_off */
12963 __update_reg_bounds(dst_reg);
12964 }
12965
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12966 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12967 struct bpf_reg_state *src_reg)
12968 {
12969 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12970 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12971 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12972 s32 smin_val = src_reg->s32_min_value;
12973 u32 umin_val = src_reg->u32_min_value;
12974
12975 if (src_known && dst_known) {
12976 __mark_reg32_known(dst_reg, var32_off.value);
12977 return;
12978 }
12979
12980 /* We get our maximum from the var_off, and our minimum is the
12981 * maximum of the operands' minima
12982 */
12983 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12984 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12985 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12986 /* Lose signed bounds when ORing negative numbers,
12987 * ain't nobody got time for that.
12988 */
12989 dst_reg->s32_min_value = S32_MIN;
12990 dst_reg->s32_max_value = S32_MAX;
12991 } else {
12992 /* ORing two positives gives a positive, so safe to
12993 * cast result into s64.
12994 */
12995 dst_reg->s32_min_value = dst_reg->u32_min_value;
12996 dst_reg->s32_max_value = dst_reg->u32_max_value;
12997 }
12998 }
12999
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13000 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13001 struct bpf_reg_state *src_reg)
13002 {
13003 bool src_known = tnum_is_const(src_reg->var_off);
13004 bool dst_known = tnum_is_const(dst_reg->var_off);
13005 s64 smin_val = src_reg->smin_value;
13006 u64 umin_val = src_reg->umin_value;
13007
13008 if (src_known && dst_known) {
13009 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13010 return;
13011 }
13012
13013 /* We get our maximum from the var_off, and our minimum is the
13014 * maximum of the operands' minima
13015 */
13016 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13017 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13018 if (dst_reg->smin_value < 0 || smin_val < 0) {
13019 /* Lose signed bounds when ORing negative numbers,
13020 * ain't nobody got time for that.
13021 */
13022 dst_reg->smin_value = S64_MIN;
13023 dst_reg->smax_value = S64_MAX;
13024 } else {
13025 /* ORing two positives gives a positive, so safe to
13026 * cast result into s64.
13027 */
13028 dst_reg->smin_value = dst_reg->umin_value;
13029 dst_reg->smax_value = dst_reg->umax_value;
13030 }
13031 /* We may learn something more from the var_off */
13032 __update_reg_bounds(dst_reg);
13033 }
13034
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13035 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13036 struct bpf_reg_state *src_reg)
13037 {
13038 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13039 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13040 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13041 s32 smin_val = src_reg->s32_min_value;
13042
13043 if (src_known && dst_known) {
13044 __mark_reg32_known(dst_reg, var32_off.value);
13045 return;
13046 }
13047
13048 /* We get both minimum and maximum from the var32_off. */
13049 dst_reg->u32_min_value = var32_off.value;
13050 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13051
13052 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13053 /* XORing two positive sign numbers gives a positive,
13054 * so safe to cast u32 result into s32.
13055 */
13056 dst_reg->s32_min_value = dst_reg->u32_min_value;
13057 dst_reg->s32_max_value = dst_reg->u32_max_value;
13058 } else {
13059 dst_reg->s32_min_value = S32_MIN;
13060 dst_reg->s32_max_value = S32_MAX;
13061 }
13062 }
13063
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13064 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13065 struct bpf_reg_state *src_reg)
13066 {
13067 bool src_known = tnum_is_const(src_reg->var_off);
13068 bool dst_known = tnum_is_const(dst_reg->var_off);
13069 s64 smin_val = src_reg->smin_value;
13070
13071 if (src_known && dst_known) {
13072 /* dst_reg->var_off.value has been updated earlier */
13073 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13074 return;
13075 }
13076
13077 /* We get both minimum and maximum from the var_off. */
13078 dst_reg->umin_value = dst_reg->var_off.value;
13079 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13080
13081 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13082 /* XORing two positive sign numbers gives a positive,
13083 * so safe to cast u64 result into s64.
13084 */
13085 dst_reg->smin_value = dst_reg->umin_value;
13086 dst_reg->smax_value = dst_reg->umax_value;
13087 } else {
13088 dst_reg->smin_value = S64_MIN;
13089 dst_reg->smax_value = S64_MAX;
13090 }
13091
13092 __update_reg_bounds(dst_reg);
13093 }
13094
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13095 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13096 u64 umin_val, u64 umax_val)
13097 {
13098 /* We lose all sign bit information (except what we can pick
13099 * up from var_off)
13100 */
13101 dst_reg->s32_min_value = S32_MIN;
13102 dst_reg->s32_max_value = S32_MAX;
13103 /* If we might shift our top bit out, then we know nothing */
13104 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13105 dst_reg->u32_min_value = 0;
13106 dst_reg->u32_max_value = U32_MAX;
13107 } else {
13108 dst_reg->u32_min_value <<= umin_val;
13109 dst_reg->u32_max_value <<= umax_val;
13110 }
13111 }
13112
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13113 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13114 struct bpf_reg_state *src_reg)
13115 {
13116 u32 umax_val = src_reg->u32_max_value;
13117 u32 umin_val = src_reg->u32_min_value;
13118 /* u32 alu operation will zext upper bits */
13119 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13120
13121 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13122 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13123 /* Not required but being careful mark reg64 bounds as unknown so
13124 * that we are forced to pick them up from tnum and zext later and
13125 * if some path skips this step we are still safe.
13126 */
13127 __mark_reg64_unbounded(dst_reg);
13128 __update_reg32_bounds(dst_reg);
13129 }
13130
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13131 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13132 u64 umin_val, u64 umax_val)
13133 {
13134 /* Special case <<32 because it is a common compiler pattern to sign
13135 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13136 * positive we know this shift will also be positive so we can track
13137 * bounds correctly. Otherwise we lose all sign bit information except
13138 * what we can pick up from var_off. Perhaps we can generalize this
13139 * later to shifts of any length.
13140 */
13141 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13142 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13143 else
13144 dst_reg->smax_value = S64_MAX;
13145
13146 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13147 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13148 else
13149 dst_reg->smin_value = S64_MIN;
13150
13151 /* If we might shift our top bit out, then we know nothing */
13152 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13153 dst_reg->umin_value = 0;
13154 dst_reg->umax_value = U64_MAX;
13155 } else {
13156 dst_reg->umin_value <<= umin_val;
13157 dst_reg->umax_value <<= umax_val;
13158 }
13159 }
13160
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13161 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13162 struct bpf_reg_state *src_reg)
13163 {
13164 u64 umax_val = src_reg->umax_value;
13165 u64 umin_val = src_reg->umin_value;
13166
13167 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
13168 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13169 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13170
13171 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13172 /* We may learn something more from the var_off */
13173 __update_reg_bounds(dst_reg);
13174 }
13175
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13176 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13177 struct bpf_reg_state *src_reg)
13178 {
13179 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13180 u32 umax_val = src_reg->u32_max_value;
13181 u32 umin_val = src_reg->u32_min_value;
13182
13183 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13184 * be negative, then either:
13185 * 1) src_reg might be zero, so the sign bit of the result is
13186 * unknown, so we lose our signed bounds
13187 * 2) it's known negative, thus the unsigned bounds capture the
13188 * signed bounds
13189 * 3) the signed bounds cross zero, so they tell us nothing
13190 * about the result
13191 * If the value in dst_reg is known nonnegative, then again the
13192 * unsigned bounds capture the signed bounds.
13193 * Thus, in all cases it suffices to blow away our signed bounds
13194 * and rely on inferring new ones from the unsigned bounds and
13195 * var_off of the result.
13196 */
13197 dst_reg->s32_min_value = S32_MIN;
13198 dst_reg->s32_max_value = S32_MAX;
13199
13200 dst_reg->var_off = tnum_rshift(subreg, umin_val);
13201 dst_reg->u32_min_value >>= umax_val;
13202 dst_reg->u32_max_value >>= umin_val;
13203
13204 __mark_reg64_unbounded(dst_reg);
13205 __update_reg32_bounds(dst_reg);
13206 }
13207
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13208 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13209 struct bpf_reg_state *src_reg)
13210 {
13211 u64 umax_val = src_reg->umax_value;
13212 u64 umin_val = src_reg->umin_value;
13213
13214 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13215 * be negative, then either:
13216 * 1) src_reg might be zero, so the sign bit of the result is
13217 * unknown, so we lose our signed bounds
13218 * 2) it's known negative, thus the unsigned bounds capture the
13219 * signed bounds
13220 * 3) the signed bounds cross zero, so they tell us nothing
13221 * about the result
13222 * If the value in dst_reg is known nonnegative, then again the
13223 * unsigned bounds capture the signed bounds.
13224 * Thus, in all cases it suffices to blow away our signed bounds
13225 * and rely on inferring new ones from the unsigned bounds and
13226 * var_off of the result.
13227 */
13228 dst_reg->smin_value = S64_MIN;
13229 dst_reg->smax_value = S64_MAX;
13230 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13231 dst_reg->umin_value >>= umax_val;
13232 dst_reg->umax_value >>= umin_val;
13233
13234 /* Its not easy to operate on alu32 bounds here because it depends
13235 * on bits being shifted in. Take easy way out and mark unbounded
13236 * so we can recalculate later from tnum.
13237 */
13238 __mark_reg32_unbounded(dst_reg);
13239 __update_reg_bounds(dst_reg);
13240 }
13241
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13242 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13243 struct bpf_reg_state *src_reg)
13244 {
13245 u64 umin_val = src_reg->u32_min_value;
13246
13247 /* Upon reaching here, src_known is true and
13248 * umax_val is equal to umin_val.
13249 */
13250 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13251 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13252
13253 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13254
13255 /* blow away the dst_reg umin_value/umax_value and rely on
13256 * dst_reg var_off to refine the result.
13257 */
13258 dst_reg->u32_min_value = 0;
13259 dst_reg->u32_max_value = U32_MAX;
13260
13261 __mark_reg64_unbounded(dst_reg);
13262 __update_reg32_bounds(dst_reg);
13263 }
13264
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13265 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13266 struct bpf_reg_state *src_reg)
13267 {
13268 u64 umin_val = src_reg->umin_value;
13269
13270 /* Upon reaching here, src_known is true and umax_val is equal
13271 * to umin_val.
13272 */
13273 dst_reg->smin_value >>= umin_val;
13274 dst_reg->smax_value >>= umin_val;
13275
13276 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13277
13278 /* blow away the dst_reg umin_value/umax_value and rely on
13279 * dst_reg var_off to refine the result.
13280 */
13281 dst_reg->umin_value = 0;
13282 dst_reg->umax_value = U64_MAX;
13283
13284 /* Its not easy to operate on alu32 bounds here because it depends
13285 * on bits being shifted in from upper 32-bits. Take easy way out
13286 * and mark unbounded so we can recalculate later from tnum.
13287 */
13288 __mark_reg32_unbounded(dst_reg);
13289 __update_reg_bounds(dst_reg);
13290 }
13291
13292 /* WARNING: This function does calculations on 64-bit values, but the actual
13293 * execution may occur on 32-bit values. Therefore, things like bitshifts
13294 * need extra checks in the 32-bit case.
13295 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)13296 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13297 struct bpf_insn *insn,
13298 struct bpf_reg_state *dst_reg,
13299 struct bpf_reg_state src_reg)
13300 {
13301 struct bpf_reg_state *regs = cur_regs(env);
13302 u8 opcode = BPF_OP(insn->code);
13303 bool src_known;
13304 s64 smin_val, smax_val;
13305 u64 umin_val, umax_val;
13306 s32 s32_min_val, s32_max_val;
13307 u32 u32_min_val, u32_max_val;
13308 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13309 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13310 int ret;
13311
13312 smin_val = src_reg.smin_value;
13313 smax_val = src_reg.smax_value;
13314 umin_val = src_reg.umin_value;
13315 umax_val = src_reg.umax_value;
13316
13317 s32_min_val = src_reg.s32_min_value;
13318 s32_max_val = src_reg.s32_max_value;
13319 u32_min_val = src_reg.u32_min_value;
13320 u32_max_val = src_reg.u32_max_value;
13321
13322 if (alu32) {
13323 src_known = tnum_subreg_is_const(src_reg.var_off);
13324 if ((src_known &&
13325 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13326 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13327 /* Taint dst register if offset had invalid bounds
13328 * derived from e.g. dead branches.
13329 */
13330 __mark_reg_unknown(env, dst_reg);
13331 return 0;
13332 }
13333 } else {
13334 src_known = tnum_is_const(src_reg.var_off);
13335 if ((src_known &&
13336 (smin_val != smax_val || umin_val != umax_val)) ||
13337 smin_val > smax_val || umin_val > umax_val) {
13338 /* Taint dst register if offset had invalid bounds
13339 * derived from e.g. dead branches.
13340 */
13341 __mark_reg_unknown(env, dst_reg);
13342 return 0;
13343 }
13344 }
13345
13346 if (!src_known &&
13347 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13348 __mark_reg_unknown(env, dst_reg);
13349 return 0;
13350 }
13351
13352 if (sanitize_needed(opcode)) {
13353 ret = sanitize_val_alu(env, insn);
13354 if (ret < 0)
13355 return sanitize_err(env, insn, ret, NULL, NULL);
13356 }
13357
13358 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13359 * There are two classes of instructions: The first class we track both
13360 * alu32 and alu64 sign/unsigned bounds independently this provides the
13361 * greatest amount of precision when alu operations are mixed with jmp32
13362 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13363 * and BPF_OR. This is possible because these ops have fairly easy to
13364 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13365 * See alu32 verifier tests for examples. The second class of
13366 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13367 * with regards to tracking sign/unsigned bounds because the bits may
13368 * cross subreg boundaries in the alu64 case. When this happens we mark
13369 * the reg unbounded in the subreg bound space and use the resulting
13370 * tnum to calculate an approximation of the sign/unsigned bounds.
13371 */
13372 switch (opcode) {
13373 case BPF_ADD:
13374 scalar32_min_max_add(dst_reg, &src_reg);
13375 scalar_min_max_add(dst_reg, &src_reg);
13376 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13377 break;
13378 case BPF_SUB:
13379 scalar32_min_max_sub(dst_reg, &src_reg);
13380 scalar_min_max_sub(dst_reg, &src_reg);
13381 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13382 break;
13383 case BPF_MUL:
13384 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13385 scalar32_min_max_mul(dst_reg, &src_reg);
13386 scalar_min_max_mul(dst_reg, &src_reg);
13387 break;
13388 case BPF_AND:
13389 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13390 scalar32_min_max_and(dst_reg, &src_reg);
13391 scalar_min_max_and(dst_reg, &src_reg);
13392 break;
13393 case BPF_OR:
13394 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13395 scalar32_min_max_or(dst_reg, &src_reg);
13396 scalar_min_max_or(dst_reg, &src_reg);
13397 break;
13398 case BPF_XOR:
13399 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13400 scalar32_min_max_xor(dst_reg, &src_reg);
13401 scalar_min_max_xor(dst_reg, &src_reg);
13402 break;
13403 case BPF_LSH:
13404 if (umax_val >= insn_bitness) {
13405 /* Shifts greater than 31 or 63 are undefined.
13406 * This includes shifts by a negative number.
13407 */
13408 mark_reg_unknown(env, regs, insn->dst_reg);
13409 break;
13410 }
13411 if (alu32)
13412 scalar32_min_max_lsh(dst_reg, &src_reg);
13413 else
13414 scalar_min_max_lsh(dst_reg, &src_reg);
13415 break;
13416 case BPF_RSH:
13417 if (umax_val >= insn_bitness) {
13418 /* Shifts greater than 31 or 63 are undefined.
13419 * This includes shifts by a negative number.
13420 */
13421 mark_reg_unknown(env, regs, insn->dst_reg);
13422 break;
13423 }
13424 if (alu32)
13425 scalar32_min_max_rsh(dst_reg, &src_reg);
13426 else
13427 scalar_min_max_rsh(dst_reg, &src_reg);
13428 break;
13429 case BPF_ARSH:
13430 if (umax_val >= insn_bitness) {
13431 /* Shifts greater than 31 or 63 are undefined.
13432 * This includes shifts by a negative number.
13433 */
13434 mark_reg_unknown(env, regs, insn->dst_reg);
13435 break;
13436 }
13437 if (alu32)
13438 scalar32_min_max_arsh(dst_reg, &src_reg);
13439 else
13440 scalar_min_max_arsh(dst_reg, &src_reg);
13441 break;
13442 default:
13443 mark_reg_unknown(env, regs, insn->dst_reg);
13444 break;
13445 }
13446
13447 /* ALU32 ops are zero extended into 64bit register */
13448 if (alu32)
13449 zext_32_to_64(dst_reg);
13450 reg_bounds_sync(dst_reg);
13451 return 0;
13452 }
13453
13454 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13455 * and var_off.
13456 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)13457 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13458 struct bpf_insn *insn)
13459 {
13460 struct bpf_verifier_state *vstate = env->cur_state;
13461 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13462 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13463 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13464 u8 opcode = BPF_OP(insn->code);
13465 int err;
13466
13467 dst_reg = ®s[insn->dst_reg];
13468 src_reg = NULL;
13469 if (dst_reg->type != SCALAR_VALUE)
13470 ptr_reg = dst_reg;
13471 else
13472 /* Make sure ID is cleared otherwise dst_reg min/max could be
13473 * incorrectly propagated into other registers by find_equal_scalars()
13474 */
13475 dst_reg->id = 0;
13476 if (BPF_SRC(insn->code) == BPF_X) {
13477 src_reg = ®s[insn->src_reg];
13478 if (src_reg->type != SCALAR_VALUE) {
13479 if (dst_reg->type != SCALAR_VALUE) {
13480 /* Combining two pointers by any ALU op yields
13481 * an arbitrary scalar. Disallow all math except
13482 * pointer subtraction
13483 */
13484 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13485 mark_reg_unknown(env, regs, insn->dst_reg);
13486 return 0;
13487 }
13488 verbose(env, "R%d pointer %s pointer prohibited\n",
13489 insn->dst_reg,
13490 bpf_alu_string[opcode >> 4]);
13491 return -EACCES;
13492 } else {
13493 /* scalar += pointer
13494 * This is legal, but we have to reverse our
13495 * src/dest handling in computing the range
13496 */
13497 err = mark_chain_precision(env, insn->dst_reg);
13498 if (err)
13499 return err;
13500 return adjust_ptr_min_max_vals(env, insn,
13501 src_reg, dst_reg);
13502 }
13503 } else if (ptr_reg) {
13504 /* pointer += scalar */
13505 err = mark_chain_precision(env, insn->src_reg);
13506 if (err)
13507 return err;
13508 return adjust_ptr_min_max_vals(env, insn,
13509 dst_reg, src_reg);
13510 } else if (dst_reg->precise) {
13511 /* if dst_reg is precise, src_reg should be precise as well */
13512 err = mark_chain_precision(env, insn->src_reg);
13513 if (err)
13514 return err;
13515 }
13516 } else {
13517 /* Pretend the src is a reg with a known value, since we only
13518 * need to be able to read from this state.
13519 */
13520 off_reg.type = SCALAR_VALUE;
13521 __mark_reg_known(&off_reg, insn->imm);
13522 src_reg = &off_reg;
13523 if (ptr_reg) /* pointer += K */
13524 return adjust_ptr_min_max_vals(env, insn,
13525 ptr_reg, src_reg);
13526 }
13527
13528 /* Got here implies adding two SCALAR_VALUEs */
13529 if (WARN_ON_ONCE(ptr_reg)) {
13530 print_verifier_state(env, state, true);
13531 verbose(env, "verifier internal error: unexpected ptr_reg\n");
13532 return -EINVAL;
13533 }
13534 if (WARN_ON(!src_reg)) {
13535 print_verifier_state(env, state, true);
13536 verbose(env, "verifier internal error: no src_reg\n");
13537 return -EINVAL;
13538 }
13539 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13540 }
13541
13542 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)13543 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13544 {
13545 struct bpf_reg_state *regs = cur_regs(env);
13546 u8 opcode = BPF_OP(insn->code);
13547 int err;
13548
13549 if (opcode == BPF_END || opcode == BPF_NEG) {
13550 if (opcode == BPF_NEG) {
13551 if (BPF_SRC(insn->code) != BPF_K ||
13552 insn->src_reg != BPF_REG_0 ||
13553 insn->off != 0 || insn->imm != 0) {
13554 verbose(env, "BPF_NEG uses reserved fields\n");
13555 return -EINVAL;
13556 }
13557 } else {
13558 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13559 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13560 (BPF_CLASS(insn->code) == BPF_ALU64 &&
13561 BPF_SRC(insn->code) != BPF_TO_LE)) {
13562 verbose(env, "BPF_END uses reserved fields\n");
13563 return -EINVAL;
13564 }
13565 }
13566
13567 /* check src operand */
13568 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13569 if (err)
13570 return err;
13571
13572 if (is_pointer_value(env, insn->dst_reg)) {
13573 verbose(env, "R%d pointer arithmetic prohibited\n",
13574 insn->dst_reg);
13575 return -EACCES;
13576 }
13577
13578 /* check dest operand */
13579 err = check_reg_arg(env, insn->dst_reg, DST_OP);
13580 if (err)
13581 return err;
13582
13583 } else if (opcode == BPF_MOV) {
13584
13585 if (BPF_SRC(insn->code) == BPF_X) {
13586 if (insn->imm != 0) {
13587 verbose(env, "BPF_MOV uses reserved fields\n");
13588 return -EINVAL;
13589 }
13590
13591 if (BPF_CLASS(insn->code) == BPF_ALU) {
13592 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13593 verbose(env, "BPF_MOV uses reserved fields\n");
13594 return -EINVAL;
13595 }
13596 } else {
13597 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13598 insn->off != 32) {
13599 verbose(env, "BPF_MOV uses reserved fields\n");
13600 return -EINVAL;
13601 }
13602 }
13603
13604 /* check src operand */
13605 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13606 if (err)
13607 return err;
13608 } else {
13609 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13610 verbose(env, "BPF_MOV uses reserved fields\n");
13611 return -EINVAL;
13612 }
13613 }
13614
13615 /* check dest operand, mark as required later */
13616 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13617 if (err)
13618 return err;
13619
13620 if (BPF_SRC(insn->code) == BPF_X) {
13621 struct bpf_reg_state *src_reg = regs + insn->src_reg;
13622 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13623 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13624 !tnum_is_const(src_reg->var_off);
13625
13626 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13627 if (insn->off == 0) {
13628 /* case: R1 = R2
13629 * copy register state to dest reg
13630 */
13631 if (need_id)
13632 /* Assign src and dst registers the same ID
13633 * that will be used by find_equal_scalars()
13634 * to propagate min/max range.
13635 */
13636 src_reg->id = ++env->id_gen;
13637 copy_register_state(dst_reg, src_reg);
13638 dst_reg->live |= REG_LIVE_WRITTEN;
13639 dst_reg->subreg_def = DEF_NOT_SUBREG;
13640 } else {
13641 /* case: R1 = (s8, s16 s32)R2 */
13642 if (is_pointer_value(env, insn->src_reg)) {
13643 verbose(env,
13644 "R%d sign-extension part of pointer\n",
13645 insn->src_reg);
13646 return -EACCES;
13647 } else if (src_reg->type == SCALAR_VALUE) {
13648 bool no_sext;
13649
13650 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13651 if (no_sext && need_id)
13652 src_reg->id = ++env->id_gen;
13653 copy_register_state(dst_reg, src_reg);
13654 if (!no_sext)
13655 dst_reg->id = 0;
13656 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13657 dst_reg->live |= REG_LIVE_WRITTEN;
13658 dst_reg->subreg_def = DEF_NOT_SUBREG;
13659 } else {
13660 mark_reg_unknown(env, regs, insn->dst_reg);
13661 }
13662 }
13663 } else {
13664 /* R1 = (u32) R2 */
13665 if (is_pointer_value(env, insn->src_reg)) {
13666 verbose(env,
13667 "R%d partial copy of pointer\n",
13668 insn->src_reg);
13669 return -EACCES;
13670 } else if (src_reg->type == SCALAR_VALUE) {
13671 if (insn->off == 0) {
13672 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13673
13674 if (is_src_reg_u32 && need_id)
13675 src_reg->id = ++env->id_gen;
13676 copy_register_state(dst_reg, src_reg);
13677 /* Make sure ID is cleared if src_reg is not in u32
13678 * range otherwise dst_reg min/max could be incorrectly
13679 * propagated into src_reg by find_equal_scalars()
13680 */
13681 if (!is_src_reg_u32)
13682 dst_reg->id = 0;
13683 dst_reg->live |= REG_LIVE_WRITTEN;
13684 dst_reg->subreg_def = env->insn_idx + 1;
13685 } else {
13686 /* case: W1 = (s8, s16)W2 */
13687 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13688
13689 if (no_sext && need_id)
13690 src_reg->id = ++env->id_gen;
13691 copy_register_state(dst_reg, src_reg);
13692 if (!no_sext)
13693 dst_reg->id = 0;
13694 dst_reg->live |= REG_LIVE_WRITTEN;
13695 dst_reg->subreg_def = env->insn_idx + 1;
13696 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13697 }
13698 } else {
13699 mark_reg_unknown(env, regs,
13700 insn->dst_reg);
13701 }
13702 zext_32_to_64(dst_reg);
13703 reg_bounds_sync(dst_reg);
13704 }
13705 } else {
13706 /* case: R = imm
13707 * remember the value we stored into this reg
13708 */
13709 /* clear any state __mark_reg_known doesn't set */
13710 mark_reg_unknown(env, regs, insn->dst_reg);
13711 regs[insn->dst_reg].type = SCALAR_VALUE;
13712 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13713 __mark_reg_known(regs + insn->dst_reg,
13714 insn->imm);
13715 } else {
13716 __mark_reg_known(regs + insn->dst_reg,
13717 (u32)insn->imm);
13718 }
13719 }
13720
13721 } else if (opcode > BPF_END) {
13722 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13723 return -EINVAL;
13724
13725 } else { /* all other ALU ops: and, sub, xor, add, ... */
13726
13727 if (BPF_SRC(insn->code) == BPF_X) {
13728 if (insn->imm != 0 || insn->off > 1 ||
13729 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13730 verbose(env, "BPF_ALU uses reserved fields\n");
13731 return -EINVAL;
13732 }
13733 /* check src1 operand */
13734 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13735 if (err)
13736 return err;
13737 } else {
13738 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13739 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13740 verbose(env, "BPF_ALU uses reserved fields\n");
13741 return -EINVAL;
13742 }
13743 }
13744
13745 /* check src2 operand */
13746 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13747 if (err)
13748 return err;
13749
13750 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13751 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13752 verbose(env, "div by zero\n");
13753 return -EINVAL;
13754 }
13755
13756 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13757 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13758 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13759
13760 if (insn->imm < 0 || insn->imm >= size) {
13761 verbose(env, "invalid shift %d\n", insn->imm);
13762 return -EINVAL;
13763 }
13764 }
13765
13766 /* check dest operand */
13767 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13768 if (err)
13769 return err;
13770
13771 return adjust_reg_min_max_vals(env, insn);
13772 }
13773
13774 return 0;
13775 }
13776
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)13777 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13778 struct bpf_reg_state *dst_reg,
13779 enum bpf_reg_type type,
13780 bool range_right_open)
13781 {
13782 struct bpf_func_state *state;
13783 struct bpf_reg_state *reg;
13784 int new_range;
13785
13786 if (dst_reg->off < 0 ||
13787 (dst_reg->off == 0 && range_right_open))
13788 /* This doesn't give us any range */
13789 return;
13790
13791 if (dst_reg->umax_value > MAX_PACKET_OFF ||
13792 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13793 /* Risk of overflow. For instance, ptr + (1<<63) may be less
13794 * than pkt_end, but that's because it's also less than pkt.
13795 */
13796 return;
13797
13798 new_range = dst_reg->off;
13799 if (range_right_open)
13800 new_range++;
13801
13802 /* Examples for register markings:
13803 *
13804 * pkt_data in dst register:
13805 *
13806 * r2 = r3;
13807 * r2 += 8;
13808 * if (r2 > pkt_end) goto <handle exception>
13809 * <access okay>
13810 *
13811 * r2 = r3;
13812 * r2 += 8;
13813 * if (r2 < pkt_end) goto <access okay>
13814 * <handle exception>
13815 *
13816 * Where:
13817 * r2 == dst_reg, pkt_end == src_reg
13818 * r2=pkt(id=n,off=8,r=0)
13819 * r3=pkt(id=n,off=0,r=0)
13820 *
13821 * pkt_data in src register:
13822 *
13823 * r2 = r3;
13824 * r2 += 8;
13825 * if (pkt_end >= r2) goto <access okay>
13826 * <handle exception>
13827 *
13828 * r2 = r3;
13829 * r2 += 8;
13830 * if (pkt_end <= r2) goto <handle exception>
13831 * <access okay>
13832 *
13833 * Where:
13834 * pkt_end == dst_reg, r2 == src_reg
13835 * r2=pkt(id=n,off=8,r=0)
13836 * r3=pkt(id=n,off=0,r=0)
13837 *
13838 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13839 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13840 * and [r3, r3 + 8-1) respectively is safe to access depending on
13841 * the check.
13842 */
13843
13844 /* If our ids match, then we must have the same max_value. And we
13845 * don't care about the other reg's fixed offset, since if it's too big
13846 * the range won't allow anything.
