1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41 };
42
43 enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54 };
55
56 struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59 };
60
61 #ifdef CONFIG_MEMCG
62
63 #define MEM_CGROUP_ID_SHIFT 16
64
65 struct mem_cgroup_id {
66 int id;
67 refcount_t ref;
68 };
69
70 /*
71 * Per memcg event counter is incremented at every pagein/pageout. With THP,
72 * it will be incremented by the number of pages. This counter is used
73 * to trigger some periodic events. This is straightforward and better
74 * than using jiffies etc. to handle periodic memcg event.
75 */
76 enum mem_cgroup_events_target {
77 MEM_CGROUP_TARGET_THRESH,
78 MEM_CGROUP_TARGET_SOFTLIMIT,
79 MEM_CGROUP_NTARGETS,
80 };
81
82 struct memcg_vmstats_percpu;
83 struct memcg_vmstats;
84
85 struct mem_cgroup_reclaim_iter {
86 struct mem_cgroup *position;
87 /* scan generation, increased every round-trip */
88 unsigned int generation;
89 };
90
91 /*
92 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
93 * shrinkers, which have elements charged to this memcg.
94 */
95 struct shrinker_info {
96 struct rcu_head rcu;
97 atomic_long_t *nr_deferred;
98 unsigned long *map;
99 int map_nr_max;
100 };
101
102 struct lruvec_stats_percpu {
103 /* Local (CPU and cgroup) state */
104 long state[NR_VM_NODE_STAT_ITEMS];
105
106 /* Delta calculation for lockless upward propagation */
107 long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109
110 struct lruvec_stats {
111 /* Aggregated (CPU and subtree) state */
112 long state[NR_VM_NODE_STAT_ITEMS];
113
114 /* Non-hierarchical (CPU aggregated) state */
115 long state_local[NR_VM_NODE_STAT_ITEMS];
116
117 /* Pending child counts during tree propagation */
118 long state_pending[NR_VM_NODE_STAT_ITEMS];
119 };
120
121 /*
122 * per-node information in memory controller.
123 */
124 struct mem_cgroup_per_node {
125 struct lruvec lruvec;
126
127 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
128 struct lruvec_stats lruvec_stats;
129
130 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
131
132 struct mem_cgroup_reclaim_iter iter;
133
134 struct shrinker_info __rcu *shrinker_info;
135
136 struct rb_node tree_node; /* RB tree node */
137 unsigned long usage_in_excess;/* Set to the value by which */
138 /* the soft limit is exceeded*/
139 bool on_tree;
140 struct mem_cgroup *memcg; /* Back pointer, we cannot */
141 /* use container_of */
142 };
143
144 struct mem_cgroup_threshold {
145 struct eventfd_ctx *eventfd;
146 unsigned long threshold;
147 };
148
149 /* For threshold */
150 struct mem_cgroup_threshold_ary {
151 /* An array index points to threshold just below or equal to usage. */
152 int current_threshold;
153 /* Size of entries[] */
154 unsigned int size;
155 /* Array of thresholds */
156 struct mem_cgroup_threshold entries[];
157 };
158
159 struct mem_cgroup_thresholds {
160 /* Primary thresholds array */
161 struct mem_cgroup_threshold_ary *primary;
162 /*
163 * Spare threshold array.
164 * This is needed to make mem_cgroup_unregister_event() "never fail".
165 * It must be able to store at least primary->size - 1 entries.
166 */
167 struct mem_cgroup_threshold_ary *spare;
168 };
169
170 /*
171 * Remember four most recent foreign writebacks with dirty pages in this
172 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
173 * one in a given round, we're likely to catch it later if it keeps
174 * foreign-dirtying, so a fairly low count should be enough.
175 *
176 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
177 */
178 #define MEMCG_CGWB_FRN_CNT 4
179
180 struct memcg_cgwb_frn {
181 u64 bdi_id; /* bdi->id of the foreign inode */
182 int memcg_id; /* memcg->css.id of foreign inode */
183 u64 at; /* jiffies_64 at the time of dirtying */
184 struct wb_completion done; /* tracks in-flight foreign writebacks */
185 };
186
187 /*
188 * Bucket for arbitrarily byte-sized objects charged to a memory
189 * cgroup. The bucket can be reparented in one piece when the cgroup
190 * is destroyed, without having to round up the individual references
191 * of all live memory objects in the wild.
192 */
193 struct obj_cgroup {
194 struct percpu_ref refcnt;
195 struct mem_cgroup *memcg;
196 atomic_t nr_charged_bytes;
197 union {
198 struct list_head list; /* protected by objcg_lock */
199 struct rcu_head rcu;
200 };
201 };
202
203 /*
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
208 */
209 struct mem_cgroup {
210 struct cgroup_subsys_state css;
211
212 /* Private memcg ID. Used to ID objects that outlive the cgroup */
213 struct mem_cgroup_id id;
214
215 /* Accounted resources */
216 struct page_counter memory; /* Both v1 & v2 */
217
218 union {
219 struct page_counter swap; /* v2 only */
220 struct page_counter memsw; /* v1 only */
221 };
222
223 /* Legacy consumer-oriented counters */
224 struct page_counter kmem; /* v1 only */
225 struct page_counter tcpmem; /* v1 only */
226
227 /* Range enforcement for interrupt charges */
228 struct work_struct high_work;
229
230 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
231 unsigned long zswap_max;
232 #endif
233
234 unsigned long soft_limit;
235
236 /* vmpressure notifications */
237 struct vmpressure vmpressure;
238
239 /*
240 * Should the OOM killer kill all belonging tasks, had it kill one?
