xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision ed4543328f7108e1047b83b96ca7f7208747d930)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "mes_api_def.h"
39 #include "kfd_debug.h"
40 
41 /* Size of the per-pipe EOP queue */
42 #define CIK_HPD_EOP_BYTES_LOG2 11
43 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
44 
45 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
46 				  u32 pasid, unsigned int vmid);
47 
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param,
51 				uint32_t grace_period);
52 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period,
56 				bool reset);
57 
58 static int map_queues_cpsch(struct device_queue_manager *dqm);
59 
60 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 
63 static inline void deallocate_hqd(struct device_queue_manager *dqm,
64 				struct queue *q);
65 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
66 static int allocate_sdma_queue(struct device_queue_manager *dqm,
67 				struct queue *q, const uint32_t *restore_sdma_id);
68 static void kfd_process_hw_exception(struct work_struct *work);
69 
70 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)71 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
72 {
73 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
74 		return KFD_MQD_TYPE_SDMA;
75 	return KFD_MQD_TYPE_CP;
76 }
77 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)78 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
79 {
80 	int i;
81 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
82 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
83 
84 	/* queue is available for KFD usage if bit is 1 */
85 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
86 		if (test_bit(pipe_offset + i,
87 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
88 			return true;
89 	return false;
90 }
91 
get_cp_queues_num(struct device_queue_manager * dqm)92 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
93 {
94 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
95 				KGD_MAX_QUEUES);
96 }
97 
get_queues_per_pipe(struct device_queue_manager * dqm)98 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
99 {
100 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
101 }
102 
get_pipes_per_mec(struct device_queue_manager * dqm)103 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
106 }
107 
get_num_all_sdma_engines(struct device_queue_manager * dqm)108 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
109 {
110 	return kfd_get_num_sdma_engines(dqm->dev) +
111 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
112 }
113 
get_num_sdma_queues(struct device_queue_manager * dqm)114 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
115 {
116 	return kfd_get_num_sdma_engines(dqm->dev) *
117 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
118 }
119 
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)120 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
121 {
122 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
123 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
124 }
125 
init_sdma_bitmaps(struct device_queue_manager * dqm)126 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
127 {
128 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
129 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
130 
131 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
132 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
133 
134 	/* Mask out the reserved queues */
135 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
136 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
137 		      KFD_MAX_SDMA_QUEUES);
138 }
139 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)140 void program_sh_mem_settings(struct device_queue_manager *dqm,
141 					struct qcm_process_device *qpd)
142 {
143 	uint32_t xcc_mask = dqm->dev->xcc_mask;
144 	int xcc_id;
145 
146 	for_each_inst(xcc_id, xcc_mask)
147 		dqm->dev->kfd2kgd->program_sh_mem_settings(
148 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
149 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
150 			qpd->sh_mem_bases, xcc_id);
151 }
152 
kfd_hws_hang(struct device_queue_manager * dqm)153 static void kfd_hws_hang(struct device_queue_manager *dqm)
154 {
155 	/*
156 	 * Issue a GPU reset if HWS is unresponsive
157 	 */
158 	dqm->is_hws_hang = true;
159 
160 	/* It's possible we're detecting a HWS hang in the
161 	 * middle of a GPU reset. No need to schedule another
162 	 * reset in this case.
163 	 */
164 	if (!dqm->is_resetting)
165 		schedule_work(&dqm->hw_exception_work);
166 }
167 
convert_to_mes_queue_type(int queue_type)168 static int convert_to_mes_queue_type(int queue_type)
169 {
170 	int mes_queue_type;
171 
172 	switch (queue_type) {
173 	case KFD_QUEUE_TYPE_COMPUTE:
174 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
175 		break;
176 	case KFD_QUEUE_TYPE_SDMA:
177 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
178 		break;
179 	default:
180 		WARN(1, "Invalid queue type %d", queue_type);
181 		mes_queue_type = -EINVAL;
182 		break;
183 	}
184 
185 	return mes_queue_type;
186 }
187 
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)188 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
189 			 struct qcm_process_device *qpd)
190 {
191 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
192 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
193 	struct mes_add_queue_input queue_input;
194 	int r, queue_type;
195 	uint64_t wptr_addr_off;
196 
197 	if (dqm->is_hws_hang)
198 		return -EIO;
199 
200 	if (!pdd->proc_ctx_cpu_ptr) {
201 		r = amdgpu_amdkfd_alloc_gtt_mem(adev,
202 				AMDGPU_MES_PROC_CTX_SIZE,
203 				&pdd->proc_ctx_bo,
204 				&pdd->proc_ctx_gpu_addr,
205 				&pdd->proc_ctx_cpu_ptr,
206 				false);
207 		if (r) {
208 			dev_err(adev->dev,
209 				"failed to allocate process context bo\n");
210 			return r;
211 		}
212 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
213 	}
214 
215 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
216 	queue_input.process_id = qpd->pqm->process->pasid;
217 	queue_input.page_table_base_addr =  qpd->page_table_base;
218 	queue_input.process_va_start = 0;
219 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
220 	/* MES unit for quantum is 100ns */
221 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
222 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
223 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
224 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
225 	queue_input.inprocess_gang_priority = q->properties.priority;
226 	queue_input.gang_global_priority_level =
227 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
228 	queue_input.doorbell_offset = q->properties.doorbell_off;
229 	queue_input.mqd_addr = q->gart_mqd_addr;
230 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
231 
232 	if (q->wptr_bo) {
233 		wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
234 		queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->wptr_bo) + wptr_addr_off;
235 	}
236 
237 	queue_input.is_kfd_process = 1;
238 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
239 	queue_input.queue_size = q->properties.queue_size >> 2;
240 
241 	queue_input.paging = false;
242 	queue_input.tba_addr = qpd->tba_addr;
243 	queue_input.tma_addr = qpd->tma_addr;
244 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
245 	queue_input.skip_process_ctx_clear = qpd->pqm->process->debug_trap_enabled ||
246 					     kfd_dbg_has_ttmps_always_setup(q->device);
247 
248 	queue_type = convert_to_mes_queue_type(q->properties.type);
249 	if (queue_type < 0) {
250 		pr_err("Queue type not supported with MES, queue:%d\n",
251 				q->properties.type);
252 		return -EINVAL;
253 	}
254 	queue_input.queue_type = (uint32_t)queue_type;
255 
256 	queue_input.exclusively_scheduled = q->properties.is_gws;
257 
258 	amdgpu_mes_lock(&adev->mes);
259 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 	amdgpu_mes_unlock(&adev->mes);
261 	if (r) {
262 		pr_err("failed to add hardware queue to MES, doorbell=0x%x\n",
263 			q->properties.doorbell_off);
264 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
265 		kfd_hws_hang(dqm);
266 	}
267 
268 	return r;
269 }
270 
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)271 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
272 			struct qcm_process_device *qpd)
273 {
274 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
275 	int r;
276 	struct mes_remove_queue_input queue_input;
277 
278 	if (dqm->is_hws_hang)
279 		return -EIO;
280 
281 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
282 	queue_input.doorbell_offset = q->properties.doorbell_off;
283 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
284 
285 	amdgpu_mes_lock(&adev->mes);
286 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
287 	amdgpu_mes_unlock(&adev->mes);
288 
289 	if (r) {
290 		pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n",
291 			q->properties.doorbell_off);
292 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
293 		kfd_hws_hang(dqm);
294 	}
295 
296 	return r;
297 }
298 
remove_all_queues_mes(struct device_queue_manager * dqm)299 static int remove_all_queues_mes(struct device_queue_manager *dqm)
300 {
301 	struct device_process_node *cur;
302 	struct qcm_process_device *qpd;
303 	struct queue *q;
304 	int retval = 0;
305 
306 	list_for_each_entry(cur, &dqm->queues, list) {
307 		qpd = cur->qpd;
308 		list_for_each_entry(q, &qpd->queues_list, list) {
309 			if (q->properties.is_active) {
310 				retval = remove_queue_mes(dqm, q, qpd);
311 				if (retval) {
312 					pr_err("%s: Failed to remove queue %d for dev %d",
313 						__func__,
314 						q->properties.queue_id,
315 						dqm->dev->id);
316 					return retval;
317 				}
318 			}
319 		}
320 	}
321 
322 	return retval;
323 }
324 
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)325 static void increment_queue_count(struct device_queue_manager *dqm,
326 				  struct qcm_process_device *qpd,
327 				  struct queue *q)
328 {
329 	dqm->active_queue_count++;
330 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
331 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
332 		dqm->active_cp_queue_count++;
333 
334 	if (q->properties.is_gws) {
335 		dqm->gws_queue_count++;
336 		qpd->mapped_gws_queue = true;
337 	}
338 }
339 
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)340 static void decrement_queue_count(struct device_queue_manager *dqm,
341 				  struct qcm_process_device *qpd,
342 				  struct queue *q)
343 {
344 	dqm->active_queue_count--;
345 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
346 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
347 		dqm->active_cp_queue_count--;
348 
349 	if (q->properties.is_gws) {
350 		dqm->gws_queue_count--;
351 		qpd->mapped_gws_queue = false;
352 	}
353 }
354 
355 /*
356  * Allocate a doorbell ID to this queue.
357  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
358  */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)359 static int allocate_doorbell(struct qcm_process_device *qpd,
360 			     struct queue *q,
361 			     uint32_t const *restore_id)
362 {
363 	struct kfd_node *dev = qpd->dqm->dev;
364 
365 	if (!KFD_IS_SOC15(dev)) {
366 		/* On pre-SOC15 chips we need to use the queue ID to
367 		 * preserve the user mode ABI.
368 		 */
369 
370 		if (restore_id && *restore_id != q->properties.queue_id)
371 			return -EINVAL;
372 
373 		q->doorbell_id = q->properties.queue_id;
374 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
375 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
376 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
377 		 * doorbell assignments based on the engine and queue id.
378 		 * The doobell index distance between RLC (2*i) and (2*i+1)
379 		 * for a SDMA engine is 512.
380 		 */
381 
382 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
383 
384 		/*
385 		 * q->properties.sdma_engine_id corresponds to the virtual
386 		 * sdma engine number. However, for doorbell allocation,
387 		 * we need the physical sdma engine id in order to get the
388 		 * correct doorbell offset.
389 		 */
390 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
391 					       get_num_all_sdma_engines(qpd->dqm) +
392 					       q->properties.sdma_engine_id]
393 						+ (q->properties.sdma_queue_id & 1)
394 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
395 						+ (q->properties.sdma_queue_id >> 1);
396 
397 		if (restore_id && *restore_id != valid_id)
398 			return -EINVAL;
399 		q->doorbell_id = valid_id;
400 	} else {
401 		/* For CP queues on SOC15 */
402 		if (restore_id) {
403 			/* make sure that ID is free  */
404 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
405 				return -EINVAL;
406 
407 			q->doorbell_id = *restore_id;
408 		} else {
409 			/* or reserve a free doorbell ID */
410 			unsigned int found;
411 
412 			found = find_first_zero_bit(qpd->doorbell_bitmap,
413 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
414 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
415 				pr_debug("No doorbells available");
416 				return -EBUSY;
417 			}
418 			set_bit(found, qpd->doorbell_bitmap);
419 			q->doorbell_id = found;
420 		}
421 	}
422 
423 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
424 								  qpd->proc_doorbells,
425 								  q->doorbell_id,
426 								  dev->kfd->device_info.doorbell_size);
427 	return 0;
428 }
429 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)430 static void deallocate_doorbell(struct qcm_process_device *qpd,
431 				struct queue *q)
432 {
433 	unsigned int old;
434 	struct kfd_node *dev = qpd->dqm->dev;
435 
436 	if (!KFD_IS_SOC15(dev) ||
437 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
438 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
439 		return;
440 
441 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
442 	WARN_ON(!old);
443 }
444 
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)445 static void program_trap_handler_settings(struct device_queue_manager *dqm,
446 				struct qcm_process_device *qpd)
447 {
448 	uint32_t xcc_mask = dqm->dev->xcc_mask;
449 	int xcc_id;
450 
451 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
452 		for_each_inst(xcc_id, xcc_mask)
453 			dqm->dev->kfd2kgd->program_trap_handler_settings(
454 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
455 				qpd->tma_addr, xcc_id);
456 }
457 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)458 static int allocate_vmid(struct device_queue_manager *dqm,
459 			struct qcm_process_device *qpd,
460 			struct queue *q)
461 {
462 	int allocated_vmid = -1, i;
463 
464 	for (i = dqm->dev->vm_info.first_vmid_kfd;
465 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
466 		if (!dqm->vmid_pasid[i]) {
467 			allocated_vmid = i;
468 			break;
469 		}
470 	}
471 
472 	if (allocated_vmid < 0) {
473 		pr_err("no more vmid to allocate\n");
474 		return -ENOSPC;
475 	}
476 
477 	pr_debug("vmid allocated: %d\n", allocated_vmid);
478 
479 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
480 
481 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
482 
483 	qpd->vmid = allocated_vmid;
484 	q->properties.vmid = allocated_vmid;
485 
486 	program_sh_mem_settings(dqm, qpd);
487 
488 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
489 		program_trap_handler_settings(dqm, qpd);
490 
491 	/* qpd->page_table_base is set earlier when register_process()
492 	 * is called, i.e. when the first queue is created.