13847 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13848 */
13849 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13850 if (reg->type == type && reg->id == dst_reg->id)
13851 /* keep the maximum range already checked */
13852 reg->range = max(reg->range, new_range);
13853 }));
13854 }
13855
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)13856 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13857 {
13858 struct tnum subreg = tnum_subreg(reg->var_off);
13859 s32 sval = (s32)val;
13860
13861 switch (opcode) {
13862 case BPF_JEQ:
13863 if (tnum_is_const(subreg))
13864 return !!tnum_equals_const(subreg, val);
13865 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13866 return 0;
13867 break;
13868 case BPF_JNE:
13869 if (tnum_is_const(subreg))
13870 return !tnum_equals_const(subreg, val);
13871 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13872 return 1;
13873 break;
13874 case BPF_JSET:
13875 if ((~subreg.mask & subreg.value) & val)
13876 return 1;
13877 if (!((subreg.mask | subreg.value) & val))
13878 return 0;
13879 break;
13880 case BPF_JGT:
13881 if (reg->u32_min_value > val)
13882 return 1;
13883 else if (reg->u32_max_value <= val)
13884 return 0;
13885 break;
13886 case BPF_JSGT:
13887 if (reg->s32_min_value > sval)
13888 return 1;
13889 else if (reg->s32_max_value <= sval)
13890 return 0;
13891 break;
13892 case BPF_JLT:
13893 if (reg->u32_max_value < val)
13894 return 1;
13895 else if (reg->u32_min_value >= val)
13896 return 0;
13897 break;
13898 case BPF_JSLT:
13899 if (reg->s32_max_value < sval)
13900 return 1;
13901 else if (reg->s32_min_value >= sval)
13902 return 0;
13903 break;
13904 case BPF_JGE:
13905 if (reg->u32_min_value >= val)
13906 return 1;
13907 else if (reg->u32_max_value < val)
13908 return 0;
13909 break;
13910 case BPF_JSGE:
13911 if (reg->s32_min_value >= sval)
13912 return 1;
13913 else if (reg->s32_max_value < sval)
13914 return 0;
13915 break;
13916 case BPF_JLE:
13917 if (reg->u32_max_value <= val)
13918 return 1;
13919 else if (reg->u32_min_value > val)
13920 return 0;
13921 break;
13922 case BPF_JSLE:
13923 if (reg->s32_max_value <= sval)
13924 return 1;
13925 else if (reg->s32_min_value > sval)
13926 return 0;
13927 break;
13928 }
13929
13930 return -1;
13931 }
13932
13933
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)13934 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13935 {
13936 s64 sval = (s64)val;
13937
13938 switch (opcode) {
13939 case BPF_JEQ:
13940 if (tnum_is_const(reg->var_off))
13941 return !!tnum_equals_const(reg->var_off, val);
13942 else if (val < reg->umin_value || val > reg->umax_value)
13943 return 0;
13944 break;
13945 case BPF_JNE:
13946 if (tnum_is_const(reg->var_off))
13947 return !tnum_equals_const(reg->var_off, val);
13948 else if (val < reg->umin_value || val > reg->umax_value)
13949 return 1;
13950 break;
13951 case BPF_JSET:
13952 if ((~reg->var_off.mask & reg->var_off.value) & val)
13953 return 1;
13954 if (!((reg->var_off.mask | reg->var_off.value) & val))
13955 return 0;
13956 break;
13957 case BPF_JGT:
13958 if (reg->umin_value > val)
13959 return 1;
13960 else if (reg->umax_value <= val)
13961 return 0;
13962 break;
13963 case BPF_JSGT:
13964 if (reg->smin_value > sval)
13965 return 1;
13966 else if (reg->smax_value <= sval)
13967 return 0;
13968 break;
13969 case BPF_JLT:
13970 if (reg->umax_value < val)
13971 return 1;
13972 else if (reg->umin_value >= val)
13973 return 0;
13974 break;
13975 case BPF_JSLT:
13976 if (reg->smax_value < sval)
13977 return 1;
13978 else if (reg->smin_value >= sval)
13979 return 0;
13980 break;
13981 case BPF_JGE:
13982 if (reg->umin_value >= val)
13983 return 1;
13984 else if (reg->umax_value < val)
13985 return 0;
13986 break;
13987 case BPF_JSGE:
13988 if (reg->smin_value >= sval)
13989 return 1;
13990 else if (reg->smax_value < sval)
13991 return 0;
13992 break;
13993 case BPF_JLE:
13994 if (reg->umax_value <= val)
13995 return 1;
13996 else if (reg->umin_value > val)
13997 return 0;
13998 break;
13999 case BPF_JSLE:
14000 if (reg->smax_value <= sval)
14001 return 1;
14002 else if (reg->smin_value > sval)
14003 return 0;
14004 break;
14005 }
14006
14007 return -1;
14008 }
14009
14010 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14011 * and return:
14012 * 1 - branch will be taken and "goto target" will be executed
14013 * 0 - branch will not be taken and fall-through to next insn
14014 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14015 * range [0,10]
14016 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)14017 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14018 bool is_jmp32)
14019 {
14020 if (__is_pointer_value(false, reg)) {
14021 if (!reg_not_null(reg))
14022 return -1;
14023
14024 /* If pointer is valid tests against zero will fail so we can
14025 * use this to direct branch taken.
14026 */
14027 if (val != 0)
14028 return -1;
14029
14030 switch (opcode) {
14031 case BPF_JEQ:
14032 return 0;
14033 case BPF_JNE:
14034 return 1;
14035 default:
14036 return -1;
14037 }
14038 }
14039
14040 if (is_jmp32)
14041 return is_branch32_taken(reg, val, opcode);
14042 return is_branch64_taken(reg, val, opcode);
14043 }
14044
flip_opcode(u32 opcode)14045 static int flip_opcode(u32 opcode)
14046 {
14047 /* How can we transform "a <op> b" into "b <op> a"? */
14048 static const u8 opcode_flip[16] = {
14049 /* these stay the same */
14050 [BPF_JEQ >> 4] = BPF_JEQ,
14051 [BPF_JNE >> 4] = BPF_JNE,
14052 [BPF_JSET >> 4] = BPF_JSET,
14053 /* these swap "lesser" and "greater" (L and G in the opcodes) */
14054 [BPF_JGE >> 4] = BPF_JLE,
14055 [BPF_JGT >> 4] = BPF_JLT,
14056 [BPF_JLE >> 4] = BPF_JGE,
14057 [BPF_JLT >> 4] = BPF_JGT,
14058 [BPF_JSGE >> 4] = BPF_JSLE,
14059 [BPF_JSGT >> 4] = BPF_JSLT,
14060 [BPF_JSLE >> 4] = BPF_JSGE,
14061 [BPF_JSLT >> 4] = BPF_JSGT
14062 };
14063 return opcode_flip[opcode >> 4];
14064 }
14065
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)14066 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14067 struct bpf_reg_state *src_reg,
14068 u8 opcode)
14069 {
14070 struct bpf_reg_state *pkt;
14071
14072 if (src_reg->type == PTR_TO_PACKET_END) {
14073 pkt = dst_reg;
14074 } else if (dst_reg->type == PTR_TO_PACKET_END) {
14075 pkt = src_reg;
14076 opcode = flip_opcode(opcode);
14077 } else {
14078 return -1;
14079 }
14080
14081 if (pkt->range >= 0)
14082 return -1;
14083
14084 switch (opcode) {
14085 case BPF_JLE:
14086 /* pkt <= pkt_end */
14087 fallthrough;
14088 case BPF_JGT:
14089 /* pkt > pkt_end */
14090 if (pkt->range == BEYOND_PKT_END)
14091 /* pkt has at last one extra byte beyond pkt_end */
14092 return opcode == BPF_JGT;
14093 break;
14094 case BPF_JLT:
14095 /* pkt < pkt_end */
14096 fallthrough;
14097 case BPF_JGE:
14098 /* pkt >= pkt_end */
14099 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14100 return opcode == BPF_JGE;
14101 break;
14102 }
14103 return -1;
14104 }
14105
14106 /* Adjusts the register min/max values in the case that the dst_reg is the
14107 * variable register that we are working on, and src_reg is a constant or we're
14108 * simply doing a BPF_K check.
14109 * In JEQ/JNE cases we also adjust the var_off values.
14110 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14111 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14112 struct bpf_reg_state *false_reg,
14113 u64 val, u32 val32,
14114 u8 opcode, bool is_jmp32)
14115 {
14116 struct tnum false_32off = tnum_subreg(false_reg->var_off);
14117 struct tnum false_64off = false_reg->var_off;
14118 struct tnum true_32off = tnum_subreg(true_reg->var_off);
14119 struct tnum true_64off = true_reg->var_off;
14120 s64 sval = (s64)val;
14121 s32 sval32 = (s32)val32;
14122
14123 /* If the dst_reg is a pointer, we can't learn anything about its
14124 * variable offset from the compare (unless src_reg were a pointer into
14125 * the same object, but we don't bother with that.
14126 * Since false_reg and true_reg have the same type by construction, we
14127 * only need to check one of them for pointerness.
14128 */
14129 if (__is_pointer_value(false, false_reg))
14130 return;
14131
14132 switch (opcode) {
14133 /* JEQ/JNE comparison doesn't change the register equivalence.
14134 *
14135 * r1 = r2;
14136 * if (r1 == 42) goto label;
14137 * ...
14138 * label: // here both r1 and r2 are known to be 42.
14139 *
14140 * Hence when marking register as known preserve it's ID.
14141 */
14142 case BPF_JEQ:
14143 if (is_jmp32) {
14144 __mark_reg32_known(true_reg, val32);
14145 true_32off = tnum_subreg(true_reg->var_off);
14146 } else {
14147 ___mark_reg_known(true_reg, val);
14148 true_64off = true_reg->var_off;
14149 }
14150 break;
14151 case BPF_JNE:
14152 if (is_jmp32) {
14153 __mark_reg32_known(false_reg, val32);
14154 false_32off = tnum_subreg(false_reg->var_off);
14155 } else {
14156 ___mark_reg_known(false_reg, val);
14157 false_64off = false_reg->var_off;
14158 }
14159 break;
14160 case BPF_JSET:
14161 if (is_jmp32) {
14162 false_32off = tnum_and(false_32off, tnum_const(~val32));
14163 if (is_power_of_2(val32))
14164 true_32off = tnum_or(true_32off,
14165 tnum_const(val32));
14166 } else {
14167 false_64off = tnum_and(false_64off, tnum_const(~val));
14168 if (is_power_of_2(val))
14169 true_64off = tnum_or(true_64off,
14170 tnum_const(val));
14171 }
14172 break;
14173 case BPF_JGE:
14174 case BPF_JGT:
14175 {
14176 if (is_jmp32) {
14177 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
14178 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14179
14180 false_reg->u32_max_value = min(false_reg->u32_max_value,
14181 false_umax);
14182 true_reg->u32_min_value = max(true_reg->u32_min_value,
14183 true_umin);
14184 } else {
14185 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
14186 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14187
14188 false_reg->umax_value = min(false_reg->umax_value, false_umax);
14189 true_reg->umin_value = max(true_reg->umin_value, true_umin);
14190 }
14191 break;
14192 }
14193 case BPF_JSGE:
14194 case BPF_JSGT:
14195 {
14196 if (is_jmp32) {
14197 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
14198 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14199
14200 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14201 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14202 } else {
14203 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
14204 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14205
14206 false_reg->smax_value = min(false_reg->smax_value, false_smax);
14207 true_reg->smin_value = max(true_reg->smin_value, true_smin);
14208 }
14209 break;
14210 }
14211 case BPF_JLE:
14212 case BPF_JLT:
14213 {
14214 if (is_jmp32) {
14215 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
14216 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14217
14218 false_reg->u32_min_value = max(false_reg->u32_min_value,
14219 false_umin);
14220 true_reg->u32_max_value = min(true_reg->u32_max_value,
14221 true_umax);
14222 } else {
14223 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
14224 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14225
14226 false_reg->umin_value = max(false_reg->umin_value, false_umin);
14227 true_reg->umax_value = min(true_reg->umax_value, true_umax);
14228 }
14229 break;
14230 }
14231 case BPF_JSLE:
14232 case BPF_JSLT:
14233 {
14234 if (is_jmp32) {
14235 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
14236 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14237
14238 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14239 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14240 } else {
14241 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
14242 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14243
14244 false_reg->smin_value = max(false_reg->smin_value, false_smin);
14245 true_reg->smax_value = min(true_reg->smax_value, true_smax);
14246 }
14247 break;
14248 }
14249 default:
14250 return;
14251 }
14252
14253 if (is_jmp32) {
14254 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14255 tnum_subreg(false_32off));
14256 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14257 tnum_subreg(true_32off));
14258 __reg_combine_32_into_64(false_reg);
14259 __reg_combine_32_into_64(true_reg);
14260 } else {
14261 false_reg->var_off = false_64off;
14262 true_reg->var_off = true_64off;
14263 __reg_combine_64_into_32(false_reg);
14264 __reg_combine_64_into_32(true_reg);
14265 }
14266 }
14267
14268 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14269 * the variable reg.
14270 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14271 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14272 struct bpf_reg_state *false_reg,
14273 u64 val, u32 val32,
14274 u8 opcode, bool is_jmp32)
14275 {
14276 opcode = flip_opcode(opcode);
14277 /* This uses zero as "not present in table"; luckily the zero opcode,
14278 * BPF_JA, can't get here.
14279 */
14280 if (opcode)
14281 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14282 }
14283
14284 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)14285 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14286 struct bpf_reg_state *dst_reg)
14287 {
14288 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14289 dst_reg->umin_value);
14290 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14291 dst_reg->umax_value);
14292 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14293 dst_reg->smin_value);
14294 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14295 dst_reg->smax_value);
14296 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14297 dst_reg->var_off);
14298 reg_bounds_sync(src_reg);
14299 reg_bounds_sync(dst_reg);
14300 }
14301
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)14302 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14303 struct bpf_reg_state *true_dst,
14304 struct bpf_reg_state *false_src,
14305 struct bpf_reg_state *false_dst,
14306 u8 opcode)
14307 {
14308 switch (opcode) {
14309 case BPF_JEQ:
14310 __reg_combine_min_max(true_src, true_dst);
14311 break;
14312 case BPF_JNE:
14313 __reg_combine_min_max(false_src, false_dst);
14314 break;
14315 }
14316 }
14317
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)14318 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14319 struct bpf_reg_state *reg, u32 id,
14320 bool is_null)
14321 {
14322 if (type_may_be_null(reg->type) && reg->id == id &&
14323 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14324 /* Old offset (both fixed and variable parts) should have been
14325 * known-zero, because we don't allow pointer arithmetic on
14326 * pointers that might be NULL. If we see this happening, don't
14327 * convert the register.
14328 *
14329 * But in some cases, some helpers that return local kptrs
14330 * advance offset for the returned pointer. In those cases, it
14331 * is fine to expect to see reg->off.
14332 */
14333 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14334 return;
14335 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14336 WARN_ON_ONCE(reg->off))
14337 return;
14338
14339 if (is_null) {
14340 reg->type = SCALAR_VALUE;
14341 /* We don't need id and ref_obj_id from this point
14342 * onwards anymore, thus we should better reset it,
14343 * so that state pruning has chances to take effect.
14344 */
14345 reg->id = 0;
14346 reg->ref_obj_id = 0;
14347
14348 return;
14349 }
14350
14351 mark_ptr_not_null_reg(reg);
14352
14353 if (!reg_may_point_to_spin_lock(reg)) {
14354 /* For not-NULL ptr, reg->ref_obj_id will be reset
14355 * in release_reference().
14356 *
14357 * reg->id is still used by spin_lock ptr. Other
14358 * than spin_lock ptr type, reg->id can be reset.
14359 */
14360 reg->id = 0;
14361 }
14362 }
14363 }
14364
14365 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14366 * be folded together at some point.
14367 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)14368 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14369 bool is_null)
14370 {
14371 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14372 struct bpf_reg_state *regs = state->regs, *reg;
14373 u32 ref_obj_id = regs[regno].ref_obj_id;
14374 u32 id = regs[regno].id;
14375
14376 if (ref_obj_id && ref_obj_id == id && is_null)
14377 /* regs[regno] is in the " == NULL" branch.
14378 * No one could have freed the reference state before
14379 * doing the NULL check.
14380 */
14381 WARN_ON_ONCE(release_reference_state(state, id));
14382
14383 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14384 mark_ptr_or_null_reg(state, reg, id, is_null);
14385 }));
14386 }
14387
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)14388 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14389 struct bpf_reg_state *dst_reg,
14390 struct bpf_reg_state *src_reg,
14391 struct bpf_verifier_state *this_branch,
14392 struct bpf_verifier_state *other_branch)
14393 {
14394 if (BPF_SRC(insn->code) != BPF_X)
14395 return false;
14396
14397 /* Pointers are always 64-bit. */
14398 if (BPF_CLASS(insn->code) == BPF_JMP32)
14399 return false;
14400
14401 switch (BPF_OP(insn->code)) {
14402 case BPF_JGT:
14403 if ((dst_reg->type == PTR_TO_PACKET &&
14404 src_reg->type == PTR_TO_PACKET_END) ||
14405 (dst_reg->type == PTR_TO_PACKET_META &&
14406 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14407 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14408 find_good_pkt_pointers(this_branch, dst_reg,
14409 dst_reg->type, false);
14410 mark_pkt_end(other_branch, insn->dst_reg, true);
14411 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14412 src_reg->type == PTR_TO_PACKET) ||
14413 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14414 src_reg->type == PTR_TO_PACKET_META)) {
14415 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
14416 find_good_pkt_pointers(other_branch, src_reg,
14417 src_reg->type, true);
14418 mark_pkt_end(this_branch, insn->src_reg, false);
14419 } else {
14420 return false;
14421 }
14422 break;
14423 case BPF_JLT:
14424 if ((dst_reg->type == PTR_TO_PACKET &&
14425 src_reg->type == PTR_TO_PACKET_END) ||
14426 (dst_reg->type == PTR_TO_PACKET_META &&
14427 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14428 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14429 find_good_pkt_pointers(other_branch, dst_reg,
14430 dst_reg->type, true);
14431 mark_pkt_end(this_branch, insn->dst_reg, false);
14432 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14433 src_reg->type == PTR_TO_PACKET) ||
14434 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14435 src_reg->type == PTR_TO_PACKET_META)) {
14436 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
14437 find_good_pkt_pointers(this_branch, src_reg,
14438 src_reg->type, false);
14439 mark_pkt_end(other_branch, insn->src_reg, true);
14440 } else {
14441 return false;
14442 }
14443 break;
14444 case BPF_JGE:
14445 if ((dst_reg->type == PTR_TO_PACKET &&
14446 src_reg->type == PTR_TO_PACKET_END) ||
14447 (dst_reg->type == PTR_TO_PACKET_META &&
14448 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14449 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14450 find_good_pkt_pointers(this_branch, dst_reg,
14451 dst_reg->type, true);
14452 mark_pkt_end(other_branch, insn->dst_reg, false);
14453 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14454 src_reg->type == PTR_TO_PACKET) ||
14455 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14456 src_reg->type == PTR_TO_PACKET_META)) {
14457 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14458 find_good_pkt_pointers(other_branch, src_reg,
14459 src_reg->type, false);
14460 mark_pkt_end(this_branch, insn->src_reg, true);
14461 } else {
14462 return false;
14463 }
14464 break;
14465 case BPF_JLE:
14466 if ((dst_reg->type == PTR_TO_PACKET &&
14467 src_reg->type == PTR_TO_PACKET_END) ||
14468 (dst_reg->type == PTR_TO_PACKET_META &&
14469 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14470 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14471 find_good_pkt_pointers(other_branch, dst_reg,
14472 dst_reg->type, false);
14473 mark_pkt_end(this_branch, insn->dst_reg, true);
14474 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14475 src_reg->type == PTR_TO_PACKET) ||
14476 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14477 src_reg->type == PTR_TO_PACKET_META)) {
14478 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14479 find_good_pkt_pointers(this_branch, src_reg,
14480 src_reg->type, true);
14481 mark_pkt_end(other_branch, insn->src_reg, false);
14482 } else {
14483 return false;
14484 }
14485 break;
14486 default:
14487 return false;
14488 }
14489
14490 return true;
14491 }
14492
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)14493 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14494 struct bpf_reg_state *known_reg)
14495 {
14496 struct bpf_func_state *state;
14497 struct bpf_reg_state *reg;
14498
14499 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14500 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14501 copy_register_state(reg, known_reg);
14502 }));
14503 }
14504
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)14505 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14506 struct bpf_insn *insn, int *insn_idx)
14507 {
14508 struct bpf_verifier_state *this_branch = env->cur_state;
14509 struct bpf_verifier_state *other_branch;
14510 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14511 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14512 struct bpf_reg_state *eq_branch_regs;
14513 u8 opcode = BPF_OP(insn->code);
14514 bool is_jmp32;
14515 int pred = -1;
14516 int err;
14517
14518 /* Only conditional jumps are expected to reach here. */
14519 if (opcode == BPF_JA || opcode > BPF_JSLE) {
14520 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14521 return -EINVAL;
14522 }
14523
14524 /* check src2 operand */
14525 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14526 if (err)
14527 return err;
14528
14529 dst_reg = ®s[insn->dst_reg];
14530 if (BPF_SRC(insn->code) == BPF_X) {
14531 if (insn->imm != 0) {
14532 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14533 return -EINVAL;
14534 }
14535
14536 /* check src1 operand */
14537 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14538 if (err)
14539 return err;
14540
14541 src_reg = ®s[insn->src_reg];
14542 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14543 is_pointer_value(env, insn->src_reg)) {
14544 verbose(env, "R%d pointer comparison prohibited\n",
14545 insn->src_reg);
14546 return -EACCES;
14547 }
14548 } else {
14549 if (insn->src_reg != BPF_REG_0) {
14550 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14551 return -EINVAL;
14552 }
14553 }
14554
14555 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14556
14557 if (BPF_SRC(insn->code) == BPF_K) {
14558 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14559 } else if (src_reg->type == SCALAR_VALUE &&
14560 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14561 pred = is_branch_taken(dst_reg,
14562 tnum_subreg(src_reg->var_off).value,
14563 opcode,
14564 is_jmp32);
14565 } else if (src_reg->type == SCALAR_VALUE &&
14566 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14567 pred = is_branch_taken(dst_reg,
14568 src_reg->var_off.value,
14569 opcode,
14570 is_jmp32);
14571 } else if (dst_reg->type == SCALAR_VALUE &&
14572 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14573 pred = is_branch_taken(src_reg,
14574 tnum_subreg(dst_reg->var_off).value,
14575 flip_opcode(opcode),
14576 is_jmp32);
14577 } else if (dst_reg->type == SCALAR_VALUE &&
14578 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14579 pred = is_branch_taken(src_reg,
14580 dst_reg->var_off.value,
14581 flip_opcode(opcode),
14582 is_jmp32);
14583 } else if (reg_is_pkt_pointer_any(dst_reg) &&
14584 reg_is_pkt_pointer_any(src_reg) &&
14585 !is_jmp32) {
14586 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14587 }
14588
14589 if (pred >= 0) {
14590 /* If we get here with a dst_reg pointer type it is because
14591 * above is_branch_taken() special cased the 0 comparison.
14592 */
14593 if (!__is_pointer_value(false, dst_reg))
14594 err = mark_chain_precision(env, insn->dst_reg);
14595 if (BPF_SRC(insn->code) == BPF_X && !err &&
14596 !__is_pointer_value(false, src_reg))
14597 err = mark_chain_precision(env, insn->src_reg);
14598 if (err)
14599 return err;
14600 }
14601
14602 if (pred == 1) {
14603 /* Only follow the goto, ignore fall-through. If needed, push
14604 * the fall-through branch for simulation under speculative
14605 * execution.
14606 */
14607 if (!env->bypass_spec_v1 &&
14608 !sanitize_speculative_path(env, insn, *insn_idx + 1,
14609 *insn_idx))
14610 return -EFAULT;
14611 if (env->log.level & BPF_LOG_LEVEL)
14612 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14613 *insn_idx += insn->off;
14614 return 0;
14615 } else if (pred == 0) {
14616 /* Only follow the fall-through branch, since that's where the
14617 * program will go. If needed, push the goto branch for
14618 * simulation under speculative execution.
14619 */
14620 if (!env->bypass_spec_v1 &&
14621 !sanitize_speculative_path(env, insn,
14622 *insn_idx + insn->off + 1,
14623 *insn_idx))
14624 return -EFAULT;
14625 if (env->log.level & BPF_LOG_LEVEL)
14626 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14627 return 0;
14628 }
14629
14630 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14631 false);
14632 if (!other_branch)
14633 return -EFAULT;
14634 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14635
14636 /* detect if we are comparing against a constant value so we can adjust
14637 * our min/max values for our dst register.
14638 * this is only legit if both are scalars (or pointers to the same
14639 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14640 * because otherwise the different base pointers mean the offsets aren't
14641 * comparable.
14642 */
14643 if (BPF_SRC(insn->code) == BPF_X) {
14644 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
14645
14646 if (dst_reg->type == SCALAR_VALUE &&
14647 src_reg->type == SCALAR_VALUE) {
14648 if (tnum_is_const(src_reg->var_off) ||
14649 (is_jmp32 &&
14650 tnum_is_const(tnum_subreg(src_reg->var_off))))
14651 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14652 dst_reg,
14653 src_reg->var_off.value,
14654 tnum_subreg(src_reg->var_off).value,
14655 opcode, is_jmp32);
14656 else if (tnum_is_const(dst_reg->var_off) ||
14657 (is_jmp32 &&
14658 tnum_is_const(tnum_subreg(dst_reg->var_off))))
14659 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14660 src_reg,
14661 dst_reg->var_off.value,
14662 tnum_subreg(dst_reg->var_off).value,
14663 opcode, is_jmp32);
14664 else if (!is_jmp32 &&
14665 (opcode == BPF_JEQ || opcode == BPF_JNE))
14666 /* Comparing for equality, we can combine knowledge */
14667 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14668 &other_branch_regs[insn->dst_reg],
14669 src_reg, dst_reg, opcode);
14670 if (src_reg->id &&
14671 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14672 find_equal_scalars(this_branch, src_reg);
14673 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14674 }
14675
14676 }
14677 } else if (dst_reg->type == SCALAR_VALUE) {
14678 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14679 dst_reg, insn->imm, (u32)insn->imm,
14680 opcode, is_jmp32);
14681 }
14682
14683 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14684 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14685 find_equal_scalars(this_branch, dst_reg);
14686 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14687 }
14688
14689 /* if one pointer register is compared to another pointer
14690 * register check if PTR_MAYBE_NULL could be lifted.
14691 * E.g. register A - maybe null
14692 * register B - not null
14693 * for JNE A, B, ... - A is not null in the false branch;
14694 * for JEQ A, B, ... - A is not null in the true branch.
14695 *
14696 * Since PTR_TO_BTF_ID points to a kernel struct that does
14697 * not need to be null checked by the BPF program, i.e.,
14698 * could be null even without PTR_MAYBE_NULL marking, so
14699 * only propagate nullness when neither reg is that type.
14700 */
14701 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14702 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14703 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14704 base_type(src_reg->type) != PTR_TO_BTF_ID &&
14705 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14706 eq_branch_regs = NULL;
14707 switch (opcode) {
14708 case BPF_JEQ:
14709 eq_branch_regs = other_branch_regs;
14710 break;
14711 case BPF_JNE:
14712 eq_branch_regs = regs;
14713 break;
14714 default:
14715 /* do nothing */
14716 break;
14717 }
14718 if (eq_branch_regs) {
14719 if (type_may_be_null(src_reg->type))
14720 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14721 else
14722 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14723 }
14724 }
14725
14726 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14727 * NOTE: these optimizations below are related with pointer comparison
14728 * which will never be JMP32.
14729 */
14730 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14731 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14732 type_may_be_null(dst_reg->type)) {
14733 /* Mark all identical registers in each branch as either
14734 * safe or unknown depending R == 0 or R != 0 conditional.
14735 */
14736 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14737 opcode == BPF_JNE);
14738 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14739 opcode == BPF_JEQ);
14740 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
14741 this_branch, other_branch) &&
14742 is_pointer_value(env, insn->dst_reg)) {
14743 verbose(env, "R%d pointer comparison prohibited\n",
14744 insn->dst_reg);
14745 return -EACCES;
14746 }
14747 if (env->log.level & BPF_LOG_LEVEL)
14748 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14749 return 0;
14750 }
14751
14752 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)14753 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14754 {
14755 struct bpf_insn_aux_data *aux = cur_aux(env);
14756 struct bpf_reg_state *regs = cur_regs(env);
14757 struct bpf_reg_state *dst_reg;
14758 struct bpf_map *map;
14759 int err;
14760
14761 if (BPF_SIZE(insn->code) != BPF_DW) {
14762 verbose(env, "invalid BPF_LD_IMM insn\n");
14763 return -EINVAL;
14764 }
14765 if (insn->off != 0) {
14766 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14767 return -EINVAL;
14768 }
14769
14770 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14771 if (err)
14772 return err;
14773
14774 dst_reg = ®s[insn->dst_reg];
14775 if (insn->src_reg == 0) {
14776 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14777
14778 dst_reg->type = SCALAR_VALUE;
14779 __mark_reg_known(®s[insn->dst_reg], imm);
14780 return 0;
14781 }
14782
14783 /* All special src_reg cases are listed below. From this point onwards
14784 * we either succeed and assign a corresponding dst_reg->type after
14785 * zeroing the offset, or fail and reject the program.