241 */
242 bool oom_group;
243
244 /* protected by memcg_oom_lock */
245 bool oom_lock;
246 int under_oom;
247
248 int swappiness;
249 /* OOM-Killer disable */
250 int oom_kill_disable;
251
252 /* memory.events and memory.events.local */
253 struct cgroup_file events_file;
254 struct cgroup_file events_local_file;
255
256 /* handle for "memory.swap.events" */
257 struct cgroup_file swap_events_file;
258
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock;
261
262 /* thresholds for memory usage. RCU-protected */
263 struct mem_cgroup_thresholds thresholds;
264
265 /* thresholds for mem+swap usage. RCU-protected */
266 struct mem_cgroup_thresholds memsw_thresholds;
267
268 /* For oom notifier event fd */
269 struct list_head oom_notify;
270
271 /*
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
274 */
275 unsigned long move_charge_at_immigrate;
276 /* taken only while moving_account > 0 */
277 spinlock_t move_lock;
278 unsigned long move_lock_flags;
279
280 CACHELINE_PADDING(_pad1_);
281
282 /* memory.stat */
283 struct memcg_vmstats *vmstats;
284
285 /* memory.events */
286 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
287 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
288
289 /*
290 * Hint of reclaim pressure for socket memroy management. Note
291 * that this indicator should NOT be used in legacy cgroup mode
292 * where socket memory is accounted/charged separately.
293 */
294 unsigned long socket_pressure;
295
296 /* Legacy tcp memory accounting */
297 bool tcpmem_active;
298 int tcpmem_pressure;
299
300 #ifdef CONFIG_MEMCG_KMEM
301 int kmemcg_id;
302 struct obj_cgroup __rcu *objcg;
303 /* list of inherited objcgs, protected by objcg_lock */
304 struct list_head objcg_list;
305 #endif
306
307 CACHELINE_PADDING(_pad2_);
308
309 /*
310 * set > 0 if pages under this cgroup are moving to other cgroup.
311 */
312 atomic_t moving_account;
313 struct task_struct *move_lock_task;
314
315 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
316
317 #ifdef CONFIG_CGROUP_WRITEBACK
318 struct list_head cgwb_list;
319 struct wb_domain cgwb_domain;
320 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
321 #endif
322
323 /* List of events which userspace want to receive */
324 struct list_head event_list;
325 spinlock_t event_list_lock;
326
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 struct deferred_split deferred_split_queue;
329 #endif
330
331 #ifdef CONFIG_LRU_GEN
332 /* per-memcg mm_struct list */
333 struct lru_gen_mm_list mm_list;
334 #endif
335
336 struct mem_cgroup_per_node *nodeinfo[];
337 };
338
339 /*
340 * size of first charge trial.
341 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
342 * workload.
343 */
344 #define MEMCG_CHARGE_BATCH 64U
345
346 extern struct mem_cgroup *root_mem_cgroup;
347
348 enum page_memcg_data_flags {
349 /* page->memcg_data is a pointer to an objcgs vector */
350 MEMCG_DATA_OBJCGS = (1UL << 0),
351 /* page has been accounted as a non-slab kernel page */
352 MEMCG_DATA_KMEM = (1UL << 1),
353 /* the next bit after the last actual flag */
354 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
355 };
356
357 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
358
359 static inline bool folio_memcg_kmem(struct folio *folio);
360
361 /*
362 * After the initialization objcg->memcg is always pointing at
363 * a valid memcg, but can be atomically swapped to the parent memcg.
364 *
365 * The caller must ensure that the returned memcg won't be released:
366 * e.g. acquire the rcu_read_lock or css_set_lock.
367 */
obj_cgroup_memcg(struct obj_cgroup * objcg)368 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
369 {
370 return READ_ONCE(objcg->memcg);
371 }
372
373 /*
374 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
375 * @folio: Pointer to the folio.
376 *
377 * Returns a pointer to the memory cgroup associated with the folio,
378 * or NULL. This function assumes that the folio is known to have a
379 * proper memory cgroup pointer. It's not safe to call this function
380 * against some type of folios, e.g. slab folios or ex-slab folios or
381 * kmem folios.
382 */
__folio_memcg(struct folio * folio)383 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
384 {
385 unsigned long memcg_data = folio->memcg_data;
386
387 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
388 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
389 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
390
391 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
392 }
393
394 /*
395 * __folio_objcg - get the object cgroup associated with a kmem folio.
396 * @folio: Pointer to the folio.
397 *
398 * Returns a pointer to the object cgroup associated with the folio,
399 * or NULL. This function assumes that the folio is known to have a
400 * proper object cgroup pointer. It's not safe to call this function
401 * against some type of folios, e.g. slab folios or ex-slab folios or
402 * LRU folios.
403 */
__folio_objcg(struct folio * folio)404 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
405 {
406 unsigned long memcg_data = folio->memcg_data;
407
408 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
409 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
410 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
411
412 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
413 }
414
415 /*
416 * folio_memcg - Get the memory cgroup associated with a folio.
417 * @folio: Pointer to the folio.
418 *
419 * Returns a pointer to the memory cgroup associated with the folio,
420 * or NULL. This function assumes that the folio is known to have a
421 * proper memory cgroup pointer. It's not safe to call this function
422 * against some type of folios, e.g. slab folios or ex-slab folios.
423 *
424 * For a non-kmem folio any of the following ensures folio and memcg binding
425 * stability:
426 *
427 * - the folio lock
428 * - LRU isolation
429 * - folio_memcg_lock()
430 * - exclusive reference
431 * - mem_cgroup_trylock_pages()
432 *
433 * For a kmem folio a caller should hold an rcu read lock to protect memcg
434 * associated with a kmem folio from being released.
435 */
folio_memcg(struct folio * folio)436 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
437 {
438 if (folio_memcg_kmem(folio))
439 return obj_cgroup_memcg(__folio_objcg(folio));
440 return __folio_memcg(folio);
441 }
442
page_memcg(struct page * page)443 static inline struct mem_cgroup *page_memcg(struct page *page)
444 {
445 return folio_memcg(page_folio(page));
446 }
447
448 /**
449 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
450 * @folio: Pointer to the folio.
451 *
452 * This function assumes that the folio is known to have a
453 * proper memory cgroup pointer. It's not safe to call this function
454 * against some type of folios, e.g. slab folios or ex-slab folios.
455 *
456 * Return: A pointer to the memory cgroup associated with the folio,
457 * or NULL.
458 */
folio_memcg_rcu(struct folio * folio)459 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
460 {
461 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
462
463 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
464 WARN_ON_ONCE(!rcu_read_lock_held());
465
466 if (memcg_data & MEMCG_DATA_KMEM) {
467 struct obj_cgroup *objcg;
468
469 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
470 return obj_cgroup_memcg(objcg);
471 }
472
473 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
474 }
475
476 /*
477 * folio_memcg_check - Get the memory cgroup associated with a folio.