493 	 */
494 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
495 			qpd->vmid,
496 			qpd->page_table_base);
497 	/* invalidate the VM context after pasid and vmid mapping is set up */
498 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
499 
500 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
501 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
502 				qpd->sh_hidden_private_base, qpd->vmid);
503 
504 	return 0;
505 }
506 
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)507 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
508 				struct qcm_process_device *qpd)
509 {
510 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
511 	int ret;
512 
513 	if (!qpd->ib_kaddr)
514 		return -ENOMEM;
515 
516 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
517 	if (ret)
518 		return ret;
519 
520 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
521 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
522 				pmf->release_mem_size / sizeof(uint32_t));
523 }
524 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)525 static void deallocate_vmid(struct device_queue_manager *dqm,
526 				struct qcm_process_device *qpd,
527 				struct queue *q)
528 {
529 	/* On GFX v7, CP doesn't flush TC at dequeue */
530 	if (q->device->adev->asic_type == CHIP_HAWAII)
531 		if (flush_texture_cache_nocpsch(q->device, qpd))
532 			pr_err("Failed to flush TC\n");
533 
534 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
535 
536 	/* Release the vmid mapping */
537 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
538 	dqm->vmid_pasid[qpd->vmid] = 0;
539 
540 	qpd->vmid = 0;
541 	q->properties.vmid = 0;
542 }
543 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)544 static int create_queue_nocpsch(struct device_queue_manager *dqm,
545 				struct queue *q,
546 				struct qcm_process_device *qpd,
547 				const struct kfd_criu_queue_priv_data *qd,
548 				const void *restore_mqd, const void *restore_ctl_stack)
549 {
550 	struct mqd_manager *mqd_mgr;
551 	int retval;
552 
553 	dqm_lock(dqm);
554 
555 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
556 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
557 				dqm->total_queue_count);
558 		retval = -EPERM;
559 		goto out_unlock;
560 	}
561 
562 	if (list_empty(&qpd->queues_list)) {
563 		retval = allocate_vmid(dqm, qpd, q);
564 		if (retval)
565 			goto out_unlock;
566 	}
567 	q->properties.vmid = qpd->vmid;
568 	/*
569 	 * Eviction state logic: mark all queues as evicted, even ones
570 	 * not currently active. Restoring inactive queues later only
571 	 * updates the is_evicted flag but is a no-op otherwise.
572 	 */
573 	q->properties.is_evicted = !!qpd->evicted;
574 
575 	q->properties.tba_addr = qpd->tba_addr;
576 	q->properties.tma_addr = qpd->tma_addr;
577 
578 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
579 			q->properties.type)];
580 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
581 		retval = allocate_hqd(dqm, q);
582 		if (retval)
583 			goto deallocate_vmid;
584 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
585 			q->pipe, q->queue);
586 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
587 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
588 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
589 		if (retval)
590 			goto deallocate_vmid;
591 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
592 	}
593 
594 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
595 	if (retval)
596 		goto out_deallocate_hqd;
597 
598 	/* Temporarily release dqm lock to avoid a circular lock dependency */
599 	dqm_unlock(dqm);
600 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
601 	dqm_lock(dqm);
602 
603 	if (!q->mqd_mem_obj) {
604 		retval = -ENOMEM;
605 		goto out_deallocate_doorbell;
606 	}
607 
608 	if (qd)
609 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
610 				     &q->properties, restore_mqd, restore_ctl_stack,
611 				     qd->ctl_stack_size);
612 	else
613 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
614 					&q->gart_mqd_addr, &q->properties);
615 
616 	if (q->properties.is_active) {
617 		if (!dqm->sched_running) {
618 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
619 			goto add_queue_to_list;
620 		}
621 
622 		if (WARN(q->process->mm != current->mm,
623 					"should only run in user thread"))
624 			retval = -EFAULT;
625 		else
626 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
627 					q->queue, &q->properties, current->mm);
628 		if (retval)
629 			goto out_free_mqd;
630 	}
631 
632 add_queue_to_list:
633 	list_add(&q->list, &qpd->queues_list);
634 	qpd->queue_count++;
635 	if (q->properties.is_active)
636 		increment_queue_count(dqm, qpd, q);
637 
638 	/*
639 	 * Unconditionally increment this counter, regardless of the queue's
640 	 * type or whether the queue is active.
641 	 */
642 	dqm->total_queue_count++;
643 	pr_debug("Total of %d queues are accountable so far\n",
644 			dqm->total_queue_count);
645 	goto out_unlock;
646 
647 out_free_mqd:
648 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
649 out_deallocate_doorbell:
650 	deallocate_doorbell(qpd, q);
651 out_deallocate_hqd:
652 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
653 		deallocate_hqd(dqm, q);
654 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
655 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
656 		deallocate_sdma_queue(dqm, q);
657 deallocate_vmid:
658 	if (list_empty(&qpd->queues_list))
659 		deallocate_vmid(dqm, qpd, q);
660 out_unlock:
661 	dqm_unlock(dqm);
662 	return retval;
663 }
664 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)665 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
666 {
667 	bool set;
668 	int pipe, bit, i;
669 
670 	set = false;
671 
672 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
673 			i < get_pipes_per_mec(dqm);
674 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
675 
676 		if (!is_pipe_enabled(dqm, 0, pipe))
677 			continue;
678 
679 		if (dqm->allocated_queues[pipe] != 0) {
680 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
681 			dqm->allocated_queues[pipe] &= ~(1 << bit);
682 			q->pipe = pipe;
683 			q->queue = bit;
684 			set = true;
685 			break;
686 		}
687 	}
688 
689 	if (!set)
690 		return -EBUSY;
691 
692 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
693 	/* horizontal hqd allocation */
694 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
695 
696 	return 0;
697 }
698 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)699 static inline void deallocate_hqd(struct device_queue_manager *dqm,
700 				struct queue *q)
701 {
702 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
703 }
704 
705 #define SQ_IND_CMD_CMD_KILL		0x00000003
706 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
707 
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)708 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
709 {
710 	int status = 0;
711 	unsigned int vmid;
712 	uint16_t queried_pasid;
713 	union SQ_CMD_BITS reg_sq_cmd;
714 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
715 	struct kfd_process_device *pdd;
716 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
717 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
718 	uint32_t xcc_mask = dev->xcc_mask;
719 	int xcc_id;
720 
721 	reg_sq_cmd.u32All = 0;
722 	reg_gfx_index.u32All = 0;
723 
724 	pr_debug("Killing all process wavefronts\n");
725 
726 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
727 		pr_err("no vmid pasid mapping supported \n");
728 		return -EOPNOTSUPP;
729 	}
730 
731 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
732 	 * ATC_VMID15_PASID_MAPPING
733 	 * to check which VMID the current process is mapped to.
734 	 */
735 
736 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
737 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
738 				(dev->adev, vmid, &queried_pasid);
739 
740 		if (status && queried_pasid == p->pasid) {
741 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
742 					vmid, p->pasid);
743 			break;
744 		}
745 	}
746 
747 	if (vmid > last_vmid_to_scan) {
748 		pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
749 		return -EFAULT;
750 	}
751 
752 	/* taking the VMID for that process on the safe way using PDD */
753 	pdd = kfd_get_process_device_data(dev, p);
754 	if (!pdd)
755 		return -EFAULT;
756 
757 	reg_gfx_index.bits.sh_broadcast_writes = 1;
758 	reg_gfx_index.bits.se_broadcast_writes = 1;
759 	reg_gfx_index.bits.instance_broadcast_writes = 1;
760 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
761 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
762 	reg_sq_cmd.bits.vm_id = vmid;
763 
764 	for_each_inst(xcc_id, xcc_mask)
765 		dev->kfd2kgd->wave_control_execute(
766 			dev->adev, reg_gfx_index.u32All,
767 			reg_sq_cmd.u32All, xcc_id);
768 
769 	return 0;
770 }
771 
772 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
773  * to avoid asynchronized access
774  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)775 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
776 				struct qcm_process_device *qpd,
777 				struct queue *q)
778 {
779 	int retval;
780 	struct mqd_manager *mqd_mgr;
781 
782 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
783 			q->properties.type)];
784 
785 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
786 		deallocate_hqd(dqm, q);
787 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
788 		deallocate_sdma_queue(dqm, q);
789 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
790 		deallocate_sdma_queue(dqm, q);
791 	else {
792 		pr_debug("q->properties.type %d is invalid\n",
793 				q->properties.type);
794 		return -EINVAL;
795 	}
796 	dqm->total_queue_count--;
797 
798 	deallocate_doorbell(qpd, q);
799 
800 	if (!dqm->sched_running) {
801 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
802 		return 0;
803 	}
804 
805 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
806 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
807 				KFD_UNMAP_LATENCY_MS,
808 				q->pipe, q->queue);
809 	if (retval == -ETIME)
810 		qpd->reset_wavefronts = true;
811 
812 	list_del(&q->list);
813 	if (list_empty(&qpd->queues_list)) {
814 		if (qpd->reset_wavefronts) {
815 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
816 					dqm->dev);
817 			/* dbgdev_wave_reset_wavefronts has to be called before
818 			 * deallocate_vmid(), i.e. when vmid is still in use.
819 			 */
820 			dbgdev_wave_reset_wavefronts(dqm->dev,
821 					qpd->pqm->process);
822 			qpd->reset_wavefronts = false;
823 		}
824 
825 		deallocate_vmid(dqm, qpd, q);
826 	}
827 	qpd->queue_count--;
828 	if (q->properties.is_active)
829 		decrement_queue_count(dqm, qpd, q);
830 
831 	return retval;
832 }
833 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)834 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
835 				struct qcm_process_device *qpd,
836 				struct queue *q)
837 {
838 	int retval;
839 	uint64_t sdma_val = 0;
840 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
841 	struct mqd_manager *mqd_mgr =
842 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
843 
844 	/* Get the SDMA queue stats */
845 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
846 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
847 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
848 							&sdma_val);
849 		if (retval)
850 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
851 				q->properties.queue_id);
852 	}
853 
854 	dqm_lock(dqm);
855 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
856 	if (!retval)
857 		pdd->sdma_past_activity_counter += sdma_val;
858 	dqm_unlock(dqm);
859 
860 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
861 
862 	return retval;
863 }
864 
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)865 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
866 			struct mqd_update_info *minfo)
867 {
868 	int retval = 0;
869 	struct mqd_manager *mqd_mgr;
870 	struct kfd_process_device *pdd;
871 	bool prev_active = false;
872 
873 	dqm_lock(dqm);
874 	pdd = kfd_get_process_device_data(q->device, q->process);
875 	if (!pdd) {
876 		retval = -ENODEV;
877 		goto out_unlock;
878 	}
879 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
880 			q->properties.type)];
881 
882 	/* Save previous activity state for counters */
883 	prev_active = q->properties.is_active;
884 
885 	/* Make sure the queue is unmapped before updating the MQD */
886 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
887 		if (!dqm->dev->kfd->shared_resources.enable_mes)
888 			retval = unmap_queues_cpsch(dqm,
889 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
890 		else if (prev_active)
891 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
892 
893 		if (retval) {
894 			pr_err("unmap queue failed\n");
895 			goto out_unlock;
896 		}
897 	} else if (prev_active &&
898 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
899 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
900 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
901 
902 		if (!dqm->sched_running) {
903 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
904 			goto out_unlock;
905 		}
906 
907 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
908 				(dqm->dev->kfd->cwsr_enabled ?