14786 */
14787 mark_reg_known_zero(env, regs, insn->dst_reg);
14788
14789 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14790 dst_reg->type = aux->btf_var.reg_type;
14791 switch (base_type(dst_reg->type)) {
14792 case PTR_TO_MEM:
14793 dst_reg->mem_size = aux->btf_var.mem_size;
14794 break;
14795 case PTR_TO_BTF_ID:
14796 dst_reg->btf = aux->btf_var.btf;
14797 dst_reg->btf_id = aux->btf_var.btf_id;
14798 break;
14799 default:
14800 verbose(env, "bpf verifier is misconfigured\n");
14801 return -EFAULT;
14802 }
14803 return 0;
14804 }
14805
14806 if (insn->src_reg == BPF_PSEUDO_FUNC) {
14807 struct bpf_prog_aux *aux = env->prog->aux;
14808 u32 subprogno = find_subprog(env,
14809 env->insn_idx + insn->imm + 1);
14810
14811 if (!aux->func_info) {
14812 verbose(env, "missing btf func_info\n");
14813 return -EINVAL;
14814 }
14815 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14816 verbose(env, "callback function not static\n");
14817 return -EINVAL;
14818 }
14819
14820 dst_reg->type = PTR_TO_FUNC;
14821 dst_reg->subprogno = subprogno;
14822 return 0;
14823 }
14824
14825 map = env->used_maps[aux->map_index];
14826 dst_reg->map_ptr = map;
14827
14828 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14829 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14830 dst_reg->type = PTR_TO_MAP_VALUE;
14831 dst_reg->off = aux->map_off;
14832 WARN_ON_ONCE(map->max_entries != 1);
14833 /* We want reg->id to be same (0) as map_value is not distinct */
14834 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14835 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14836 dst_reg->type = CONST_PTR_TO_MAP;
14837 } else {
14838 verbose(env, "bpf verifier is misconfigured\n");
14839 return -EINVAL;
14840 }
14841
14842 return 0;
14843 }
14844
may_access_skb(enum bpf_prog_type type)14845 static bool may_access_skb(enum bpf_prog_type type)
14846 {
14847 switch (type) {
14848 case BPF_PROG_TYPE_SOCKET_FILTER:
14849 case BPF_PROG_TYPE_SCHED_CLS:
14850 case BPF_PROG_TYPE_SCHED_ACT:
14851 return true;
14852 default:
14853 return false;
14854 }
14855 }
14856
14857 /* verify safety of LD_ABS|LD_IND instructions:
14858 * - they can only appear in the programs where ctx == skb
14859 * - since they are wrappers of function calls, they scratch R1-R5 registers,
14860 * preserve R6-R9, and store return value into R0
14861 *
14862 * Implicit input:
14863 * ctx == skb == R6 == CTX
14864 *
14865 * Explicit input:
14866 * SRC == any register
14867 * IMM == 32-bit immediate
14868 *
14869 * Output:
14870 * R0 - 8/16/32-bit skb data converted to cpu endianness
14871 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)14872 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14873 {
14874 struct bpf_reg_state *regs = cur_regs(env);
14875 static const int ctx_reg = BPF_REG_6;
14876 u8 mode = BPF_MODE(insn->code);
14877 int i, err;
14878
14879 if (!may_access_skb(resolve_prog_type(env->prog))) {
14880 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14881 return -EINVAL;
14882 }
14883
14884 if (!env->ops->gen_ld_abs) {
14885 verbose(env, "bpf verifier is misconfigured\n");
14886 return -EINVAL;
14887 }
14888
14889 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14890 BPF_SIZE(insn->code) == BPF_DW ||
14891 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14892 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14893 return -EINVAL;
14894 }
14895
14896 /* check whether implicit source operand (register R6) is readable */
14897 err = check_reg_arg(env, ctx_reg, SRC_OP);
14898 if (err)
14899 return err;
14900
14901 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14902 * gen_ld_abs() may terminate the program at runtime, leading to
14903 * reference leak.
14904 */
14905 err = check_reference_leak(env);
14906 if (err) {
14907 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14908 return err;
14909 }
14910
14911 if (env->cur_state->active_lock.ptr) {
14912 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14913 return -EINVAL;
14914 }
14915
14916 if (env->cur_state->active_rcu_lock) {
14917 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14918 return -EINVAL;
14919 }
14920
14921 if (regs[ctx_reg].type != PTR_TO_CTX) {
14922 verbose(env,
14923 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14924 return -EINVAL;
14925 }
14926
14927 if (mode == BPF_IND) {
14928 /* check explicit source operand */
14929 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14930 if (err)
14931 return err;
14932 }
14933
14934 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
14935 if (err < 0)
14936 return err;
14937
14938 /* reset caller saved regs to unreadable */
14939 for (i = 0; i < CALLER_SAVED_REGS; i++) {
14940 mark_reg_not_init(env, regs, caller_saved[i]);
14941 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14942 }
14943
14944 /* mark destination R0 register as readable, since it contains
14945 * the value fetched from the packet.
14946 * Already marked as written above.
14947 */
14948 mark_reg_unknown(env, regs, BPF_REG_0);
14949 /* ld_abs load up to 32-bit skb data. */
14950 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14951 return 0;
14952 }
14953
check_return_code(struct bpf_verifier_env * env)14954 static int check_return_code(struct bpf_verifier_env *env)
14955 {
14956 struct tnum enforce_attach_type_range = tnum_unknown;
14957 const struct bpf_prog *prog = env->prog;
14958 struct bpf_reg_state *reg;
14959 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14960 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14961 int err;
14962 struct bpf_func_state *frame = env->cur_state->frame[0];
14963 const bool is_subprog = frame->subprogno;
14964
14965 /* LSM and struct_ops func-ptr's return type could be "void" */
14966 if (!is_subprog) {
14967 switch (prog_type) {
14968 case BPF_PROG_TYPE_LSM:
14969 if (prog->expected_attach_type == BPF_LSM_CGROUP)
14970 /* See below, can be 0 or 0-1 depending on hook. */
14971 break;
14972 fallthrough;
14973 case BPF_PROG_TYPE_STRUCT_OPS:
14974 if (!prog->aux->attach_func_proto->type)
14975 return 0;
14976 break;
14977 default:
14978 break;
14979 }
14980 }
14981
14982 /* eBPF calling convention is such that R0 is used
14983 * to return the value from eBPF program.
14984 * Make sure that it's readable at this time
14985 * of bpf_exit, which means that program wrote
14986 * something into it earlier
14987 */
14988 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14989 if (err)
14990 return err;
14991
14992 if (is_pointer_value(env, BPF_REG_0)) {
14993 verbose(env, "R0 leaks addr as return value\n");
14994 return -EACCES;
14995 }
14996
14997 reg = cur_regs(env) + BPF_REG_0;
14998
14999 if (frame->in_async_callback_fn) {
15000 /* enforce return zero from async callbacks like timer */
15001 if (reg->type != SCALAR_VALUE) {
15002 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
15003 reg_type_str(env, reg->type));
15004 return -EINVAL;
15005 }
15006
15007 if (!tnum_in(const_0, reg->var_off)) {
15008 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15009 return -EINVAL;
15010 }
15011 return 0;
15012 }
15013
15014 if (is_subprog) {
15015 if (reg->type != SCALAR_VALUE) {
15016 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
15017 reg_type_str(env, reg->type));
15018 return -EINVAL;
15019 }
15020 return 0;
15021 }
15022
15023 switch (prog_type) {
15024 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15025 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15026 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15027 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15028 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15029 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15030 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
15031 range = tnum_range(1, 1);
15032 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15033 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15034 range = tnum_range(0, 3);
15035 break;
15036 case BPF_PROG_TYPE_CGROUP_SKB:
15037 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15038 range = tnum_range(0, 3);
15039 enforce_attach_type_range = tnum_range(2, 3);
15040 }
15041 break;
15042 case BPF_PROG_TYPE_CGROUP_SOCK:
15043 case BPF_PROG_TYPE_SOCK_OPS:
15044 case BPF_PROG_TYPE_CGROUP_DEVICE:
15045 case BPF_PROG_TYPE_CGROUP_SYSCTL:
15046 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15047 break;
15048 case BPF_PROG_TYPE_RAW_TRACEPOINT:
15049 if (!env->prog->aux->attach_btf_id)
15050 return 0;
15051 range = tnum_const(0);
15052 break;
15053 case BPF_PROG_TYPE_TRACING:
15054 switch (env->prog->expected_attach_type) {
15055 case BPF_TRACE_FENTRY:
15056 case BPF_TRACE_FEXIT:
15057 range = tnum_const(0);
15058 break;
15059 case BPF_TRACE_RAW_TP:
15060 case BPF_MODIFY_RETURN:
15061 return 0;
15062 case BPF_TRACE_ITER:
15063 break;
15064 default:
15065 return -ENOTSUPP;
15066 }
15067 break;
15068 case BPF_PROG_TYPE_SK_LOOKUP:
15069 range = tnum_range(SK_DROP, SK_PASS);
15070 break;
15071
15072 case BPF_PROG_TYPE_LSM:
15073 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15074 /* Regular BPF_PROG_TYPE_LSM programs can return
15075 * any value.
15076 */
15077 return 0;
15078 }
15079 if (!env->prog->aux->attach_func_proto->type) {
15080 /* Make sure programs that attach to void
15081 * hooks don't try to modify return value.
15082 */
15083 range = tnum_range(1, 1);
15084 }
15085 break;
15086
15087 case BPF_PROG_TYPE_NETFILTER:
15088 range = tnum_range(NF_DROP, NF_ACCEPT);
15089 break;
15090 case BPF_PROG_TYPE_EXT:
15091 /* freplace program can return anything as its return value
15092 * depends on the to-be-replaced kernel func or bpf program.
15093 */
15094 default:
15095 return 0;
15096 }
15097
15098 if (reg->type != SCALAR_VALUE) {
15099 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
15100 reg_type_str(env, reg->type));
15101 return -EINVAL;
15102 }
15103
15104 if (!tnum_in(range, reg->var_off)) {
15105 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15106 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15107 prog_type == BPF_PROG_TYPE_LSM &&
15108 !prog->aux->attach_func_proto->type)
15109 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15110 return -EINVAL;
15111 }
15112
15113 if (!tnum_is_unknown(enforce_attach_type_range) &&
15114 tnum_in(enforce_attach_type_range, reg->var_off))
15115 env->prog->enforce_expected_attach_type = 1;
15116 return 0;
15117 }
15118
15119 /* non-recursive DFS pseudo code
15120 * 1 procedure DFS-iterative(G,v):
15121 * 2 label v as discovered
15122 * 3 let S be a stack
15123 * 4 S.push(v)
15124 * 5 while S is not empty
15125 * 6 t <- S.peek()
15126 * 7 if t is what we're looking for:
15127 * 8 return t
15128 * 9 for all edges e in G.adjacentEdges(t) do
15129 * 10 if edge e is already labelled
15130 * 11 continue with the next edge
15131 * 12 w <- G.adjacentVertex(t,e)
15132 * 13 if vertex w is not discovered and not explored
15133 * 14 label e as tree-edge
15134 * 15 label w as discovered
15135 * 16 S.push(w)
15136 * 17 continue at 5
15137 * 18 else if vertex w is discovered
15138 * 19 label e as back-edge
15139 * 20 else
15140 * 21 // vertex w is explored
15141 * 22 label e as forward- or cross-edge
15142 * 23 label t as explored
15143 * 24 S.pop()
15144 *
15145 * convention:
15146 * 0x10 - discovered
15147 * 0x11 - discovered and fall-through edge labelled
15148 * 0x12 - discovered and fall-through and branch edges labelled
15149 * 0x20 - explored
15150 */
15151
15152 enum {
15153 DISCOVERED = 0x10,
15154 EXPLORED = 0x20,
15155 FALLTHROUGH = 1,
15156 BRANCH = 2,
15157 };
15158
mark_prune_point(struct bpf_verifier_env * env,int idx)15159 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15160 {
15161 env->insn_aux_data[idx].prune_point = true;
15162 }
15163
is_prune_point(struct bpf_verifier_env * env,int insn_idx)15164 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15165 {
15166 return env->insn_aux_data[insn_idx].prune_point;
15167 }
15168
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)15169 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15170 {
15171 env->insn_aux_data[idx].force_checkpoint = true;
15172 }
15173
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)15174 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15175 {
15176 return env->insn_aux_data[insn_idx].force_checkpoint;
15177 }
15178
mark_calls_callback(struct bpf_verifier_env * env,int idx)15179 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15180 {
15181 env->insn_aux_data[idx].calls_callback = true;
15182 }
15183
calls_callback(struct bpf_verifier_env * env,int insn_idx)15184 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15185 {
15186 return env->insn_aux_data[insn_idx].calls_callback;
15187 }
15188
15189 enum {
15190 DONE_EXPLORING = 0,
15191 KEEP_EXPLORING = 1,
15192 };
15193
15194 /* t, w, e - match pseudo-code above:
15195 * t - index of current instruction
15196 * w - next instruction
15197 * e - edge
15198 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)15199 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15200 {
15201 int *insn_stack = env->cfg.insn_stack;
15202 int *insn_state = env->cfg.insn_state;
15203
15204 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15205 return DONE_EXPLORING;
15206
15207 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15208 return DONE_EXPLORING;
15209
15210 if (w < 0 || w >= env->prog->len) {
15211 verbose_linfo(env, t, "%d: ", t);
15212 verbose(env, "jump out of range from insn %d to %d\n", t, w);
15213 return -EINVAL;
15214 }
15215
15216 if (e == BRANCH) {
15217 /* mark branch target for state pruning */
15218 mark_prune_point(env, w);
15219 mark_jmp_point(env, w);
15220 }
15221
15222 if (insn_state[w] == 0) {
15223 /* tree-edge */
15224 insn_state[t] = DISCOVERED | e;
15225 insn_state[w] = DISCOVERED;
15226 if (env->cfg.cur_stack >= env->prog->len)
15227 return -E2BIG;
15228 insn_stack[env->cfg.cur_stack++] = w;
15229 return KEEP_EXPLORING;
15230 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15231 if (env->bpf_capable)
15232 return DONE_EXPLORING;
15233 verbose_linfo(env, t, "%d: ", t);
15234 verbose_linfo(env, w, "%d: ", w);
15235 verbose(env, "back-edge from insn %d to %d\n", t, w);
15236 return -EINVAL;
15237 } else if (insn_state[w] == EXPLORED) {
15238 /* forward- or cross-edge */
15239 insn_state[t] = DISCOVERED | e;
15240 } else {
15241 verbose(env, "insn state internal bug\n");
15242 return -EFAULT;
15243 }
15244 return DONE_EXPLORING;
15245 }
15246
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)15247 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15248 struct bpf_verifier_env *env,
15249 bool visit_callee)
15250 {
15251 int ret, insn_sz;
15252
15253 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15254 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15255 if (ret)
15256 return ret;
15257
15258 mark_prune_point(env, t + insn_sz);
15259 /* when we exit from subprog, we need to record non-linear history */
15260 mark_jmp_point(env, t + insn_sz);
15261
15262 if (visit_callee) {
15263 mark_prune_point(env, t);
15264 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15265 }
15266 return ret;
15267 }
15268
15269 /* Visits the instruction at index t and returns one of the following:
15270 * < 0 - an error occurred
15271 * DONE_EXPLORING - the instruction was fully explored
15272 * KEEP_EXPLORING - there is still work to be done before it is fully explored
15273 */
visit_insn(int t,struct bpf_verifier_env * env)15274 static int visit_insn(int t, struct bpf_verifier_env *env)
15275 {
15276 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15277 int ret, off, insn_sz;
15278
15279 if (bpf_pseudo_func(insn))
15280 return visit_func_call_insn(t, insns, env, true);
15281
15282 /* All non-branch instructions have a single fall-through edge. */
15283 if (BPF_CLASS(insn->code) != BPF_JMP &&
15284 BPF_CLASS(insn->code) != BPF_JMP32) {
15285 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15286 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15287 }
15288
15289 switch (BPF_OP(insn->code)) {
15290 case BPF_EXIT:
15291 return DONE_EXPLORING;
15292
15293 case BPF_CALL:
15294 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15295 /* Mark this call insn as a prune point to trigger
15296 * is_state_visited() check before call itself is
15297 * processed by __check_func_call(). Otherwise new
15298 * async state will be pushed for further exploration.
15299 */
15300 mark_prune_point(env, t);
15301 /* For functions that invoke callbacks it is not known how many times
15302 * callback would be called. Verifier models callback calling functions
15303 * by repeatedly visiting callback bodies and returning to origin call
15304 * instruction.
15305 * In order to stop such iteration verifier needs to identify when a
15306 * state identical some state from a previous iteration is reached.
15307 * Check below forces creation of checkpoint before callback calling
15308 * instruction to allow search for such identical states.
15309 */
15310 if (is_sync_callback_calling_insn(insn)) {
15311 mark_calls_callback(env, t);
15312 mark_force_checkpoint(env, t);
15313 mark_prune_point(env, t);
15314 mark_jmp_point(env, t);
15315 }
15316 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15317 struct bpf_kfunc_call_arg_meta meta;
15318
15319 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15320 if (ret == 0 && is_iter_next_kfunc(&meta)) {
15321 mark_prune_point(env, t);
15322 /* Checking and saving state checkpoints at iter_next() call
15323 * is crucial for fast convergence of open-coded iterator loop
15324 * logic, so we need to force it. If we don't do that,
15325 * is_state_visited() might skip saving a checkpoint, causing
15326 * unnecessarily long sequence of not checkpointed
15327 * instructions and jumps, leading to exhaustion of jump
15328 * history buffer, and potentially other undesired outcomes.
15329 * It is expected that with correct open-coded iterators
15330 * convergence will happen quickly, so we don't run a risk of
15331 * exhausting memory.
15332 */
15333 mark_force_checkpoint(env, t);
15334 }
15335 }
15336 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15337
15338 case BPF_JA:
15339 if (BPF_SRC(insn->code) != BPF_K)
15340 return -EINVAL;
15341
15342 if (BPF_CLASS(insn->code) == BPF_JMP)
15343 off = insn->off;
15344 else
15345 off = insn->imm;
15346
15347 /* unconditional jump with single edge */
15348 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15349 if (ret)
15350 return ret;
15351
15352 mark_prune_point(env, t + off + 1);
15353 mark_jmp_point(env, t + off + 1);
15354
15355 return ret;
15356
15357 default:
15358 /* conditional jump with two edges */
15359 mark_prune_point(env, t);
15360
15361 ret = push_insn(t, t + 1, FALLTHROUGH, env);
15362 if (ret)
15363 return ret;
15364
15365 return push_insn(t, t + insn->off + 1, BRANCH, env);
15366 }
15367 }
15368
15369 /* non-recursive depth-first-search to detect loops in BPF program
15370 * loop == back-edge in directed graph
15371 */
check_cfg(struct bpf_verifier_env * env)15372 static int check_cfg(struct bpf_verifier_env *env)
15373 {
15374 int insn_cnt = env->prog->len;
15375 int *insn_stack, *insn_state;
15376 int ret = 0;
15377 int i;
15378
15379 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15380 if (!insn_state)
15381 return -ENOMEM;
15382
15383 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15384 if (!insn_stack) {
15385 kvfree(insn_state);
15386 return -ENOMEM;
15387 }
15388
15389 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15390 insn_stack[0] = 0; /* 0 is the first instruction */
15391 env->cfg.cur_stack = 1;
15392
15393 while (env->cfg.cur_stack > 0) {
15394 int t = insn_stack[env->cfg.cur_stack - 1];
15395
15396 ret = visit_insn(t, env);
15397 switch (ret) {
15398 case DONE_EXPLORING:
15399 insn_state[t] = EXPLORED;
15400 env->cfg.cur_stack--;
15401 break;
15402 case KEEP_EXPLORING:
15403 break;
15404 default:
15405 if (ret > 0) {
15406 verbose(env, "visit_insn internal bug\n");
15407 ret = -EFAULT;
15408 }
15409 goto err_free;
15410 }
15411 }
15412
15413 if (env->cfg.cur_stack < 0) {
15414 verbose(env, "pop stack internal bug\n");
15415 ret = -EFAULT;
15416 goto err_free;
15417 }
15418
15419 for (i = 0; i < insn_cnt; i++) {
15420 struct bpf_insn *insn = &env->prog->insnsi[i];
15421
15422 if (insn_state[i] != EXPLORED) {
15423 verbose(env, "unreachable insn %d\n", i);
15424 ret = -EINVAL;
15425 goto err_free;
15426 }
15427 if (bpf_is_ldimm64(insn)) {
15428 if (insn_state[i + 1] != 0) {
15429 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15430 ret = -EINVAL;
15431 goto err_free;
15432 }
15433 i++; /* skip second half of ldimm64 */
15434 }
15435 }
15436 ret = 0; /* cfg looks good */
15437
15438 err_free:
15439 kvfree(insn_state);
15440 kvfree(insn_stack);
15441 env->cfg.insn_state = env->cfg.insn_stack = NULL;
15442 return ret;
15443 }
15444
check_abnormal_return(struct bpf_verifier_env * env)15445 static int check_abnormal_return(struct bpf_verifier_env *env)
15446 {
15447 int i;
15448
15449 for (i = 1; i < env->subprog_cnt; i++) {
15450 if (env->subprog_info[i].has_ld_abs) {
15451 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15452 return -EINVAL;
15453 }
15454 if (env->subprog_info[i].has_tail_call) {
15455 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15456 return -EINVAL;
15457 }
15458 }
15459 return 0;
15460 }
15461
15462 /* The minimum supported BTF func info size */
15463 #define MIN_BPF_FUNCINFO_SIZE 8
15464 #define MAX_FUNCINFO_REC_SIZE 252
15465
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15466 static int check_btf_func(struct bpf_verifier_env *env,
15467 const union bpf_attr *attr,
15468 bpfptr_t uattr)
15469 {
15470 const struct btf_type *type, *func_proto, *ret_type;
15471 u32 i, nfuncs, urec_size, min_size;
15472 u32 krec_size = sizeof(struct bpf_func_info);
15473 struct bpf_func_info *krecord;
15474 struct bpf_func_info_aux *info_aux = NULL;
15475 struct bpf_prog *prog;
15476 const struct btf *btf;
15477 bpfptr_t urecord;
15478 u32 prev_offset = 0;
15479 bool scalar_return;
15480 int ret = -ENOMEM;
15481
15482 nfuncs = attr->func_info_cnt;
15483 if (!nfuncs) {
15484 if (check_abnormal_return(env))
15485 return -EINVAL;
15486 return 0;
15487 }
15488
15489 if (nfuncs != env->subprog_cnt) {
15490 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15491 return -EINVAL;
15492 }
15493
15494 urec_size = attr->func_info_rec_size;
15495 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15496 urec_size > MAX_FUNCINFO_REC_SIZE ||
15497 urec_size % sizeof(u32)) {
15498 verbose(env, "invalid func info rec size %u\n", urec_size);
15499 return -EINVAL;
15500 }
15501
15502 prog = env->prog;
15503 btf = prog->aux->btf;
15504
15505 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15506 min_size = min_t(u32, krec_size, urec_size);
15507
15508 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15509 if (!krecord)
15510 return -ENOMEM;
15511 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15512 if (!info_aux)
15513 goto err_free;
15514
15515 for (i = 0; i < nfuncs; i++) {
15516 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15517 if (ret) {
15518 if (ret == -E2BIG) {
15519 verbose(env, "nonzero tailing record in func info");
15520 /* set the size kernel expects so loader can zero
15521 * out the rest of the record.
15522 */
15523 if (copy_to_bpfptr_offset(uattr,
15524 offsetof(union bpf_attr, func_info_rec_size),
15525 &min_size, sizeof(min_size)))
15526 ret = -EFAULT;
15527 }
15528 goto err_free;
15529 }
15530
15531 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15532 ret = -EFAULT;
15533 goto err_free;
15534 }
15535
15536 /* check insn_off */
15537 ret = -EINVAL;
15538 if (i == 0) {
15539 if (krecord[i].insn_off) {
15540 verbose(env,
15541 "nonzero insn_off %u for the first func info record",
15542 krecord[i].insn_off);
15543 goto err_free;
15544 }
15545 } else if (krecord[i].insn_off <= prev_offset) {
15546 verbose(env,
15547 "same or smaller insn offset (%u) than previous func info record (%u)",
15548 krecord[i].insn_off, prev_offset);
15549 goto err_free;
15550 }
15551
15552 if (env->subprog_info[i].start != krecord[i].insn_off) {
15553 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15554 goto err_free;
15555 }
15556
15557 /* check type_id */
15558 type = btf_type_by_id(btf, krecord[i].type_id);
15559 if (!type || !btf_type_is_func(type)) {
15560 verbose(env, "invalid type id %d in func info",
15561 krecord[i].type_id);
15562 goto err_free;
15563 }
15564 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15565
15566 func_proto = btf_type_by_id(btf, type->type);
15567 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15568 /* btf_func_check() already verified it during BTF load */
15569 goto err_free;
15570 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15571 scalar_return =
15572 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15573 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15574 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15575 goto err_free;
15576 }
15577 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15578 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15579 goto err_free;
15580 }
15581
15582 prev_offset = krecord[i].insn_off;
15583 bpfptr_add(&urecord, urec_size);
15584 }
15585
15586 prog->aux->func_info = krecord;
15587 prog->aux->func_info_cnt = nfuncs;
15588 prog->aux->func_info_aux = info_aux;
15589 return 0;
15590
15591 err_free:
15592 kvfree(krecord);
15593 kfree(info_aux);
15594 return ret;
15595 }
15596
adjust_btf_func(struct bpf_verifier_env * env)15597 static void adjust_btf_func(struct bpf_verifier_env *env)
15598 {
15599 struct bpf_prog_aux *aux = env->prog->aux;
15600 int i;
15601
15602 if (!aux->func_info)
15603 return;
15604
15605 for (i = 0; i < env->subprog_cnt; i++)
15606 aux->func_info[i].insn_off = env->subprog_info[i].start;
15607 }
15608
15609 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
15610 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
15611
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15612 static int check_btf_line(struct bpf_verifier_env *env,
15613 const union bpf_attr *attr,
15614 bpfptr_t uattr)
15615 {
15616 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15617 struct bpf_subprog_info *sub;
15618 struct bpf_line_info *linfo;
15619 struct bpf_prog *prog;
15620 const struct btf *btf;
15621 bpfptr_t ulinfo;
15622 int err;
15623
15624 nr_linfo = attr->line_info_cnt;
15625 if (!nr_linfo)
15626 return 0;
15627 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15628 return -EINVAL;
15629
15630 rec_size = attr->line_info_rec_size;
15631 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15632 rec_size > MAX_LINEINFO_REC_SIZE ||
15633 rec_size & (sizeof(u32) - 1))
15634 return -EINVAL;
15635
15636 /* Need to zero it in case the userspace may
15637 * pass in a smaller bpf_line_info object.
15638 */
15639 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15640 GFP_KERNEL | __GFP_NOWARN);
15641 if (!linfo)
15642 return -ENOMEM;
15643
15644 prog = env->prog;
15645 btf = prog->aux->btf;
15646
15647 s = 0;
15648 sub = env->subprog_info;
15649 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15650 expected_size = sizeof(struct bpf_line_info);
15651 ncopy = min_t(u32, expected_size, rec_size);
15652 for (i = 0; i < nr_linfo; i++) {
15653 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15654 if (err) {
15655 if (err == -E2BIG) {
15656 verbose(env, "nonzero tailing record in line_info");
15657 if (copy_to_bpfptr_offset(uattr,
15658 offsetof(union bpf_attr, line_info_rec_size),
15659 &expected_size, sizeof(expected_size)))
15660 err = -EFAULT;
15661 }
15662 goto err_free;
15663 }
15664
15665 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15666 err = -EFAULT;
15667 goto err_free;
15668 }
15669
15670 /*
15671 * Check insn_off to ensure
15672 * 1) strictly increasing AND
15673 * 2) bounded by prog->len
15674 *
15675 * The linfo[0].insn_off == 0 check logically falls into
15676 * the later "missing bpf_line_info for func..." case
15677 * because the first linfo[0].insn_off must be the
15678 * first sub also and the first sub must have
15679 * subprog_info[0].start == 0.
15680 */
15681 if ((i && linfo[i].insn_off <= prev_offset) ||
15682 linfo[i].insn_off >= prog->len) {
15683 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15684 i, linfo[i].insn_off, prev_offset,
15685 prog->len);
15686 err = -EINVAL;
15687 goto err_free;
15688 }
15689
15690 if (!prog->insnsi[linfo[i].insn_off].code) {
15691 verbose(env,
15692 "Invalid insn code at line_info[%u].insn_off\n",
15693 i);
15694 err = -EINVAL;
15695 goto err_free;
15696 }
15697
15698 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15699 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15700 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15701 err = -EINVAL;
15702 goto err_free;
15703 }
15704
15705 if (s != env->subprog_cnt) {
15706 if (linfo[i].insn_off == sub[s].start) {
15707 sub[s].linfo_idx = i;
15708 s++;
15709 } else if (sub[s].start < linfo[i].insn_off) {
15710 verbose(env, "missing bpf_line_info for func#%u\n", s);
15711 err = -EINVAL;
15712 goto err_free;
15713 }
15714 }
15715
15716 prev_offset = linfo[i].insn_off;
15717 bpfptr_add(&ulinfo, rec_size);
15718 }
15719
15720 if (s != env->subprog_cnt) {
15721 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15722 env->subprog_cnt - s, s);
15723 err = -EINVAL;
15724 goto err_free;
15725 }
15726
15727 prog->aux->linfo = linfo;
15728 prog->aux->nr_linfo = nr_linfo;
15729
15730 return 0;
15731
15732 err_free:
15733 kvfree(linfo);
15734 return err;
15735 }
15736
15737 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
15738 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
15739
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15740 static int check_core_relo(struct bpf_verifier_env *env,
15741 const union bpf_attr *attr,
15742 bpfptr_t uattr)
15743 {
15744 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15745 struct bpf_core_relo core_relo = {};
15746 struct bpf_prog *prog = env->prog;
15747 const struct btf *btf = prog->aux->btf;
15748 struct bpf_core_ctx ctx = {
15749 .log = &env->log,
15750 .btf = btf,
15751 };
15752 bpfptr_t u_core_relo;
15753 int err;
15754
15755 nr_core_relo = attr->core_relo_cnt;
15756 if (!nr_core_relo)
15757 return 0;
15758 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15759 return -EINVAL;
15760
15761 rec_size = attr->core_relo_rec_size;
15762 if (rec_size < MIN_CORE_RELO_SIZE ||
15763 rec_size > MAX_CORE_RELO_SIZE ||
15764 rec_size % sizeof(u32))
15765 return -EINVAL;
15766
15767 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15768 expected_size = sizeof(struct bpf_core_relo);
15769 ncopy = min_t(u32, expected_size, rec_size);
15770
15771 /* Unlike func_info and line_info, copy and apply each CO-RE
15772 * relocation record one at a time.