478 * @folio: Pointer to the folio.
479 *
480 * Returns a pointer to the memory cgroup associated with the folio,
481 * or NULL. This function unlike folio_memcg() can take any folio
482 * as an argument. It has to be used in cases when it's not known if a folio
483 * has an associated memory cgroup pointer or an object cgroups vector or
484 * an object cgroup.
485 *
486 * For a non-kmem folio any of the following ensures folio and memcg binding
487 * stability:
488 *
489 * - the folio lock
490 * - LRU isolation
491 * - lock_folio_memcg()
492 * - exclusive reference
493 * - mem_cgroup_trylock_pages()
494 *
495 * For a kmem folio a caller should hold an rcu read lock to protect memcg
496 * associated with a kmem folio from being released.
497 */
folio_memcg_check(struct folio * folio)498 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
499 {
500 /*
501 * Because folio->memcg_data might be changed asynchronously
502 * for slabs, READ_ONCE() should be used here.
503 */
504 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
505
506 if (memcg_data & MEMCG_DATA_OBJCGS)
507 return NULL;
508
509 if (memcg_data & MEMCG_DATA_KMEM) {
510 struct obj_cgroup *objcg;
511
512 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
513 return obj_cgroup_memcg(objcg);
514 }
515
516 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
517 }
518
page_memcg_check(struct page * page)519 static inline struct mem_cgroup *page_memcg_check(struct page *page)
520 {
521 if (PageTail(page))
522 return NULL;
523 return folio_memcg_check((struct folio *)page);
524 }
525
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)526 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
527 {
528 struct mem_cgroup *memcg;
529
530 rcu_read_lock();
531 retry:
532 memcg = obj_cgroup_memcg(objcg);
533 if (unlikely(!css_tryget(&memcg->css)))
534 goto retry;
535 rcu_read_unlock();
536
537 return memcg;
538 }
539
540 #ifdef CONFIG_MEMCG_KMEM
541 /*
542 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
543 * @folio: Pointer to the folio.
544 *
545 * Checks if the folio has MemcgKmem flag set. The caller must ensure
546 * that the folio has an associated memory cgroup. It's not safe to call
547 * this function against some types of folios, e.g. slab folios.
548 */
folio_memcg_kmem(struct folio * folio)549 static inline bool folio_memcg_kmem(struct folio *folio)
550 {
551 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
552 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
553 return folio->memcg_data & MEMCG_DATA_KMEM;
554 }
555
556
557 #else
folio_memcg_kmem(struct folio * folio)558 static inline bool folio_memcg_kmem(struct folio *folio)
559 {
560 return false;
561 }
562
563 #endif
564
PageMemcgKmem(struct page * page)565 static inline bool PageMemcgKmem(struct page *page)
566 {
567 return folio_memcg_kmem(page_folio(page));
568 }
569
mem_cgroup_is_root(struct mem_cgroup * memcg)570 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
571 {
572 return (memcg == root_mem_cgroup);
573 }
574
mem_cgroup_disabled(void)575 static inline bool mem_cgroup_disabled(void)
576 {
577 return !cgroup_subsys_enabled(memory_cgrp_subsys);
578 }
579
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)580 static inline void mem_cgroup_protection(struct mem_cgroup *root,
581 struct mem_cgroup *memcg,
582 unsigned long *min,
583 unsigned long *low)
584 {
585 *min = *low = 0;
586
587 if (mem_cgroup_disabled())
588 return;
589
590 /*
591 * There is no reclaim protection applied to a targeted reclaim.
592 * We are special casing this specific case here because
593 * mem_cgroup_calculate_protection is not robust enough to keep
594 * the protection invariant for calculated effective values for
595 * parallel reclaimers with different reclaim target. This is
596 * especially a problem for tail memcgs (as they have pages on LRU)
597 * which would want to have effective values 0 for targeted reclaim
598 * but a different value for external reclaim.
599 *
600 * Example
601 * Let's have global and A's reclaim in parallel:
602 * |
603 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
604 * |\
605 * | C (low = 1G, usage = 2.5G)
606 * B (low = 1G, usage = 0.5G)
607 *
608 * For the global reclaim
609 * A.elow = A.low
610 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
611 * C.elow = min(C.usage, C.low)
612 *
613 * With the effective values resetting we have A reclaim
614 * A.elow = 0
615 * B.elow = B.low
616 * C.elow = C.low
617 *
618 * If the global reclaim races with A's reclaim then
619 * B.elow = C.elow = 0 because children_low_usage > A.elow)
620 * is possible and reclaiming B would be violating the protection.
621 *
622 */
623 if (root == memcg)
624 return;
625
626 *min = READ_ONCE(memcg->memory.emin);
627 *low = READ_ONCE(memcg->memory.elow);
628 }
629
630 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
631 struct mem_cgroup *memcg);
632
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)633 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
634 struct mem_cgroup *memcg)
635 {
636 /*
637 * The root memcg doesn't account charges, and doesn't support
638 * protection. The target memcg's protection is ignored, see
639 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
640 */
641 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
642 memcg == target;
643 }
644
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)645 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
646 struct mem_cgroup *memcg)
647 {
648 if (mem_cgroup_unprotected(target, memcg))
649 return false;
650
651 return READ_ONCE(memcg->memory.elow) >=
652 page_counter_read(&memcg->memory);
653 }
654
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)655 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
656 struct mem_cgroup *memcg)
657 {
658 if (mem_cgroup_unprotected(target, memcg))
659 return false;
660
661 return READ_ONCE(memcg->memory.emin) >=
662 page_counter_read(&memcg->memory);
663 }
664
665 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
666
667 /**
668 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
669 * @folio: Folio to charge.
670 * @mm: mm context of the allocating task.
671 * @gfp: Reclaim mode.
672 *
673 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
674 * pages according to @gfp if necessary. If @mm is NULL, try to
675 * charge to the active memcg.
676 *
677 * Do not use this for folios allocated for swapin.
678 *
679 * Return: 0 on success. Otherwise, an error code is returned.