909 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
910 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
911 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
912 		if (retval) {
913 			pr_err("destroy mqd failed\n");
914 			goto out_unlock;
915 		}
916 	}
917 
918 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
919 
920 	/*
921 	 * check active state vs. the previous state and modify
922 	 * counter accordingly. map_queues_cpsch uses the
923 	 * dqm->active_queue_count to determine whether a new runlist must be
924 	 * uploaded.
925 	 */
926 	if (q->properties.is_active && !prev_active) {
927 		increment_queue_count(dqm, &pdd->qpd, q);
928 	} else if (!q->properties.is_active && prev_active) {
929 		decrement_queue_count(dqm, &pdd->qpd, q);
930 	} else if (q->gws && !q->properties.is_gws) {
931 		if (q->properties.is_active) {
932 			dqm->gws_queue_count++;
933 			pdd->qpd.mapped_gws_queue = true;
934 		}
935 		q->properties.is_gws = true;
936 	} else if (!q->gws && q->properties.is_gws) {
937 		if (q->properties.is_active) {
938 			dqm->gws_queue_count--;
939 			pdd->qpd.mapped_gws_queue = false;
940 		}
941 		q->properties.is_gws = false;
942 	}
943 
944 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
945 		if (!dqm->dev->kfd->shared_resources.enable_mes)
946 			retval = map_queues_cpsch(dqm);
947 		else if (q->properties.is_active)
948 			retval = add_queue_mes(dqm, q, &pdd->qpd);
949 	} else if (q->properties.is_active &&
950 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
951 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
952 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
953 		if (WARN(q->process->mm != current->mm,
954 			 "should only run in user thread"))
955 			retval = -EFAULT;
956 		else
957 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
958 						   q->pipe, q->queue,
959 						   &q->properties, current->mm);
960 	}
961 
962 out_unlock:
963 	dqm_unlock(dqm);
964 	return retval;
965 }
966 
967 /* suspend_single_queue does not lock the dqm like the
968  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
969  * lock the dqm before calling, and unlock after calling.
970  *
971  * The reason we don't lock the dqm is because this function may be
972  * called on multiple queues in a loop, so rather than locking/unlocking
973  * multiple times, we will just keep the dqm locked for all of the calls.
974  */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)975 static int suspend_single_queue(struct device_queue_manager *dqm,
976 				      struct kfd_process_device *pdd,
977 				      struct queue *q)
978 {
979 	bool is_new;
980 
981 	if (q->properties.is_suspended)
982 		return 0;
983 
984 	pr_debug("Suspending PASID %u queue [%i]\n",
985 			pdd->process->pasid,
986 			q->properties.queue_id);
987 
988 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
989 
990 	if (is_new || q->properties.is_being_destroyed) {
991 		pr_debug("Suspend: skip %s queue id %i\n",
992 				is_new ? "new" : "destroyed",
993 				q->properties.queue_id);
994 		return -EBUSY;
995 	}
996 
997 	q->properties.is_suspended = true;
998 	if (q->properties.is_active) {
999 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1000 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1001 
1002 			if (r)
1003 				return r;
1004 		}
1005 
1006 		decrement_queue_count(dqm, &pdd->qpd, q);
1007 		q->properties.is_active = false;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 /* resume_single_queue does not lock the dqm like the functions
1014  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1015  * lock the dqm before calling, and unlock after calling.
1016  *
1017  * The reason we don't lock the dqm is because this function may be
1018  * called on multiple queues in a loop, so rather than locking/unlocking
1019  * multiple times, we will just keep the dqm locked for all of the calls.
1020  */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1021 static int resume_single_queue(struct device_queue_manager *dqm,
1022 				      struct qcm_process_device *qpd,
1023 				      struct queue *q)
1024 {
1025 	struct kfd_process_device *pdd;
1026 
1027 	if (!q->properties.is_suspended)
1028 		return 0;
1029 
1030 	pdd = qpd_to_pdd(qpd);
1031 
1032 	pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1033 			    pdd->process->pasid,
1034 			    q->properties.queue_id);
1035 
1036 	q->properties.is_suspended = false;
1037 
1038 	if (QUEUE_IS_ACTIVE(q->properties)) {
1039 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1040 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1041 
1042 			if (r)
1043 				return r;
1044 		}
1045 
1046 		q->properties.is_active = true;
1047 		increment_queue_count(dqm, qpd, q);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1053 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1054 					struct qcm_process_device *qpd)
1055 {
1056 	struct queue *q;
1057 	struct mqd_manager *mqd_mgr;
1058 	struct kfd_process_device *pdd;
1059 	int retval, ret = 0;
1060 
1061 	dqm_lock(dqm);
1062 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1063 		goto out;
1064 
1065 	pdd = qpd_to_pdd(qpd);
1066 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1067 			    pdd->process->pasid);
1068 
1069 	pdd->last_evict_timestamp = get_jiffies_64();
1070 	/* Mark all queues as evicted. Deactivate all active queues on
1071 	 * the qpd.
1072 	 */
1073 	list_for_each_entry(q, &qpd->queues_list, list) {
1074 		q->properties.is_evicted = true;
1075 		if (!q->properties.is_active)
1076 			continue;
1077 
1078 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1079 				q->properties.type)];
1080 		q->properties.is_active = false;
1081 		decrement_queue_count(dqm, qpd, q);
1082 
1083 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1084 			continue;
1085 
1086 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1087 				(dqm->dev->kfd->cwsr_enabled ?
1088 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1089 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1090 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1091 		if (retval && !ret)
1092 			/* Return the first error, but keep going to
1093 			 * maintain a consistent eviction state
1094 			 */
1095 			ret = retval;
1096 	}
1097 
1098 out:
1099 	dqm_unlock(dqm);
1100 	return ret;
1101 }
1102 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1103 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1104 				      struct qcm_process_device *qpd)
1105 {
1106 	struct queue *q;
1107 	struct kfd_process_device *pdd;
1108 	int retval = 0;
1109 
1110 	dqm_lock(dqm);
1111 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1112 		goto out;
1113 
1114 	pdd = qpd_to_pdd(qpd);
1115 
1116 	/* The debugger creates processes that temporarily have not acquired
1117 	 * all VMs for all devices and has no VMs itself.
1118 	 * Skip queue eviction on process eviction.
1119 	 */
1120 	if (!pdd->drm_priv)
1121 		goto out;
1122 
1123 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1124 			    pdd->process->pasid);
1125 
1126 	/* Mark all queues as evicted. Deactivate all active queues on
1127 	 * the qpd.
1128 	 */
1129 	list_for_each_entry(q, &qpd->queues_list, list) {
1130 		q->properties.is_evicted = true;
1131 		if (!q->properties.is_active)
1132 			continue;
1133 
1134 		q->properties.is_active = false;
1135 		decrement_queue_count(dqm, qpd, q);
1136 
1137 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1138 			retval = remove_queue_mes(dqm, q, qpd);
1139 			if (retval) {
1140 				pr_err("Failed to evict queue %d\n",
1141 					q->properties.queue_id);
1142 				goto out;
1143 			}
1144 		}
1145 	}
1146 	pdd->last_evict_timestamp = get_jiffies_64();
1147 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1148 		retval = execute_queues_cpsch(dqm,
1149 					      qpd->is_debug ?
1150 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1151 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1152 					      USE_DEFAULT_GRACE_PERIOD);
1153 
1154 out:
1155 	dqm_unlock(dqm);
1156 	return retval;
1157 }
1158 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1159 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1160 					  struct qcm_process_device *qpd)
1161 {
1162 	struct mm_struct *mm = NULL;
1163 	struct queue *q;
1164 	struct mqd_manager *mqd_mgr;
1165 	struct kfd_process_device *pdd;
1166 	uint64_t pd_base;
1167 	uint64_t eviction_duration;
1168 	int retval, ret = 0;
1169 
1170 	pdd = qpd_to_pdd(qpd);
1171 	/* Retrieve PD base */
1172 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1173 
1174 	dqm_lock(dqm);
1175 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1176 		goto out;
1177 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1178 		qpd->evicted--;
1179 		goto out;
1180 	}
1181 
1182 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1183 			    pdd->process->pasid);
1184 
1185 	/* Update PD Base in QPD */
1186 	qpd->page_table_base = pd_base;
1187 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1188 
1189 	if (!list_empty(&qpd->queues_list)) {
1190 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1191 				dqm->dev->adev,
1192 				qpd->vmid,
1193 				qpd->page_table_base);
1194 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1195 	}
1196 
1197 	/* Take a safe reference to the mm_struct, which may otherwise
1198 	 * disappear even while the kfd_process is still referenced.
1199 	 */
1200 	mm = get_task_mm(pdd->process->lead_thread);
1201 	if (!mm) {
1202 		ret = -EFAULT;
1203 		goto out;
1204 	}
1205 
1206 	/* Remove the eviction flags. Activate queues that are not
1207 	 * inactive for other reasons.
1208 	 */
1209 	list_for_each_entry(q, &qpd->queues_list, list) {
1210 		q->properties.is_evicted = false;
1211 		if (!QUEUE_IS_ACTIVE(q->properties))
1212 			continue;
1213 
1214 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1215 				q->properties.type)];
1216 		q->properties.is_active = true;
1217 		increment_queue_count(dqm, qpd, q);
1218 
1219 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1220 			continue;
1221 
1222 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1223 				       q->queue, &q->properties, mm);
1224 		if (retval && !ret)
1225 			/* Return the first error, but keep going to
1226 			 * maintain a consistent eviction state
1227 			 */
1228 			ret = retval;
1229 	}
1230 	qpd->evicted = 0;
1231 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1232 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1233 out:
1234 	if (mm)
1235 		mmput(mm);
1236 	dqm_unlock(dqm);
1237 	return ret;
1238 }
1239 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1240 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1241 					struct qcm_process_device *qpd)
1242 {
1243 	struct queue *q;
1244 	struct kfd_process_device *pdd;
1245 	uint64_t eviction_duration;
1246 	int retval = 0;
1247 
1248 	pdd = qpd_to_pdd(qpd);
1249 
1250 	dqm_lock(dqm);
1251 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1252 		goto out;
1253 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1254 		qpd->evicted--;
1255 		goto out;
1256 	}
1257 
1258 	/* The debugger creates processes that temporarily have not acquired
1259 	 * all VMs for all devices and has no VMs itself.
1260 	 * Skip queue restore on process restore.