15773 */
15774 for (i = 0; i < nr_core_relo; i++) {
15775 /* future proofing when sizeof(bpf_core_relo) changes */
15776 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15777 if (err) {
15778 if (err == -E2BIG) {
15779 verbose(env, "nonzero tailing record in core_relo");
15780 if (copy_to_bpfptr_offset(uattr,
15781 offsetof(union bpf_attr, core_relo_rec_size),
15782 &expected_size, sizeof(expected_size)))
15783 err = -EFAULT;
15784 }
15785 break;
15786 }
15787
15788 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15789 err = -EFAULT;
15790 break;
15791 }
15792
15793 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15794 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15795 i, core_relo.insn_off, prog->len);
15796 err = -EINVAL;
15797 break;
15798 }
15799
15800 err = bpf_core_apply(&ctx, &core_relo, i,
15801 &prog->insnsi[core_relo.insn_off / 8]);
15802 if (err)
15803 break;
15804 bpfptr_add(&u_core_relo, rec_size);
15805 }
15806 return err;
15807 }
15808
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15809 static int check_btf_info(struct bpf_verifier_env *env,
15810 const union bpf_attr *attr,
15811 bpfptr_t uattr)
15812 {
15813 struct btf *btf;
15814 int err;
15815
15816 if (!attr->func_info_cnt && !attr->line_info_cnt) {
15817 if (check_abnormal_return(env))
15818 return -EINVAL;
15819 return 0;
15820 }
15821
15822 btf = btf_get_by_fd(attr->prog_btf_fd);
15823 if (IS_ERR(btf))
15824 return PTR_ERR(btf);
15825 if (btf_is_kernel(btf)) {
15826 btf_put(btf);
15827 return -EACCES;
15828 }
15829 env->prog->aux->btf = btf;
15830
15831 err = check_btf_func(env, attr, uattr);
15832 if (err)
15833 return err;
15834
15835 err = check_btf_line(env, attr, uattr);
15836 if (err)
15837 return err;
15838
15839 err = check_core_relo(env, attr, uattr);
15840 if (err)
15841 return err;
15842
15843 return 0;
15844 }
15845
15846 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)15847 static bool range_within(struct bpf_reg_state *old,
15848 struct bpf_reg_state *cur)
15849 {
15850 return old->umin_value <= cur->umin_value &&
15851 old->umax_value >= cur->umax_value &&
15852 old->smin_value <= cur->smin_value &&
15853 old->smax_value >= cur->smax_value &&
15854 old->u32_min_value <= cur->u32_min_value &&
15855 old->u32_max_value >= cur->u32_max_value &&
15856 old->s32_min_value <= cur->s32_min_value &&
15857 old->s32_max_value >= cur->s32_max_value;
15858 }
15859
15860 /* If in the old state two registers had the same id, then they need to have
15861 * the same id in the new state as well. But that id could be different from
15862 * the old state, so we need to track the mapping from old to new ids.
15863 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15864 * regs with old id 5 must also have new id 9 for the new state to be safe. But
15865 * regs with a different old id could still have new id 9, we don't care about
15866 * that.
15867 * So we look through our idmap to see if this old id has been seen before. If
15868 * so, we require the new id to match; otherwise, we add the id pair to the map.
15869 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15870 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15871 {
15872 struct bpf_id_pair *map = idmap->map;
15873 unsigned int i;
15874
15875 /* either both IDs should be set or both should be zero */
15876 if (!!old_id != !!cur_id)
15877 return false;
15878
15879 if (old_id == 0) /* cur_id == 0 as well */
15880 return true;
15881
15882 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15883 if (!map[i].old) {
15884 /* Reached an empty slot; haven't seen this id before */
15885 map[i].old = old_id;
15886 map[i].cur = cur_id;
15887 return true;
15888 }
15889 if (map[i].old == old_id)
15890 return map[i].cur == cur_id;
15891 if (map[i].cur == cur_id)
15892 return false;
15893 }
15894 /* We ran out of idmap slots, which should be impossible */
15895 WARN_ON_ONCE(1);
15896 return false;
15897 }
15898
15899 /* Similar to check_ids(), but allocate a unique temporary ID
15900 * for 'old_id' or 'cur_id' of zero.
15901 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15902 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15903 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15904 {
15905 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15906 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15907
15908 return check_ids(old_id, cur_id, idmap);
15909 }
15910
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)15911 static void clean_func_state(struct bpf_verifier_env *env,
15912 struct bpf_func_state *st)
15913 {
15914 enum bpf_reg_liveness live;
15915 int i, j;
15916
15917 for (i = 0; i < BPF_REG_FP; i++) {
15918 live = st->regs[i].live;
15919 /* liveness must not touch this register anymore */
15920 st->regs[i].live |= REG_LIVE_DONE;
15921 if (!(live & REG_LIVE_READ))
15922 /* since the register is unused, clear its state
15923 * to make further comparison simpler
15924 */
15925 __mark_reg_not_init(env, &st->regs[i]);
15926 }
15927
15928 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15929 live = st->stack[i].spilled_ptr.live;
15930 /* liveness must not touch this stack slot anymore */
15931 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15932 if (!(live & REG_LIVE_READ)) {
15933 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15934 for (j = 0; j < BPF_REG_SIZE; j++)
15935 st->stack[i].slot_type[j] = STACK_INVALID;
15936 }
15937 }
15938 }
15939
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)15940 static void clean_verifier_state(struct bpf_verifier_env *env,
15941 struct bpf_verifier_state *st)
15942 {
15943 int i;
15944
15945 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15946 /* all regs in this state in all frames were already marked */
15947 return;
15948
15949 for (i = 0; i <= st->curframe; i++)
15950 clean_func_state(env, st->frame[i]);
15951 }
15952
15953 /* the parentage chains form a tree.
15954 * the verifier states are added to state lists at given insn and
15955 * pushed into state stack for future exploration.
15956 * when the verifier reaches bpf_exit insn some of the verifer states
15957 * stored in the state lists have their final liveness state already,
15958 * but a lot of states will get revised from liveness point of view when
15959 * the verifier explores other branches.
15960 * Example:
15961 * 1: r0 = 1
15962 * 2: if r1 == 100 goto pc+1
15963 * 3: r0 = 2
15964 * 4: exit
15965 * when the verifier reaches exit insn the register r0 in the state list of
15966 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15967 * of insn 2 and goes exploring further. At the insn 4 it will walk the
15968 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15969 *
15970 * Since the verifier pushes the branch states as it sees them while exploring
15971 * the program the condition of walking the branch instruction for the second
15972 * time means that all states below this branch were already explored and
15973 * their final liveness marks are already propagated.
15974 * Hence when the verifier completes the search of state list in is_state_visited()
15975 * we can call this clean_live_states() function to mark all liveness states
15976 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15977 * will not be used.
15978 * This function also clears the registers and stack for states that !READ
15979 * to simplify state merging.
15980 *
15981 * Important note here that walking the same branch instruction in the callee
15982 * doesn't meant that the states are DONE. The verifier has to compare
15983 * the callsites
15984 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)15985 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15986 struct bpf_verifier_state *cur)
15987 {
15988 struct bpf_verifier_state_list *sl;
15989
15990 sl = *explored_state(env, insn);
15991 while (sl) {
15992 if (sl->state.branches)
15993 goto next;
15994 if (sl->state.insn_idx != insn ||
15995 !same_callsites(&sl->state, cur))
15996 goto next;
15997 clean_verifier_state(env, &sl->state);
15998 next:
15999 sl = sl->next;
16000 }
16001 }
16002
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)16003 static bool regs_exact(const struct bpf_reg_state *rold,
16004 const struct bpf_reg_state *rcur,
16005 struct bpf_idmap *idmap)
16006 {
16007 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16008 check_ids(rold->id, rcur->id, idmap) &&
16009 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16010 }
16011
16012 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,bool exact)16013 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16014 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16015 {
16016 if (exact)
16017 return regs_exact(rold, rcur, idmap);
16018
16019 if (!(rold->live & REG_LIVE_READ))
16020 /* explored state didn't use this */
16021 return true;
16022 if (rold->type == NOT_INIT)
16023 /* explored state can't have used this */
16024 return true;
16025 if (rcur->type == NOT_INIT)
16026 return false;
16027
16028 /* Enforce that register types have to match exactly, including their
16029 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16030 * rule.
16031 *
16032 * One can make a point that using a pointer register as unbounded
16033 * SCALAR would be technically acceptable, but this could lead to
16034 * pointer leaks because scalars are allowed to leak while pointers
16035 * are not. We could make this safe in special cases if root is
16036 * calling us, but it's probably not worth the hassle.
16037 *
16038 * Also, register types that are *not* MAYBE_NULL could technically be
16039 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16040 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16041 * to the same map).
16042 * However, if the old MAYBE_NULL register then got NULL checked,
16043 * doing so could have affected others with the same id, and we can't
16044 * check for that because we lost the id when we converted to
16045 * a non-MAYBE_NULL variant.
16046 * So, as a general rule we don't allow mixing MAYBE_NULL and
16047 * non-MAYBE_NULL registers as well.
16048 */
16049 if (rold->type != rcur->type)
16050 return false;
16051
16052 switch (base_type(rold->type)) {
16053 case SCALAR_VALUE:
16054 if (env->explore_alu_limits) {
16055 /* explore_alu_limits disables tnum_in() and range_within()
16056 * logic and requires everything to be strict
16057 */
16058 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16059 check_scalar_ids(rold->id, rcur->id, idmap);
16060 }
16061 if (!rold->precise)
16062 return true;
16063 /* Why check_ids() for scalar registers?
16064 *
16065 * Consider the following BPF code:
16066 * 1: r6 = ... unbound scalar, ID=a ...
16067 * 2: r7 = ... unbound scalar, ID=b ...
16068 * 3: if (r6 > r7) goto +1
16069 * 4: r6 = r7
16070 * 5: if (r6 > X) goto ...
16071 * 6: ... memory operation using r7 ...
16072 *
16073 * First verification path is [1-6]:
16074 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16075 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16076 * r7 <= X, because r6 and r7 share same id.
16077 * Next verification path is [1-4, 6].
16078 *
16079 * Instruction (6) would be reached in two states:
16080 * I. r6{.id=b}, r7{.id=b} via path 1-6;
16081 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16082 *
16083 * Use check_ids() to distinguish these states.
16084 * ---
16085 * Also verify that new value satisfies old value range knowledge.
16086 */
16087 return range_within(rold, rcur) &&
16088 tnum_in(rold->var_off, rcur->var_off) &&
16089 check_scalar_ids(rold->id, rcur->id, idmap);
16090 case PTR_TO_MAP_KEY:
16091 case PTR_TO_MAP_VALUE:
16092 case PTR_TO_MEM:
16093 case PTR_TO_BUF:
16094 case PTR_TO_TP_BUFFER:
16095 /* If the new min/max/var_off satisfy the old ones and
16096 * everything else matches, we are OK.
16097 */
16098 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16099 range_within(rold, rcur) &&
16100 tnum_in(rold->var_off, rcur->var_off) &&
16101 check_ids(rold->id, rcur->id, idmap) &&
16102 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16103 case PTR_TO_PACKET_META:
16104 case PTR_TO_PACKET:
16105 /* We must have at least as much range as the old ptr
16106 * did, so that any accesses which were safe before are
16107 * still safe. This is true even if old range < old off,
16108 * since someone could have accessed through (ptr - k), or
16109 * even done ptr -= k in a register, to get a safe access.
16110 */
16111 if (rold->range > rcur->range)
16112 return false;
16113 /* If the offsets don't match, we can't trust our alignment;
16114 * nor can we be sure that we won't fall out of range.
16115 */
16116 if (rold->off != rcur->off)
16117 return false;
16118 /* id relations must be preserved */
16119 if (!check_ids(rold->id, rcur->id, idmap))
16120 return false;
16121 /* new val must satisfy old val knowledge */
16122 return range_within(rold, rcur) &&
16123 tnum_in(rold->var_off, rcur->var_off);
16124 case PTR_TO_STACK:
16125 /* two stack pointers are equal only if they're pointing to
16126 * the same stack frame, since fp-8 in foo != fp-8 in bar
16127 */
16128 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16129 default:
16130 return regs_exact(rold, rcur, idmap);
16131 }
16132 }
16133
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,bool exact)16134 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16135 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16136 {
16137 int i, spi;
16138
16139 /* walk slots of the explored stack and ignore any additional
16140 * slots in the current stack, since explored(safe) state
16141 * didn't use them
16142 */
16143 for (i = 0; i < old->allocated_stack; i++) {
16144 struct bpf_reg_state *old_reg, *cur_reg;
16145
16146 spi = i / BPF_REG_SIZE;
16147
16148 if (exact &&
16149 (i >= cur->allocated_stack ||
16150 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16151 cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
16152 return false;
16153
16154 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16155 i += BPF_REG_SIZE - 1;
16156 /* explored state didn't use this */
16157 continue;
16158 }
16159
16160 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16161 continue;
16162
16163 if (env->allow_uninit_stack &&
16164 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16165 continue;
16166
16167 /* explored stack has more populated slots than current stack
16168 * and these slots were used
16169 */
16170 if (i >= cur->allocated_stack)
16171 return false;
16172
16173 /* if old state was safe with misc data in the stack
16174 * it will be safe with zero-initialized stack.
16175 * The opposite is not true
16176 */
16177 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16178 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16179 continue;
16180 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16181 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16182 /* Ex: old explored (safe) state has STACK_SPILL in
16183 * this stack slot, but current has STACK_MISC ->
16184 * this verifier states are not equivalent,
16185 * return false to continue verification of this path
16186 */
16187 return false;
16188 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16189 continue;
16190 /* Both old and cur are having same slot_type */
16191 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16192 case STACK_SPILL:
16193 /* when explored and current stack slot are both storing
16194 * spilled registers, check that stored pointers types
16195 * are the same as well.
16196 * Ex: explored safe path could have stored
16197 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16198 * but current path has stored:
16199 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16200 * such verifier states are not equivalent.
16201 * return false to continue verification of this path
16202 */
16203 if (!regsafe(env, &old->stack[spi].spilled_ptr,
16204 &cur->stack[spi].spilled_ptr, idmap, exact))
16205 return false;
16206 break;
16207 case STACK_DYNPTR:
16208 old_reg = &old->stack[spi].spilled_ptr;
16209 cur_reg = &cur->stack[spi].spilled_ptr;
16210 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16211 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16212 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16213 return false;
16214 break;
16215 case STACK_ITER:
16216 old_reg = &old->stack[spi].spilled_ptr;
16217 cur_reg = &cur->stack[spi].spilled_ptr;
16218 /* iter.depth is not compared between states as it
16219 * doesn't matter for correctness and would otherwise
16220 * prevent convergence; we maintain it only to prevent
16221 * infinite loop check triggering, see
16222 * iter_active_depths_differ()
16223 */
16224 if (old_reg->iter.btf != cur_reg->iter.btf ||
16225 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16226 old_reg->iter.state != cur_reg->iter.state ||
16227 /* ignore {old_reg,cur_reg}->iter.depth, see above */
16228 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16229 return false;
16230 break;
16231 case STACK_MISC:
16232 case STACK_ZERO:
16233 case STACK_INVALID:
16234 continue;
16235 /* Ensure that new unhandled slot types return false by default */
16236 default:
16237 return false;
16238 }
16239 }
16240 return true;
16241 }
16242
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap)16243 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16244 struct bpf_idmap *idmap)
16245 {
16246 int i;
16247
16248 if (old->acquired_refs != cur->acquired_refs)
16249 return false;
16250
16251 for (i = 0; i < old->acquired_refs; i++) {
16252 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16253 return false;
16254 }
16255
16256 return true;
16257 }
16258
16259 /* compare two verifier states
16260 *
16261 * all states stored in state_list are known to be valid, since
16262 * verifier reached 'bpf_exit' instruction through them
16263 *
16264 * this function is called when verifier exploring different branches of
16265 * execution popped from the state stack. If it sees an old state that has
16266 * more strict register state and more strict stack state then this execution
16267 * branch doesn't need to be explored further, since verifier already
16268 * concluded that more strict state leads to valid finish.
16269 *
16270 * Therefore two states are equivalent if register state is more conservative
16271 * and explored stack state is more conservative than the current one.
16272 * Example:
16273 * explored current
16274 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16275 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16276 *
16277 * In other words if current stack state (one being explored) has more
16278 * valid slots than old one that already passed validation, it means
16279 * the verifier can stop exploring and conclude that current state is valid too
16280 *
16281 * Similarly with registers. If explored state has register type as invalid
16282 * whereas register type in current state is meaningful, it means that
16283 * the current state will reach 'bpf_exit' instruction safely
16284 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,bool exact)16285 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16286 struct bpf_func_state *cur, bool exact)
16287 {
16288 int i;
16289
16290 if (old->callback_depth > cur->callback_depth)
16291 return false;
16292
16293 for (i = 0; i < MAX_BPF_REG; i++)
16294 if (!regsafe(env, &old->regs[i], &cur->regs[i],
16295 &env->idmap_scratch, exact))
16296 return false;
16297
16298 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16299 return false;
16300
16301 if (!refsafe(old, cur, &env->idmap_scratch))
16302 return false;
16303
16304 return true;
16305 }
16306
reset_idmap_scratch(struct bpf_verifier_env * env)16307 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16308 {
16309 env->idmap_scratch.tmp_id_gen = env->id_gen;
16310 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16311 }
16312
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool exact)16313 static bool states_equal(struct bpf_verifier_env *env,
16314 struct bpf_verifier_state *old,
16315 struct bpf_verifier_state *cur,
16316 bool exact)
16317 {
16318 int i;
16319
16320 if (old->curframe != cur->curframe)
16321 return false;
16322
16323 reset_idmap_scratch(env);
16324
16325 /* Verification state from speculative execution simulation
16326 * must never prune a non-speculative execution one.
16327 */
16328 if (old->speculative && !cur->speculative)
16329 return false;
16330
16331 if (old->active_lock.ptr != cur->active_lock.ptr)
16332 return false;
16333
16334 /* Old and cur active_lock's have to be either both present
16335 * or both absent.
16336 */
16337 if (!!old->active_lock.id != !!cur->active_lock.id)
16338 return false;
16339
16340 if (old->active_lock.id &&
16341 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16342 return false;
16343
16344 if (old->active_rcu_lock != cur->active_rcu_lock)
16345 return false;
16346
16347 /* for states to be equal callsites have to be the same
16348 * and all frame states need to be equivalent
16349 */
16350 for (i = 0; i <= old->curframe; i++) {
16351 if (old->frame[i]->callsite != cur->frame[i]->callsite)
16352 return false;
16353 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16354 return false;
16355 }
16356 return true;
16357 }
16358
16359 /* Return 0 if no propagation happened. Return negative error code if error
16360 * happened. Otherwise, return the propagated bit.
16361 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)16362 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16363 struct bpf_reg_state *reg,
16364 struct bpf_reg_state *parent_reg)
16365 {
16366 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16367 u8 flag = reg->live & REG_LIVE_READ;
16368 int err;
16369
16370 /* When comes here, read flags of PARENT_REG or REG could be any of
16371 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16372 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16373 */
16374 if (parent_flag == REG_LIVE_READ64 ||
16375 /* Or if there is no read flag from REG. */
16376 !flag ||
16377 /* Or if the read flag from REG is the same as PARENT_REG. */
16378 parent_flag == flag)
16379 return 0;
16380
16381 err = mark_reg_read(env, reg, parent_reg, flag);
16382 if (err)
16383 return err;
16384
16385 return flag;
16386 }
16387
16388 /* A write screens off any subsequent reads; but write marks come from the
16389 * straight-line code between a state and its parent. When we arrive at an
16390 * equivalent state (jump target or such) we didn't arrive by the straight-line
16391 * code, so read marks in the state must propagate to the parent regardless
16392 * of the state's write marks. That's what 'parent == state->parent' comparison
16393 * in mark_reg_read() is for.
16394 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)16395 static int propagate_liveness(struct bpf_verifier_env *env,
16396 const struct bpf_verifier_state *vstate,
16397 struct bpf_verifier_state *vparent)
16398 {
16399 struct bpf_reg_state *state_reg, *parent_reg;
16400 struct bpf_func_state *state, *parent;
16401 int i, frame, err = 0;
16402
16403 if (vparent->curframe != vstate->curframe) {
16404 WARN(1, "propagate_live: parent frame %d current frame %d\n",
16405 vparent->curframe, vstate->curframe);
16406 return -EFAULT;
16407 }
16408 /* Propagate read liveness of registers... */
16409 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16410 for (frame = 0; frame <= vstate->curframe; frame++) {
16411 parent = vparent->frame[frame];
16412 state = vstate->frame[frame];
16413 parent_reg = parent->regs;
16414 state_reg = state->regs;
16415 /* We don't need to worry about FP liveness, it's read-only */
16416 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16417 err = propagate_liveness_reg(env, &state_reg[i],
16418 &parent_reg[i]);
16419 if (err < 0)
16420 return err;
16421 if (err == REG_LIVE_READ64)
16422 mark_insn_zext(env, &parent_reg[i]);
16423 }
16424
16425 /* Propagate stack slots. */
16426 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16427 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16428 parent_reg = &parent->stack[i].spilled_ptr;
16429 state_reg = &state->stack[i].spilled_ptr;
16430 err = propagate_liveness_reg(env, state_reg,
16431 parent_reg);
16432 if (err < 0)
16433 return err;
16434 }
16435 }
16436 return 0;
16437 }
16438
16439 /* find precise scalars in the previous equivalent state and
16440 * propagate them into the current state
16441 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)16442 static int propagate_precision(struct bpf_verifier_env *env,
16443 const struct bpf_verifier_state *old)
16444 {
16445 struct bpf_reg_state *state_reg;
16446 struct bpf_func_state *state;
16447 int i, err = 0, fr;
16448 bool first;
16449
16450 for (fr = old->curframe; fr >= 0; fr--) {
16451 state = old->frame[fr];
16452 state_reg = state->regs;
16453 first = true;
16454 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16455 if (state_reg->type != SCALAR_VALUE ||
16456 !state_reg->precise ||
16457 !(state_reg->live & REG_LIVE_READ))
16458 continue;
16459 if (env->log.level & BPF_LOG_LEVEL2) {
16460 if (first)
16461 verbose(env, "frame %d: propagating r%d", fr, i);
16462 else
16463 verbose(env, ",r%d", i);
16464 }
16465 bt_set_frame_reg(&env->bt, fr, i);
16466 first = false;
16467 }
16468
16469 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16470 if (!is_spilled_reg(&state->stack[i]))
16471 continue;
16472 state_reg = &state->stack[i].spilled_ptr;
16473 if (state_reg->type != SCALAR_VALUE ||
16474 !state_reg->precise ||
16475 !(state_reg->live & REG_LIVE_READ))
16476 continue;
16477 if (env->log.level & BPF_LOG_LEVEL2) {
16478 if (first)
16479 verbose(env, "frame %d: propagating fp%d",
16480 fr, (-i - 1) * BPF_REG_SIZE);
16481 else
16482 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16483 }
16484 bt_set_frame_slot(&env->bt, fr, i);
16485 first = false;
16486 }
16487 if (!first)
16488 verbose(env, "\n");
16489 }
16490
16491 err = mark_chain_precision_batch(env);
16492 if (err < 0)
16493 return err;
16494
16495 return 0;
16496 }
16497
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16498 static bool states_maybe_looping(struct bpf_verifier_state *old,
16499 struct bpf_verifier_state *cur)
16500 {
16501 struct bpf_func_state *fold, *fcur;
16502 int i, fr = cur->curframe;
16503
16504 if (old->curframe != fr)
16505 return false;
16506
16507 fold = old->frame[fr];
16508 fcur = cur->frame[fr];
16509 for (i = 0; i < MAX_BPF_REG; i++)
16510 if (memcmp(&fold->regs[i], &fcur->regs[i],
16511 offsetof(struct bpf_reg_state, parent)))
16512 return false;
16513 return true;
16514 }
16515
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)16516 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16517 {
16518 return env->insn_aux_data[insn_idx].is_iter_next;
16519 }
16520
16521 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16522 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16523 * states to match, which otherwise would look like an infinite loop. So while
16524 * iter_next() calls are taken care of, we still need to be careful and
16525 * prevent erroneous and too eager declaration of "ininite loop", when
16526 * iterators are involved.
16527 *
16528 * Here's a situation in pseudo-BPF assembly form:
16529 *
16530 * 0: again: ; set up iter_next() call args
16531 * 1: r1 = &it ; <CHECKPOINT HERE>
16532 * 2: call bpf_iter_num_next ; this is iter_next() call
16533 * 3: if r0 == 0 goto done
16534 * 4: ... something useful here ...
16535 * 5: goto again ; another iteration
16536 * 6: done:
16537 * 7: r1 = &it
16538 * 8: call bpf_iter_num_destroy ; clean up iter state
16539 * 9: exit
16540 *
16541 * This is a typical loop. Let's assume that we have a prune point at 1:,
16542 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16543 * again`, assuming other heuristics don't get in a way).
16544 *
16545 * When we first time come to 1:, let's say we have some state X. We proceed
16546 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16547 * Now we come back to validate that forked ACTIVE state. We proceed through
16548 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16549 * are converging. But the problem is that we don't know that yet, as this
16550 * convergence has to happen at iter_next() call site only. So if nothing is
16551 * done, at 1: verifier will use bounded loop logic and declare infinite
16552 * looping (and would be *technically* correct, if not for iterator's
16553 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16554 * don't want that. So what we do in process_iter_next_call() when we go on
16555 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16556 * a different iteration. So when we suspect an infinite loop, we additionally
16557 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16558 * pretend we are not looping and wait for next iter_next() call.
16559 *
16560 * This only applies to ACTIVE state. In DRAINED state we don't expect to
16561 * loop, because that would actually mean infinite loop, as DRAINED state is
16562 * "sticky", and so we'll keep returning into the same instruction with the
16563 * same state (at least in one of possible code paths).
16564 *
16565 * This approach allows to keep infinite loop heuristic even in the face of
16566 * active iterator. E.g., C snippet below is and will be detected as
16567 * inifintely looping:
16568 *
16569 * struct bpf_iter_num it;
16570 * int *p, x;
16571 *
16572 * bpf_iter_num_new(&it, 0, 10);
16573 * while ((p = bpf_iter_num_next(&t))) {
16574 * x = p;
16575 * while (x--) {} // <<-- infinite loop here
16576 * }
16577 *
16578 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16579 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16580 {
16581 struct bpf_reg_state *slot, *cur_slot;
16582 struct bpf_func_state *state;
16583 int i, fr;
16584
16585 for (fr = old->curframe; fr >= 0; fr--) {
16586 state = old->frame[fr];
16587 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16588 if (state->stack[i].slot_type[0] != STACK_ITER)
16589 continue;
16590
16591 slot = &state->stack[i].spilled_ptr;
16592 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16593 continue;
16594
16595 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16596 if (cur_slot->iter.depth != slot->iter.depth)
16597 return true;
16598 }
16599 }
16600 return false;
16601 }
16602
is_state_visited(struct bpf_verifier_env * env,int insn_idx)16603 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16604 {
16605 struct bpf_verifier_state_list *new_sl;
16606 struct bpf_verifier_state_list *sl, **pprev;
16607 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16608 int i, j, n, err, states_cnt = 0;
16609 bool force_new_state, add_new_state, force_exact;
16610
16611 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
16612 /* Avoid accumulating infinitely long jmp history */
16613 cur->jmp_history_cnt > 40;
16614
16615 /* bpf progs typically have pruning point every 4 instructions
16616 * http://vger.kernel.org/bpfconf2019.html#session-1
16617 * Do not add new state for future pruning if the verifier hasn't seen
16618 * at least 2 jumps and at least 8 instructions.
16619 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16620 * In tests that amounts to up to 50% reduction into total verifier
16621 * memory consumption and 20% verifier time speedup.
16622 */
16623 add_new_state = force_new_state;
16624 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16625 env->insn_processed - env->prev_insn_processed >= 8)
16626 add_new_state = true;
16627
16628 pprev = explored_state(env, insn_idx);
16629 sl = *pprev;
16630
16631 clean_live_states(env, insn_idx, cur);
16632
16633 while (sl) {
16634 states_cnt++;
16635 if (sl->state.insn_idx != insn_idx)
16636 goto next;
16637
16638 if (sl->state.branches) {
16639 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16640
16641 if (frame->in_async_callback_fn &&
16642 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16643 /* Different async_entry_cnt means that the verifier is
16644 * processing another entry into async callback.
16645 * Seeing the same state is not an indication of infinite
16646 * loop or infinite recursion.
16647 * But finding the same state doesn't mean that it's safe
16648 * to stop processing the current state. The previous state
16649 * hasn't yet reached bpf_exit, since state.branches > 0.
16650 * Checking in_async_callback_fn alone is not enough either.
16651 * Since the verifier still needs to catch infinite loops
16652 * inside async callbacks.
16653 */
16654 goto skip_inf_loop_check;
16655 }
16656 /* BPF open-coded iterators loop detection is special.
16657 * states_maybe_looping() logic is too simplistic in detecting
16658 * states that *might* be equivalent, because it doesn't know
16659 * about ID remapping, so don't even perform it.
16660 * See process_iter_next_call() and iter_active_depths_differ()
16661 * for overview of the logic. When current and one of parent
16662 * states are detected as equivalent, it's a good thing: we prove
16663 * convergence and can stop simulating further iterations.
16664 * It's safe to assume that iterator loop will finish, taking into
16665 * account iter_next() contract of eventually returning
16666 * sticky NULL result.
16667 *
16668 * Note, that states have to be compared exactly in this case because
16669 * read and precision marks might not be finalized inside the loop.
16670 * E.g. as in the program below:
16671 *
16672 * 1. r7 = -16
16673 * 2. r6 = bpf_get_prandom_u32()
16674 * 3. while (bpf_iter_num_next(&fp[-8])) {
16675 * 4. if (r6 != 42) {
16676 * 5. r7 = -32
16677 * 6. r6 = bpf_get_prandom_u32()
16678 * 7. continue
16679 * 8. }
16680 * 9. r0 = r10
16681 * 10. r0 += r7
16682 * 11. r8 = *(u64 *)(r0 + 0)
16683 * 12. r6 = bpf_get_prandom_u32()
16684 * 13. }
16685 *
16686 * Here verifier would first visit path 1-3, create a checkpoint at 3
16687 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16688 * not have read or precision mark for r7 yet, thus inexact states
16689 * comparison would discard current state with r7=-32
16690 * => unsafe memory access at 11 would not be caught.