680 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)681 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
682 gfp_t gfp)
683 {
684 if (mem_cgroup_disabled())
685 return 0;
686 return __mem_cgroup_charge(folio, mm, gfp);
687 }
688
689 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
690 gfp_t gfp, swp_entry_t entry);
691 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
692
693 void __mem_cgroup_uncharge(struct folio *folio);
694
695 /**
696 * mem_cgroup_uncharge - Uncharge a folio.
697 * @folio: Folio to uncharge.
698 *
699 * Uncharge a folio previously charged with mem_cgroup_charge().
700 */
mem_cgroup_uncharge(struct folio * folio)701 static inline void mem_cgroup_uncharge(struct folio *folio)
702 {
703 if (mem_cgroup_disabled())
704 return;
705 __mem_cgroup_uncharge(folio);
706 }
707
708 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)709 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
710 {
711 if (mem_cgroup_disabled())
712 return;
713 __mem_cgroup_uncharge_list(page_list);
714 }
715
716 void mem_cgroup_migrate(struct folio *old, struct folio *new);
717
718 /**
719 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
720 * @memcg: memcg of the wanted lruvec
721 * @pgdat: pglist_data
722 *
723 * Returns the lru list vector holding pages for a given @memcg &
724 * @pgdat combination. This can be the node lruvec, if the memory
725 * controller is disabled.
726 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)727 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
728 struct pglist_data *pgdat)
729 {
730 struct mem_cgroup_per_node *mz;
731 struct lruvec *lruvec;
732
733 if (mem_cgroup_disabled()) {
734 lruvec = &pgdat->__lruvec;
735 goto out;
736 }
737
738 if (!memcg)
739 memcg = root_mem_cgroup;
740
741 mz = memcg->nodeinfo[pgdat->node_id];
742 lruvec = &mz->lruvec;
743 out:
744 /*
745 * Since a node can be onlined after the mem_cgroup was created,
746 * we have to be prepared to initialize lruvec->pgdat here;
747 * and if offlined then reonlined, we need to reinitialize it.
748 */
749 if (unlikely(lruvec->pgdat != pgdat))
750 lruvec->pgdat = pgdat;
751 return lruvec;
752 }
753
754 /**
755 * folio_lruvec - return lruvec for isolating/putting an LRU folio
756 * @folio: Pointer to the folio.
757 *
758 * This function relies on folio->mem_cgroup being stable.
759 */
folio_lruvec(struct folio * folio)760 static inline struct lruvec *folio_lruvec(struct folio *folio)
761 {
762 struct mem_cgroup *memcg = folio_memcg(folio);
763
764 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
765 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
766 }
767
768 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
769
770 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
771
772 struct lruvec *folio_lruvec_lock(struct folio *folio);
773 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
774 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
775 unsigned long *flags);
776
777 #ifdef CONFIG_DEBUG_VM
778 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
779 #else
780 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)781 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
782 {
783 }
784 #endif
785
786 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)787 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
788 return css ? container_of(css, struct mem_cgroup, css) : NULL;
789 }
790
obj_cgroup_tryget(struct obj_cgroup * objcg)791 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
792 {
793 return percpu_ref_tryget(&objcg->refcnt);
794 }
795
obj_cgroup_get(struct obj_cgroup * objcg)796 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
797 {
798 percpu_ref_get(&objcg->refcnt);
799 }
800
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)801 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
802 unsigned long nr)
803 {
804 percpu_ref_get_many(&objcg->refcnt, nr);
805 }
806
obj_cgroup_put(struct obj_cgroup * objcg)807 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
808 {
809 percpu_ref_put(&objcg->refcnt);
810 }
811
mem_cgroup_tryget(struct mem_cgroup * memcg)812 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
813 {
814 return !memcg || css_tryget(&memcg->css);
815 }
816
mem_cgroup_put(struct mem_cgroup * memcg)817 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
818 {
819 if (memcg)
820 css_put(&memcg->css);
821 }
822
823 #define mem_cgroup_from_counter(counter, member) \
824 container_of(counter, struct mem_cgroup, member)
825
826 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
827 struct mem_cgroup *,
828 struct mem_cgroup_reclaim_cookie *);
829 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
830 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
831 int (*)(struct task_struct *, void *), void *arg);
832
mem_cgroup_id(struct mem_cgroup * memcg)833 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
834 {
835 if (mem_cgroup_disabled())
836 return 0;
837
838 return memcg->id.id;
839 }
840 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
841
842 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)843 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
844 {
845 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
846 }
847
848 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
849 #endif
850
mem_cgroup_from_seq(struct seq_file * m)851 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
852 {
853 return mem_cgroup_from_css(seq_css(m));
854 }
855
lruvec_memcg(struct lruvec * lruvec)856 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
857 {
858 struct mem_cgroup_per_node *mz;
859
860 if (mem_cgroup_disabled())
861 return NULL;
862
863 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
864 return mz->memcg;
865 }
866
867 /**
868 * parent_mem_cgroup - find the accounting parent of a memcg
869 * @memcg: memcg whose parent to find
870 *
871 * Returns the parent memcg, or NULL if this is the root.