1261 	 */
1262 	if (!pdd->drm_priv)
1263 		goto vm_not_acquired;
1264 
1265 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1266 			    pdd->process->pasid);
1267 
1268 	/* Update PD Base in QPD */
1269 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1270 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1271 
1272 	/* activate all active queues on the qpd */
1273 	list_for_each_entry(q, &qpd->queues_list, list) {
1274 		q->properties.is_evicted = false;
1275 		if (!QUEUE_IS_ACTIVE(q->properties))
1276 			continue;
1277 
1278 		q->properties.is_active = true;
1279 		increment_queue_count(dqm, &pdd->qpd, q);
1280 
1281 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1282 			retval = add_queue_mes(dqm, q, qpd);
1283 			if (retval) {
1284 				pr_err("Failed to restore queue %d\n",
1285 					q->properties.queue_id);
1286 				goto out;
1287 			}
1288 		}
1289 	}
1290 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1291 		retval = execute_queues_cpsch(dqm,
1292 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1293 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1294 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1295 vm_not_acquired:
1296 	qpd->evicted = 0;
1297 out:
1298 	dqm_unlock(dqm);
1299 	return retval;
1300 }
1301 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1302 static int register_process(struct device_queue_manager *dqm,
1303 					struct qcm_process_device *qpd)
1304 {
1305 	struct device_process_node *n;
1306 	struct kfd_process_device *pdd;
1307 	uint64_t pd_base;
1308 	int retval;
1309 
1310 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1311 	if (!n)
1312 		return -ENOMEM;
1313 
1314 	n->qpd = qpd;
1315 
1316 	pdd = qpd_to_pdd(qpd);
1317 	/* Retrieve PD base */
1318 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1319 
1320 	dqm_lock(dqm);
1321 	list_add(&n->list, &dqm->queues);
1322 
1323 	/* Update PD Base in QPD */
1324 	qpd->page_table_base = pd_base;
1325 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1326 
1327 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1328 
1329 	dqm->processes_count++;
1330 
1331 	dqm_unlock(dqm);
1332 
1333 	/* Outside the DQM lock because under the DQM lock we can't do
1334 	 * reclaim or take other locks that others hold while reclaiming.
1335 	 */
1336 	kfd_inc_compute_active(dqm->dev);
1337 
1338 	return retval;
1339 }
1340 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1341 static int unregister_process(struct device_queue_manager *dqm,
1342 					struct qcm_process_device *qpd)
1343 {
1344 	int retval;
1345 	struct device_process_node *cur, *next;
1346 
1347 	pr_debug("qpd->queues_list is %s\n",
1348 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1349 
1350 	retval = 0;
1351 	dqm_lock(dqm);
1352 
1353 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1354 		if (qpd == cur->qpd) {
1355 			list_del(&cur->list);
1356 			kfree(cur);
1357 			dqm->processes_count--;
1358 			goto out;
1359 		}
1360 	}
1361 	/* qpd not found in dqm list */
1362 	retval = 1;
1363 out:
1364 	dqm_unlock(dqm);
1365 
1366 	/* Outside the DQM lock because under the DQM lock we can't do
1367 	 * reclaim or take other locks that others hold while reclaiming.
1368 	 */
1369 	if (!retval)
1370 		kfd_dec_compute_active(dqm->dev);
1371 
1372 	return retval;
1373 }
1374 
1375 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1376 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1377 			unsigned int vmid)
1378 {
1379 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1380 	int xcc_id, ret;
1381 
1382 	for_each_inst(xcc_id, xcc_mask) {
1383 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1384 			dqm->dev->adev, pasid, vmid, xcc_id);
1385 		if (ret)
1386 			break;
1387 	}
1388 
1389 	return ret;
1390 }
1391 
init_interrupts(struct device_queue_manager * dqm)1392 static void init_interrupts(struct device_queue_manager *dqm)
1393 {
1394 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1395 	unsigned int i, xcc_id;
1396 
1397 	for_each_inst(xcc_id, xcc_mask) {
1398 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1399 			if (is_pipe_enabled(dqm, 0, i)) {
1400 				dqm->dev->kfd2kgd->init_interrupts(
1401 					dqm->dev->adev, i, xcc_id);
1402 			}
1403 		}
1404 	}
1405 }
1406 
initialize_nocpsch(struct device_queue_manager * dqm)1407 static int initialize_nocpsch(struct device_queue_manager *dqm)
1408 {
1409 	int pipe, queue;
1410 
1411 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1412 
1413 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1414 					sizeof(unsigned int), GFP_KERNEL);
1415 	if (!dqm->allocated_queues)
1416 		return -ENOMEM;
1417 
1418 	mutex_init(&dqm->lock_hidden);
1419 	INIT_LIST_HEAD(&dqm->queues);
1420 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1421 	dqm->active_cp_queue_count = 0;
1422 	dqm->gws_queue_count = 0;
1423 
1424 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1425 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1426 
1427 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1428 			if (test_bit(pipe_offset + queue,
1429 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1430 				dqm->allocated_queues[pipe] |= 1 << queue;
1431 	}
1432 
1433 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1434 
1435 	init_sdma_bitmaps(dqm);
1436 
1437 	return 0;
1438 }
1439 
uninitialize(struct device_queue_manager * dqm)1440 static void uninitialize(struct device_queue_manager *dqm)
1441 {
1442 	int i;
1443 
1444 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1445 
1446 	kfree(dqm->allocated_queues);
1447 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1448 		kfree(dqm->mqd_mgrs[i]);
1449 	mutex_destroy(&dqm->lock_hidden);
1450 }
1451 
start_nocpsch(struct device_queue_manager * dqm)1452 static int start_nocpsch(struct device_queue_manager *dqm)
1453 {
1454 	int r = 0;
1455 
1456 	pr_info("SW scheduler is used");
1457 	init_interrupts(dqm);
1458 
1459 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1460 		r = pm_init(&dqm->packet_mgr, dqm);
1461 	if (!r)
1462 		dqm->sched_running = true;
1463 
1464 	return r;
1465 }
1466 
stop_nocpsch(struct device_queue_manager * dqm)1467 static int stop_nocpsch(struct device_queue_manager *dqm)
1468 {
1469 	dqm_lock(dqm);
1470 	if (!dqm->sched_running) {
1471 		dqm_unlock(dqm);
1472 		return 0;
1473 	}
1474 
1475 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1476 		pm_uninit(&dqm->packet_mgr, false);
1477 	dqm->sched_running = false;
1478 	dqm_unlock(dqm);
1479 
1480 	return 0;
1481 }
1482 
pre_reset(struct device_queue_manager * dqm)1483 static void pre_reset(struct device_queue_manager *dqm)
1484 {
1485 	dqm_lock(dqm);
1486 	dqm->is_resetting = true;
1487 	dqm_unlock(dqm);
1488 }
1489 
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1490 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1491 				struct queue *q, const uint32_t *restore_sdma_id)
1492 {
1493 	int bit;
1494 
1495 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1496 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1497 			pr_err("No more SDMA queue to allocate\n");
1498 			return -ENOMEM;
1499 		}
1500 
1501 		if (restore_sdma_id) {
1502 			/* Re-use existing sdma_id */
1503 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1504 				pr_err("SDMA queue already in use\n");
1505 				return -EBUSY;
1506 			}
1507 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1508 			q->sdma_id = *restore_sdma_id;
1509 		} else {
1510 			/* Find first available sdma_id */
1511 			bit = find_first_bit(dqm->sdma_bitmap,
1512 					     get_num_sdma_queues(dqm));
1513 			clear_bit(bit, dqm->sdma_bitmap);
1514 			q->sdma_id = bit;
1515 		}
1516 
1517 		q->properties.sdma_engine_id =
1518 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1519 		q->properties.sdma_queue_id = q->sdma_id /
1520 				kfd_get_num_sdma_engines(dqm->dev);
1521 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1522 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1523 			pr_err("No more XGMI SDMA queue to allocate\n");
1524 			return -ENOMEM;
1525 		}
1526 		if (restore_sdma_id) {
1527 			/* Re-use existing sdma_id */
1528 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1529 				pr_err("SDMA queue already in use\n");
1530 				return -EBUSY;
1531 			}
1532 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1533 			q->sdma_id = *restore_sdma_id;
1534 		} else {
1535 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1536 					     get_num_xgmi_sdma_queues(dqm));
1537 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1538 			q->sdma_id = bit;
1539 		}
1540 		/* sdma_engine_id is sdma id including
1541 		 * both PCIe-optimized SDMAs and XGMI-
1542 		 * optimized SDMAs. The calculation below
1543 		 * assumes the first N engines are always
1544 		 * PCIe-optimized ones
1545 		 */
1546 		q->properties.sdma_engine_id =
1547 			kfd_get_num_sdma_engines(dqm->dev) +
1548 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1549 		q->properties.sdma_queue_id = q->sdma_id /
1550 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1551 	}
1552 
1553 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1554 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1555 
1556 	return 0;
1557 }
1558 
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1559 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1560 				struct queue *q)
1561 {
1562 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1563 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1564 			return;
1565 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1566 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1567 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1568 			return;
1569 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1570 	}
1571 }
1572 
1573 /*
1574  * Device Queue Manager implementation for cp scheduler
1575  */
1576 
set_sched_resources(struct device_queue_manager * dqm)1577 static int set_sched_resources(struct device_queue_manager *dqm)
1578 {
1579 	int i, mec;
1580 	struct scheduling_resources res;
1581 
1582 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1583 
1584 	res.queue_mask = 0;
1585 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1586 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1587 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1588 
1589 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1590 			continue;
1591 
1592 		/* only acquire queues from the first MEC */
1593 		if (mec > 0)
1594 			continue;
1595 
1596 		/* This situation may be hit in the future if a new HW
1597 		 * generation exposes more than 64 queues. If so, the
1598 		 * definition of res.queue_mask needs updating
1599 		 */
1600 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1601 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1602 			break;
1603 		}
1604 
1605 		res.queue_mask |= 1ull
1606 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1607 				dqm->dev->adev, i);
1608 	}
1609 	res.gws_mask = ~0ull;
1610 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1611 
1612 	pr_debug("Scheduling resources:\n"
1613 			"vmid mask: 0x%8X\n"
1614 			"queue mask: 0x%8llX\n",
1615 			res.vmid_mask, res.queue_mask);
1616 
1617 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1618 }
1619 
initialize_cpsch(struct device_queue_manager * dqm)1620 static int initialize_cpsch(struct device_queue_manager *dqm)
1621 {
1622 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1623 
1624 	mutex_init(&dqm->lock_hidden);
1625 	INIT_LIST_HEAD(&dqm->queues);
1626 	dqm->active_queue_count = dqm->processes_count = 0;
1627 	dqm->active_cp_queue_count = 0;
1628 	dqm->gws_queue_count = 0;
1629 	dqm->active_runlist = false;
1630 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1631 	dqm->trap_debug_vmid = 0;
1632 
1633 	init_sdma_bitmaps(dqm);
1634 
1635 	if (dqm->dev->kfd2kgd->get_iq_wait_times)
1636 		dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1637 					&dqm->wait_times,
1638 					ffs(dqm->dev->xcc_mask) - 1);
1639 	return 0;
1640 }
1641 
start_cpsch(struct device_queue_manager * dqm)1642 static int start_cpsch(struct device_queue_manager *dqm)
1643 {
1644 	int retval;
1645 
1646 	retval = 0;
1647 
1648 	dqm_lock(dqm);
1649 
1650 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1651 		retval = pm_init(&dqm->packet_mgr, dqm);
1652 		if (retval)
1653 			goto fail_packet_manager_init;
1654 
1655 		retval = set_sched_resources(dqm);
1656 		if (retval)
1657 			goto fail_set_sched_resources;
1658 	}
1659 	pr_debug("Allocating fence memory\n");
1660 
1661 	/* allocate fence memory on the gart */
1662 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1663 					&dqm->fence_mem);
1664 
1665 	if (retval)
1666 		goto fail_allocate_vidmem;
1667 
1668 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1669 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1670 
1671 	init_interrupts(dqm);
1672 
1673 	/* clear hang status when driver try to start the hw scheduler */
1674 	dqm->is_hws_hang = false;
1675 	dqm->is_resetting = false;
1676 	dqm->sched_running = true;
1677 
1678 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1679 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1680 
1681 	/* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1682 	if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1683 	    (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1684 		uint32_t reg_offset = 0;
1685 		uint32_t grace_period = 1;
1686 
1687 		retval = pm_update_grace_period(&dqm->packet_mgr,
1688 						grace_period);
1689 		if (retval)
1690 			pr_err("Setting grace timeout failed\n");
1691 		else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1692 			/* Update dqm->wait_times maintained in software */
1693 			dqm->dev->kfd2kgd->build_grace_period_packet_info(
1694 					dqm->dev->adev,	dqm->wait_times,
1695 					grace_period, &reg_offset,
1696 					&dqm->wait_times);
1697 	}
1698 
1699 	dqm_unlock(dqm);
1700 
1701 	return 0;
1702 fail_allocate_vidmem:
1703 fail_set_sched_resources:
1704 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1705 		pm_uninit(&dqm->packet_mgr, false);
1706 fail_packet_manager_init:
1707 	dqm_unlock(dqm);
1708 	return retval;
1709 }
1710 
stop_cpsch(struct device_queue_manager * dqm)1711 static int stop_cpsch(struct device_queue_manager *dqm)
1712 {
1713 	bool hanging;
1714 
1715 	dqm_lock(dqm);
1716 	if (!dqm->sched_running) {
1717 		dqm_unlock(dqm);
1718 		return 0;
1719 	}
1720 
1721 	if (!dqm->is_hws_hang) {
1722 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1723 			unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1724 		else
1725 			remove_all_queues_mes(dqm);
1726 	}
1727 
1728 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1729 	dqm->sched_running = false;
1730 
1731 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1732 		pm_release_ib(&dqm->packet_mgr);
1733 
1734 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1735 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1736 		pm_uninit(&dqm->packet_mgr, hanging);
1737 	dqm_unlock(dqm);
1738 
1739 	return 0;
1740 }
1741 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1742 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1743 					struct kernel_queue *kq,
1744 					struct qcm_process_device *qpd)
1745 {
1746 	dqm_lock(dqm);
1747 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1748 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1749 				dqm->total_queue_count);
1750 		dqm_unlock(dqm);
1751 		return -EPERM;
1752 	}
1753 
1754 	/*
1755 	 * Unconditionally increment this counter, regardless of the queue's
1756 	 * type or whether the queue is active.