16691 */
16692 if (is_iter_next_insn(env, insn_idx)) {
16693 if (states_equal(env, &sl->state, cur, true)) {
16694 struct bpf_func_state *cur_frame;
16695 struct bpf_reg_state *iter_state, *iter_reg;
16696 int spi;
16697
16698 cur_frame = cur->frame[cur->curframe];
16699 /* btf_check_iter_kfuncs() enforces that
16700 * iter state pointer is always the first arg
16701 */
16702 iter_reg = &cur_frame->regs[BPF_REG_1];
16703 /* current state is valid due to states_equal(),
16704 * so we can assume valid iter and reg state,
16705 * no need for extra (re-)validations
16706 */
16707 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16708 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16709 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16710 update_loop_entry(cur, &sl->state);
16711 goto hit;
16712 }
16713 }
16714 goto skip_inf_loop_check;
16715 }
16716 if (calls_callback(env, insn_idx)) {
16717 if (states_equal(env, &sl->state, cur, true))
16718 goto hit;
16719 goto skip_inf_loop_check;
16720 }
16721 /* attempt to detect infinite loop to avoid unnecessary doomed work */
16722 if (states_maybe_looping(&sl->state, cur) &&
16723 states_equal(env, &sl->state, cur, false) &&
16724 !iter_active_depths_differ(&sl->state, cur) &&
16725 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16726 verbose_linfo(env, insn_idx, "; ");
16727 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16728 verbose(env, "cur state:");
16729 print_verifier_state(env, cur->frame[cur->curframe], true);
16730 verbose(env, "old state:");
16731 print_verifier_state(env, sl->state.frame[cur->curframe], true);
16732 return -EINVAL;
16733 }
16734 /* if the verifier is processing a loop, avoid adding new state
16735 * too often, since different loop iterations have distinct
16736 * states and may not help future pruning.
16737 * This threshold shouldn't be too low to make sure that
16738 * a loop with large bound will be rejected quickly.
16739 * The most abusive loop will be:
16740 * r1 += 1
16741 * if r1 < 1000000 goto pc-2
16742 * 1M insn_procssed limit / 100 == 10k peak states.
16743 * This threshold shouldn't be too high either, since states
16744 * at the end of the loop are likely to be useful in pruning.
16745 */
16746 skip_inf_loop_check:
16747 if (!force_new_state &&
16748 env->jmps_processed - env->prev_jmps_processed < 20 &&
16749 env->insn_processed - env->prev_insn_processed < 100)
16750 add_new_state = false;
16751 goto miss;
16752 }
16753 /* If sl->state is a part of a loop and this loop's entry is a part of
16754 * current verification path then states have to be compared exactly.
16755 * 'force_exact' is needed to catch the following case:
16756 *
16757 * initial Here state 'succ' was processed first,
16758 * | it was eventually tracked to produce a
16759 * V state identical to 'hdr'.
16760 * .---------> hdr All branches from 'succ' had been explored
16761 * | | and thus 'succ' has its .branches == 0.
16762 * | V
16763 * | .------... Suppose states 'cur' and 'succ' correspond
16764 * | | | to the same instruction + callsites.
16765 * | V V In such case it is necessary to check
16766 * | ... ... if 'succ' and 'cur' are states_equal().
16767 * | | | If 'succ' and 'cur' are a part of the
16768 * | V V same loop exact flag has to be set.
16769 * | succ <- cur To check if that is the case, verify
16770 * | | if loop entry of 'succ' is in current
16771 * | V DFS path.
16772 * | ...
16773 * | |
16774 * '----'
16775 *
16776 * Additional details are in the comment before get_loop_entry().
16777 */
16778 loop_entry = get_loop_entry(&sl->state);
16779 force_exact = loop_entry && loop_entry->branches > 0;
16780 if (states_equal(env, &sl->state, cur, force_exact)) {
16781 if (force_exact)
16782 update_loop_entry(cur, loop_entry);
16783 hit:
16784 sl->hit_cnt++;
16785 /* reached equivalent register/stack state,
16786 * prune the search.
16787 * Registers read by the continuation are read by us.
16788 * If we have any write marks in env->cur_state, they
16789 * will prevent corresponding reads in the continuation
16790 * from reaching our parent (an explored_state). Our
16791 * own state will get the read marks recorded, but
16792 * they'll be immediately forgotten as we're pruning
16793 * this state and will pop a new one.
16794 */
16795 err = propagate_liveness(env, &sl->state, cur);
16796
16797 /* if previous state reached the exit with precision and
16798 * current state is equivalent to it (except precsion marks)
16799 * the precision needs to be propagated back in
16800 * the current state.
16801 */
16802 if (is_jmp_point(env, env->insn_idx))
16803 err = err ? : push_jmp_history(env, cur, 0);
16804 err = err ? : propagate_precision(env, &sl->state);
16805 if (err)
16806 return err;
16807 return 1;
16808 }
16809 miss:
16810 /* when new state is not going to be added do not increase miss count.
16811 * Otherwise several loop iterations will remove the state
16812 * recorded earlier. The goal of these heuristics is to have
16813 * states from some iterations of the loop (some in the beginning
16814 * and some at the end) to help pruning.
16815 */
16816 if (add_new_state)
16817 sl->miss_cnt++;
16818 /* heuristic to determine whether this state is beneficial
16819 * to keep checking from state equivalence point of view.
16820 * Higher numbers increase max_states_per_insn and verification time,
16821 * but do not meaningfully decrease insn_processed.
16822 * 'n' controls how many times state could miss before eviction.
16823 * Use bigger 'n' for checkpoints because evicting checkpoint states
16824 * too early would hinder iterator convergence.
16825 */
16826 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16827 if (sl->miss_cnt > sl->hit_cnt * n + n) {
16828 /* the state is unlikely to be useful. Remove it to
16829 * speed up verification
16830 */
16831 *pprev = sl->next;
16832 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16833 !sl->state.used_as_loop_entry) {
16834 u32 br = sl->state.branches;
16835
16836 WARN_ONCE(br,
16837 "BUG live_done but branches_to_explore %d\n",
16838 br);
16839 free_verifier_state(&sl->state, false);
16840 kfree(sl);
16841 env->peak_states--;
16842 } else {
16843 /* cannot free this state, since parentage chain may
16844 * walk it later. Add it for free_list instead to
16845 * be freed at the end of verification
16846 */
16847 sl->next = env->free_list;
16848 env->free_list = sl;
16849 }
16850 sl = *pprev;
16851 continue;
16852 }
16853 next:
16854 pprev = &sl->next;
16855 sl = *pprev;
16856 }
16857
16858 if (env->max_states_per_insn < states_cnt)
16859 env->max_states_per_insn = states_cnt;
16860
16861 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16862 return 0;
16863
16864 if (!add_new_state)
16865 return 0;
16866
16867 /* There were no equivalent states, remember the current one.
16868 * Technically the current state is not proven to be safe yet,
16869 * but it will either reach outer most bpf_exit (which means it's safe)
16870 * or it will be rejected. When there are no loops the verifier won't be
16871 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16872 * again on the way to bpf_exit.
16873 * When looping the sl->state.branches will be > 0 and this state
16874 * will not be considered for equivalence until branches == 0.
16875 */
16876 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16877 if (!new_sl)
16878 return -ENOMEM;
16879 env->total_states++;
16880 env->peak_states++;
16881 env->prev_jmps_processed = env->jmps_processed;
16882 env->prev_insn_processed = env->insn_processed;
16883
16884 /* forget precise markings we inherited, see __mark_chain_precision */
16885 if (env->bpf_capable)
16886 mark_all_scalars_imprecise(env, cur);
16887
16888 /* add new state to the head of linked list */
16889 new = &new_sl->state;
16890 err = copy_verifier_state(new, cur);
16891 if (err) {
16892 free_verifier_state(new, false);
16893 kfree(new_sl);
16894 return err;
16895 }
16896 new->insn_idx = insn_idx;
16897 WARN_ONCE(new->branches != 1,
16898 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16899
16900 cur->parent = new;
16901 cur->first_insn_idx = insn_idx;
16902 cur->dfs_depth = new->dfs_depth + 1;
16903 clear_jmp_history(cur);
16904 new_sl->next = *explored_state(env, insn_idx);
16905 *explored_state(env, insn_idx) = new_sl;
16906 /* connect new state to parentage chain. Current frame needs all
16907 * registers connected. Only r6 - r9 of the callers are alive (pushed
16908 * to the stack implicitly by JITs) so in callers' frames connect just
16909 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16910 * the state of the call instruction (with WRITTEN set), and r0 comes
16911 * from callee with its full parentage chain, anyway.
16912 */
16913 /* clear write marks in current state: the writes we did are not writes
16914 * our child did, so they don't screen off its reads from us.
16915 * (There are no read marks in current state, because reads always mark
16916 * their parent and current state never has children yet. Only
16917 * explored_states can get read marks.)
16918 */
16919 for (j = 0; j <= cur->curframe; j++) {
16920 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16921 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16922 for (i = 0; i < BPF_REG_FP; i++)
16923 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16924 }
16925
16926 /* all stack frames are accessible from callee, clear them all */
16927 for (j = 0; j <= cur->curframe; j++) {
16928 struct bpf_func_state *frame = cur->frame[j];
16929 struct bpf_func_state *newframe = new->frame[j];
16930
16931 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16932 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16933 frame->stack[i].spilled_ptr.parent =
16934 &newframe->stack[i].spilled_ptr;
16935 }
16936 }
16937 return 0;
16938 }
16939
16940 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)16941 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16942 {
16943 switch (base_type(type)) {
16944 case PTR_TO_CTX:
16945 case PTR_TO_SOCKET:
16946 case PTR_TO_SOCK_COMMON:
16947 case PTR_TO_TCP_SOCK:
16948 case PTR_TO_XDP_SOCK:
16949 case PTR_TO_BTF_ID:
16950 return false;
16951 default:
16952 return true;
16953 }
16954 }
16955
16956 /* If an instruction was previously used with particular pointer types, then we
16957 * need to be careful to avoid cases such as the below, where it may be ok
16958 * for one branch accessing the pointer, but not ok for the other branch:
16959 *
16960 * R1 = sock_ptr
16961 * goto X;
16962 * ...
16963 * R1 = some_other_valid_ptr;
16964 * goto X;
16965 * ...
16966 * R2 = *(u32 *)(R1 + 0);
16967 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)16968 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16969 {
16970 return src != prev && (!reg_type_mismatch_ok(src) ||
16971 !reg_type_mismatch_ok(prev));
16972 }
16973
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_missmatch)16974 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16975 bool allow_trust_missmatch)
16976 {
16977 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16978
16979 if (*prev_type == NOT_INIT) {
16980 /* Saw a valid insn
16981 * dst_reg = *(u32 *)(src_reg + off)
16982 * save type to validate intersecting paths
16983 */
16984 *prev_type = type;
16985 } else if (reg_type_mismatch(type, *prev_type)) {
16986 /* Abuser program is trying to use the same insn
16987 * dst_reg = *(u32*) (src_reg + off)
16988 * with different pointer types:
16989 * src_reg == ctx in one branch and
16990 * src_reg == stack|map in some other branch.
16991 * Reject it.
16992 */
16993 if (allow_trust_missmatch &&
16994 base_type(type) == PTR_TO_BTF_ID &&
16995 base_type(*prev_type) == PTR_TO_BTF_ID) {
16996 /*
16997 * Have to support a use case when one path through
16998 * the program yields TRUSTED pointer while another
16999 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17000 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17001 */
17002 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17003 } else {
17004 verbose(env, "same insn cannot be used with different pointers\n");
17005 return -EINVAL;
17006 }
17007 }
17008
17009 return 0;
17010 }
17011
do_check(struct bpf_verifier_env * env)17012 static int do_check(struct bpf_verifier_env *env)
17013 {
17014 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17015 struct bpf_verifier_state *state = env->cur_state;
17016 struct bpf_insn *insns = env->prog->insnsi;
17017 struct bpf_reg_state *regs;
17018 int insn_cnt = env->prog->len;
17019 bool do_print_state = false;
17020 int prev_insn_idx = -1;
17021
17022 for (;;) {
17023 struct bpf_insn *insn;
17024 u8 class;
17025 int err;
17026
17027 /* reset current history entry on each new instruction */
17028 env->cur_hist_ent = NULL;
17029
17030 env->prev_insn_idx = prev_insn_idx;
17031 if (env->insn_idx >= insn_cnt) {
17032 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17033 env->insn_idx, insn_cnt);
17034 return -EFAULT;
17035 }
17036
17037 insn = &insns[env->insn_idx];
17038 class = BPF_CLASS(insn->code);
17039
17040 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17041 verbose(env,
17042 "BPF program is too large. Processed %d insn\n",
17043 env->insn_processed);
17044 return -E2BIG;
17045 }
17046
17047 state->last_insn_idx = env->prev_insn_idx;
17048
17049 if (is_prune_point(env, env->insn_idx)) {
17050 err = is_state_visited(env, env->insn_idx);
17051 if (err < 0)
17052 return err;
17053 if (err == 1) {
17054 /* found equivalent state, can prune the search */
17055 if (env->log.level & BPF_LOG_LEVEL) {
17056 if (do_print_state)
17057 verbose(env, "\nfrom %d to %d%s: safe\n",
17058 env->prev_insn_idx, env->insn_idx,
17059 env->cur_state->speculative ?
17060 " (speculative execution)" : "");
17061 else
17062 verbose(env, "%d: safe\n", env->insn_idx);
17063 }
17064 goto process_bpf_exit;
17065 }
17066 }
17067
17068 if (is_jmp_point(env, env->insn_idx)) {
17069 err = push_jmp_history(env, state, 0);
17070 if (err)
17071 return err;
17072 }
17073
17074 if (signal_pending(current))
17075 return -EAGAIN;
17076
17077 if (need_resched())
17078 cond_resched();
17079
17080 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17081 verbose(env, "\nfrom %d to %d%s:",
17082 env->prev_insn_idx, env->insn_idx,
17083 env->cur_state->speculative ?
17084 " (speculative execution)" : "");
17085 print_verifier_state(env, state->frame[state->curframe], true);
17086 do_print_state = false;
17087 }
17088
17089 if (env->log.level & BPF_LOG_LEVEL) {
17090 const struct bpf_insn_cbs cbs = {
17091 .cb_call = disasm_kfunc_name,
17092 .cb_print = verbose,
17093 .private_data = env,
17094 };
17095
17096 if (verifier_state_scratched(env))
17097 print_insn_state(env, state->frame[state->curframe]);
17098
17099 verbose_linfo(env, env->insn_idx, "; ");
17100 env->prev_log_pos = env->log.end_pos;
17101 verbose(env, "%d: ", env->insn_idx);
17102 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17103 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17104 env->prev_log_pos = env->log.end_pos;
17105 }
17106
17107 if (bpf_prog_is_offloaded(env->prog->aux)) {
17108 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17109 env->prev_insn_idx);
17110 if (err)
17111 return err;
17112 }
17113
17114 regs = cur_regs(env);
17115 sanitize_mark_insn_seen(env);
17116 prev_insn_idx = env->insn_idx;
17117
17118 if (class == BPF_ALU || class == BPF_ALU64) {
17119 err = check_alu_op(env, insn);
17120 if (err)
17121 return err;
17122
17123 } else if (class == BPF_LDX) {
17124 enum bpf_reg_type src_reg_type;
17125
17126 /* check for reserved fields is already done */
17127
17128 /* check src operand */
17129 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17130 if (err)
17131 return err;
17132
17133 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17134 if (err)
17135 return err;
17136
17137 src_reg_type = regs[insn->src_reg].type;
17138
17139 /* check that memory (src_reg + off) is readable,
17140 * the state of dst_reg will be updated by this func
17141 */
17142 err = check_mem_access(env, env->insn_idx, insn->src_reg,
17143 insn->off, BPF_SIZE(insn->code),
17144 BPF_READ, insn->dst_reg, false,
17145 BPF_MODE(insn->code) == BPF_MEMSX);
17146 if (err)
17147 return err;
17148
17149 err = save_aux_ptr_type(env, src_reg_type, true);
17150 if (err)
17151 return err;
17152 } else if (class == BPF_STX) {
17153 enum bpf_reg_type dst_reg_type;
17154
17155 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17156 err = check_atomic(env, env->insn_idx, insn);
17157 if (err)
17158 return err;
17159 env->insn_idx++;
17160 continue;
17161 }
17162
17163 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17164 verbose(env, "BPF_STX uses reserved fields\n");
17165 return -EINVAL;
17166 }
17167
17168 /* check src1 operand */
17169 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17170 if (err)
17171 return err;
17172 /* check src2 operand */
17173 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17174 if (err)
17175 return err;
17176
17177 dst_reg_type = regs[insn->dst_reg].type;
17178
17179 /* check that memory (dst_reg + off) is writeable */
17180 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17181 insn->off, BPF_SIZE(insn->code),
17182 BPF_WRITE, insn->src_reg, false, false);
17183 if (err)
17184 return err;
17185
17186 err = save_aux_ptr_type(env, dst_reg_type, false);
17187 if (err)
17188 return err;
17189 } else if (class == BPF_ST) {
17190 enum bpf_reg_type dst_reg_type;
17191
17192 if (BPF_MODE(insn->code) != BPF_MEM ||
17193 insn->src_reg != BPF_REG_0) {
17194 verbose(env, "BPF_ST uses reserved fields\n");
17195 return -EINVAL;
17196 }
17197 /* check src operand */
17198 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17199 if (err)
17200 return err;
17201
17202 dst_reg_type = regs[insn->dst_reg].type;
17203
17204 /* check that memory (dst_reg + off) is writeable */
17205 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17206 insn->off, BPF_SIZE(insn->code),
17207 BPF_WRITE, -1, false, false);
17208 if (err)
17209 return err;
17210
17211 err = save_aux_ptr_type(env, dst_reg_type, false);
17212 if (err)
17213 return err;
17214 } else if (class == BPF_JMP || class == BPF_JMP32) {
17215 u8 opcode = BPF_OP(insn->code);
17216
17217 env->jmps_processed++;
17218 if (opcode == BPF_CALL) {
17219 if (BPF_SRC(insn->code) != BPF_K ||
17220 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17221 && insn->off != 0) ||
17222 (insn->src_reg != BPF_REG_0 &&
17223 insn->src_reg != BPF_PSEUDO_CALL &&
17224 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17225 insn->dst_reg != BPF_REG_0 ||
17226 class == BPF_JMP32) {
17227 verbose(env, "BPF_CALL uses reserved fields\n");
17228 return -EINVAL;
17229 }
17230
17231 if (env->cur_state->active_lock.ptr) {
17232 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17233 (insn->src_reg == BPF_PSEUDO_CALL) ||
17234 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17235 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17236 verbose(env, "function calls are not allowed while holding a lock\n");
17237 return -EINVAL;
17238 }
17239 }
17240 if (insn->src_reg == BPF_PSEUDO_CALL)
17241 err = check_func_call(env, insn, &env->insn_idx);
17242 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
17243 err = check_kfunc_call(env, insn, &env->insn_idx);
17244 else
17245 err = check_helper_call(env, insn, &env->insn_idx);
17246 if (err)
17247 return err;
17248
17249 mark_reg_scratched(env, BPF_REG_0);
17250 } else if (opcode == BPF_JA) {
17251 if (BPF_SRC(insn->code) != BPF_K ||
17252 insn->src_reg != BPF_REG_0 ||
17253 insn->dst_reg != BPF_REG_0 ||
17254 (class == BPF_JMP && insn->imm != 0) ||
17255 (class == BPF_JMP32 && insn->off != 0)) {
17256 verbose(env, "BPF_JA uses reserved fields\n");
17257 return -EINVAL;
17258 }
17259
17260 if (class == BPF_JMP)
17261 env->insn_idx += insn->off + 1;
17262 else
17263 env->insn_idx += insn->imm + 1;
17264 continue;
17265
17266 } else if (opcode == BPF_EXIT) {
17267 if (BPF_SRC(insn->code) != BPF_K ||
17268 insn->imm != 0 ||
17269 insn->src_reg != BPF_REG_0 ||
17270 insn->dst_reg != BPF_REG_0 ||
17271 class == BPF_JMP32) {
17272 verbose(env, "BPF_EXIT uses reserved fields\n");
17273 return -EINVAL;
17274 }
17275
17276 if (env->cur_state->active_lock.ptr &&
17277 !in_rbtree_lock_required_cb(env)) {
17278 verbose(env, "bpf_spin_unlock is missing\n");
17279 return -EINVAL;
17280 }
17281
17282 if (env->cur_state->active_rcu_lock &&
17283 !in_rbtree_lock_required_cb(env)) {
17284 verbose(env, "bpf_rcu_read_unlock is missing\n");
17285 return -EINVAL;
17286 }
17287
17288 /* We must do check_reference_leak here before
17289 * prepare_func_exit to handle the case when
17290 * state->curframe > 0, it may be a callback
17291 * function, for which reference_state must
17292 * match caller reference state when it exits.
17293 */
17294 err = check_reference_leak(env);
17295 if (err)
17296 return err;
17297
17298 if (state->curframe) {
17299 /* exit from nested function */
17300 err = prepare_func_exit(env, &env->insn_idx);
17301 if (err)
17302 return err;
17303 do_print_state = true;
17304 continue;
17305 }
17306
17307 err = check_return_code(env);
17308 if (err)
17309 return err;
17310 process_bpf_exit:
17311 mark_verifier_state_scratched(env);
17312 update_branch_counts(env, env->cur_state);
17313 err = pop_stack(env, &prev_insn_idx,
17314 &env->insn_idx, pop_log);
17315 if (err < 0) {
17316 if (err != -ENOENT)
17317 return err;
17318 break;
17319 } else {
17320 do_print_state = true;
17321 continue;
17322 }
17323 } else {
17324 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17325 if (err)
17326 return err;
17327 }
17328 } else if (class == BPF_LD) {
17329 u8 mode = BPF_MODE(insn->code);
17330
17331 if (mode == BPF_ABS || mode == BPF_IND) {
17332 err = check_ld_abs(env, insn);
17333 if (err)
17334 return err;
17335
17336 } else if (mode == BPF_IMM) {
17337 err = check_ld_imm(env, insn);
17338 if (err)
17339 return err;
17340
17341 env->insn_idx++;
17342 sanitize_mark_insn_seen(env);
17343 } else {
17344 verbose(env, "invalid BPF_LD mode\n");
17345 return -EINVAL;
17346 }
17347 } else {
17348 verbose(env, "unknown insn class %d\n", class);
17349 return -EINVAL;
17350 }
17351
17352 env->insn_idx++;
17353 }
17354
17355 return 0;
17356 }
17357
find_btf_percpu_datasec(struct btf * btf)17358 static int find_btf_percpu_datasec(struct btf *btf)
17359 {
17360 const struct btf_type *t;
17361 const char *tname;
17362 int i, n;
17363
17364 /*
17365 * Both vmlinux and module each have their own ".data..percpu"
17366 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17367 * types to look at only module's own BTF types.
17368 */
17369 n = btf_nr_types(btf);
17370 if (btf_is_module(btf))
17371 i = btf_nr_types(btf_vmlinux);
17372 else
17373 i = 1;
17374
17375 for(; i < n; i++) {
17376 t = btf_type_by_id(btf, i);
17377 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17378 continue;
17379
17380 tname = btf_name_by_offset(btf, t->name_off);
17381 if (!strcmp(tname, ".data..percpu"))
17382 return i;
17383 }
17384
17385 return -ENOENT;
17386 }
17387
17388 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)17389 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17390 struct bpf_insn *insn,
17391 struct bpf_insn_aux_data *aux)
17392 {
17393 const struct btf_var_secinfo *vsi;
17394 const struct btf_type *datasec;
17395 struct btf_mod_pair *btf_mod;
17396 const struct btf_type *t;
17397 const char *sym_name;
17398 bool percpu = false;
17399 u32 type, id = insn->imm;
17400 struct btf *btf;
17401 s32 datasec_id;
17402 u64 addr;
17403 int i, btf_fd, err;
17404
17405 btf_fd = insn[1].imm;
17406 if (btf_fd) {
17407 btf = btf_get_by_fd(btf_fd);
17408 if (IS_ERR(btf)) {
17409 verbose(env, "invalid module BTF object FD specified.\n");
17410 return -EINVAL;
17411 }
17412 } else {
17413 if (!btf_vmlinux) {
17414 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17415 return -EINVAL;
17416 }
17417 btf = btf_vmlinux;
17418 btf_get(btf);
17419 }
17420
17421 t = btf_type_by_id(btf, id);
17422 if (!t) {
17423 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17424 err = -ENOENT;
17425 goto err_put;
17426 }
17427
17428 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17429 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17430 err = -EINVAL;
17431 goto err_put;
17432 }
17433
17434 sym_name = btf_name_by_offset(btf, t->name_off);
17435 addr = kallsyms_lookup_name(sym_name);
17436 if (!addr) {
17437 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17438 sym_name);
17439 err = -ENOENT;
17440 goto err_put;
17441 }
17442 insn[0].imm = (u32)addr;
17443 insn[1].imm = addr >> 32;
17444
17445 if (btf_type_is_func(t)) {
17446 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17447 aux->btf_var.mem_size = 0;
17448 goto check_btf;
17449 }
17450
17451 datasec_id = find_btf_percpu_datasec(btf);
17452 if (datasec_id > 0) {
17453 datasec = btf_type_by_id(btf, datasec_id);
17454 for_each_vsi(i, datasec, vsi) {
17455 if (vsi->type == id) {
17456 percpu = true;
17457 break;
17458 }
17459 }
17460 }
17461
17462 type = t->type;
17463 t = btf_type_skip_modifiers(btf, type, NULL);
17464 if (percpu) {
17465 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17466 aux->btf_var.btf = btf;
17467 aux->btf_var.btf_id = type;
17468 } else if (!btf_type_is_struct(t)) {
17469 const struct btf_type *ret;
17470 const char *tname;
17471 u32 tsize;
17472
17473 /* resolve the type size of ksym. */
17474 ret = btf_resolve_size(btf, t, &tsize);
17475 if (IS_ERR(ret)) {
17476 tname = btf_name_by_offset(btf, t->name_off);
17477 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17478 tname, PTR_ERR(ret));
17479 err = -EINVAL;
17480 goto err_put;
17481 }
17482 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17483 aux->btf_var.mem_size = tsize;
17484 } else {
17485 aux->btf_var.reg_type = PTR_TO_BTF_ID;
17486 aux->btf_var.btf = btf;
17487 aux->btf_var.btf_id = type;
17488 }
17489 check_btf:
17490 /* check whether we recorded this BTF (and maybe module) already */
17491 for (i = 0; i < env->used_btf_cnt; i++) {
17492 if (env->used_btfs[i].btf == btf) {
17493 btf_put(btf);
17494 return 0;
17495 }
17496 }
17497
17498 if (env->used_btf_cnt >= MAX_USED_BTFS) {
17499 err = -E2BIG;
17500 goto err_put;
17501 }
17502
17503 btf_mod = &env->used_btfs[env->used_btf_cnt];
17504 btf_mod->btf = btf;
17505 btf_mod->module = NULL;
17506
17507 /* if we reference variables from kernel module, bump its refcount */
17508 if (btf_is_module(btf)) {
17509 btf_mod->module = btf_try_get_module(btf);
17510 if (!btf_mod->module) {
17511 err = -ENXIO;
17512 goto err_put;
17513 }
17514 }
17515
17516 env->used_btf_cnt++;
17517
17518 return 0;
17519 err_put:
17520 btf_put(btf);
17521 return err;
17522 }
17523
is_tracing_prog_type(enum bpf_prog_type type)17524 static bool is_tracing_prog_type(enum bpf_prog_type type)
17525 {
17526 switch (type) {
17527 case BPF_PROG_TYPE_KPROBE:
17528 case BPF_PROG_TYPE_TRACEPOINT:
17529 case BPF_PROG_TYPE_PERF_EVENT:
17530 case BPF_PROG_TYPE_RAW_TRACEPOINT:
17531 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17532 return true;
17533 default:
17534 return false;
17535 }
17536 }
17537
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)17538 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17539 struct bpf_map *map,
17540 struct bpf_prog *prog)
17541
17542 {
17543 enum bpf_prog_type prog_type = resolve_prog_type(prog);
17544
17545 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17546 btf_record_has_field(map->record, BPF_RB_ROOT)) {
17547 if (is_tracing_prog_type(prog_type)) {
17548 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17549 return -EINVAL;
17550 }
17551 }
17552
17553 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17554 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17555 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17556 return -EINVAL;
17557 }
17558
17559 if (is_tracing_prog_type(prog_type)) {
17560 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17561 return -EINVAL;
17562 }
17563 }
17564
17565 if (btf_record_has_field(map->record, BPF_TIMER)) {
17566 if (is_tracing_prog_type(prog_type)) {
17567 verbose(env, "tracing progs cannot use bpf_timer yet\n");
17568 return -EINVAL;
17569 }
17570 }
17571
17572 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17573 !bpf_offload_prog_map_match(prog, map)) {
17574 verbose(env, "offload device mismatch between prog and map\n");
17575 return -EINVAL;
17576 }
17577
17578 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17579 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17580 return -EINVAL;
17581 }
17582
17583 if (prog->aux->sleepable)
17584 switch (map->map_type) {
17585 case BPF_MAP_TYPE_HASH:
17586 case BPF_MAP_TYPE_LRU_HASH:
17587 case BPF_MAP_TYPE_ARRAY:
17588 case BPF_MAP_TYPE_PERCPU_HASH:
17589 case BPF_MAP_TYPE_PERCPU_ARRAY:
17590 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17591 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17592 case BPF_MAP_TYPE_HASH_OF_MAPS:
17593 case BPF_MAP_TYPE_RINGBUF:
17594 case BPF_MAP_TYPE_USER_RINGBUF:
17595 case BPF_MAP_TYPE_INODE_STORAGE:
17596 case BPF_MAP_TYPE_SK_STORAGE:
17597 case BPF_MAP_TYPE_TASK_STORAGE:
17598 case BPF_MAP_TYPE_CGRP_STORAGE:
17599 break;
17600 default:
17601 verbose(env,
17602 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17603 return -EINVAL;
17604 }
17605
17606 return 0;
17607 }
17608
bpf_map_is_cgroup_storage(struct bpf_map * map)17609 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17610 {
17611 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17612 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17613 }
17614
17615 /* find and rewrite pseudo imm in ld_imm64 instructions:
17616 *
17617 * 1. if it accesses map FD, replace it with actual map pointer.