872 */
parent_mem_cgroup(struct mem_cgroup * memcg)873 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
874 {
875 return mem_cgroup_from_css(memcg->css.parent);
876 }
877
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)878 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
879 struct mem_cgroup *root)
880 {
881 if (root == memcg)
882 return true;
883 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
884 }
885
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)886 static inline bool mm_match_cgroup(struct mm_struct *mm,
887 struct mem_cgroup *memcg)
888 {
889 struct mem_cgroup *task_memcg;
890 bool match = false;
891
892 rcu_read_lock();
893 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
894 if (task_memcg)
895 match = mem_cgroup_is_descendant(task_memcg, memcg);
896 rcu_read_unlock();
897 return match;
898 }
899
900 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
901 ino_t page_cgroup_ino(struct page *page);
902
mem_cgroup_online(struct mem_cgroup * memcg)903 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
904 {
905 if (mem_cgroup_disabled())
906 return true;
907 return !!(memcg->css.flags & CSS_ONLINE);
908 }
909
910 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
911 int zid, int nr_pages);
912
913 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)914 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
915 enum lru_list lru, int zone_idx)
916 {
917 struct mem_cgroup_per_node *mz;
918
919 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
920 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
921 }
922
923 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
924
925 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
926
927 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
928
929 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
930 struct task_struct *p);
931
932 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
933
mem_cgroup_enter_user_fault(void)934 static inline void mem_cgroup_enter_user_fault(void)
935 {
936 WARN_ON(current->in_user_fault);
937 current->in_user_fault = 1;
938 }
939
mem_cgroup_exit_user_fault(void)940 static inline void mem_cgroup_exit_user_fault(void)
941 {
942 WARN_ON(!current->in_user_fault);
943 current->in_user_fault = 0;
944 }
945
task_in_memcg_oom(struct task_struct * p)946 static inline bool task_in_memcg_oom(struct task_struct *p)
947 {
948 return p->memcg_in_oom;
949 }
950
951 bool mem_cgroup_oom_synchronize(bool wait);
952 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
953 struct mem_cgroup *oom_domain);
954 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
955
956 void folio_memcg_lock(struct folio *folio);
957 void folio_memcg_unlock(struct folio *folio);
958
959 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
960
961 /* try to stablize folio_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)962 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
963 {
964 rcu_read_lock();
965
966 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
967 return true;
968
969 rcu_read_unlock();
970 return false;
971 }
972
mem_cgroup_unlock_pages(void)973 static inline void mem_cgroup_unlock_pages(void)
974 {
975 rcu_read_unlock();
976 }
977
978 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)979 static inline void mod_memcg_state(struct mem_cgroup *memcg,
980 int idx, int val)
981 {
982 unsigned long flags;
983
984 local_irq_save(flags);
985 __mod_memcg_state(memcg, idx, val);
986 local_irq_restore(flags);
987 }
988
mod_memcg_page_state(struct page * page,int idx,int val)989 static inline void mod_memcg_page_state(struct page *page,
990 int idx, int val)
991 {
992 struct mem_cgroup *memcg;
993
994 if (mem_cgroup_disabled())
995 return;
996
997 rcu_read_lock();
998 memcg = page_memcg(page);
999 if (memcg)
1000 mod_memcg_state(memcg, idx, val);
1001 rcu_read_unlock();
1002 }
1003
1004 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1005
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1006 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1007 enum node_stat_item idx)
1008 {
1009 struct mem_cgroup_per_node *pn;
1010 long x;
1011
1012 if (mem_cgroup_disabled())
1013 return node_page_state(lruvec_pgdat(lruvec), idx);
1014
1015 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1016 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1017 #ifdef CONFIG_SMP
1018 if (x < 0)
1019 x = 0;
1020 #endif
1021 return x;
1022 }
1023
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1024 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1025 enum node_stat_item idx)
1026 {
1027 struct mem_cgroup_per_node *pn;
1028 long x = 0;
1029
1030 if (mem_cgroup_disabled())
1031 return node_page_state(lruvec_pgdat(lruvec), idx);
1032
1033 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034 x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1035 #ifdef CONFIG_SMP
1036 if (x < 0)
1037 x = 0;
1038 #endif
1039 return x;
1040 }
1041
1042 void mem_cgroup_flush_stats(void);
1043 void mem_cgroup_flush_stats_ratelimited(void);
1044
1045 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1046 int val);
1047 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1048
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1049 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1050 int val)
1051 {
1052 unsigned long flags;
1053
1054 local_irq_save(flags);
1055 __mod_lruvec_kmem_state(p, idx, val);
1056 local_irq_restore(flags);
1057 }
1058
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1059 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1060 enum node_stat_item idx, int val)
1061 {
1062 unsigned long flags;
1063
1064 local_irq_save(flags);
1065 __mod_memcg_lruvec_state(lruvec, idx, val);
1066 local_irq_restore(flags);
1067 }
1068
1069 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1070 unsigned long count);
1071
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1072 static inline void count_memcg_events(struct mem_cgroup *memcg,
1073 enum vm_event_item idx,
1074 unsigned long count)
1075 {
1076 unsigned long flags;
1077
1078 local_irq_save(flags);
1079 __count_memcg_events(memcg, idx, count);
1080 local_irq_restore(flags);
1081 }
1082
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1083 static inline void count_memcg_folio_events(struct folio *folio,
1084 enum vm_event_item idx, unsigned long nr)
1085 {
1086 struct mem_cgroup *memcg = folio_memcg(folio);
1087
1088 if (memcg)
1089 count_memcg_events(memcg, idx, nr);
1090 }
1091
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1092 static inline void count_memcg_event_mm(struct mm_struct *mm,
1093 enum vm_event_item idx)
1094 {
1095 struct mem_cgroup *memcg;
1096
1097 if (mem_cgroup_disabled())
1098 return;
1099
1100 rcu_read_lock();
1101 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1102 if (likely(memcg))
1103 count_memcg_events(memcg, idx, 1);
1104 rcu_read_unlock();
1105 }
1106
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1107 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1108 enum memcg_memory_event event)
1109 {
1110 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1111 event == MEMCG_SWAP_FAIL;
1112
1113 atomic_long_inc(&memcg->memory_events_local[event]);
1114 if (!swap_event)
1115 cgroup_file_notify(&memcg->events_local_file);
1116
1117 do {
1118 atomic_long_inc(&memcg->memory_events[event]);
1119 if (swap_event)
1120 cgroup_file_notify(&memcg->swap_events_file);
1121 else
1122 cgroup_file_notify(&memcg->events_file);
1123
1124 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1125 break;
1126 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1127 break;
1128 } while ((memcg = parent_mem_cgroup(memcg)) &&
1129 !mem_cgroup_is_root(memcg));