1757 	 */
1758 	dqm->total_queue_count++;
1759 	pr_debug("Total of %d queues are accountable so far\n",
1760 			dqm->total_queue_count);
1761 
1762 	list_add(&kq->list, &qpd->priv_queue_list);
1763 	increment_queue_count(dqm, qpd, kq->queue);
1764 	qpd->is_debug = true;
1765 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1766 			USE_DEFAULT_GRACE_PERIOD);
1767 	dqm_unlock(dqm);
1768 
1769 	return 0;
1770 }
1771 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1772 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1773 					struct kernel_queue *kq,
1774 					struct qcm_process_device *qpd)
1775 {
1776 	dqm_lock(dqm);
1777 	list_del(&kq->list);
1778 	decrement_queue_count(dqm, qpd, kq->queue);
1779 	qpd->is_debug = false;
1780 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1781 			USE_DEFAULT_GRACE_PERIOD);
1782 	/*
1783 	 * Unconditionally decrement this counter, regardless of the queue's
1784 	 * type.
1785 	 */
1786 	dqm->total_queue_count--;
1787 	pr_debug("Total of %d queues are accountable so far\n",
1788 			dqm->total_queue_count);
1789 	dqm_unlock(dqm);
1790 }
1791 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1792 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1793 			struct qcm_process_device *qpd,
1794 			const struct kfd_criu_queue_priv_data *qd,
1795 			const void *restore_mqd, const void *restore_ctl_stack)
1796 {
1797 	int retval;
1798 	struct mqd_manager *mqd_mgr;
1799 
1800 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1801 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1802 				dqm->total_queue_count);
1803 		retval = -EPERM;
1804 		goto out;
1805 	}
1806 
1807 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1808 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1809 		dqm_lock(dqm);
1810 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1811 		dqm_unlock(dqm);
1812 		if (retval)
1813 			goto out;
1814 	}
1815 
1816 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1817 	if (retval)
1818 		goto out_deallocate_sdma_queue;
1819 
1820 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1821 			q->properties.type)];
1822 
1823 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1824 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1825 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1826 	q->properties.tba_addr = qpd->tba_addr;
1827 	q->properties.tma_addr = qpd->tma_addr;
1828 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1829 	if (!q->mqd_mem_obj) {
1830 		retval = -ENOMEM;
1831 		goto out_deallocate_doorbell;
1832 	}
1833 
1834 	dqm_lock(dqm);
1835 	/*
1836 	 * Eviction state logic: mark all queues as evicted, even ones
1837 	 * not currently active. Restoring inactive queues later only
1838 	 * updates the is_evicted flag but is a no-op otherwise.
1839 	 */
1840 	q->properties.is_evicted = !!qpd->evicted;
1841 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
1842 				  kfd_dbg_has_cwsr_workaround(q->device);
1843 
1844 	if (qd)
1845 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1846 				     &q->properties, restore_mqd, restore_ctl_stack,
1847 				     qd->ctl_stack_size);
1848 	else
1849 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1850 					&q->gart_mqd_addr, &q->properties);
1851 
1852 	list_add(&q->list, &qpd->queues_list);
1853 	qpd->queue_count++;
1854 
1855 	if (q->properties.is_active) {
1856 		increment_queue_count(dqm, qpd, q);
1857 
1858 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1859 			retval = execute_queues_cpsch(dqm,
1860 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1861 		else
1862 			retval = add_queue_mes(dqm, q, qpd);
1863 		if (retval)
1864 			goto cleanup_queue;
1865 	}
1866 
1867 	/*
1868 	 * Unconditionally increment this counter, regardless of the queue's
1869 	 * type or whether the queue is active.
1870 	 */
1871 	dqm->total_queue_count++;
1872 
1873 	pr_debug("Total of %d queues are accountable so far\n",
1874 			dqm->total_queue_count);
1875 
1876 	dqm_unlock(dqm);
1877 	return retval;
1878 
1879 cleanup_queue:
1880 	qpd->queue_count--;
1881 	list_del(&q->list);
1882 	if (q->properties.is_active)
1883 		decrement_queue_count(dqm, qpd, q);
1884 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1885 	dqm_unlock(dqm);
1886 out_deallocate_doorbell:
1887 	deallocate_doorbell(qpd, q);
1888 out_deallocate_sdma_queue:
1889 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1890 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1891 		dqm_lock(dqm);
1892 		deallocate_sdma_queue(dqm, q);
1893 		dqm_unlock(dqm);
1894 	}
1895 out:
1896 	return retval;
1897 }
1898 
amdkfd_fence_wait_timeout(uint64_t * fence_addr,uint64_t fence_value,unsigned int timeout_ms)1899 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1900 				uint64_t fence_value,
1901 				unsigned int timeout_ms)
1902 {
1903 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1904 
1905 	while (*fence_addr != fence_value) {
1906 		if (time_after(jiffies, end_jiffies)) {
1907 			pr_err("qcm fence wait loop timeout expired\n");
1908 			/* In HWS case, this is used to halt the driver thread
1909 			 * in order not to mess up CP states before doing
1910 			 * scandumps for FW debugging.
1911 			 */
1912 			while (halt_if_hws_hang)
1913 				schedule();
1914 
1915 			return -ETIME;
1916 		}
1917 		schedule();
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1924 static int map_queues_cpsch(struct device_queue_manager *dqm)
1925 {
1926 	int retval;
1927 
1928 	if (!dqm->sched_running)
1929 		return 0;
1930 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1931 		return 0;
1932 	if (dqm->active_runlist)
1933 		return 0;
1934 
1935 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1936 	pr_debug("%s sent runlist\n", __func__);
1937 	if (retval) {
1938 		pr_err("failed to execute runlist\n");
1939 		return retval;
1940 	}
1941 	dqm->active_runlist = true;
1942 
1943 	return retval;
1944 }
1945 
1946 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)1947 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1948 				enum kfd_unmap_queues_filter filter,
1949 				uint32_t filter_param,
1950 				uint32_t grace_period,
1951 				bool reset)
1952 {
1953 	int retval = 0;
1954 	struct mqd_manager *mqd_mgr;
1955 
1956 	if (!dqm->sched_running)
1957 		return 0;
1958 	if (dqm->is_hws_hang || dqm->is_resetting)
1959 		return -EIO;
1960 	if (!dqm->active_runlist)
1961 		return retval;
1962 
1963 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1964 		retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
1965 		if (retval)
1966 			return retval;
1967 	}
1968 
1969 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1970 	if (retval)
1971 		return retval;
1972 
1973 	*dqm->fence_addr = KFD_FENCE_INIT;
1974 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1975 				KFD_FENCE_COMPLETED);
1976 	/* should be timed out */
1977 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1978 				queue_preemption_timeout_ms);
1979 	if (retval) {
1980 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1981 		kfd_hws_hang(dqm);
1982 		return retval;
1983 	}
1984 
1985 	/* In the current MEC firmware implementation, if compute queue
1986 	 * doesn't response to the preemption request in time, HIQ will
1987 	 * abandon the unmap request without returning any timeout error
1988 	 * to driver. Instead, MEC firmware will log the doorbell of the
1989 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1990 	 * To make sure the queue unmap was successful, driver need to
1991 	 * check those fields
1992 	 */
1993 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1994 	if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1995 		pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1996 		while (halt_if_hws_hang)
1997 			schedule();
1998 		kfd_hws_hang(dqm);
1999 		return -ETIME;
2000 	}
2001 
2002 	/* We need to reset the grace period value for this device */
2003 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2004 		if (pm_update_grace_period(&dqm->packet_mgr,
2005 					USE_DEFAULT_GRACE_PERIOD))
2006 			pr_err("Failed to reset grace period\n");
2007 	}
2008 
2009 	pm_release_ib(&dqm->packet_mgr);
2010 	dqm->active_runlist = false;
2011 
2012 	return retval;
2013 }
2014 
2015 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2016 static int reset_queues_cpsch(struct device_queue_manager *dqm,
2017 			uint16_t pasid)
2018 {
2019 	int retval;
2020 
2021 	dqm_lock(dqm);
2022 
2023 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2024 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2025 
2026 	dqm_unlock(dqm);
2027 	return retval;
2028 }
2029 
2030 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2031 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2032 				enum kfd_unmap_queues_filter filter,
2033 				uint32_t filter_param,
2034 				uint32_t grace_period)
2035 {
2036 	int retval;
2037 
2038 	if (dqm->is_hws_hang)
2039 		return -EIO;
2040 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2041 	if (retval)
2042 		return retval;
2043 
2044 	return map_queues_cpsch(dqm);
2045 }
2046 
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2047 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2048 				 struct queue *q)
2049 {
2050 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2051 								q->process);
2052 	int ret = 0;
2053 
2054 	if (pdd->qpd.is_debug)
2055 		return ret;
2056 
2057 	q->properties.is_being_destroyed = true;
2058 
2059 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2060 		dqm_unlock(dqm);
2061 		mutex_unlock(&q->process->mutex);
2062 		ret = wait_event_interruptible(dqm->destroy_wait,
2063 						!q->properties.is_suspended);
2064 
2065 		mutex_lock(&q->process->mutex);
2066 		dqm_lock(dqm);
2067 	}
2068 
2069 	return ret;
2070 }
2071 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2072 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2073 				struct qcm_process_device *qpd,
2074 				struct queue *q)
2075 {
2076 	int retval;
2077 	struct mqd_manager *mqd_mgr;
2078 	uint64_t sdma_val = 0;
2079 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2080 
2081 	/* Get the SDMA queue stats */
2082 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2083 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2084 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2085 							&sdma_val);
2086 		if (retval)
2087 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
2088 				q->properties.queue_id);
2089 	}
2090 
2091 	/* remove queue from list to prevent rescheduling after preemption */
2092 	dqm_lock(dqm);
2093 
2094 	retval = wait_on_destroy_queue(dqm, q);
2095 
2096 	if (retval) {
2097 		dqm_unlock(dqm);
2098 		return retval;
2099 	}
2100 
2101 	if (qpd->is_debug) {
2102 		/*
2103 		 * error, currently we do not allow to destroy a queue
2104 		 * of a currently debugged process
2105 		 */
2106 		retval = -EBUSY;
2107 		goto failed_try_destroy_debugged_queue;
2108 
2109 	}
2110 
2111 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2112 			q->properties.type)];
2113 
2114 	deallocate_doorbell(qpd, q);
2115 
2116 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2117 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2118 		deallocate_sdma_queue(dqm, q);
2119 		pdd->sdma_past_activity_counter += sdma_val;
2120 	}
2121 
2122 	list_del(&q->list);
2123 	qpd->queue_count--;
2124 	if (q->properties.is_active) {
2125 		decrement_queue_count(dqm, qpd, q);
2126 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2127 			retval = execute_queues_cpsch(dqm,
2128 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2129 						      USE_DEFAULT_GRACE_PERIOD);
2130 			if (retval == -ETIME)
2131 				qpd->reset_wavefronts = true;
2132 		} else {
2133 			retval = remove_queue_mes(dqm, q, qpd);
2134 		}
2135 	}
2136 
2137 	/*
2138 	 * Unconditionally decrement this counter, regardless of the queue's
2139 	 * type
2140 	 */
2141 	dqm->total_queue_count--;
2142 	pr_debug("Total of %d queues are accountable so far\n",
2143 			dqm->total_queue_count);
2144 
2145 	dqm_unlock(dqm);
2146 
2147 	/*
2148 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2149 	 * circular locking
2150 	 */
2151 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2152 				qpd->pqm->process, q->device,
2153 				-1, false, NULL, 0);
2154 
2155 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2156 
2157 	return retval;
2158 
2159 failed_try_destroy_debugged_queue:
2160 
2161 	dqm_unlock(dqm);
2162 	return retval;
2163 }
2164 
2165 /*
2166  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2167  * stay in user mode.