17618 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17619 *
17620 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17621 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)17622 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17623 {
17624 struct bpf_insn *insn = env->prog->insnsi;
17625 int insn_cnt = env->prog->len;
17626 int i, j, err;
17627
17628 err = bpf_prog_calc_tag(env->prog);
17629 if (err)
17630 return err;
17631
17632 for (i = 0; i < insn_cnt; i++, insn++) {
17633 if (BPF_CLASS(insn->code) == BPF_LDX &&
17634 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17635 insn->imm != 0)) {
17636 verbose(env, "BPF_LDX uses reserved fields\n");
17637 return -EINVAL;
17638 }
17639
17640 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17641 struct bpf_insn_aux_data *aux;
17642 struct bpf_map *map;
17643 struct fd f;
17644 u64 addr;
17645 u32 fd;
17646
17647 if (i == insn_cnt - 1 || insn[1].code != 0 ||
17648 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17649 insn[1].off != 0) {
17650 verbose(env, "invalid bpf_ld_imm64 insn\n");
17651 return -EINVAL;
17652 }
17653
17654 if (insn[0].src_reg == 0)
17655 /* valid generic load 64-bit imm */
17656 goto next_insn;
17657
17658 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17659 aux = &env->insn_aux_data[i];
17660 err = check_pseudo_btf_id(env, insn, aux);
17661 if (err)
17662 return err;
17663 goto next_insn;
17664 }
17665
17666 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17667 aux = &env->insn_aux_data[i];
17668 aux->ptr_type = PTR_TO_FUNC;
17669 goto next_insn;
17670 }
17671
17672 /* In final convert_pseudo_ld_imm64() step, this is
17673 * converted into regular 64-bit imm load insn.
17674 */
17675 switch (insn[0].src_reg) {
17676 case BPF_PSEUDO_MAP_VALUE:
17677 case BPF_PSEUDO_MAP_IDX_VALUE:
17678 break;
17679 case BPF_PSEUDO_MAP_FD:
17680 case BPF_PSEUDO_MAP_IDX:
17681 if (insn[1].imm == 0)
17682 break;
17683 fallthrough;
17684 default:
17685 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17686 return -EINVAL;
17687 }
17688
17689 switch (insn[0].src_reg) {
17690 case BPF_PSEUDO_MAP_IDX_VALUE:
17691 case BPF_PSEUDO_MAP_IDX:
17692 if (bpfptr_is_null(env->fd_array)) {
17693 verbose(env, "fd_idx without fd_array is invalid\n");
17694 return -EPROTO;
17695 }
17696 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17697 insn[0].imm * sizeof(fd),
17698 sizeof(fd)))
17699 return -EFAULT;
17700 break;
17701 default:
17702 fd = insn[0].imm;
17703 break;
17704 }
17705
17706 f = fdget(fd);
17707 map = __bpf_map_get(f);
17708 if (IS_ERR(map)) {
17709 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
17710 return PTR_ERR(map);
17711 }
17712
17713 err = check_map_prog_compatibility(env, map, env->prog);
17714 if (err) {
17715 fdput(f);
17716 return err;
17717 }
17718
17719 aux = &env->insn_aux_data[i];
17720 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17721 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17722 addr = (unsigned long)map;
17723 } else {
17724 u32 off = insn[1].imm;
17725
17726 if (off >= BPF_MAX_VAR_OFF) {
17727 verbose(env, "direct value offset of %u is not allowed\n", off);
17728 fdput(f);
17729 return -EINVAL;
17730 }
17731
17732 if (!map->ops->map_direct_value_addr) {
17733 verbose(env, "no direct value access support for this map type\n");
17734 fdput(f);
17735 return -EINVAL;
17736 }
17737
17738 err = map->ops->map_direct_value_addr(map, &addr, off);
17739 if (err) {
17740 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17741 map->value_size, off);
17742 fdput(f);
17743 return err;
17744 }
17745
17746 aux->map_off = off;
17747 addr += off;
17748 }
17749
17750 insn[0].imm = (u32)addr;
17751 insn[1].imm = addr >> 32;
17752
17753 /* check whether we recorded this map already */
17754 for (j = 0; j < env->used_map_cnt; j++) {
17755 if (env->used_maps[j] == map) {
17756 aux->map_index = j;
17757 fdput(f);
17758 goto next_insn;
17759 }
17760 }
17761
17762 if (env->used_map_cnt >= MAX_USED_MAPS) {
17763 fdput(f);
17764 return -E2BIG;
17765 }
17766
17767 if (env->prog->aux->sleepable)
17768 atomic64_inc(&map->sleepable_refcnt);
17769 /* hold the map. If the program is rejected by verifier,
17770 * the map will be released by release_maps() or it
17771 * will be used by the valid program until it's unloaded
17772 * and all maps are released in bpf_free_used_maps()
17773 */
17774 bpf_map_inc(map);
17775
17776 aux->map_index = env->used_map_cnt;
17777 env->used_maps[env->used_map_cnt++] = map;
17778
17779 if (bpf_map_is_cgroup_storage(map) &&
17780 bpf_cgroup_storage_assign(env->prog->aux, map)) {
17781 verbose(env, "only one cgroup storage of each type is allowed\n");
17782 fdput(f);
17783 return -EBUSY;
17784 }
17785
17786 fdput(f);
17787 next_insn:
17788 insn++;
17789 i++;
17790 continue;
17791 }
17792
17793 /* Basic sanity check before we invest more work here. */
17794 if (!bpf_opcode_in_insntable(insn->code)) {
17795 verbose(env, "unknown opcode %02x\n", insn->code);
17796 return -EINVAL;
17797 }
17798 }
17799
17800 /* now all pseudo BPF_LD_IMM64 instructions load valid
17801 * 'struct bpf_map *' into a register instead of user map_fd.
17802 * These pointers will be used later by verifier to validate map access.
17803 */
17804 return 0;
17805 }
17806
17807 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)17808 static void release_maps(struct bpf_verifier_env *env)
17809 {
17810 __bpf_free_used_maps(env->prog->aux, env->used_maps,
17811 env->used_map_cnt);
17812 }
17813
17814 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)17815 static void release_btfs(struct bpf_verifier_env *env)
17816 {
17817 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17818 env->used_btf_cnt);
17819 }
17820
17821 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)17822 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17823 {
17824 struct bpf_insn *insn = env->prog->insnsi;
17825 int insn_cnt = env->prog->len;
17826 int i;
17827
17828 for (i = 0; i < insn_cnt; i++, insn++) {
17829 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17830 continue;
17831 if (insn->src_reg == BPF_PSEUDO_FUNC)
17832 continue;
17833 insn->src_reg = 0;
17834 }
17835 }
17836
17837 /* single env->prog->insni[off] instruction was replaced with the range
17838 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
17839 * [0, off) and [off, end) to new locations, so the patched range stays zero
17840 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)17841 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17842 struct bpf_insn_aux_data *new_data,
17843 struct bpf_prog *new_prog, u32 off, u32 cnt)
17844 {
17845 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17846 struct bpf_insn *insn = new_prog->insnsi;
17847 u32 old_seen = old_data[off].seen;
17848 u32 prog_len;
17849 int i;
17850
17851 /* aux info at OFF always needs adjustment, no matter fast path
17852 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17853 * original insn at old prog.
17854 */
17855 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17856
17857 if (cnt == 1)
17858 return;
17859 prog_len = new_prog->len;
17860
17861 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17862 memcpy(new_data + off + cnt - 1, old_data + off,
17863 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17864 for (i = off; i < off + cnt - 1; i++) {
17865 /* Expand insni[off]'s seen count to the patched range. */
17866 new_data[i].seen = old_seen;
17867 new_data[i].zext_dst = insn_has_def32(env, insn + i);
17868 }
17869 env->insn_aux_data = new_data;
17870 vfree(old_data);
17871 }
17872
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)17873 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17874 {
17875 int i;
17876
17877 if (len == 1)
17878 return;
17879 /* NOTE: fake 'exit' subprog should be updated as well. */
17880 for (i = 0; i <= env->subprog_cnt; i++) {
17881 if (env->subprog_info[i].start <= off)
17882 continue;
17883 env->subprog_info[i].start += len - 1;
17884 }
17885 }
17886
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)17887 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17888 {
17889 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17890 int i, sz = prog->aux->size_poke_tab;
17891 struct bpf_jit_poke_descriptor *desc;
17892
17893 for (i = 0; i < sz; i++) {
17894 desc = &tab[i];
17895 if (desc->insn_idx <= off)
17896 continue;
17897 desc->insn_idx += len - 1;
17898 }
17899 }
17900
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)17901 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17902 const struct bpf_insn *patch, u32 len)
17903 {
17904 struct bpf_prog *new_prog;
17905 struct bpf_insn_aux_data *new_data = NULL;
17906
17907 if (len > 1) {
17908 new_data = vzalloc(array_size(env->prog->len + len - 1,
17909 sizeof(struct bpf_insn_aux_data)));
17910 if (!new_data)
17911 return NULL;
17912 }
17913
17914 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17915 if (IS_ERR(new_prog)) {
17916 if (PTR_ERR(new_prog) == -ERANGE)
17917 verbose(env,
17918 "insn %d cannot be patched due to 16-bit range\n",
17919 env->insn_aux_data[off].orig_idx);
17920 vfree(new_data);
17921 return NULL;
17922 }
17923 adjust_insn_aux_data(env, new_data, new_prog, off, len);
17924 adjust_subprog_starts(env, off, len);
17925 adjust_poke_descs(new_prog, off, len);
17926 return new_prog;
17927 }
17928
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17929 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17930 u32 off, u32 cnt)
17931 {
17932 int i, j;
17933
17934 /* find first prog starting at or after off (first to remove) */
17935 for (i = 0; i < env->subprog_cnt; i++)
17936 if (env->subprog_info[i].start >= off)
17937 break;
17938 /* find first prog starting at or after off + cnt (first to stay) */
17939 for (j = i; j < env->subprog_cnt; j++)
17940 if (env->subprog_info[j].start >= off + cnt)
17941 break;
17942 /* if j doesn't start exactly at off + cnt, we are just removing
17943 * the front of previous prog
17944 */
17945 if (env->subprog_info[j].start != off + cnt)
17946 j--;
17947
17948 if (j > i) {
17949 struct bpf_prog_aux *aux = env->prog->aux;
17950 int move;
17951
17952 /* move fake 'exit' subprog as well */
17953 move = env->subprog_cnt + 1 - j;
17954
17955 memmove(env->subprog_info + i,
17956 env->subprog_info + j,
17957 sizeof(*env->subprog_info) * move);
17958 env->subprog_cnt -= j - i;
17959
17960 /* remove func_info */
17961 if (aux->func_info) {
17962 move = aux->func_info_cnt - j;
17963
17964 memmove(aux->func_info + i,
17965 aux->func_info + j,
17966 sizeof(*aux->func_info) * move);
17967 aux->func_info_cnt -= j - i;
17968 /* func_info->insn_off is set after all code rewrites,
17969 * in adjust_btf_func() - no need to adjust
17970 */
17971 }
17972 } else {
17973 /* convert i from "first prog to remove" to "first to adjust" */
17974 if (env->subprog_info[i].start == off)
17975 i++;
17976 }
17977
17978 /* update fake 'exit' subprog as well */
17979 for (; i <= env->subprog_cnt; i++)
17980 env->subprog_info[i].start -= cnt;
17981
17982 return 0;
17983 }
17984
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17985 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17986 u32 cnt)
17987 {
17988 struct bpf_prog *prog = env->prog;
17989 u32 i, l_off, l_cnt, nr_linfo;
17990 struct bpf_line_info *linfo;
17991
17992 nr_linfo = prog->aux->nr_linfo;
17993 if (!nr_linfo)
17994 return 0;
17995
17996 linfo = prog->aux->linfo;
17997
17998 /* find first line info to remove, count lines to be removed */
17999 for (i = 0; i < nr_linfo; i++)
18000 if (linfo[i].insn_off >= off)
18001 break;
18002
18003 l_off = i;
18004 l_cnt = 0;
18005 for (; i < nr_linfo; i++)
18006 if (linfo[i].insn_off < off + cnt)
18007 l_cnt++;
18008 else
18009 break;
18010
18011 /* First live insn doesn't match first live linfo, it needs to "inherit"
18012 * last removed linfo. prog is already modified, so prog->len == off
18013 * means no live instructions after (tail of the program was removed).
18014 */
18015 if (prog->len != off && l_cnt &&
18016 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18017 l_cnt--;
18018 linfo[--i].insn_off = off + cnt;
18019 }
18020
18021 /* remove the line info which refer to the removed instructions */
18022 if (l_cnt) {
18023 memmove(linfo + l_off, linfo + i,
18024 sizeof(*linfo) * (nr_linfo - i));
18025
18026 prog->aux->nr_linfo -= l_cnt;
18027 nr_linfo = prog->aux->nr_linfo;
18028 }
18029
18030 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
18031 for (i = l_off; i < nr_linfo; i++)
18032 linfo[i].insn_off -= cnt;
18033
18034 /* fix up all subprogs (incl. 'exit') which start >= off */
18035 for (i = 0; i <= env->subprog_cnt; i++)
18036 if (env->subprog_info[i].linfo_idx > l_off) {
18037 /* program may have started in the removed region but
18038 * may not be fully removed
18039 */
18040 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18041 env->subprog_info[i].linfo_idx -= l_cnt;
18042 else
18043 env->subprog_info[i].linfo_idx = l_off;
18044 }
18045
18046 return 0;
18047 }
18048
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)18049 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18050 {
18051 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18052 unsigned int orig_prog_len = env->prog->len;
18053 int err;
18054
18055 if (bpf_prog_is_offloaded(env->prog->aux))
18056 bpf_prog_offload_remove_insns(env, off, cnt);
18057
18058 err = bpf_remove_insns(env->prog, off, cnt);
18059 if (err)
18060 return err;
18061
18062 err = adjust_subprog_starts_after_remove(env, off, cnt);
18063 if (err)
18064 return err;
18065
18066 err = bpf_adj_linfo_after_remove(env, off, cnt);
18067 if (err)
18068 return err;
18069
18070 memmove(aux_data + off, aux_data + off + cnt,
18071 sizeof(*aux_data) * (orig_prog_len - off - cnt));
18072
18073 return 0;
18074 }
18075
18076 /* The verifier does more data flow analysis than llvm and will not
18077 * explore branches that are dead at run time. Malicious programs can
18078 * have dead code too. Therefore replace all dead at-run-time code
18079 * with 'ja -1'.
18080 *
18081 * Just nops are not optimal, e.g. if they would sit at the end of the
18082 * program and through another bug we would manage to jump there, then
18083 * we'd execute beyond program memory otherwise. Returning exception
18084 * code also wouldn't work since we can have subprogs where the dead
18085 * code could be located.
18086 */
sanitize_dead_code(struct bpf_verifier_env * env)18087 static void sanitize_dead_code(struct bpf_verifier_env *env)
18088 {
18089 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18090 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18091 struct bpf_insn *insn = env->prog->insnsi;
18092 const int insn_cnt = env->prog->len;
18093 int i;
18094
18095 for (i = 0; i < insn_cnt; i++) {
18096 if (aux_data[i].seen)
18097 continue;
18098 memcpy(insn + i, &trap, sizeof(trap));
18099 aux_data[i].zext_dst = false;
18100 }
18101 }
18102
insn_is_cond_jump(u8 code)18103 static bool insn_is_cond_jump(u8 code)
18104 {
18105 u8 op;
18106
18107 op = BPF_OP(code);
18108 if (BPF_CLASS(code) == BPF_JMP32)
18109 return op != BPF_JA;
18110
18111 if (BPF_CLASS(code) != BPF_JMP)
18112 return false;
18113
18114 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18115 }
18116
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)18117 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18118 {
18119 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18120 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18121 struct bpf_insn *insn = env->prog->insnsi;
18122 const int insn_cnt = env->prog->len;
18123 int i;
18124
18125 for (i = 0; i < insn_cnt; i++, insn++) {
18126 if (!insn_is_cond_jump(insn->code))
18127 continue;
18128
18129 if (!aux_data[i + 1].seen)
18130 ja.off = insn->off;
18131 else if (!aux_data[i + 1 + insn->off].seen)
18132 ja.off = 0;
18133 else
18134 continue;
18135
18136 if (bpf_prog_is_offloaded(env->prog->aux))
18137 bpf_prog_offload_replace_insn(env, i, &ja);
18138
18139 memcpy(insn, &ja, sizeof(ja));
18140 }
18141 }
18142
opt_remove_dead_code(struct bpf_verifier_env * env)18143 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18144 {
18145 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18146 int insn_cnt = env->prog->len;
18147 int i, err;
18148
18149 for (i = 0; i < insn_cnt; i++) {
18150 int j;
18151
18152 j = 0;
18153 while (i + j < insn_cnt && !aux_data[i + j].seen)
18154 j++;
18155 if (!j)
18156 continue;
18157
18158 err = verifier_remove_insns(env, i, j);
18159 if (err)
18160 return err;
18161 insn_cnt = env->prog->len;
18162 }
18163
18164 return 0;
18165 }
18166
opt_remove_nops(struct bpf_verifier_env * env)18167 static int opt_remove_nops(struct bpf_verifier_env *env)
18168 {
18169 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18170 struct bpf_insn *insn = env->prog->insnsi;
18171 int insn_cnt = env->prog->len;
18172 int i, err;
18173
18174 for (i = 0; i < insn_cnt; i++) {
18175 if (memcmp(&insn[i], &ja, sizeof(ja)))
18176 continue;
18177
18178 err = verifier_remove_insns(env, i, 1);
18179 if (err)
18180 return err;
18181 insn_cnt--;
18182 i--;
18183 }
18184
18185 return 0;
18186 }
18187
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)18188 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18189 const union bpf_attr *attr)
18190 {
18191 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18192 struct bpf_insn_aux_data *aux = env->insn_aux_data;
18193 int i, patch_len, delta = 0, len = env->prog->len;
18194 struct bpf_insn *insns = env->prog->insnsi;
18195 struct bpf_prog *new_prog;
18196 bool rnd_hi32;
18197
18198 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18199 zext_patch[1] = BPF_ZEXT_REG(0);
18200 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18201 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18202 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18203 for (i = 0; i < len; i++) {
18204 int adj_idx = i + delta;
18205 struct bpf_insn insn;
18206 int load_reg;
18207
18208 insn = insns[adj_idx];
18209 load_reg = insn_def_regno(&insn);
18210 if (!aux[adj_idx].zext_dst) {
18211 u8 code, class;
18212 u32 imm_rnd;
18213
18214 if (!rnd_hi32)
18215 continue;
18216
18217 code = insn.code;
18218 class = BPF_CLASS(code);
18219 if (load_reg == -1)
18220 continue;
18221
18222 /* NOTE: arg "reg" (the fourth one) is only used for
18223 * BPF_STX + SRC_OP, so it is safe to pass NULL
18224 * here.
18225 */
18226 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18227 if (class == BPF_LD &&
18228 BPF_MODE(code) == BPF_IMM)
18229 i++;
18230 continue;
18231 }
18232
18233 /* ctx load could be transformed into wider load. */
18234 if (class == BPF_LDX &&
18235 aux[adj_idx].ptr_type == PTR_TO_CTX)
18236 continue;
18237
18238 imm_rnd = get_random_u32();
18239 rnd_hi32_patch[0] = insn;
18240 rnd_hi32_patch[1].imm = imm_rnd;
18241 rnd_hi32_patch[3].dst_reg = load_reg;
18242 patch = rnd_hi32_patch;
18243 patch_len = 4;
18244 goto apply_patch_buffer;
18245 }
18246
18247 /* Add in an zero-extend instruction if a) the JIT has requested
18248 * it or b) it's a CMPXCHG.
18249 *
18250 * The latter is because: BPF_CMPXCHG always loads a value into
18251 * R0, therefore always zero-extends. However some archs'
18252 * equivalent instruction only does this load when the
18253 * comparison is successful. This detail of CMPXCHG is
18254 * orthogonal to the general zero-extension behaviour of the
18255 * CPU, so it's treated independently of bpf_jit_needs_zext.
18256 */
18257 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18258 continue;
18259
18260 /* Zero-extension is done by the caller. */
18261 if (bpf_pseudo_kfunc_call(&insn))
18262 continue;
18263
18264 if (WARN_ON(load_reg == -1)) {
18265 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18266 return -EFAULT;
18267 }
18268
18269 zext_patch[0] = insn;
18270 zext_patch[1].dst_reg = load_reg;
18271 zext_patch[1].src_reg = load_reg;
18272 patch = zext_patch;
18273 patch_len = 2;
18274 apply_patch_buffer:
18275 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18276 if (!new_prog)
18277 return -ENOMEM;
18278 env->prog = new_prog;
18279 insns = new_prog->insnsi;
18280 aux = env->insn_aux_data;
18281 delta += patch_len - 1;
18282 }
18283
18284 return 0;
18285 }
18286
18287 /* convert load instructions that access fields of a context type into a
18288 * sequence of instructions that access fields of the underlying structure:
18289 * struct __sk_buff -> struct sk_buff
18290 * struct bpf_sock_ops -> struct sock
18291 */
convert_ctx_accesses(struct bpf_verifier_env * env)18292 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18293 {
18294 const struct bpf_verifier_ops *ops = env->ops;
18295 int i, cnt, size, ctx_field_size, delta = 0;
18296 const int insn_cnt = env->prog->len;
18297 struct bpf_insn insn_buf[16], *insn;
18298 u32 target_size, size_default, off;
18299 struct bpf_prog *new_prog;
18300 enum bpf_access_type type;
18301 bool is_narrower_load;
18302
18303 if (ops->gen_prologue || env->seen_direct_write) {
18304 if (!ops->gen_prologue) {
18305 verbose(env, "bpf verifier is misconfigured\n");
18306 return -EINVAL;
18307 }
18308 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18309 env->prog);
18310 if (cnt >= ARRAY_SIZE(insn_buf)) {
18311 verbose(env, "bpf verifier is misconfigured\n");
18312 return -EINVAL;
18313 } else if (cnt) {
18314 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18315 if (!new_prog)
18316 return -ENOMEM;
18317
18318 env->prog = new_prog;
18319 delta += cnt - 1;
18320 }
18321 }
18322
18323 if (bpf_prog_is_offloaded(env->prog->aux))
18324 return 0;
18325
18326 insn = env->prog->insnsi + delta;
18327
18328 for (i = 0; i < insn_cnt; i++, insn++) {
18329 bpf_convert_ctx_access_t convert_ctx_access;
18330 u8 mode;
18331
18332 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18333 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18334 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18335 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18336 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18337 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18338 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18339 type = BPF_READ;
18340 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18341 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18342 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18343 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18344 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18345 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18346 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18347 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18348 type = BPF_WRITE;
18349 } else {
18350 continue;
18351 }
18352
18353 if (type == BPF_WRITE &&
18354 env->insn_aux_data[i + delta].sanitize_stack_spill) {
18355 struct bpf_insn patch[] = {
18356 *insn,
18357 BPF_ST_NOSPEC(),
18358 };
18359
18360 cnt = ARRAY_SIZE(patch);
18361 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18362 if (!new_prog)
18363 return -ENOMEM;
18364
18365 delta += cnt - 1;
18366 env->prog = new_prog;
18367 insn = new_prog->insnsi + i + delta;
18368 continue;
18369 }
18370
18371 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18372 case PTR_TO_CTX:
18373 if (!ops->convert_ctx_access)
18374 continue;
18375 convert_ctx_access = ops->convert_ctx_access;
18376 break;
18377 case PTR_TO_SOCKET:
18378 case PTR_TO_SOCK_COMMON:
18379 convert_ctx_access = bpf_sock_convert_ctx_access;
18380 break;
18381 case PTR_TO_TCP_SOCK:
18382 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18383 break;
18384 case PTR_TO_XDP_SOCK:
18385 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18386 break;
18387 case PTR_TO_BTF_ID:
18388 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18389 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18390 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18391 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18392 * any faults for loads into such types. BPF_WRITE is disallowed
18393 * for this case.
18394 */
18395 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18396 if (type == BPF_READ) {
18397 if (BPF_MODE(insn->code) == BPF_MEM)
18398 insn->code = BPF_LDX | BPF_PROBE_MEM |
18399 BPF_SIZE((insn)->code);
18400 else
18401 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18402 BPF_SIZE((insn)->code);
18403 env->prog->aux->num_exentries++;
18404 }
18405 continue;
18406 default:
18407 continue;
18408 }
18409
18410 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18411 size = BPF_LDST_BYTES(insn);
18412 mode = BPF_MODE(insn->code);
18413
18414 /* If the read access is a narrower load of the field,
18415 * convert to a 4/8-byte load, to minimum program type specific
18416 * convert_ctx_access changes. If conversion is successful,
18417 * we will apply proper mask to the result.
18418 */
18419 is_narrower_load = size < ctx_field_size;
18420 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18421 off = insn->off;
18422 if (is_narrower_load) {
18423 u8 size_code;
18424
18425 if (type == BPF_WRITE) {
18426 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18427 return -EINVAL;
18428 }
18429
18430 size_code = BPF_H;
18431 if (ctx_field_size == 4)
18432 size_code = BPF_W;
18433 else if (ctx_field_size == 8)
18434 size_code = BPF_DW;
18435
18436 insn->off = off & ~(size_default - 1);
18437 insn->code = BPF_LDX | BPF_MEM | size_code;
18438 }
18439
18440 target_size = 0;
18441 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18442 &target_size);
18443 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18444 (ctx_field_size && !target_size)) {
18445 verbose(env, "bpf verifier is misconfigured\n");
18446 return -EINVAL;
18447 }
18448
18449 if (is_narrower_load && size < target_size) {
18450 u8 shift = bpf_ctx_narrow_access_offset(
18451 off, size, size_default) * 8;
18452 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18453 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18454 return -EINVAL;
18455 }
18456 if (ctx_field_size <= 4) {
18457 if (shift)
18458 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18459 insn->dst_reg,
18460 shift);
18461 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18462 (1 << size * 8) - 1);
18463 } else {
18464 if (shift)
18465 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18466 insn->dst_reg,
18467 shift);
18468 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18469 (1ULL << size * 8) - 1);
18470 }
18471 }
18472 if (mode == BPF_MEMSX)
18473 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18474 insn->dst_reg, insn->dst_reg,
18475 size * 8, 0);
18476
18477 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18478 if (!new_prog)
18479 return -ENOMEM;
18480
18481 delta += cnt - 1;
18482
18483 /* keep walking new program and skip insns we just inserted */
18484 env->prog = new_prog;
18485 insn = new_prog->insnsi + i + delta;
18486 }
18487
18488 return 0;
18489 }
18490
jit_subprogs(struct bpf_verifier_env * env)18491 static int jit_subprogs(struct bpf_verifier_env *env)
18492 {
18493 struct bpf_prog *prog = env->prog, **func, *tmp;
18494 int i, j, subprog_start, subprog_end = 0, len, subprog;
18495 struct bpf_map *map_ptr;
18496 struct bpf_insn *insn;
18497 void *old_bpf_func;
18498 int err, num_exentries;
18499
18500 if (env->subprog_cnt <= 1)
18501 return 0;
18502
18503 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18504 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18505 continue;
18506
18507 /* Upon error here we cannot fall back to interpreter but
18508 * need a hard reject of the program. Thus -EFAULT is
18509 * propagated in any case.
18510 */
18511 subprog = find_subprog(env, i + insn->imm + 1);
18512 if (subprog < 0) {
18513 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18514 i + insn->imm + 1);
18515 return -EFAULT;
18516 }
18517 /* temporarily remember subprog id inside insn instead of
18518 * aux_data, since next loop will split up all insns into funcs
18519 */
18520 insn->off = subprog;
18521 /* remember original imm in case JIT fails and fallback
18522 * to interpreter will be needed
18523 */
18524 env->insn_aux_data[i].call_imm = insn->imm;
18525 /* point imm to __bpf_call_base+1 from JITs point of view */
18526 insn->imm = 1;
18527 if (bpf_pseudo_func(insn))
18528 /* jit (e.g. x86_64) may emit fewer instructions
18529 * if it learns a u32 imm is the same as a u64 imm.
18530 * Force a non zero here.
18531 */
18532 insn[1].imm = 1;
18533 }
18534
18535 err = bpf_prog_alloc_jited_linfo(prog);
18536 if (err)
18537 goto out_undo_insn;
18538
18539 err = -ENOMEM;
18540 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18541 if (!func)
18542 goto out_undo_insn;
18543
18544 for (i = 0; i < env->subprog_cnt; i++) {
18545 subprog_start = subprog_end;
18546 subprog_end = env->subprog_info[i + 1].start;
18547
18548 len = subprog_end - subprog_start;
18549 /* bpf_prog_run() doesn't call subprogs directly,
18550 * hence main prog stats include the runtime of subprogs.