1130 }
1131
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1132 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1133 enum memcg_memory_event event)
1134 {
1135 struct mem_cgroup *memcg;
1136
1137 if (mem_cgroup_disabled())
1138 return;
1139
1140 rcu_read_lock();
1141 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1142 if (likely(memcg))
1143 memcg_memory_event(memcg, event);
1144 rcu_read_unlock();
1145 }
1146
1147 void split_page_memcg(struct page *head, unsigned int nr);
1148
1149 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1150 gfp_t gfp_mask,
1151 unsigned long *total_scanned);
1152
1153 #else /* CONFIG_MEMCG */
1154
1155 #define MEM_CGROUP_ID_SHIFT 0
1156
folio_memcg(struct folio * folio)1157 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1158 {
1159 return NULL;
1160 }
1161
page_memcg(struct page * page)1162 static inline struct mem_cgroup *page_memcg(struct page *page)
1163 {
1164 return NULL;
1165 }
1166
folio_memcg_rcu(struct folio * folio)1167 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1168 {
1169 WARN_ON_ONCE(!rcu_read_lock_held());
1170 return NULL;
1171 }
1172
folio_memcg_check(struct folio * folio)1173 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1174 {
1175 return NULL;
1176 }
1177
page_memcg_check(struct page * page)1178 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1179 {
1180 return NULL;
1181 }
1182
folio_memcg_kmem(struct folio * folio)1183 static inline bool folio_memcg_kmem(struct folio *folio)
1184 {
1185 return false;
1186 }
1187
PageMemcgKmem(struct page * page)1188 static inline bool PageMemcgKmem(struct page *page)
1189 {
1190 return false;
1191 }
1192
mem_cgroup_is_root(struct mem_cgroup * memcg)1193 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1194 {
1195 return true;
1196 }
1197
mem_cgroup_disabled(void)1198 static inline bool mem_cgroup_disabled(void)
1199 {
1200 return true;
1201 }
1202
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1203 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1204 enum memcg_memory_event event)
1205 {
1206 }
1207
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1208 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1209 enum memcg_memory_event event)
1210 {
1211 }
1212
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1213 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1214 struct mem_cgroup *memcg,
1215 unsigned long *min,
1216 unsigned long *low)
1217 {
1218 *min = *low = 0;
1219 }
1220
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1221 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1222 struct mem_cgroup *memcg)
1223 {
1224 }
1225
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1226 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1227 struct mem_cgroup *memcg)
1228 {
1229 return true;
1230 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1231 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1232 struct mem_cgroup *memcg)
1233 {
1234 return false;
1235 }
1236
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1237 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1238 struct mem_cgroup *memcg)
1239 {
1240 return false;
1241 }
1242
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1243 static inline int mem_cgroup_charge(struct folio *folio,
1244 struct mm_struct *mm, gfp_t gfp)
1245 {
1246 return 0;
1247 }
1248
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1249 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1250 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1251 {
1252 return 0;
1253 }
1254
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1255 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1256 {
1257 }
1258
mem_cgroup_uncharge(struct folio * folio)1259 static inline void mem_cgroup_uncharge(struct folio *folio)
1260 {
1261 }
1262
mem_cgroup_uncharge_list(struct list_head * page_list)1263 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1264 {
1265 }
1266
mem_cgroup_migrate(struct folio * old,struct folio * new)1267 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1268 {
1269 }
1270
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1271 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1272 struct pglist_data *pgdat)
1273 {
1274 return &pgdat->__lruvec;
1275 }
1276
folio_lruvec(struct folio * folio)1277 static inline struct lruvec *folio_lruvec(struct folio *folio)
1278 {
1279 struct pglist_data *pgdat = folio_pgdat(folio);
1280 return &pgdat->__lruvec;
1281 }
1282
1283 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1284 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1285 {
1286 }
1287
parent_mem_cgroup(struct mem_cgroup * memcg)1288 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1289 {
1290 return NULL;
1291 }
1292
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1293 static inline bool mm_match_cgroup(struct mm_struct *mm,
1294 struct mem_cgroup *memcg)
1295 {
1296 return true;
1297 }
1298
get_mem_cgroup_from_mm(struct mm_struct * mm)1299 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1300 {
1301 return NULL;
1302 }
1303
1304 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1305 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1306 {
1307 return NULL;
1308 }
1309
obj_cgroup_put(struct obj_cgroup * objcg)1310 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1311 {
1312 }
1313
mem_cgroup_tryget(struct mem_cgroup * memcg)1314 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1315 {
1316 return true;
1317 }
1318
mem_cgroup_put(struct mem_cgroup * memcg)1319 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1320 {
1321 }
1322
folio_lruvec_lock(struct folio * folio)1323 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1324 {
1325 struct pglist_data *pgdat = folio_pgdat(folio);
1326
1327 spin_lock(&pgdat->__lruvec.lru_lock);
1328 return &pgdat->__lruvec;
1329 }
1330
folio_lruvec_lock_irq(struct folio * folio)1331 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1332 {
1333 struct pglist_data *pgdat = folio_pgdat(folio);
1334
1335 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1336 return &pgdat->__lruvec;
1337 }
1338
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1339 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1340 unsigned long *flagsp)
1341 {
1342 struct pglist_data *pgdat = folio_pgdat(folio);
1343
1344 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1345 return &pgdat->__lruvec;
1346 }
1347
1348 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1349 mem_cgroup_iter(struct mem_cgroup *root,
1350 struct mem_cgroup *prev,
1351 struct mem_cgroup_reclaim_cookie *reclaim)
1352 {
1353 return NULL;
1354 }
1355
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1356 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1357 struct mem_cgroup *prev)
1358 {
1359 }
1360
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1361 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1362 int (*fn)(struct task_struct *, void *), void *arg)
1363 {
1364 }
1365
mem_cgroup_id(struct mem_cgroup * memcg)1366 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1367 {
1368 return 0;
1369 }
1370
mem_cgroup_from_id(unsigned short id)1371 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1372 {
1373 WARN_ON_ONCE(id);
1374 /* XXX: This should always return root_mem_cgroup */
1375 return NULL;
1376 }
1377
1378 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1379 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1380 {
1381 return 0;
1382 }
1383
mem_cgroup_get_from_ino(unsigned long ino)1384 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1385 {
1386 return NULL;
1387 }
1388 #endif
1389
mem_cgroup_from_seq(struct seq_file * m)1390 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1391 {