2168  */
2169 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2170 /* APE1 limit is inclusive and 64K aligned. */
2171 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2172 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)2173 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2174 				   struct qcm_process_device *qpd,
2175 				   enum cache_policy default_policy,
2176 				   enum cache_policy alternate_policy,
2177 				   void __user *alternate_aperture_base,
2178 				   uint64_t alternate_aperture_size)
2179 {
2180 	bool retval = true;
2181 
2182 	if (!dqm->asic_ops.set_cache_memory_policy)
2183 		return retval;
2184 
2185 	dqm_lock(dqm);
2186 
2187 	if (alternate_aperture_size == 0) {
2188 		/* base > limit disables APE1 */
2189 		qpd->sh_mem_ape1_base = 1;
2190 		qpd->sh_mem_ape1_limit = 0;
2191 	} else {
2192 		/*
2193 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2194 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
2195 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2196 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2197 		 * Verify that the base and size parameters can be
2198 		 * represented in this format and convert them.
2199 		 * Additionally restrict APE1 to user-mode addresses.
2200 		 */
2201 
2202 		uint64_t base = (uintptr_t)alternate_aperture_base;
2203 		uint64_t limit = base + alternate_aperture_size - 1;
2204 
2205 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2206 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2207 			retval = false;
2208 			goto out;
2209 		}
2210 
2211 		qpd->sh_mem_ape1_base = base >> 16;
2212 		qpd->sh_mem_ape1_limit = limit >> 16;
2213 	}
2214 
2215 	retval = dqm->asic_ops.set_cache_memory_policy(
2216 			dqm,
2217 			qpd,
2218 			default_policy,
2219 			alternate_policy,
2220 			alternate_aperture_base,
2221 			alternate_aperture_size);
2222 
2223 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2224 		program_sh_mem_settings(dqm, qpd);
2225 
2226 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2227 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2228 		qpd->sh_mem_ape1_limit);
2229 
2230 out:
2231 	dqm_unlock(dqm);
2232 	return retval;
2233 }
2234 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2235 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2236 		struct qcm_process_device *qpd)
2237 {
2238 	struct queue *q;
2239 	struct device_process_node *cur, *next_dpn;
2240 	int retval = 0;
2241 	bool found = false;
2242 
2243 	dqm_lock(dqm);
2244 
2245 	/* Clear all user mode queues */
2246 	while (!list_empty(&qpd->queues_list)) {
2247 		struct mqd_manager *mqd_mgr;
2248 		int ret;
2249 
2250 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2251 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2252 				q->properties.type)];
2253 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2254 		if (ret)
2255 			retval = ret;
2256 		dqm_unlock(dqm);
2257 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2258 		dqm_lock(dqm);
2259 	}
2260 
2261 	/* Unregister process */
2262 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2263 		if (qpd == cur->qpd) {
2264 			list_del(&cur->list);
2265 			kfree(cur);
2266 			dqm->processes_count--;
2267 			found = true;
2268 			break;
2269 		}
2270 	}
2271 
2272 	dqm_unlock(dqm);
2273 
2274 	/* Outside the DQM lock because under the DQM lock we can't do
2275 	 * reclaim or take other locks that others hold while reclaiming.
2276 	 */
2277 	if (found)
2278 		kfd_dec_compute_active(dqm->dev);
2279 
2280 	return retval;
2281 }
2282 
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2283 static int get_wave_state(struct device_queue_manager *dqm,
2284 			  struct queue *q,
2285 			  void __user *ctl_stack,
2286 			  u32 *ctl_stack_used_size,
2287 			  u32 *save_area_used_size)
2288 {
2289 	struct mqd_manager *mqd_mgr;
2290 
2291 	dqm_lock(dqm);
2292 
2293 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2294 
2295 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2296 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2297 	    !mqd_mgr->get_wave_state) {
2298 		dqm_unlock(dqm);
2299 		return -EINVAL;
2300 	}
2301 
2302 	dqm_unlock(dqm);
2303 
2304 	/*
2305 	 * get_wave_state is outside the dqm lock to prevent circular locking
2306 	 * and the queue should be protected against destruction by the process
2307 	 * lock.
2308 	 */
2309 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2310 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2311 }
2312 
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2313 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2314 			const struct queue *q,
2315 			u32 *mqd_size,
2316 			u32 *ctl_stack_size)
2317 {
2318 	struct mqd_manager *mqd_mgr;
2319 	enum KFD_MQD_TYPE mqd_type =
2320 			get_mqd_type_from_queue_type(q->properties.type);
2321 
2322 	dqm_lock(dqm);
2323 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2324 	*mqd_size = mqd_mgr->mqd_size;
2325 	*ctl_stack_size = 0;
2326 
2327 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2328 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2329 
2330 	dqm_unlock(dqm);
2331 }
2332 
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2333 static int checkpoint_mqd(struct device_queue_manager *dqm,
2334 			  const struct queue *q,
2335 			  void *mqd,
2336 			  void *ctl_stack)
2337 {
2338 	struct mqd_manager *mqd_mgr;
2339 	int r = 0;
2340 	enum KFD_MQD_TYPE mqd_type =
2341 			get_mqd_type_from_queue_type(q->properties.type);
2342 
2343 	dqm_lock(dqm);
2344 
2345 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2346 		r = -EINVAL;
2347 		goto dqm_unlock;
2348 	}
2349 
2350 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2351 	if (!mqd_mgr->checkpoint_mqd) {
2352 		r = -EOPNOTSUPP;
2353 		goto dqm_unlock;
2354 	}
2355 
2356 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2357 
2358 dqm_unlock:
2359 	dqm_unlock(dqm);
2360 	return r;
2361 }
2362 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2363 static int process_termination_cpsch(struct device_queue_manager *dqm,
2364 		struct qcm_process_device *qpd)
2365 {
2366 	int retval;
2367 	struct queue *q;
2368 	struct kernel_queue *kq, *kq_next;
2369 	struct mqd_manager *mqd_mgr;
2370 	struct device_process_node *cur, *next_dpn;
2371 	enum kfd_unmap_queues_filter filter =
2372 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2373 	bool found = false;
2374 
2375 	retval = 0;
2376 
2377 	dqm_lock(dqm);
2378 
2379 	/* Clean all kernel queues */
2380 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2381 		list_del(&kq->list);
2382 		decrement_queue_count(dqm, qpd, kq->queue);
2383 		qpd->is_debug = false;
2384 		dqm->total_queue_count--;
2385 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2386 	}
2387 
2388 	/* Clear all user mode queues */
2389 	list_for_each_entry(q, &qpd->queues_list, list) {
2390 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2391 			deallocate_sdma_queue(dqm, q);
2392 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2393 			deallocate_sdma_queue(dqm, q);
2394 
2395 		if (q->properties.is_active) {
2396 			decrement_queue_count(dqm, qpd, q);
2397 
2398 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2399 				retval = remove_queue_mes(dqm, q, qpd);
2400 				if (retval)
2401 					pr_err("Failed to remove queue %d\n",
2402 						q->properties.queue_id);
2403 			}
2404 		}
2405 
2406 		dqm->total_queue_count--;
2407 	}
2408 
2409 	/* Unregister process */
2410 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2411 		if (qpd == cur->qpd) {
2412 			list_del(&cur->list);
2413 			kfree(cur);
2414 			dqm->processes_count--;
2415 			found = true;
2416 			break;
2417 		}
2418 	}
2419 
2420 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2421 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2422 
2423 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
2424 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2425 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2426 		qpd->reset_wavefronts = false;
2427 	}
2428 
2429 	/* Lastly, free mqd resources.
2430 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2431 	 */
2432 	while (!list_empty(&qpd->queues_list)) {
2433 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2434 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2435 				q->properties.type)];
2436 		list_del(&q->list);
2437 		qpd->queue_count--;
2438 		dqm_unlock(dqm);
2439 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2440 		dqm_lock(dqm);
2441 	}
2442 	dqm_unlock(dqm);
2443 
2444 	/* Outside the DQM lock because under the DQM lock we can't do
2445 	 * reclaim or take other locks that others hold while reclaiming.
2446 	 */
2447 	if (found)
2448 		kfd_dec_compute_active(dqm->dev);
2449 
2450 	return retval;
2451 }
2452 
init_mqd_managers(struct device_queue_manager * dqm)2453 static int init_mqd_managers(struct device_queue_manager *dqm)
2454 {
2455 	int i, j;
2456 	struct mqd_manager *mqd_mgr;
2457 
2458 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2459 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2460 		if (!mqd_mgr) {
2461 			pr_err("mqd manager [%d] initialization failed\n", i);
2462 			goto out_free;
2463 		}
2464 		dqm->mqd_mgrs[i] = mqd_mgr;
2465 	}
2466 
2467 	return 0;
2468 
2469 out_free:
2470 	for (j = 0; j < i; j++) {
2471 		kfree(dqm->mqd_mgrs[j]);
2472 		dqm->mqd_mgrs[j] = NULL;
2473 	}
2474 
2475 	return -ENOMEM;
2476 }
2477 
2478 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2479 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2480 {
2481 	int retval;
2482 	struct kfd_node *dev = dqm->dev;
2483 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2484 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2485 		get_num_all_sdma_engines(dqm) *
2486 		dev->kfd->device_info.num_sdma_queues_per_engine +
2487 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2488 		NUM_XCC(dqm->dev->xcc_mask));
2489 
2490 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2491 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2492 		(void *)&(mem_obj->cpu_ptr), false);
2493 
2494 	return retval;
2495 }
2496 
device_queue_manager_init(struct kfd_node * dev)2497 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2498 {
2499 	struct device_queue_manager *dqm;
2500 
2501 	pr_debug("Loading device queue manager\n");
2502 
2503 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2504 	if (!dqm)
2505 		return NULL;
2506 
2507 	switch (dev->adev->asic_type) {
2508 	/* HWS is not available on Hawaii. */
2509 	case CHIP_HAWAII:
2510 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2511 	 * available on Tonga.