18551 * subprogs don't have IDs and not reachable via prog_get_next_id
18552 * func[i]->stats will never be accessed and stays NULL
18553 */
18554 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18555 if (!func[i])
18556 goto out_free;
18557 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18558 len * sizeof(struct bpf_insn));
18559 func[i]->type = prog->type;
18560 func[i]->len = len;
18561 if (bpf_prog_calc_tag(func[i]))
18562 goto out_free;
18563 func[i]->is_func = 1;
18564 func[i]->aux->func_idx = i;
18565 /* Below members will be freed only at prog->aux */
18566 func[i]->aux->btf = prog->aux->btf;
18567 func[i]->aux->func_info = prog->aux->func_info;
18568 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18569 func[i]->aux->poke_tab = prog->aux->poke_tab;
18570 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18571
18572 for (j = 0; j < prog->aux->size_poke_tab; j++) {
18573 struct bpf_jit_poke_descriptor *poke;
18574
18575 poke = &prog->aux->poke_tab[j];
18576 if (poke->insn_idx < subprog_end &&
18577 poke->insn_idx >= subprog_start)
18578 poke->aux = func[i]->aux;
18579 }
18580
18581 func[i]->aux->name[0] = 'F';
18582 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18583 func[i]->jit_requested = 1;
18584 func[i]->blinding_requested = prog->blinding_requested;
18585 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18586 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18587 func[i]->aux->linfo = prog->aux->linfo;
18588 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18589 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18590 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18591 num_exentries = 0;
18592 insn = func[i]->insnsi;
18593 for (j = 0; j < func[i]->len; j++, insn++) {
18594 if (BPF_CLASS(insn->code) == BPF_LDX &&
18595 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18596 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18597 num_exentries++;
18598 }
18599 func[i]->aux->num_exentries = num_exentries;
18600 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18601 func[i] = bpf_int_jit_compile(func[i]);
18602 if (!func[i]->jited) {
18603 err = -ENOTSUPP;
18604 goto out_free;
18605 }
18606 cond_resched();
18607 }
18608
18609 /* at this point all bpf functions were successfully JITed
18610 * now populate all bpf_calls with correct addresses and
18611 * run last pass of JIT
18612 */
18613 for (i = 0; i < env->subprog_cnt; i++) {
18614 insn = func[i]->insnsi;
18615 for (j = 0; j < func[i]->len; j++, insn++) {
18616 if (bpf_pseudo_func(insn)) {
18617 subprog = insn->off;
18618 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18619 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18620 continue;
18621 }
18622 if (!bpf_pseudo_call(insn))
18623 continue;
18624 subprog = insn->off;
18625 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18626 }
18627
18628 /* we use the aux data to keep a list of the start addresses
18629 * of the JITed images for each function in the program
18630 *
18631 * for some architectures, such as powerpc64, the imm field
18632 * might not be large enough to hold the offset of the start
18633 * address of the callee's JITed image from __bpf_call_base
18634 *
18635 * in such cases, we can lookup the start address of a callee
18636 * by using its subprog id, available from the off field of
18637 * the call instruction, as an index for this list
18638 */
18639 func[i]->aux->func = func;
18640 func[i]->aux->func_cnt = env->subprog_cnt;
18641 }
18642 for (i = 0; i < env->subprog_cnt; i++) {
18643 old_bpf_func = func[i]->bpf_func;
18644 tmp = bpf_int_jit_compile(func[i]);
18645 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18646 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18647 err = -ENOTSUPP;
18648 goto out_free;
18649 }
18650 cond_resched();
18651 }
18652
18653 /* finally lock prog and jit images for all functions and
18654 * populate kallsysm. Begin at the first subprogram, since
18655 * bpf_prog_load will add the kallsyms for the main program.
18656 */
18657 for (i = 1; i < env->subprog_cnt; i++) {
18658 bpf_prog_lock_ro(func[i]);
18659 bpf_prog_kallsyms_add(func[i]);
18660 }
18661
18662 /* Last step: make now unused interpreter insns from main
18663 * prog consistent for later dump requests, so they can
18664 * later look the same as if they were interpreted only.
18665 */
18666 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18667 if (bpf_pseudo_func(insn)) {
18668 insn[0].imm = env->insn_aux_data[i].call_imm;
18669 insn[1].imm = insn->off;
18670 insn->off = 0;
18671 continue;
18672 }
18673 if (!bpf_pseudo_call(insn))
18674 continue;
18675 insn->off = env->insn_aux_data[i].call_imm;
18676 subprog = find_subprog(env, i + insn->off + 1);
18677 insn->imm = subprog;
18678 }
18679
18680 prog->jited = 1;
18681 prog->bpf_func = func[0]->bpf_func;
18682 prog->jited_len = func[0]->jited_len;
18683 prog->aux->extable = func[0]->aux->extable;
18684 prog->aux->num_exentries = func[0]->aux->num_exentries;
18685 prog->aux->func = func;
18686 prog->aux->func_cnt = env->subprog_cnt;
18687 bpf_prog_jit_attempt_done(prog);
18688 return 0;
18689 out_free:
18690 /* We failed JIT'ing, so at this point we need to unregister poke
18691 * descriptors from subprogs, so that kernel is not attempting to
18692 * patch it anymore as we're freeing the subprog JIT memory.
18693 */
18694 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18695 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18696 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18697 }
18698 /* At this point we're guaranteed that poke descriptors are not
18699 * live anymore. We can just unlink its descriptor table as it's
18700 * released with the main prog.
18701 */
18702 for (i = 0; i < env->subprog_cnt; i++) {
18703 if (!func[i])
18704 continue;
18705 func[i]->aux->poke_tab = NULL;
18706 bpf_jit_free(func[i]);
18707 }
18708 kfree(func);
18709 out_undo_insn:
18710 /* cleanup main prog to be interpreted */
18711 prog->jit_requested = 0;
18712 prog->blinding_requested = 0;
18713 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18714 if (!bpf_pseudo_call(insn))
18715 continue;
18716 insn->off = 0;
18717 insn->imm = env->insn_aux_data[i].call_imm;
18718 }
18719 bpf_prog_jit_attempt_done(prog);
18720 return err;
18721 }
18722
fixup_call_args(struct bpf_verifier_env * env)18723 static int fixup_call_args(struct bpf_verifier_env *env)
18724 {
18725 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18726 struct bpf_prog *prog = env->prog;
18727 struct bpf_insn *insn = prog->insnsi;
18728 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18729 int i, depth;
18730 #endif
18731 int err = 0;
18732
18733 if (env->prog->jit_requested &&
18734 !bpf_prog_is_offloaded(env->prog->aux)) {
18735 err = jit_subprogs(env);
18736 if (err == 0)
18737 return 0;
18738 if (err == -EFAULT)
18739 return err;
18740 }
18741 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18742 if (has_kfunc_call) {
18743 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18744 return -EINVAL;
18745 }
18746 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18747 /* When JIT fails the progs with bpf2bpf calls and tail_calls
18748 * have to be rejected, since interpreter doesn't support them yet.
18749 */
18750 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18751 return -EINVAL;
18752 }
18753 for (i = 0; i < prog->len; i++, insn++) {
18754 if (bpf_pseudo_func(insn)) {
18755 /* When JIT fails the progs with callback calls
18756 * have to be rejected, since interpreter doesn't support them yet.
18757 */
18758 verbose(env, "callbacks are not allowed in non-JITed programs\n");
18759 return -EINVAL;
18760 }
18761
18762 if (!bpf_pseudo_call(insn))
18763 continue;
18764 depth = get_callee_stack_depth(env, insn, i);
18765 if (depth < 0)
18766 return depth;
18767 bpf_patch_call_args(insn, depth);
18768 }
18769 err = 0;
18770 #endif
18771 return err;
18772 }
18773
18774 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)18775 static void specialize_kfunc(struct bpf_verifier_env *env,
18776 u32 func_id, u16 offset, unsigned long *addr)
18777 {
18778 struct bpf_prog *prog = env->prog;
18779 bool seen_direct_write;
18780 void *xdp_kfunc;
18781 bool is_rdonly;
18782
18783 if (bpf_dev_bound_kfunc_id(func_id)) {
18784 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18785 if (xdp_kfunc) {
18786 *addr = (unsigned long)xdp_kfunc;
18787 return;
18788 }
18789 /* fallback to default kfunc when not supported by netdev */
18790 }
18791
18792 if (offset)
18793 return;
18794
18795 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18796 seen_direct_write = env->seen_direct_write;
18797 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18798
18799 if (is_rdonly)
18800 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18801
18802 /* restore env->seen_direct_write to its original value, since
18803 * may_access_direct_pkt_data mutates it
18804 */
18805 env->seen_direct_write = seen_direct_write;
18806 }
18807 }
18808
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)18809 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18810 u16 struct_meta_reg,
18811 u16 node_offset_reg,
18812 struct bpf_insn *insn,
18813 struct bpf_insn *insn_buf,
18814 int *cnt)
18815 {
18816 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18817 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18818
18819 insn_buf[0] = addr[0];
18820 insn_buf[1] = addr[1];
18821 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18822 insn_buf[3] = *insn;
18823 *cnt = 4;
18824 }
18825
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)18826 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18827 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18828 {
18829 const struct bpf_kfunc_desc *desc;
18830
18831 if (!insn->imm) {
18832 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18833 return -EINVAL;
18834 }
18835
18836 *cnt = 0;
18837
18838 /* insn->imm has the btf func_id. Replace it with an offset relative to
18839 * __bpf_call_base, unless the JIT needs to call functions that are
18840 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18841 */
18842 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18843 if (!desc) {
18844 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18845 insn->imm);
18846 return -EFAULT;
18847 }
18848
18849 if (!bpf_jit_supports_far_kfunc_call())
18850 insn->imm = BPF_CALL_IMM(desc->addr);
18851 if (insn->off)
18852 return 0;
18853 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18854 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18855 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18856 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18857
18858 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18859 insn_buf[1] = addr[0];
18860 insn_buf[2] = addr[1];
18861 insn_buf[3] = *insn;
18862 *cnt = 4;
18863 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18864 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18865 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18866 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18867
18868 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18869 !kptr_struct_meta) {
18870 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18871 insn_idx);
18872 return -EFAULT;
18873 }
18874
18875 insn_buf[0] = addr[0];
18876 insn_buf[1] = addr[1];
18877 insn_buf[2] = *insn;
18878 *cnt = 3;
18879 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18880 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18881 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18882 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18883 int struct_meta_reg = BPF_REG_3;
18884 int node_offset_reg = BPF_REG_4;
18885
18886 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18887 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18888 struct_meta_reg = BPF_REG_4;
18889 node_offset_reg = BPF_REG_5;
18890 }
18891
18892 if (!kptr_struct_meta) {
18893 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18894 insn_idx);
18895 return -EFAULT;
18896 }
18897
18898 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18899 node_offset_reg, insn, insn_buf, cnt);
18900 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18901 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18902 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18903 *cnt = 1;
18904 }
18905 return 0;
18906 }
18907
18908 /* Do various post-verification rewrites in a single program pass.
18909 * These rewrites simplify JIT and interpreter implementations.
18910 */
do_misc_fixups(struct bpf_verifier_env * env)18911 static int do_misc_fixups(struct bpf_verifier_env *env)
18912 {
18913 struct bpf_prog *prog = env->prog;
18914 enum bpf_attach_type eatype = prog->expected_attach_type;
18915 enum bpf_prog_type prog_type = resolve_prog_type(prog);
18916 struct bpf_insn *insn = prog->insnsi;
18917 const struct bpf_func_proto *fn;
18918 const int insn_cnt = prog->len;
18919 const struct bpf_map_ops *ops;
18920 struct bpf_insn_aux_data *aux;
18921 struct bpf_insn insn_buf[16];
18922 struct bpf_prog *new_prog;
18923 struct bpf_map *map_ptr;
18924 int i, ret, cnt, delta = 0;
18925
18926 for (i = 0; i < insn_cnt; i++, insn++) {
18927 /* Make divide-by-zero exceptions impossible. */
18928 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18929 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18930 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18931 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18932 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18933 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18934 struct bpf_insn *patchlet;
18935 struct bpf_insn chk_and_div[] = {
18936 /* [R,W]x div 0 -> 0 */
18937 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18938 BPF_JNE | BPF_K, insn->src_reg,
18939 0, 2, 0),
18940 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18941 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18942 *insn,
18943 };
18944 struct bpf_insn chk_and_mod[] = {
18945 /* [R,W]x mod 0 -> [R,W]x */
18946 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18947 BPF_JEQ | BPF_K, insn->src_reg,
18948 0, 1 + (is64 ? 0 : 1), 0),
18949 *insn,
18950 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18951 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18952 };
18953
18954 patchlet = isdiv ? chk_and_div : chk_and_mod;
18955 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18956 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18957
18958 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18959 if (!new_prog)
18960 return -ENOMEM;
18961
18962 delta += cnt - 1;
18963 env->prog = prog = new_prog;
18964 insn = new_prog->insnsi + i + delta;
18965 continue;
18966 }
18967
18968 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18969 if (BPF_CLASS(insn->code) == BPF_LD &&
18970 (BPF_MODE(insn->code) == BPF_ABS ||
18971 BPF_MODE(insn->code) == BPF_IND)) {
18972 cnt = env->ops->gen_ld_abs(insn, insn_buf);
18973 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18974 verbose(env, "bpf verifier is misconfigured\n");
18975 return -EINVAL;
18976 }
18977
18978 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18979 if (!new_prog)
18980 return -ENOMEM;
18981
18982 delta += cnt - 1;
18983 env->prog = prog = new_prog;
18984 insn = new_prog->insnsi + i + delta;
18985 continue;
18986 }
18987
18988 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
18989 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18990 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18991 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18992 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18993 struct bpf_insn *patch = &insn_buf[0];
18994 bool issrc, isneg, isimm;
18995 u32 off_reg;
18996
18997 aux = &env->insn_aux_data[i + delta];
18998 if (!aux->alu_state ||
18999 aux->alu_state == BPF_ALU_NON_POINTER)
19000 continue;
19001
19002 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19003 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19004 BPF_ALU_SANITIZE_SRC;
19005 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19006
19007 off_reg = issrc ? insn->src_reg : insn->dst_reg;
19008 if (isimm) {
19009 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19010 } else {
19011 if (isneg)
19012 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19013 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19014 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19015 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19016 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19017 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19018 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19019 }
19020 if (!issrc)
19021 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19022 insn->src_reg = BPF_REG_AX;
19023 if (isneg)
19024 insn->code = insn->code == code_add ?
19025 code_sub : code_add;
19026 *patch++ = *insn;
19027 if (issrc && isneg && !isimm)
19028 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19029 cnt = patch - insn_buf;
19030
19031 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19032 if (!new_prog)
19033 return -ENOMEM;
19034
19035 delta += cnt - 1;
19036 env->prog = prog = new_prog;
19037 insn = new_prog->insnsi + i + delta;
19038 continue;
19039 }
19040
19041 if (insn->code != (BPF_JMP | BPF_CALL))
19042 continue;
19043 if (insn->src_reg == BPF_PSEUDO_CALL)
19044 continue;
19045 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19046 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19047 if (ret)
19048 return ret;
19049 if (cnt == 0)
19050 continue;
19051
19052 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19053 if (!new_prog)
19054 return -ENOMEM;
19055
19056 delta += cnt - 1;
19057 env->prog = prog = new_prog;
19058 insn = new_prog->insnsi + i + delta;
19059 continue;
19060 }
19061
19062 if (insn->imm == BPF_FUNC_get_route_realm)
19063 prog->dst_needed = 1;
19064 if (insn->imm == BPF_FUNC_get_prandom_u32)
19065 bpf_user_rnd_init_once();
19066 if (insn->imm == BPF_FUNC_override_return)
19067 prog->kprobe_override = 1;
19068 if (insn->imm == BPF_FUNC_tail_call) {
19069 /* If we tail call into other programs, we
19070 * cannot make any assumptions since they can
19071 * be replaced dynamically during runtime in
19072 * the program array.
19073 */
19074 prog->cb_access = 1;
19075 if (!allow_tail_call_in_subprogs(env))
19076 prog->aux->stack_depth = MAX_BPF_STACK;
19077 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19078
19079 /* mark bpf_tail_call as different opcode to avoid
19080 * conditional branch in the interpreter for every normal
19081 * call and to prevent accidental JITing by JIT compiler
19082 * that doesn't support bpf_tail_call yet
19083 */
19084 insn->imm = 0;
19085 insn->code = BPF_JMP | BPF_TAIL_CALL;
19086
19087 aux = &env->insn_aux_data[i + delta];
19088 if (env->bpf_capable && !prog->blinding_requested &&
19089 prog->jit_requested &&
19090 !bpf_map_key_poisoned(aux) &&
19091 !bpf_map_ptr_poisoned(aux) &&
19092 !bpf_map_ptr_unpriv(aux)) {
19093 struct bpf_jit_poke_descriptor desc = {
19094 .reason = BPF_POKE_REASON_TAIL_CALL,
19095 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19096 .tail_call.key = bpf_map_key_immediate(aux),
19097 .insn_idx = i + delta,
19098 };
19099
19100 ret = bpf_jit_add_poke_descriptor(prog, &desc);
19101 if (ret < 0) {
19102 verbose(env, "adding tail call poke descriptor failed\n");
19103 return ret;
19104 }
19105
19106 insn->imm = ret + 1;
19107 continue;
19108 }
19109
19110 if (!bpf_map_ptr_unpriv(aux))
19111 continue;
19112
19113 /* instead of changing every JIT dealing with tail_call
19114 * emit two extra insns:
19115 * if (index >= max_entries) goto out;
19116 * index &= array->index_mask;
19117 * to avoid out-of-bounds cpu speculation
19118 */
19119 if (bpf_map_ptr_poisoned(aux)) {
19120 verbose(env, "tail_call abusing map_ptr\n");
19121 return -EINVAL;
19122 }
19123
19124 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19125 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19126 map_ptr->max_entries, 2);
19127 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19128 container_of(map_ptr,
19129 struct bpf_array,
19130 map)->index_mask);
19131 insn_buf[2] = *insn;
19132 cnt = 3;
19133 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19134 if (!new_prog)
19135 return -ENOMEM;
19136
19137 delta += cnt - 1;
19138 env->prog = prog = new_prog;
19139 insn = new_prog->insnsi + i + delta;
19140 continue;
19141 }
19142
19143 if (insn->imm == BPF_FUNC_timer_set_callback) {
19144 /* The verifier will process callback_fn as many times as necessary
19145 * with different maps and the register states prepared by
19146 * set_timer_callback_state will be accurate.
19147 *
19148 * The following use case is valid:
19149 * map1 is shared by prog1, prog2, prog3.
19150 * prog1 calls bpf_timer_init for some map1 elements
19151 * prog2 calls bpf_timer_set_callback for some map1 elements.
19152 * Those that were not bpf_timer_init-ed will return -EINVAL.
19153 * prog3 calls bpf_timer_start for some map1 elements.
19154 * Those that were not both bpf_timer_init-ed and
19155 * bpf_timer_set_callback-ed will return -EINVAL.
19156 */
19157 struct bpf_insn ld_addrs[2] = {
19158 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19159 };
19160
19161 insn_buf[0] = ld_addrs[0];
19162 insn_buf[1] = ld_addrs[1];
19163 insn_buf[2] = *insn;
19164 cnt = 3;
19165
19166 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19167 if (!new_prog)
19168 return -ENOMEM;
19169
19170 delta += cnt - 1;
19171 env->prog = prog = new_prog;
19172 insn = new_prog->insnsi + i + delta;
19173 goto patch_call_imm;
19174 }
19175
19176 if (is_storage_get_function(insn->imm)) {
19177 if (!env->prog->aux->sleepable ||
19178 env->insn_aux_data[i + delta].storage_get_func_atomic)
19179 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19180 else
19181 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19182 insn_buf[1] = *insn;
19183 cnt = 2;
19184
19185 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19186 if (!new_prog)
19187 return -ENOMEM;
19188
19189 delta += cnt - 1;
19190 env->prog = prog = new_prog;
19191 insn = new_prog->insnsi + i + delta;
19192 goto patch_call_imm;
19193 }
19194
19195 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19196 * and other inlining handlers are currently limited to 64 bit
19197 * only.
19198 */
19199 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19200 (insn->imm == BPF_FUNC_map_lookup_elem ||
19201 insn->imm == BPF_FUNC_map_update_elem ||
19202 insn->imm == BPF_FUNC_map_delete_elem ||
19203 insn->imm == BPF_FUNC_map_push_elem ||
19204 insn->imm == BPF_FUNC_map_pop_elem ||
19205 insn->imm == BPF_FUNC_map_peek_elem ||
19206 insn->imm == BPF_FUNC_redirect_map ||
19207 insn->imm == BPF_FUNC_for_each_map_elem ||
19208 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19209 aux = &env->insn_aux_data[i + delta];
19210 if (bpf_map_ptr_poisoned(aux))
19211 goto patch_call_imm;
19212
19213 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19214 ops = map_ptr->ops;
19215 if (insn->imm == BPF_FUNC_map_lookup_elem &&
19216 ops->map_gen_lookup) {
19217 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19218 if (cnt == -EOPNOTSUPP)
19219 goto patch_map_ops_generic;
19220 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19221 verbose(env, "bpf verifier is misconfigured\n");
19222 return -EINVAL;
19223 }
19224
19225 new_prog = bpf_patch_insn_data(env, i + delta,
19226 insn_buf, cnt);
19227 if (!new_prog)
19228 return -ENOMEM;
19229
19230 delta += cnt - 1;
19231 env->prog = prog = new_prog;
19232 insn = new_prog->insnsi + i + delta;
19233 continue;
19234 }
19235
19236 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19237 (void *(*)(struct bpf_map *map, void *key))NULL));
19238 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19239 (long (*)(struct bpf_map *map, void *key))NULL));
19240 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19241 (long (*)(struct bpf_map *map, void *key, void *value,
19242 u64 flags))NULL));
19243 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19244 (long (*)(struct bpf_map *map, void *value,
19245 u64 flags))NULL));
19246 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19247 (long (*)(struct bpf_map *map, void *value))NULL));
19248 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19249 (long (*)(struct bpf_map *map, void *value))NULL));
19250 BUILD_BUG_ON(!__same_type(ops->map_redirect,
19251 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19252 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19253 (long (*)(struct bpf_map *map,
19254 bpf_callback_t callback_fn,
19255 void *callback_ctx,
19256 u64 flags))NULL));
19257 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19258 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19259
19260 patch_map_ops_generic:
19261 switch (insn->imm) {
19262 case BPF_FUNC_map_lookup_elem:
19263 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19264 continue;
19265 case BPF_FUNC_map_update_elem:
19266 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19267 continue;
19268 case BPF_FUNC_map_delete_elem:
19269 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19270 continue;
19271 case BPF_FUNC_map_push_elem:
19272 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19273 continue;
19274 case BPF_FUNC_map_pop_elem:
19275 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19276 continue;
19277 case BPF_FUNC_map_peek_elem:
19278 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19279 continue;
19280 case BPF_FUNC_redirect_map:
19281 insn->imm = BPF_CALL_IMM(ops->map_redirect);
19282 continue;
19283 case BPF_FUNC_for_each_map_elem:
19284 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19285 continue;
19286 case BPF_FUNC_map_lookup_percpu_elem:
19287 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19288 continue;
19289 }
19290
19291 goto patch_call_imm;
19292 }
19293
19294 /* Implement bpf_jiffies64 inline. */
19295 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19296 insn->imm == BPF_FUNC_jiffies64) {
19297 struct bpf_insn ld_jiffies_addr[2] = {
19298 BPF_LD_IMM64(BPF_REG_0,
19299 (unsigned long)&jiffies),
19300 };
19301
19302 insn_buf[0] = ld_jiffies_addr[0];
19303 insn_buf[1] = ld_jiffies_addr[1];
19304 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19305 BPF_REG_0, 0);
19306 cnt = 3;
19307
19308 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19309 cnt);
19310 if (!new_prog)
19311 return -ENOMEM;
19312
19313 delta += cnt - 1;
19314 env->prog = prog = new_prog;
19315 insn = new_prog->insnsi + i + delta;
19316 continue;
19317 }
19318
19319 /* Implement bpf_get_func_arg inline. */
19320 if (prog_type == BPF_PROG_TYPE_TRACING &&
19321 insn->imm == BPF_FUNC_get_func_arg) {
19322 /* Load nr_args from ctx - 8 */
19323 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19324 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19325 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19326 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19327 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19328 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19329 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19330 insn_buf[7] = BPF_JMP_A(1);
19331 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19332 cnt = 9;
19333
19334 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19335 if (!new_prog)
19336 return -ENOMEM;
19337
19338 delta += cnt - 1;
19339 env->prog = prog = new_prog;
19340 insn = new_prog->insnsi + i + delta;
19341 continue;
19342 }
19343
19344 /* Implement bpf_get_func_ret inline. */
19345 if (prog_type == BPF_PROG_TYPE_TRACING &&
19346 insn->imm == BPF_FUNC_get_func_ret) {
19347 if (eatype == BPF_TRACE_FEXIT ||
19348 eatype == BPF_MODIFY_RETURN) {
19349 /* Load nr_args from ctx - 8 */
19350 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19351 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19352 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19353 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19354 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19355 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19356 cnt = 6;
19357 } else {
19358 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19359 cnt = 1;
19360 }
19361
19362 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19363 if (!new_prog)
19364 return -ENOMEM;
19365
19366 delta += cnt - 1;
19367 env->prog = prog = new_prog;
19368 insn = new_prog->insnsi + i + delta;
19369 continue;
19370 }
19371
19372 /* Implement get_func_arg_cnt inline. */
19373 if (prog_type == BPF_PROG_TYPE_TRACING &&
19374 insn->imm == BPF_FUNC_get_func_arg_cnt) {
19375 /* Load nr_args from ctx - 8 */
19376 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19377
19378 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19379 if (!new_prog)
19380 return -ENOMEM;
19381
19382 env->prog = prog = new_prog;
19383 insn = new_prog->insnsi + i + delta;
19384 continue;
19385 }
19386
19387 /* Implement bpf_get_func_ip inline. */
19388 if (prog_type == BPF_PROG_TYPE_TRACING &&
19389 insn->imm == BPF_FUNC_get_func_ip) {
19390 /* Load IP address from ctx - 16 */
19391 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19392
19393 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19394 if (!new_prog)
19395 return -ENOMEM;
19396
19397 env->prog = prog = new_prog;
19398 insn = new_prog->insnsi + i + delta;
19399 continue;
19400 }
19401
19402 patch_call_imm:
19403 fn = env->ops->get_func_proto(insn->imm, env->prog);
19404 /* all functions that have prototype and verifier allowed
19405 * programs to call them, must be real in-kernel functions
19406 */
19407 if (!fn->func) {
19408 verbose(env,
19409 "kernel subsystem misconfigured func %s#%d\n",
19410 func_id_name(insn->imm), insn->imm);
19411 return -EFAULT;
19412 }
19413 insn->imm = fn->func - __bpf_call_base;
19414 }
19415
19416 /* Since poke tab is now finalized, publish aux to tracker. */
19417 for (i = 0; i < prog->aux->size_poke_tab; i++) {
19418 map_ptr = prog->aux->poke_tab[i].tail_call.map;
19419 if (!map_ptr->ops->map_poke_track ||
19420 !map_ptr->ops->map_poke_untrack ||
19421 !map_ptr->ops->map_poke_run) {
19422 verbose(env, "bpf verifier is misconfigured\n");
19423 return -EINVAL;
19424 }
19425
19426 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19427 if (ret < 0) {
19428 verbose(env, "tracking tail call prog failed\n");
19429 return ret;
19430 }
19431 }
19432
19433 sort_kfunc_descs_by_imm_off(env->prog);
19434
19435 return 0;
19436 }
19437
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)19438 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19439 int position,
19440 s32 stack_base,
19441 u32 callback_subprogno,
19442 u32 *cnt)
19443 {
19444 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19445 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19446 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19447 int reg_loop_max = BPF_REG_6;
19448 int reg_loop_cnt = BPF_REG_7;
19449 int reg_loop_ctx = BPF_REG_8;
19450
19451 struct bpf_prog *new_prog;
19452 u32 callback_start;
19453 u32 call_insn_offset;
19454 s32 callback_offset;
19455
19456 /* This represents an inlined version of bpf_iter.c:bpf_loop,
19457 * be careful to modify this code in sync.
19458 */
19459 struct bpf_insn insn_buf[] = {
19460 /* Return error and jump to the end of the patch if
19461 * expected number of iterations is too big.
19462 */
19463 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19464 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19465 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19466 /* spill R6, R7, R8 to use these as loop vars */
19467 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19468 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19469 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19470 /* initialize loop vars */
19471 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19472 BPF_MOV32_IMM(reg_loop_cnt, 0),
19473 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19474 /* loop header,
19475 * if reg_loop_cnt >= reg_loop_max skip the loop body
19476 */
19477 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19478 /* callback call,
19479 * correct callback offset would be set after patching
19480 */
19481 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19482 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19483 BPF_CALL_REL(0),
19484 /* increment loop counter */
19485 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19486 /* jump to loop header if callback returned 0 */
19487 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19488 /* return value of bpf_loop,
19489 * set R0 to the number of iterations
19490 */
19491 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19492 /* restore original values of R6, R7, R8 */
19493 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19494 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19495 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19496 };
19497
19498 *cnt = ARRAY_SIZE(insn_buf);
19499 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19500 if (!new_prog)
19501 return new_prog;
19502
19503 /* callback start is known only after patching */
19504 callback_start = env->subprog_info[callback_subprogno].start;
19505 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19506 call_insn_offset = position + 12;
19507 callback_offset = callback_start - call_insn_offset - 1;
19508 new_prog->insnsi[call_insn_offset].imm = callback_offset;
19509
19510 return new_prog;
19511 }
19512
is_bpf_loop_call(struct bpf_insn * insn)19513 static bool is_bpf_loop_call(struct bpf_insn *insn)
19514 {
19515 return insn->code == (BPF_JMP | BPF_CALL) &&
19516 insn->src_reg == 0 &&
19517 insn->imm == BPF_FUNC_loop;
19518 }
19519
19520 /* For all sub-programs in the program (including main) check
19521 * insn_aux_data to see if there are bpf_loop calls that require
19522 * inlining. If such calls are found the calls are replaced with a
19523 * sequence of instructions produced by `inline_bpf_loop` function and
19524 * subprog stack_depth is increased by the size of 3 registers.
19525 * This stack space is used to spill values of the R6, R7, R8. These
19526 * registers are used to store the loop bound, counter and context
19527 * variables.