1392 return NULL;
1393 }
1394
lruvec_memcg(struct lruvec * lruvec)1395 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1396 {
1397 return NULL;
1398 }
1399
mem_cgroup_online(struct mem_cgroup * memcg)1400 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1401 {
1402 return true;
1403 }
1404
1405 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1406 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1407 enum lru_list lru, int zone_idx)
1408 {
1409 return 0;
1410 }
1411
mem_cgroup_get_max(struct mem_cgroup * memcg)1412 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1413 {
1414 return 0;
1415 }
1416
mem_cgroup_size(struct mem_cgroup * memcg)1417 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1418 {
1419 return 0;
1420 }
1421
1422 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1423 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1424 {
1425 }
1426
1427 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1428 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1429 {
1430 }
1431
folio_memcg_lock(struct folio * folio)1432 static inline void folio_memcg_lock(struct folio *folio)
1433 {
1434 }
1435
folio_memcg_unlock(struct folio * folio)1436 static inline void folio_memcg_unlock(struct folio *folio)
1437 {
1438 }
1439
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1440 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1441 {
1442 /* to match folio_memcg_rcu() */
1443 rcu_read_lock();
1444 return true;
1445 }
1446
mem_cgroup_unlock_pages(void)1447 static inline void mem_cgroup_unlock_pages(void)
1448 {
1449 rcu_read_unlock();
1450 }
1451
mem_cgroup_handle_over_high(gfp_t gfp_mask)1452 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1453 {
1454 }
1455
mem_cgroup_enter_user_fault(void)1456 static inline void mem_cgroup_enter_user_fault(void)
1457 {
1458 }
1459
mem_cgroup_exit_user_fault(void)1460 static inline void mem_cgroup_exit_user_fault(void)
1461 {
1462 }
1463
task_in_memcg_oom(struct task_struct * p)1464 static inline bool task_in_memcg_oom(struct task_struct *p)
1465 {
1466 return false;
1467 }
1468
mem_cgroup_oom_synchronize(bool wait)1469 static inline bool mem_cgroup_oom_synchronize(bool wait)
1470 {
1471 return false;
1472 }
1473
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1474 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1475 struct task_struct *victim, struct mem_cgroup *oom_domain)
1476 {
1477 return NULL;
1478 }
1479
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1480 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1481 {
1482 }
1483
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1484 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1485 int idx,
1486 int nr)
1487 {
1488 }
1489
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1490 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1491 int idx,
1492 int nr)
1493 {
1494 }
1495
mod_memcg_page_state(struct page * page,int idx,int val)1496 static inline void mod_memcg_page_state(struct page *page,
1497 int idx, int val)
1498 {
1499 }
1500
memcg_page_state(struct mem_cgroup * memcg,int idx)1501 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1502 {
1503 return 0;
1504 }
1505
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1506 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1507 enum node_stat_item idx)
1508 {
1509 return node_page_state(lruvec_pgdat(lruvec), idx);
1510 }
1511
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1512 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1513 enum node_stat_item idx)
1514 {
1515 return node_page_state(lruvec_pgdat(lruvec), idx);
1516 }
1517
mem_cgroup_flush_stats(void)1518 static inline void mem_cgroup_flush_stats(void)
1519 {
1520 }
1521
mem_cgroup_flush_stats_ratelimited(void)1522 static inline void mem_cgroup_flush_stats_ratelimited(void)
1523 {
1524 }
1525
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1526 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1527 enum node_stat_item idx, int val)
1528 {
1529 }
1530
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1531 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1532 int val)
1533 {
1534 struct page *page = virt_to_head_page(p);
1535
1536 __mod_node_page_state(page_pgdat(page), idx, val);
1537 }
1538
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1539 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1540 int val)
1541 {
1542 struct page *page = virt_to_head_page(p);
1543
1544 mod_node_page_state(page_pgdat(page), idx, val);
1545 }
1546
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1547 static inline void count_memcg_events(struct mem_cgroup *memcg,
1548 enum vm_event_item idx,
1549 unsigned long count)
1550 {
1551 }
1552
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1553 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1554 enum vm_event_item idx,
1555 unsigned long count)
1556 {
1557 }
1558
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1559 static inline void count_memcg_folio_events(struct folio *folio,
1560 enum vm_event_item idx, unsigned long nr)
1561 {
1562 }
1563
1564 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1565 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1566 {
1567 }
1568
split_page_memcg(struct page * head,unsigned int nr)1569 static inline void split_page_memcg(struct page *head, unsigned int nr)
1570 {
1571 }
1572
1573 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1574 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1575 gfp_t gfp_mask,
1576 unsigned long *total_scanned)
1577 {
1578 return 0;
1579 }
1580 #endif /* CONFIG_MEMCG */
1581
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1582 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1583 {
1584 __mod_lruvec_kmem_state(p, idx, 1);
1585 }
1586
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1587 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1588 {
1589 __mod_lruvec_kmem_state(p, idx, -1);
1590 }
1591
parent_lruvec(struct lruvec * lruvec)1592 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1593 {
1594 struct mem_cgroup *memcg;
1595
1596 memcg = lruvec_memcg(lruvec);
1597 if (!memcg)
1598 return NULL;
1599 memcg = parent_mem_cgroup(memcg);
1600 if (!memcg)
1601 return NULL;
1602 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1603 }
1604
unlock_page_lruvec(struct lruvec * lruvec)1605 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1606 {
1607 spin_unlock(&lruvec->lru_lock);
1608 }
1609
unlock_page_lruvec_irq(struct lruvec * lruvec)1610 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1611 {
1612 spin_unlock_irq(&lruvec->lru_lock);
1613 }
1614
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1615 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1616 unsigned long flags)
1617 {
1618 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1619 }
1620
1621 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1622 static inline bool folio_matches_lruvec(struct folio *folio,
1623 struct lruvec *lruvec)
1624 {
1625 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1626 lruvec_memcg(lruvec) == folio_memcg(folio);
1627 }
1628
1629 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1630 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1631 struct lruvec *locked_lruvec)
1632 {
1633 if (locked_lruvec) {
1634 if (folio_matches_lruvec(folio, locked_lruvec))
1635 return locked_lruvec;
1636
1637 unlock_page_lruvec_irq(locked_lruvec);
1638 }
1639
1640 return folio_lruvec_lock_irq(folio);
1641 }
1642
1643 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1644 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1645 struct lruvec *locked_lruvec, unsigned long *flags)
1646 {