2512 	 *
2513 	 * FIXME: This argument also applies to Kaveri.
2514 	 */
2515 	case CHIP_TONGA:
2516 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2517 		break;
2518 	default:
2519 		dqm->sched_policy = sched_policy;
2520 		break;
2521 	}
2522 
2523 	dqm->dev = dev;
2524 	switch (dqm->sched_policy) {
2525 	case KFD_SCHED_POLICY_HWS:
2526 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2527 		/* initialize dqm for cp scheduling */
2528 		dqm->ops.create_queue = create_queue_cpsch;
2529 		dqm->ops.initialize = initialize_cpsch;
2530 		dqm->ops.start = start_cpsch;
2531 		dqm->ops.stop = stop_cpsch;
2532 		dqm->ops.pre_reset = pre_reset;
2533 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2534 		dqm->ops.update_queue = update_queue;
2535 		dqm->ops.register_process = register_process;
2536 		dqm->ops.unregister_process = unregister_process;
2537 		dqm->ops.uninitialize = uninitialize;
2538 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2539 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2540 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2541 		dqm->ops.process_termination = process_termination_cpsch;
2542 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2543 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2544 		dqm->ops.get_wave_state = get_wave_state;
2545 		dqm->ops.reset_queues = reset_queues_cpsch;
2546 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2547 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2548 		break;
2549 	case KFD_SCHED_POLICY_NO_HWS:
2550 		/* initialize dqm for no cp scheduling */
2551 		dqm->ops.start = start_nocpsch;
2552 		dqm->ops.stop = stop_nocpsch;
2553 		dqm->ops.pre_reset = pre_reset;
2554 		dqm->ops.create_queue = create_queue_nocpsch;
2555 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2556 		dqm->ops.update_queue = update_queue;
2557 		dqm->ops.register_process = register_process;
2558 		dqm->ops.unregister_process = unregister_process;
2559 		dqm->ops.initialize = initialize_nocpsch;
2560 		dqm->ops.uninitialize = uninitialize;
2561 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2562 		dqm->ops.process_termination = process_termination_nocpsch;
2563 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2564 		dqm->ops.restore_process_queues =
2565 			restore_process_queues_nocpsch;
2566 		dqm->ops.get_wave_state = get_wave_state;
2567 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2568 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2569 		break;
2570 	default:
2571 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
2572 		goto out_free;
2573 	}
2574 
2575 	switch (dev->adev->asic_type) {
2576 	case CHIP_KAVERI:
2577 	case CHIP_HAWAII:
2578 		device_queue_manager_init_cik(&dqm->asic_ops);
2579 		break;
2580 
2581 	case CHIP_CARRIZO:
2582 	case CHIP_TONGA:
2583 	case CHIP_FIJI:
2584 	case CHIP_POLARIS10:
2585 	case CHIP_POLARIS11:
2586 	case CHIP_POLARIS12:
2587 	case CHIP_VEGAM:
2588 		device_queue_manager_init_vi(&dqm->asic_ops);
2589 		break;
2590 
2591 	default:
2592 		if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2593 			device_queue_manager_init_v11(&dqm->asic_ops);
2594 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2595 			device_queue_manager_init_v10(&dqm->asic_ops);
2596 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2597 			device_queue_manager_init_v9(&dqm->asic_ops);
2598 		else {
2599 			WARN(1, "Unexpected ASIC family %u",
2600 			     dev->adev->asic_type);
2601 			goto out_free;
2602 		}
2603 	}
2604 
2605 	if (init_mqd_managers(dqm))
2606 		goto out_free;
2607 
2608 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2609 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
2610 		goto out_free;
2611 	}
2612 
2613 	if (!dqm->ops.initialize(dqm)) {
2614 		init_waitqueue_head(&dqm->destroy_wait);
2615 		return dqm;
2616 	}
2617 
2618 out_free:
2619 	kfree(dqm);
2620 	return NULL;
2621 }
2622 
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2623 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2624 				    struct kfd_mem_obj *mqd)
2625 {
2626 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2627 
2628 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2629 }
2630 
device_queue_manager_uninit(struct device_queue_manager * dqm)2631 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2632 {
2633 	dqm->ops.stop(dqm);
2634 	dqm->ops.uninitialize(dqm);
2635 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2636 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2637 	kfree(dqm);
2638 }
2639 
kfd_dqm_evict_pasid(struct device_queue_manager * dqm,u32 pasid)2640 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2641 {
2642 	struct kfd_process_device *pdd;
2643 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2644 	int ret = 0;
2645 
2646 	if (!p)
2647 		return -EINVAL;
2648 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2649 	pdd = kfd_get_process_device_data(dqm->dev, p);
2650 	if (pdd)
2651 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2652 	kfd_unref_process(p);
2653 
2654 	return ret;
2655 }
2656 
kfd_process_hw_exception(struct work_struct * work)2657 static void kfd_process_hw_exception(struct work_struct *work)
2658 {
2659 	struct device_queue_manager *dqm = container_of(work,
2660 			struct device_queue_manager, hw_exception_work);
2661 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2662 }
2663 
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2664 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
2665 				struct qcm_process_device *qpd)
2666 {
2667 	int r;
2668 	int updated_vmid_mask;
2669 
2670 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2671 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2672 		return -EINVAL;
2673 	}
2674 
2675 	dqm_lock(dqm);
2676 
2677 	if (dqm->trap_debug_vmid != 0) {
2678 		pr_err("Trap debug id already reserved\n");
2679 		r = -EBUSY;
2680 		goto out_unlock;
2681 	}
2682 
2683 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2684 			USE_DEFAULT_GRACE_PERIOD, false);
2685 	if (r)
2686 		goto out_unlock;
2687 
2688 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2689 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
2690 
2691 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2692 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
2693 	r = set_sched_resources(dqm);
2694 	if (r)
2695 		goto out_unlock;
2696 
2697 	r = map_queues_cpsch(dqm);
2698 	if (r)
2699 		goto out_unlock;
2700 
2701 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
2702 
2703 out_unlock:
2704 	dqm_unlock(dqm);
2705 	return r;
2706 }
2707 
2708 /*
2709  * Releases vmid for the trap debugger
2710  */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2711 int release_debug_trap_vmid(struct device_queue_manager *dqm,
2712 			struct qcm_process_device *qpd)
2713 {
2714 	int r;
2715 	int updated_vmid_mask;
2716 	uint32_t trap_debug_vmid;
2717 
2718 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2719 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2720 		return -EINVAL;
2721 	}
2722 
2723 	dqm_lock(dqm);
2724 	trap_debug_vmid = dqm->trap_debug_vmid;
2725 	if (dqm->trap_debug_vmid == 0) {
2726 		pr_err("Trap debug id is not reserved\n");
2727 		r = -EINVAL;
2728 		goto out_unlock;
2729 	}
2730 
2731 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2732 			USE_DEFAULT_GRACE_PERIOD, false);
2733 	if (r)
2734 		goto out_unlock;
2735 
2736 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2737 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
2738 
2739 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2740 	dqm->trap_debug_vmid = 0;
2741 	r = set_sched_resources(dqm);
2742 	if (r)
2743 		goto out_unlock;
2744 
2745 	r = map_queues_cpsch(dqm);
2746 	if (r)
2747 		goto out_unlock;
2748 
2749 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
2750 
2751 out_unlock:
2752 	dqm_unlock(dqm);
2753 	return r;
2754 }
2755 
2756 #define QUEUE_NOT_FOUND		-1
2757 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)2758 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
2759 {
2760 	int i;
2761 
2762 	for (i = 0; i < num_queues; i++)
2763 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
2764 }
2765 
2766 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)2767 static int q_array_get_index(unsigned int queue_id,
2768 		uint32_t num_queues,
2769 		uint32_t *queue_ids)
2770 {
2771 	int i;
2772 
2773 	for (i = 0; i < num_queues; i++)
2774 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
2775 			return i;
2776 
2777 	return QUEUE_NOT_FOUND;
2778 }
2779 
2780 struct copy_context_work_handler_workarea {
2781 	struct work_struct copy_context_work;
2782 	struct kfd_process *p;
2783 };
2784 
copy_context_work_handler(struct work_struct * work)2785 static void copy_context_work_handler (struct work_struct *work)
2786 {
2787 	struct copy_context_work_handler_workarea *workarea;
2788 	struct mqd_manager *mqd_mgr;
2789 	struct queue *q;
2790 	struct mm_struct *mm;
2791 	struct kfd_process *p;
2792 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
2793 	int i;
2794 
2795 	workarea = container_of(work,
2796 			struct copy_context_work_handler_workarea,
2797 			copy_context_work);
2798 
2799 	p = workarea->p;
2800 	mm = get_task_mm(p->lead_thread);
2801 
2802 	if (!mm)
2803 		return;
2804 
2805 	kthread_use_mm(mm);
2806 	for (i = 0; i < p->n_pdds; i++) {
2807 		struct kfd_process_device *pdd = p->pdds[i];
2808 		struct device_queue_manager *dqm = pdd->dev->dqm;
2809 		struct qcm_process_device *qpd = &pdd->qpd;
2810 
2811 		list_for_each_entry(q, &qpd->queues_list, list) {
2812 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2813 
2814 			/* We ignore the return value from get_wave_state
2815 			 * because
2816 			 * i) right now, it always returns 0, and
2817 			 * ii) if we hit an error, we would continue to the
2818 			 *      next queue anyway.