19528 */
optimize_bpf_loop(struct bpf_verifier_env * env)19529 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19530 {
19531 struct bpf_subprog_info *subprogs = env->subprog_info;
19532 int i, cur_subprog = 0, cnt, delta = 0;
19533 struct bpf_insn *insn = env->prog->insnsi;
19534 int insn_cnt = env->prog->len;
19535 u16 stack_depth = subprogs[cur_subprog].stack_depth;
19536 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19537 u16 stack_depth_extra = 0;
19538
19539 for (i = 0; i < insn_cnt; i++, insn++) {
19540 struct bpf_loop_inline_state *inline_state =
19541 &env->insn_aux_data[i + delta].loop_inline_state;
19542
19543 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19544 struct bpf_prog *new_prog;
19545
19546 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19547 new_prog = inline_bpf_loop(env,
19548 i + delta,
19549 -(stack_depth + stack_depth_extra),
19550 inline_state->callback_subprogno,
19551 &cnt);
19552 if (!new_prog)
19553 return -ENOMEM;
19554
19555 delta += cnt - 1;
19556 env->prog = new_prog;
19557 insn = new_prog->insnsi + i + delta;
19558 }
19559
19560 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19561 subprogs[cur_subprog].stack_depth += stack_depth_extra;
19562 cur_subprog++;
19563 stack_depth = subprogs[cur_subprog].stack_depth;
19564 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19565 stack_depth_extra = 0;
19566 }
19567 }
19568
19569 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19570
19571 return 0;
19572 }
19573
free_states(struct bpf_verifier_env * env)19574 static void free_states(struct bpf_verifier_env *env)
19575 {
19576 struct bpf_verifier_state_list *sl, *sln;
19577 int i;
19578
19579 sl = env->free_list;
19580 while (sl) {
19581 sln = sl->next;
19582 free_verifier_state(&sl->state, false);
19583 kfree(sl);
19584 sl = sln;
19585 }
19586 env->free_list = NULL;
19587
19588 if (!env->explored_states)
19589 return;
19590
19591 for (i = 0; i < state_htab_size(env); i++) {
19592 sl = env->explored_states[i];
19593
19594 while (sl) {
19595 sln = sl->next;
19596 free_verifier_state(&sl->state, false);
19597 kfree(sl);
19598 sl = sln;
19599 }
19600 env->explored_states[i] = NULL;
19601 }
19602 }
19603
do_check_common(struct bpf_verifier_env * env,int subprog)19604 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19605 {
19606 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19607 struct bpf_verifier_state *state;
19608 struct bpf_reg_state *regs;
19609 int ret, i;
19610
19611 env->prev_linfo = NULL;
19612 env->pass_cnt++;
19613
19614 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19615 if (!state)
19616 return -ENOMEM;
19617 state->curframe = 0;
19618 state->speculative = false;
19619 state->branches = 1;
19620 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19621 if (!state->frame[0]) {
19622 kfree(state);
19623 return -ENOMEM;
19624 }
19625 env->cur_state = state;
19626 init_func_state(env, state->frame[0],
19627 BPF_MAIN_FUNC /* callsite */,
19628 0 /* frameno */,
19629 subprog);
19630 state->first_insn_idx = env->subprog_info[subprog].start;
19631 state->last_insn_idx = -1;
19632
19633 regs = state->frame[state->curframe]->regs;
19634 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19635 ret = btf_prepare_func_args(env, subprog, regs);
19636 if (ret)
19637 goto out;
19638 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19639 if (regs[i].type == PTR_TO_CTX)
19640 mark_reg_known_zero(env, regs, i);
19641 else if (regs[i].type == SCALAR_VALUE)
19642 mark_reg_unknown(env, regs, i);
19643 else if (base_type(regs[i].type) == PTR_TO_MEM) {
19644 const u32 mem_size = regs[i].mem_size;
19645
19646 mark_reg_known_zero(env, regs, i);
19647 regs[i].mem_size = mem_size;
19648 regs[i].id = ++env->id_gen;
19649 }
19650 }
19651 } else {
19652 /* 1st arg to a function */
19653 regs[BPF_REG_1].type = PTR_TO_CTX;
19654 mark_reg_known_zero(env, regs, BPF_REG_1);
19655 ret = btf_check_subprog_arg_match(env, subprog, regs);
19656 if (ret == -EFAULT)
19657 /* unlikely verifier bug. abort.
19658 * ret == 0 and ret < 0 are sadly acceptable for
19659 * main() function due to backward compatibility.
19660 * Like socket filter program may be written as:
19661 * int bpf_prog(struct pt_regs *ctx)
19662 * and never dereference that ctx in the program.
19663 * 'struct pt_regs' is a type mismatch for socket
19664 * filter that should be using 'struct __sk_buff'.
19665 */
19666 goto out;
19667 }
19668
19669 ret = do_check(env);
19670 out:
19671 /* check for NULL is necessary, since cur_state can be freed inside
19672 * do_check() under memory pressure.
19673 */
19674 if (env->cur_state) {
19675 free_verifier_state(env->cur_state, true);
19676 env->cur_state = NULL;
19677 }
19678 while (!pop_stack(env, NULL, NULL, false));
19679 if (!ret && pop_log)
19680 bpf_vlog_reset(&env->log, 0);
19681 free_states(env);
19682 return ret;
19683 }
19684
19685 /* Verify all global functions in a BPF program one by one based on their BTF.
19686 * All global functions must pass verification. Otherwise the whole program is rejected.
19687 * Consider:
19688 * int bar(int);
19689 * int foo(int f)
19690 * {
19691 * return bar(f);
19692 * }
19693 * int bar(int b)
19694 * {
19695 * ...
19696 * }
19697 * foo() will be verified first for R1=any_scalar_value. During verification it
19698 * will be assumed that bar() already verified successfully and call to bar()
19699 * from foo() will be checked for type match only. Later bar() will be verified
19700 * independently to check that it's safe for R1=any_scalar_value.
19701 */
do_check_subprogs(struct bpf_verifier_env * env)19702 static int do_check_subprogs(struct bpf_verifier_env *env)
19703 {
19704 struct bpf_prog_aux *aux = env->prog->aux;
19705 int i, ret;
19706
19707 if (!aux->func_info)
19708 return 0;
19709
19710 for (i = 1; i < env->subprog_cnt; i++) {
19711 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19712 continue;
19713 env->insn_idx = env->subprog_info[i].start;
19714 WARN_ON_ONCE(env->insn_idx == 0);
19715 ret = do_check_common(env, i);
19716 if (ret) {
19717 return ret;
19718 } else if (env->log.level & BPF_LOG_LEVEL) {
19719 verbose(env,
19720 "Func#%d is safe for any args that match its prototype\n",
19721 i);
19722 }
19723 }
19724 return 0;
19725 }
19726
do_check_main(struct bpf_verifier_env * env)19727 static int do_check_main(struct bpf_verifier_env *env)
19728 {
19729 int ret;
19730
19731 env->insn_idx = 0;
19732 ret = do_check_common(env, 0);
19733 if (!ret)
19734 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19735 return ret;
19736 }
19737
19738
print_verification_stats(struct bpf_verifier_env * env)19739 static void print_verification_stats(struct bpf_verifier_env *env)
19740 {
19741 int i;
19742
19743 if (env->log.level & BPF_LOG_STATS) {
19744 verbose(env, "verification time %lld usec\n",
19745 div_u64(env->verification_time, 1000));
19746 verbose(env, "stack depth ");
19747 for (i = 0; i < env->subprog_cnt; i++) {
19748 u32 depth = env->subprog_info[i].stack_depth;
19749
19750 verbose(env, "%d", depth);
19751 if (i + 1 < env->subprog_cnt)
19752 verbose(env, "+");
19753 }
19754 verbose(env, "\n");
19755 }
19756 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19757 "total_states %d peak_states %d mark_read %d\n",
19758 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19759 env->max_states_per_insn, env->total_states,
19760 env->peak_states, env->longest_mark_read_walk);
19761 }
19762
check_struct_ops_btf_id(struct bpf_verifier_env * env)19763 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19764 {
19765 const struct btf_type *t, *func_proto;
19766 const struct bpf_struct_ops *st_ops;
19767 const struct btf_member *member;
19768 struct bpf_prog *prog = env->prog;
19769 u32 btf_id, member_idx;
19770 const char *mname;
19771
19772 if (!prog->gpl_compatible) {
19773 verbose(env, "struct ops programs must have a GPL compatible license\n");
19774 return -EINVAL;
19775 }
19776
19777 btf_id = prog->aux->attach_btf_id;
19778 st_ops = bpf_struct_ops_find(btf_id);
19779 if (!st_ops) {
19780 verbose(env, "attach_btf_id %u is not a supported struct\n",
19781 btf_id);
19782 return -ENOTSUPP;
19783 }
19784
19785 t = st_ops->type;
19786 member_idx = prog->expected_attach_type;
19787 if (member_idx >= btf_type_vlen(t)) {
19788 verbose(env, "attach to invalid member idx %u of struct %s\n",
19789 member_idx, st_ops->name);
19790 return -EINVAL;
19791 }
19792
19793 member = &btf_type_member(t)[member_idx];
19794 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19795 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19796 NULL);
19797 if (!func_proto) {
19798 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19799 mname, member_idx, st_ops->name);
19800 return -EINVAL;
19801 }
19802
19803 if (st_ops->check_member) {
19804 int err = st_ops->check_member(t, member, prog);
19805
19806 if (err) {
19807 verbose(env, "attach to unsupported member %s of struct %s\n",
19808 mname, st_ops->name);
19809 return err;
19810 }
19811 }
19812
19813 prog->aux->attach_func_proto = func_proto;
19814 prog->aux->attach_func_name = mname;
19815 env->ops = st_ops->verifier_ops;
19816
19817 return 0;
19818 }
19819 #define SECURITY_PREFIX "security_"
19820
check_attach_modify_return(unsigned long addr,const char * func_name)19821 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19822 {
19823 if (within_error_injection_list(addr) ||
19824 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19825 return 0;
19826
19827 return -EINVAL;
19828 }
19829
19830 /* list of non-sleepable functions that are otherwise on
19831 * ALLOW_ERROR_INJECTION list
19832 */
19833 BTF_SET_START(btf_non_sleepable_error_inject)
19834 /* Three functions below can be called from sleepable and non-sleepable context.
19835 * Assume non-sleepable from bpf safety point of view.
19836 */
BTF_ID(func,__filemap_add_folio)19837 BTF_ID(func, __filemap_add_folio)
19838 BTF_ID(func, should_fail_alloc_page)
19839 BTF_ID(func, should_failslab)
19840 BTF_SET_END(btf_non_sleepable_error_inject)
19841
19842 static int check_non_sleepable_error_inject(u32 btf_id)
19843 {
19844 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19845 }
19846
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)19847 int bpf_check_attach_target(struct bpf_verifier_log *log,
19848 const struct bpf_prog *prog,
19849 const struct bpf_prog *tgt_prog,
19850 u32 btf_id,
19851 struct bpf_attach_target_info *tgt_info)
19852 {
19853 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19854 const char prefix[] = "btf_trace_";
19855 int ret = 0, subprog = -1, i;
19856 const struct btf_type *t;
19857 bool conservative = true;
19858 const char *tname;
19859 struct btf *btf;
19860 long addr = 0;
19861 struct module *mod = NULL;
19862
19863 if (!btf_id) {
19864 bpf_log(log, "Tracing programs must provide btf_id\n");
19865 return -EINVAL;
19866 }
19867 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19868 if (!btf) {
19869 bpf_log(log,
19870 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19871 return -EINVAL;
19872 }
19873 t = btf_type_by_id(btf, btf_id);
19874 if (!t) {
19875 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19876 return -EINVAL;
19877 }
19878 tname = btf_name_by_offset(btf, t->name_off);
19879 if (!tname) {
19880 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19881 return -EINVAL;
19882 }
19883 if (tgt_prog) {
19884 struct bpf_prog_aux *aux = tgt_prog->aux;
19885
19886 if (bpf_prog_is_dev_bound(prog->aux) &&
19887 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19888 bpf_log(log, "Target program bound device mismatch");
19889 return -EINVAL;
19890 }
19891
19892 for (i = 0; i < aux->func_info_cnt; i++)
19893 if (aux->func_info[i].type_id == btf_id) {
19894 subprog = i;
19895 break;
19896 }
19897 if (subprog == -1) {
19898 bpf_log(log, "Subprog %s doesn't exist\n", tname);
19899 return -EINVAL;
19900 }
19901 conservative = aux->func_info_aux[subprog].unreliable;
19902 if (prog_extension) {
19903 if (conservative) {
19904 bpf_log(log,
19905 "Cannot replace static functions\n");
19906 return -EINVAL;
19907 }
19908 if (!prog->jit_requested) {
19909 bpf_log(log,
19910 "Extension programs should be JITed\n");
19911 return -EINVAL;
19912 }
19913 }
19914 if (!tgt_prog->jited) {
19915 bpf_log(log, "Can attach to only JITed progs\n");
19916 return -EINVAL;
19917 }
19918 if (tgt_prog->type == prog->type) {
19919 /* Cannot fentry/fexit another fentry/fexit program.
19920 * Cannot attach program extension to another extension.
19921 * It's ok to attach fentry/fexit to extension program.
19922 */
19923 bpf_log(log, "Cannot recursively attach\n");
19924 return -EINVAL;
19925 }
19926 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19927 prog_extension &&
19928 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19929 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19930 /* Program extensions can extend all program types
19931 * except fentry/fexit. The reason is the following.
19932 * The fentry/fexit programs are used for performance
19933 * analysis, stats and can be attached to any program
19934 * type except themselves. When extension program is
19935 * replacing XDP function it is necessary to allow
19936 * performance analysis of all functions. Both original
19937 * XDP program and its program extension. Hence
19938 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19939 * allowed. If extending of fentry/fexit was allowed it
19940 * would be possible to create long call chain
19941 * fentry->extension->fentry->extension beyond
19942 * reasonable stack size. Hence extending fentry is not
19943 * allowed.
19944 */
19945 bpf_log(log, "Cannot extend fentry/fexit\n");
19946 return -EINVAL;
19947 }
19948 } else {
19949 if (prog_extension) {
19950 bpf_log(log, "Cannot replace kernel functions\n");
19951 return -EINVAL;
19952 }
19953 }
19954
19955 switch (prog->expected_attach_type) {
19956 case BPF_TRACE_RAW_TP:
19957 if (tgt_prog) {
19958 bpf_log(log,
19959 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19960 return -EINVAL;
19961 }
19962 if (!btf_type_is_typedef(t)) {
19963 bpf_log(log, "attach_btf_id %u is not a typedef\n",
19964 btf_id);
19965 return -EINVAL;
19966 }
19967 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19968 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19969 btf_id, tname);
19970 return -EINVAL;
19971 }
19972 tname += sizeof(prefix) - 1;
19973 t = btf_type_by_id(btf, t->type);
19974 if (!btf_type_is_ptr(t))
19975 /* should never happen in valid vmlinux build */
19976 return -EINVAL;
19977 t = btf_type_by_id(btf, t->type);
19978 if (!btf_type_is_func_proto(t))
19979 /* should never happen in valid vmlinux build */
19980 return -EINVAL;
19981
19982 break;
19983 case BPF_TRACE_ITER:
19984 if (!btf_type_is_func(t)) {
19985 bpf_log(log, "attach_btf_id %u is not a function\n",
19986 btf_id);
19987 return -EINVAL;
19988 }
19989 t = btf_type_by_id(btf, t->type);
19990 if (!btf_type_is_func_proto(t))
19991 return -EINVAL;
19992 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19993 if (ret)
19994 return ret;
19995 break;
19996 default:
19997 if (!prog_extension)
19998 return -EINVAL;
19999 fallthrough;
20000 case BPF_MODIFY_RETURN:
20001 case BPF_LSM_MAC:
20002 case BPF_LSM_CGROUP:
20003 case BPF_TRACE_FENTRY:
20004 case BPF_TRACE_FEXIT:
20005 if (!btf_type_is_func(t)) {
20006 bpf_log(log, "attach_btf_id %u is not a function\n",
20007 btf_id);
20008 return -EINVAL;
20009 }
20010 if (prog_extension &&
20011 btf_check_type_match(log, prog, btf, t))
20012 return -EINVAL;
20013 t = btf_type_by_id(btf, t->type);
20014 if (!btf_type_is_func_proto(t))
20015 return -EINVAL;
20016
20017 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20018 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20019 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20020 return -EINVAL;
20021
20022 if (tgt_prog && conservative)
20023 t = NULL;
20024
20025 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20026 if (ret < 0)
20027 return ret;
20028
20029 if (tgt_prog) {
20030 if (subprog == 0)
20031 addr = (long) tgt_prog->bpf_func;
20032 else
20033 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20034 } else {
20035 if (btf_is_module(btf)) {
20036 mod = btf_try_get_module(btf);
20037 if (mod)
20038 addr = find_kallsyms_symbol_value(mod, tname);
20039 else
20040 addr = 0;
20041 } else {
20042 addr = kallsyms_lookup_name(tname);
20043 }
20044 if (!addr) {
20045 module_put(mod);
20046 bpf_log(log,
20047 "The address of function %s cannot be found\n",
20048 tname);
20049 return -ENOENT;
20050 }
20051 }
20052
20053 if (prog->aux->sleepable) {
20054 ret = -EINVAL;
20055 switch (prog->type) {
20056 case BPF_PROG_TYPE_TRACING:
20057
20058 /* fentry/fexit/fmod_ret progs can be sleepable if they are
20059 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20060 */
20061 if (!check_non_sleepable_error_inject(btf_id) &&
20062 within_error_injection_list(addr))
20063 ret = 0;
20064 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
20065 * in the fmodret id set with the KF_SLEEPABLE flag.
20066 */
20067 else {
20068 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20069 prog);
20070
20071 if (flags && (*flags & KF_SLEEPABLE))
20072 ret = 0;
20073 }
20074 break;
20075 case BPF_PROG_TYPE_LSM:
20076 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
20077 * Only some of them are sleepable.
20078 */
20079 if (bpf_lsm_is_sleepable_hook(btf_id))
20080 ret = 0;
20081 break;
20082 default:
20083 break;
20084 }
20085 if (ret) {
20086 module_put(mod);
20087 bpf_log(log, "%s is not sleepable\n", tname);
20088 return ret;
20089 }
20090 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20091 if (tgt_prog) {
20092 module_put(mod);
20093 bpf_log(log, "can't modify return codes of BPF programs\n");
20094 return -EINVAL;
20095 }
20096 ret = -EINVAL;
20097 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20098 !check_attach_modify_return(addr, tname))
20099 ret = 0;
20100 if (ret) {
20101 module_put(mod);
20102 bpf_log(log, "%s() is not modifiable\n", tname);
20103 return ret;
20104 }
20105 }
20106
20107 break;
20108 }
20109 tgt_info->tgt_addr = addr;
20110 tgt_info->tgt_name = tname;
20111 tgt_info->tgt_type = t;
20112 tgt_info->tgt_mod = mod;
20113 return 0;
20114 }
20115
BTF_SET_START(btf_id_deny)20116 BTF_SET_START(btf_id_deny)
20117 BTF_ID_UNUSED
20118 #ifdef CONFIG_SMP
20119 BTF_ID(func, migrate_disable)
20120 BTF_ID(func, migrate_enable)
20121 #endif
20122 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20123 BTF_ID(func, rcu_read_unlock_strict)
20124 #endif
20125 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20126 BTF_ID(func, preempt_count_add)
20127 BTF_ID(func, preempt_count_sub)
20128 #endif
20129 #ifdef CONFIG_PREEMPT_RCU
20130 BTF_ID(func, __rcu_read_lock)
20131 BTF_ID(func, __rcu_read_unlock)
20132 #endif
20133 BTF_SET_END(btf_id_deny)
20134
20135 static bool can_be_sleepable(struct bpf_prog *prog)
20136 {
20137 if (prog->type == BPF_PROG_TYPE_TRACING) {
20138 switch (prog->expected_attach_type) {
20139 case BPF_TRACE_FENTRY:
20140 case BPF_TRACE_FEXIT:
20141 case BPF_MODIFY_RETURN:
20142 case BPF_TRACE_ITER:
20143 return true;
20144 default:
20145 return false;
20146 }
20147 }
20148 return prog->type == BPF_PROG_TYPE_LSM ||
20149 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20150 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20151 }
20152
check_attach_btf_id(struct bpf_verifier_env * env)20153 static int check_attach_btf_id(struct bpf_verifier_env *env)
20154 {
20155 struct bpf_prog *prog = env->prog;
20156 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20157 struct bpf_attach_target_info tgt_info = {};
20158 u32 btf_id = prog->aux->attach_btf_id;
20159 struct bpf_trampoline *tr;
20160 int ret;
20161 u64 key;
20162
20163 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20164 if (prog->aux->sleepable)
20165 /* attach_btf_id checked to be zero already */
20166 return 0;
20167 verbose(env, "Syscall programs can only be sleepable\n");
20168 return -EINVAL;
20169 }
20170
20171 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20172 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20173 return -EINVAL;
20174 }
20175
20176 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20177 return check_struct_ops_btf_id(env);
20178
20179 if (prog->type != BPF_PROG_TYPE_TRACING &&
20180 prog->type != BPF_PROG_TYPE_LSM &&
20181 prog->type != BPF_PROG_TYPE_EXT)
20182 return 0;
20183
20184 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20185 if (ret)
20186 return ret;
20187
20188 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20189 /* to make freplace equivalent to their targets, they need to
20190 * inherit env->ops and expected_attach_type for the rest of the
20191 * verification
20192 */
20193 env->ops = bpf_verifier_ops[tgt_prog->type];
20194 prog->expected_attach_type = tgt_prog->expected_attach_type;
20195 }
20196
20197 /* store info about the attachment target that will be used later */
20198 prog->aux->attach_func_proto = tgt_info.tgt_type;
20199 prog->aux->attach_func_name = tgt_info.tgt_name;
20200 prog->aux->mod = tgt_info.tgt_mod;
20201
20202 if (tgt_prog) {
20203 prog->aux->saved_dst_prog_type = tgt_prog->type;
20204 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20205 }
20206
20207 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20208 prog->aux->attach_btf_trace = true;
20209 return 0;
20210 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20211 if (!bpf_iter_prog_supported(prog))
20212 return -EINVAL;
20213 return 0;
20214 }
20215
20216 if (prog->type == BPF_PROG_TYPE_LSM) {
20217 ret = bpf_lsm_verify_prog(&env->log, prog);
20218 if (ret < 0)
20219 return ret;
20220 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
20221 btf_id_set_contains(&btf_id_deny, btf_id)) {
20222 return -EINVAL;
20223 }
20224
20225 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20226 tr = bpf_trampoline_get(key, &tgt_info);
20227 if (!tr)
20228 return -ENOMEM;
20229
20230 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20231 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20232
20233 prog->aux->dst_trampoline = tr;
20234 return 0;
20235 }
20236
bpf_get_btf_vmlinux(void)20237 struct btf *bpf_get_btf_vmlinux(void)
20238 {
20239 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20240 mutex_lock(&bpf_verifier_lock);
20241 if (!btf_vmlinux)
20242 btf_vmlinux = btf_parse_vmlinux();
20243 mutex_unlock(&bpf_verifier_lock);
20244 }
20245 return btf_vmlinux;
20246 }
20247
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)20248 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20249 {
20250 u64 start_time = ktime_get_ns();
20251 struct bpf_verifier_env *env;
20252 int i, len, ret = -EINVAL, err;
20253 u32 log_true_size;
20254 bool is_priv;
20255
20256 /* no program is valid */
20257 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20258 return -EINVAL;
20259
20260 /* 'struct bpf_verifier_env' can be global, but since it's not small,
20261 * allocate/free it every time bpf_check() is called
20262 */
20263 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20264 if (!env)
20265 return -ENOMEM;
20266
20267 env->bt.env = env;
20268
20269 len = (*prog)->len;
20270 env->insn_aux_data =
20271 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20272 ret = -ENOMEM;
20273 if (!env->insn_aux_data)
20274 goto err_free_env;
20275 for (i = 0; i < len; i++)
20276 env->insn_aux_data[i].orig_idx = i;
20277 env->prog = *prog;
20278 env->ops = bpf_verifier_ops[env->prog->type];
20279 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20280 is_priv = bpf_capable();
20281
20282 bpf_get_btf_vmlinux();
20283
20284 /* grab the mutex to protect few globals used by verifier */
20285 if (!is_priv)
20286 mutex_lock(&bpf_verifier_lock);
20287
20288 /* user could have requested verbose verifier output
20289 * and supplied buffer to store the verification trace
20290 */
20291 ret = bpf_vlog_init(&env->log, attr->log_level,
20292 (char __user *) (unsigned long) attr->log_buf,
20293 attr->log_size);
20294 if (ret)
20295 goto err_unlock;
20296
20297 mark_verifier_state_clean(env);
20298
20299 if (IS_ERR(btf_vmlinux)) {
20300 /* Either gcc or pahole or kernel are broken. */
20301 verbose(env, "in-kernel BTF is malformed\n");
20302 ret = PTR_ERR(btf_vmlinux);
20303 goto skip_full_check;
20304 }
20305
20306 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20307 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20308 env->strict_alignment = true;
20309 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20310 env->strict_alignment = false;
20311
20312 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20313 env->allow_uninit_stack = bpf_allow_uninit_stack();
20314 env->bypass_spec_v1 = bpf_bypass_spec_v1();
20315 env->bypass_spec_v4 = bpf_bypass_spec_v4();
20316 env->bpf_capable = bpf_capable();
20317
20318 if (is_priv)
20319 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20320
20321 env->explored_states = kvcalloc(state_htab_size(env),
20322 sizeof(struct bpf_verifier_state_list *),
20323 GFP_USER);
20324 ret = -ENOMEM;
20325 if (!env->explored_states)
20326 goto skip_full_check;
20327
20328 ret = add_subprog_and_kfunc(env);
20329 if (ret < 0)
20330 goto skip_full_check;
20331
20332 ret = check_subprogs(env);
20333 if (ret < 0)
20334 goto skip_full_check;
20335
20336 ret = check_btf_info(env, attr, uattr);
20337 if (ret < 0)
20338 goto skip_full_check;
20339
20340 ret = check_attach_btf_id(env);
20341 if (ret)
20342 goto skip_full_check;
20343
20344 ret = resolve_pseudo_ldimm64(env);
20345 if (ret < 0)
20346 goto skip_full_check;
20347
20348 if (bpf_prog_is_offloaded(env->prog->aux)) {
20349 ret = bpf_prog_offload_verifier_prep(env->prog);
20350 if (ret)
20351 goto skip_full_check;
20352 }
20353
20354 ret = check_cfg(env);
20355 if (ret < 0)
20356 goto skip_full_check;
20357
20358 ret = do_check_subprogs(env);
20359 ret = ret ?: do_check_main(env);
20360
20361 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20362 ret = bpf_prog_offload_finalize(env);
20363
20364 skip_full_check:
20365 kvfree(env->explored_states);
20366
20367 if (ret == 0)
20368 ret = check_max_stack_depth(env);
20369
20370 /* instruction rewrites happen after this point */
20371 if (ret == 0)
20372 ret = optimize_bpf_loop(env);
20373
20374 if (is_priv) {
20375 if (ret == 0)
20376 opt_hard_wire_dead_code_branches(env);
20377 if (ret == 0)
20378 ret = opt_remove_dead_code(env);
20379 if (ret == 0)
20380 ret = opt_remove_nops(env);
20381 } else {
20382 if (ret == 0)
20383 sanitize_dead_code(env);
20384 }
20385
20386 if (ret == 0)
20387 /* program is valid, convert *(u32*)(ctx + off) accesses */
20388 ret = convert_ctx_accesses(env);
20389
20390 if (ret == 0)
20391 ret = do_misc_fixups(env);
20392
20393 /* do 32-bit optimization after insn patching has done so those patched
20394 * insns could be handled correctly.
20395 */
20396 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20397 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20398 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20399 : false;
20400 }
20401
20402 if (ret == 0)
20403 ret = fixup_call_args(env);
20404
20405 env->verification_time = ktime_get_ns() - start_time;
20406 print_verification_stats(env);
20407 env->prog->aux->verified_insns = env->insn_processed;
20408
20409 /* preserve original error even if log finalization is successful */
20410 err = bpf_vlog_finalize(&env->log, &log_true_size);
20411 if (err)
20412 ret = err;
20413
20414 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20415 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20416 &log_true_size, sizeof(log_true_size))) {
20417 ret = -EFAULT;
20418 goto err_release_maps;
20419 }
20420
20421 if (ret)
20422 goto err_release_maps;
20423
20424 if (env->used_map_cnt) {
20425 /* if program passed verifier, update used_maps in bpf_prog_info */
20426 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20427 sizeof(env->used_maps[0]),
20428 GFP_KERNEL);
20429
20430 if (!env->prog->aux->used_maps) {
20431 ret = -ENOMEM;
20432 goto err_release_maps;
20433 }
20434
20435 memcpy(env->prog->aux->used_maps, env->used_maps,
20436 sizeof(env->used_maps[0]) * env->used_map_cnt);
20437 env->prog->aux->used_map_cnt = env->used_map_cnt;
20438 }
20439 if (env->used_btf_cnt) {
20440 /* if program passed verifier, update used_btfs in bpf_prog_aux */
20441 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20442 sizeof(env->used_btfs[0]),
20443 GFP_KERNEL);
20444 if (!env->prog->aux->used_btfs) {
20445 ret = -ENOMEM;
20446 goto err_release_maps;
20447 }
20448
20449 memcpy(env->prog->aux->used_btfs, env->used_btfs,
20450 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20451 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20452 }
20453 if (env->used_map_cnt || env->used_btf_cnt) {
20454 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
20455 * bpf_ld_imm64 instructions
20456 */
20457 convert_pseudo_ld_imm64(env);
20458 }
20459
20460 adjust_btf_func(env);
20461
20462 err_release_maps:
20463 if (!env->prog->aux->used_maps)
20464 /* if we didn't copy map pointers into bpf_prog_info, release
20465 * them now. Otherwise free_used_maps() will release them.
20466 */
20467 release_maps(env);
20468 if (!env->prog->aux->used_btfs)
20469 release_btfs(env);
20470
20471 /* extension progs temporarily inherit the attach_type of their targets
20472 for verification purposes, so set it back to zero before returning
20473 */
20474 if (env->prog->type == BPF_PROG_TYPE_EXT)
20475 env->prog->expected_attach_type = 0;
20476
20477 *prog = env->prog;
20478 err_unlock:
20479 if (!is_priv)
20480 mutex_unlock(&bpf_verifier_lock);
20481 vfree(env->insn_aux_data);
20482 err_free_env:
20483 kvfree(env);
20484 return ret;
20485 }
20486