1647 if (locked_lruvec) {
1648 if (folio_matches_lruvec(folio, locked_lruvec))
1649 return locked_lruvec;
1650
1651 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1652 }
1653
1654 return folio_lruvec_lock_irqsave(folio, flags);
1655 }
1656
1657 #ifdef CONFIG_CGROUP_WRITEBACK
1658
1659 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1660 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1661 unsigned long *pheadroom, unsigned long *pdirty,
1662 unsigned long *pwriteback);
1663
1664 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1665 struct bdi_writeback *wb);
1666
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1667 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1668 struct bdi_writeback *wb)
1669 {
1670 struct mem_cgroup *memcg;
1671
1672 if (mem_cgroup_disabled())
1673 return;
1674
1675 memcg = folio_memcg(folio);
1676 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1677 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1678 }
1679
1680 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1681
1682 #else /* CONFIG_CGROUP_WRITEBACK */
1683
mem_cgroup_wb_domain(struct bdi_writeback * wb)1684 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1685 {
1686 return NULL;
1687 }
1688
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1689 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1690 unsigned long *pfilepages,
1691 unsigned long *pheadroom,
1692 unsigned long *pdirty,
1693 unsigned long *pwriteback)
1694 {
1695 }
1696
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1697 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1698 struct bdi_writeback *wb)
1699 {
1700 }
1701
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1702 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1703 {
1704 }
1705
1706 #endif /* CONFIG_CGROUP_WRITEBACK */
1707
1708 struct sock;
1709 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1710 gfp_t gfp_mask);
1711 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1712 #ifdef CONFIG_MEMCG
1713 extern struct static_key_false memcg_sockets_enabled_key;
1714 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1715 void mem_cgroup_sk_alloc(struct sock *sk);
1716 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1717 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1718 {
1719 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1720 return !!memcg->tcpmem_pressure;
1721 do {
1722 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1723 return true;
1724 } while ((memcg = parent_mem_cgroup(memcg)));
1725 return false;
1726 }
1727
1728 int alloc_shrinker_info(struct mem_cgroup *memcg);
1729 void free_shrinker_info(struct mem_cgroup *memcg);
1730 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1731 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1732 #else
1733 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1734 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1735 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1736 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1737 {
1738 return false;
1739 }
1740
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1741 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1742 int nid, int shrinker_id)
1743 {
1744 }
1745 #endif
1746
1747 #ifdef CONFIG_MEMCG_KMEM
1748 bool mem_cgroup_kmem_disabled(void);
1749 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1750 void __memcg_kmem_uncharge_page(struct page *page, int order);
1751
1752 struct obj_cgroup *get_obj_cgroup_from_current(void);
1753 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1754
1755 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1756 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1757
1758 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1759 static inline bool memcg_bpf_enabled(void)
1760 {
1761 return static_branch_likely(&memcg_bpf_enabled_key);
1762 }
1763
1764 extern struct static_key_false memcg_kmem_online_key;
1765
memcg_kmem_online(void)1766 static inline bool memcg_kmem_online(void)
1767 {
1768 return static_branch_likely(&memcg_kmem_online_key);
1769 }
1770
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1771 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1772 int order)
1773 {
1774 if (memcg_kmem_online())
1775 return __memcg_kmem_charge_page(page, gfp, order);
1776 return 0;
1777 }
1778
memcg_kmem_uncharge_page(struct page * page,int order)1779 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1780 {
1781 if (memcg_kmem_online())
1782 __memcg_kmem_uncharge_page(page, order);
1783 }
1784
1785 /*
1786 * A helper for accessing memcg's kmem_id, used for getting
1787 * corresponding LRU lists.
1788 */
memcg_kmem_id(struct mem_cgroup * memcg)1789 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1790 {
1791 return memcg ? memcg->kmemcg_id : -1;
1792 }
1793
1794 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1795 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1796
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1797 static inline void count_objcg_event(struct obj_cgroup *objcg,
1798 enum vm_event_item idx)
1799 {
1800 struct mem_cgroup *memcg;
1801
1802 if (!memcg_kmem_online())
1803 return;
1804
1805 rcu_read_lock();
1806 memcg = obj_cgroup_memcg(objcg);
1807 count_memcg_events(memcg, idx, 1);
1808 rcu_read_unlock();
1809 }
1810
1811 #else
mem_cgroup_kmem_disabled(void)1812 static inline bool mem_cgroup_kmem_disabled(void)
1813 {
1814 return true;
1815 }
1816
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1817 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1818 int order)
1819 {
1820 return 0;
1821 }
1822
memcg_kmem_uncharge_page(struct page * page,int order)1823 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1824 {
1825 }
1826
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1827 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1828 int order)
1829 {
1830 return 0;
1831 }
1832
__memcg_kmem_uncharge_page(struct page * page,int order)1833 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1834 {
1835 }
1836
get_obj_cgroup_from_folio(struct folio * folio)1837 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1838 {
1839 return NULL;
1840 }
1841
memcg_bpf_enabled(void)1842 static inline bool memcg_bpf_enabled(void)
1843 {
1844 return false;
1845 }
1846
memcg_kmem_online(void)1847 static inline bool memcg_kmem_online(void)
1848 {
1849 return false;
1850 }
1851
memcg_kmem_id(struct mem_cgroup * memcg)1852 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1853 {
1854 return -1;
1855 }
1856
mem_cgroup_from_obj(void * p)1857 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1858 {
1859 return NULL;
1860 }
1861
mem_cgroup_from_slab_obj(void * p)1862 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1863 {
1864 return NULL;
1865 }
1866
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1867 static inline void count_objcg_event(struct obj_cgroup *objcg,
1868 enum vm_event_item idx)
1869 {
1870 }
1871
1872 #endif /* CONFIG_MEMCG_KMEM */
1873
1874 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1875 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1876 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1877 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1878 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1879 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1880 {
1881 return true;
1882 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1883 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1884 size_t size)
1885 {
1886 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1887 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1888 size_t size)
1889 {
1890 }
1891 #endif
1892
1893 #endif /* _LINUX_MEMCONTROL_H */
1894