2819 			 */
2820 			mqd_mgr->get_wave_state(mqd_mgr,
2821 					q->mqd,
2822 					&q->properties,
2823 					(void __user *)	q->properties.ctx_save_restore_area_address,
2824 					&tmp_ctl_stack_used_size,
2825 					&tmp_save_area_used_size);
2826 		}
2827 	}
2828 	kthread_unuse_mm(mm);
2829 	mmput(mm);
2830 }
2831 
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)2832 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
2833 {
2834 	size_t array_size = num_queues * sizeof(uint32_t);
2835 
2836 	if (!usr_queue_id_array)
2837 		return NULL;
2838 
2839 	return memdup_user(usr_queue_id_array, array_size);
2840 }
2841 
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)2842 int resume_queues(struct kfd_process *p,
2843 		uint32_t num_queues,
2844 		uint32_t *usr_queue_id_array)
2845 {
2846 	uint32_t *queue_ids = NULL;
2847 	int total_resumed = 0;
2848 	int i;
2849 
2850 	if (usr_queue_id_array) {
2851 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2852 
2853 		if (IS_ERR(queue_ids))
2854 			return PTR_ERR(queue_ids);
2855 
2856 		/* mask all queues as invalid.  unmask per successful request */
2857 		q_array_invalidate(num_queues, queue_ids);
2858 	}
2859 
2860 	for (i = 0; i < p->n_pdds; i++) {
2861 		struct kfd_process_device *pdd = p->pdds[i];
2862 		struct device_queue_manager *dqm = pdd->dev->dqm;
2863 		struct qcm_process_device *qpd = &pdd->qpd;
2864 		struct queue *q;
2865 		int r, per_device_resumed = 0;
2866 
2867 		dqm_lock(dqm);
2868 
2869 		/* unmask queues that resume or already resumed as valid */
2870 		list_for_each_entry(q, &qpd->queues_list, list) {
2871 			int q_idx = QUEUE_NOT_FOUND;
2872 
2873 			if (queue_ids)
2874 				q_idx = q_array_get_index(
2875 						q->properties.queue_id,
2876 						num_queues,
2877 						queue_ids);
2878 
2879 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
2880 				int err = resume_single_queue(dqm, &pdd->qpd, q);
2881 
2882 				if (queue_ids) {
2883 					if (!err) {
2884 						queue_ids[q_idx] &=
2885 							~KFD_DBG_QUEUE_INVALID_MASK;
2886 					} else {
2887 						queue_ids[q_idx] |=
2888 							KFD_DBG_QUEUE_ERROR_MASK;
2889 						break;
2890 					}
2891 				}
2892 
2893 				if (dqm->dev->kfd->shared_resources.enable_mes) {
2894 					wake_up_all(&dqm->destroy_wait);
2895 					if (!err)
2896 						total_resumed++;
2897 				} else {
2898 					per_device_resumed++;
2899 				}
2900 			}
2901 		}
2902 
2903 		if (!per_device_resumed) {
2904 			dqm_unlock(dqm);
2905 			continue;
2906 		}
2907 
2908 		r = execute_queues_cpsch(dqm,
2909 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
2910 					0,
2911 					USE_DEFAULT_GRACE_PERIOD);
2912 		if (r) {
2913 			pr_err("Failed to resume process queues\n");
2914 			if (queue_ids) {
2915 				list_for_each_entry(q, &qpd->queues_list, list) {
2916 					int q_idx = q_array_get_index(
2917 							q->properties.queue_id,
2918 							num_queues,
2919 							queue_ids);
2920 
2921 					/* mask queue as error on resume fail */
2922 					if (q_idx != QUEUE_NOT_FOUND)
2923 						queue_ids[q_idx] |=
2924 							KFD_DBG_QUEUE_ERROR_MASK;
2925 				}
2926 			}
2927 		} else {
2928 			wake_up_all(&dqm->destroy_wait);
2929 			total_resumed += per_device_resumed;
2930 		}
2931 
2932 		dqm_unlock(dqm);
2933 	}
2934 
2935 	if (queue_ids) {
2936 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
2937 				num_queues * sizeof(uint32_t)))
2938 			pr_err("copy_to_user failed on queue resume\n");
2939 
2940 		kfree(queue_ids);
2941 	}
2942 
2943 	return total_resumed;
2944 }
2945 
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)2946 int suspend_queues(struct kfd_process *p,
2947 			uint32_t num_queues,
2948 			uint32_t grace_period,
2949 			uint64_t exception_clear_mask,
2950 			uint32_t *usr_queue_id_array)
2951 {
2952 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2953 	int total_suspended = 0;
2954 	int i;
2955 
2956 	if (IS_ERR(queue_ids))
2957 		return PTR_ERR(queue_ids);
2958 
2959 	/* mask all queues as invalid.  umask on successful request */
2960 	q_array_invalidate(num_queues, queue_ids);
2961 
2962 	for (i = 0; i < p->n_pdds; i++) {
2963 		struct kfd_process_device *pdd = p->pdds[i];
2964 		struct device_queue_manager *dqm = pdd->dev->dqm;
2965 		struct qcm_process_device *qpd = &pdd->qpd;
2966 		struct queue *q;
2967 		int r, per_device_suspended = 0;
2968 
2969 		mutex_lock(&p->event_mutex);
2970 		dqm_lock(dqm);
2971 
2972 		/* unmask queues that suspend or already suspended */
2973 		list_for_each_entry(q, &qpd->queues_list, list) {
2974 			int q_idx = q_array_get_index(q->properties.queue_id,
2975 							num_queues,
2976 							queue_ids);
2977 
2978 			if (q_idx != QUEUE_NOT_FOUND) {
2979 				int err = suspend_single_queue(dqm, pdd, q);
2980 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
2981 
2982 				if (!err) {
2983 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
2984 					if (exception_clear_mask && is_mes)
2985 						q->properties.exception_status &=
2986 							~exception_clear_mask;
2987 
2988 					if (is_mes)
2989 						total_suspended++;
2990 					else
2991 						per_device_suspended++;
2992 				} else if (err != -EBUSY) {
2993 					r = err;
2994 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
2995 					break;
2996 				}
2997 			}
2998 		}
2999 
3000 		if (!per_device_suspended) {
3001 			dqm_unlock(dqm);
3002 			mutex_unlock(&p->event_mutex);
3003 			if (total_suspended)
3004 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3005 			continue;
3006 		}
3007 
3008 		r = execute_queues_cpsch(dqm,
3009 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3010 			grace_period);
3011 
3012 		if (r)
3013 			pr_err("Failed to suspend process queues.\n");
3014 		else
3015 			total_suspended += per_device_suspended;
3016 
3017 		list_for_each_entry(q, &qpd->queues_list, list) {
3018 			int q_idx = q_array_get_index(q->properties.queue_id,
3019 						num_queues, queue_ids);
3020 
3021 			if (q_idx == QUEUE_NOT_FOUND)
3022 				continue;
3023 
3024 			/* mask queue as error on suspend fail */
3025 			if (r)
3026 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3027 			else if (exception_clear_mask)
3028 				q->properties.exception_status &=
3029 							~exception_clear_mask;
3030 		}
3031 
3032 		dqm_unlock(dqm);
3033 		mutex_unlock(&p->event_mutex);
3034 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3035 	}
3036 
3037 	if (total_suspended) {
3038 		struct copy_context_work_handler_workarea copy_context_worker;
3039 
3040 		INIT_WORK_ONSTACK(
3041 				&copy_context_worker.copy_context_work,
3042 				copy_context_work_handler);
3043 
3044 		copy_context_worker.p = p;
3045 
3046 		schedule_work(&copy_context_worker.copy_context_work);
3047 
3048 
3049 		flush_work(&copy_context_worker.copy_context_work);
3050 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3051 	}
3052 
3053 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3054 			num_queues * sizeof(uint32_t)))
3055 		pr_err("copy_to_user failed on queue suspend\n");
3056 
3057 	kfree(queue_ids);
3058 
3059 	return total_suspended;
3060 }
3061 
set_queue_type_for_user(struct queue_properties * q_props)3062 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3063 {
3064 	switch (q_props->type) {
3065 	case KFD_QUEUE_TYPE_COMPUTE:
3066 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3067 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3068 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3069 	case KFD_QUEUE_TYPE_SDMA:
3070 		return KFD_IOC_QUEUE_TYPE_SDMA;
3071 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3072 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3073 	default:
3074 		WARN_ONCE(true, "queue type not recognized!");
3075 		return 0xffffffff;
3076 	};
3077 }
3078 
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3079 void set_queue_snapshot_entry(struct queue *q,
3080 			      uint64_t exception_clear_mask,
3081 			      struct kfd_queue_snapshot_entry *qss_entry)
3082 {
3083 	qss_entry->ring_base_address = q->properties.queue_address;
3084 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3085 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3086 	qss_entry->ctx_save_restore_address =
3087 				q->properties.ctx_save_restore_area_address;
3088 	qss_entry->ctx_save_restore_area_size =
3089 				q->properties.ctx_save_restore_area_size;
3090 	qss_entry->exception_status = q->properties.exception_status;
3091 	qss_entry->queue_id = q->properties.queue_id;
3092 	qss_entry->gpu_id = q->device->id;
3093 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3094 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3095 	q->properties.exception_status &= ~exception_clear_mask;
3096 }
3097 
debug_lock_and_unmap(struct device_queue_manager * dqm)3098 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3099 {
3100 	int r;
3101 
3102 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3103 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3104 		return -EINVAL;
3105 	}
3106 
3107 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3108 		return 0;
3109 
3110 	dqm_lock(dqm);
3111 
3112 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3113 	if (r)
3114 		dqm_unlock(dqm);
3115 
3116 	return r;
3117 }
3118 
debug_map_and_unlock(struct device_queue_manager * dqm)3119 int debug_map_and_unlock(struct device_queue_manager *dqm)
3120 {
3121 	int r;
3122 
3123 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3124 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3125 		return -EINVAL;
3126 	}
3127 
3128 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3129 		return 0;
3130 
3131 	r = map_queues_cpsch(dqm);
3132 
3133 	dqm_unlock(dqm);
3134 
3135 	return r;
3136 }
3137 
debug_refresh_runlist(struct device_queue_manager * dqm)3138 int debug_refresh_runlist(struct device_queue_manager *dqm)
3139 {
3140 	int r = debug_lock_and_unmap(dqm);
3141 
3142 	if (r)
3143 		return r;
3144 
3145 	return debug_map_and_unlock(dqm);
3146 }
3147 
3148 #if defined(CONFIG_DEBUG_FS)
3149 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3150 static void seq_reg_dump(struct seq_file *m,
3151 			 uint32_t (*dump)[2], uint32_t n_regs)
3152 {
3153 	uint32_t i, count;
3154 
3155 	for (i = 0, count = 0; i < n_regs; i++) {
3156 		if (count == 0 ||
3157 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3158 			seq_printf(m, "%s    %08x: %08x",
3159 				   i ? "\n" : "",
3160 				   dump[i][0], dump[i][1]);
3161 			count = 7;
3162 		} else {
3163 			seq_printf(m, " %08x", dump[i][1]);
3164 			count--;
3165 		}
3166 	}
3167 
3168 	seq_puts(m, "\n");
3169 }
3170 
dqm_debugfs_hqds(struct seq_file * m,void * data)3171 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3172 {
3173 	struct device_queue_manager *dqm = data;
3174 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3175 	uint32_t (*dump)[2], n_regs;
3176 	int pipe, queue;
3177 	int r = 0, xcc_id;
3178 	uint32_t sdma_engine_start;
3179 
3180 	if (!dqm->sched_running) {
3181 		seq_puts(m, " Device is stopped\n");
3182 		return 0;
3183 	}
3184 
3185 	for_each_inst(xcc_id, xcc_mask) {
3186 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3187 						KFD_CIK_HIQ_PIPE,
3188 						KFD_CIK_HIQ_QUEUE, &dump,
3189 						&n_regs, xcc_id);
3190 		if (!r) {
3191 			seq_printf(
3192 				m,
3193 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3194 				xcc_id,
3195 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3196 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3197 				KFD_CIK_HIQ_QUEUE);
3198 			seq_reg_dump(m, dump, n_regs);
3199 
3200 			kfree(dump);
3201 		}
3202 
3203 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3204 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3205 
3206 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3207 				if (!test_bit(pipe_offset + queue,
3208 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3209 					continue;
3210 
3211 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3212 								pipe, queue,
3213 								&dump, &n_regs,
3214 								xcc_id);
3215 				if (r)
3216 					break;
3217 
3218 				seq_printf(m,
3219 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3220 					   xcc_id, pipe, queue);
3221 				seq_reg_dump(m, dump, n_regs);
3222 
3223 				kfree(dump);
3224 			}
3225 		}
3226 	}
3227 
3228 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3229 	for (pipe = sdma_engine_start;
3230 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3231 	     pipe++) {
3232 		for (queue = 0;
3233 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3234 		     queue++) {
3235 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3236 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3237 			if (r)
3238 				break;
3239 
3240 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3241 				  pipe, queue);
3242 			seq_reg_dump(m, dump, n_regs);
3243 
3244 			kfree(dump);
3245 		}
3246 	}
3247 
3248 	return r;
3249 }
3250 
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3251 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3252 {
3253 	int r = 0;
3254 
3255 	dqm_lock(dqm);
3256 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3257 	if (r) {
3258 		dqm_unlock(dqm);
3259 		return r;
3260 	}
3261 	dqm->active_runlist = true;
3262 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3263 				0, USE_DEFAULT_GRACE_PERIOD);
3264 	dqm_unlock(dqm);
3265 
3266 	return r;
3267 }
3268 
3269 #endif
3270